
1

First year’s report update
Anwaar Ali

Abstract

This document tries to address the comments made and concerns raised during my first year report evaluation. In summary
the document is organized in way so that it tries to i) provide motivation for a blockchain’s use case, ii) shortcomings in the
existing state of the art, iii) challenges and potential pitfalls that might occur while employing the blockchain paradigm for a
particular use case, and finally the document closes with a iv) discussion on the architecture and the experimental setup to study a
blockchain-based use case. I also highlight different metrics for experimental evaluation and opportunities to analyse and compare
different blockchain-based techniques and protocols.

I. MOTIVATION FOR A BLOCKCHAIN’S USE CASE

In what follows I describe three motivating scenarios highlighting the shortcomings in their existing systems’ implementation
where blockchain can be used to address these shortcomings more efficiently.

A. Scenario I: Information sharing and data ownership

Personal data is of utmost importance in today’s connected and digital age. With each interaction between a user and an
online application, the service providers of such applications gather some information about the users in return for personalised
services. Some services like healthcare and online shopping almost always contain sensitive and private information related to
users. The service providers are usually trusted with the secrecy and integrity of such a users’ data. Unfortunately there have
been numerous incidents of users’ data being either used or revealed to unauthorised third parties12. Such unethical activities
breach the data protection laws in place. Such incidents create a need for a trusted data storage and sharing system. The trust
can be provided in terms of evidence gathering where such an evidence describes the audit of the data flow from one point to
another. Such an audit can reveal access violations on a piece of data and reveal the entities responsible for such a malicious
activity. The record of such data flow can be considered as a data provenance problem where all the operation on a piece of
data are recorded since its inception. Ideally there should exist a system that can record this provenance data in an immutable,
trusted and transparent manner.

B. Scenario II: Mutually non-trusting multiple parties

Building upon the discussion in the last subsection we have an environment with mutually non-trusting multiple parties
interested in doing business with each other. Specifically, these parties can consist of data owners who wish to subscribe
to third party service providers. Some third parties, such an online shopping and social networks, provide their users with
personalized recommendations and advertisements. They do so by using their users’ data and selling them to different brands
and services34. Now, at a first glance, such tactics might seem intrusive and malignant. But in my view, at the end of the day, we
do need such customised services such as personalised health care and recommendations about healthcare products (or simply
which product to buy or which book to read) that might be possible with the a user’s sensitive/private data. So the problem
now is how to reconcile multiple mutually non-trusting parties in a transparent and trusted manner? This scenario creates an
environment with mutually non-trusting stakeholders (e.g., data owners and data gatherers) who are interested in the trusted
management of an underlying resource. Here, the underlying resource is data itself that must be managed in a transparent and
trusted manner. This is only possible if there exists a system that can automate interactions (in terms of transactions on the
underlying resource) among these parties in a trusted, transparent, auditable and in a way that is compliant to certain policies
and regulations.

C. Scenario III: Compliance

Compliance is the next step that can be achieved if a system exists that is capable of automating interactions among mutually
non-trusting parties against an underlying common resource. Specifically, as an example such compliance can take the form
of digital enforcement of data protection policy. The automation of such a compliance will dictate transparent flow of data
among multiple parties with the provision of trusted and transparent auditing. Any breaches of compliance policy will be
detected and halted by the system in terms of recording invalid transactions (as per a policy/regulation/contract at hand) made

1https://www.theguardian.com/society/2018/jan/31/nhs-chiefs-stop-patient-data-immigration-officials
2https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
3https://www.facebook.com/full data use policy
4https://www.facebook.com/business/products/ads/ad-targeting

2

against a piece of data. The record of all transactions (valid or invalid) should ideally be kept in an immutable manner for
auditing and evidence sharing process. Data provenance studies such as whole-system provenance [1] and the study of audit
compliance with privacy policy in the IoTs [2] emphasize the need for such a system. These works envision a system that can
technologically enforce a policy that is reflective of the actual laws and regulations.

D. Limitation of the existing state-of-the-art

The two works [1], [2] described above present a solution for evidence capture in terms of data provenance for auditing
purposes. There is still a need for an automatic policy enforcement in technological domain and recording of such an evidence in
an immutable, trusted and transparent manner. The work [3] considers data provenance in cloud environment using blockchain
but it is also essentially evidence gathering system. There is room for research to design and implement a system that can
build upon such studies in terms of implementing and automating a policy/regulation.

E. Why blockchain is an appropriate fit?

Blockchain in its simplest manifestation is a distributed and immutable database. Each record is appended in this database
only after all the concerned authorities reach a consensus on the validity of this record. This has the potential to solve the
issue of trust in the above mentioned trust-less environment.

Further blockchains can be used to automate smart contracts. These smart contracts have the capability to automate inter-
party interactions according to a pre-defined policy. Smart contracts execute in a distributed manner as well. The state of these
programs is stored in a distributed and immutable manner as well on top of blockchain. This provides us with the opportunity
of automating such system in distributed, trusted and transparent manner.

F. Description of the use case

It is important to note that the use case that I intend to study can be described generally in an application agnostic manner
as policy compliant data flow. The use case described in this subsection can then find its concrete applications in different areas
such as medical health record management and trusted cloud computing. To generalize, we can have various data generators
and data gatherers as shown in Figure 1. Each third party accesses only the subset of a user’s data as agreed upon during the
signup process. I am making an assumption here that each data generator and gatherer is part of a global blockchain network.
I will elaborate this assumption further in the next section. Each data access request is treated as a transaction. This transaction
is then evaluated as per an endorsement policy implemented using a smart contract. If the policy is satisfied and a consensus
on such a transaction is reached only then an access to some data (e.g., current geolocation) is shared with the interested
third party. It is important to note that only the hash of the actual data in question is then recorded as part of the transaction
hence maintaining the user privacy. I also assume inter-party interactions regarding data sharing among third parties to also
go through the smart contract endorsement layer. Finally a simple audit mechanism, similar to the one described in [3], can
be in place that can request all the transactions made against a certain hash (which represents a piece of data). This way not
only activities like access violations can be detected but also the integrity of data as well.

II. EXPERIMENTAL SETUP AND SYSTEM ARCHITECTURE

I intend to use Linux Foundation’s Hyperledger Fabric (HLF)5. This is an implementation of a permissioned blockchain with
the features of customised membership services and consensus mechanisms. Permissioned blockchain implies that only those can
be part of a blockchain network who are specifically certified by some authority. This certification is managed by membership
service providers (MSPs) which can be an organization who deploys HLF by issuing cryptographic certificates (specifically
x.509 in case of HLF). MSPs abstract certification and cryptographic protocols. The vision behind HLF is automating trusted
business-to-business transactions. HLF gives enough freedom to its users to implement their own policies in terms of consensus,
particular business logic, and privacy and confidentiality policies while at the same time being part of the overall blockchain
network. First I describe the main components of this system and then I will explain the architecture diagram considering the
use case described above.

The architecture diagram of HLF is shown in Figure 2. Following are its main components and their descriptions:
Organization X This organization can take any shape or form. It can be an actual organization like a business entity or an end

user as e.g., a data owner as described above. Because of the modularity of HLF (it becomes clear as we go though the
document) any number of organizations with an arbitrary relationship among them can be established over a HLF-based
blockchain network.

Node.js SDK This provides an API to access the HLF blockchain. Clients which are external to the blockchain propose
different transactions through this API. We can imagine a web-based application using this API to access the underlying
HLF.

5https://www.hyperledger.org/

3

Data owner/generator

Service/cloud
provider 1

Service/cloud
provider 2

Service/cloud
provider n

Data access policy 1 Data access policy 2 Data access policy 3

Blockchain network

Data access transactions / policy enforcement through smart contract
Only hash of actual data is stored in each transaction

Blockchain network

Data share policy 1-2
Data share policy 2-n

Auditing

Fig. 1: Blockchain-based policy-compliant data provenance system

Peers Peers are the entities that maintain the state of the (blockchain) ledger and take part in consensus process as per a
custom endorsement policy.

Chaincode Chaincode provides a customized interface through which peers and external clients can interact with HLF’s
blockchain. An instance of the same chaincode is installed on all the peers hence chaincode is simply another name for
smart contract in HLF vernacular. The endorsement policy, as mentioned above, is actually defined in this chaincode. This
endorsement policy can define the particulars of the consensus mechanism. As for example, it can specify that only 51%
of total peers need to take part in endorsing a transaction. This is how one can customize consensus particulars depending
upon a use case or an application. A chaincode is mainly used to implement the overall business logic as well.

Orderer Orderer is a very important part. This solves the same double spending problem as solved by proof of work in Bitcoin.
It orders (or timestamps) all the transactions and verifies that all the transactions are valid as per an endorsement policy.
Now, at a first glace it seems that there is only one orderer as shown in Figure 2 which can be a caveat in the form of
single point of failure. This is just for development purposes in production multiple orderers can be used but then we
have to be careful in their synchronisation. The orderer is the one that collects transaction in a block and appends new
blocks in the blockchain as maintained by the peers.

Channel Channel is a very important entity. Channel can be considered as an overlay to the same HLF blockchain for data
isolation and confidentiality. It provides different levels of confidentiality. Different channels maintain different ledgers
and endorsement policies. Cross channel communication is strictly prohibited. Organizations can create different channels
and assign different peers and instantiate different chaincodes per channel (with different endorsement policies) in them.
The concept of channel is also important in addressing the scalability issue. A channel in itself can be considered as an
independent instance of HLF with its own peers, ledger, consensus mechanism/endorsement policy, and set of chaincodes
(implementing the overall business logic). As shown in Figure 2 a channel can cover peers from two organizations. This
means these peers are able to talk to each other and maintain the same version of a ledger. It is important to note here
that a channel can have multiple chaincodes but there can only be one ledger per channel. A same peer, however, of an
organization can be part of different channels at the same time.

Docker6 Docker is light-weight virtualization technology. The fact that each component of HLF is implemented using a
separate docker container makes automation and implementation of a new business logic quite easy and manageable.
Docker Compose7 is used to instantiate and configure all the necessary HLF parts using different containers and then these
containers can be inter-networked (if multiple machines are being used—something that I am also trying to experiment
with currently) using Docker Swarm8.

In the use case described in the last section one can make use of HLF in a very efficient manner. A user can create different
channels for different third parties with appropriate chaincode installed in each channel that takes care of the endorsement

7https://docs.docker.com/compose/
8https://docs.docker.com/engine/swarm/

4

policies relevant for the channel. A separate ledger is maintained at orderer which records all the transaction (either valid or
invalid). This way it provides a very useful resource for auditing. The detailed diagram with the explanation and particulars
about the components can be examined in Figure 2.

A. Moving ahead

Currently I have HLF setup and, separately, I have also setup the whole system provenance capture as described in [1]. I am
interested in interfacing the provenance stream with HLF as shown in Figure 1. This is a challenging task as I have to define
the structure of the transaction based on the provenance data as taken from the provenance stream generated by CamFlow [1].
I also have to define the transaction/unit time. Once I do this I can then start thinking about the endorsement policy/business
logic in terms of programming a chaincode. I envision this chaincode to perform the ultimate task of policy compliance data
flow among different entitities/processes.

As far as evaluation is concerned then HLF gives me enough freedom to evaluation different customized consensus protocols.
Also simple tweaking of transaction structure and the logic behind a chaincode will provide valuable insights of the efficiency
of my policy compliant auditing system.

Peer 0* Peer 1* Peer n*

Orderer* (policy verification and consensus)

Node.js
(SDK)

Clients/ end users

1. Transaction proposal

2. Endorsements

3. Invoke request

Organization 1 Organization 2

Node.js
(SDK)

Clients/ end users

Synchronised distributed ledger using CouchDB (blockchain)

Peer 0* Peer 1* Peer n*

1. Transaction proposal

2. Endorsements

3. Invoke request

Same communication channel = shared view of the ledger

Chaincode(s)*

4
. I

n
vo

ke
 T

x

*Docker containers managed by Docker compose their networking by Docker swarm

Fig. 2: Hyperledger Fabric architecture

REFERENCES

[1] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and J. Bacon, “Practical whole-system provenance capture,” in Proceedings of the
2017 Symposium on Cloud Computing. ACM, 2017, pp. 405–418.

[2] T. Pasquier, J. Singh, J. Powles, D. Eyers, M. Seltzer, and J. Bacon, “Data provenance to audit compliance with privacy policy in the internet of things,”
Personal and Ubiquitous Computing, pp. 1–12, 2017.

[3] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla, “Provchain: A blockchain-based data provenance architecture in cloud environment
with enhanced privacy and availability,” in Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. IEEE
Press, 2017, pp. 468–477.

5

Peer 0* Peer 1* Peer n*

Orderer* (policy verification and
consensus)

Node.js
(SDK)

1. Transaction proposal

2. Endorsements

3. Invoke request

Prov application: audit and compliance

4
. I

n
vo

ke
 T

x

App A App B

Provenance
capture

OS

App A App B

Provenance
capture

OS

Provenance stream

Prov application

Chaincode

Immediate next step:
Design of this interface

This part of the interface has been adapted from
Practical whole-system provenance capture, Pasquire et al.

Current experimental setup

Fig. 3: Data provenance with Hyperledger Fabric architecture

