
PiCasso: A Lightweight Edge Computing Platform
Adisorn Lertsinsrubtavee, Anwaar Ali, Carlos Molina-Jimenez, Arjuna Sathiaseelan and Jon Crowcroft

Computer Laboratory, University of Cambridge, UK
Email: first.last@cl.cam.ac.uk

Abstract—Recent trends show that deploying low cost devices
with lightweight virtualisation services is an attractive alternative
for supporting the computational requirements at the network
edge. Examples include inherently supporting the computational
needs for local applications like smart homes and applications
with stringent Quality of Service (QoS) requirements which are
naturally hard to satisfy by traditional cloud infrastructures or
supporting multi-access edge computing requirements of network
in the box type solutions. The implementation of such platform
demands precise knowledge of several key system parameters,
including the load that a service can tolerate and the number
of service instances that a device can host. In this paper, we
introduce PiCasso, a platform for lightweight service orchestra-
tion at the edges, and discuss the benchmarking results aimed
at identifying the critical parameters that PiCasso needs to take
into consideration.

I. INTRODUCTION

Latest advances in lightweight OS virtualisation technolo-
gies such as Docker and Unikernels allow service providers
to deploy and replicate their services on demand at the edge
of the network i.e. for supporting edge/fog computing. The
motivation for this approach is to improve the QoS (latency
in particular), provide high level of security (provided by the
strict isolation capabilities of technologies such as Unikernels)
and provide privacy. An edge cloud can be built on the basis of
several hardware technologies (e.g., rack of servers), however
clouds built by clusters of single-board devices (e.g., Rasp-
berry Pi, Cubie boards etc) are drawing significant attention
for several reasons: these devices are cheap, consume low
energy and (if optimised) have enough resources to support
applications of practical interest such as those used in smart
cities [1]. The aim of optimisation is to maximize the use of
running devices so that we can deliver the service with as less
as possible of them without compromising the necessary QoS
requirements of applications.

To overcome this challenge, the service provider can benefit
from flexibility of a lightweight service deployment infras-
tructure [2] that provides on-demand computing capacity and
enables elastic service provisioning. For instance, a service
image can be migrated from the service repository and au-
tomatically instantiated on the edge device after receiving a
service request from the end-user. With this approach, the
service provider can opportunistically aggregate idle resources
from widely distributed computational devices demonstrate the
huge potential of pool resources to build highly scalable, low
cost and easily deployable platforms.

This paper contributes to cover the research gap. It intro-
duces PiCasso – a platform for deploying QoS-sensitive ser-
vices in edge clouds built of single board devices. PiCasso can

deploy multiple instances of a given service opportunistically
to ensure that it complies with service requirements. The core
of PiCasso is the orchrestration engine that deploys services
on the basis of the service specifications and the status of
the resources of the hosting devices. Although PiCasso is still
under development, this paper offers insights into the building
of service deployment platforms (its main contribution). We
demonstrate that the effort involves the execution of practical
experiments to yield results to identified the parameters that
the orchrestration engine needs to take into account.

II. RELATED WORK

Several works [3]–[6] have explored the benefits of
lightweight service deployment through a deployment scheme
similar to ours i.e., based on microservices (e.g., Docker
containers) running in low cost hardware substrate. The insight
of these studies is that pushing services from centralised clouds
to the edge can potentially improve end users’ experience,
in particular, for latency sensitive applications. However, the
policies to deploy the service instances are not discussed. Our
work addresses this issue, by the use of an intelligent orches-
tration engine that decides when/where to deploy a service
instance to meet its requirements. A deployment policy that
takes into account startup latencies (instantiation) is discussed
in [7]. According to this work a service is deployed when the
overall latency incurred is more than the life expectancy of
the application itself. A limitation of this solution is that it
considers only the deployment cost and overlooks the status
of the resources of underlying hardware. This issue is a major
concern in our work. The authors in [8] point out that the
load inflicted on the hardware can significantly impact the
network performance in centralised clouds. In our work, we
are concerned about similar issues but in resource constrained
clouds deployed at the edge.

Related to PiCasso are container orchestration technologies
such as Docker Swarm, Mesos and Kubernetes that are used
to orchestrate and manage service instances in both cen-
tralised and edge clouds [9]–[11]. Although they provide some
automation and load balancing functions, they still rely on
manual intervention in the administration and orchestration of
the services. In our work, we aim at an intelligent orchestration
engine capable of performing the managerial tasks much like
Docker Swarm and other tools but in an automated fashion
that is supported by the monitoring of resources.

Frameworks such as MuSIC [12] and MapCloud [13] pro-
posed the dynamic service allocation algorithms to improve
QoS while considering factors like application delay, device



power consumption, user cost and user mobility patterns.
Similarly, PiCasso aims to develop intelligent service orches-
tration algorithms but we consider other factors such as the
current workload of underlying hardwares and characteristics
of different container applications.

III. PICASSO

PiCasso1 is a platform for service deployment at the edge
of the network. Its architecture is shown in Fig. 1. The current
implementation is developed in Python. It assumes a network
provider-centric model where the provider is in full control of
the communication infrastructure. PiCasso has the following
components:

Orchestration	
Engine

Service	
Repo

Edge Node#1

Service	Proxy

S1 S2 Sn

Service	
Execution

S3

Service	Proxy

S1 S2 Sn

Service	
Execution

S3

Edge Node#2

Monitoring	
Manager

Monitoring	
Agent

Monitoring	
Agent

Service Orchestrator

Service Providers

Fig. 1: PiCasso’s architecture.

A. Edge node

An edge node is a single board computer such as a Rasp-
berry Pi (RPi) or any device with storage, CPU and software
facilities for hosting (upon request of the service orchestrator)
the execution of microservices. Each edge node is provided
with Monitoring Agent, Service Execution and Service Proxy
functionalities.

1) Monitoring Agent is responsible for measuring the current
status of resources and the current demand imposed on the
services. The monitored data is formatted as json objects. The
code below shows the actual data collected from an edge node,
called “SEG 1”.
{"softResources":{"OS": "Linux"},
"hardResources": {"mem": "1 GB", "disk": "16 GB", "cpu":

"A 1.2GHz quad-core ARMv8 CPU"},
"resourceUsage": {"cpuLoad": "0.04","memUsage": "14",

"cpuUsage": "24.31"},
"PiID": "SEG_1",
"PiIP": "192.0.0.2",
"containers": [{"status": "Up 3 hours", "port_host": "8002",

"memUsage":"2015232", "name": "/adisorn",
"port_container": "80", "cpuUsage": "58986155"
"image":"hypriot/rpi-busybox-httpd:latest",
"id": "dbef34542d2649a1d97521ef042c4b59ec7b"}]}

The resourceUsage key contains the values of current CPU
load, memory usage and CPU usage. Also the object informs
that SEG 1 is currently running a single container that has
been running for 3 hours, has the name /adisorn, has used
2015232 bytes of memory and 24.31% of CPU. This infor-
mation is regularly measured and reported to the Monitoring

1https://github.com/AdL1398/PiCasso.git

Manager where the orchestration engine uses it for deciding
on deployments.

2) Service Execution allows the edge node to instantiate
containers automatically. It provides an API that allows edge
nodes to receive Docker images and json obj with deployment
description from the Service Orchestrator. The following json
object is a deployment descriptor to instantiate a httpd-busybox
web server.
deploy_descriptor={
’imageName’: ’hypriot/rpi-busybox-

httpd:latest’,
’port_host’: ’80’
’port_container’: ’8083’}

Without loss of generality, further parameters can be added
to the json object to enable the deployment of more sophisti-
cated services.

3) Service Proxy is an intermediary that seeks the service
instance for clients. A user’ s request is intercepted at the
local edge node and forwarded to a running container that
serves a requested service. If the service is not available in
the local edge node, the user’s request will be forwarded to
the closet edge node hosting the requested service. To improve
the performance and reliability, a particular service can be de-
ployed in several containers. These containers (replica) can be
deployed either in the same edge node or multiple edge nodes
across the network edge. The Service Proxy also includes
load balancing function where it distributes the users’ requests
across multiple containers. We intend to use HAProxy2 to
develop the service proxy and integrate it with the edge node.

B. Service Orchestrator

The service orchestrator is a central entity of PiCasso which
is responsible for making an informative decision to deploy the
services. The design of service orchestrator is shown in Fig. 2.

1) Orchestration Engine (OE) implements the logic for
deployment of instances of services to meet specific QoS
requirements. OE has access to an algorithm repository that
can execute to make decisions on deployment of instances
of services. For instance, an edge node can rapidly become
exhausted when a number of user requests are placed against a
particular service at the same time. This can significantly result
in large response time perceived by the end-users. To mitigate
this problem, the orchestration engine could potentially make a
decision to deploy another copy of the corresponding container
to balance the computation load. In this paper, we consider
two replication strategies for orchestration engine. The first
strategy refers to local service replication where a copy of
the corresponding container is replicated inside the same edge
node as the original container. The second strategy refers
to remote service replication where the orchestration engine
replicates a container to another remote edge node which
has enough resources to handle the deployment of additional
service instances. We aim to evaluate the impact of these two
strategies and identify critical parameters to design effective
algorithms for orchestration engine.

2http://www.haproxy.org



Monitoring
Manager

SerName Spec																	ImageName
S1 S1spec.json	 				armhfbuild/nginx
S2																	S2spec.json	 				gordonff/rpi-tomcat	

algorithm1

algorithmn

algorithm
repositoryjson obj with

monitored	data

json obj with
deploment description

Docker image
(ex.	gordonff/rpi-tomcat)

json obj with
server	spec

Orchestration 
Engine

to communication
infrastructure

Service repo

A
P
I

API

Fig. 2: Functions and interfaces of the service orchestrator

2) Monitoring Manager is responsible for placing pull
requests against the Monitor Agent deployed in each edge
node to collect information about the current status of their
resources and the current demand imposed on the service. As
shown in Fig. 2, the monitoring manager provides an API to
orchestration engine to retrieve a json object with monitored
data that includes information of all edge nodes.

3) Service Repo is a repository where dockerized com-
pressed images (si) of the services are stored augmented
with specification about their QoS requirements. In addition
to service specification, we opted for pragmatic and simpler
approach and hence decided to use json notation. An example
of a service specification of service S1 contains the following
information:
S1_spec= {’par’:{

’serviceName’: ’S1’,
’imageName’: ’armhfbuild/nginx’,
’imageSize’: ’368’,
’maxUsers’: ’50’,
’startUpTime’: ’5’
}

’QoS’:{
’responseTime’: ’5’,
’availability’: ’99.99’,
’numUsers": ’100’
}}

The par key contains a set of (key, value) pairs related to
the features of the service. For example, (imageSize, 368)
indicates that the size of the image is 368 MB. Likewise, the
pair (maxUsers, 50) indicates that an instance of the service
can handle up to 50 concurrent users. Finally, (startUpT ime,
5) indicates that it takes 5 seconds to start up an instance of
the server. The QoS key contains a set of (key, value) pairs that
stipulate the QoS requirements. In this order, S1 is expected
to support at least 100 concurrent users, be available 99.99%
of the time and respond to request within 5 seconds.

IV. PERFORMANCE EVALUATION

PiCasso can opportunistically deploy one or more instances
of a given service opportunistically to ensure its service
requirements. When the orchestration engine of PiCasso ob-
serves that demand for a given service increases, it decides to

create additional instances of the service, or alternatively, to
handle the demand with the existing instances. The decision
needs to be taken on the basis of the QoS benefits and cost of
the deployment of additional instances. We have observed that
these parameters depend on the current status of the hosting
hardware, the current status of the existing instances and the
particularities of the service. To clarify what parameters are
needed by the orchestration engine to make decisions, we have
conducted a series of experiments as follows.

A. Configuration

1) Edge nodes: To deploy service instances we use a
set of RPi-3. They run the Hypriot OS Version 1.2.03, a
customized Rasbian integrated with Docker daemon [14], [15].
We use default mode of docker engine that allows containers
to compete for resources from underlying hardware.

2) Services: We use web services (perhaps the dominant
application in today’s Internet) as use cases to demonstrate
how the particularities of the application impact service per-
formance. We have selected four of the most popular web
servers in docker hub4 (See Table I).

Image name Size
hypriot/rpi-nano-httpd 88kB
hypriot/rpi-busybox-httpd 2.16MB
armhfbuild/nginx 368 MB
gordonff/rpi-tomcat 251 MB

TABLE I: Docker web service base image and size

In accordance with the amount of bytes involved in the re-
sponse, we regard hypriot/rpi-nano-httpd, hypriot/rpi-busybox-
httpd and armhfbuild/nginx as lightweight web servers. The
three of them deliver a single html document that consists of
html text of 300 bytes with a link to a local jpeg image of
80 kB. We deliberately use a small html document to reduce
the memory consumed by the document and leave it entirely
at the disposition of the Docker containers. On this account,
gordonff/rpi-tomcat is a heavy weight web server since its
front page consists of multiple objects (e.g., photos, external
links, java scripts). The payload size is about 750 kB.

B. Impact of the Number of Concurrent Users

In the first experiment, we evaluated the response time of
containers running web servers exposed to various numbers
of concurrent HTTP requests. We used the four web servers
shown in Table I and configured each of them with the
necessary libraries to serve a single web page. We hosted each
web server in its own container, deployed the four resulting
containers in four RPis (one each) and exposed each web
server to a total of 10000 HTTP requests in each individual ex-
periment. To generate the HTTP requests, we run the Apache
Benchmarking (ab) tool5 in a test machine (lenovo E560:
Intel Core i5-6200U 2.3GHz, 8GB RAM, Ubuntu 14.04). We
created linux shells in the test machine. In each shell, we run

3https://blog.hypriot.com/downloads/
4https://hub.docker.com
5https://httpd.apache.org/docs/2.4/programs/ab.html



an instance of the ab tool and configured it to create a number
of concurrently active users: each user generated a number of
sequential HTTP requests, i.e., a user placed a request, waited
for the arrival of the corresponding response and proceeded to
generated the next one.

Under this configuration, we conducted individual response
time stress tests on each container varying the number of
users from 5 to 1000. In this order, in a five concurrent
users experiment, each user generates 10000/5=2000 requests
sequentially, in a 100 concurrent users experiment, each user
generates 10000/100=100 sequential requests only, and so on.
It is worth emphasizing that the number of concurrent users
determines the number of concurrent HTTP requests received
by the container. For instance, with 1000 concurrent users, the
container receives and handles 1000 requests concurrently.

5 10 50 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of concurrent users

S
uc

ce
ss

 r
at

e(
%

)

0

20

40

60

80

100
nano busybox nginx tomcat

Fig. 3: Average success rate of HTTP requests

We measured the success rate at the test machine by
comparing the number of HTTP requests sent by the ab tool
and the number of responses received. Fig. 3 shows the average
success rate of HTTP request under different concurrent user
levels. We repeated each experiment for 30 times. First we
examine the nano container - from five concurrent users on-
wards, it exhibits a success rate of 99.98% as it fails to respond
to some of the 10000 requests. The success rate significantly
decreases to 24.59% when the number of concurrent users is
increased to 100. Busybox success rate falls to 34.85 % when
the number of concurrent user level increases to 500 users.
As for the nginx and tomcat containers, both can serve up to
1000 concurrent users with a success rate of 100%.

Interestingly, each container can serve different level of
concurrent users with different success rate. This parameter
needs to be taken into account by the orchestration engine
which might decide to deploy additional instances of the
containers to avoid compromising the QoS. The creation of
additional instances is reasonable for lightweight containers,
for example the nano container consumes only a few kB of
memory of the underlying hardware. In previous work, we
have proven that a single RPi can run more than 2400 instances
of the nano container simultaneously [16].

C. Impact of Local Container Replication

In some situations it is convenient to deploy additional
instances of a service, say to share the load of existing ones.
The three experiments that we discuss in this section were
performed to investigate how many replicas an Edge Node
can handle without exhausting its resources (see Fig. 4). This
parameter is crucial for orchestration engine. We use the ab
tool to create clients that independently send a number of
HTTP requests against web services. The client sends a request
to retrieve a web page, waits for the response, sends another
request, and so on.

AB	client

S1

S2

S3

S4

S1 AB	client
S1

S2

AB	client

1Con-1Pi 2Con-1Pi 4Con-1Pi

Test machineTest machine Test machineRPI
RPI

RPI

Fig. 4: Experiment settings for local container replication

In the 1Con-1Pi experiment, we instantiated a single con-
tainer in a RPi and a linux shell in the test machine. In
the shell, we configured the ab tool to simulate 100 clients
instructed to send 100 HTTP sequential requests, to retrieve
an html document from the container. By the end of the
experiment, the container would have processed 100x100=
10000 requests in total.

In the 2Con-1Pi experiment, we instantiated two containers
in the RPi and created two linux shells in the test machine. In
the first shell, we configured the ab tool to simulate 50 clients
instructed to send 100 http sequential requests each, to retrieve
an html document from the S1 container. The second shell
was configured similarly but targeted the S2 container. Like
in the previous experiment, by the end, the RPi would have
processes 10000 requests in total (5000 by each container).
In the 4Con-1Pi experiment, we instantiated four containers
in the single RPi and created four linux shells in the test
machine. In the first shell, we configured the ab tool to create
25 clients instructed to send 100 HTTP sequential requests
each to retrieve an html document from the S1 container.
Consequently, S1 received 2500 requests in total. The second,
third and fourth shells were configured similarly but targeted
the S2, S3 and S4 containers, respectively. Due to the clients’
concurrency in each shell, at any time, each container has
to process 25 concurrent requests. Like in the two previous
experiments, by the end, RPi would have received 10000
requests in total (2500 by each container).

As shown in Fig. 5, we conducted the 1Con-1Pi, 2Con-
1Pi and 4Con-1Pi independently with the busybox, nginx and
tomcat containers with aim of measuring how the resources of
the RPi are impacted by the local replications of containers.
We left out nano container because its inadequacy to support
large numbers of concurrent clients renders it unsuitable for
these experiments. The results demonstrate that the CPU
utilization, CPU load and memory usage of the RPi increase
significantly when the number of containers increase. This is



because the RPi allocates independent resources (for example,
memory buffers and CPU cycles) to each container to handle
the communication with the clients. As a result, the creation
of an additional container replicates the consumption of RPi
resources. These results need to be taken into consideration
by the orchestration engine. For instance, in Fig. 6a, the CPU
utilization of busybox container in the 1Con-1Pi experiment
exhibits a sharp increase after 10s. This is a sign of exhaustion
of the container and important parameter that the orchestration
engine needs to take into consideration. It might decide to
deploy an additional instance of the container before the QoS
is compromised.

5 10 15 20

0
20

40
60

80
10

0

Time (s)

C
P

U
 U

til
is

at
io

n 
(%

)

●

● ● ● ●
● ● ●

●
●

●
●

● ●
●

●

● ●

●

5 10 15 20

0
20

40
60

80
10

0

5 10 15 20

0
20

40
60

80
10

0 ●

1Con−1P
2Con−1Pi

4Con−1Pi

(a) CPU utilization busybox

5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Time (s)

C
P

U
 lo

ad

● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ●

5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

●

1Con−1P
2Con−1Pi

4Con−1Pi

(b) CPU load busybox

2 4 6 8 10 12 14

0
20

40
60

80

Time (s)

C
P

U
 U

til
is

at
io

n 
(%

)

●

● ●
● ●

●
● ●

● ● ●

●

2 4 6 8 10 12 14

0
20

40
60

80

2 4 6 8 10 12 14

0
20

40
60

80

●

1Con
2Con

4Con

(c) CPU utilization nginx

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Time (s)

C
P

U
 lo

ad

●

● ● ● ● ●

● ● ● ● ●
●

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

●

1Con
2Con

4Con

(d) CPU load nginx

0 50 100 150 200

0
20

40
60

80
10

0

Time (s)

C
P

U
 U

til
is

at
io

n 
(%

)

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

0 50 100 150 200

0
20

40
60

80
10

0

0 50 100 150 200

0
20

40
60

80
10

0

●

1Con
2Con

4Con

(e) CPU utilization tomcat

0 50 100 150 200

0
20

40
60

80
10

0

Time (s)

C
P

U
 lo

ad

●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●●●●●●
●●●●●

●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●

0 50 100 150 200

0
20

40
60

80
10

0

0 50 100 150 200

0
20

40
60

80
10

0

●

1Con
2Con

4Con

(f) CPU load tomcat

Fig. 5: Measuring CPU utilization and CPU load on RPi

In practice, there will be several containers running in the
same physical host sharing the common pool of resources.
Because of this, the information about the status of the RPi’s
resources is not sufficient to program the orchestration engine.
In addition to that, the orchestration engine needs to be aware
of the status of resources consumed by each container. The
results shown in Fig. 6 which compare the CPU utilization
of three containers with different configurations, support our
argument. The CPU utilization of all three containers fall to

around 50% and 75% when two (2Con-1Pi) and four (4Con-
1Pi) containers are deployed in the RPi. The three plots shown
that each service exhibits different level of exhaustion. The
CPU utilisation inflicted on a single nginx container is only
about 60%; this finding indicates that a single instance of
nginx is sufficient to handle the load (10000 requests from
100 users). With the same load as nginx, the busybox requires
four containers to keep CPU utilization under 50%. The tomcat
containers exhibit instability over all experiments that drove
CPU utilization to the extremes (over 100%).

0 5 10 15 20 25 30

0
50

10
0

15
0

20
0

Time (s)

C
P

U
 U

til
iz

at
io

n 
(%

)

●

●

● ●

● ●

● ● ● ●

● ● ●
●

● ● ●

●
● ●

● ● ● ●
● ●

● ●

● ●

●

●

1Con−1Pi
2Con−1Pi

4Con−1Pi

(a) busybox

0 5 10 15 20 25

0
10

20
30

40
50

60

Time (s)

C
P

U
 U

til
iz

at
io

n 
(%

)

●

●

● ●
● ●

● ●

● ●
● ●

● ● ●

●
● ●

● ●

●

●

1Con−1Pi
2Con−1Pi

4Con−1Pi

(b) nginx

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0

Time (s)

C
P

U
 U

til
iz

at
io

n 
(%

)

●

●●

●●

●●

●●●●●●
●●●●

●●

●●

●●
●●
●●

●●

●●
●●
●●
●●
●●●●

●●

●●

●●
●●

●●

●●●●
●●

●●

●●●●●●
●●
●●●●

●●

●●
●●
●●●●

●●

●●

●●

●●

●●
●●

●●

●●

●●
●●

●●

●●
●●
●●●●●●

●●●●

●●

●●

●●

●●

●●●●

●●●●

●●
●●
●●●●

●●●●●●
●●
●●
●●

●●

●●

●●

●●

●●●●●●

●●

●●●●
●●●●●●

●●

●●

●●
●●●●

●●
●●

●●

●●

●●

●●
●●

●●

●●

●●●●

●●●●
●●
●●
●●●●

●●●●●●
●●
●●●●

●●

●●

●●●●
●●

●●●●
●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●
●●●●●●

●●

●●
●●

●●

●●

●●

●●
●●
●●
●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●
●●●●

●●
●●●●●●●●●●

●

●

1Con−1Pi
2Con−1Pi

4Con−1Pi

(c) tomcat

Fig. 6: Measuring CPU utilization of containers

D. Local vs Remote Container Replications

We conducted experiments to understand how exhausted
resources impact the response time perceived by clients. In
addition to the three configurations mentioned in the previous
section (local replication), we include other two configurations
(2Con-2Pi and 4Con-4Pi) aimed at showing the impact of
container replication on alternative RPis (remote replication).

In the experiment of 2Con-2Pi, we instantiated two contain-
ers (S1 and S2) on two RPis - one container each. In the test
machine, we created a linux shell where we used the ab tool
to create 50 clients operating concurrently. Each of them sent
100 sequential requests to S1. Thus at any time, S1 had 50
requests to process. We associated S2 to another shell with
similar configuration. The 4Con-4Pi experiment is similar but
aimed at reducing the level of client concurrency. We created
four containers on four RPis. Each container was exposed only
to 25 concurrent clients instructed to generated 100 sequential
requests. To setup the experiments we connect four RPis and
the test machine with a L2 switch via Ethernet cable. The
average round trip time between test machine and each RPi is
5ms.



●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●
●
●●●●●●
●●●●●●
●

●●●
●●●●●●●
●●●●●●●
●●●●
●
●●●●●●●●●
●●●●●
●●●●●●
●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●

●●
●●
●●●●

●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●
●●●●●
●●
●
●●●

●●●

●●

●●●●●●●●●●

●●
●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●

●
●
●●●●
●●●●
●●

●

●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●
●●●●●
●●
●
●●●

●●●

●●

●●●●●●●●●●

●●
●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●

●
●
●●●●
●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●
●●●●●
●●●●
●●
●●●●
●
●

●

●●●

●
●

●

●
●●●●●
●
●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●
●●●●●●
●●●●
●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●
●●●●●
●●●●
●●
●●●●
●
●

●

●●●

●
●

●

●
●●●●●
●
●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●
●●●●●●
●●●●
●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●
●●●●●
●●●●
●●
●●●●
●
●

●

●●●

●
●

●

●
●●●●●
●
●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●
●●●●●●
●●●●
●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●
●●●●●
●●●●
●●
●●●●
●
●

●

●●●

●
●

●

●
●●●●●
●
●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●
●●●●●●
●●●●
●●●●●
●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●

●●●

●●●●●●●●
●

●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●
●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●

●●●

●●●●●●●●
●

●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●
●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●

●●●
●●●●●
●●●●

●●●
●●●●●

●●
●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●

●●●
●●●●●
●●●●

●●●
●●●●●

●●
●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●

●●●
●●●●●
●●●●

●●●
●●●●●

●●
●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●

●●●
●●●●●
●●●●

●●●
●●●●●

●●
●●●

1Con−1Pi 2Con−1Pi 4Con−1Pi 2Con−2Pi 4Con−4Pi

0
20

0
40

0
60

0
80

0
10

00
12

00

R
es

po
ns

e 
T

im
e 

(m
s)

(a) Response time of busybox web server

●●●
●●●●●●
●●●●●
●●●
●
●●●●●
●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●
●●●
●●●
●●●●●●●●

●●●●
●●●●●●●
●●

●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●

●●●●●
●●

●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●

●●

●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●

●●●●●
●●

●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●

●●

●●●●●
●●●●
●●●●
●●●●●●
●●●●
●●

●
●

●●●●●●
●●●●●●●
●●●●
●●●
●●●
●
●

●●●●●
●●●●
●●●●
●●●●●●
●●●●
●●

●
●

●●●●●●
●●●●●●●
●●●●
●●●
●●●
●
●

●●●●●
●●●●
●●●●
●●●●●●
●●●●
●●

●
●

●●●●●●
●●●●●●●
●●●●
●●●
●●●
●
●

●●●●●
●●●●
●●●●
●●●●●●
●●●●
●●

●
●

●●●●●●
●●●●●●●
●●●●
●●●
●●●
●
●

●

●●
●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●
●●●
●●●

●●●●●
●
●●●●●●
●

●

●●
●●●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●
●●●
●●●

●●●●●
●
●●●●●●
●

●●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

1Con−1Pi 2Con−1Pi 4Con−1Pi 2Con−2Pi 4Con−4Pi

20
40

60
80

10
0

12
0

14
0

R
es

po
ns

e 
T

im
e 

(m
s)

(b) Response time of nginx web server

●

●●●●●●●●
●●●●
●●●●●
●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●●
●●
●●●
●●
●

●●●
●●

●
●

●●●
●●●
●●
●●●●
●●
●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●
●●
●●

●●●
●●●
●●
●●●●
●●
●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●
●●
●●

●●●●●●
●●●●●
●●
●●
●●●●
●●●
●●
●●●●
●●●●●
●●●●●●
●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●●

●●●●●
●●●●●
●●●●●●
●●●
●●
●●

●
●
●

●●●●●●
●●●●●
●●
●●
●●●●
●●●
●●
●●●●
●●●●●
●●●●●●
●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●●

●●●●●
●●●●●
●●●●●●
●●●
●●
●●

●
●
●

●●●●●●
●●●●●
●●
●●
●●●●
●●●
●●
●●●●
●●●●●
●●●●●●
●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●●

●●●●●
●●●●●
●●●●●●
●●●
●●
●●

●
●
●

●●●●●●
●●●●●
●●
●●
●●●●
●●●
●●
●●●●
●●●●●
●●●●●●
●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●●

●●●●●
●●●●●
●●●●●●
●●●
●●
●●

●
●
●

●●●●
●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●

●●●●
●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●

●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●

●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●

●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●

●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●

1Con−1Pi 2Con−1Pi 4Con−1Pi 2Con−2Pi 4Con−4Pi

0
10

00
20

00
30

00
40

00
50

00

R
es

po
ns

e 
T

im
e 

(m
s)

(c) Response time of tomcat web server

Fig. 7: Impact of container replication on response time with different configurations

busybox nginx tomcat

C
P

U
 u

til
iz

at
io

n(
%

)

0
20

40
60

80
10

0
12

0

1Con−1Pi 2Con−1Pi 4Con−1Pi 2Con−2Pi 4Con−4Pi

(a) CPU usage of Raspberry Pi

busybox nginx

C
P

U
 lo

ad

0
1

2
3

4

1Con−1Pi
2Con−1Pi

4Con−1Pi
2Con−2Pi

4Con−4Pi

tomcat

C
P

U
 lo

ad

0
20

40
60

80
10

0

(b) CPU load of Raspberry Pi

Fig. 8: Measuring hardware resources under stressing loads

Fig. 7 shows the average response time of web containers
with different service deployment configurations. The com-
putation load of 2Con-1Pi and 4Con-1Pi are theoretically
reduced by 50% and 75% compared to a single container
case (1Con-1Pi) as a number of concurrent users placing
the request against each container is divided to 50 and 25
respectively. However, in both configurations, the end-users
cannot achieve better response time. In case of busybox and
nginx, the end-users achieve almost similar results for all three
configurations. As for the tomcat, the average response time is
slightly increased when more containers are replicated in the
same RPi. On the other hand, applying the remote replication
strategy (2Con-2Pi and 4Con4-Pi) significantly improves the
performance of response time. For instance, in case of busybox
container, the average response time is improved up to 55.01%
(2Con-2Pi) and 77.25% (4Con-4Pi) compared to 1Con-1Pi
case. Similar tendency is also occurred in nginx and tomcat.

The implication behind these results is related to resource
exhaustion of the RPi. The measurements of CPU utilisation
and CPU load are presented in Fig. 8. The deployment of
two and four containers in a single RPi (2Con-1Pi and 4Con-
1Pi) cause higher CPU utilization and CPU load than the
deployment of a single container (1Con-1Pi). However, when
the containers are deployed in another RPi (2Con-2Pi and
4Con-4Pi), the CPU usage gradually decreases.

The experiment with the tomcat container is an extreme
case of resource exhaustion where the CPU is fully utilized
and CPU load increases up to 70. Such a load exhausts the
CPU of the RPi and severely affect its average response time
which reaches up to 1847 ms (4Con-1Pi). The orchestration
engine needs to be aware of these parameters and remedy the
situation, for example, by deploying an additional instance of
the container in another RPi to take the excessive load.

E. Container Replication Cost

Deployment of additional instances can help to improve
service performance but it also introduces some extra costs.



We have identified two types of costs including network traffic
cost and instantiation cost. The network traffic cost is the
traffic generated by the transfer of the service image from the
Service Repo to the Edge Node. It is mainly dependent on the
size of service image and the bandwidth of network link. The
instantiation cost is the time that edge node takes to have a
newly deployed instance ready for serving. In our experiments,
we measured the booting time of the docker engine on a RPi
and the time it takes to create a container. Fig. 9 shows the
service instantiation cost of the four web server containers. It
takes about 3.37 s to boot up a docker engine in a RPi 3. This
cost is zero when the docker engine is already running in the
RPi. As for the containers, it takes about 1.42, 1.46, 1.44 and
1.48 s to instantiate the nano, busybox, nginx and tomcat web
server containers, respectively.

nano busybox nginx tomcat

Containers

T
im

e 
(s

)

0
1

2
3

4
5

start docker spin up container

Fig. 9: Service replication cost

V. CONCLUSION

In this paper, we presented PiCasso, a platform for
lightweight service orchestration at the edges. We also pre-
sented a series of benchmarking results that helped us to
identify the critical parameters of our usecase service (web
service), containers and underlying hardware. We identified
how many users a service can support, how containers con-
sume RPi resources and how many of them a RPi can
support simultaneously, before showing signs of exhaustion.
These parameters will be used by the orchestration engine to
make appropriate service orchestration decisions - whether to
replicate the services within the same device or in another
device. Take as an example the benchmarking of nginx, the
results show that a single container can respond to users’
requests within 140 ms (see Fig. 7b). To reduce the response
time, the orchestration engine can apply a local replication
strategy and instantiate another replica of the service with
the one in existence. However, this strategy is not suitable
for delay sensitive services because, as shown in Fig 5, the
instantiation of additional replicas of the service in the same
edge node results in longer response time. In this situation, a
remote replication strategy is a better alternative, provided that
the service can bare the costs as explained in Section IV-E.

The remote replication would be useful if the cost of container
replication is less than the delay requirements. Understanding
the system behaviour in terms of the performance is crucial
to develop intelligent orchestration algorithms.

As part of future work we intend to develop intelligent
service orchestration algorithms that can dynamically select
a suitable service deployment/replication strategy (e.g., local,
remote, etc.). The selection could be triggered automatically
while balancing the tradeoffs of multiple parameters such as
hardware status (e.g., work load, number of user requests), net-
work conditions (e.g., network topology, link latency among
edge nodes) and service requirement (e.g., number of users,
maximum latency).

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Union?s (EU) Horizon 2020 research
and innovation programme under grant agreement No.645124
(Action full title: Universal, mobile-centric and opportunistic
communications architecture, Action Acronym: UMOBILE)

REFERENCES

[1] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V. Vasilakos,
“Fog computing for sustainable smart cities: A survey,” ACM Comput.
Survey., vol. 50, no. 3, pp. 32:1–32:43, Jun. 2017.

[2] M. Bjorkqvist, L. Y. Chen, and W. Binder, “Opportunistic service
provisioning in the cloud,” in IEEE Cloud Computing, 2012.

[3] H. Chang, A. Hari, S. Mukherjee, and T. Lakshman, “Bringing the
cloud to the edge,” in IEEE INFOCOM Workshop on Mobile Cloud
Computing, 2014.

[4] D. Amendola, N. Cordeschi, and E. Baccarelli, “Bandwidth Management
VMs Live Migration in Wireless Fog Computing for 5G Networks,” in
IEEE Cloudnet, 2016.

[5] C. H. Benet, K. A. Noghani, and A. J. Kassler, “Minimizing Live VM
Migration Downtime Using OpenFlow Based Resiliency Mechanisms,”
in IEEE Cloudnet, 2016.

[6] C. Pahl, S. Helmer, L. Miori, J. Sanin, and B. Lee, “A container-based
edge cloud paas architecture based on raspberry pi clusters,” in IEEE
Future Internet of Things and Cloud Workshops (FiCloudW), 2016.

[7] Y. Elkhatib, B. Porter, H. B. Ribeiro, M. F. Zhani, J. Qadir, and E. Rivire,
“On using micro-clouds to deliver the fog,” IEEE Internet Computing,
vol. 21, no. 2, pp. 8–15, Mar 2017.

[8] R. Shea, F. Wang, H. Wang, and J. Liu, “A deep investigation into
network performance in virtual machine based cloud environments,” in
IEEE INFOCOM, 2014.

[9] S. Julian, M. Shuey, and S. Cook, “Containers in research: Initial expe-
riences with lightweight infrastructure,” in ACM XSEDE16 Conference
on Diversity, Big Data, and Science at Scale, 2016.

[10] P. Heidari, Y. Lemieux, and A. Shami, “Qos assurance with light
virtualization-a survey,” in IEEE CloudCom, 2016.

[11] A. Tosatto, P. Ruiu, and A. Attanasio, “Container-based orchestration
in cloud: state of the art and challenges,” in Complex, Intelligent, and
Software Intensive Systems (CISIS), 2015.

[12] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “MuSIC:
Mobility-Aware Optimal Service Allocation in Mobile Cloud Comput-
ing,” in IEEE Sixth International Conference on Cloud Computing, 2013.

[13] M. R. Rahimi, N. Venkatasubramanian, S. Mehrotra, and A. V. Vasi-
lakos, “Mapcloud: Mobile applications on an elastic and scalable 2-tier
cloud architecture,” in IEEE Fifth International Conference on Utility
and Cloud Computing, 2012.

[14] R. Rosen, “Linux containers and the future cloud,” Linux Journal, vol.
2014, no. 240, Apr. 2014.

[15] Docker Inc., “Docker,” https://www.docker.com, visited in Jan 2017.
[16] A. Sathiaseelan, A. Lertsinsrubtavee, A. Jagan, P. Baskaran, and

J. Crowcroft, “Cloudrone: Micro clouds in the sky,” in ACM MobiSys -
DroNet workshop, 2016.


