Bigraphs: a model for mobile agents

Robin Milner, September 2008
I How agents are linked and placed independently
II How to build complex systems from simple ones
III Dynamical theory, illustrated for CCS
IV Stochastic dynamics, e.g. for membrane budding
V Foundation for behavioural equivalence
VI Ubiquitous systems: a context for bigraphs

Acknowledging contributions from
James Leifer and Ole Høgh Jensen

Lecture I
 How agents are linked and placed independently

A fanciful system

The bi-structure of bigraphs

How to build bigraphs? Give them interfaces ...

bare bigraph \bar{G}

bare bigraph \bar{G}

its forest

bare bigraph \bar{F}

ground bigraph $F: \epsilon \rightarrow\left\langle 3,\left\{x, x^{\prime}\right\}\right\rangle$

place graph $F^{P}: 0 \rightarrow 3$

link graph $F^{\mathrm{L}}: \emptyset \rightarrow\left\{x, x^{\prime}\right\}$

An interface takes the form $\langle m, X\rangle$. The origin is $\epsilon \xlongequal[=]{\text { def }}\langle 0, \emptyset\rangle$.

An interface takes the form $\langle m, X\rangle$. The origin is $\epsilon \xlongequal[=]{\text { def }}\langle 0, \emptyset\rangle$.

A built environment G

$$
\begin{aligned}
G= & / z \mathrm{~B}_{z} \cdot\left(\text { Roomfull }_{x z}\left|/ y \mathrm{~A}_{x y}\right| \operatorname{Roomfull}_{x z}\right) \| \text { Roomfull }_{x w} \\
& \text { where Roomfull } \\
x z & \stackrel{\text { def }}{=} \mathrm{R} \cdot / y\left(\mathrm{~A}_{x y} \mid \mathrm{C}_{y z}\right) .
\end{aligned}
$$

The signature $\mathcal{K}=\{A: 2, B: 1 \ldots\}$ gives controls with arities.
...... and a host H for G

$$
H=\mathrm{id}_{1}\left|\mathrm{id}_{x}\right| / w \mathrm{~B}_{w} \cdot\left(/ y \mathrm{~A}_{x y}\left|\mathrm{R}_{\cdot} / y \mathrm{C}_{y w}\right| \mathrm{id}_{w} \mid \mathrm{id}_{1}\right) .
$$

The complete system $H \circ G$

....... and after one reaction

....... and after two reactions

....... and after three reactions

Three possible reaction rules

The anatomy of bigraphs

place $=$ root or node or site
link = edge or outer name point $=$ port or inner name

Lecture II
 How to build complex systems from simple ones

Elementary bigraphs

elementary placings:

$$
\text { swap : } 2 \rightarrow 2 \quad 1: 0 \rightarrow 1 \quad \text { join }: 2 \rightarrow 1
$$

elementary linkings:

Compound placings and linkings e.g.
coalesce places: merge $_{0} \stackrel{\text { def }}{=} 1$, merge $e_{n+1} \stackrel{\text { def }}{=}$ join $\circ\left(\mathrm{id}_{1} \otimes\right.$ merge $\left._{n}\right)$ substitute names: $\quad y_{1} / X_{1} \otimes \cdots \otimes y_{n} / X_{n}$

Combining and composing

A bigraph interface takes the form $I=\langle m, X\rangle$.
The origin is the trivial interface $\epsilon \stackrel{\text { def }}{=}\langle 0, \emptyset\rangle$.

Combination

Let $P: m \rightarrow n$ and $L: X \rightarrow Y$ be a place graph and a link graph on the same set of nodes.
The bigraph $\langle P, L\rangle:\langle m, X\rangle \rightarrow\langle n, Y\rangle$ has constituents P, L. For a given bigraph G, denote its constituents by G^{P} and G^{L}.

Composition

For place graphs: place each root i of $P: \ell \rightarrow m$ in site i of $Q: m \rightarrow n$, to form $Q \circ P$. Similarly for link graphs.
For $F:\langle\ell, X\rangle \rightarrow\langle m, Y\rangle$ and $G:\langle m, Y\rangle \rightarrow\langle n, Z\rangle$, define

$$
G \circ F \stackrel{\text { def }}{=}\left\langle G^{\mathrm{P}} \circ F^{\mathrm{P}}, G^{\mathrm{L}} \circ F^{\mathrm{L}}\right\rangle
$$

Juxtaposing

For two place graphs $P_{i}: m_{i} \rightarrow n_{i}(i=0,1)$, augment the sites and roots of P_{1} by m_{0} and n_{0}, and juxtapose them to form

$$
P_{0} \otimes P_{1}: m_{0}+m_{1} \rightarrow n_{0}+n_{1}
$$

For link graphs $L_{i}: X_{i} \rightarrow Y_{i}$, provided $X_{0} \# X_{1}$ and $Y_{0} \# Y_{1}$, juxtapose them to form

$$
L_{0} \otimes L_{1}: X_{0} \uplus X_{1} \rightarrow Y_{0} \uplus Y_{1}
$$

For bigraph faces $I_{i}=\left\langle m_{i}, X_{i}\right\rangle$ with $X_{0} \# X_{1}$, the product is

$$
I_{0} \otimes I_{1} \stackrel{\text { def }}{=}\left\langle m_{0}+m_{1}, X_{0} \uplus X_{1}\right\rangle
$$

The product of two bigraphs G_{i}, with face products defined, is

$$
G_{0} \otimes G_{1} \stackrel{\text { def }}{=}\left\langle G_{0}^{\mathrm{P}} \otimes G_{1}^{\mathrm{P}}, G_{0}^{\mathrm{L}} \otimes G_{1}^{\mathrm{L}}\right\rangle
$$

Equations for a monoidal category

These are informal pictures - not bigraphs!

Partial monoidal categories

A category is partial monoidal (pm) if it has a product \otimes on both objects and arrows, such that
ON OBJECTS:
$I \otimes(J \otimes K)=(I \otimes J) \otimes K$
$I=\epsilon \otimes I=I \otimes \epsilon$

ON ARROWS:
$I \otimes(J \otimes K)=(I \otimes J) \otimes K$

$$
f \otimes(g \otimes h)=(f \otimes g) \otimes h
$$

$$
f=\operatorname{id}_{\epsilon} \otimes f=f \otimes \mathrm{id}_{\epsilon}
$$

$$
\left(f_{1} \otimes g_{1}\right) \circ\left(f_{0} \otimes g_{0}\right)=\left(f_{1} \circ f_{0}\right) \otimes\left(g_{1} \circ g_{0}\right)
$$

(The product is partial on objects. If $I \otimes J$ exists then so does $J \otimes I$.
For $f_{i}: I_{i} \rightarrow J_{i}$ the product $f_{0} \otimes f_{1}: I_{0} \otimes I_{1} \rightarrow J_{0} \otimes J_{1}$ exists iff $I_{0} \otimes I_{1}$ and $J_{0} \otimes J_{1}$ exist.)

Proposition For any signature \mathcal{K}, the three categories $\operatorname{PG}(\mathcal{K})$, $\mathrm{LG}(\mathcal{K})$ and $\mathrm{BG}(\mathcal{K})$ are all partial monoidal.

Symmetry equations: ‘swapping’

$\gamma_{I_{1}, J_{1}} \circ(f \otimes g)=(g \otimes f) \circ \gamma_{I_{0}, J_{0}}$

These are informal pictures - not bigraphs!

Symmetric categories

Swapping

For place graphs, we define $\gamma_{m, n}: m+n \rightarrow n+m$ that swaps m with n regions, using swap: $2 \rightarrow 2$. Then we can show that $f \otimes g$ and $g \otimes f$ are the same 'up to swapping'.

In general: a pm category is symmetric (spm) if there are swapping arrows $\gamma_{I, J}: I \otimes J \rightarrow J \otimes I$ satisfying four equations:

$$
\begin{aligned}
& \gamma_{I, \epsilon}=\operatorname{id}_{I} \\
&\left.\gamma_{J, I} \circ \gamma_{I, J}=\operatorname{id}_{I \otimes J} \left\lvert\, \begin{array}{l}
\gamma_{I_{1}, J_{1}} \circ(
\end{array} f \otimes g\right.\right)=(g \otimes f) \circ \gamma_{I_{0}, J_{0}}{ }^{\dagger} \\
& \gamma_{I \otimes J, K}=\left(\gamma_{I, K} \otimes \operatorname{id}_{J}\right) \circ\left(\operatorname{id}_{I} \otimes \gamma_{J, K}\right) \\
& \dagger_{\text {where } f: I_{0} \rightarrow I_{1} \text { and } g: J_{0} \rightarrow J_{1} .} .
\end{aligned}
$$

Proposition In bigraphs, for any signature \mathcal{K} the three pm categories $\mathrm{PG}(\mathcal{K}), L G(\mathcal{K})$ and $B G(\mathcal{K})$ are all symmetric.

Placings and linkings

A placing ϕ is a node-free bigraph with no links. A linking λ is a node-free bigraph with no places.

So a node-free bigraph takes the form $\phi \otimes \lambda$.

A bijective placing π is called a permutation (of places).
A bijective substitution α is called a renaming.
Operations primitive in process calculi can be derived for bigraphs, using \circ and \otimes together with placings and linkings.

ABBREVIATIONS: For $G: I \rightarrow\langle m, X\rangle$ write
ϕG for $\left(\phi \otimes \operatorname{id}_{X}\right) \circ G \quad(\phi$ a placing on $m)$
λG for $\left(\mathrm{id}_{m} \otimes \lambda\right) \circ G \quad(\lambda$ a linking on $X)$.

Derived operations: product and nesting

We want to juxtapose or to nest two bigraphs that share names.

```
Parallel product F}\mp@subsup{F}{0}{}|\mp@subsup{F}{1}{}\stackrel{\mathrm{ def }}{=}\mp@subsup{\alpha}{}{-1}(\alpha\mp@subsup{F}{0}{}\otimes\mp@subsup{F}{1}{})\quad(\alpha\mathrm{ a renaming)
Merge product F}\mp@subsup{F}{0}{}|\mp@subsup{F}{1}{}\stackrel{\mathrm{ def }}{=}\operatorname{merge}(\mp@subsup{F}{0}{|}|\mp@subsup{F}{1}{}
    Nesting G.F \stackrel{\mathrm{ def }}{=}(G|\mp@subsup{id}{X}{})\circF,
        where F:I->\langlem,X\rangle and G:m->\langlen,Y\rangle.
```

parallel product

merge product

nesting

Interfaces for derived products and nesting

Define derived products on interfaces $I_{i}=\left\langle m_{i}, X_{i}\right\rangle$ as follows:

$$
\begin{gathered}
\text { Parallel product } I_{0} \| I_{1} \xlongequal{\text { def }}\left\langle m_{0}+m_{1}, X_{0} \cup X_{1}\right\rangle \\
\text { Merge product } I_{0} \mid I_{1} \xlongequal[=]{\text { def }}\left\langle 1, X_{0} \cup X_{1}\right\rangle .
\end{gathered}
$$

Then for $F_{i}: I_{i} \rightarrow J_{i}$ we find

$$
\begin{aligned}
F_{0} \| F_{1} & : I_{0} \otimes I_{1} \rightarrow J_{0} \| J_{1} \\
F_{0} \mid F_{1} & : I_{0} \otimes I_{1} \rightarrow J_{0} \mid J_{1} .
\end{aligned}
$$

Also for $F: I \rightarrow\langle m, X\rangle$ and $G: m \rightarrow\langle n, Y\rangle$ we find

$$
G . F: I \rightarrow\langle n, X \cup Y\rangle .
$$

Thus all these operators allow their operands to share names.

Place sorting, bigraphical category

A place sorting $\Sigma=\{\Theta, \mathcal{K}, \Phi\}$ has

$$
\begin{array}{r}
\begin{array}{r}
\text { Sorts } \\
\text { Signature }
\end{array} \underset{\mathcal{K}}{\mathcal{K}}=\left\{\mathrm{K}_{1}:\left(k_{1}, \theta_{1}\right), \mathrm{K}_{2}:\left(k_{2}, \theta_{2}\right), \ldots\right\} \\
\text { Formation rule }
\end{array}
$$

Each control K_{i} is a kind of node, with k_{i} ports, and sort $\theta_{i} \in \Theta$.
Sorts are thus ascribed to nodes, and also to interface places.
Using these, the formation rule Φ limits the admissible bigraphs.
(Link sorting is defined similarly.)
This yields the bigraphical category $\mathrm{BG}(\Sigma)$.

Place sorting for the built environment

Finite CCS

SYNTAX:

$$
\begin{array}{rl}
\mu & ::=\bar{x} \\
P & ::=A \\
A & \nu x P \\
A & ::=0 \mid \\
A . P & A+A \\
\text { alternations }
\end{array}
$$

A handshake on x can occur iff one process can do \bar{x} and another do x.

STRUCTURAL CONGRUENCE:

(1) $P \equiv{ }_{\alpha} Q$ implies $P \equiv Q$, and $A \equiv{ }_{\alpha} B$ implies $A \equiv B$;
(2) ' \mid ' and ' + ' are associative and commutative under \equiv, and $A+0 \equiv A$;
(3) $\nu x \nu y P \equiv \nu y \nu x P$;
(4) $\nu x P \equiv P$ and $\nu x(P \mid Q) \equiv P \mid \nu x Q$ for any x not free in P;
(5) $\quad \nu x(A+\mu \cdot P) \equiv A+\mu \cdot \nu x P$ for any x not free in A or μ.

CCS in bigraphs

Sorts: $\Theta_{\mathrm{ccs}}=\{\mathrm{pr}, \mathrm{ch}\}$
Signature: $\mathcal{K}_{\mathrm{ccs}}=\{\mathrm{alt}:(\mathrm{pr}, 0)$, get: $(\mathrm{ch}, 1)$, send: $(\mathrm{ch}, 1)\}$
Formation rule Φ_{ccs} : nest the nodes with sorts alternating.

The CCS choice $(x .(\bar{x}$.nil $)+y$.nil) becomes the bigraph

$$
\text { alt. }\left(\text { get }_{x} . \text { alt.send }_{x} . \diamond \mid \operatorname{get}_{y} \cdot \diamond\right), \text { where } \diamond \stackrel{\text { def }}{=} \text { alt. } 1 .
$$

Translating CCS into $\mathrm{BG}_{\text {ccs }}$

The translation map $\mathcal{P}_{X}[\cdot]$ from processes to $\epsilon \rightarrow\langle 1: \mathrm{pr}, X\rangle$ is defined for all processes P with free names in X. Similarly $\mathcal{A}_{X}[\cdot]$ for alternations.

$$
\begin{array}{rl|rl}
& & \mathcal{A}_{X}[0] & =X \mid 1 \\
\mathcal{P}_{X}[\nu x P] & =/ y \mathcal{P}_{y \uplus X}[\{y / x\} P] & \mathcal{A}_{X}[\bar{x} \cdot P] & =\operatorname{send}_{x} \cdot \mathcal{P}_{X}[P] \\
\mathcal{P}_{X}[P \mid Q] & =\mathcal{P}_{X}[P] \mid \mathcal{P}_{X}[Q] & \mathcal{A}_{X}[x . P] & =\operatorname{get}_{x} \cdot \mathcal{P}_{X}[P] \\
\mathcal{P}_{X}[A] & =\text { alt. } \mathcal{A}_{X}[A] . & \mathcal{A}_{X}[A+B] & =\mathcal{A}_{X}[A] \mid \mathcal{A}_{X}[B] .
\end{array}
$$

Theorem

(1) The translations are surjective.
(2) $P \equiv Q$ iff $\mathcal{P}_{X}[P]=\mathcal{P}_{X}[Q]$, and

$$
A \equiv B \text { iff } \mathcal{A}_{X}[A]=\mathcal{A}_{X}[B]
$$

Lecture III

Dynamical theory, illustrated for CCS

Reaction in CCS

SYNTAX:

$$
\begin{aligned}
& \mu::=\bar{x} \mid x \\
& P::=A|\nu x P| P \mid P \\
& A::=0|\mu \cdot P| \\
& A+A \text { processes } \\
& \text { alternations }
\end{aligned}
$$

REACTION: $(\bar{x} . P+A)|(x . Q+B) \longrightarrow P| Q$ with three rules:

$$
\frac{P \longrightarrow P^{\prime}}{P\left|Q \longrightarrow P^{\prime}\right| Q} \quad \frac{P \longrightarrow P^{\prime}}{\nu x P \longrightarrow \nu x P^{\prime}}
$$

$$
\frac{P \longrightarrow P^{\prime}}{Q \longrightarrow Q^{\prime}} \quad \text { if } P \equiv Q \text { and } P^{\prime} \equiv Q^{\prime}
$$

So, reaction can occur anywhere except within a choice. How do we match these reactions in bigraphs?

Bigraphical reactive system

Where may reactions occur in a bigraph?

To determine this, a basic signature is enriched to a dynamic signature, declaring each control to be either active or passive. A context D is active if no site lies within a passive node.

A BRS $\operatorname{BG}(\Sigma, \mathcal{R})$ has ground reaction rules, each of the form

$$
\mathrm{R}=\left(r, r^{\prime}\right)
$$

with redex $r: \epsilon \rightarrow I$ and reactum $r^{\prime}: \epsilon \rightarrow I$.

The following reactions are generated by R , where D is active:

$$
D \circ r \longrightarrow \mathrm{R} D \circ r^{\prime} .
$$

Parametric reaction rules

The rules in a $\mathrm{BRS} \operatorname{BG}(\Sigma, \mathcal{R})$ are usually parametric, each generating a family of ground rules.

A parametric rule takes the form

$$
\mathrm{R}=\left(R, R^{\prime}, \eta\right)
$$

with redex $R: m \rightarrow I$, reactum $R^{\prime}: m^{\prime} \rightarrow I$, and instance map $\eta: m^{\prime} \rightarrow m$.

A parameter is a discrete* bigraph $d=d_{0} \otimes \cdots \otimes d_{m-1}$ with names not in I. Its instance is $d^{\prime} \stackrel{\text { def }}{=} d_{\eta(0)}\|\cdots\| d_{\eta\left(m^{\prime}-1\right)}$. This generates the ground reaction rule

$$
\left(r, r^{\prime}\right)=\left(R \cdot d, R^{\prime} \cdot d^{\prime}\right)
$$

*discrete: all links open and distinct.

Reaction in CCS bigraphs

$B G_{c c s}$, the BRS for CCS, has a single parametric reaction rule:

The back-pointing arrows show the instance map.

Theorem

Translation of CCS into bigraphs strongly preserves reaction:
$P \longrightarrow P^{\prime}$ iff $\mathcal{P}_{X}[P] \longrightarrow \mathcal{P}_{X}\left[P^{\prime}\right]$.

Behavioural equivalence

The big challenge of process calculi: Find a nice behavioural equivalence \asymp, or preorder \succeq such that
$P \asymp Q$ means in all contexts P and Q behave the same;
$P \succeq Q$ means in all contexts P can do everything that Q can do.
Thus, these relations must be congruential; $P \asymp Q$ must imply $\mathcal{C}[P] \asymp \mathcal{C}[Q]$ for any context \mathcal{C}.

We can't define \asymp to mean 'having same reactions'. For:

- nil and \bar{x}.nil have exactly the same reactions in CCS;
- but in the context $\cdot \mid x$. nil, we find \bar{x}. nil can react but nil cannot.

For this reason, labelled transitions were defined for CCS.

Labelled transitions in CCS

SYNTAX:

$$
\begin{aligned}
& \mu::=\bar{x}|x| \tau \\
& P::=A|\nu x P| P \mid P \\
& A::=0|\mu \cdot P| A+A \\
& \text { processes }
\end{aligned}
$$

TRANSITION: $\quad \mu . P+A \xrightarrow{\mu} P$, with four rules:

$$
\begin{aligned}
\frac{P \xrightarrow{\mu} P^{\prime}}{P\left|Q \xrightarrow{\mu} P^{\prime}\right| Q} & \stackrel{P \xrightarrow{\mu} P^{\prime}}{\nu x P \xrightarrow{\mu} \nu x P^{\prime}} \quad \text { if } \mu \notin\{x, \bar{x}\} \\
\xrightarrow[{P\left|Q \xrightarrow{\bar{x}} P^{\prime}\right| P^{\prime} \mid Q^{\prime}}]{P} Q^{\prime} & \frac{P \xrightarrow{\mu} P^{\prime}}{Q \xrightarrow{\mu} Q^{\prime}} \text { if } P \equiv Q \text { and } P^{\prime} \equiv Q^{\prime}
\end{aligned}
$$

Now, how to define behavioural equivalence using transitions?

Bisimulation for CCS

A simulation is a binary relation \mathcal{S} between processes such that: if $P \mathcal{S Q} Q$ and $P \xrightarrow{\ell} P^{\prime}$ then there exists Q^{\prime} such that $Q \xrightarrow{\ell} Q^{\prime}$ and $P^{\prime} \mathcal{S} Q^{\prime}$.

A bisimulation is a symmetric simulation. Then bisimilarity, denoted by \sim, is the largest bisimulation.

Theorem: Bisimulation is a congruence, i.e. $P \sim Q$ implies $\mathcal{C}[P] \sim \mathcal{C}[Q]$ for every context \mathcal{C}.

Similar congruence theorems have been proved for other process calculi and other equivalences and pre-orders. Can we prove such a result uniformly in bigraphs?

Aims for a general behavioural theory for BRSs

- To derive labelled transition systems from reaction rules.
- The label L in a transition $g \xrightarrow{L} g^{\prime}$ should represent how an environment should contribute to the transition.
- This must illuminate behavioural equivalences and preorders based upon transitions.

Contexts as transition labels

- A transition $a \xrightarrow{L} a^{\prime}$ should imply the reaction $L \circ a \longrightarrow a^{\prime}$.
- So reactions and transitions have similar diagrams, for some active D and ground reaction rule (r, r^{\prime}):

- But we must impose some constraint on the bound (L, D) for (a, r), to prevent it becoming enormous!
- L must contain only that part of r that is not in a. Such a bound, and the resulting transition, will be called minimal.

What's a minimal bound?

What's a minimal bound?-(1)

What's a minimal bound?-(2)

Behavioural congruence

Theorem In any safe ${ }^{\dagger}$ BRS, the bisimulation equivalence \sim for the system of minimal transitions is a congruence; that is, if $a \sim b$ then $C \circ a \sim C \circ b$, for any context C.

- The same holds for other equivalences and pre-orders.
- It holds also in a much wider class of reactive systems, provided that minimality can be defined.
- For CCS, how does derived bisimilarity relate to that for original CCS, where the labels are raw, not contextual?
\dagger The property 'safe' refers to sorting. $\Sigma_{\text {ccs }}$ is safe.

Raw transitions for CCS

The table characterizes the three components in any raw CCS transition $s \xrightarrow{\mu} s^{\prime}$:

	s	μ	s^{\prime}	condition
1	$\nu Z((\bar{x} \cdot p+\cdot \cdot) \mid q)$	\bar{x}	$\nu Z(p \mid q)$	$x \notin Z$
2	$\nu Z((x \cdot p+\cdot \cdot) \mid q)$	x	$\nu Z(p \mid q))$	$x \notin Z$
3	$\nu Z\left(\left(\bar{x} \cdot p_{0}+\cdot \cdot\right)\left\|\left(x \cdot p_{1}+\cdot \cdot\right)\right\| q\right)$	τ	$\nu Z\left(p_{0}\left\|p_{1}\right\| q\right)$	

Denote by $\sim_{\text {ccs }}$ the bisimilarity for these raw transitions. It is preserved by all CCS contexts.

Derived transitions for CCS

The table characterizes the transitions $g \xrightarrow{L} g^{\prime}$ derived for CCS in bigraphs (with a little fine-tuning).

	g	L	g^{\prime}	condition
1	$/ Z\left(\right.$ alt. $\left.\left(\operatorname{send}_{x} \cdot a \cdot \cdot\right) \mid b\right)$	id \|alt. (get $_{x} \cdot \diamond$)	$/ Z(a \mid b)$	$x \notin Z$
2	$/ Z\left(\mathrm{alt}^{\left.\left(\mathrm{get}_{x} \cdot a \cdot \cdot\right) \mid b\right)}\right.$	id \| alt. $\left(\operatorname{send}_{x} \cdot \diamond\right)$	$/ Z(a \mid b)$	$x \notin Z$
3	$\begin{aligned} & / Z\left(\text { alt. }^{\left(\operatorname{send}_{x} \cdot a_{0} \cdot\right)}\right. \\ & \left.\quad \mid a_{1 t .}\left(\text { get }_{x} \cdot a_{1} \cdot \cdot\right) \mid b\right) \end{aligned}$	id	$/ Z\left(a_{0}\left\|a_{1}\right\| b\right)$	
4	$\begin{gathered} / Z\left(\text { alt. }^{\left(\operatorname{send}_{x} \cdot a_{0} \cdot\right)}\right. \\ \left.\quad \mid a \operatorname{alt} .\left(\text { get }_{y}: a_{1} \cdot \cdot\right) \mid b\right) \end{gathered}$	y / x	$\begin{aligned} & / Z y / x \\ & \quad\left(a_{0}\left\|a_{1}\right\| b\right) \end{aligned}$	$\begin{aligned} & x \neq y ; \\ & x, y \notin Z \end{aligned}$

Corollary Bisimilarity for these transitions is a congruence; i.e. if $g \sim g^{\prime}$ then $C \circ g \sim C \circ g^{\prime}$, for any bigraph context C.

Theorem Omitting case 4, this bisimilarity agrees exactly with the original CCS bisimilarity $\sim_{c c s}$.

Lecture IV

Stochastic dynamics, e.g. for membrane budding

Joint work with Jean Krivine and Angelo Troina

Rated rules and reactions

A rated reaction rule has form $\mathrm{R}=\left(R, R^{\prime}, \eta, \rho\right)$, with rate $\rho>0$. How likely is a reaction $g \longrightarrow \mathrm{R} g^{\prime}$? Define

$$
\operatorname{rate}_{\mathrm{R}}\left[g, g^{\prime}\right] \stackrel{\text { def }}{=} \rho \cdot \mu_{\mathrm{R}}\left[g, g^{\prime}\right]
$$

where $\mu_{\mathrm{R}}\left[g, g^{\prime}\right]$ is the number of distinct ground rules $\left(r, r^{\prime}\right)$ of R with $\left(C \circ r, C \circ r^{\prime}\right)=\left(g, g^{\prime}\right)$ for some active C.

REMARK: When the redex R is solid, r determines C and r^{\prime}.

If \mathcal{R} is a set of rules, define rate $_{\mathcal{R}}\left[g, g^{\prime}\right] \stackrel{\text { def }}{=} \sum_{\mathrm{R} \in \mathcal{R}}$ rate $_{\mathrm{R}}\left[g, g^{\prime}\right]$.

Proposition

$$
g \longrightarrow \mathcal{R} g^{\prime} \text { iff rate }{ }_{\mathcal{R}}\left[g, g^{\prime}\right]>0
$$

Membrane budding

A membrane-bud system

Sorting $\Sigma=(\Theta, \mathcal{K}, \Phi)$:
Sorts $\Theta=\{b, c, p, g, \widehat{b c}, \widehat{p g}\}$.
Signature $\mathcal{K}=$
$\{$ brane: $(b, 0)$, bud: $(b, 1)$, coat: $(c, 1)$, particle: $(\mathrm{p}, 0)$, gate: $(\mathrm{g}, 1)\}$
Formation rule Φ :

PARENT	cHILD SORTS
b -node	$\mathrm{p}, \mathrm{g}, \widehat{\mathrm{pg}}$
c-node, p-node, g-node	none
θ-root $(\theta \in\{\mathrm{b}, \mathrm{c}, \mathrm{p}, \mathrm{g}\})$	θ
$\widehat{\mathrm{bc}}$-root	$\mathrm{b}, \mathrm{c}, \widehat{\mathrm{bc}}$
$\widehat{\mathrm{pg}}$-root	$\mathrm{p}, \mathrm{g}, \widehat{\mathrm{pg}}$

Reaction rules for budding

bud formation

coating

particle migration

bud fission

A simulation of budding, using PRISM

As the rate of particle migration increases, relative to the coating rate, the expected number of particles in a bud increases.

This number has a normal distribution of constant width.

A reaction: how many ways can it happen? ...

A reaction: how many ways can it happen? ...

First identify the A-nodes

A reaction: how many ways can it happen? ...

How many ways with rule R?

A reaction: how many ways can it happen? ...

How many ways with rule R? ... ONE WAY ...

A reaction: how many ways can it happen? ...

How many ways with rule R? ... and ANOTHER WAY!

A reaction: how many ways can it happen? ...

How many ways with rule R? . . . OR n WAYS. . .

A reaction: how many ways can it happen? ...

How many ways with rule S ?

rule S

A reaction: how many ways can it happen? ...

How many ways with rule S? ... ONLY ONE WAY!

rule S

A reaction: how many ways can it happen? ...

How many ways with rule $S ? \ldots$ OR $n(n-1) / 2$ WAYS. . .

if g has n A-nodes!
rule S

Computing transition rates

Let R be an rated reaction rule with rate $\rho>0$. How likely is a transition $a \xrightarrow{L}{ }_{\mathrm{R}} a^{\prime}$? Define

$$
\operatorname{rate}_{\mathrm{R}}\left[a, L, a^{\prime}\right] \stackrel{\text { def }}{=} \rho \cdot \mu_{\mathrm{R}}\left[a, L, a^{\prime}\right]
$$

where $\mu_{\mathrm{R}}\left[g, g^{\prime}\right]$ is the number of distinct ground rules $\left(r, r^{\prime}\right)$ of R such that there is a minimal bound (L, D) for (a, r), with D active, such that $D \circ r^{\prime}=g^{\prime}$.

If \mathcal{R} is a rule-set, $\mu_{\mathcal{R}}\left[a, L, a^{\prime}\right]$ is defined by summation over \mathcal{R}.

Thus transition rates need not be defined independently from reaction rates.

Weighting communications in a process calculus

We assign rates only to reaction rules, and derive rates for reactions and transitions. In a process calculus, each participant in a communication can modify its rate as follows:

In CCS, a participant is $\left(\mu_{1} \cdot P_{1}+\cdots+\mu_{n} \cdot P_{n}\right)$. To multiply the rate of a single summand μ. P by k, replace it by $k \times \mu$. P.

This language-extension is easy to derive: in CCS, in place of $k \times \mu$. P we can write simply

$$
\overbrace{\mu . P+\cdots+\mu . P}^{k} .
$$

The rate increases, just because we have replaced a single summand by a population of k identical summands.

Of course, it wouldn't be implemented that way!

Lecture V

Foundation for behavioural equivalence

Classes of reactive system

We seek behavioural congruence for reactive systems that can control where reactions can happen.
Wide reactive systems have just enough notion of place.

RS -- reactive system
WRS --wide reactive system
BRS --bigraphical reactive system

What is a discrete process?

- This is fundamental question for informatics: compare the question "What is a computable function?".
- But we have to consider much more than the classical notion of computation: non-determinism, non-sequentiality, locality,
- Bold attempted answer: An equivalence class of systems indistinguishable by observation.
- Bisimilarity serves this purpose uniformly for BRSs
... and for an even broader class of reactive systems.
- It depends on the humble idea of tagging!

Why is the tagging of components useful??

Tagging of subexpressions is used for many purposes in the λ calculus. The same holds in processes generally:

- Tagging has helped us to count the number of distinct ways a reaction $g \longrightarrow g^{\prime}$ can occur.
- Tagging can keep track of agents through their reactions; this leads to understanding causality in bigraphs.
- With tagging, we'll define minimal labelled transitions, and thus recover the behaviour of process calculi within bigraphs.

For this purpose, we'll call bigraph concrete if it is tagged.

Support, and concrete bigraphs

In $B G(\Sigma)$:

In ${ }^{`} B G(\Sigma)$:

$0 \stackrel{A}{a}=A(1)$

$\stackrel{A}{-(2)} \neq$

The concrete bigraphs ${ }^{`} \mathrm{BG}(\Sigma)$ are like the abstract ones $B G(\Sigma)$, except:

- every node and edge has a distinct tag;
- in composition and product the tags must be disjoint.

The set of tags for G is its support, written $|G|$.

S-categories, in general

Assume an infinite set \mathcal{S} of support tags. Then an s-category is just like an spm category, except

- Each arrow f has a finite support set $|f| \subset \mathcal{S}$.
- For $g \circ f$ or $f \otimes g$ to be defined, we require $|f| \cap|g|=\emptyset$.
- If defined, $|g \circ f|=|f| \uplus|g|$ and $|f \otimes g|=|f| \uplus|g|$.
- The identities id $_{I}$ and symmetries $\gamma_{I, J}$ have empty support.
- All the spm equations hold when both sides are defined.

An spm category is just an s-category with empty support sets!

General reactive system

A general reactive system (${ }^{`}$, ${ }^{`} \mathcal{R}$) consists of an s-category ` \(\mathbf{C}\) and a set \({ }^{`} \mathcal{R}\) of ground reaction rules, each of the form

$$
\mathrm{R}=\left(r, r^{\prime}\right)
$$

with redex $r: \epsilon \rightarrow I$ and reactum $r^{\prime}: \epsilon \rightarrow I$. This generates reactions $D \circ r \longrightarrow D \circ r^{\prime}$ whenever D has inner face I. But we have lost what it means for a context D to be active!

An s-category lets us assemble things vertically (\circ) and horizontally (\otimes). Suppose $r: \epsilon \rightarrow I$, with $g: \epsilon \rightarrow J$ and $D: I \otimes J \rightarrow K$; does D permit a reaction $r \longrightarrow r^{\prime}$?

Wide reactive system (WRS)

A wide reactive system has a Width functor and an Activity map.

Width of an interface: Width (I) is a finite ordinal $m=\{0, \ldots, m-1\}$. Width of an arrow: Width $(f: I \rightarrow J)$ maps Width (I) to Width (J). Conditions: Width $(g \circ f)=\operatorname{Width}(g) \circ \operatorname{Width}(f), \ldots$.

Activity of an arrow:
$\operatorname{Act}(f: I \rightarrow J)$ is a subset of $\operatorname{Width}(I)$;
if $i \in \operatorname{Act}(f)$ we say " f is active at i ".
Conditions: $i \in \operatorname{Act}(g \circ f)$ if and only if

$$
i \in \operatorname{Act}(f) \text { and } \operatorname{Width}(f)(i) \in \operatorname{Act}(g), \ldots
$$

Localised behaviour in a WRS

A location of an interface I is a subset of its places Width (I). Denote locations by $\tilde{\imath}, \tilde{\jmath}$.

A reaction or transition happens due to a ground rule (r, r^{\prime}) in an active context $D .{ }^{\dagger}$ We index it with $\tilde{\jmath}=\operatorname{Width}(D)(\operatorname{Width}(I))$, a location of Width (J), as follows:

wide reaction $g \longrightarrow \tilde{j} g^{\prime}$

${ }^{\dagger}$ To be precise, the reaction rules and the reaction and transition relations are required to be closed under support equivalence \bumpeq.

How a context helps a reaction

A transition may happen when an agent a and a redex r both occur, perhaps overlapping, within some larger system g. Part of the redex may lie in a. How do we determine the other part?

We must find the 'minimal' triple (L, D, G), as shown, making the diagram commute. Then L is the part of r not in a; it will be the label of a transition $a \xrightarrow{L} a_{\imath}^{\prime}$.

This minimal construction is called a relative pushout. It's a purely static phenomenon. Does it exist?

Relative pushouts (RPOs) in an s-category

A cospan $\vec{g}: \vec{I} \rightarrow K$ bounds a span $\vec{f}: H \rightarrow \vec{I}$ if $g_{0} \circ f_{0}=g_{1} \circ f_{1}$.

A bound for \vec{f} relative to \vec{g} is a triple (\vec{h}, h) such that \vec{h} bounds \vec{f} and $h \circ h_{i}=g_{i}$.

(\vec{h}, h) is a relative pushout for \vec{f} relative to \vec{g} if, for any relative bound (\vec{k}, k), there is a unique arrow j for which $j \circ h_{i}=k_{i}$ and $k \circ j=h$.
An s-category has RPOs if every span \vec{f}, given any bound, has an RPO relative to that bound.

Idem pushouts (IPOs), and properties

\vec{h} is an IPO for \vec{f} if $(\vec{h}$, id $)$ is an RPO for \vec{f} relative to \vec{h}. Essential for deriving transitions!

Properties: (assuming RPOs exist)

- Any RPO for \vec{f} relative to \vec{g} is unique up to isomorphism.
- If (\vec{h}, h) is an RPO for \vec{f} to \vec{g}, then \vec{h} is an IPO for \vec{f}.
- If \vec{h} is an IPO for \vec{f}, then any triple (\vec{h}, h) is an RPO.
- if the two squares are IPOs, so is the rectangle;
- if the rectangle and the left square are IPOs, then so is the right square.

A RPO example in link graphs

Consider a simple link graph G :

We shall exhibit a span \vec{A}, having a bounding cospan \vec{D} such that $G=D_{0} \circ A_{0}=D_{1} \circ A_{1}$.

Then we find an RPO (\vec{B}, B) for \vec{A} relative to \vec{D}.

A RPO example in link graphs (1)

ONE DECOMPOSITION ...

$$
G=D_{0} \circ A_{0}
$$

A RPO example in link graphs(2)

ONE DECOMPOSITION AND ANOTHER

A RPO example in link graphs (3)

DECAPITATE!

A RPO example in link graphs: completed

Minimal transitions and bisimilarity

In a WRS with RPOs, a minimal transition $a \xrightarrow{L}{ }_{\tilde{\jmath}} a^{\prime}$ is one which

- The agents a, a^{\prime} are ground arrows;
- The underlying commuting diagram is an IPO.

A bisimulation is a symmetric relation \mathcal{S} such that, whenever $a \mathcal{S} b$ and $a \xrightarrow{L}{ }_{\tilde{\jmath}} a^{\prime}$ with $L \circ b$ defined, there exists a transition $b \xrightarrow{L} b^{\prime}$ such that $a^{\prime} \mathcal{S} b^{\prime}$.

Agents a and b are bisimilar, written $a \sim b$, if there exists a bisimulation \mathcal{S} with $a \mathcal{S} b$.

Congruence for minimal transitions

Theorem: In a WRS with RPOs and minimal transitions, bisimilarity is a congruence: if $a_{0} \sim a_{1}$ then $C \circ a_{0} \sim C \circ a_{1}$.

$\left.\begin{array}{r|c}\text { (b) } \\ C \\ a_{0} & \begin{array}{c}M \\ L_{0} \\ D_{0} \\ D_{0}\end{array} \\ \hline\end{array}\right)^{E_{0}}$
(c)

Proof (outline): Establish the bisimulation

$$
\mathcal{S} \stackrel{\text { def }}{=}\left\{\left(C \circ a_{0}, C \circ a_{1}\right) \mid a_{0} \sim a_{1}, C \text { a context }\right\} .
$$

1. Let (a) underlie a transition $C \circ a_{0} \xrightarrow{M} b_{0}^{\prime}$. Take an RPO.
2. The lower square of (b) underlies a transition $a_{0} \xrightarrow{L} a_{0}^{\prime}$.
3. Then by \sim, (c) underlies $a_{1} \xrightarrow{L} a_{1}^{\prime}$, with $a_{0}^{\prime} \sim a_{1}^{\prime}$.
4. By cut-and-paste, (d) underlies a transition $C \circ a_{1} \xrightarrow{M} b_{1}^{\prime} . \square$

How to apply the congruence theorem

The theorem does no apply to an abstract $\mathrm{BRS} \mathbf{C = B G}(\Sigma, \mathcal{R})$, because abstract BRSs lack RPOs!

But it applies indirectly. In outline:

1. From \mathbf{C}, create a concrete $B R S{ }^{`} \mathbf{C}={ }^{`} \mathrm{BG}\left(\Sigma,{ }^{`} \mathcal{R}\right)$, taking ${ }^{`} \mathcal{R}$ to be all preimages of \mathcal{R} under the support quotient functor.
2. Taking minimal transitions, define bisimilarity in `C and prove it a congruence by the theorem.
3. Then, applying the forgetful functor, this yields a transition system and a congruent bisimilarity in \mathbf{C}.

This is what we exhibited for CCS, and the same can be done for Petri nets, mobile ambients and CSP.

Lecture VI

Ubiquitous systems: a context for bigraphs

Bigraphs in context: a broad view

Informatic Models form a tower.

Ubiquitous Computing demands a tower whose higher models embody sophisticated concepts: trust, reflectivity,

Bigraphs provide a rigorous basis for the tower, on which to program, simulate and analyse behaviour expressed at higher levels.

An informatic model

Entities in a model explain, or are realised by, entities in the physical world-as in natural science.

ENTITIES
PROGRAMS
realised by
\downarrow
COMPUTERS

An informatic model with behaviour

Entities and behaviour in a model explain, or are realised by, entities in the physical world-as in natural science.

ENTITIES

BEHAVIOUR
action on memory, i/o

keyboard \& screen events

Layered informatic models with behaviour

Entities and behaviour in a model explain, or are realised by, entities in the physical world or in a lower model.

ENTITIES
LOGICAL FORMULAE specify \downarrow PROGRAMS

ASSEMBLY CODE \downarrow
HARDWARE DESIGN
realised by \downarrow
COMPUTERS

Combining models

Real systems combine interacting parts; we must also combine partial models. Thus, combine models of the electro-mechanical and informatic parts of an aircraft:

Combining models

Real systems combine interacting parts; we must also combine partial models. Also, combine models of artifactual and natural systems:

Combining models

For a program, we may combine different explanatory models. INRIA did this for the Airbus using abstract interpretation, following successful analysis of the failure of the Ariane-5 rocket:

Models and their tower

A model consists of some entities, and their behaviour.
EXAMPLE: flowcharts, and how to execute them.
A tower of models is built by explanation and combination :
Model A explains model B if
A abstracts from or specifies B, or if
B implements or realises A.
EXAMPLE: a specification logic specifies programs.
Model C combines models A and B if
its entities and behaviours combine those of A and B.
EXAMPLE: combine distributed programs with a network model.

How do we validate an explanation?

Natural science:
Explanation of reality by a model can only be supported by observation. Complete validation impossible (Karl Popper).

Informatics at lowest level:
Similar (e,g. realisation of circuit diagrams by a computer).

Informatics at higher levels:
Higher levels abound in the model tower. Can aspire to complete validation between precise models.

PROPOSITION: Informatics is a science just to the extent that it aspires to complete validation.

Scientific status of the Tower of Models

- Useful models, and validations, may well be informal
- Different models suit different people, including non-experts
- Many instances of models and validations exist
- Can we derive languages from models, not vice-versa?

Two visions of Ubiquitous Computing

Populations of computing entities will be a significant part of our environment, performing tasks that support us, and we shall be largely unaware of them. (after Mark Weiser, 1994)

In the next five to ten years the computer will be erased from our consciousness. We will simply not talk about it any longer, we will not read about it, apart from experts of course.
(my emphasis) Joseph Weizenbaum (2001)
...... and my vision:
Ubiquitous computing will empower us, if we understand it!

Qualities of a ubiquitous computing system (UCS)

What is new about a UCS?

- It will continually make decisions hitherto made by us
- It will be vast, maybe 100 times today's systems
- It must continually adapt, on-line, to new requirements
- Individual UCSs will interact with one another

Can traditional software engineering cope?

Concepts for Ubicomp

Each ubicomp domain, hence each model, will involve several concepts. Here are a few:
provenance obligations locality intentions specification data-protection beliefs continuous space authorisation simulation encapsulation mobility

Managing the conceptual overload

- Using bigraphs, Define the Ubiquitous Abstract Machine (UAM) in terms of locality, connectivity, mobility, stochastics.
- Build a model tower above UAM, layering the concepts.

What's the point of a Grand Challenge in informatics?

To make applications that startle the world?
(e.g. beating a grandmaster at chess)

OR

To organise the principles for an engineering science?

The first alone may (or may not) spin off science

The two together will embed computing in our scientific culture
....000000000000000000000....

