Natural Language Engineering 1 (1): 1-4. Printed in the United Kingdom 1
(© 2000 Cambridge University Press

Appendix: definitions of typed feature structures

ANN COPESTAKE

Center for the Study of Language and Information, Stanford University,
Stanford, CA 94305, USA
e-mail: aac@csli.stanford.edu

(Received 9 May 2001)

1 Overview

The LinGO grammar consists of a specification of a type system and of various
typed feature structures which are well-formed according to the type system. The
typed feature structures function as grammar rules, lexical rules and lexical entries.
There are several variant typed feature structure formalisms, with different compu-
tational properties, so in this appendix we very briefly specify the version assumed
by the LinGO grammar.

This appendix is necessarily terse and is only intended to allow a reader who
already has a knowledge of typed feature structures to understand the specific
formalism used in the LinGO grammar. The definitions given below basically follow
Carpenter (1992), with the notion of type constraint from Copestake (1992). For
formal details of typed feature structures in general see Carpenter (1992). A detailed
account of the specific assumptions made here is given in Copestake (1999) (see
Chapter 4 for an introduction and Chapter 5 for a semi-formal account).

Note that the LinGO grammar uses a very restricted formalism. For instance, it
does not utilize disjunctive feature structures, negation, implication, inequalities,
defaults, set-valued features, extensionality or relational constraints. Constraint
resolution does not require that every type be made maximally specific, and the
type inference system is essentially non-recursive. The recursive power necessary
in grammars is explicitly encoded via rules, which are expressed as typed feature
structures, but interpreted as phrase structure rules.

2 Definitions

A type system consists of a type hierarchy plus a set of constraints which determine
which typed feature structures are well-formed.

Definition 1 (Type hierarchy)
A type hierarchy is a finite bounded complete partial order (Type, C).

The type hierarchy specified by the LinGO grammar is not directly a BCPO, but
is converted to a BCPO automatically by the introduction of additional types,
referred to as greatest lower bound or glb types.



2 Ann Copestake

The following definition is for typed feature structures in general, without con-
sidering type constraints:

Definition 2 (Typed feature structures)
A typed feature structure is defined on a finite set of features Feat and a type
hierarchy (Type, C). It is a tuple (Q,r, d, 0), where:

e () is a finite set of nodes,

e 7 € @ (r is the root node, see below)

e 0:(@Q — Type is a partial typing function

e §:(Q x Feat — () is a partial feature value function
subject to the following conditions:

1. risn’t a §-descendant.
2. all members of Q except r are d-descendants of r.

Some systems add an extra condition:
3 there is no node n or path 7 such that é(n,7) = n.

This stipulates that the structures are acyclic. The current LinGO grammar is
neutral with respect to cyclicity (modulo bugs) — it does not construct cyclic
structures and does not rely on cycles causing unification failure.

We will use F to denotes the collection of typed feature structures. We use the
notation 7 =p 7’ to mean that feature structure F contains path equivalence
or reentrancy between the paths 7 and 7’ (i.e., é(r,m) = 6(r,n’) where r is the
root node of F); and Pr(7) = o means that the type on the path 7 in F is o (i.e.,
Pr(r) = o if and only if 0(6(r, 7)) = o, where r is the root node of F'). Subsumption
is then defined as follows:

Definition 3 (Subsumption)
F subsumes F”, written F' C F, if and only if:

e m=p 7’ implies 7 =g 7’
e Pr(m) =t implies Pr/(7) =t and t' C ¢

The subsumption hierarchy is a BCPO. Unification can be defined as follows:

Definition 4 (Unification)
The unification F' M F’ of two feature structures F' and F” is the greatest lower
bound of F' and F’ in the collection of feature structures ordered by subsumption.

In the LinGO grammar, types are associated with constraints expressed as typed
feature structures. The constraint function is given by C: (Type,C) — F. We de-
scribe the conditions on the constraint function below. For each type there is a set
of features appropriate to that type: Appfeat: (Type,C) — Feat. The appropriate
features for a type are determined by its constraint:

Definition 5 (Appropriate features)



Definitions of typed feature structures 3

If C(t) = (Q, qo, 9, &) then the appropriate features of ¢ are defined as Appfeat(t) =
Feat({F,qo)) where Feat({F,q)) is defined to be the set of features labeling tran-
sitions from the node ¢ in some feature structure F i.e. f € Feat((F,q)) such that
0(f,q) is defined.

Given this, we can define well-formed feature structures as a subset of typed
feature structures:

Definition 6 (Well-formed feature structures)
We say that a given typed feature structure F' = (Q,qo,d, ) is a well-formed
feature structure iff for all ¢ € @, we have that F' = (Q’,¢,d,a) C C(a(q)) and

Feat(q) = Appfeat(a(q)).

Constraint feature structures cannot be specified arbitrarily, since the constraint
function must meet certain conditions:

Definition 7 (Constraint function)
The constraint function C: (Type, C) — F obeys the following conditions:

Type For a given type ¢, if C(t) is the feature structure (@, qo, 9, &) then a(qp) = t.

Monotonicity Given types t; and tq if t1 C ¢5 then C(t1) C C(t2)

Compatibility of constraints For all ¢ € Q) the feature structure F’ = (Q’, ¢, 6, a) C
C(a(q)) and Feat(q) = Appfeat(a(q)).

Maximal introduction of features For every feature f € Feat there is a unique
type t such that f € Appfeat(t) and there is no type s such that ¢ C s and

f € Appfeat(s).

The first three conditions guarantee that the constraint of a type will itself be a
well-formed feature structure, and that constraints are mutually consistent. The
fourth condition is less obvious, but it guarantees that, given a feature structure,
F, if there are any well-formed feature structures subsumed by F', there will always
be a unique most general such structure.

The grammar specifies partial descriptions of type constraints, which are auto-
matically expanded to give constraint structures which meet the conditions given.
Similarly, once a type system is defined, specifications of rules and lexical entries
are expanded so that they are well-formed according to the type system. The con-
ditions on the constraint function guarantee that this will either yield a unique
well-formed structure or fail (which is treated as an error in the specification). The
essential operation during parsing and generation is then well-formed unification,
as follows:

Definition 8 (Well-formed unification)

The well-formed unification F My, ¢ F’ of two feature structures F' and F’ is the
greatest lower bound of F' and F” in the collection of well-formed feature structures
ordered by subsumption.

Well-formed unification may result in a structure which is more specific than that
given by M as defined above, since a well-formed feature structure must always be
subsumed by the constraint on its type.



4 Ann Copestake

References

Carpenter, B. (1992). The logic of typed feature structures. Cambridge University
Press.

Copestake, A. (1992). The ACQUILEX LKB: representation issues in semi-
automatic acquisition of large lexicons. In Proceedings of the 3rd conference
on Applied Natural Language Processing (pp. 88-96). Trento, Italy.

Copestake, A. (1999). The (new) LKB system. (CSLI, Stanford University:
http://www-csli.stanford.edu/~aac/doc5-2.pdf)



