
CO658 bonus material:
C for Java programmers

Stephen Kell

s.r.kell@kent.ac.uk

What is C?
C is a programming language invented by Dennis
Ritchie in 1972

... as part of work on the Unix operating system at
Bell Laboratories

At the time: a fairly general-purpose language, with
a systems bias

Nowadays: primarily a language for systems
programming and other low-ish-level tasks

One of two main ancestors of Java
(the other: Smalltalk)

C is still in very wide use today

Hello, world!

#include <stdio.h>

int main(void)
{

printf(“Hello, world!\n”);
return 0;

}

Initial observations:

- it looks a bit like Java...

- but simpler: no classes?!

- here just a top-level function

 ... ≅ static method

- #include similar to “import"

- lots of other differences...

Why learn C?
“It’s a state of mind.”

• It forces you to learn concepts that will improve
your understanding of CS.

”It’s a lingua franca.”

• The language of system-builders and language-
implementers is drawn from the vocabulary of C.

“It’s useful.”

• Some tasks are most easily achieved in C.
Some tasks are impossible except in C or a few
other systems-y languages

“It’s fun!”

• I enjoy programming in C. Not everyone does....

A more interesting bit of code
// tree.c
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

struct bst {

struct bst *left;
int num;
struct bst *right;

};
static struct bst *root;
static
void bst_insert(int n, struct bst *node) {

struct bst *new_node = calloc(1,
 sizeof (struct bst));
new_node->num = n;
if (!node) { // empty tree

assert(!root);
root = new_node;

} else if (n < node->num && !node->left) {
 node->left = new_node;
} else if (n >=node->num && !node->right){

node->right = new_node;
} else if (n < node->num) {

bst_insert(n, node->left);
} else {

assert(n >= node->num);
bst_insert(n, node->right);

}
}

A more interesting bit of code
// tree.c
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

struct bst {

struct bst *left;
int num;
struct bst *right;

};
static struct bst *root;
static
void bst_insert(int n, struct bst *node) {

struct bst *new_node = calloc(1,
 sizeof (struct bst));
new_node->num = n;
if (!node) { // empty tree

assert(!root);
root = new_node;

} else if (n < node->num && !node->left) {
 node->left = new_node;
} else if (n >=node->num && !node->right){

node->right = new_node;
} else if (n < node->num) {

bst_insert(n, node->left);
} else {

assert(n >= node->num);
bst_insert(n, node->right);

}
}

import java.util.Scanner;
class SingletonTree {
public static class Node {
 Node left;
 int num;
 Node right;
}
private static Node root;
public static Node getInstance() { return root; }
static void insert(int n, Node node) {
 Node new_node = new Node();

 new_node.num = n;
 if (node == null) {

 assert root != null;
 root = new_node;

 } else if (n < node.num && null == node.left) {
 node.left = new_node;

 } else if (n >=node.num && null==node.right){
 node.right = new_node;

 } else if (n < node.num) {
 insert(n, node.left);

 } else {
 assert n >= node.num;
 insert(n, node.right);

 }
}

A more interesting bit of code
// tree.c
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

struct bst {

struct bst *left;
int num;
struct bst *right;

};
static struct bst *root;
static
void bst_insert(int n, struct bst *node) {

struct bst *new_node = calloc(1,
 sizeof (struct bst));
new_node->num = n;
if (!node) { // empty tree

assert(!root);
root = new_node;

} else if (n < node->num && !node->left) {
 node->left = new_node;
} else if (n >=node->num && !node->right){

node->right = new_node;
} else if (n < node->num) {

bst_insert(n, node->left);
} else {

assert(n >= node->num);
bst_insert(n, node->right);

}
}

- no classes, but can use
structs to group data

- no classes, but the file is a
module (static is like Java
‘private’, not ‘static’!)

A more interesting bit of code
// tree.c
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

struct bst {

struct bst *left;
int num;
struct bst *right;

};
static struct bst *root;
static
void bst_insert(int n, struct bst *node) {

struct bst *new_node = calloc(1,
 sizeof (struct bst));
new_node->num = n;
if (!node) { // empty tree

assert(!root);
root = new_node;

} else if (n < node->num && !node->left) {
 node->left = new_node;
} else if (n >=node->num && !node->right){

node->right = new_node;
} else if (n < node->num) {

bst_insert(n, node->left);
} else {

assert(n >= node->num);
bst_insert(n, node->right);

}
}

- indirection (reference) is
explicit, using pointers:
 T* is a pointer to type T
 *p means “follow p”
 p->f means (*p).f
 &n means “get me a
 pointer to n”

- i.e. no ‘value types’ vs
‘reference types’
 ... can point to any type T
 ... can nest any T in struct S

- more implicit conversions
(here pointer to boolean)

A more interesting bit of code
// tree.c
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

struct bst {

struct bst *left;
int num;
struct bst *right;

};
static struct bst *root;
static
void bst_insert(int n, struct bst *node) {

struct bst *new_node = calloc(1,
 sizeof (struct bst));
new_node->num = n;
if (!node) { // empty tree

assert(!root);
root = new_node;

} else if (n < node->num && !node->left) {
 node->left = new_node;
} else if (n >=node->num && !node->right){

node->right = new_node;
} else if (n < node->num) {

bst_insert(n, node->left);
} else {

assert(n >= node->num);
bst_insert(n, node->right);

}
}

- no new, no garbage
collector

- where possible avoid heap
allocation, in favour of stack
or global/static

- else use library functions like
calloc() and malloc() to
allocate heap memory

- ... and must use free()
when finished with an
allocation!

- find the bug in the code to
the left

How is it not like Java?
It’s simpler... much simpler. (But not easier.)

● Java keywords with no built-in equivalent in C:

The standard library is also much smaller

– no string type! use character arrays

– no collections... hsearch(), bsearch(), tsearch()

– more reliance on third-party libraries...

 + in practice: “keep it simple”, “roll your own”...

abstract
assert
catch
extends
finally

implements
import
interface
native
new

abstract
assert
catch
extends
finally

implements
import
interface
native
new

package
protected
public
strictfp
super

synchronized
this
throw
throws
transient

How is it not like Java?

It’s much less friendly.

● C does not try to protect you from yourself

● bad array index? no IndexOutOfBoundsException

● bad cast? no ClassCastException

● null pointer? no NullPointerException

● divide by zero? no ArithmeticException

● forgot to initialize a local variable? it takes a
spurious value (or worse...)

● free() the same object twice? Or use a pointer p
after doing free(p)? Anything could happen!

How is it not like Java?
What does happen in any of these error conditions?

● Language spec says: anything could happen

– “it could make demons fly from your nose”

– this is called “undefined behaviour”

(Note: there is no try/catch/throw feature)

● Each implementation may document some more
specific behaviour

– ... but in practice they usually don’t

● Why so? Complex question...

– keep the language portable, incl. to tiny devices,
low-level programming tasks, ...

How is it not like Java?
What does happen in any of these error conditions?

● In practice: maybe your program carries on...

– e.g. uninitialized local? carry on with bogus
value...

– array out of bounds? access some neighbouring
memory as if it was part of your array....

● ... or it gets halted by the operating system

– “Segmentation fault”, “Floating point exception”

● ... or it does something truly inexplicable

– if you have compiler optimizations turned on

● which you normally do!

How can we mitigate all this
unfriendliness?
C programmers mitigate this using:

● an abundance of caution

– testing, defensive programming, ...

– compiler warnings

● dynamic analysis tools, such as

● Memcheck (part of Valgrind)

● AddressSanitizer

● DrMemory

● (sometimes) static analysis tools

● lint, Coverity, ...

Comparing the toolchain

.java .class
.jar

javac .class

java
JIT

OS +
CPU

“load”

“compile”

“run”

“compile to
native code”

source
code

bytecode

process

libraries

based on a diagram by George Ferguson,
CC-BY-SA 4.0

.class
.jar

Comparing the toolchain

.c

.o
 .a cpp

OS +
CPU

“link”“preprocess”

ld

executable

source
code

libraries

cc

“compile”

based on a diagram by George Ferguson,
CC-BY-SA 4.0

.so
 .dll

.o

object
code

“load”

 .dylib

“run”

process / address space
.so

 .dll exe

“images”“image”
 .dylib

.h

“C compiler”

librariesas

“assemble”

A quick demo of compiling and
running our tree code

The real reason C is different
In Java, memory is private to the Java program

● a heap of ‘Java objects’

– ... ‘managed’ by the Java Virtual Machine

– no explicit link to the host machine

● Operating system? hardware? other-language code?
These do not appear as Java objects

In C, memory is a shared space: the address space

The real reason C is different

In C, memory is a shared space: the address space

● may contain other stuff besides your C program!

● assembly code, other-language code, stuff from the OS,
memory-mapped files/devices, ...

● you can get a pointer to state your program didn’t create

● systems programming is communicative programming

The real reason C is different

It’s not just about sharing memory...

C compilers inhabit a shared toolchain

● compiler, assembler, linker, loader

Lots of interplay between these, e.g.

● inline assembly

● linking C, assembly and other-language code together

● assembler directives as source annotations

● link-time wrapping or overriding of definitions

● ...

So C is “closer to the machine”,
right?

In practice, yes. But...

It’s just a custom!

We could implement “the C language” in the self-contained,
hermetic style of Java...

... it just wouldn’t be useful in the ways people are
accustomed to using C.

... e.g. to talk to the OS, to devices

... e.g. to glue other bits of code together

(Conversely: could we implement Java less hermetically?
Yes, although...
... both performance and garbage collection become tricky.)

A common misconception
”If you can get a pointer on it, you can access it”

● No! It’s not the case that “anything goes” in C.

– There are detailed rules very similar to Java

– e.g. array access: you must stay within array bounds

– it’s incidental that compilers needn’t catch errors...

– ... but they also needn’t give usable behaviour!

– “anything could happen” -- so it’s a bug if it does

– cf. in Java you can rely on the execption & catch it

● C compiler optimisations may assume in-boundsness

● if not now, then the next version of the compiler....

● We’ll talk more about arrays and pointers later

A word about safety

C does not try to protect you from yourself

● bad array index? no IndexOutOfBoundsException

● bad cast? no ClassCastException

● ...

● anything could happen!

Languages that guarantee the absence of
“anything could happen” scenarios are called safe.

 - Java is (mostly) a safe language; C is not

 - it is possible to make a safe implementation of C

 - ... but slower, so generally not done (ask me)

A word about “type-X”
PL nerds like to talk about “type safety”. And “strongly
typed”, “type soundness”, etc. etc.

These terms all mean different things in different
contexts. It’s usually a bad idea to use them.

E.g. “strongly typed” might mean a language/system
that:

- offers an expressive language of data types, or
- doesn’t permit many implicit conversions, or
- is safe (a dynamic property), or
- is sound, i.e. it has compile-time checking that
guarantees absence of certain errors (a static property)

Java is all of these (er... sort of).
Different languages satisfy different subsets...
... to varying extents! Try to say something precise.

References and next lecture
George Ferguson’s “C for Java Programmers”
at University of Rochester
https://www.cs.rochester.edu/u/ferguson/csc/c/tutorial/

● Mostly very good; a bit wacky about some of the
background, but I’ve covered that above

● Has exercises! Well worth attempting

Kernighan & Ritchie. “The C Programming
Language.” Addison-Wesley

● probably still the best book about C

Next lecture (2 of 2!): pointers, arrays;
preprocessing; more data structures; other things...

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

