Unix, Plan 9 and the Lurking Smalltalk

Stephen Kell

Abstract High-level programming languages and their virtual machines have long
aspired to erase operating systems from view. Starting from Dan Ingalls’ Smalltalk-
inspired position that “an operating system is a collection of things that don’t fit
inside a language; there shouldn’t be one”, I contrast the ambitions and trajectories
of Smalltalk with those of Unix and its descendents, exploring why Ingalls’s vision
appears not (yet) to have materialised. Firstly, I trace the trajectory of Unix’s “file”
abstraction into Plan 9 and beyond, noting how its logical extrapolation suggests a
surprisingly Smalltalk-like end-point. Secondly, I note how various reflection and
debugging features of Smalltalk have many analogues in the fragmented world of
Unix programming. Finally, I consider these how these two directions of change
may yet be convergent within future Unix-derived systems, and what this might
mean for programming languages.

Key words: Unix, Smalltalk, Plan 9, metasystem, composition, binding, integra-
tion, virtual machines, reflection, debugging

1 Introduction

For much of their history, high-level language virtual machines (VMs) have aspired
to erase operating systems from view. Writing in the August 1981 “Smalltalk issue”
of Byte Magazine (Ingalls, 1981), Dan Ingalls set forth various design principles
behind the Smalltalk language and runtime (Goldberg and Robson, 1983), and ad-
dressed the issue of integration with the operating system as follows.

An operating system is a collection of things that don’t fit into a language. There shouldn’t
be one.

Stephen Kell
Computer Laboratory, University of Cambridge, 15 JJ Thomson Ave, Cambridge, United King-
dom, e-mail: stephen.kell@cl.cam.ac.uk

2 Stephen Kell

This article examines why this change has not come to pass, and what this might
teach us about the respective roles of languages and operating systems, and in-
deed what distinctions can meaningfully be drawn between the two. Key witnesses
will be the abstractions of “file” (in Unix-like operating systems) and “object” (in
Smalltalk-like languages), which I’ll argue have been on a convergent trajectory: for
decades, the two fields have been tending towards the same end point from more-or-
less opposite ends of a continuum. Meanwhile, we find a similar pattern in treatment
of debugging, or more generally reflection, where again convergence is occurring,
but this time with Unix siding more consistently with plurality and fluid abstraction
boundaries—themes we now associate with a more postmodern approach to design,
although likely arising in Unix as much from practical necessity as from conscious
philosophy. This leads us to the conjecture that future advances could result from
a post-hoc revisitation of Smalltalk’s design goals, with a view to evolving Unix
rather than replacing it.

2 Two origins

Unix and Smalltalk both have their origins in the late 1960s, and emerged in recog-
nisable form in the early 1970s. According to Ritchie and Thompson (1974), the
initial PDP-11 Unix became operational in February 1971, although a precursor
on the much smaller PDP-7 had been written in 1969 (Ritchie, 1993). The earliest
language bearing Smalltalk’s name was implemented in 1971, although it was the
next year’s iteration (Goldberg and Kay, 1976) that provided the familiar windowed,
bytecoded system—the first “real Smalltalk™ in the words of its principal designer
Alan Kay (1993).

2.1 Motivations for compositionality

Despite the similar timing, the motivations for the two systems could hardly have
been more different. Smalltalk’s lay in an outward-looking, futuristic vision of per-
sonal computing as an expansion of human thought, society and education—its in-
spirations including Engelbart’s NLS, Sutherland’s Sketchpad and Papert’s LOGO,
with an obvious emphasis on pedagogy and accessibility to children. It was con-
cerned with lowering human thoughts down gracefully to a level executable by
machine. Unix’s aspirations were more prosaic—to create a powerful and efficient
time-sharing system suitable for minicomputers of the day, borrowing those good
ideas which could be salvaged from Multics without falling victim to the overam-
bition, slow development and machine-level inefficiency that had led to Bell Labs’
withdrawal from the latter project (Ritchie, 1984). The services required of the op-
erating system were directed largely by the hardware and the immediate problem
of efficiently time-sharing it—although details of the design were also guided by

Unix, Plan 9 and the Lurking Smalltalk 3

its creators’ experience as programmers. That narrow conception of the system’s
would-be programmers contrasts markedly with Kay’s concern for ‘ordinary’ peo-
ple, children and the world at large.

Both systems were, however, united in seeking a coherent system of powerful
abstractions for interactive use by programmers and end users, and in fact draw-
ing very limited distinction between these two categories of human. Both had also
latched onto the idea of compositionality: that the path to a flexible and powerful
system lay in a few primitives which could beget a range of simple constituent parts
amenable to combination, thereby servicing a very large space of user needs using
relatively little new code. Later, Kernighan and Pike (1984) would summarise Unix
philosophy as “the idea that the power of a system comes more from the relation-
ships among programs than from the programs themselves”, while Kay credited as
Smalltalk’s essence the idea that “everything we can describe can be represented by
the recursive composition of a single kind of behavioral building block™. Both Unix
and Smalltalk can be seen as “grand designs” in a modernist tradition—seeking to
contain and circumscribe particular visions of computation and the services sup-
porting it. Keeping the system simple and comprehensible, such that it could be
understood and “taken apart” by its programmers, was a shared goal—although that
is overlooking a the huge difference in aspiration for who those programmers might
include.

Indeed, the two systems’ designers clearly differed in the relative grandness of
their ambitions. Kay summarised his intention with Smalltalk’s object abstraction as
being to “take the hardest and most profound thing you need to do, make it great, and
then build every easier thing out of it”. This is aiming high and leaving little room at
the top, instead seeking to contain from above. By contrast, Ritchie repeatedly em-
phasises the more restrained goal of building a self-supporting environment—that
is, sufficient for running the tools necessary to develop the system itself, including
ancillary tasks such as text-formatting of the system’s documentation, but with lim-
ited concern for what might characterise application programming in general. That
the system’s core time-sharing and programming mechanisms could provide a us-
able foundation for more general applications was an aspiration, made reasonable
by an evolutionary mindset and absence of truly fixed decisions, but not a critical
initial part of the exercise.

2.2 Evolution and survival

These differences in reach brought consequences for how each technology could
spread and evolve in the hands of its users—particularly as the explosive growth
of computing saw the pool of such users and (potential) contributors grow from
the dozens into the millions. Differing expectations about user-led change are em-
bodied (but largely not stated) in the two designs. Notwithstanding its later com-
mercial productisation and the compromises that entailed, Unix’s essential attitude
is characterised by an expectation of continuous change at all levels—enabled by

4 Stephen Kell

self-conscious internal simplicity, and a tacit acceptance of imperfection. It em-
braces porous boundaries: it admits arbitrary and even divergent modifications, and
makes little effort to hide system internals. In a traditional (pre-commercialisation)
Unix system even the user/kernel boundary is not well guarded, since the system
also includes the source code, compiler and other tools necessary to build a new
kernel—even if, owing to the shared nature of the machines, not all users would
have the privilege to deploy one. Meanwhile, its user-space environment consists of
a deliberately simple set of abstractions, provided in a spirit of laissez-faire. This en-
shrines a pluralist attitude to many aspects of the system (as we will explore in due
course), since it is a given that there is no optimal “right way”. Smalltalk’s more
high-minded design is more strongly focused on a careful set of design elements
put in place from above, hiding considerable internal complexity (particularly in the
optimised implementations that emerged later). The boundary between a Smalltalk
system’s core implementation and its user is therefore harder than the equivalent in
Unix: although a large fraction of the system resides in the bytecode “image” and
may be inspected and modified from within, the core mechanisms that bootstrap
this experience reside within the virtual machine; they lie behind the curtain of the
implementation and are not exported to the user, at least not uniformly.

It is worth noting that commercial realities complicate the picture in both cases.
On the one hand, it is significant that the Smalltalk-80 distribution consisted of
an (executable, evolvable) image coupled with a (non-executable) specification for
the virtual machine that would host it. Nevertheless, this did not reflect the PARC-
internal experience of developing and using Smalltalk, where, just as with pre-
commercial Unix, development of the VM ‘kernel” and user-land ‘image’ were in-
tertwined. Equally, commercial Unix variants would typically not include their own
source code nor expect users to rebuild kernels, even though Unix’s Bell Labs cre-
ators did so routinely. One can also argue that Smalltalk’s efforts to push as much
code as possible out of the magic firmware and “into the image” expressed an ambi-
tion very similar to Unix’s porous boundaries, albeit adhering to a higher-level but
more opinionated set of abstractions. Of course, a key difference was that Unix pro-
gramming remained a task done “from the outside”, by editing and compiling and
re-starting programs, in sharp contrast with the radical innovation of Smalltalk’s
image-based programming experience, As late as 1984, Rob Pike documented a
visit to PARC noting that “the feel of the system is remarkable. .. more like sculpt-
ing than authoring” (Pike, 1984) (in a note dominated by grumbles about intrusive
interactivity and the poor support for files and networks).

In these subtly different approaches to similar goals, we see a parallel with the
distinction termed by Gabriel (1994) as “worse is better” (Unix) versus “the right
thing” (here Smalltalk, playing the Lisp role). This is visible not only in the de-
signs themselves, but also in what happens as the technologies evolve in the field—
what Gabriel called “survival characteristics”. This process of in-the-field spread
and change, particularly against the backdrop of the mass marketisation of com-
puting, the loss of authorial control over the system, and the replacement of sin-
gle coherent narratives with multiple divergent views, shares much with the hetero-
geneity and loss of “big picture” identified by Noble and Biddle (2002) as a tran-

Unix, Plan 9 and the Lurking Smalltalk 5

sition from modernist to postmodernist conceptions of programming. Meanwhile,
Smalltalk’s virtual machine paradigm, in which fundamental design elements—
objects, messaging—were fixed up-front, represented a quid pro quo. In return for
these impositions, strong and desirable properties would arise naturally within the
population of user code. Code would be modifiable from within, remain inspectable
and debuggable at all times, and retain a certain uniformity and (presumed) cog-
nitive advantages from its adherence to the carefully constructed object-messaging
abstraction. This idea of “control after decentralisation”, observed as the property
of “protocol” by Galloway (2004) in the context of networked systems, is shared
by all high-level languages: the language’s abstractions amount to a decentralised
management discipline, and are in some sense inherently political or at least contro-
versial. Unlike global networks, language-based “distributed management” systems
are easy to opt out of, by choosing a different language; there is little imperative for
a unique language to “win”.

Although the minicomputers of the 1970s were far removed from the nascent
personal computers such as the Xerox Alto, the inevitability of the personal mi-
crocomputer meant that these worlds were on a collision course. Soon after Alan
Kay ceded the front-line design leadership of Smalltalk to Dan Ingalls in 1976, the
system was rebased from the Alto onto commodity hardware, after Xerox (inexpli-
cably in hindsight) opted not to take the Alto to market. This hardware included,
notably, the Intel 8086, but also machines running Unix (with the emergence of Sun
workstations around 1982) and, albeit indirectly, the “other” personal computing
platform, the Apple Macintosh.! The convergence occurred in the other direction
too: from the early 1980s, Unix was being run on commodity microcomputers (Hin-
nant, 1984), whose Intel-based successors would thoroughly take over server-side
computing over the course of roughly a decade, starting in the mid-to-late 1990s.
Plan 9, AT&T’s putative successor to Unix, was designed well after this conver-
gence became evident, affirming that the two distinct origins do not fully explain
the persisting differences between Unix- and Smalltalk-like systems.

Unix is, infamously, a survivor—even satirised as “the world’s first computer
virus” (Garfinkel, Weise, and Strassmann, 1994). Its design remains ubiquitous: not
only in its direct-descendent commodity operating systems (e.g. GNU/Linux), but
as a key component of others (Apple’s Mac OS) and a clear influence on the re-
mainder. Smalltalk, by contrast, is easier to miss in modern systems. As a language,
today it finds only niche interest. Its key programmatic concepts, namely classes and
late-bound “messaging”, have had an enormous influence on popular languages; this
is clearest in highly dynamic class-based languages such as Python and Ruby, but
is easily discernible in Java and C+, among many others. The rich user interface
it presented to the programmer has also influenced countless modern “integrated”
development environments. Despite this considerable influence, something seems
to have been lost: anecdotally, enthusiasts are quick to point out that none of these

! This occurred not only from the abortive beta release of Apple Smalltalk in 1985, but from the
1979 demonstration of Smalltalk on Xerox’s Dorado machine which would inspire the software
for Apple’s Lisa and later products.

6 Stephen Kell

contemporary languages or environments matches the simplicity, uniformity or im-
mediacy of a Smalltalk system.

2.3 Languages and systems

When I write of “Unix” or “Smalltalk” in what follows, it will be important to distin-
guish their early, idealised conceptions from their later evolved forms—particularly
in the case of Unix which, as we will see, has evolved considerably. The culmi-
nation of idealised early “Unix” was probably 1982’s 4.2BSD, which retained the
time-sharing flavour of the original but, by adding the mmap() call, tied a long-
anticipated knot between files and memory. Smalltalk’s evolution has been more
measured, particularly after 1980; perhaps the most significant change has been
the emergence of Smalltalks hosted within a wider operating system, as typified by
Squeak (Ingalls, Kaehler, Maloney, Wallace, and Kay, 1997). By contrast, our no-
tion of “Smalltalk”, although flexible regarding finer details (such as metaclasses,
added in the late 1970s), must be taken to mean a system occupying the entire hard-
ware. This recalls the era of both systems’ origins, where programming systems and
operating systems were not as strongly delineated as at present. Kernighan and Pike
(1984) described Unix as a “programming environment”, whose primary languages
were (implicitly) C and the shell. Perhaps the key distinction is that the Smalltalk
system gives primacy to the Smalltalk language and its attendant concepts, to an ex-
tent not seen in the Unix system and its respective languages. High-level concepts,
such as objects and messaging, inevitably draw competing proposals—dissenting
voices to the cognitive (or political) theories proposed by the language. By contrast,
although C is given special status in Unix, its status amounts primarily to engi-
neering investment rather than a conceptual primacy; the fixed concepts (memory,
instructions, and I/O interactions) instead come largely from the machine. In what
follows we will explore the consequences of this “language-forward” approach of
Smalltalk in contrast to the relative reticence of Unix.

3 How not to fit in

Let us return to Ingalls’s statement of vision.

An operating system is a collection of things that don’t fit into a language. There shouldn’t
be one.

By 1981, the collision of Smalltalk-style personal computing and Unix-style
time-sharing systems was well under way, and Ingalls’s statement serves as a mani-
festo for how to resolve it. Elaborating on his “things that don’t fit” characterisation,
he notes that to invoke the operating system from a high-level language is “to depart
from an otherwise consistent framework of description... [for] an entirely differ-

Unix, Plan 9 and the Lurking Smalltalk 7

ent and usually very primitive environment”. Although not stated explicitly, we can
infer that Ingalls’ vision for there “not being” an operating system would include
gradually pulling more and more system functionality (e.g. filesystems, network
stacks, and perhaps isolated processes) into the Smalltalk runtime, where it could
be exposed in the form of a higher-level message-oriented facade (e.g. as persistent
and remote objects). This contrasts with the byte-streams and raw memory inter-
faces of operating systems in general, and Unix in particular—since Unix seems
unquestionably one system to which his “very primitive” referred.

Over thirty-five years later, Smalltalk’s influence has been felt strongly in cer-
tain ways, thanks largely to its mainstream successor, Java. However, its influence
has been in relatively fine details: the popularisation of garbage collected runtimes
and of class-based programming.” By contrast, the various “in-the-large” design
points of Smalltalk to which Ingalls drew attention in the Byte Magazine article—
its unified late-bound message-oriented worldview, with aspirations of supplanting
the operating system—have failed to become mainstream (at least so far).

Was there a real benefit in whole-system design underlying Ingalls’ position?
Could such a design be realised in a contemporary context, and if it were, would
there remain any need for a programmer- or user-facing operating system? I will
make a case for answering these questions in the affirmative. Let us start by iden-
tifying the potential benefits of Ingalls’ vision, and contrasting these with parallel
developments in Unix relating broadly to the concerns of composition.

4 The Smalltalk wishlist

In saying that there “shouldn’t be” an operating system, what benefits is Ingalls
seeking? Clearly, the problem being addressed is that of complexity in software (the
same article emphasises “management of complexity”), and that Smalltalk’s ap-
proach is to provide well-designed abstractions which are compositional (which I
take to be the essence of any programming language). Although the article does not
list the intended benefits explicitly, we can infer that the following general benefits
are probably included.

Programmatic availability

The Smalltalk programming abstraction is also available to system-level tasks. Pro-
grammers can write code “in the same way” against both user-defined and system-
defined abstractions (e.g. processes, devices), also allowing the application of exist-
ing Smalltalk code (say, the famous collections library) to these new target domains.
For example, maintaining a configuration file, generating a coredump or mounting a
filesystem all cease to require the mechanism-specific code they would under Unix,

2 I say “class-based” since “object-oriented” is arguably an inappropriate term to apply to main-
stream styles of Java.

8 Stephen Kell

such as disk—-memory marshalling, object file manipulations, or invoking the mount
system call. Rather, they are simply rendered as (respectively) accessing a (persis-
tent) configuration object, cloning a process object (likely stopping and persisting
the copy), or pushing a new object into some delegation chain. Meanwhile, the late-
bound semantics and interactive interface offered by Smalltalk allow it to subsume
both programming and, no less important a kind of programmability, “scripting”
similar to that offered by the Unix shell.

Descriptive availability

The pervasive metasystem of Smalltalk enables cheap provision of “added-value”
services expressible at the meta-level, such as human-readability, visualisation, in-
teractive data editing, debugging, or data persistence. Ingalls anticipates that extend-
ing the reach of these meta-level facilities to system-level state would amplify these
benefits—when inspecting device state, debugging device drivers, persisting device
configuration, and so on.

Interposable bindings

The late-bound, message-based interfaces of objects provide strong interposability
properties: clients remain oblivious of the specific implementation they are talking
to. In turn, this simplifies the customisation, extension or replacement of parts of
a system, all of which can be rendered as interposition of a different object on the
same client. Unix often talks about redirection instead of interposition; these are
synonymous.> The concept of interposition presupposes a mechanism by which ref-
erences to objects are acquired and transmitted. This process is binding. In Smalltalk
there is one general mechanism for object binding, which is the flow of object refer-
ences in messages. Binding is also prominent in Unix’s design, as we will contrast
shortly.

Although these three concerns—programmability, description and flexible
binding—are integral to Smalltalk, they are not foreign to operating system design-
ers either, whose work is often evaluated on its conduciveness towards composition
as a means of user-level software development. We next consider Unix from the
perspective of these concerns.

3 “Redirection” sounds slightly stronger, since it seems to imply unbinding and eliminating what-
ever entity was previously connected; but consider that with interposition, too, there is no obliga-
tion for an interposing object to make any use of the (implied) interposed-on object.

Unix, Plan 9 and the Lurking Smalltalk 9

5 Unix: the tick-list

Where do these three concerns—programmability, description and flexible
binding—sit in Unix’s design priorities? Let us consider firstly the 5™ edition Unix
described by Ritchie and Thompson (1974).

Programmability

Ritchie and Thompson wrote that “since we are programmers, we naturally designed
the system to make it easy to write, test, and run programs”. Indeed, Unix exposes
multiple programmatic interfaces: the host instruction set (a large subset of which
is exposed to the user via time-sharing processes created from a.out images), the
various system calls (which embed into the host instruction set, extending it with op-
erating system services), the shell (which abstracts the same interfaces in a manner
convenient for interactive and scripting-style use) and the C language. These four
cohere to some extent. The last of the four, C, is an abstract version of the first—
both concern in-process “application” programming. Meanwhile, the shell can be
considered an abstract version of the system call interface, since it specialises in
file- and process-level operations. I will call the latter kind of programming “file-
or-device” or just “device” programming. The remaining twofold distinction runs
deep: there are application mechanisms and there are device mechanisms. Applica-
tions, aside from trapping into system calls, remain opaque to the operating system;
device mechanisms, by contrast, are the operating system’s reason for being. I will
call this the application—device split.

Description

Unix was original in exposing diverse objects—program binaries, user files, and
devices—in a single namespace, in a somewhat semantically unified way. This uni-
fying filesystem abstraction includes names and other metadata for all such entities,
along with enumerable directory structures. Although primitive, this is clearly a
metasystem. For instance, enumeration of files in a directory corresponds closely
to enumeration of slots in an object, as expressible using the Smalltalk meta-object
protocol. However, Unix’s metasystem is highly selective in coverage and content—
the system predetermines what state is exposed to the filesystem, the metadata and
operations are somewhat specialised for storage systems (sizes, timestamps, etc.),
and the facility for exposing state at this meta-level is not extended to application
code. While subsequent developments have integrated additional operating system
state into the filesystem model, including processes (Killian, 1984; Faulkner and
Gomes, 1991) and device state (Mochel, 2005), they have not changed this basic
property that use of the filesystem abstraction, and meta-abstraction, is selective
and pre-determined. Only some entities are exposed through it; those entities must
be chosen in advance, and special-purpose code written to expose them.

10 Stephen Kell

Interposable bindings

Thompson and Ritchie stated as a goal for Unix the property that “all programs
should be usable with any file or device as input or output”. This is a clearly an in-
terposability property. It was successfully achieved by unifying devices with files—
the famous “everything is a file” design. Note, however, its tacit characterisation of
applications as having readily identifiable (and unique) input and output streams.
The streams stdin and stdout are easily substitutable: they exist in every process,
and the parent can bind them (using the dup() system call) to any file or device it
can open.

Unfortunately, many other cases of interposition are not supported. One example
is how user code cannot quite “be a file”, because only files may be opened by name.
(By contrast, for programs using only parent-supplied file descriptors, pipe() serves
for this purpose.) The same property means that programs accessing specific files
or devices may only be redirected to user-selected files if the developers had the
foresight to accept the file name as a parameter. Sometimes this foresight is lacking
(as known to anyone who has resorted to recompiling a program just to replace a
string like "/dev/dsp”). In Smalltalk this foresight is not necessary, because this kind
of definitive early binding is not possible.

(Note that the uniqueness of the “standard” input and output streams is not the
limitation here, since in fact a parent process may dup() arbitrarily many descriptors
before forking a child, and the child inherits the full set of descriptors. Rather, the
limitation is that the set of streams must be enumerable by the parent in advance.
This precludes cases where the eventual number or selection of I/O streams depends
on program input.)

Contrasts

“Late binding everywhere” is one property which helps Smalltalk ensure interpos-
able bindings, and which on Unix is left for the user to implement (or not). We can
note several other contrasts. While the Unix filesystem is a primitive metasystem,
it lacks any notion of user-defined “classes”, which in Smalltalk exists to describe
commonalities between both user- and language-defined abstractions. In the Unix
filesystem, explicit classes are unnecessary, since objects are always of one of three
implicit classes: files, directories, or devices. (Later, symbolic links, named pipes
and sockets would be added to this list.) Meanwhile, user-defined classes need not
be supported because Unix remains pointedly oblivious to user code.

Another way of looking at this is that the operating system concerns itself with
large objects only. Here we are crudely characterising files as large objects—in con-
trast to the small units of data that constitute, say, individual records in a file on
disk, or indeed, program variables allocated on the process stack or by malloc().

Unix, Plan 9 and the Lurking Smalltalk 11

The specification of the mmap() system call in 4.2BSD* and the advent of uni-
fied virtual memory systems (Gingell, Moran, and Shannon, 1987b) would cement
a unification of files and memory objects, but only for the case of large objects.
This owed primarily to the fact that their interfaces work at page-sized granularity,
being neither convenient nor efficient for smaller objects. Of course, Unix filesys-
tems certainly allow files to be small as well as large. “Large objects” is therefore
our shorthand for “objects selected by the programmer to be managed as mapped
files”—Ilikely for their large size, but perhaps also to enable their access via inter-
process communication, as with the example of small synthetic files in the /proc
filesystem.

Interestingly, Alan Kay had already observed (and criticised) this preoccupation
with large objects in the design of a time-sharing system roughly contemporaneous
with (albeit more ambitious than) Unix, recalling as follows:

“I heard a wonderful talk by Butler Lampson about CAL-TSS, a capability-based operating
system that seemed very ‘object-oriented’. The only problem—which the CAL designers
did not see as a problem at all—was that only certain (usually large and slow) things were
‘objects’. Fast things and small things, etc., weren’t. This needed to be fixed.” (Kay, 1993,
p.524).

A consequence of offering only these large-object abstractions is that Unix is
tolerant to diversity in how smaller objects are managed. Unix processes happily
“accommodate” diverse implementations of language-level abstractions, albeit in
the weakest possible sense: by being oblivious to them. By remaining agnostic to
application-level mechanisms (in the form of programming languages and user-code
libraries), Unix helped ensure its own longevity—at a cost of fragmentation. This
included not only fragmentation of system- from user-level mechanisms, but also
fragmentation among system-level mechanisms (noting the various binding mecha-
nisms we have identified), and finally, fragmentation within opaque user-level code.
Each language implementation must adopt its own mechanisms for object bind-
ing and identity, i.e. conventions for representing and storing object addresses. The
result of all this fragmentation—which has only grown since Ingalls’ article—is
an endemic non-compositionality which is anathema to the “unified” ideal (held
by both Smalltalk and, initially, Unix). It has the effect of ensuring that different
software ecosystems are kept separate, and that logically sensible compositions are
difficult or impossible to achieve. If Unix’s diverse binding mechanisms were not
enough fragmentation, the addition of independently developed protocols and data
representations “in the small” adds huge impediment to composition.

We should counter, however, that Smalltalk itself has no compelling solution
to fragmentation. Its solution is “don’t fragment; use Smalltalk for everything!”.
Unix’s lower aspirations serve better in surviving and supporting diverse, indepen-
dently developed, mutually incoherent abstractions—by virtue of its obliviousness
to them.

4 Although specified in the 4.2BSD design, around 1982, and described in the Programmer’s Man-
ual of the 4.3 release in 1986, this interface would remain unimplemented in any BSD release until
1990’s 4.3BSD-Reno.

12 Stephen Kell

6 From files to...: Plan 9 and beyond

Failures of compositionality in Unix have been remarked on since its inception, and
often provoke developments which unify system interfaces or mechanisms. Since its
initial design, a trend in Unix has been to unify around the filesystem abstraction, by
opening it up to new and diverse uses. As noted previously, exposing processes as
files (Killian, 1984) created a cleaner and faster alternative interface to process de-
bugging and process enumeration, and this filesystem later evolved into a more gen-
eral process control interface (Faulkner and Gomes, 1991). VFES (Kleiman, 1986), a
kernel-side extension interface for defining new filesystems, later became a central
feature of modern Unix implementations. Plan 9, Bell Labs’ spiritual successor to
Unix, embraced the filesystem to an unprecedented extent. Its design, pithily stated,
is that “everything is a [file] server’—a system is a (distributed) collection of pro-
cesses serving and consuming files, or things superficially like them, using a stan-
dard protocol (9P) that is transport-agnostic. Applications serve their own filesys-
tems, and essentially all inter-process functionality is exposed in this fashion. To
illustrate the design of Plan 9 and its conducivity to composition, Pike recounted?
the following impressive anecdote about the design’s properties.

A system could import. .. a TCP stack to a computer that didn’t have TCP or even Ethernet,
and over that network connect to a machine with a different CPU architecture, import its
/proc tree, and run a local debugger to do breakpoint debugging of the remote process. This
sort of operation was workaday on Plan 9, nothing special at all. The ability to do such
things fell out of the design.

The expanded use of files and servers allowed several simplifications relative to
the Unix syscall interface. For example, gone are ioctl() and other device manipula-
tions, process operations such as setuid() or nice(), and the host of Berkeley sockets
calls (which had added yet another naming and binding mechanism to Unix). Re-
placing them are a generalised binding mechanism—essentially bind() by the server
and open() by the client—and simple reads and writes to files, including to a se-
lection of control files. These are files with arbitrary request-response semantics:
a client writes a message, and then reads back a response. Arbitrary communica-
tion and computation can be expressed in this way; indeed, it is not-so-uncannily
reminiscent of message-passing in Smalltalk.

As the filesystem’s use has expanded, its semantics have become less clear. What
do the timestamps on a process represent? What about the size of a control file? Is
a directory tree always finite in depth (hence recursable-down) or in breadth (hence
readable via readdir())? Although some diversity was present even when limited to
files and devices (is a file seekable? what ioctls® does the device support?), semantic
diversity inevitably strains a fixed protocol. The result is a system in which the
likelihood of a client’s idea of “file” being different from the file server’s idea is

3 in his 2012 SPLASH keynote; slides retrieved from http:/talks.golang.org/2012/splash.article
on 2017/5/1

6 ioctl() first appeared in 7th Edition Unix, although calls including gtty() and stty() are its fore-
bears in earlier versions.

Unix, Plan 9 and the Lurking Smalltalk 13

ever-greater. It becomes ill-defined whether “the usual things” one can do with files
will work. Can I use cp -r to take a snapshot of a process tree? It is hard to tell. The
selection of what files to compose with what programs, and the fixing-up of any
differences in expected and provided behaviour, becomes a task for a very careful
user. Unlike in Smalltalk, semantic diversity is not accompanied with any meta-level
descriptive facility analogous to classes.

The impressive compositionality of his anecdote Pike credits to the filesystem ab-
straction of Plan 9, i.e. the property that “all system data items implemented exactly
the same interface, a file system API defined by 14 methods”. (Given the few seman-
tics which are guaranteed to be ascribed to a file, 14 seems a rather large number.)
Reading more closely, a different property of Plan 9—the network-transparency of
server access—is at least jointly responsible. It is no coincidence that Smalltalk
objects, like Plan 9 files, are naturally amenable to a distributed implementation
(Schelvis and Bledoeg, 1988) and that Alan Kay has recollected how from a very
early stage he “thought of objects being like biological cells and/or individual com-
puters on a network”. 7 A Smalltalk-style notion of “object” corresponds closely to
the notion of “entity” in the OSI model of networking (Zimmermann, 1988).

Proposals for applying Plan 9°s file-server abstraction still further are easy to find.
One example is a replacement for shared libraries: Narayanan blogged?® a sketch of
a proposal for shared file servers replacing shared libraries, using control files to
negotiate a precise interface version. In both this case and Pike’s quotation above,
what is actually being articulated is the desire for three properties which, of course,
Smalltalk already has: a network-transparent object abstraction (an unstated enabler
of Pike’s composition scenario), a metasystem (bundled into the unifying API Pike
mentions) and late binding (for addressing the versioning difficulties mentioned by
Narayanan).

It now seems reasonable to declare “file” (in the Plan 9 sense) and “object”
(in the Smalltalk sense) as synonymous. Both are equally universal, more-or-less
semantics-free, and deliberately so. However, still distinguishing Smalltalk from
Plan 9 is the former’s metasystem and inclusiveness towards objects large and small.
Whereas Plan 9 applications must implement a 14-method protocol to reify their
state as objects, Smalltalk’s objects have this by default. Moreover, the notion of
classes allows at least some semantic description of an object, albeit not capturing
those semantics in much detail.

Before continuing, it is worth noting that around the same time as Plan 9, re-
search into microkernels and vertically-structured operating systems (or “library
OSes”) brought new consideration of binding and composition in operating sys-
tem designs (Rashid, Baron, Forin, Golub, Jones, Orr, and Sanzi, 1989; Ber-
shad, Chambers, Eggers, Maeda, McNamee, Pardyak, Savage, and Sirer, 1995; En-
gler and Kaashoek, 1995; Leslie, McAuley, Black, Roscoe, Barham, Evers, Fair-
bairns, and Hyden, 1996). These systems were mostly designed with a somewhat
object-oriented flavour. Indeed, a key consideration was how to replicate a largely

7 Various sources on the web attribute this statement to Kay, although I have been unable to find a
definitive reference.

8 at http://kix.in/2008/06/19/an-alternative-to-shared-libraries/, retrieved on 2017/5/1

14 Stephen Kell

Smalltalk-like object- or messaging-based abstraction in the presence of the fine-
grained protection boundaries—and how to do so with high performance. In at least
one case, a dynamic interpreted programming environment was developed atop the
core operating system, furthering this similarity (Roscoe, 1995). These systems’ re-
sults are encouraging testament to the feasibility of acceptable performance in a
system of fine-grained protection domains. More recently, Singularity (Hunt and
Larus, 2007) is arguably a culmination of work on this topic, offering the radical
solution of avoiding hardware fault isolation entirely and relying instead on type-
based software verification. Like Smalltalk, these systems offer primarily a grand
narrative on how software could and should be structured. Unlike Smalltalk, how-
ever, their programming abstractions were something of a secondary concern, lack-
ing a true aspiration to influence the fabric and construction of user-level software.
Accordingly, they have been the subject of substantially less application program-
ming experience. For our purposes, protection and performance are both orthogonal
concerns, so we avoid further discussion of these systems.

7 Reflections on reflection

We have seen how “object”-like abstractions occur in Unix, Plan 9 and Smalltalk,
whereas meta-level abstractions, such as classes, are mostly the province of
Smalltalk and are neglected by Unix. Unix, being pointedly oblivious at its core
to the structure of user code and data, does not feature a metamodel, or reflective
model, centrally in its design. That is, however, not quite the full picture. Clearly,
it has long been possible to do some reflection in Unix, because programs can be
debugged.

We define reflection as metaprogramming against a running program, and “in-
trospection” as self-reflection.” Smalltalk is clearly designed around reflection, and
its structured view of objects and classes provides a clear reflective metamodel. By
contrast, and as we have come to expect, reflection in Unix has evolved over multi-
ple stages, in a decidedly bottom-up fashion.

Machine-level debugging was supported since the earliest versions of Unix.
Source-level reflection was also an early addition and since then has acquired exten-
sive support. This has consistently been achieved using a division of responsibilities
which departs considerably from most language virtual machines’ (VMs’) reflec-
tion or debugging systems. The principles of Unix reflection, and their contrasts
with VM-style reflection, are summarised as follows.

e Unix requires no cooperation from the reflectee, which might equally be a “live”
process or a “dead” coredump. By contrast, a Smalltalk VM actively responds
to reflective messaging requests; a dead or frozen VM cannot be debugged or
otherwise reflected on.

° This is standard, but has the confusing consequence that “reflection” includes the non-reflexive
case.

Unix, Plan 9 and the Lurking Smalltalk 15

e Unix supports multiple reflected views of the program: at least source-level and
assembly-level views, and optionally others. By contrast, a Smalltalk VM offers
a single reflective view, based on the conceptual vocabulary of the unique source
language, namely Smalltalk.

e Unix keeps the compiler and reflecting client (a debugger, say) separate, commu-
nicating via well-defined interfaces. By contrast, a Smalltalk VM is packaged as
an integrated runtime in which communication between these entities occurs by
implementation-defined means, via shared data structures that remain logically
private from client code. Unix’s use of explicit interfaces here necessarily brings
strong descriptive properties into the metasystem of Unix debugging, in which
compiler-generated metadata is particularly crucial.

To realise “no cooperation”, the client is given (by the operating system) direct
access to the reflectee’s memory and registers. Metadata generated by the assembler
affords a somewhat symbolic view of these, in terms of named memory addresses
rather than purely numeric ones. Metadata generated by the compiler goes much
further, affording a source-level view of program state. The latter metadata is exem-
plified by the DWARF format (Free Standards Group, 2010), whose standardisation
began in 1992. In short, debugging metadata provides a medium for compilers to
document their implementation decisions as embodied in the output binary, allow-
ing debugging clients to recover a source-level view without building in knowledge
of specific compilers.

The metadata-based approach contrasts strongly with VM approaches to reflec-
tion, in which the reflecting client consumes the services of an in-VM reflection API
and/or debug server. The VM-integrated approach is expedient, since the reflection
system and debug server share code in the runtime, and need not describe the com-
piler’s implementation decisions explicitly, making the compiler’s code much easier
to change. A VM debug server need never disclose the kind of addressing, layout
and location information detailed by debugging metadata. But it cannot easily sup-
port the post-mortem debugging case, and tightly couples run-time support with
compiler: we cannot use one vendor’s debugger to debug code from another ven-
dor’s (in-VM) compiler. It becomes hard to implement reflection features not antic-
ipated in the design of the reflection API or debug server command language. By
contrast, Unix’s metadata is open-ended and naturally decouples the distinct tools.

I am not the first to note the architectural significance of decoupling the debugger
from the reflected-on program. Cargill (1986), describing his Pi debugger, remarked
that “Smalltalk’s tools cooperate through shared data structures... [whereas] Pi is
an isolated tool in a ‘toolkit environment’. .. interacting through explicit interfaces.”
In other words, the Unix approach entails inter-tool encapsulation, hence stronger
public interfaces than a single integrated virtual machine. One such interface was
the /proc filesystem (Killian, 1984), co-developed with Pi, which exposes a view
of process memory images as files in the filesystem; another “interface” is the ex-
change of standard debugging metadata.

A couple of decades later, after many years of experience with Smalltalk- and
(similar) Java-style reflection, Bracha and Ungar (2004) articulated the “mirrors”
design principles which effectively rectified several shortcomings with these VMs’

16 Stephen Kell

approaches to reflection. Intriguingly, even though these principles were conceived
with VMs in mind, with apparently little influence from Unix-style debugging,
Unix-style reflection adheres remarkably tightly to the very same principles, which
we summarise as follows.

e Encapsulation, meaning “the ability to write metaprogramming applications
that are independent of a specific metaprogramming implementation”, holds that
metaprogramming interfaces should not impose undue restrictions on clients,
such as reflecting only on the host program (a weakness of Java core reflection).

e Stratification, meaning “making it easy to eliminate reflection when it is not
needed”, intends that reflection can be eliminated on embedded platforms or in
applications which happen not to use it.

¢ Ontological correspondence, meaning that metaprogramming interfaces should
retain user-meaningful concepts, encompasses both structural (e.g. preserving
source code features in the metamodel) and temporal considerations (e.g. the
distinction between inactive “code” and active “‘computation”).

The Unix approach to debug-time reflection satisfies all of these principles either
fully or very nearly; we discuss each in turn.

Encapsulation

Bracha and Ungar motivated the encapsulation property of mirrors via a hypotheti-
cal class browser tool, noting that the Java core reflection APIs bring an unwanted
restriction: reflecting only the host VM, not a remote instance. This is a failure
of encapsulation, not because it doesn’t hide the VM’s internals (it does!), but on
criteria of plurality: clients may reflect only on one specific machine’s state (the
host machine’s); they are provided with only a single, fixed view; and only one
implementation of the interface may be present in any one program. Different mir-
rors offering distinct meta-level views are often desirable, as alluded to by Bracha’s
and Ungar’s mention of “a functional decomposition rather than. .. leaving that de-
cision to the implementation of the objects themselves”. Coexistence of different
implementations of the same abstraction is a key property of object-oriented en-
capsulation, as noted by Cook (2009) and Aldrich (2013). We can also see it as a
hallmark of postmodernism in software—an instance of a concern for “many little
stories”, in opposition to a unique grand modernist narrative.

Unix reflection is very strongly encapsulated, and highly pluralist. The same
client can reflect on programs generated by diverse compilers; it is easily extended
to remote processes and can reflect on coredumps similarly to “live” processes. The
use of metadata as the “explicit interface” means there is no need to fix on a com-
mand language, and the client is free to consume the metadata in any way it sees
fit. Unix debugging information has a history of being put to diverse and unantic-
ipated uses, such as bounds checking (Avijit, Gupta, and Gupta, 2004), link-time
code generation (Kell, 2010) or type checking (Banavar, Lindstrom, and Orr, 1994).

Unix, Plan 9 and the Lurking Smalltalk 17

This post-hoc repurposing of pre-existing facilities, or after-the-fact reinterpretation
of them, is a similarly postmodern phenomenon.

Stratification

Unix reflection is strongly stratified. This follows from the decision to avoid run-
time cooperation from the reflectee (which, indeed, might be dead), and from the
decoupling of compiler and runtime. Programs that are not reflected on do not suf-
fer any time or space overhead, yet debuggers can be attached “from the outside”
at any point, loading metadata from external sources as necessary. In-process re-
flection can also be added late, via dynamic loading if necessary. In-process stack
walkers are commonplace, found in backtrace routines or C++ runtimes, and it is no
coincidence that they are often implemented with metadata also used by debuggers,
which enables them to be “stratified” in the sense that code throwing no exceptions
pays no time or space overheads.!? This ability to “add reflection” extends even to
source languages such as C which do not specify any kind of introspection interface.

Temporal correspondence

Bracha and Ungar illustrated temporal correspondence by considering the hypothet-
ical desire to “retarget the [class browser] application to browse classes described
in a source database”. The correspondence refers to a distinction between “mirror-
ing code and mirroring computation”—where “code” means code not yet activated
(such as method definitions in source code) while “computation” means code in ex-
ecution (such as method activations in a running program). The authors remark that
having attempted to do away with this distinction, they found themselves recreating
it, in the Self project’s “transporter” tool. (This tool could be described as Self’s
linker and loader. It is significant that image-based systems, such as Smalltalk and
Self, are defined by their lack of a batch linker analogous to Unix’s Id. Rather, im-
ages come as whole units grown from a primordial blank canvas; they may not be
divided or stitched together from pieces.) Unix exhibits temporal correspondence
in the sense that the metamodel of Unix loader and debugger inputs (shared ob-
jects, executables, and the functions and data types they define) is separate from
run-time details (function activations, data type instances, etc.). In DWARF debug-
ging information, we find the latter are described distinctly, in terms of an embedded
stack machine language encoding mappings from machine state (such as a register)
to units of source program state (such as a local variable). Consumers of DWARF
which care only for static structure can ignore these attributes, and DWARF meta-
data which omits them remains well-formed.

10 This is the so-called “zero cost” exception handling design favoured by C++ implementations
(de Dinechin, 2000).

18 Stephen Kell

Structural correspondence

As defined by Bracha and Ungar, structural correspondence requires that all features
of source code are representable at the meta-level. DWARF and similar debugging
metadata models a wealth of information from source code, including lexical block
structure, namespacing features, data types, module imports, and so on. However,
it does not undertake to model every feature—arguably falling short of structural
correspondence. In fact DWARF actively abstracts away from source, in that its
metamodel deduplicates certain language features. For example, a Pascal record
and a C struct are both modelled as a DWARF structure_type. Bracha and Ungar
envisaged that distinct source languages would offer “distinct APIs”, hence that any
one reflection interface need only model a single language. However, this one-to-
one relationship between a reflection facility and a source language is not always
desirable. One intriguing possibility enabled by a pluralist DWARF-style approach
is for reflection which actively exposes multiple source-level views of the same
objects.

Summary

We have seen how the mirrors principles, starting with the pluralist notion of “encap-
sulation”, reveal a trend from the modernist (a single grand design can be adopted
universally) to the postmodern (multiple overlapping designs must be allowed to
coexist, imperfectly). Unix’s “worse is better” approach, growing reflection facili-
ties organically, allowing compilers and debuggers to co-evolve, and repurposing or
extending existing abstractions (such as files themselves, and the earlier assembler-
level metadata in object files), has shown a knack for “anticipating the unantic-
ipated”. It has addressed, with an air of straightforwardness, a host of problems
which Bracha and Ungar (2004) worked hard to vanquish when starting from the
virtual-machine approach.

Afterword

Unsurprisingly, the virtual machine tradition has gone on to eliminate the constraints
I have described as characteristic of the Smalltalk-style approach. It is interesting to
observe that they have done so in a consistently less pluralist fashion than Unix.
For example, the Klein virtual machine (Ungar et al, 2005) provided the means to
debug a ‘dead’ virtual machine image using an outside process which embodied
the same implementation details. Meanwhile, systems such as the Maxine VM and
its Inspector have gone beyond the ‘single-level’ reflective view, generalising to to
‘multi-level’ debugging (Wiirthinger et al, 2010), exposing the different logical lay-
ers within a metacircular virtual machine where each ‘level’ can be seen as a turn in
a helical structure (Chiba et al, 1996). The metacircular approach relies on a com-
mon, cooperative base platform shared between debugger and debuggee, atop which

Unix, Plan 9 and the Lurking Smalltalk 19

high-level features are realised in unison (indeed by the same code). By contrast, in
Unix the use of descriptive metadata allows these to be fully decoupled, at a gain
in pluralism: the target program might embody code generated by many compilers,
for many languages, written without mutual awareness. This comes at a cost in code
duplication and loss of uniformity: the debugger’s implementation of the source
languages is separate and perhaps divergent from whatever compilers were used to
build the target program. The same distinction is evident in the difference between
a self-hosting language implementation and a metacircular one: in the former case,
no part of the ‘compiling compiler’ need be shared with the ‘compiled compiler’,
whereas the latter by definition involves a shared core atop which the remainder is
bootstrapped.

8 The Lurking Smalltalk

Whereas it first appeared that reflection in Unix was absent, it turned out to be
present in remarkably strong form. Similarly, it turns out, perhaps surprisingly, that
the Smalltalk-style facilities we identified in Plan 9—a generic object abstraction,
a metasystem (albeit primitive), and interposable late binding—are present in abun-
dance in modern Unices too. However, they are to be found in Unix’s characteristic
fragmented form. Countless Unix implementations of languages, libraries and tools
have grown mechanisms or recipes catering to various requirements for composi-
tion and/or reflection. I survey them here, arguing their existence is the sign of a
“lurking Smalltalk”. Unfortunately, their organic, “evolved” and hence fragmented
nature renders them usable only by experts solving specific particular tasks—rather
than with the natural generality that arises within a uniform “designed” system.
Later I will briefly speculate on future ways out of this cul-de-sac.

8.1 Lurking programmability

Programmability is abundant in Unix ecosystems, but often in awkward-to-use
forms. Aside from the shell, the C compiler and whatever other language imple-
mentations are available, many applications implement their own configuration lan-
guage or other “mini-language”. Why are these mini-languages necessary? Some-
times they are a domain-specific form optimised for the domain at hand. But in
others, they are simply an expedient form of exposing “good enough” configura-
bility or customisability, provided because a full embedded programming language
(or several!), although desirable, would be too much effort to achieve. System ad-
ministrators’ jobs would often be easier if they could write configuration logic in a
language of their choosing, rather than an idiosyncratic configuration file format.
This is a strong requirement, having no particularly general solutions as far as
this author is aware. Perhaps the closest is the facility in Smalltalk-80 permitting a

20 Stephen Kell

class to reference a non-default compiler object, which takes over responsibility for
interpreting the remainder of the class’s source-level definition down to Smalltalk
bytecode. One limitation of this facility is that the choice of language remains with
the class’s author, not its client, so cannot be changed on a per-object or per-use
basis.

8.2 Lurking metasystems

We saw earlier how the Unix tradition of synthetic filesystems such as /proc or
Linux’s /sys offers an ad-hoc grafting of specific subsystems’ data onto the filesys-
tem, and in so doing, augments them with its primitive meta-level facilities. In turn,
these find use via introspection and iteration using standard file APIs, command-
line tools, shell-style scripting, and so on. The lack of a metasystem is often ap-
parent here too; for special files’ structures are exposed only in documentation, not
programmatically, making them impossible to code generically against them. (For
example, it is impossible to iterate over all attributes of a stat file in Linux’s procfs
without writing specialised code that is effectively manually “generated from” the
relevant documentation.)

Extensions to the basic Unix file metamodel can be found in the use of tools such
as file, which classify files based on their content, or attempts such as MIME (Boren-
stein and Freed, 1993) at formalising such content. Such attempts so far are highly
limited; in particular, the compositional nature of data encodings is not captured
(as revealed by MIME types such as x-gzipped-postscript, apparently unrelated
to application/gzip). Network services too are minimally and opaquely described,
such as by the /etc/services, which defines a quasi-standard mapping from port
numbers to protocol names (with implied semantics). Interestingly, an inability to
describe the behavioural details of protocols, as opposed to structural information
such as fields or methods within classes, is a weakness it shares with Smalltalk’s
metasystem.

8.3 Lurkingly interposable bindings

The Unix dynamic linker (Gingell, Lee, Dang, and Weeks, 1987a) offers a “preload”
interposition mechanism which is commonly used to bootstrap many other feats of
interposition by overriding bindings to the C library. For example, applying this to
the sockets API enables transparent proxying of applications (as with tsocks and
similar tools), and a similar approach may be taken with the filesystem (in tools
such as fakeroot or flcow, which provide clients with somewhat modified filesys-
tem behaviour). The composition of separate Unix shared libraries, as commonly
implemented for the ELF binary format adopted by all modern Unix implementa-
tions (since approximately the mid-1990s), approximates a “mixin”-based inheri-

Unix, Plan 9 and the Lurking Smalltalk 21

tance model (Smaragdakis, 2002) similar to that used by Cook (1989) to model var-
ious styles of inheritance, including but not limited to that of Smalltalk. In short, al-
though distinctly imperfect in realisation, shared-library mechanisms have (perhaps
somewhat by accident) re-created a large space of the class- and delegation-based
composition idioms anticipated in Smalltalk’s design.

The shell makes a valiant attempt to complete unhandled portions of the Unix
composition space we identified earlier (§5). For example, bash allows commands
like diff -u <(cmd1) <(cmd2) for providing pipe-backed file descriptors where
a named file is required, or /dev/tcp/<port> for redirecting to/from sockets. These
approaches are limited: the latter because the shell can only introduce these “magic”
filenames if the filename is interpreted by the shell (i.e. for redirection purposes),
not when supplied as an argument to a program, and generally because not all func-
tionality is invoked from a shell. Some applications reimplement shell-like facil-
ities in their file-handling code for the same reason, but this reimplementation is
both patchy and undesirable. User-level file servers such as Linux’s FUSE or BSD’s
PUFFS (Kantee and Crooks, 2007) provide a more available alternative for file redi-
rection, effectively enabling a Plan 9-style server abstraction, albeit within a host
system which does not use them so heavily to such great effect. Union mounts, a
staple of Plan 9 namespace composition, are among many common use cases of
these systems.

Two further late-binding mechanisms deserve mention. One is arguably the most
powerful late-binding device in today’s computer systems: the memory manage-
ment unit. Aside from the program relocation problem it was originally designed
to solve, the late binding it provides from virtual to physical addresses has enabled
many other operating systems innovations, including the unified virtual memory
system. Finally, one must not forget that bindings transmitted in message payloads
are routinely rewritten with pipelined use of sed, awk (Dougherty and Robbins,
1997) or Perl (Wall and Loukides, 2000) as stream rewriters.

8.4 Undoing early binding

The examples we just saw all exploit inherent late-binding in the systems they com-
pose. However, Unix applications can also bind too early, creating separate class of
problem—"“undoing” early binding. Again, many techniques for this have become
mainstream. In early-bound programming languages, various dynamic update tech-
niques have been devised (Neamtiu, Hicks, Stoyle, and Oriol, 2006; Makris, 2009).
Trap instructions and memory protection, exposed by the hardware and re-exposed
in abstract form by the operating system (including BSD’s mprotect()), provide
useful mechanisms for intercepting early-bound code and data accesses (such as
respectively for breakpoints and watchpoints). Dynamic instrumentation systems
have been used to patch bindings (Hollingsworth, Niam, Miller, Xu, Goncalves, and
Zheng, 1997) or completely virtualise compiled code (Bruening, Zhao, and Ama-
rasinghe, 2012). Similar instrumentation techniques can also implement breakpoints

22 Stephen Kell

(Kessler, 1990) and watchpoints (Zhao, Rabbah, Amarasinghe, Rudolph, and Wong,
2008) faster than trap-based approaches; these can be seen as interposing on bind-
ings formed earlier, respectively of code-to-code and code-to-data kinds.

9 In conclusion: harnessing the lurking Smalltalk

Languages such as Smalltalk are typically viewed as “grand design”, master-
blending a host of syntactic and semantic aspects while also seeking to perfectly
and completely abstract from the world outside it (other processes) and underneath it
(the hardware). This grandeur comes across as overreach from the perspective of the
“worse is better” Unix philosophy. Meanwhile, the various fragmentary techniques
we have just seen suggest that building a programmable, late-bound, metasystem-
enabled environment can be done using rather than replacing existing Unix-based
software. If this is achieved, it will represent a re-imagining or post-hoc recovery of
Smalltalk. Several aspects to this are worth noting.

Firstly, the most obvious overreach in the narrative of Smalltalk has been its
failure—along with all other high-level languages—to achieve true dominance over
its competitors, leading to a fragmented software ecosystem which undermines the
intended uniformity of these grand designs. No matter how sublime the uniformity
within a Smalltalk VM, or the VM of some successor, in a world fragmented by
dozens of competing VMs, practical problems frequently require solutions that re-
side partly or even largely outside the VM and the language in question. These solu-
tions very often consist partially of file-level scripts or low-level wrapper code, i.e.
precisely in the world of the Unix-like operating system that each fragment attempts
to escape from.

Secondly, we find the postmodern idea of a whole emerging from “found” parts.
Plan 9 was an attempt, its designers wrote, “to build a Unix out of little systems. ..
not a system out of little Unixes” (Pike, Presotto, Thompson, Trickey et al, 1990).
An analogous inversion applies strikingly in the context of Unix and Smalltalk.
Rather than running isolated Smalltalks (i.e. Smalltalk VMs), each trapped within a
Unix, we seek instead a path towards a Smalltalk built out of the fragmented reality
of today’s Unix systems. This requires a mindset hardly envisaged in the 1960s and
1970s: to accept the complex reality of existing software, developed in ignorance
of any particular grand design, and to shift our system’s role to constructing views,
including Smalltalk-like ones, of this diverse reality.

Thirdly, we observe that this is an exercise in retrofitting. The need to break apart
and back-form a codebase without regard to pre-existing abstraction boundaries is
explicitly enshrined in Unix’s “worse is better” philosophy. This does not hold ab-
straction boundaries as sacred; instead it prizes overall simplicity, continuous op-
eration, comprehensibility of all code, and hence the feasibility of invasive mod-
ification (across abstraction boundaries if need be) and continuous improvement.
A traditional mindset blames the developer who misuses the available abstractions,
fails to factor their systems appropriately, or simply uses the wrong system to be-

Unix, Plan 9 and the Lurking Smalltalk 23

gin with. A worse-is-better viewpoint instead sees the necessity in accommodating
mistakes and abuses, recognising that systems often start life in a specialised form,
to be generalised later, rather than the traditional reverse. “Worse is better” actively
disclaims the need to “get it right first time”, or even to get it right, merely “right
enough”.

Fourthly is the secondary status of language. An implicit goal is of our hypoth-
esised recreation of Smalltalk is to unbundle the underlying machinery, including
core abstractions and meta-level facilities, from the programming language itself.
High-level languages come and go, and the longevity of Unix—Ilikened by Gabriel
(1994) to a “virus”—can be attributed not only to its own lack of a favoured high-
level language, but also to its ability to host many such languages without prejudice.
However, we note that meta-level facilities appear less susceptible to design-level
churn than base-level language features, because they are one step closer to a rela-
tively small set of recurring concepts (whose recurrence though Smalltalk, Unix and
Plan 9 I have been documenting). These abstractions appear to sit comfortably as
the “waist in the hourglass”, supporting diverse surface forms for languages above,
and running on diverse hardware-supported “big objects” below.

These observations suggest a new programmer-facing role to the operating sys-
tem, and a response to Ingalls’s position. Far from being replaced by an all-
conquering programming language, one interpretation of the role of operating sys-
tems is as an infrastructure providing the mechanisms that allow languages to come
and go, while maximising the composability of the software written using them.
Languages themselves may then become “views” onto a space of objects that is
managed by the operating system, rather than by a per-language VM. Ingalls’s per-
spective, as a language designer looking on operating systems, saw “things that
don’t fit in to a language”, and concluded that “there shouldn’t be one”. The cul-
mination of our relatively postmodern perspective on operating systems provides a
converse view of languages themselves. A language is a collection of concepts that
can be found and recognised within a larger system; there will be many.

Acknowledgments

I thank Michael Haupt for provoking me into writing on this topic, and Mario Wol-
czko for his thoughtful and detailed feedback at several distinct stages. The present
version has been improved by a host of helpful comments over several years from
many people, including Peter Kessler, David Leibs, the participants and anony-
mous reviewers of the Programming Languages and Operating Systems workshop
at SOSP 2013, the audience at Carnegie Mellon University during a November
2013 talk, the anonymous reviewers of Onward! at SPLASH 2015, the anonymous
reviewers of the History and Philosophy of Programming Conference 2016, the
anonymous reviewers of this publication, and many other people who have gen-
erously indulged my opinions and arguments on this topic.

24 Stephen Kell

References

Aldrich J (2013) The power of interoperability: Why objects are inevitable. In:
Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, ACM, New York,
NY, USA, Onward! 2013, pp 101-116, DOI 10.1145/2509578.2514738, URL
http://doi.acm.org/10.1145/2509578.2514738

Avijit K, Gupta P, Gupta D (2004) TIED, LibsafePlus: tools for runtime buffer over-
flow protection. In: SSYM’04: Proceedings of the 13th USENIX Security Sym-
posium, USENIX Association, Berkeley, CA, USA

Banavar G, Lindstrom G, Orr D (1994) Type-safe composition of object modules.
Tech. Rep. UUCS-94-001, University of Utah, Salt Lake City, Utah, USA

Bershad BN, Chambers C, Eggers S, Maeda C, McNamee D, Pardyak P, Savage S,
Sirer EG (1995) SPIN—an extensible microkernel for application-specific operat-
ing system services. SIGOPS Oper Syst Rev 29(1):74-77, DOI 10.1145/202453.
202472, URL http://doi.acm.org/10.1145/202453.202472

Borenstein N, Freed N (1993) RFC 1521: MIME (Multipurpose Internet Mail Ex-
tensions) part one: Mechanisms for specifying and describing the format of Inter-
net message bodies. IETF Request for Comments

Bracha G, Ungar D (2004) Mirrors: design principles for meta-level facilities
of object-oriented programming languages. In: Proceedings of the 19th annual
ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, ACM, New York, NY, USA, OOPSLA *04, pp 331-344,
DOI http://doi.acm.org/10.1145/1028976.1029004, URL http://doi.acm.org/10.
1145/1028976.1029004

Bruening D, Zhao Q, Amarasinghe S (2012) Transparent dynamic instrumentation.
In: Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual Exe-
cution Environments, ACM, New York, NY, USA, VEE ’12, pp 133-144, DOI 10.
1145/2151024.2151043, URL http://doi.acm.org/10.1145/2151024.2151043

Cargill TA (1986) Pi: A case study in object-oriented programming. In: Con-
ference Proceedings on Object-oriented Programming Systems, Languages and
Applications, ACM, New York, NY, USA, OOPLSA 86, pp 350-360, DOI
10.1145/28697.28733, URL http://doi.acm.org/10.1145/28697.28733

Chiba S, Kiczales G, Lamping J (1996) Avoiding confusion in metacircularity:
The meta-helix. In: Proceedings of the Second JSSST International Sympo-
sium on Object Technologies for Advanced Software, Springer-Verlag, London,
UK, UK, ISOTAS ’96, pp 157-172, URL http://dl.acm.org/citation.cfm?id=
646898.756984

Cook WR (1989) A denotational semantics of inheritance. Tech. rep., Brown Uni-
versity, Providence, RI, USA

Cook WR (2009) On understanding data abstraction, revisited. In: Proceedings of
the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems
Languages and Applications, ACM, New York, NY, USA, OOPSLA 09, pp
557-572, DOI 10.1145/1640089.1640133, URL http://doi.acm.org/10.1145/
1640089.1640133

Unix, Plan 9 and the Lurking Smalltalk 25

de Dinechin C (2000) C++ exception handling. IEEE Concurrency 8(4):72-79

Dougherty D, Robbins A (1997) Sed and Awk. O’Reilly Media, Inc.

Engler DR, Kaashoek MF (1995) Exterminate all operating system abstractions.
In: HOTOS ’95: Proceedings of the Fifth Workshop on Hot Topics in Operating
Systems (HotOS-V), IEEE Computer Society, Washington, DC, USA, p 78

Faulkner R, Gomes R (1991) The process file system and process model in UNIX
system V. In: Proceedings of the Usenix Winter 1991 Conference, Dallas, TX,
USA, January 1991, USENIX Association, pp 243-252

Free Standards Group (2010) DWARF Debugging Information Format version 4.
Free Standards Group

Gabriel RP (1994) Lisp: Good news, bad news, how to win big. Al Expert 6:31-39

Galloway A (2004) Protocol: How Control Exists After Decentralization. Leonardo
(MIT Press), Books24x7.com, URL https://books.google.co.uk/books?id=
7ePFIE5007kC

Garfinkel S, Weise D, Strassmann S (eds) (1994) The Unix-Haters Handbook. IDG,
San Mateo, CA, USA

Gingell RA, Lee M, Dang XT, Weeks MS (1987a) Shared libraries in SunOS. In:
Proceedings of the USENIX Summer Conference, pp 375-390

Gingell RA, Moran JP, Shannon WA (1987b) Virtual memory architecture in
SunOS. In: Proceedings of the USENIX Summer Conference, USENIX Asso-
ciation, pp 81-94

Goldberg A, Kay AC (1976) Smalltalk-72 Instruction Manual. Xerox Corporation

Goldberg A, Robson D (1983) Smalltalk-80: the language and its implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA

Hinnant D (1984) Benchmarking UNIX systems. Byte Magazine 9(8):132-
135,400-409

Hollingsworth J, Niam O, Miller B, Xu Z, Goncalves M, Zheng L (1997) MDL.:
a language and compiler for dynamic program instrumentation. In: Proceedings
of the International Conference on Parallel Architectures and Compilation Tech-
niques, IEEE, pp 201-212, DOI 10.1109/PACT.1997.644016

Hunt GC, Larus JR (2007) Singularity: rethinking the software stack. SIGOPS Oper
Syst Rev 41(2):37-49, DOI 10.1145/1243418.1243424

Ingalls D, Kaehler T, Maloney J, Wallace S, Kay A (1997) Back to the future: the
story of Squeak, a practical Smalltalk written in itself. ACM SIGPLAN Notices
32(10):318-326

Ingalls DH (1981) Design principles behind Smalltalk. Byte Magazine 6(8):286—
298

Kantee A, Crooks A (2007) Refuse: Userspace fuse reimplementation using puffs.
In: Proc. of the 6th European BSD Conference (EuroBSDCon)

Kay AC (1993) The early history of Smalltalk. In: The Second ACM SIGPLAN
Conference on History of Programming Languages, ACM, New York, NY, USA,
HOPL-II, pp 69-95, DOI 10.1145/154766.155364, URL http://doi.acm.org/10.
1145/154766.155364

26 Stephen Kell

Kell S (2010) Component adaptation and assembly using interface relations. In:
Proceedings of 25th ACM International Conference on Systems, Programming
Languages, Applications: Software for Humanity, ACM, OOPSLA ’10

Kernighan BW, Pike R (1984) The UNIX Programming Environment. Prentice Hall
Professional Technical Reference

Kessler PB (1990) Fast breakpoints: design and implementation. In: Proceedings
of the ACM SIGPLAN 1990 conference on Programming Language Design and
Implementation, ACM, New York, NY, USA, PLDI *90, pp 78-84, DOI 10.1145/
93542.93555, URL http://doi.acm.org/10.1145/93542.93555

Killian TJ (1984) Processes as files. In: USENIX Summer Conference Proceedings,
USENIX Association

Kleiman SR (1986) Vnodes: An architecture for multiple file system types in Sun
UNIX. In: Proceedings of the USENIX Summer Conference, USENIX Associa-
tion, vol 86, pp 238-247

Leslie I, McAuley D, Black R, Roscoe T, Barham P, Evers D, Fairbairns R, Hy-
den E (1996) The design and implementation of an operating system to support
distributed multimedia applications. Selected Areas in Communications, [EEE
Journal on 14:1280-1297

Makris K (2009) Whole-Program Dynamic Software Updating. PhD thesis, Arizona
State University

Mochel P (2005) The sysfs filesystem. In: Proceedings of the Linux Symposium,
Volume One, Linux Symposium

Neamtiu I, Hicks M, Stoyle G, Oriol M (2006) Practical dynamic software updating
for C. In: PLDI *06: Proceedings of the 2006 ACM SIGPLAN conference on
programming language design and implementation, ACM

Noble J, Biddle R (2002) Notes on postmodern programming. Tech. Rep. CS-TR-
02-9, Victoria University of Wellington, Wellington, New Zealand

Pike R (1984) This Dorado is MINE, ALL MINE! Published
in 2019 at https://commandcenter.blogspot.com/2019/01/
notes-from-1984-trip-to-xerox-parc.html as retrieved on 2019,/6/30.

Pike R, Presotto D, Thompson K, Trickey H, et al (1990) Plan 9 from Bell Labs. In:
Proceedings of the summer 1990 UKUUG Conference

Rashid R, Baron R, Forin A, Golub D, Jones M, Orr D, Sanzi R (1989) Mach:
a foundation for open systems [operating systems]. In: Workstation Operating
Systems, 1989., Proceedings of the Second Workshop on, pp 109-113

Ritchie DM (1984) The UNIX system: The evolution of the UNIX time-
sharing system. AT&T Bell Laboratories Technical Journal 63(8):1577-1593,
DOI 10.1002/5.1538-7305.1984.tb00054.x, URL http://dx.doi.org/10.1002/.
1538-7305.1984.tb00054.x

Ritchie DM (1993) The development of the C language. In: The Second ACM SIG-
PLAN Conference on History of Programming Languages, ACM, New York, NY,
USA, HOPL-II, pp 201-208, DOI 10.1145/154766.155580, URL http://doi.acm.
0rg/10.1145/154766.155580

Unix, Plan 9 and the Lurking Smalltalk 27

Ritchie DM, Thompson K (1974) The UNIX time-sharing system. Commun ACM
17:365-375, DOI http://doi.acm.org/10.1145/361011.361061, URL http://doi.
acm.org/10.1145/361011.361061

Roscoe T (1995) CLANGER: an interpreted systems programming language.
SIGOPS Oper Syst Rev 29(2):13-20, DOI http://doi.acm.org/10.1145/202213.
202215

Schelvis M, Bledoeg E (1988) The implementation of a distributed Smalltalk.
In: Gjessing S, Nygaard K (eds) ECOOP ’88 European Conference on Object-
Oriented Programming, Lecture Notes in Computer Science, vol 322, Springer
Berlin Heidelberg, pp 212-232, DOI 10.1007/3-540-45910-3_13, URL http:
//dx.doi.org/10.1007/3-540-45910-3_13

Smaragdakis Y (2002) Layered development with (Unix) dynamic libraries. In:
Gacek C (ed) Software Reuse: Methods, Techniques, and Tools, Lecture Notes
in Computer Science, vol 2319, Springer Berlin Heidelberg, pp 33-45, DOI
10.1007/3-540-46020-9_3, URL http://dx.doi.org/10.1007/3-540-46020-9_3

Ungar D, Spitz A, Ausch A (2005) Constructing a metacircular virtual machine
in an exploratory programming environment. In: Companion to the 20th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, ACM, New York, NY, USA, OOPSLA °05, pp 11-20, DOI 10.1145/
1094855.1094865, URL http://doi.acm.org/10.1145/1094855.1094865

Wall L, Loukides M (2000) Programming Perl. O’Reilly & Associates, Inc. Se-
bastopol, CA, USA

Wiirthinger T, Van De Vanter ML, Simon D (2010) Multi-level virtual machine
debugging using the Java Platform Debugger Architecture. In: Pnueli A, Virbit-
skaite I, Voronkov A (eds) Perspectives of Systems Informatics, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp 401-412

Zhao Q, Rabbah R, Amarasinghe S, Rudolph L, Wong WF (2008) How to do
a million watchpoints: efficient debugging using dynamic instrumentation. In:
Proceedings of the Joint European Conferences on Theory and Practice of
Software 17th International Conference on Compiler Construction, Springer-
Verlag, Berlin, Heidelberg, CC’08/ETAPS’08, pp 147-162, URL http://dl.acm.
org/citation.cfm?id=1788374.1788388

Zimmermann H (1988) OSI reference model: The ISO model of architecture for
open systems interconnection. In: Partridge C (ed) Innovations in Internetwork-
ing, Artech House, Inc., Norwood, MA, USA, pp 2-9, URL http://dl.acm.org/
citation.cfm?id=59309.59310

