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Fig. 1. ColorVideoVDP predicts the visibility of distortions for a pair of test and reference videos (or images) as seen on a display with a provided specification.

The predictions are represented as a single quality value in Just-Objectionable-Di�erence (JOD) units, a distortion map video, and a distogram, which visualizes

the distortions over time, separately for each channel and spatial frequency band. See Fig. 25 for the content a�ribution.

ColorVideoVDP is a video and image quality metric that models spatial
and temporal aspects of vision for both luminance and color. The metric
is built on novel psychophysical models of chromatic spatiotemporal con-
trast sensitivity and cross-channel contrast masking. It accounts for the
viewing conditions, geometric, and photometric characteristics of the dis-
play. It was trained to predict common video-streaming distortions (e.g.,
video compression, rescaling, and transmission errors) and also 8 new
distortion types related to AR/VR displays (e.g., light source and waveg-
uide non-uniformities). To address the latter application, we collected our
novel XR-Display-Artifact-Video quality dataset (XR-DAVID), comprised
of 336 distorted videos. Extensive testing on XR-DAVID, as well as several
datasets from the literature, indicate a signi�cant gain in prediction per-
formance compared to existing metrics. ColorVideoVDP opens the doors
to many novel applications that require the joint automated spatiotempo-
ral assessment of luminance and color distortions, including video stream-
ing, display speci�cation, and design, visual comparison of results, and
perceptually-guided quality optimization. The code for the metric can be
found at https://github.com/gfxdisp/ColorVideoVDP.
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1 INTRODUCTION

Evaluating the visual quality of displayed content is a perennial
task in computer graphics and display engineering. The most direct
route, involving visual appraisal by human observers, is often too
costly and slow. Subjective studies may also be infeasible when a
large trade-space of competing variables needs to be studied quickly
to �nd optimal settings. In this case, automated metrics are of great
importance as tool for evaluation and design, which are often em-
ployed as cost functions for optimization.

This need led to the creation of many general-purpose image and
video metrics, but these techniques often ignore important aspects
of human vision, such as color or temporal vision. This happens
due to the inherent complexity of the visual system, which does
not allow for holistic modelling. Further, accurate models typically
rely on psychophysical data to make predictions, but due to the
multi-dimensional nature of color, data on interactions between
color and spatiotemporal characteristics of stimuli can be di�cult
to model.
Accurate reproduction of contrast and color is of central im-

portance to the quality of displayed content. Achromatic artifacts
stemming from graphics pipelines, such as visible blur or contrast
loss, can be modelled by existing luminance-only metrics such as
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SSIM [Wang et al. 2003] or FovVideoVDP [Mantiuk et al. 2021],
but color ones, such as chroma subsampling, cannot. On the other
hand, color di�erence formulas, such as the popular CIEDE2000
[CIE 2018; Sharma et al. 2005], do not model spatial or temporal
aspects of vision, and as a consequence may ignore important as-
pects of an artifact, such as the spatial distribution or changes of
color distortion over time. Notably, spatiotemporal color artifacts
are especially problematic in modern display applications, in partic-
ular for emerging display technologies such as wide-color-gamut,
virtual and augmented reality (XR) displays. The latter require novel
architectural solutions, which lead to chromatic artifacts like color
fringing caused by lens aberrations, or chromatic nonuniformity
due to optical waveguides (see Fig. 1).

This work presents ColorVideoVDP, a full-reference quality met-
ric that models spatiotemporal achromatic and chromatic vision.
The metric is built on novel psychophysical models of chromatic
spatiotemporal contrast sensitivity and cross-channel contrast mask-
ing. Thanks to its psychophysical foundations, the metric accounts
for the physical speci�cation of a display (size, resolution, color
characteristic) and viewing conditions (viewing distance and am-
bient light). This is the �rst video and image quality metric that
explicitly models human spatiotemporal and chromatic vision si-
multaneously and is capable of modeling XR display artifacts. Our
work builds on FovVideoVDP [Mantiuk et al. 2021] borrowing its
general processing pipeline. The main novel contribution is inte-
grating the spatio-chromatic model of near- and supra-threshold
contrast perception, which lets us quantify the visibility of both
achromatic and chromatic distortions. As chromatic distortions
tend to reside in lower spatial frequencies, ColorVideoVDP also
improves the modeling of low-frequency di�erences. Compared
to FovVideoVDP, ColorVideoVDP is fully di�erentiable1 and much
improves the accuracy of quality predictions on non-foveated image
and video datasets.
The key challenge of developing any new quality metric is its

e�ective calibration and robust validation. To that end, and to en-
sure that the metric can provide reliable predictions for display
applications, we collected a new XR-Display-Artifact-Video quality
dataset (XR-DAVID) with 8 common display artifacts (Sec. 4). To
ensure the diversity of distortion and content types, we combined
our new XR-DAVID dataset with a large HDR/SDR image dataset
UPIQ [Mikhailiuk et al. 2022]. As the combined datasets consist
of terabytes of data, calibration required a non-trivial mixture of
end-to-end, and feature-space training. This e�ort allowed us to
match and exceed the state-of-the-art results on unseen datasets (in
a cross-dataset validation) and on the testing portion of the train-
ing datasets (cross-content validation). In Sec. 6, we demonstrate
new applications of ColorVideoVDP, including analysis of chroma
subsampling, display color tolerance speci�cation, and quantifying
observer metamerism variations on a target dataset.

Limitations. ColorVideoVDP lacks higher-level models of saliency
or annoyance, resulting in lower accuracy when the semantic con-
tent has a strong in�uence on the quality judgments. It was not
trained to predict accurate spatial distortion maps [Ye et al. 2019] (as

1FovVideoVDP does not model the di�erences in low-frequency bands and, therefore,
it cannot propagate low-frequency di�erences when used as a di�erentiable loss term.

no such data is available for video). ColorVideoVDP does not model
the e�ect of glare (inter-ocular light scatter, found in HDR-VDP
[Mantiuk et al. 2023]), gaze-contingent vision (found in FovVideoVDP
[Mantiuk et al. 2021]), eye motion [Denes et al. 2020; Laird et al.
2006], or binocular vision [Didyk et al. 2011].

2 RELATED WORK

This section reviews the existing work that addresses the problem
of predicting visible di�erences or quality in color images and video
— the main focus of our metric. The representative examples of
these methods are listed in Table 1. The table also speci�es whether
the metric attempts to model spatial vision, temporal vision, o�ers
distinctive processing of color and whether it accounts for the col-
orimetric characteristic of the display, its resolution, and viewing
distance. As shown in the table, no existing metric is capable of
addressing these four important areas of image quality. Next, we
review the metrics by the groups indicated in the table.

Color di�erence formulas. Perceived color di�erences for uniform
patches can be predicted using one of the standard display formulas,
such as CIE ΔE∗

01
or CIEDE2000 [CIE 2018; Sharma et al. 2005].

The standard CIE formulas, however, were not meant to predict
di�erences for luminance below 1 cd/m2 or above the illuminance
of 1 000 lux [CIE 1993] (this translates to approximately 318 cd/m2

for a Lambertian white surface). ΔEITP [ITU-R BT. 2124 2019] was
proposed as a color di�erence formula for luminance levels found in
wide-color-gamut high-dynamic-range television, and potentially
intended for video content. It is unclear how to use the color dif-
ference formula with complex images and the color di�erence is
typically computed per pixel and then averaged. Such treatment
obviously ignores all spatial and temporal aspects of vision, which
are partially addressed by the next group of metrics.

Spatial color di�erence formulas. The spatial component of vision
was included in a spatial extension of the CIELAB di�erence for-
mula — sCIELAB [Zhang and Wandell 1997]. The authors proposed
to compute the CIE ΔE∗

01
color di�erences on images pre�ltered

by a contrast sensitivity function (CSF). Flip and HDR-Flip metrics
[Andersson et al. 2020, 2021] improve on sCIELAB by employing
a color di�erence formula that better quanti�es large color di�er-
ences. Both metrics also emphasize di�erences at edges, which tend
to be more salient. Choudhury et al. proposed to compute color
di�erences in the ITP color space [2021], which is more suitable for
HDR color values. The strength of such spatial extensions is their
simplicity. The main weakness is that such an application of the CSF
is overly simplistic — it does not account for the changes in contrast
sensitivity with luminance and does not account for supra-threshold
vision (e.g. contrast masking and contrast constancy).

Image quality. The most popular image quality metrics, such as
SSIM or MS-SSIM [Wang et al. 2003], do not attempt to explicitly
model human vision, but, instead, they combine hand-crafted statis-
tical measures that are likely to correlate with quality judgments.
Although the early metrics, such as SSIM and MS-SSIM, operate
only on the luma channel of the image, some later metrics, includ-
ing FSIMc [Zhang et al. 2011] and VSI [Zhang et al. 2014], separate
images into luma and two chroma channels, akin to the color space
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Table 1. �ality/di�erence metrics and their capabilities. Columns indicate whether the metric models spatial vision, temporal vision, color vision, and

whether it accounts for display geometry and photometry.

Metric Spatial Temporal Color Display model Approach

PSNR No No No No Signal quality

CIEDE2000 [CIE 2018] No No Yes Yes Color di�erence formula
ΔEITP [ITU-R BT. 2124 2019] No No Yes Yes Color di�erence formula

sCIELAB [Zhang and Wandell 1997] Yes No Yes Yes CSF + Color di�erence formula
ΔESITP [Choudhury et al. 2021] Yes No Yes Yes CSF + Color di�erence formula

MS-SSIM [Wang et al. 2003] Yes No No No Multi-scale structural similarity
FSIMc [Zhang et al. 2011] Yes No Yes No Similarity of phase congruency and gradients
VSI [Zhang et al. 2014] Yes No Yes No Saliency + SSIM
LPIPS [Zhang et al. 2018] Yes No Yes No Di�erence of CNN features
FLIP [Andersson et al. 2020] Yes No Yes No CSF + Color di�erence + edge detectors
IQT [Cheon et al. 2021] Yes No Yes No CNN features + transformer autoencoder

STRRED [Soundararajan and Bovik 2012] Yes Yes No No Entropy di�erences in wavelet subbands
VMAF [Li et al. 2016a] Yes Yes No No Features + SVR
FUNQUE [Venkataramanan et al. 2022] Yes Yes No No Wavelet decomposition + features + SVR

HDR-VDP-3 [Mantiuk et al. 2023] Yes No No Yes Psychophysical model
FovVideoVDP [Mantiuk et al. 2021] Yes Yes No Yes Psychophysical model
ColorVideoVDP (ours) Yes Yes Yes Yes Psychophysical model

transforms used in video compression. Those metrics, however, do
not account for the geometry of a display (e.g. resolution, size, view-
ing distance), nor for its photometry (e.g. peak brightness, black
level). The latter shortcoming can be addressed by employing the
Perceptually Uniform (PU) transform [Mantiuk and Azimi 2021],
which also extends these metrics to operate on high-dynamic-range
images.
Zhang et al. [2018] observed that the activation layers of many

convolution neural networks (CNNs) provide features that are well
correlated with human judgments of image similarity. Their pro-
posed metric, LPIPS, became very popular in computer vision, de-
spite its underwhelming performance on image quality datasets
[Ding et al. 2021]. Prashnani et al. [2018] proposed training a CNN
on triplets of patches, two distorted and one reference, with supervi-
sion based on the Bradley-Terry pairwise comparison model. Akin
to LPIPS training, their PieAPP metric was trained on a large dataset
of patches with pairwise comparison labels. Cheon et al. [2021]
combined CNN features with transformer-based embeddings to
regress quality scores. Their IQT metric was ranked �rst among 13
participants in the NTIRE 2021 perceptual image quality assessment
challenge.
Image metrics are not meant to predict video quality, however,

they can perform surprisingly well in this task. The typical route
to employ image metrics to video is to average predictions across
individual frames.

Video quality. Video quality metrics combine both spatial and
temporal features. STRRED [Soundararajan and Bovik 2012] com-
pares the per-frame entropy of �tted local distributions of wavelet
coe�cients. This entropy is then weighted by local spatial and
temporal variance. VMAF [Li et al. 2016a] combines two spatial fea-
tures (VIF and DLM) with a mean absolute di�erence of consecutive
frames, and then maps those into quality scores using a support

vector regression (SVR). The success of VMAF motivated a series
of fusion-based metrics, such as FUNQUE [Venkataramanan et al.
2022] and 3C-FUNQUE+ [Venkataramanan et al. 2023], which use
wavelet transform modulated by the contrast sensitivity function
as input to several individual predictors, which similarly as VMAF,
are combined using SVR. However, all those metrics use simpli�ed
models of contrast sensitivity, which ignore the e�ect of luminance
and do not model spatiotemporal vision. For example, the temporal
processing of all of these state-of-the-art metrics considers just two
consecutive frames, and it does not model the temporal characteris-
tics of human vision. Our metric explicitly models achromatic and
chromatic visual channels to address this shortcoming.

Visual Di�erence Predictors. The visual di�erence predictors (VDPs),
such as DCTune [Watson 1993], VDP [Daly 1993], HDR-VDP-2 [Man-
tiuk et al. 2011] and HDR-VDP-3 [Mantiuk et al. 2023], explicitly
model aspects of low-level human vision, such as contrast sensitivity
and masking. The advantage of this approach is that these metrics
are built on sound psychophysical models and generalize more eas-
ily to unseen conditions, such as displays of varying size, resolution,
or peak luminance. While it is tempting to assume that this type of
general modeling would perform worse or be more computationally
expensive than metrics relying on hand-crafted features, as we will
demonstrate in Sec. 5, this is not the case. Modern VDPs perform on
par or better than metrics with hand-crafted features. When they
are optimized to run on a GPU, they are as fast as feature-based
metrics.
Our ColorVideoVDP metric takes inspiration from and is based

on similar building blocks as FovVideoVDP [Mantiuk et al. 2021] but
with several important improvements. First, ColorVideoVDP models
the visibility of chromatic (color) di�erences by employing a novel
spatiotemporal-chromatic contrast sensitivity function (castleCSF)
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[Ashraf et al. 2024]. This involves modeling both spatial and tem-
poral chromatic vision. Second, we account for supra-threshold
color di�erences so that the perceived magnitude of achromatic
and chromatic contrast is properly mapped to the metric response.
Third, while FovVideoVDP is insensitive to low-frequency distor-
tions (below 1 cpd2), ColorVideoVDP correctly accounts for those.
This lets us account for low-frequency display artifacts (e.g., waveg-
uide non-uniformity) and use ColorVideoVDP as a di�erentiable
loss function, which can propagate both low and high-frequency
di�erences. Fourth, ColorVideoVDP models within-channel and
cross-channel masking, where each of the four modeled channels
(two achromatic and two chromatic) can be masked by the combi-
nation of contrast in the other channels. Finally, ColorVideoVDP is
trained and tested on multiple image and video datasets, both SDR
and HDR, including a novel dataset of display artifacts described in
Sec. 4. Unlike FovVideoVDP, we do not model foveated vision due
to the increased overhead of modeling interactions between eccen-
tricity and color. While modeling foveated vision is necessary in
some speci�c usage scenarios, such as foveated rendering, it is less
useful in most general-use cases, such as video streaming, display
engineering, and non-foveated algorithm design.

3 COLOR VIDEO VISUAL DIFFERENCE PREDICTOR

Our goal is to create an image and video quality metric that accounts
for color and spatiotemporal perception and has sound psychophys-
ical foundations. The metric should rely on psychophysical models
as they can help to extrapolate predictions to unseen conditions,
such as di�erent frame rates, spatial resolution, or absolute lumi-
nance levels. The metric should be able to predict a single-valued
quality correlate that can help to both evaluate and optimize visual
results. It should also produce spatial and temporal di�erence maps,
which provide the visual explanation for the predicted quality cor-
relate. Finally, the metric should be e�cient to compute and fully
di�erentiable so that it could be used as an optimization criterion.
The processing diagram of the metric is shown in Fig. 2. First,

the test and reference content, typically stored as video or images,
is transformed into colorimetric quantities of light emitted from a
given display. Then, the frames are decomposed into color opponent
channels, temporal channels and spatial frequency bands, mimicking
the mechanisms of the visual system. The core component of the
metric is the model of contrast sensitivity and masking, which
computes a per-band visual di�erence between test and reference
content. It relies on the near-threshold and supra-threshold models
of contrast detection and discrimination. In the last two steps, the
visual di�erences are pooled across the bands and channels and then
the resulting visual di�erence value is regressed into an interpretable
Just-Objectionable-Di�erence (JOD) scale. The following sections
explain each step in detail.

3.1 Display model

The display model has two purposes: to convert spatial pixel coor-
dinates to perceptually meaningful units of visual degrees, and to
model the display’s photometric response in a given environment.
We assume a �at panel display spanning a limited �eld of view,

2cpd — cycles per visual degree — the measure of spatial frequency.

so we can approximate the conversion from pixel coordinates to
degrees in the visual �eld with a single constant:

=ppd =

c

360 arctan
(
0.53width
Aw 3v

) , (1)

where =ppd is the e�ective display resolutions in pixels per degree,
3width is the width of the screen, Aw is the screen’s horizontal resolu-
tion in pixels and 3v is the viewing distance. The display width and
viewing distance must be provided in the same units (e.g. meters).
We rely on =ppd later when expressing the spatial frequencies in
cycles per visual degree. It should be noted that the above approx-
imation is inaccurate for near-eye displays spanning a large �eld
of view, and accurate geometric mapping should be used for these
types of displays (see Equation 2 in [Mantiuk et al. 2021]).

The second responsibility of the display model is to convert pixel
values represented in one of the standard color spaces into colori-
metric quantities of light emitted from a given display. It accounts
for the display’s peak luminance, color gamut, its black level, and
ambient light re�ected from the display. The display-encoded pixel
values, �de,2 for color channel 2 (2 ∈ {R,G, B}), are transformed into
absolute linear colorimetric values:

�lin,2 (x) = min
{
(!peak − !black) � (�de,2 (x)) + !black, !peak

}
+ !re�,

(2)
where !peak is the peak luminance of the display and !black is its
black level. x is used to denote spatial pixel coordinates throughout
the paper. � (·) is the electro-optical transfer function (EOTF) of
particular pixel coding, for example, the sRGB non-linearity (IEC
61966-2-1:1999) for standard dynamic range content and PQ (Per-
ceptual Quantizer, SMPTE ST 2084) for high dynamic range content.
Because the PQ EOTF transforms display-encoded values into abso-
lute linear values (between 0.005 and 10 000), we do not multiply
the EOTF by (!peak − !black) if PQ is used. We currently do not
model tone-mapping, which is present in most displays with HDR
capabilities, because it varies from one display to another. Instead,
we clip the values at !peak.

The amount of light re�ected from the display, !re�, is computed
as:

!re� = :re�
�amb

c
, (3)

where :re� is the re�ectivity of the screen (typically 0.01–0.05 for
glossy screens, 0.005–0.015 for matt screens) and �amb is the ambient
illumination in lux units. As the last step, the linear color values
are converted into device-independent CIE XYZ color space. This
conversion is standardized for popular color spaces, such as BT.709
or BT.2020, or alternatively can be computed for the primaries of a
display.

3.2 Opponent color channels

The sensitivity to chromatic changes is typically explained for
color modulations represented in a space that separates three car-
dinal mechanisms of human color vision: achromatic channel and
two chromatic channels, the latter commonly known as red-green
and violet-yellow [Stockman and Brainard 2010]. Here, we use
the same color space as our contrast sensitivity function — the
Derrington-Krauskopf-Lennie (DKL) colorspace [Derrington et al.
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Fig. 2. Processing stages of ColorVideoVDP. Test and reference images are first processed by the same pipeline: the display model maps pixel values to

linear color (CIE 1931 XYZ color space), linear color is transformed to the opponent color space (DKL), the achromatic channel is decomposed into sustained

(continuous lines) and transient (dashed lines) temporal channels, then each of those is decomposed into multiple spatial bands (Laplacian pyramid). The

decomposed video/image goes into the contrast sensitivity and masking models, explained in more detail in Figure 6. The result of the masking model is

pooled across all spatial bands, temporal and color channels, and finally regressed to a JOD score.
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Fig. 3. The frequency characteristic of the four temporal channels used in

ColorVideoVDP.

1984]. DKL was selected for castleCSF as this color space is linearly
related to cone responses, is well established in vision science, and
much of the chromatic contrast detection data was collected in
that space. The DKL space coordinates can be computed from the
device-independent XYZ (provided by the display model) as:



�ach (x)

�rg (x)

�vy (x)


=



1 1 0

1 −
!0
"0

0

−1 −1
!0+"0
(0



"XYZ→LMS



�X (x)

�Y (x)

�Z (x)


, (4)

where"XYZ→LMS is a matrix converting CIE 1931 XYZ coordinates
into the LMS cone responses3:

"XYZ→LMS =



0.187596 0.585169 −0.026384

−0.133397 0.405506 0.034502

0.000244 −0.000543 0.019407


. (5)

!0, "0 and (0 specify chromaticity of the adapting color. Here,
we assume adaptation to a D65 background: CIE 1931 (G,~) =

(0.3127, 0.3290), (!0, "0, (0) = (0.7399, 0.3201, 0.0208).

3.3 Temporal channels

Psychophysical masking experiments showed evidence that the in-
formation is processed in the visual system by separate temporal

3Our CSF is de�ned using CIE 2006 color matching functions while most of the content
still relies on the CIE 1931 color matching functions. The matrix was derived to convert
between the two using the spectral emission data for an LCD with an LED backlight.

channels. Two or three channels have been identi�ed for the achro-
matic mechanism [Anderson and Burr 1985; Hess and Snowden
1992], and one or two channels for the chromatic mechanisms [Cass
et al. 2009; McKeefry et al. 2001]. Here, we assume two temporal
achromatic channels, as the third channel was observed only for low
frequencies [Hess and Snowden 1992]. We assume just one temporal
channel for the red-green and violet-yellow cardinal directions as
the evidence for the second channel shows that it has a less promi-
nent role [Cass et al. 2009]. Modeling fewer temporal channels also
has the bene�t of lower memory and computational cost.
The temporal channels of ColorVideoVDP are directly de�ned

by castleCSF [Ashraf et al. 2024] (see next section). The frequency
tuning of the channels can be seen in Fig. 3. To �nd digital �lters,
we perform a real-valued (symmetric) fast Fourier transform on the
frequency space �lters. We found that a �lter support of 250ms
is su�cient to capture �lter characteristics. Finally, the two achro-
matic and two chromatic channels are convolved with the digital
�lters along the time dimension. This splits the achromatic signal
into sustained (low-pass) and transient (band-pass) channels. The
chromatic channels are low-pass �ltered and become insensitive to
high-frequency chromatic �icker.

3.4 Contrast sensitivity

A contrast sensitivity function models our ability to detect patterns
of di�erent spatial and temporal frequency, size, and shown at dif-
ferent luminance levels. It is a cornerstone of ColorVideoVDP — it
de�nes the temporal and chromatic channels and enables modeling
of contrast masking, which is the key component of ourmetric. Since
there is no contrast sensitivity model that could explain sensitivity
to both chromatic modulations and di�erent temporal frequencies,
we have created our own model, named castleCSF. This CSF models
color, area, spatial and temporal frequencies, luminance, and eccen-
tricity. Because of its complexity, castleCSF is explained in detail in
a separate paper [Ashraf et al. 2024]. Here, we summarize its key
components.
castleCSF decomposes contrast into three cardinal directions of

the DKL color space, the same as those we used to separate achro-
matic and chromatic channels in Sec. 3.2. The achromatic direction
is split into sustained and transient channels, again the same as used
by our metric. That lets us directly map the mechanism modeled in
castleCSF to the channels in ColorVideoVDP.
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Fig. 4. castleCSF contrast sensitivity function for the four channels of ColorVideoVDP. The sensitivity is expressed in the cone-contrast units [Wuerger et al.

2020]. Note that the achromatic transient and chromatic RG channels appear to have higher sensitivity than the achromatic sustained channel. This is due to

the scaling used in the DKL color space [Derrington et al. 1984] to represent chromatic contrast units. In practice, the transient and two chromatic channels

are much less sensitive to pa�erns found in complex images.

To �nd the detection threshold, castleCSF modulates (multiplies)
the contrast associated with each mechanism by the sensitivity of
that mechanism and then pools those to form the contrast energy.
The detection threshold is assumed to be the contrast at which the
energy is equal to 1. The sensitivity of each mechanism is modeled
as a function of spatial and temporal frequency, area, background
luminance and eccentricity, in a similar manner as for stelaCSF
[Mantiuk et al. 2022]. castleCSF was optimized to predict the data
from 19 contrast sensitivity datasets (10 achromatic, 6 chromatic
and 3 mixed).
castleCSF predicts sensitivity as the inverse of cone contrast

[Wuerger et al. 2020] while ColorVideoVDP operates on a contrast
in the DKL color space. To obtain the sensitivity units consistent
with our contrast de�nition, we use the contrast transformation
procedure from [Kim et al. 2021] and explained in more detail in the
supplementary. Because we do not account for foveated viewing in
ColorVideoVDP, we assume that the eccentricity is 0. We found in
ablations that the metric performs the best when the area is set to
0 = c 1.52 deg2. The resulting sensitivity functions are plotted in
Fig. 4.

3.5 Multi-scale decomposition and color contrast

In addition to the temporally-tuned channels, psychophysical [Foley
1994; Stromeyer and Julesz 1972] and neuropsychological [De Valois
et al. 1982] evidence proves the existence of channels that are tuned
to the bands of spatial frequencies and orientations. We must ac-
count for such channels to model visual masking, as explained in the
next section. Following FovVideoVDP [Mantiuk et al. 2021], we use
the Laplacian pyramid [Burt and Adelson 1983] to decompose each
of the four temporal channels (Y-sustained, Y-transient, RG, YV) into
spatial-frequency selective bands. However, unlike FovVideoVDP,
we consider low frequencies, including the base band (the coarsest
low-pass band in the Laplacian pyramid). This change is due to
�nding that many display distortions can only be detected in the
low-spatial frequency bands (see Fig. 1). We select the height of
the pyramid so that the lowest peak frequency of the band-pass
�lter is greater than 0.2 cpd. Similarly as in FovVideoVDP, we do not

consider orientation-selective channels because of the substantial
computational overhead of those.

The contrast at the spatial frequency band 1, channel 2 and frame
5 is computed as:

�1,2,5 (x) =
L1,2,5 (x)

⇑ G1+1,S,5 (x)
=

L1,2,5 (x)

!bkg,1,5 (x)
, (6)

where L1,2,5 represents the 1-th band of the Laplacian pyramid,
G1+1,S,5 is the (1 + 1) band of the Gaussian pyramid and ⇑ is the
upsampling (expand) operator. The Laplacian pyramid is created for
each frame of each channel, obtained by temporal �ltering (Sec. 3.3).
The Laplacian pyramid coe�cients are divided by the values from
the Gaussian pyramid at the band 1 + 1 (one lever coarser) of the
sustained luminance channel (S). Note that the upsampled version
of the Gaussian pyramid band 1 + 1 is a by-product of computing
a Laplacian pyramid so can be obtained at no computational cost.
This formulation is similar to that of local band-limited contrast
[Peli 1990], but here we extend it to both achromatic and chromatic
channels. These contrast values are computed separately for the test
and reference frames. The values in all bands except the low-pass
(base-band) and the high-pass bands are multiplied by 2 to account
for the reduction in amplitude [Mantiuk et al. 2021, Fig. 5].

3.6 Cross-channel contrast masking

The model of cross-channel contrast masking transforms local phys-
ical contrast di�erences between the test and reference frames into
perceived di�erences — di�erences that are scaled by the local con-
trast visibility. It accounts for both contrast sensitivity, such as lower
sensitivity to high spatial and temporal frequencies, and contrast
masking. Masking accounts for di�erences being less likely to be
noticed in heavily textured areas. The cross-channel component
models that a strong contrast in one channel can reduce the visibility
of contrast in another channel [Switkes et al. 1988], for example,
contrast in the chromatic channels can mask contrast in achro-
matic channels. Finally, the masking model also needs to account
for suprathreshold contrast perception — must match the perceived
magnitude of contrast (changes) across luminance, frequencies, and
the directions of color modulation.
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Reference image

Test image

Visual di�erence map — no masking

Visual di�erence map — with masking

Fig. 5. Example of contrast masking. A sinusoidal grating of 4 cpd (when

seen printed from 40 cm) was added to a reference image (top row) to obtain

a distorted image (second row). The image was split into three parts and

the grating was modulated along achromatic, red-green, and yellow-violet

directions in each respective part. The third row shows the visual di�erence

map generated by ColorVideoVDP without masking but still using the

CSF. The map over-predicts the visibility in textured areas. The bo�om row

shows the prediction with the masking model. It is worth noting: although

all three color directions are equally visible in the gray bar at the bo�om

of the image (where there is li�le masking), the red-green pa�ern is more

visible in the textured area because it is weakly masked by the achromatic

channel. ColorVideoVDP correctly predicts this phenomenon.
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Fig. 6. Our masking model. Here, the resulting visual di�erence for the

sustained channel, �1,S , is visualized for a single spatial frequency band

(the frame index 5 is omi�ed for clarity). Each band response is multiplied

by the contrast sensitivity function ("S" boxes). The CSF-normalized band-

responses are used to calculate the di�erence between test and reference

frames. The masking signal is computed by first finding mutual masking

between both channels ("MM" blocks), applying a spatial pooling in the

local neighborhood of each pixel ("SP" blocks) and then combining the

masking signal from multiple channels (cross-channel masking). The visual

per-channel and per-band di�erence between the test and reference is

calculated as the ratio of excitatory di�erence between the test and reference

images, and the inhibitory masking signal, as shown in the equation in the

box and in Eq. (9).

Contrast masking is the critical component of the metric that
determines its performance, as we show later in the ablation studies
(Sec. 5.2). To make the optimal choice, we analyzed and compared
six models: two contrast encodings (additive and multiplicative)
combinedwith threemaskingmodels.We tested themutual masking
model from the original VDP [Daly 1993], the contrast transducer
proposed byWatson and Solomon [1997], and the contrast similarity
formula used in SSIM and many other metrics. To keep this text
concise, we describe below only the mutual masking model, which
performed the best in our tests. We encourage the reader to refer
to the supplementary materials with the detailed description and
analysis of all the models.
Contrast masking shows di�erent characteristics for di�erent

spatial frequency bands and color channels. However, it was shown
that for both luminance [Daly 1993] and chromatic channels [Cass
et al. 2009; Switkes et al. 1988] masking characteristics can be uni�ed
if both the test and masker contrast are multiplied by the contrast
sensitivity function (1,2 (x):

�′
1,2,5

(x) = �1,2,5 (x) (1,2,5 (x) . (7)

In our case, contrast sensitivity is provided by the castleCSF model:

(1,2,5 (x) = Bcorr Bch,2 (2 (d1 , l2 , !
ref
bkg,1,5 (x)) , (8)

where d1 is the spatial frequency of band 1 in cycles per degree,
l2 is the peak temporal frequency of channel 2 , and !ref

bkg
(x) is the

local background luminance for the reference image (see Eq. (6)).
Bcorr is a trainable parameter adjusting the absolute sensitivity of
the model (all trained parameters can be found in Table 3). The
additional bene�t of the multiplicative contrast encoding from
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Fig. 7. The visual di�erence for a pair of test and reference contrast values

(normalized by the CSF), as predicted by the masking model (see Eq. (9)
and Eq. (13)). The visual di�erence � is zero when the test and reference

contrasts are identical and increases as they start to di�er. However, there

is no increase for small contrast values due to contrast sensitivity.
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Fig. 8. Contrast discrimination functions for our masking model for the

sustained and transient channels. The value on the y-axis denotes the

di�erence in the normalized contrast (Δ� =

���′ test − �′ ref
��) required to

obtain the response � = 1 (see Eq. (9)).

Eq. (7) above is that it helps in matching the perceived magni-
tude of suprathreshold contrast across color modulation directions
[Switkes and Crognale 1999], luminance [Peli 1995] and to a lesser
extent across spatial frequencies (see the full analysis in the sup-
plementary). However, we found that CSF alone is too inaccurate
to match suprathreshold contrast across color modulation direc-
tions, and we had to introduce the color matching correction factor
Bch,2 based on the contrast matching data of Switkes and Crognale
[1999]: Bch,2 =

[
1 1 1.7 0.237

]
corresponding to achromatic

sustained, transient, red-green and yellow-violet channels (see the
full explanation in the supplementary).

Once the encoded contrast �′ is calculated, the visual di�erence
between the bands is calculated as:

�1,2,5 (x) =

����′ test
1,2,5

(x) −�′ ref
1,2,5

(x)

���
?

1 +�mask
1,2,5

(x)
, (9)

where ? is a parameter of the model. The masking signal�mask
1,2

com-

bines local contrast across test and reference images, local spatial

neighborhood, and channels. First, similarly as in [Daly 1993, p.192],
we calculate the mutual masking of test and reference bands (see
also Fig. 6):

�mm
1,2,5

(x) = min
{����′ test

1,2,5
(x)

��� ,
����′,ref
1,2,5

(x)

���
}
. (10)

Then, the mutual masking signal is pooled in a small local neighbor-
hood by convolving with a Gaussian kernel 6fsp , and is combined
across channels, accounting for the cross-channel masking:

�mask
1,2,5

(x) =
∑

8

:8,2 ((�
mm
1,8,5

)@2 ∗ 6fsp ) (x) . (11)

where :8,2 is the cross-channel masking coe�cient, describing the
contribution of channel 8 to the masking signal of channel 2 . The
weights for the trained model are shown in Fig. 9. The exponents @2
are model parameters set separately for each channel (two achro-
matic and two chromatic channels). One interpretation of Eq. (9) is
that the division by the absolute amplitude of the neighbors reduces
redundancy in natural images since neighboring pixels are highly
correlated [Laparra et al. 2016]. Such normalization was shown
to provide encoding that better correlates with our perception of
di�erences.
The (low-pass) baseband of the Laplacian pyramid cannot be

used to calculate contrast, as done in Eq. (6). Instead, the di�erences
in the baseband are computed directly on the Gaussian pyramid
coe�cients, which are multiplied by the sensitivity:

��,2,5 (x) = :B,2

���Gtest
�,2,5

(x) − Gref
�,2,5

(x)

��� (�,2,5 (x) , (12)

where � is the index of the baseband. Because baseband di�erences
are in di�erent units than those in other bands, we need to introduce
a trainable scaling factor :B,2 , which varies across the channels.
One limitation of the original mutual masking model is that it

results in excessively large contrast values when the sensitivity is
high, and there is no masking signal (refer to the supplementary).
We found it essential to restrict the maximum contrast in each band
so that a few very large di�erences do not have an overwhelming im-
pact on the predicted quality. We achieve that with a soft-clamping
function

�̂�,2,5 (x) =
:C ��,2,5 (x)

:C + ��,2,5 (x)
, (13)

where :C is a trainable parameter. The equation accounts for the
limited dynamic range of the retinal cells, which cannot encode
large contrast values.

The shape of the masking function for the sustained and transient
achromatic channels is plotted in Fig. 7. Another visualization of the
masking model is shown Fig. 8 as a discrimination vs. masking plot.
The plot shows that, as the mutual masking contrast�mm increases,
a higher di�erence between the test and reference bands is needed
to trigger the same response (�1,2,5 (x) = 1 in this example). Such
an increase is more gradual for the sustained achromatic channel
and chromatic channels and more abrupt for the transient channel.
The �ndings of Switkes et al. [1988] indicate that color can robustly
mask luminance patterns, while luminance does not mask color but
instead facilitates the detection of color patterns. Remarkably, the
cross-channel masking weights obtained in metric �tting (Sec. 5)
and shown in Fig. 9 con�rm these �ndings — weights are very small
in the 2nd and 3rd column of the top row, showing little in�uence of
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Fig. 9. Weights of the cross-channel masking model — :8,2 . The values are

normalized to one in each column to be�er show the contribution of each

channel. The absolute values can be obtained by multiplying the cell value

by a constant shown in the parenthesis at the bo�om of each column. The

matrix shows that both chromatic channels strongly mask the sustained

achromatic channel (1st column), but the achromatic channels do not mask

chromatic channels.

luminance (achromatic sustained channel) on masking of the color
channels. Note that our mutual masking model cannot account for
facilitation. An example of this e�ect is shown in Fig. 5, in which
luminance contrast does not mask red-green chromatic contrast.

3.7 Pooling

Once the di�erences between the bands, �1,2,5 , are computed, they
need to be pooled into a single quality correlate. We follow a similar
strategy as done in FovVideoVDP and pool the di�erences across
all the spatial dimensions (x) in each band, across spatial frequency
bands (1), across the channels (2), and �nally across all the frames
(5 ):

�pooled =

1

�
1/V5


















F2









1

#
1/VG
1



�̂1,2,5 (x)



VG ,x








V1 ,1









V2 ,2









V5 ,5

,

(14)
where ∥·∥?,E is a ?-norm over the variable E :

∥ 5 (E)∥?,E =

(
∑

E

|5 (E) |?

)1/?
. (15)

F2 is the weight associated with each channel. The main advan-
tage of pooling di�erences �rst across pixels is that we avoid the
expensive step of the synthesis of the distortion map from the mul-
tiple levels of the Laplacian pyramid. It should be noted that the
di�erences across pixels are normalized by the number of pixels
in each band, #1 — we do not want the bands represented with
more pixels in the pyramid to contribute more to image quality. The
pooling exponents VG and V1 were optimized in FovVideoVDP, but
we found that such an optimization is unstable (because of explod-
ing gradients) and unnecessary. Instead, we set VG = 2 and V5 = 2

to represent the energy summation across the spatial dimensions
and frames [Watson et al. 1983]. V1 and V2 are set to 4, which is
representative of the summation across channels [Quick et al. 1978].

3 4 5 6 7 8 9 10 11 12

JOD score

0

0.2

0.4

P
ro

b
a

b
ili

ty

q
1

q
2(a)

q
2
-q

1

75%
25%

(b)

-2 -1 0 1 2 3 4 5 6

Difference in JOD score

0

0.2

0.4

P
ro

b
a

b
ili

ty

Fig. 10. Interpretation of the JOD scores. (a) JOD quality scores are normally

distributed random variables — the reported JOD value is the mean of the

distribution, which models that a certain portion of the population will

rate the quality as higher or lower than the reported mean value. (b) The

standard deviation of the distribution is selected in such a way that when the

di�erence between the means is 1 JOD (@2 − @1 = 1), 75% of the population

will select the condition with the higher JOD value as be�er. This allows us

to interpret quality di�erences expressed in JOD units.

Using exponents greater than 1 roughly corresponds to a "winner-
take-all" strategy, in which the strongest visual di�erences have the
highest impact on the pooled value.

3.8 JOD regression

The visual di�erence correlate is regressed into interpretable units
of just-objectionable-di�erences (JODs), using the same formula as
FovVideoVDP:

&JOD = 10 − UJOD (�pooled)
VJOD , (16)

where UJOD and VJOD are tuned parameters. Here, 10 JOD represents
the highest quality — when test and reference images are identical.
The JOD units are scaled in terms of inter-observer variance — the
drop in quality of 1 JOD means that 75% of observers will notice
such a loss of quality in a pairwise comparison experiment. This
concept is illustrated in Fig. 10.

3.9 Image quality

When predicting the quality of images, we use the same processing
stages as for video but with two changes. First, we skip temporal
decomposition and do not create the achromatic transient channel
— all computations are performed on three channels. Second, we
replace the temporal pooling from Eq. (14) with a single, trainable
constant :I:

�
image
pooled

= :I









F2









1

#
1/VG
1



�̂1,2,5 (x)



VG ,x








V1 ,1









V2 ,2

. (17)

:I could be interpreted as a �xation time. It lets us unify the quality
between images and video.

3.10 Visualization — heatmaps and distograms

ColorVideoVDP o�ers two types of visualization that help to inter-
pret the quality score. We can overlay a heatmap with per-pixel
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Fig. 11. Examples of distogram visualization of artifacts. The values on the

y-axis denote spatial frequency in cpd. The higher (more yellowish) values

denote stronger distortion. The low-frequency waveguide nonuniformity

(le�) is shown to be visible mostly in the base band (BB) and low frequency

bands of both achromatic (A-sust) and chromatic (RG, YV) channels. The

artifacts shows also as low-frequency flicker in the achromatic transient

channel (A-trans). The (per-pixel) light source nonuniformity causes high-

frequency shimmer, which is visible as high frequency distortions in the

distogram on the right.

distortion intensity over the grayscale version of distorted content,
as shown in Fig. 1. To obtain such a per-pixel distortion map, we
pool the distortions across the channels

�1 (x) =


F2 �̂1,2,5 (x)




V2 ,2

(18)

and perform the Laplacian pyramid synthesis step to obtain the
map with visual di�erence correlates per pixel and per frame. Those
can then be transformed into the JOD units using Eq. (16). It must
be noted that the metric has not been trained to produce accurate
heatmaps as there are no datasets that could be used for that purpose
(such di�erence maps have been collected for images [Ye et al. 2019]
but not for video). The heatmaps are meant to help interpret the
single-valued JOD quality predictions.

Another visualization, which we name a distogram, lets us present
video distortions within each channel and spatial frequency band,
all in a single diagram. Two examples for two distortions from
the XR-DAVID dataset are shown in Fig. 11. The examples show
that depending on the characteristics of the distortion, the artifacts
will show in either low- or high-frequency bands, in achromatic or
chromatic channels. This visualization decomposes the distortions
into their frequency components, visual channels, and their time
series, which helps interpret and explain how those distortions
contributed to the �nal JOD score.

3.11 Implementation details

ColorVideoVDP is implemented in PyTorch and optimized for fast
execution on a GPU. To take advantage of the massive parallelism
o�ered by the GPU, we load as many video frames as we can process
into GPU memory. Then, the operations are executed in parallel on

Fig. 12. Physical hardware setup for the XR-DAVID data collection. Partici-

pants used a chinrest to fix their distance from the display at 0.73m (two

display heights) and used a 3-key keyboard to record their choices.

a set of test and reference frames, all four channels, and all pixels
(all stored in a single tensor); only the pyramid bands are processed
sequentially as each one has a di�erent resolution. To avoid the
computational overhead of castleCSF, the function is precomputed
and stored as a set of 2D look-up-tables (LUTs) of luminance and
spatial frequency, with a separate LUT for each channel (see Fig. 4).
Thanks to these techniques, ColorVideoVDP has processing times
comparable to the state-of-the-art metrics, while relying on a much
more complex visual model. The timings can be found in the sup-
plementary document. ColorVideoVDP is also fully di�erentiable,
which lets us use it as an objective function in optimization, or
calibrate its parameters, as explained in Sec. 5.

4 XR DISPLAY ARTIFACT VIDEO DATASET (XR-DAVID)

Calibrating a metric to real subjective data is an extremely important
step. Notably, the datasets used for calibration must be representa-
tive of the types of artifacts that users will be applying the metric
to. This can be challenging in cases where there is little prior art,
for instance, while traditional artifacts like image and video com-
pression are relatively well-studied, artifacts stemming from novel
XR display architectures like waveguide nonuniformity are not.

To address this gap in quantitative data for XR distortions, we
enumerated the most relevant artifacts for our study. We placed
special emphasis on distortions that have a color or temporal com-
ponent, as these are not well served by existing metrics and are
the focus of ColorVideoVDP. We used this dataset of distortions to
conduct a large-scale subjective study, collecting JOD quality scores
in a new XR-DAVID video quality dataset4, which is suitable for
calibration of ColorVideoVDP.

4.1 Experimental setup

Physical Setting. We selected an Eizo CG3146 professional refer-
ence monitor5 as our test vehicle. This 31.1" diagonal display has a
resolution of 4096 × 2160, and a contrast of 1,000,000:1 claimed by
the manufacturer. The monitor was set to a maximum luminance

4The XR-DAVID dataset can be downloaded from https://doi.org/10.17863/CAM.108210
5Eizo CG3146, see https://www.eizo.com/products/coloredge/cg3146/ for detail
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of 300 cd/m2, with sRGB EOTF, P3 color primaries, and a 60Hz re-
fresh rate. This display has a built-in colorimeter, which allowed
for high-precision daily calibration to ensure accuracy as the study
progressed. The distance of the observer was controlled using a chin
rest, which was placed so that the e�ective resolution of the display
was 77 pixels per visual degree (see Fig. 12).

Participants. We conducted the study using paid external par-
ticipants. After two pilots (N=5 each), 77 naïve users took part in
1 hour long sessions of our main study, which included training,
data gathering, and a short break half-way through. All participants
signed informed consent forms, and the study was approved by
an external ethics committee. Participants were screened via an
Ishihara color test [Hardy et al. 1945] to ensure normal color vision.

Reference videos. We selected 14 high-quality videos following
practical considerations. Selected thumbnails of scenes used in the
study are shown in the supplementary document. Our references
included videos spanning real, rendered, and productivity content,
which are typical for AR/VR applications.

Experimental procedure. Participants performed a side-by-side
pairwise comparison task answering which of the two versions
of a video was less distorted. This method was preferred to alter-
natives (e.g., direct ratings on the mean-opinion-score scale) as
pairwise comparisons have been shown to produce more accurate
results [Zerman et al. 2018] by simplifying the task in each trial. Ac-
tive sampling using the ASAP method [Mikhailiuk et al. 2021] was
used to optimize information gain from each comparison, making
it possible to explore a large number of artifacts without prohibi-
tively increasing the number of pairwise comparisons. We allowed
comparisons across di�erent distortion types and levels but not
across di�erent video contents. A training session preceded the
main experiment. In that session, the participants compared each
reference video to its distorted version. A di�erent distortion type
was used in each trial. The training session was meant to familiarize
the participants with the reference content and distortions. The
results of the main experiment were scaled to a uni�ed perceptual
scale in just-objectionable-di�erence units (JODs) using the pwcmp

software suite [Perez-Ortiz et al. 2019].

4.2 Distortions

Each reference video was distorted by one of 8 artifacts, each of
which was applied at one of 3 di�erent strengths. All 8 distortions
at level 3 (most distorted) are illustrated in Figure 25. We discuss
each artifact in detail below.

Spatiotemporal dithering. Display systems could be constrained
such that bit depths of color channels are reduced. In such scenar-
ios, dithering could be performed both spatially and temporally
to improve image quality. This artifact simulates blue noise mask
dithering per color channel and per frame for a given bit depth. The
bit depths were 6, 5, and 4 for artifact levels 1, 2, and 3, respectively.

Light source nonuniformity (LSNU). Display light sources like
`OLED and `LED tend to exhibit high-frequency spatial nonuni-
formity, as each pixel consists of a separate light source module,
which may vary in its light output. This artifact was simulated by
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Fig. 13. MTF Curves corresponding to the Blur artifact at level 1, 2, and 3.

assuming di�erent levels of variations in pixel intensities for each
color channel, resulting in spatial and color artifacts. Each pixel
intensity was randomly modulated per color channel by up to 12%,
16%, and 18% (values corresponding to twice the standard deviation,
and half the limit at which truncation occurred) using a Gaussian
distribution for artifact levels 1, 2, and 3, respectively. The mod-
ulation ratios were kept constant for each pixel across all frames.
Simulations were done in linear color space.

Blur (MTF degradation). Optical components such as lenses and
waveguides in AR and VR displays will degrade the system MTF,
resulting in blurry images. The artifact was simulated by applying a
representative point spread function (PSF) with various severities as
illustrated in Fig. 13. The same PSF was applied to all color channels.
In addition to varying PSFs, the lateral chromatic aberration was
simulated for artifact level 2 and 3 by shrinking the green channel
frame by two pixels.

Reduced contrast. It is often challenging to achieve good contrast
in optical see-through displays, particularly in bright environments.
As a �rst-order approximation, the artifact was simulated in linear
space such that contrast was reduced by increasing the minimum
value of input videos while maintaining the maximum value as is.
The contrast, de�ned as max/min, was reduced to 100:1, 50:1, and
30:1 for artifact levels 1, 2, and 3 respectively.

Waveguide nonuniformity (WGNU). AR displays with di�ractive
waveguides such as Microsoft Hololens, Magic Leap, and Snap Spec-
tacles [Ooi and Dingliana 2022] exhibit a characteristic spatially-
varying color nonuniformity. This nonuniformity is typically low-
frequency (less than 1 cycle per degree). In addition, it is heavily
dependent on pupil position within the eye box, which can vary
depending on the user’s �xation and eye movements. In particular,
if a user keeps their gaze �xed on an object in the AR content while
moving their head (engaged in what is typically termed a vestibulo-
ocular re�ex or VOR movement), they may notice its color shifting
as the position of the eye changes in relation to the waveguide.
In order to simulate the artifact, �rst, two nonuniformity patterns
were obtained from empirical waveguide transmission data. Second,
base variation maps were generated for the two patterns by clean-
ing noise in data and normalizing variations across channels. The
variations were also scaled such that they appear to have similar
magnitude across the two patterns. Finally, the amplitude of varia-
tions in the base map was varied to produce di�erent artifact levels.
The multipliers of the amplitude variations were 0.15, 0.3, and 0.4
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Frame at 0.00 sec Frame at 0.13 sec Frame at 0.21 sec Frame at 0.33 sec

Fig. 14. Examples of waveguide nonuniformity level 3 at di�erent frames,

using Business scene (cropped for be�er visibility). nonuniformity changes

from one pa�ern (le�) to another (right).

for artifact levels 1, 2, and 3 respectively. To simulate changes with
eye position, the nonuniformity pattern transitions from the �rst
base pattern to the second and back over the course of the video.
This transition is repeated 4 times for level 2, and 7 times for level 3.
Fig. 14 illustrates this temporally varying waveguide nonuniformity
artifact.

Dynamic correction error (DCE). In AR displays su�ering from
waveguide nonuniformity across di�erent exit pupil positions, as de-
scribed above, a dynamic correction algorithm can be implemented
to invert the distortion, reducing spatial nonuniformity. This al-
gorithm would be dependent on gaze location, thus relying on
estimated positions from eye trackers, which may be inaccurate.
Namely, inaccurate eye tracker readings will cause a wrong esti-
mate of the pupil position and temporal color artifacts (by either
not correcting perfectly for distortions or performing an imprecise
correction for a distortion pattern that is not present). To simulate
this, the precision error was randomly generated per frame from a
Gaussian distribution with a standard deviation of 0.27°, 0.39°, and
0.58° for artifact levels 1, 2, and 3 respectively. Simulated precision
errors are in alignment with existing VR headsets currently in the
market [Schuetz and Fiehler 2022].

Color fringes. An image’s color channels may be optically mis-
aligned due to various reasons such as mechanical shifts of optical
components in head-mounted displays, imperfect fabrication pro-
cesses, and thermal loads. As a �rst-order approximation, the artifact
was simulated by shifting each color channel by variable amounts
in 2D dimensions globally. For artifact level 1, the red channel frame
was shifted by [0, 0.5] pixels in [x,y] direction while the blue chan-
nel frame was shifted by [-0.5, 0] pixels. For artifact level 2, the red
channel frame was shifted by [1, 0.5] pixels while the blue chan-
nel frame was shifted by [0.5,-1] pixels. For artifact level 3, the red
channel frame was shifted by [1.5, 1] pixels while the blue channel
frame was shifted by [1, -1] pixels. The green channel frame was
kept unshifted for all the artifact levels.

Chroma subsampling. Chroma subsampling is a common tech-
nique used in video compression and signal transmission to re-
duce spatial resolutions of chroma channels while maintaining the
overall image quality. The technique takes advantage of a much-
reduced sensitivity of the visual system to high frequencies modu-
lated along chromatic (isoluminant) color directions. Spatial reso-
lutions of chroma channels were reduced by 1/4, 1/8, and 1/12 for
artifact level 1, 2, and 3 respectively.
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Fig. 15. The results of our display artifact study aggregated over all users

and scenes are shown.�ality scores are expressed in JODs, counting down

from 10 by convention. Values above the nominal reference are the result of

chance selection for artifacts that appear very subtle. Error bars represent

95% confidence intervals, obtained via bootstrapping.

Results. The results of our study are shown in Fig. 15 in aggregate
form over all scenes, and in full in Figure 2 in the supplementary.
Fig. 15 shows a good range of quality levels, with some distorted
videos almost indistinguishable from the reference. Such conditions
are useful to test whether a metric can disregard invisible distortions.
Having all artifacts graded on a single linear perceptual JOD scale
allows for direct comparison, and reveals interesting interactions
between individual videos and artifacts types. For instance, while
blur was graded as very disturbing across all forms of content,
waveguide nonuniformity was fairly visible for a web-browsing
scenario (’wiki’), but almost invisible in a dark scene (’bon�re’) (see
Figure 14 in the supplementary).

5 METRIC VALIDATION

A typical validation of a quality metric involves reporting correla-
tion values for each individual dataset. While we still report such
correlation values (in the supplementary HTML reports), here, we
undertake a more challenging task of predicting absolute quality
in JOD units, which could generalize across datasets scaled in such
units. Therefore, unlike most work in this area, we do not train
ColorVideoVDP individually for each dataset, but instead, we train
a single version of the metric on multiple datasets with the goal of
generalizing to new (unseen) data.

Datasets. We split the datasets into those used solely for test-
ing and those used for both training and testing. The �ve selected
datasets are listed in Table 2. The two datasets used for both training
and testing are XR-DAVID, explained in detail in Sec. 4, and UPIQ
[Mikhailiuk et al. 2022]. We selected the UPIQ dataset because it
contains a large collection of both SDR and HDR images (over 4000)
and is scaled in JOD units, similar to XR-DAVID. To test our metric
on unseen datasets (cross-dataset validation), we chose LIVE HDR
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Table 2. Datasets used for training and testing.

Dataset Used for Type Scenes Conditions Distortions

XR-DAVID Train & test SDR video 14 336 8 display artifacts
UPIQ [Mikhailiuk et al. 2022] Train & test SDR/HDR images 84 4159 34 distortion types
LIVE HDR [Shang et al. 2022] Test HDR video 21 210 H.265, bicubic upscaling

LIVE VQA [Seshadrinathan et al. 2010] Test HDR video 10 150 H.264, MPEG-2, transmission
KADID-10k [Lin et al. 2019] Test SDR images 81 10125 25 distortion types

because it is a modern dataset representative of video streaming
applications, KADID-10k because of its size (over 10k images), and
LIVE VQA because it is widely used to test video quality metrics.
Because KADID-10k and a part of UPIQ were collected in uncon-
trolled crowdsourcing experiments, we had to approximate the
display speci�cation and viewing conditions for those. We avoided
video datasets that were collected in uncontrolled conditions (e.g.,
KonViD-1k).

Training and testing sets. The two datasets used for both training
and testing were split into 7 parts: 5 parts were used for training,
and 2 parts were used for testing. Each scene is present in only one
part so that no scene is shared across the sets. 7 parts were selected
because 7 is the common denominator for the number of unique
scenes in XR-DAVID and LIVE HDR (see Table 2).

Training. Training a video quality metric is problematic as a very
large amount of data is used to predict a single quality value. For
example, 60 frames of 4K video requires the processing of almost
500 million pixels to infer just a single quality score. This makes
gradient computation (through backpropagation) infeasible because
of the memory requirements. Previous work dealt with this problem
in several ways: some metrics were designed to extract low dimen-
sional features from a video and then train a regression mapping
those features to quality scores [Li et al. 2016b]. This approach,
however, does not allow training or tuning the feature extraction
stage. Another group of methods operated on patches of limited
resolution (e.g. 64×64), assuming that the quality is the same across
the entire image [Prashnani et al. 2018]. This assumption, however,
can be easily proved wrong for localized distortions or for content in
which the e�ect of contrast masking varies across an image. Other
metrics used numerical gradient computation [Mantiuk et al. 2021],
which, however, becomes too expensive when optimizing a large
number of parameters.

We used a mixture of feature-based and end-to-end training. The
parameters that are introduced after pooling across all pixels in
a frame (such as JOD regression parameters) can be easily opti-
mized by pre-computing pooled values/features (



�̂1,2,5 (x)



VG ,x

from Eq. (14)) and then optimizing the stages of the metric that
follow the pooling stage. This approach not only signi�cantly ac-
celerates the training process due to the reduced memory footprint
of pooled features compared to full videos, but it also lets us op-
erate on much larger batches. We found that large batches, with
smoother gradients, are required for stable training of the pooling
and regression parameters.

Table 3. The trained parameters of the ColorVideoVDP. The parameters of

the cross-channel masking can be found in Fig. 9.

Model component Parameters
Contrast sensitivity (corr = 0.9683

Masking ? = 2.264, @2 = [1.303, 2.889, 3.681, 3.589],
:C = 366.6, fsp = 3,
:B,2 = [0.003633, 1.663, 4.119, 25.26]

Pooling :I = 0.5779,F2 = [1, 1, 1, 0.8081]

JOD regression UJOD = 0.04396, VJOD = 0.9302

For the end-to-end training, we computed the full analytical gra-
dient of the remaining parameters using two techniques. Firstly, we
utilized gradient checkpointing [Chen et al. 2016] in PyTorch, by
rerunning a forward pass for each checkpointed segment during
backward propagation. This technique trades some speed for re-
duced memory requirements. We inserted a checkpoint after each
block of frames, where the block size was determined based on the
available GPU memory. Secondly, during training, we randomly
sampled 0.5-second-long sequences from each video clip (full se-
quences were used for testing). This approach improved training
time and introduced a form of data augmentation. The feature-based
and end-to-end training were run in an interleaved manner, with 50
epochs of (fast) feature-based training followed by a single epoch
of end-to-end training. This lets us jointly train all the parameters
of the metric. The trained parameters of the metric can be found in
Table 3.

5.1 Comparison with other metrics

We compare the performance of ColorVideoVDP with several state-
of-the-art metrics, listed in Table 1.
As our datasets include both SDR and HDR content, we need

to ensure that those are handled correctly by all the metrics. For
metrics that do not work with colorimetric data and instead oper-
ate on display-encoded (SDR) pixel values, we ran the evaluations
using the original SDR pixel values. In the case of HDR content, we
employed the perceptually-uniform transform (PU21) [Mantiuk and
Azimi 2021] to encode the pixel values. The metrics that operate on
colorimetric data (FovVideoVDP, HDR-VDP-3) were supplied the
absolute luminance values, computed by the display model (Sec. 3.1).
The metrics that account for the viewing distance or the resolution
in pixels-per-degree (e.g., HDR-VDP-3, HDR-FLIP) were supplied
with the correct values.
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Because UPIQ, XR-DAVID and LIVEHDR are scaled in the same
JOD units, we �t a single logistic function to map metric prediction
to JODs. As neither KADID-10k nor LIVEVQA is scaled in JOD units,
we �t a logistic function separately for each metric and dataset to
map metric prediction to the subjective scores.
The results, shown in Fig. 16, indicate a substantial gain in per-

formance of ColorVideoVDP over the second-best metric — VMAF.
Image metrics that consider color — FSIMc and VSI — performed
better than expected on XR-DAVID, but rather poorly on LIVE-
HDR video dataset. The color di�erence formulas and their spatial
extensions performed worse than image and quality metrics. The
non-reference metrics — NIQE, PIQE, and BRISQUE — show a very
small correlation with subjective judgments. Other performance
indices (SROCC and PLCC) and detailed results can be found in the
HTML reports included in the supplementary. Overall, while it is
possible to �nd a metric that performs well on a selected dataset,
such as STRRED on LIVEVQA (LIVEVQA was used to calibrate and
test STRRED), ColorVideoVDP o�ers good performance across all
datasets with a wide variety of distortions and content. This could
be explained by no other metric o�ering the same set of capabilities
as ColorVideoVDP; only our metric models spatiotemporal color
vision and accounts for the display model.

5.2 Ablations

We grouped ablation studies into those used to determine suitable
contrast encoding and masking models, and into those used to test
the importance of each component of the metric. The metric param-
eters were re�tted for each ablation, as explained above. First, we
tested a combination of two contrast encodings and three masking
functions, all explained in detail in the supplementary document.
The results of those ablations, shown in Fig. 17, clearly indicate
that the mutual masking model with multiplicative contrast en-
coding o�ers much better performance than the alternatives. The
results indicate that the multiplicative contrast encoding is neces-
sary for mutual masking and transducer models. As mentioned in
Sec. 3.6, such encoding can unify results across di�erent spatial fre-
quencies [Daly 1993] and color directions [Cass et al. 2009; Switkes
et al. 1988]. Although the contrast transducer is one of the best-
established masking models [Watson and Solomon 1997], which
accounts for facilitation and performs well on selected datasets
[Alam et al. 2014], it did not perform well as a part of the quality
metric. The similarity formula exhibits masking properties and is
used in many metrics, such as (MS-)SSIM [Wang et al. 2003], but it
did not result in acceptable performance when integrated into our
metric.

Second, we tested the importance of each component of our met-
ric, namely:

• w/o temporal channel — ignored the contribution of the achro-
matic transient channel;

• w/o cross-channel masking — masking was allowed within
each channel, but not across the channels (matrix :8,2 from
Eq. (11) was diagonal).

• w/o chromatic channels — ignored the contribution of the
two chromatic channels;
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Fig. 16. ColorVideoVDP compared with existing metrics, listed in Table 1.

The prediction errors are reported for testing datasets (LIVEVQA, LIVEHDR

and KADID) and the test portion of UPIQ and XR-DAVID. The error bars

denote 95% confidence intervals. Other performance metrics (SROCC and

PLCC) and detailed reports can be found in the supplementary HTML

report.

• w/o masking model — disabled the masking model but used
the contrast encoding from Eq. (7) and contrast saturation
from Eq. (13);

• w/o CSF — the contrast sensitivity function did not vary
with luminance or spatial frequency, but varied across the
channels;

• w/o contrast saturation — disabled the contrast saturation
formula from Eq. (13).

The results of these ablations, shown in Fig. 18, demonstrate that the
contrast saturation formula is critical for the mutual masking model
used in our metric. The metric also performs poorly if the contrast
encoding is not modulated by the CSF (see “w/o CSF” in Fig. 18),
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Fig. 17. Ablation studies on the contrast encoding and masking models

used in ColorVideoVDP. The notation is the same as in Fig. 16. The masking

models used in the ablations are explained in the supplementary.

or lacks the masking model. Although color is often regarded as a
less critical aspect of quality assessment (especially in the context
of video coding), here we show that it is important for the datasets
that contain color distortions, such as XR-DAVID, UPIQ, or KADID-
10k. The cross-channel masking is an important but subtle e�ect,
which results in gains mostly for the XR-DAVID dataset. While the
in�uence of the temporal channel may seem small in the results
(see “w/o temporal channel” in Fig. 18), this is due to the gain only
being observable for video datasets with temporal distortions, such
as XR-DAVID.

Finally, we tested the importance of the XR-DAVID dataset when
training ColorVideoVDP. We retrained ColorVideoVDP, but used
UPIQ and LIVE-HDR as training sets (instead of UPIQ and XR-
DAVID). The quality scores of LIVE-HDR were scaled in JOD units,
as explained in the supplementary. The results of this training,
shown as “Base model trained on LIVE-HDR” in Fig. 18, demonstrate
that the XR-DAVID dataset is essential for training color video
metrics. Video compression datasets, such as LIVEHDR, lack the
variety of both temporal and color distortions, which is a necessary
component for the calibration of video metrics. The correlation
coe�cients for all ablations and detailed reports can be found in the
supplementary HTML report.

5.3 Synthetic tests

Validation datasets and ablations may not capture the edge cases for
which a metric may perform di�erently than expected. To examine
these, we created 14 sets of synthetic test and reference pairs, con-
taining contrast, masking, �icker patterns, and typical distortions.
One such example, shown in Fig. 19, demonstrates the metric’s
ability to estimate the magnitude of supra-threshold contrast cor-
rectly. The lines shown in the plots connect contrast across three
color directions that match in perceived magnitude, according to
the data of Switkes and Crognale [1999]. The �gure shows that
while ColorVideoVDP can correctly predict suprathreshold contrast,
HDR-FLIP [Andersson et al. 2021] overpredicts the contrast in the
red-green and yellow-violet directions. The extensive report for all
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Fig. 18. Ablation studies on ColorVideoVDP. The top row shows the base

model. Refer to the text for details.
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Fig. 19. Testing of supra-threshold contrast matching across color directions.

The lines in the plots represent metric responses for the contrast modulated

along one of the cardinal directions of the DKL color space (examples shown

on the le�). The magnitude of the contrast was selected to match the data of

Switkes and Crognale [1999]. If a metric correctly predicts the magnitude of

chromatic and achromatic contrast, the plots should form horizontal lines.

The values for FLIP have been shown as 1-(FLIP mean di�erence) to make

them comparable with other metrics. Note that the perceived magnitudes

depend on the spatial frequency and, therefore, the viewing distance.

14 sets and multiple metrics can be found in the supplementary
HTML report.

6 APPLICATIONS

As a general-purpose image and video di�erence metric, our metric
can be used for a range of standard applications, such as optimization
of video streaming. In this section, we present three proof-of-concept
use cases, which go beyond such standard applications of video
metrics.

6.1 Chroma subsampling

Chroma subsampling is a popular compression technique in which
chroma channels are encoded with a lower resolution than luma.
This works well in practice due to the lower sensitivity of our chro-
matic vision to high frequencies. The visibility of chroma subsam-
pling artifacts cannot be easily predicted with pixel-wise color dif-
ference formulas, such as CIEDE2000, as they are unaware of image
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Fig. 20. The comparison of quality loss due to subsampling of RGB channels (top row), chroma channels of Yxy colorspace (middle row), and chroma channels

of YCbCr color space (bo�om row). The plots show the predictions of ColorVideoVDP (1st column) and SSIM (2nd column), the la�er computed either on luma

or RGB channels. SSIM fails to predict substantial quality loss when the chroma channels are severely subsampled.

structure. Spatial metrics, such as SSIM or even FSIMc, do not op-
erate on color spaces that could properly isolate chromatic and
achromatic mechanisms. This is shown in an example in Fig. 20,
in which SSIM fails to predict a substantial loss of quality at high
chromatic subsampling rates, even if the metric is computed on the
RGB channels (the original SSIM operates only on luma). The SSIM
(RGB) predictions for ×16 subsampling of G~ channels (last column,
second row) indicates only a moderate loss of quality (0.87), much
lower than even ×1.5 RGB subsampling (third column, top row,
0.68), which poorly correlates with the perceived level of distortions.
ColorVideoVDP provides easy-to-interpret predictions, which corre-
spond well with the perceived image quality. It shows, for example,
the strength of the YCbCr space, which can well balance subsam-
pling distortions between the achromatic and chromatic channels
(the chromatic plane of YCbCr is not isoluminant).

6.2 Optimization

ColorVideoVDP is fully di�erentiable, and it can be potentially used
as an image loss function when training deep neural networks.
However, a good qualitymetric may not serve as a good loss function
[Mustafa et al. 2022], in particular when the features used by ametric
are not surjective [Ding et al. 2021]. Moreover, complex functions
can make the landscape of the loss highly non-convex and impede
convergence. For that reason, a popular "perceptual loss" [Johnson
et al. 2016] must be combined with L1 or L2 to ensure convergence.
We found that when ColorVideoVDP is used as an image loss

function (without L1 or L2 term) in an image reconstruction task (see
[Ding et al. 2021, Sec. 3]), it converges well when the reconstructed
image is close to the reference. However, the convergence is worse
when the test image is a�ected by random noise or is far from the
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Fig. 21. Adaptive chroma subsampling removes high frequencies from chro-

matic Cb and Cr planes (2nd and 3rd column) of the YCbCr color space

without a�ecting the appearance of the color image (1st column). Such

adaptive subsampling can e�ectively improve image compression without

the loss of chromatic details.

reference. This problem is alleviated when ColorVideoVDP is used
when optimizing low-dimensional problems, such as the selection
of encoding parameters in video streaming. In the next section, we
show an example of ColorVideoVDP used as a loss function in a
high-dimensional problem.

6.3 Adaptive chroma subsampling

Traditional chroma subsampling, as demonstrated in Sec. 6.1, glob-
ally reduces the resolution (sampling rate) of the chromatic planes
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regardless of image content. However, the visibility of chromatic
distortion will strongly depend on image content, and therefore,
we argue that chroma subsampling should be adaptive and vary
across an image. Here, we show that we can use ColorVideoVDP
as a di�erential loss to adaptively remove high frequencies from
the image chroma channels while accounting for all factors that
contribute to the visibility of the introduced changes. To do this, we
optimize for the color image � :

argmin
�

| |� − �org | |cvvdp + _ | |∇�Cb | |1 + _ | |∇�Cr | |1 (19)

where �org is the original image, ∇�Cb and ∇�Cr are the gradients
of the Cb and Cr planes of the YCbCr color space and _ is a reg-
ularization constant. | | · | |cvvdp denotes ColorVideoVDP used as a
di�erentiable loss and | | · | |1 is an L1 norm. Fig. 21 shows an example
of such adaptive chroma subsampling. In this particular example,
we could reduce the size of a PNG �le by 10% with no impact on
image quality.

6.4 Se�ing display color tolerance specifications

In a display manufacturing setting, it is common for display pri-
maries’ spectra to di�er from the desired target values between
individual units and suppliers. Manufacturers typically set speci-
�cations for how much each primary can deviate from the ideal
target. Traditionally, it has been characterized in wavelength shifts,
changes in chromaticity and luminance, or color di�erence metrics
such as ΔE∗

01
and CIEDE2000. ColorVideoVDP can be used to set

these speci�cations in an interpretable manner (in terms of JODs)
with respect to sample content, as our metric is aware of image
structure.
As an example use case, assume a VR display is being charac-

terized in a factory calibration setting. We simulate the reference
by generating a synthetic set of R, G, and B primaries producing a
P3 gamut using Gaussian curves, as depicted by the red solid line
in Fig. 22(a). Next, we simulate possible spectral primary devia-
tions by varying the spectral peak and full width at half maximum
(FWHM) for each primary to examine tolerances (green dashed line
in Fig. 22(a)). A test image rendered with both baseline and distorted

(a) JOD score vs spectral peak shift (b) JOD score vs FWHM change
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Fig. 23. (a) JOD scores vs spectral peak shi� for R, G, B primaries. (b) JOD

scores vs. FWHM change from baseline for R, G, B primaries. Error bars

show maximum and minimum JOD scores among 4 scenes for each case.

primaries is shown in Fig. 22 (b) and (c), respectively. Finally, JODs
scores were calculated between images with baseline and modi�ed
primaries for each spectral peak shift and FWHM change for each
of four test images (taken from Caminandes, Icons, Panel, and VR,
see the supplementary document).
The results are shown in Fig. 23. Note that JOD scores change

nontrivially depending on the direction of the peak shift, FWHM
magnitude, and type of primary (R, G, or B). In our imaginary ex-
ample, factory tolerance speci�cations could then be derived by
setting an acceptable limit for ΔJOD deviation from the baseline via
a psychophysical or "golden eye" study. Further investigation can be
conducted by looking into individual images for worst performers,
and future tolerances can be easily tightened by reducing the ΔJOD
speci�cation.

6.5 Observer metamerism and variability

Observer metamerism has been an issue for wide-color-gamut dis-
plays. As wide color gamut displays typically have spectrally nar-
rower primaries, it is increasingly likely that, when calibrated for a
standard observer, they will appear color-inaccurate for individuals
who deviate from this pro�le [Bodner et al. 2018; Hung 2019]. The
severity of this observer metamerism depends on both the content
being shown and the display characteristics, and can be evaluated
by using ColorVideoVDP.
To demonstrate this, we calculated JOD scores for the ‘Wiki’

scene, simulating three di�erent display primary spectral pro�les
and 11 di�erent observer functions. The evaluated displays were
Sony BVM32 CRT (100% of sRGB), Eizo ColorEdge 3145 (99% P3),
and laser primaries (100% ITU-R BT.2020 color gamuts). Laser spec-
tra were synthetically generated. Spectral power distributions for
all primaries are shown in Fig. 24 (top). To simulate individual di�er-
ences in color vision, we used Asano and Fairchild’s 10 categorical
observers [2020], as well as the 1931 2◦ standard observer used for
reference. These 10-observer functions were derived as represen-
tative means for a color-normal population based on an individual
colorimetric observer model [Asano et al. 2016]. The results are
shown in Fig. 24 (bottom). As expected, the narrower spectra in-
cur a larger metameric error for non-standard observers, which is
re�ected in the higher ΔJOD values. ColorVideoVDP can be used
to estimate the risk of metameric error for populations on content,
and to evaluate or optimize solutions for this problem.
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7 CONCLUSIONS

In this work we introduce ColorVideoVDP, a general-purpose image
and video metric that models several challenging aspects of vision si-
multaneously. Notably, our algorithm is calibrated in psychophysical
JOD units, models color, high-dynamic-range, and spatiotemporal
aspects of vision. Our metric is explainable, and each component
used to build our pipeline is based on proven psychophysical models
of the human visual system.
An important aspect of our metric is its extensive calibration.

Our metric is simultaneously calibrated on 3 large datasets con-
taining a variety of distortion types, which included our novel
XR-DAVID video quality dataset, containing a range of display
hardware-oriented artifacts critically important to the development
of future displays. We demonstrated that our metric generalizes well
to unseen datasets.
Finally, ColorVideoVDP is e�ciently implemented to run on a

GPU. This aspect is increasingly important in the modern display
landscape, as resolution, frame rate, �eld of view, and bit-depth
continue to increase, adding complexity to analyzed content. It is
also fully di�erentiable, making it possible to use it as a loss function
in optimization problems.
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Fig. 25. All 8 distortions as used in the XR-DAVID study at level 3 (most distorted). The undistorted reference is shown in the center for comparison. An inset

of the Snow scene is shown to enhance artifact visibility. Note that DCE (Dynamic Correction Error) does not exhibit much visible distortion as the artifact is

mostly present in the temporal domain. “A Drone Shot of a Church in Belalp” by SwissHumanity Stories under a Creative Commons license.
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