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ABSTRACT
Tools for composing software impose homogeneity require-
ments on what is composed—that modules must share a
language, target the same libraries, or share other conven-
tions. This inhibits cross-language and cross-infrastructure
composition. We observe that a unifying representation of
software turns heterogeneity of components into a matter
of styles: recurring interface patterns that cross-cut large
numbers of codebases. We sketch a rule-based language for
capturing styles independently of composition context, and
describe how it applies in two example scenarios.

1. INTRODUCTION
Our ability to build software compositionally from un-

modified components is limited by two problems. Firstly,
tools (such as compilers and linkers) require that composed
modules be plug-compatible—their interfaces match “in the
small”. Where this does not hold, compositions are achieved
only by laborious glue coding or invasive editing. Secondly,
they must be homogeneous—functionally compatible mod-
ules can not be composed if they are written in different lan-
guages, using different interface conventions, different cod-
ing styles, or different support libraries. This severely limits
the space of possible compositions. Considerable prior work
has targeted the first problem [7, 15–17, 21, 23]. However,
the second has received only narrow special-case treatments
(such as pairwise interoperation between languages [3, 4, 6]
or realisations of procedure- or message-based interaction
[2, 9]) or clean-slate approaches [10].

This paper outlines ongoing work on an approach to het-
erogeneous composition, based on interface styles. Its key
insight is that given an appropriate unifying medium—an
intermediate representation capturing diverse components—
heterogeneity is reduced to differing patterns of usage within
that medium, which we call stylistic variation. A style is
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any recurring convention used to realise some programmatic
concern; example concerns include error-handling, function
dispatch, representation of common data types (lists, sets,
strings, etc.), memory management, and so on. Styles are by
definition cross-cutting: they recur across large populations
of components (i.e. the components that are homogeneous
with respect to the style) which may be dissimilar otherwise.
By allowing programmers to describe styles abstractly, inde-
pendent of composition context, we can re-use this descrip-
tive effort to simplify large numbers of composition tasks.

In our approach, styles are described by the programmer
using high-level rules. From such descriptions, guided by a
set of input components annotated with references to their
styles, a glue code generator can compose heterogeneous
software essentially by inserting code to “undo” one stylis-
tic concretion and “replay” a different one at the boundary
between modules. Our approach is black-box, meaning it is
sensitive only to an interface abstraction of components. It
is also incrementally adoptable, in that it applies to a large
population of existing components.

Specifically, we present the following contributions:

• we characterise the phenomenon of stylistic variation,
by identifying a selection of stylistic concerns and some
familiar concretions of each;

• we sketch a notation for describing styles, as an exten-
sion to the Cake linking language [16], and present two
examples of composition tasks handled using styles;

• we discuss some semantic and practical questions aris-
ing, and outline possible future directions.

We begin with a simple example of stylistic variation.

2. CHARACTERISING STYLES
Suppose two programmers independently develop a simple

component for counting the lines, words and characters in a
file. Fig. 1 shows what they might write. The components
are abstractly equivalent, but concretely different. Our goal
is to capture these concrete differences programmatically,
hence allowing a tool to abstract them away, so that code
targetting one of them could instead compose with the other.

We can observe some dimensions of stylistic variation at
a glance. Output parameters have been encoded differently,
as have character strings. One component provides an ex-
plicit resource management API, implicitly also handling ini-
tialization and finalization, whereas the other provides only
explicit initialization. Naming conventions for multi-word



struct wc; // implemented in C

// struct is treated opaquely by client

struct wc *word counter new(const char *filename);
// returns NULL and sets errno on error

int word counter get words( struct wc *obj);
int word counter get characters ( struct wc *obj);
int word counter get lines ( struct wc *obj);
int word counter get all ( struct wc *obj,

int *words out, int *characters out , int * lines out );

void word counter free ( struct wc* obj);

class WordCounter // implemented in Java
{

/* fields not shown... */
public WordCounter(String filename)

throws IOException { /* ... */ }

public int getWords() { /* ... */ }
public int getCharacters () { /* ... */ }
public int getLines () { /* ... */ }
public Triple<Integer, Integer , Integer> getAll() { /* ... */ }

};
// implicitly , deallocation is done by unreferencing + GC

Figure 1: Two stylistic variants of the same interface

word_counter_new("README") = 0x9cd6180[struct wc]

word_counter_get_words(0x9cd6180[struct wc]) = 311
word_counter_get_characters(0x9cd6180[struct wc]) = 2275

word_counter_get_lines(0x9cd6180[struct wc]) = 59
word_counter_get_all(0x9cd6180, 0xbffeed00[stack],

0xbffeecfc[stack], 0xbffeecf8[stack]) = 0
word_counter_free(0x9cd6180[struct wc]) = ()

_Jv_InitClass(..., 0x6015e0[java::lang::Class], ...) = ...

_Jv_AllocObjectNoFinalizer(..., 0x6015e0, ...) = 0x9158d20
WordCounter::WordCounter(java::lang::String*)(

0x9158d20[WordCounter], 0x9ae3dc8[java::lang::String]) = ()

WordCounter::getWords()(0x9158d20[WordCounter]) = 311
WordCounter::getCharacters()(0x9158d20[WordCounter]) = 2275

WordCounter::getLines()(0x9158d20[WordCounter]) = 59
WordCounter::getAll()(0x9158d20[WordCounter]) = 0x9f6093e8[Triple]

Figure 2: Traces generated by a simple client of each interface

identifiers differ. Moreover, the components are written in
different languages, so compilation will introduce further dif-
ferences. Calls to the Java component will use virtual dis-
patch and exception handling, while C code will not.

These conventions are not invented anew by each pro-
grammer. Rather, they are imported from a cultural reper-
toire, defined by a language, a toolchain, or simply a coding
style. We want to capture each convention in a one-time ef-
fort, so that programmers need consider only an abstracted,
style-independent view during composition tasks. We can
consider this abstraction as a rewriting exercise on traces of
the kind shown in Fig. 2, which are an annotated extension
of the traces generated by the well-known ltrace tool1. Al-
though stylistic variation is a broad phenomenon, this trace
view captures a large subset of it.2

In more realistic examples, there will be not only stylis-
tic differences, but also differences in how each programmer
has modelled the domain. These are precisely what is han-
dled by style-unaware adaptation tools [7, 15–17, 21, 23].
Style support complements such tools; Fig. 3 illustrates this.
Styles may be captured as “views” or “lenses”which abstract
“vertically”, recovering a more abstract interface from a more
concrete one. Horizontal adaptation can then be performed
as usual, but at the more abstract level.

A.o B.o

smaller mismatch after applying styles

large extent of mismatch in raw components

abstraction

Figure 3: Styles as abstractions over interfaces

1http://www.ltrace.org/
2The use of pointers in the traces is an abbreviation; the
trace properly includes the full exchanged data structures.

Table 1: Stylistic concerns relevant to Fig. 1

Any interface convention which recurs across a large pop-
ulation of components may be considered a style. What
interface conventions recur in this way? This question can
only be answered empirically. There are no prior studies on
stylistic variation. The Appendix presents a preliminary cat-
alogue of stylistic concerns gathered from simple program-
ming experience. For each concrete convention we observe,
we can identify an abstract concern that it models. Note
that our catalogue need not be exhaustive. Our approach
captures user-defined styles—using the list as a guide, but
not limited to it. To give a flavour, Table 1 shows a slice of
this table containing the conventions evidenced in Fig. 1.



3. APPROACH
Our approach consists of four parts.

A unifying medium which could be any intermediate or
bytecode-like representation of code. Relocatable ob-
ject code, augmented with debugging information, is
the one we adopt. This is output by many implemen-
tations of a wide range of languages. (Note that our
black-box approach works purely by link-time insertion
of generated code, and is architecture-agnostic.)

A language for describing styles which we develop as
an extension to the Cake composition language [16].
Cake code consists of rules which relate one compo-
nent interface to another, by identifying corresponding

data types and function calls. Cake rules conceptually
specify a transducer which rewrites traces like those
in Fig. 2. Adding support for styles means extending
Cake to multi-hop relations, formed by multiple trans-
ducers. Rather than relating one fixed interface to
another, style rules relate elements of a more concrete

interface to a more abstract one, and are parameterised
so they can apply to any component modeling a style.

A language for describing compositions in terms of the
styles they instantiate: our composition language is
again based on Cake. The programmer introduces a
component with an exists declaration, as in normal
Cake code, but now including an ordered list of named
styles which the component models. The order is used
to determine coarse-grained precedence. Our seman-
tics handles the fine-grained composition of styles.

Semantics for the combination of these: given some style
definitions and a composition annotated with the styles
of each component, the composition formed by our tool
is defined by an elaboration process. Informally, this is
a backtracking search for the “most abstracting” path
by which a given function call or data value could be
transmitted between the composed modules, given the
styles that the programmer has applied (and any hor-
izontal rules that have been defined). We will briefly
illustrate this process by example in the next section.

4. EXAMPLES
First, we consider a simple data representation concern,

and second, more complex styles concerning function calls.

4.1 Booleans
A simple example of styles concerns encoding of booleans.

For example, C code often encodes booleans as integers, with
zero indicating false and nonzero indicating true. An oppo-
site convention exists in Unix shell programming: zero indi-
cates truth, and nonzero indicates falsehood. Fig. 4 shows
two style definitions capturing these two alternative conven-
tions.

The styles use Cake’s table construct to relate enumerated
sets of values. This is the relational analogue of an enumer-
ated type: rather than enumerating a set of possible values,
it enumerates correspondences between elements of one data
type and those of another. Style rules relate two views of the
same component: a more concrete view (always on the left)
and a more abstract (on the right). Styles may be parame-
terised (in a macro-like fashion) to widen their applicability,

style c89 booleans(integer typename)
{ table integer typename ←→ boolean
{ 0 ←→ false ;

−→ true ; /* ordered pattern-matching */
1 ←− true;

}; };

style shell booleans (integer typename)
{ table integer typename ←→ boolean
{ 0 ←→ true;

−→ false ;
1 ←− false ;

}; };

exists // ւ apply c89 style , parameter ”BOOL”, to...
c89 booleans(BOOL)( // ւ ... the underlying component

elf reloc (”componentA.o”)
) componentA; // ←− identifier for the ensemble

exists // ւ apply shell style , parameter ”BOOL”, to...
shell booleans (BOOL)( // ւ the underlying component

elf reloc (”componentB.o”)
) componentB; // ←− identifier for the ensemble

derive my composition = link[componentA, componentB]
{ /* ”horizontal ” composition- specific rules go here */ };
Figure 4: Two styles, and their use in a composition
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Figure 5: Elaboration of the most abstracting flow

and these parameters are supplied at exists-time. Our styles
are parameterised on an identifier (integer typename) used
to identify the data type that is encoding booleans as in-
tegers.3 The exists and derive declarations introduce two
components, componentA and componentB, each represent-
ing booleans as integers, but where componentA uses the C
conventions, whereas componentB uses the shell conventions.
Mismatch is avoided by applying the appropriate styles, al-
lowing the Cake compiler to generate conversion logic.

How does the compiler work out what rules should apply
to these integers? This is determined by the elaboration of
styles. In our example we have two possible “flows” for a
BOOL: one treating it in the style-specified way, and one
treating it as a plain integer. Fig. 5 illustrates. When com-
piling this, the compiler must select a particular sequence of
value conversion rules. For each component, it chooses from

3This is not simply int for two reasons. Firstly, languages
other than C name integers differently. Secondly, not all
integers are really booleans. For now we are assuming that
some quasi-annotation has been done for us, e.g. by a C
programmer using typedef to create a synonym for integers,
namely BOOL, used exactly when they represent booleans.
For other cases, the Cake language has features for annotat-
ing distinguished use contexts of a given data type, which
we do not discuss here.



1 style jni static long call (classname, funname, argsig )
2 { // ւ guard predicates names bound to return values ց ւ patterns on contextual calls
3 [ status != JNI ERR] ( status , jvm, env) ⇐ JNI CreateJavaVM( , , ), ...,
4 [c != 0, @FindClass == (*env)→֒FindClass] c ⇐ @FindClass(env, #classname), ...,
5 [mid != 0, @GSMID == (*env)→֒GetStaticMethodID] mid ⇐ @GSMID(env, c, #funname, #argsig), ...,
6 [@CSLM == (*env)→֒CallStaticLongMethod] @CSLM(env, c, mid, args... ) // the ” triggering ” call
7 −→ classname ## ## funname ## ## argsig(args...);
8 // տ the abstracted view: a single call , named by cpp-style metaprog’ing
9 // extra rule needed to allow reversibility

10 JNI CreateJavaVM(out , out , my vmargs) −→ {};
11 };

Figure 6: Abstracting a sequence of calls

JavaVM *jvm; JNIEnv *env;
JavaVMInitArgs vmargs;
long st = JNI CreateJavaVM(&jvm, &env, &vmargs);
if (st != JNI ERR)
{ jclass c = (*env)−>FindClass(env, ”java/lang/System”);

if (c)
{ jmethodID mid = (*env)−>GetStaticMethodID(

env, c, ”currentTimeMillis ”, ”(J)V”);
if (mid)
{ jint result = (*env)−>CallStaticLongMethod(

env, c, mid, 5);
} } } // else handle errors

Figure 7: JNI code for a simple function call

the rules defined by each style applied to that component.
Loosely, elaboration searches for a successful composition
(i.e. each function call yields a correspondent in the oppos-
ing component, and similarly for all data types used) while
always preferring a more abstract flow. This means prefer-
ring a “taller stack” of styles. The order in which the styles
were applied is respected. (This logic is near-trivial in our
example, since only one style is applied on each side.)

4.2 Java Native Interface style
As a more advanced example of styles, interpreting func-

tion calls, consider a caller written in C but consuming a
Java library using the Java Native Interface [19]. Fig. 7
shows C code a JNI programmer might write, and Fig. 6
shows a style definition for abstracting the resulting trace
into a single call obeying a simple naming convention.

The rule consists of a comma-separated list of patterns,
each of which matches a function call and binds names to
its elements, including (to the left of the ⇐) its return val-
ues. Each pattern is preceded by a square-bracketed guard

predicate defining additional matching conditions in terms of
the names bound in the pattern. Data-dependent matching,
i.e. matching only particular argument values, is threaded
through the list of patterns by re-using identifiers bound ear-
lier. The final element of the pattern defines the call which
“triggers” the rule, here @CSLM4; the rule “fires” when this
call occurs in a context where calls matching the previous
patterns have preceded it. The pattern-list is followed by
a right-arrow; on the right of the arrow is the “abstracted”
view (line 7) of the left side. Here this is a single call whose

4Here identifiers beginning with“@” are treated as metavari-
ables, rather than resolving to component-level names; line 5
binds @CLSM to env’s GetStaticMethodID member.

name is built from the style’s arguments, using metapro-
gramming operators like those in the C preprocessor.

By applying these rules, we recover an abstract sequence
of calls, discarding JNI details. Now we consider the reverse
direction—given some abstract sequence of calls, generated
by some heterogeneous client in another style (such as a
different foreign function interface than JNI), how can we
dispatch this against the JNI interface? To avoid introduc-
ing another example style, let us simply turn the tables: how
do we dispatch abstract calls to JNI? This means running
our JNI style rules “in reverse”.

In short, we direct the abstract calls into generated stub
code whose role is to reproduce a context satisfying the pred-
icates on the left of the JNI rule (lines 3–6). To do so, it
keeps a “sliding window”-style log of call history across the
interface. For example, on receiving the first abstract call,
JNI CreateJVM has yet to be called, so our stub does this
and checks the return value against JNI ERR. Continuing,
we can use the data dependencies between patterns to syn-
thesise the arguments to subsequent calls, using the contents
of the call history (which includes earlier argument values).
In a few cases, the relevant arguments cannot be recovered
without extra programmer guidance; for example, we cannot
recover the vmargs argument to JNI CreateJavaVM. An extra
rule (line 10) handles this: the empty right-hand side sig-
nifies it may be inserted whenever necessary, and crucially,
it provides the required argument value for vmargs, namely
my vmargs. (Here this is assumed to name a statically de-
fined structure in the instantiating component; more realis-
tically, this identifier would be a parameter of the style.)

5. DISCUSSION AND FUTURE WORK
Currently we have only syntax and some paper semantics

for styles. However, work on implementing these within the
Cake compiler is ongoing. (In fact, styles were an envisaged
feature from the initial design of Cake.)

Deeper experience with styles, by further case study, is
required in order to discover how our preliminary results
generalise. An empirical study of styles found in a large set
of codebases (e.g. open-source code in a variety of languages)
would be both valuable and feasible.

Performance of generated code is limited by how well the
multi-layered glue code generated by our design can be col-
lapsed to a small and efficient adapter, using whole-program
optimisation techniques; this requires further research.

What we have loosely claimed to be a “style” is really
describing a “style transformer”: a mapping from one style
to another, where the latter is hopefully more abstract. For



example, the naming convention we selected in Fig. 6 is itself
another style, even though it has discarded JNI details. It
is therefore essential that styles compose with each other,
that mismatch between styles does not become a problem,
and that a quadratic explosion of styles can be avoided. The
emergence of “well-known” named styles, into which a wide
stylistic variety of input components can be transformed,
might solve this analogously to how popular intermediate
file formats can avoid quadratic explosion in Make [12].

It would be useful to automatically infer what known
styles apply to a component, by searching for the relevant
patterns in interfaces. This search becomes more complex
when considering compositions of styles and parameterisa-
tion. A likely solution might combine backtracking search
(much like Make finds compositions of rules satisfying pre-
requisites) with constraint solving (to find satisfying instan-
tiations of styles’ parameters). Similarly, it would be useful
to automatically infer likely styles, given a corpus of inter-
faces, perhaps using existing learning approaches [11].

Assurances about style-based compositions could be gained
by considering their round-tripping properties, as with lenses

for tree-structured data [13]. One idea is to cross-check

round-trips using symbolic execution techniques [8].

6. RELATED WORK
Component systems such as CORBA [22] use stub compil-

ers to abstract interfaces, but fundamentally do not address
heterogeneity, since they assume all components are pro-
grammed against interfaces generated by such a compiler.
By contrast, styles both generate abstractions and recognise

concretions, enabling heterogeneous composition.
Kent identified a similar phenomenon to stylistic varia-

tion in database schemas [18]; we have effectively extended
consideration of this phenomenon to component interfaces.

Flexible Packaging [10] has similar goals to ours, but re-
lies on a clean-slate approach to development, whereas our
approach is designed to apply to existing components.

The abstracting, normalising nature of styles is similar to
the “objectification” transformation of COMPOST [2], but
with considerably greater flexibility—notably a language-
agnostic, black-box approach.

Interface styles lie on the same spectrum as design pat-
terns [14] and architectural styles [20], but are generally
smaller-scale than both. Their small size makes it tractable
to describe them in a one-time fashion, but also means that
any real interface will feature a complex composition of styles,
making style composition a more significant problem.

Composition languages such as Piccola [1] consider how
to capture different styles of composition, hence overlapping
with interface styles. However, Piccola does not facilitate
heterogeneous composition; rather, it formalises composi-
tions within a single “compositional style” at a time.

LayOM [5] shares some conceptual similarities, but dif-
ferent objectives: since it does not address heterogeneity, it
does not adopt a unifying medium, does not prioritise the
definition of new layers (doing which entails C++ source
code transformation), and has no analogue of elaboration
for automatic composition across layers.

7. CONCLUSIONS
Styles are a novel way to abstract away recurring differ-

ences in diverse component interfaces. Our next step is to
implement and practically evaluate styles. A survey of ob-

served styles in existing code will add focus to this work. We
believe styles can open up a hugely bigger space of feasible
compositions than allowed by current tools.
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APPENDIX
This appendix tabulates a preliminary catalogue of styles.
We include the following columns.

Abstract concern.
This column identifies a shared intention underlying a set

of alternative interface conventions. These concerns are the
root of our interest in styles: if there were only one way for
a given abstract concern to be realised, there would be no
need for composition tools to support multiple styles.

Sample concretion approaches.
These describe broad equivalence classes of approaches.

Within each class, the differences between each approach are
relatively superficial. Each group member might therefore

be considered a particular parameterisation of one overarch-
ing logical style. Note also that these concretion approaches
are not mutually exclusive; some styles will combine many
of these at the same time. For example, many C library calls
report errors by some combination of the return value, the
errno global and an error discovery function like ferror().

Concrete examples.
This columns lists real APIs, well-known programming

idioms or documented tool implementations instantiating a
given concretion approach. Since we are implicitly interested
in conventions appearing at the object code level, notice how
these concretions descend right down to the binary level, and
are a mixture of tool- and programmer-selected conventions.




