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Abstract—In this paper, we present a novel idea of multipath
multicast, which is imperative to bandwidth intensive applica-
tions, in the context of multimedia streaming. In addition to
congestion control, multipath TCP (MPTCP) has been proposed
to establish multiple paths in a network to improve network
reliability. Application-layer multicast (ALM) has been proposed
to leverage end systems instead of dedicated routers to mul-
ticast that is important for an easy large-scale deployment as
compared to IP-based multicast. This paper presents our novel
idea of multipath multicast in the form of a simple experimental
framework called MP-ALM in which we combine the multiplicity
feature of MPTCP with the application-layer multicast (ALM).
We extensively simulate MP-ALM using ns-3 and use iPerf to
generate streaming multicast-MPTCP traffic. Simulation results
show that MP-ALM can be beneficial for a better user experience
and reduced overall network congestion in the perspective of
multicast multimedia streaming.

Index Terms—Multipath, Application-Layer Multicast, Multi-
path TCP, Performance Analysis, Multimedia Streaming.

I. INTRODUCTION

A. Motivation

Multimedia streaming constitutes a significant portion of the

Internet traffic with approximately 65% of the total Internet

traffic in North America being multimedia streaming [1];

hence it is one of the major contributors to network congestion.

Multiplicity of paths is imperative to provide improved fault

tolerance, throughput and reliability [2]–[6]. In this study, we

deploy multiplicity of paths to achieve larger throughput gains

in multimedia streaming. By deploying multiple paths that

spread the streaming traffic over a larger set of network re-

sources, the overall congestion in the network can be reduced.

Multicast enables one-to-many connections, which is impor-

tant to applications such as video streaming [7], online gaming

[8] and IPTV [9]. Although there are numerous works that

study and propose new methods for multipath unicast [10]–

[12], little effort has been dedicated to explore the frontier

of multipath multicast, which is the subject matter of our

paper. Specifically, we use multicast multimedia streaming

and combine it with the multiplicity feature of paths by

deploying MPTCP to give a unique idea of MP-ALM, which

is our experimental framework to combine and evaluate the

scenario of multipath multicast in a network. Mutlipath TCP

(MPTCP) [13], [14], which is a recent extension to single-

path TCP (SPTCP) (henceforth we use SPTCP to mean the

traditional TCP), has the capability to deploy multiple paths

or subflows with distinctive IP addresses among the subflows.

We deploy MPTCP as the transport-layer protocol in our MP-

ALM framework to enjoy the features of multiplicity of paths

and reliability, and the benefits of congestion control.

The reason for choosing application-layer multicast (ALM)

for our study is twofold. First, the ALM gives us the freedom

to introduce reliability and congestion control at lower layers.

Second, if we want to deploy TCP (for reliability and con-

gestion control) instead of UDP at the transport layer then we

can not adopt conventional IP-based multicasting approach.

The reason for this is that TCP is always between two points

and it can not operate in a one-to-many configuration, which

is required for IP-based multicasting. We have to adopt an

indirect approach to multicast with TCP and ALM enables

us to do so. ALM is different as compared to network-

layer (IP-based) multicasting in that it makes use of the end-

systems (and point-to-point connections among them) rather

than dedicated routers to multicast.

The main goal of this paper is to evaluate our idea of

multipath multicast by evaluating the performance of MPTCP

through our proposed MP-ALM framework for multicast

streaming. Networking testing tool such as iPerf is used at

the application layer to establish parallel and distinctive point-

to-point connections for ALM. Internet companies, such as

YouTube and Netflix, that deploy SPTCP at the transport layer

[15] can benefit from our study by replacing SPTCP with

MPTCP, combined with intelligent ALM strategies, to make

the streaming experience of their clients even better and to

reduce the overall congestion in the network.

B. Contributions of this Paper

Following are the main contributions of this paper.
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TABLE I: Comparison with the existing reliable multipath multimedia streaming schemes

Study Performance Metrics(s) Support for Multicasting Dedicated Path Selection Dedicated Traffic Splitting Transport-Layer Protocol

MultiTCP [10] Bandwidth � Required Required TCP

DMP [11] Throughput � Required Required TCP

Kuschnig et al. [12] Throughput � Required Required TCP

MP-ALM Throughput, Latency, Jitter,

Packet Loss

� Not Required Not Required MPTCP

1) While a previous work [16] has examined multipath

based ALM in the specific scenario of cognitive radio

networks; we, however, present our discussion in a more

generic fashion. To the best of our knowledge, the idea

of multipath multicast using MPTCP (for reliability and

the multiplicity of paths) is presented in this paper for

the first time.

2) Through MP-ALM framework, we try to quantify the

performance of MPTCP in terms of throughput, latency,

jitter and packet loss along with the friendliness of

MPTCP towards SPTCP. In this way our work can also

be considered as a benchmark study for the performance

evaluation of MPTCP.

C. Organization of this Paper

In Section II, we first provide a brief background on

the operation of MPTCP and the concept of friendliness of

MPTCP towards SPTCP. In Section III, we present the related

work. In Section IV, we describe our network model. In

Section V, we discuss in detail all the simulation results. In

Section VI, we give potential future directions and real world

deployment challenges to enhance the study presented in this

paper. Finally, in Section VII we conclude our paper.

II. BACKGROUND

A. Multipath TCP (MPTCP)

Multipath TCP (MPTCP) is a recent extension to traditional

SPTCP [13], [14]. It renders a data transfer between two points

to be split into multiple data streams over multiple paths.

MPTCP carries out this data split over multiple IPs. Hosts,

specially the ones that are multihomed, with the provision of

multiple NICs (or IPs) can make use of the multiplicity of

MPTCP. As a result such hosts can utilize all, or a subset, of

available IP addresses for throughput gains.

Middleboxes, like firewalls and NATs, used to be the biggest

hurdle against the extension/ modification of existing protocols

like SPTCP. MPTCP circumvents this issue by making use

of the options field in the SPTCP header. Each subflow an

MPTCP connection adds is treated just like a SPTCP. In this

way, MPTCP is able to deal with middleboxes. Next we briefly

describe how MPTCP operates.

1) Connection Setup: An MPTCP connection is established

between two points just like SPTCP’s famous three-way

handshake. At the start of this handshake, an MPTCP enabled

host sends Multipath Capable (MP_CAPABLE) option in the

SYN packet. If it receives the same MP_CAPABLE option

in the SYN/ ACK packet then it is established that both

parties of the connection understand MPTCP and are ready to

create first subflow of their data transfer. The MP_CAPABLE

option is also put into the last ACK packet of the three-way

handshake and an MPTCP connection with one subflow is

established between two points. In the case when there is no

MP_CAPABLE option found in the SYN/ ACK then MPTCP

automatically falls back to regular SPTCP.

2) Adding a Subflow: Subject to the availability of an extra

IP, a host can establish a second subflow in its data transfer.

Creating a new subflow in the existing MPTCP connection

is just like making a new SPTCP connection with usual

SYN, SYN/ ACK, ACK transfer. This time in each of these

three packets an MP_JOIN option is also present. After the

success of such a three-way handshake a second subflow,

which is associated to the existing MPTCP connection, is

created between the two end-points. Now data stream can be

split over these two subflows.

3) Sequence Number Space in MPTCP: There are two

types of sequence space in MPTCP. One sequence space is

for each subflow and a separate sequence space for the overall

connection. This is done so that middleboxes do not drop any

packet stream that they perceive to be having discontinuous

sequence number space.

B. Friendliness of MPTCP towards SPTCP

MPTCP is designed in such a manner so that adding

multiple subflows does not starve other concurrent SPTCPs.

With all the subflows of an MPTCP connection the maximum

bandwidth that an MPTCP connection gets over a link is equal

to the maximum bandwidth that a SPTCP connection can

achieve over the same link. At first this sounds a bit confusing,

as to why use MPTCP at all then? The difference arises when

there are multiple links. SPTCP can only utilize one link

while an MPTCP connection can create an additional subflow,

subject to the availability of an extra IP address, through the

other available link. MPTCP then routes most of its traffic

through the subflow, over a link, that is less congested. In

this manner, MPTCP remains friendly with SPTCP and also

achieves throughput gains when extra links are present. In

the case of a bottleneck link, where SPTCP and MPTCP

connections share a same link, MPTCP behaves just like any

other SPTCP no matter how many subflows it creates.

As an example, consider two links as in Fig. 1, A and B,

each of 100 Mbps capacity. Let us assume that link A is being

shared by two SPTCPs and three MPTCPs while the link B

is being shared among four SPTCPs. In this scenario, instead

of congesting link A, MPTCPs pool the capacity of all the

139139139139139



available links (in our case links A and B) and send a portion

of their traffic, through subflows, over the link that is less

congested (i.e., link B shared by four SPTCPs). Now two links

are being treated as one big link of 200 Mbps being shared

equally among nine connections, hence each getting a share

of 22 Mbps. If, however, both the links were shared only by

the SPTCPs then in link A each connection would have 20
Mbps each while in link B 25 Mbps would have been for each

SPTCP connection. This traffic splitting property of MPTCP

is known as its congestion balancing property [17].
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Fig. 1: MPTCP congestion balancing property and friendliness

towards SPTCP

III. RELATED WORK

Multicasting using multiple paths is relatively new as com-

pared to multipath unicast. Ali et al. introduced and discussed

this idea in [16]. However, they deployed multipath multi-

casting in the particular scenario of cognitive radio networks.

Learning automata based reinforcement learning was used

for the design of multipath multicast routing protocol. Their

protocol outperforms the commonly used multicasting routing

protocol (COCAST) for cognitive radio networks. Our work,

however, is distinguished from [16] because of its generic

nature and the fact that we deploy MPTCP at the transport

layer that automatically takes care of the feature of multiplic-

ity. Additionally, by introducing MPTCP for multicasting we

make our communication inherently reliable that also takes the

overall network congestion into consideration.

Now we review a few works that also make use of multi-

plicity of paths for multimedia streaming and compare these

efforts with our idea. In [10], Tullimas et al. propose an

application-layer solution, which they call MultiTCP. Their

solution is a receiver-oriented multimedia streaming system

that utilizes multiple SPTCP connections for the same ap-

plication for bandwidth gains that would otherwise have not

been achievable if only one SPTCP connection was deployed.

Another scheme is called Dynamic MPath-streaming that is for

live multimedia streaming over multiple paths using SPTCP

[11]. In this scheme, path selection for sending streaming

traffic is based on implicit inferring technique. The paths

with higher achievable throughput drain the sending buffers

of corresponding SPTCP connections quickly and hence these

paths are implicitly selected first. According to the authors,

this scheme outperforms single path and static streaming

schemes. Another interesting work proposes a client-driven

video streaming approach over SPTCP [12]. This scheme

deploys multiple HTTP request-response streams. This design

is particularly for lossy network infrastructure where, the

fluctuations in throughput (due to SPTCP’s congestion control

mechanism) can deteriorate the streaming experience. Multiple

HTTP streams address this fluctuation problem and at the

same time it is also friendly towards the concurrent SPTCP

connections.

It can be observed from the works presented above that

many efforts have been made to deploy multiplicity for

efficient multimedia streaming. Mostly distinct and parallel

SPTCP connections are used for such purposes. Dedicated

path selection, traffic splitting and packet ordering schemes

have to be designed for such schemes. There is also a risk of

starvation of the concurrent SPTCP connections (of applica-

tions sharing the same network resources). This happens by

deploying multiple parallel SPTCPs for a single application.

Dedicated efforts are made to ensure friendliness of such

schemes towards other concurrent SPTCPs. With MPTCP, the

benefits of multiplicity for throughput and other performance

gains can be easily achieved. In the case of MPTCP, one does

not have to worry about separate congestion control and traffic

splitting mechanisms on the available paths. Also, MPTCP is

very friendly towards SPTCP. It adjusts its own sending rates

over all of its subflows so that there is negligible effect on

concurrent SPTCPs. Table I provides a quick comparison be-

tween the works presented here with our MP-ALM framework.

Our scheme is distinguished from these works as it deploys

MPTCP at the transport layer.

IV. NETWORK MODEL

We construct a simple tree topology (Fig. 2) with one

multimedia streaming server (the parent node) and a varying

multicast group size (the child nodes). Both the server and

the clients are MPTCP enabled. The server makes distinct

point-to-point MPTCP connections to each of the clients in

a given multicast group to disseminate streaming content

towards them. In this study we assume that server and all

the clients (in a multicast group) can create an equal number

of subflows for a given MPTCP connection (i.e., all the nodes

are equipped with an equal number of IP interfaces).

Fig. 2 shows a one-to-many configuration. The source node

is denoted by s. The set of client nodes, i.e., a multicast group,

is represented by D where:

D = {d1, d2, ..., dn} where n ≥ 1 (1)

R represents the set of intervening routers:

R = {r1, r2, ..., rm} where m ≥ 1 (2)

Set of links is denoted by L where:
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Fig. 2: Network Model: client nodes = D = {d1, d2, ..., dn};

routers = R = {r1, r2, ..., rm}; and links = L = {l1, l2, ..., lk}

L = {l1, l2, ..., lk} where k = m(n+ 1) (3)

Different values of n and m create the following test cases:

1) Unipath unicast where we have n = 1 and m = 1
2) Unipath multicast where we have n > 1 and m = 1
3) Multipath unicast where we have n = 1 and m > 1
4) Multipath multicast where we have n > 1 and m > 1

A. Limitations of Our Model

We are well aware of the simplicity of our network model

presented here. The real-world topologies are much more

complex than this model. Our main purpose in this study is

to evaluate (and register) the notion of multipath multicast

through pushing the limits of MPTCP in terms of number of

subflows and letting multiple MPTCP connections interfere

with eachother as much as they can. We list the limitations

and the assumptions we make as follows:

• In this study, we do not specifically construct overlay

trees for the purpose of ALM. The topology considered

here is a simple tree topology with one parent node

connected with multiple child nodes through intervening

routers.

• We assume in this study that the streaming server and

the clients, in a multicast group, are all equipped with

an equal number of IP interfaces and they can create an

equal number of subflows at the same time.

• We use iPerf application in server mode, instead of

an actual multimedia server, to simulate our streaming

server.

V. SIMULATION SETUP AND THE RESULTS

Here we first briefly provide a background on the Direct

Code Execution (DCE): a framework we deploy in ns-3 for

our simulations. This discussion is followed by the complete

description of simulation setup and a detailed discussion on

the obtained results.

A. Direct Code Execution (DCE)

Direct code execution (DCE) is a framework that enables

running the original protocols, applications and Linux kernel

commands within the simulation environment of ns-3. This

framework is proposed [18] for the reproducible networking

research with deterministic reproducibility. In its core archi-

tecture, DCE adopts the traditional library operating system

approach (LibOS) that has three main components: i) core

module that provides virtualization of stacks, heaps and the

global memory, ii) the kernel layer that provides an execution

environment for Linux network stack in ns3 environment,

and iii) the POSIX layer that provides standard socket APIs

used by the emulated applications. This approach renders

DCE capable of reproducible and realistic network research

by integrating real Linux kernel and application code with

ns-3. The DCE framework satisfies the five requirements of

reproducible research: i) experimental realism, ii) topology

flexibility, iii) low-cost reproducibility with ease, iv) scalability

of experiments and v) debugging facility.

B. Enhancing a Use Case of Direct Code Execution (DCE)

We setup DCE with ns-3 and expand the code provided in

dce-iperf-mptcp.cc file by Tazaki et al. [19]. The code in this

file sets up two nodes equipped with iPerf and MPTCP. One

of the nodes is configured as an iPerf client and the other one

as the iPerf server. These nodes can then be connected via a

variable number of routers (m) that can be given as an input

argument via command line during initialization. In this code

the number of routers is equal to the maximum number of

subflows that a node can create. As an example, if we have

m = 2 then there are two routers in the network: r1 and r2
that are connected with each of the nodes in the topology (i.e,

the server node and all the client nodes). As a result, each

node has two distinct IP interfaces (each connected to one of

the routers) and hence each node can create maximum of two

subflows. We use the same notation m to show the number

of routers and also the maximum number of subflows that a

node can create.

We modify the code, provided in dce-iperf-mptcp.cc, and

make the number of client nodes (denoted by |D| in our

case) dynamic as well. |D| represents the multicast group

size. We also include the option to enable/ disable MPTCP

on any one of the nodes, simply by passing an input argument

during the initialization. This is done in order to perform the

experiments related to the friendly behavior of MPTCP by

initializing MPTCP and SPTCP connections concurrently by

the same iPerf server.

C. Simulation Setup

We implement our topology (as described in Section IV)

in ns-3 with DCE so that all the nodes in the topology are

equipped with the actual implementations of MPTCP and

iPerf. The version of MPTCP used in our study is 0.89. Each

node in the topology uses iPerf to establish an MPTCP con-

nection with other nodes. Each node runs the iPerf application

for 100 seconds. This is done by setting the time argument of
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iPerf to 100. As shown in Fig. 2, the nodes on the left hand

side are configured as the iPerf clients and the node on the

right hand side as an iPerf server. We use the P option of iPerf

on the server side to specify the number of parallel connections

that depends on the value of |D| (i.e., the multicast group size).

We arbitrarily set the values of data rate and delay of the links

for all the clients to 5 Mbps and 10 ms respectively. At the

server side the values of data rate and delay are arbitrarily set

to 100 Mbps and 1 ns respectively.

For multiple iterations, we vary |D| from 1 to 15 resulting

in a total of 15 iterations. For each of the 15 iterations we

increase the number of subflows, for both clients and the

server, from m = 1 to m = 8. Overall we run 120 simulation

instances (i.e., 15 iterations of multicast group size each for

the 8 different number of subflows). We average the results

of performance metrics for all the 15 iterations for each

of the clients and the server against each given number of

subflows and present the results with 95% confidence intervals

(except for the results related to the server-side throughputs

in Section V-D1, Fig. 3 that are better understood if results

are distinctly presented for each multicast group size). In the

next subsections, we describe the effect of multicast group

size (|D|) and number of subflows (m) on the performance

metrics of throughput, latency, jitter and packet loss. Second,

we present the effect that the external SPTCP traffic has

on the performance of MP-ALM scheme. We also analyze

the friendly behavior of MPTCP towards SPTCP, when both

versions coexist in the MP-ALM framework.

D. Effect of Multicast Group Size

1) Server Side Throughputs: Fig. 3 shows the trend of

throughputs at sever (s) for the first six iterations (i.e., upto

|D| = 6, the subsequent values of |D| show a similar trend).

It can be observed that with the increasing |D|, the burden

on s also increases. This shows one of the downsides of

ALM, in which an identical traffic stream is generated over

every new MPTCP connection that is required for each newly

added client in a multicast group. However, since we are using

MPTCP at the transport layer, the bulk of the traffic created by

s (because of ALM) can be spread over the multiple subflows

of an MPTCP connection. As a result, a single link can be

saved from being chocked. For each iteration, the case for

m = 1 corresponds to one subflow. In other words, it shows

that MPTCP is disabled and all the multicast traffic is sent

through SPTCP. A significant increase can be observed when

the transition from m = 1 (when the MPTCP is disabled)

to m = 2 (when the MPTCP is enabled with two subflows)

occurs. After m = 2 the improvement in throughput, for a

given |D|, is not very significant and remains almost at the

same level. The reason for this is the tree-of-trees phenomenon

that we explain in the upcoming section.

2) Client Side Throughputs: As compared to s, the effect

of change of |D| on the throughputs of the individual clients

(comprising a multicast group) is not very significant. We

average the results of all the 15 iterations (i.e., 15 different
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Fig. 3: Throughputs at s for changing |D| and number of

subflows

multicast group sizes) for each of the clients against all the

values of m and present our results, as solid bars, in Fig. 4.

This figure shows the average throughput observed at client 1
(d1 as shown in Fig. 2). This is the average of all the iterations

with 95% confidence interval. Here we observe that there is

generally an increasing trend of throughputs with increasing

number of subflows (all the other clients share a similar trend

and only the results for d1 are shown here as a reference).

Here we outline one interesting aspect of our experiments

that we term as the tree of trees phenomenon. Parallel MPTCP

connections (each corresponding to an individual client) orig-

inate from s (parent node in the main ALM tree) with each

connection further creating a large number of subflows (re-

sulting in multiple trees over the same ALM tree). Due to this

tree of trees phenomenon, which happens for all the values of

m, results in potential collisions among different overlapping

MPTCP connections and hence this leads to congestion in the

network. This is the reason that we observe a slow increase in

the throughputs with increasing values of m. That is why we

observe (on average) a little deviant behavior for m = 8 (with

a huge error bar in Fig. 4), which depicts the occurrence of

the maximum number of collisions among different subflows

created by different MPTCPs.

In Fig. 4, the most significant increase in throughput can

be observed from m = 1 to m = 2, i.e., when MPTCP is

enabled for the first time (this is similar to the results obtained

at the server side). After m = 2 the increase is relatively

small (because of the tree of tree phenomenon as explained

in the last paragraph). It can also be observed for m = 1
case that the throughput remains almost at the same level (as

shown by the negligible height of the error bar). This can be

considered as an idealized case, which is being presented here

for the comparison purposes. This shows the significant effect

of switching from SPTCP (m = 1) to MPTCP (m = 2).

E. Effect of External SPTCP on MP-ALM Performance

Here we analyze the friendly behavior of MPTCP towards

SPTCP in our MP-ALM framework. The test scenario to

analyse the friendliness of MPTCP towards SPTCP is shown

in Fig. 5. As shown in this figure, s now also makes a parallel
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Fig. 4: Comparison of average throughputs observed at d1,

for different number of subflows, when SPTCP is absent and

when it is present as external traffic
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Fig. 5: Topology setup to analyze the friendly behavior of

MPTCP towards SPTCP. Client dn runs SPTCP and coexists

with other MPTCP enabled clients in the same network

SPTCP connection with dn along with its existing MPTCP

connections to all the other clients in a multicast group. In

this figure (as an example) there are two clients (d1 and d2)

in a multicast group and there are m number of active subflows

created between each of the clients and s. The checkered bars

in Fig. 4 summarize the results of throughputs at d1. This time,

besides a multicast group we also have an additional client

running SPTCP in our MP-ALM framework. The checkered

bars in Fig. 4 show how the trend of throughputs of a client

(d1 in our case), in a multicast group, changes in the presence

of an external SPTCP as compared to the case when there is

no coexisting SPTCP. An interesting thing to note here is that

now we do not observe a deviant behavior for m = 8, like

we do for the case when there is no external SPTCP. This

may be because of the congestion control algorithm design

of MPTCP that behaves less aggressively (and hence more

friendly [17], [20]) when a SPTCP coexists. Fig. 6 shows the

variation in throughputs at d1 with increasing multicast group

size (now averaged over all the values of m against each value

of |D|). This figure strengthens our argument about MPTCP

being less aggressive in the presence of an external coexisting

SPTCP. We observe in this figure that for the case when there
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Fig. 6: Comparison of average throughputs at d1 averaged over

all the values of subflows for the case when SPTCP is absent

vs. when it is present as external traffic

is no external SPTCP the average throughput starts to plummet

after |D| = 9 as opposed to the case when SPTCP is present

as an external traffic in our topology. The results obtained for

latency, jitter and packet loss in the next subsection further

strengthen our conjecture.

Furthermore, it is our observation that the throughputs ob-

served at dn remains constant at 4.848 Mbps against increasing

| D| and number of subflows. This figure of 4.848 Mbps is the

same when observed for the case of m = 1. This result shows

that MPTCP adjusts it own throughputs, over its multiple

subflows, to ensure maximum friendliness towards SPTCP.

F. Latency, Jitter and Packet Loss

Here we present and discuss the latency, jitter and packet

loss results from three perspectives namely: as seen from s;

those observed at one of the clients (again we take d1 as our

reference); and finally we see how the results change if a client

running SPTCP coexists with the multicast group formed in

our ALM tree (Fig. 5). These results are important as they

provide an insight regarding the quality and user experience

of a streaming service. Like in the throughput experiments, we

vary our |D| from 1 to 15 each time for a given number of

subflows, which we vary from m = 1 to m = 8. We average

all the results over all the values of |D| against each value

of m and present them with 95% confidence interval. This

results in the average of 15 simulation instances against each

given value of m. An important thing to mention here, before

proceeding, is that all the results corresponding to the SPTCP

client (as shown by the grey checkered bars in Figs. 7-11)

start from m = 2 instead of m = 1. The reason for this is that

SPTCP client is only initialized to study the friendliness of

MPTCP towards SPTCP and for m = 1 MPTCP is disabled

so this test can not be performed.

1) Server Side: Figures from 7 to 9 present the results

for average latencies, jitter and packet loss respectively as

observed at s.

Fig. 7 shows that the average latencies for the case when

SPTCP is present among the multicast group remain less than
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Fig. 7: Effect of change of number of subflows on average

latencies as seen from s to d1 and SPTCP client

when an external SPTCP is not present except for case when

m = 8. This deviant behavior, as evident in throughput (Fig.

4) and packet loss results (Fig. 9), may be caused (as explained

before) due to the increased number of collisions between the

different subflows of different MPTCPs (the presence of a

relatively large error bars on these points in all the results are

also indicative of this). Fig. 7 (just like Fig. 6) also gives an

insight about the fact that MPTCP is, in its congestion control,

less aggressive when a SPTCP is present. This is the reason

that the latencies for the increasing number of subflows remain

less when SPTCP is present as compared to the case when it

is not present. The fact that MPTCP remains friendly towards

SPTCP is also evident from the latencies observed from s

to the SPTCP client as they remain almost unperturbed (grey

checkered bars in Fig. 7).

Fig. 8 presents the corresponding jitter values (i.e., varia-

tions in the latencies) observed at s with respect to the traffic

received from d1 (with and without SPTCP) and the SPTCP

client. Again, in this figure we see that the response against the

SPTCP client remains negligible and almost at the same level

(on average at 0.103532 μs). The sharp increase in jitter when

we jump from m = 7 to m = 8 for the case when SPTCP is

absent is related to the sudden decrease in the corresponding

value of latency (as described above for Fig. 7).

Fig. 9 summarizes the packet loss that is observed as seen

from d1 for the cases when SPTCP client is present and when

it is not present among the multicast group. An increasing

trend can be observed in packet loss for increasing number of

subflows towards d1. This result is indicative of an increase in

the number of collisions among different MPTCP connections

with increasing number of subflows. In this figure the packet

loss towards SPTCP client is significantly less as compared to

d1 that shows that MPTCP connections incur minimum toll

on the normal operation of a SPTCP.

2) Client Side: Fig. 10 and 11, corresponding to d1 and

SPTCP client show a similar trend for latencies and jitter

results as observed at s. In Fig. 11 the sharp rise in jitter

for m = 8 is related to a sudden decrease in latency (Fig. 10).

In Fig. 11, it can be seen that jitter observed at the SPTCP
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Fig. 8: Effect of change of number of subflows on average

jitter as observed at s w.r.t traffic from d1 and SPTCP client
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Fig. 9: Effect of change of number of subflows on the

percentage of packet loss as seen from s to d1 and SPTCP

client

client with respect to the traffic from s is almost negligible (on

average 0.001131 μs) that shows a good streaming experience

of a SPTCP client even in the presence of a large number of

clients running MPTCP with large number of subflows. An

interesting thing to mention here is that we did not observe

any packet loss as seen from d1 and SPTCP clients to s. All

��,�

��,��

��,	

��,	�

��,�

��,��

��,�

��,��

��,�

-�.�� -�.�� -�.�	 -�.�� -�.�� -�.�� -�.� -�.�!

#$
�%
��
��
��
��
��
&�
��(
-
�+

/�-��%������������

#$�%����������&������������%�-���������
��
���&��������

1&�������
��
������ 1&����
��
������ #���
��
���&���

Fig. 10: Effect of change of number of subflows on average

latencies as seen from d1 and SPTCP client to s
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Fig. 11: Effect of change of number of subflows on average

jitter observed at d1 and SPTCP client w.r.t traffic from s

the packets transmitted by d1 and the SPTCP clients were

successfully received at s.

VI. CHALLENGES AND FUTURE DIRECTIONS

One of the main challenges in implementing MPTCP-based

multipath multicast in the real world is the need to have

multiple IP interfaces. With multihoming one can now make

use of multiple IPs and hence can potentially create an equal

number of subflows. Currently, however, many hosts only have

single network interface card (NIC) with one IP. In order to

reap the benefits of MPTCP, multiple NICs (or multiple IPs)

are required. Now with the availability of multiport NICs, this

issue can be resolved.

Another important issue is the design and implementation

of an efficient ALM algorithm that can be adopted widely. To

design such an efficient technique one should keep in mind

the potential risks of ALM, the most important among these

can be the packet duplication and the tree of trees problem

(see Section V-D2) at the server side that could put huge

amount of load on the network resources and cause multiple

MPTCP connections to inflict great amount of interference

on each other. SplitStream [21] is an interesting work that

deals with ALM efficiently and is very close to the approach

we adopt in our work. In this work high-bandwidth ALM

is considered in a cooperative environment of peer-to-peer

networking. The SplitStream system constructs a forest of

multicast trees with each tree carrying a piece of original

information. The interior nodes (or the peers who take part in

multicast forwarding) join trees according to their (incoming

and outgoing) bandwdith constraints. In this way a load-

balanced approach is adopted to distribute multicast content

among peers. We are exploring a similar approach in the

perspective of MPTCP, which inherently takes care of traffic

split at the root of a multicast tree. We will try to design a

similar intelligent system, as described in [21], where all the

peers will make (incoming and outgoing) MPTCP connections

according to their own given network capacities (which can

be done by allowing establishment of different number of

subflows at each node—which are currently same in our

work—for each MPTCP connection that this node creates).

The design of such an intelligent ALM technique combined

with streaming content coding (such as multiple description

coding [22]) can create a robust and efficient multimedia

streaming system.

VII. CONCLUSION

In this study we investigate the performance of multi-

path TCP (MPTCP) in multipath application-layer multicast

streaming (MP-ALM). Our results show that MPTCP im-

proves the throughput performance of individual clients in a

multicast group as compared to the case when only single-

path TCP (SPTCP) is deployed. All the results (throughput,

latency, jitter and packet loss) show that MPTCP remains very

friendly towards SPTCP. At the server side we observe that,

because of ALM, individual and identical streams for each

client in a multicast group are created. This duplication (or

redundancy) can overburden the network resources. In our MP-

ALM scheme, however, MPTCP creates multiple subflows that

spread the multicast traffic of the streaming server over a larger

set of network resources so a fixed set of network elements

can be saved from being overburdened. We are affirmative

that with the proliferation of multiport network interface cards

(NICs) and efficient ALM algorithms, the MP-ALM approach

can significantly improve the streaming experience of users

with minimum effects on existing SPTCP streaming traffic

and lesser congestion in the overall network.
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