
Rigorous engineering for hardware security:
Formal modelling and proof in the CHERI design

and implementation process

Kyndylan Nienhuis∗, Alexandre Joannou∗, Thomas Bauereiss∗, Anthony Fox†, Michael Roe∗, Brian Campbell‡,
Matthew Naylor∗, Robert M. Norton∗, Simon W. Moore∗, Peter G. Neumann§, Ian Stark‡, Robert N. M. Watson∗,

and Peter Sewell∗
∗University of Cambridge †ARM Limited ‡University of Edinburgh §SRI International

Abstract—The root causes of many security vulnerabilities
include a pernicious combination of two problems, often regarded
as inescapable aspects of computing. First, the protection mech-
anisms provided by the mainstream processor architecture and
C/C++ language abstractions, dating back to the 1970s and be-
fore, provide only coarse-grain virtual-memory-based protection.
Second, mainstream system engineering relies almost exclusively
on test-and-debug methods, with (at best) prose specifications.
These methods have historically sufficed commercially for much
of the computer industry, but they fail to prevent large numbers
of exploitable bugs, and the security problems that this causes
are becoming ever more acute.

In this paper we show how more rigorous engineering methods
can be applied to the development of a new security-enhanced
processor architecture, with its accompanying hardware im-
plementation and software stack. We use formal models of
the complete instruction-set architecture (ISA) at the heart of
the design and engineering process, both in lightweight ways
that support and improve normal engineering practice – as
documentation, in emulators used as a test oracle for hardware
and for running software, and for test generation – and for formal
verification. We formalise key intended security properties of the
design, and establish that these hold with mechanised proof. This
is for the same complete ISA models (complete enough to boot
operating systems), without idealisation.

We do this for CHERI, an architecture with hardware capabil-
ities that supports fine-grained memory protection and scalable
secure compartmentalisation, while offering a smooth adoption
path for existing software. CHERI is a maturing research
architecture, developed since 2010, with work now underway
on an Arm industrial prototype to explore its possible adoption
in mass-market commercial processors. The rigorous engineering
work described here has been an integral part of its development
to date, enabling more rapid and confident experimentation, and
boosting confidence in the design.

I. INTRODUCTION

Despite decades of research, memory safety bugs are still
responsible for many security vulnerabilities [1]. Microsoft
estimates that 70% of the vulnerabilities they have patched be-
tween 2006 and 2018 are caused by memory safety issues [2],
MITRE considers classic buffer overflows as the third most
dangerous software error [3], and high-profile memory-safety
bugs such as Heartbleed [4] have become common.

There are two fundamental problems here. First, mainstream
hardware architectures and C/C++ language abstractions pro-

vide only coarse-grained memory protection, via the memory
management unit (MMU). This is hard to change: the mass of
legacy C/C++ code makes it infeasible to migrate everything
to a type-safe language, or to radically change hardware
architectures, but introducing fine-grained memory protection
in software, e.g. with bounds-checking, is often too inefficient.

Second, mainstream systems are typically developed using
test-and-debug engineering methods. While this often suffices
to build systems that are sufficiently functionally correct under
normal use, it fails to build secure systems: it is easy to miss
a small mistake that manifests itself only in a corner case, but
attackers will actively try to find these, and one small bug can
compromise the entire system.

CHERI is an ongoing research project that addresses the
first problem with hardware support for fine-grained memory
protection and scalable software compartmentalisation, aiming
to provide practically deployable performance and compati-
bility [5]–[7]. CHERI achieves this by extending commodity
architectures with new security mechanisms, and adapting a
conventional software stack to make use of these.

This paper addresses the second problem: we show how
more rigorous engineering methods can be used to improve as-
surance and complement traditional methods, using the CHERI
project as a whole as a testbench for this. These include
both lightweight methods – formal specification and testing
methods that provide engineering and assurance benefits for
hardware and software engineering without the challenges of
full formal verification – and more heavyweight machine-
checked proof, establishing very high confidence that the
architecture design provides specific security properties.

A. The CHERI Context

The CHERI design is based on two principles. The principle
of least privilege [8] says that each part of a program should
run only with the permissions it needs to function. For exam-
ple, a conventional C/C++ program implicitly uses permission
to its entire memory region for accesses via a pointer, making
it vulnerable to buffer overflows, but in CHERI it can be
limited to the permission to access the pointed-to object. On
a larger scale, the JavaScript execution engine of a browser

does not need access to the encryption keys used in SSL
connections, so by restricting its permissions one can ensure
that even a compromised JavaScript engine cannot access
these keys. The principle of intentional use states that when
a program performs an action, it should explicitly state which
permissions it uses to authorise that action. This helps avoid
the confused deputy problem [9]. For example, an operating
system (OS) may need to hold permission to access the entirety
of a user process (e.g. for paging), but when that process makes
a read() system call, passing a pointer to a user-space buffer,
CHERI lets the relevant OS code to use the more restricted
permission to just that buffer. The CHERI design involves no
lookup or search for permissions, which is important both to
embody this principle and for performance.

These principles are realised in CHERI with hardware
capabilities: to access memory, one needs to possess a ca-
pability that authorises that access. A capability augments
the usual virtual address of a language-level pointer with
bounds that specify the memory region it relates to, and
with permission bits that specify what kind of actions it can
authorise. To distinguish capabilities from other data, CHERI
uses tagged memory, one bit for each capability-sized and
aligned unit of memory. Valid capabilities have their tag set,
and if they are overwritten with a non-capability, their tag is
cleared, rendering them safely unusable. CHERI introduces
new instructions that can manipulate a capability without
clearing its tag: to change its virtual address, shrink its bounds,
decrease its permissions, or copy it. It is crucial to the design
that no instruction can grow the bounds of a capability, or add
permissions. To enable software compartmentalisation, CHERI
provides additional mechanisms for mutually untrusting com-
partments to communicate.

The CHERI design has been elaborated initially as CHERI-
MIPS, extending 64-bit MIPS [10] with capabilities. Our
CHERI-MIPS instruction-set architecture (ISA) definition is
the central design artefact [6]. As usual, the ISA defines the
hardware/software interface: the programmer-visible machine
state and instruction behaviour that software must be pro-
grammed above; it abstracts from hardware-implementation
(microarchitectural) specifics, e.g. of pipelines, cache hierar-
chies, etc. Then there is a Bluespec [11] FPGA hardware
implementation of the architecture, and a software stack above
it, adapting LLVM [12] and FreeBSD [13] to CHERI-MIPS.
All this has involved extensive work on the interaction be-
tween the capability system and systems aspects of memory
management (static and dynamic linking, process creation,
context switching, page swapping and signal delivery) [14];
on the overhead of compiling pointers to capabilities [5], [15];
on compartmentalisation of legacy software [16]; and on the
performance overhead of tagged memory [17] and protection-
domain switches [18]. The underlying ideas are portable,
not MIPS-specific, and work is underway on experimental
academic RISC-V and industrial Arm versions – the latter in
a major project involving Arm and the UK Government [19],
[20] to produce prototype silicon and a development board.

B. The Problems with Traditional Engineering Methods

CHERI-MIPS was initially developed using traditional en-
gineering methods: the security properties that the architecture
is intended to enforce were described in prose; the architecture
was described in prose and pseudocode; and the hardware
implementation of the architecture was validated with hand-
written tests. This led to the following problems, often ac-
cepted as inescapable aspects of normal practice.

First, the prose and pseudocode architecture description
was not executable as a test oracle, to check the hardware
implementation behaviour against, or as an emulator, to run
software above. Hardware validation tests therefore required
manual curation of their intended outcomes, so tests could
not be automatically generated, and it was not possible to
rerun software tests after changes in the architecture until the
hardware implementation was updated.

Second, while the designers had strong intuitions about the
security properties the architecture should provide, their prose
statements were inevitably less precise than they could be, and
omitted crucial details. This led to unnecessary confusion in
internal discussions of (for example) the concepts of capability
provenance and monotonicity, central to the design, and made
it harder to explain these to others.

Third, it was very difficult to assess whether the archi-
tecture actually provided these intended security properties.
The properties involve quantification over all executions of
arbitrary code, e.g. to show that (without a domain transi-
tion) the reachable capabilities can never be increased, and
that an isolated compartment cannot affect other memory.
Testing cannot provide assurance that these hold. Moreover,
architecture descriptions are large and complex: the CHERI
ISA description is around 7k lines, and involves intricate
manipulation of capabilities and of the architected register
state (see Fig. 4 for just one instruction). For a conventional
architecture, to check, for example, that user code cannot
bypass the MMU, it would be easy to check that all user-
mode memory accesses go via address translation, but the
CHERI security enforcement is intertwined with the compu-
tation and use of memory addresses, user/system permissions,
and other aspects of the ISA; its security properties depend
on subtle invariants of the ISA specification as a whole.
A mis-specification of the interaction between capabilities
and user/system modes, exceptions, address translation, or
any of the 180-odd instructions could potentially break its
security protection. This means that informal review of the ISA
specification also cannot provide assurance that the properties
hold – as confirmed by the subtle bugs found by our proof
work (§VI). At the same time, CHERI’s correctness is cru-
cially important: its security protection will come under direct
attack, and one mistake could be enough to cancel out all the
protection that CHERI offers. Moreover, if the architecture
specification is flawed, containing some security vulnerability,
then any conforming hardware implementation will inherit that
vulnerability. All this makes machine-checked statements and
proofs of the intended security properties essential.

C. Contributions
We address these problems with three contributions.
1) Lightweight rigorous engineering (§III): We show that

prose-and-pseudocode ISA descriptions can be replaced in the
architecture design process with rigorous definitions, which are
at once clearly readable, executable as test oracles, and support
automatic test generation. Importantly, developing such formal
definitions for CHERI-MIPS did not require any formal back-
ground, so the researchers and engineers who would otherwise
write a prose/pseudocode architecture document could write
and own them. At the same time, expressing the specifications
in terms of instruction description languages, L3 [21] and
(more recently) Sail [22], that automatically generate theorem-
prover definitions, ensured that the ISA definitions are math-
ematically rigorous, with no ambiguity. Formal specification
alone is widely understood to bring low-cost clarity benefits,
even before any proof work is undertaken. Here, our (more
unusual) emphasis on specifications that are executable as
test oracles [23] goes beyond that, and was essential for the
integration of formal specification with traditional engineering.
In turn, that ensured the specification was a conventionally
well-validated “live artifact”: the actual ISA design, rather than
a (possibly divergent) definition produced after the fact. This
ensured that the following properties and proof are about the
actual design.

2) Stating architectural security properties (§IV): We show
how the intended security properties of the architecture can
be precisely and formally stated, in terms of the above def-
initions of instruction behaviour. Crucially, we express these
properties in relatively simple terms, using basic operations
over sets and quantified formulas, so understanding them
does not require extensive formal background. This makes it
possible to unambiguously communicate the guarantees that
CHERI-MIPS offers to the relevant audiences: to software
users of the architecture, so they understand the limits of its
protection; to hardware engineers, so their implementations do
not accidentally break said guarantees; and among the authors
of the architecture themselves, so they can ensure that the
guarantees are as intended.

The properties we define for CHERI-MIPS (1) capture
the memory access intentions of the instructions, (2) capture
a reachable-capability monotonicity property, that arbitrary
code, if given some initial permissions, cannot increase those
during its execution (up to the point of any domain tran-
sition); (3) capture the property that arbitrary code, if not
initially given permission to access particular system registers
and memory regions, leaves them invariant as that code is
executed; and (4) capture the guarantees one has (and the re-
quired assumptions) when executing an untrusted subprogram
within a controlled isolation boundary. Our properties cover
executions running in user or kernel mode, and can therefore
be used to reason about compartmentalised kernels.

3) Formal proofs of security properties (§V): Finally, we
show how to mathematically prove these security properties,
with machine-checked proof, in a way that is scalable to
the entire ISA and that can be integrated in the ISA design

Bluespec/FPGA

Isabelle

L3/Sail

Prover defns

Isabelle

Emulators

C/OCaml/SML

Tests

CHERI asm

CHERI C/C++

LaTeX

ISA documentation H/W design

auto−generate

prove

execute

execute
test

CHERI h/w impl

Security Properties

CHERI ISA spec

CHERI software

Fig. 1. The main artifacts of the CHERI engineering process. Those in the
central column are all automatically generated from the L3/Sail formal ISA
specifications. The CHERI hardware design is tested against the generated
emulators, using both auto-generated and (not shown) manually written tests.
The CHERI software stack, including adaptions of Clang and FreeBSD, is
developed by running above the generated emulators, the hardware, and (not
shown) a QEMU emulator. The security properties are stated and proved in
terms of the automatically generated Isabelle version of the ISA specification.

process. This gives high confidence that they hold, which is not
achievable with testing. Novel proof automation and automatic
generation of lemmas were essential to make this scale to the
entire ISA specification, and to make the proof robust in the
face of design evolution.

Fig. 1 illustrates the main artifacts of the CHERI engineer-
ing process. We have done this for CHERI-MIPS, but the same
problems exist for other security architecture features, e.g. In-
tel SGX and ARM TrustZone, and we believe similar solutions
could be applied. CHERI started off with a hardware/software
co-design approach, which is already unusual but is necessary
for improving security at the architectural interface. Here we
show the benefits of a three-way hardware/software/formal-
semantics co-design approach.

D. Non-goals and Limitations

Our focus here is on the definition and proof of specific
security properties of the CHERI architecture: the specification
of the hardware/software interface. This is an essential step in
increasing confidence in CHERI-MIPS, but we have not, of
course, proved that CHERI as a whole “is secure” (which,
unqualified, has no precise meaning). Our work has helped
validate the CHERI-MIPS hardware implementation, but it
does not prove the hardware implementation correct with
respect to the architecture, or prove correctness or security
properties of system software above the architecture (though
it is a necessary precondition for any such proofs). Our
security properties only address behaviour that is visible at the
architectural abstraction. As usual, this abstracts from timing
behaviour and power consumption, so our properties cannot
talk about possible side-channel information flow via these.
How to manage side channels remains an open research area,
but the isolation properties that we establish are certainly
necessary, even if not sufficient, for whole-system security.
There is ongoing non-formal work exploring side-channels
w.r.t. CHERI [24]. Moreover, the architecture is an intention-

ISO C CHERI C

secret_key: signed int[@4, 0x18]

 4091

x: signed int[@3, 0x14]

 1

p: signed int*[@5, 0x20]

 0x18

int x=1;
int secret_key = 4091;
int main() {
int *p = &x;
p = p+1;
int y = *p ;

printf("%d\n",y); }

secret_key: signed int[@4, 0x18]

 4091

x: signed int[@3, 0x14]

 1

p: signed int*[@5, 0x20]

address 0x18

base 0x14

length 0x4

perms R/W

tag 1

Fig. 2. Fine-grain memory protection, comparing ISO C with CHERI C.
In ISO C the (flawed) program on the left has undefined behaviour, but in
practice can leak the secret key. In CHERI C the same program has defined
behaviour and will always trap with a hardware exception, because the address
used for the *p access is not within the footprint of the capability.

ally loose specification, to admit implementation variation, and
therefore our properties also cannot talk about architecturally
visible information flow: a (compromised or adversarial) hard-
ware implementation could leak information while conforming
to the architecture by exploiting this looseness. Our properties
do exclude architecturally visible capability flow, which is
likewise necessary, but not sufficient, for whole-system secu-
rity. Finally, the semantics only covers the uniprocessor case.
The capability system is largely orthogonal to concurrency,
but lifting the reasoning to a realistic relaxed memory model
would add significant complication.

II. BACKGROUND: CHERI

CHERI aims to prevent or mitigate many security vulner-
abilities. It does so by extending commodity instruction-set
architectures with a capability system, enabling fine-grained
memory protection and scalable software compartmentalisa-
tion, while offering a practical gradual adoption path for ex-
isting software. In this section we explain the main aspects of
the CHERI capability system, with two examples. CHERI also
supports a range of other use-cases with additional features
that we cannot explain here; for details of those see [6].

A. Fine-grained Memory Protection

As highlighted at the start, many security vulnerabilities
involve memory safety violations arising from coding errors
in unsafe languages. The CHERI hardware extensions make it
possible to implement unsafe languages, notably C and C++,
in ways that enforce spatial memory safety – thus preventing
or mitigating many vulnerabilities – while aiming to keep
performance and code-porting costs acceptable.

For example, consider the C program in Fig. 2. This declares
a secret_key, but the programmer does not intend that the
main() function access that, let alone leak it. However, a
coding error introduced code that creates a pointer p to
another global, x, increments p, and dereferences it with *p. In

ISO C this program has undefined behaviour, because the *p

access is to a location outside the x allocation, meaning that
conventional C implementations can assume that programs do
not contain such accesses (implementations are not required
to trap or otherwise detect the error). In practice, however, the
machine representation of a pointer is typically just an integer
address, and a conventional implementation will typically
output whatever is next to x in the memory layout, which here
can be, and often is, secret_key. The left of Fig. 2 illustrates
one such execution, with x allocated at 0x14 and secret_key

at 0x18. After the increment, the value of p is just 0x18;
a conventional C compiler will generate a simple machine
load instruction for the read *p, and a conventional processor
implementation will simply load from that address – turning
that coding error into a security leak.

In CHERI, however, one can compile C or C++ source to
represent pointer values with capabilities instead of integer
addresses, as shown on the right of Fig. 2. On a 64-bit CHERI
architecture, the value of p is a 256-bit or 128-bit capability,
together with a 1-bit validity tag. The 256-bit format includes
a 64-bit virtual address, base, and length; permission bits, to
execute, load, and store data, to load, store, seal, and unseal
capabilities, to invoke sealed capabilities, and to store local
capabilities; an is-sealed bit; and a 24-bit object type, used
in sealing, unsealing, and invoking. The 128-bit format [15]
compresses this, exploiting the redundancy from allocation
alignment (the proofs later in this paper are about the 256-
bit version). In this example, the base and length, identifying
the memory region that the capability is allowed to access, are
those of the original x allocation. C pointer arithmetic is com-
piled to instructions that change capability virtual addresses,
leaving their allowed memory regions unchanged. All this
means the hardware can do an efficient access-time check, at
the *p dereference, that the capability authorises the memory
access: namely that the access is within the capability’s mem-
ory region and the type of access is allowed by its permissions.
The details of this check are part of the ISA definition, and
specific to each operation – for example, Fig. 4 shows the
check for an integer load via a capability register, and Fig. 5
shows the check for sealing a capability. If the check fails,
the hardware deterministically traps. So far, this is similar to
software fat-pointer designs [25]–[27], but CHERI capabilities
are protected from accidental or malicious modification: an
additional tag bit, one per capability-sized and aligned region
of memory, keeps track of whether that memory holds a valid
capability. The hardware preserves the tag if valid capability
instructions are used, but clears it otherwise (e.g., if individual
bytes are written); tags are not independently addressable.
The ISA is designed so that no instruction can increase the
access rights of a capability. The hardware provides a universal
capability at start-up, and the OS, linker, compiler-generated
code, and language runtime allocators gradually construct
smaller capabilities; in this example, the linker constructs
precise capabilities for the globals. Capabilities are also used
to protect non-source pointers, including code pointers such
as PC values and return addresses.

This example illustrates the principles of least privilege and
intentional use: the program as a whole has the permission to
load the secret key, but it was not the programmer’s intention
to do this when dereferencing p. In CHERI C this intention is
preserved and the capability which is the value of p has the
least privilege required to access x, so it is impossible to load
the key through that memory access.

Porting legacy software to CHERI is eased by the fact that
source changes are needed only in rare cases, e.g. where code
manipulates the representation bytes of pointers explicitly.
This example requires none, just a re-compile. In other work
we have ported FreeBSD user-space to CHERI and analysed
the changes required [14], [28]; we have also ported other
software, including WebKit. Porting does involve an ABI
change, as pointer sizes change, but one can also compile in
a hybrid mode, with only selected pointers represented with
capabilities, or encapsulate legacy code compiled in the normal
way by running it with default data and code capabilities.

The above provides spatial but not temporal memory safety,
but the fact that CHERI pointers and integers can be reliably
distinguished creates new possibilities for temporal enforce-
ment, currently being investigated.

B. Software Compartmentalisation

At a larger granularity, and especially when running un-
trusted binaries, or code for which the porting or perfor-
mance costs of CHERI C (modest though they are) are
not acceptable, software compartmentalisation can help to
make a system more robust against attacks by mitigating
the effects of successful exploits. Conventional systems do
this with operating-system processes and hypervisor virtual
machines, using hardware memory-management-unit (MMU)
protection, managed by trusted OS or hypervisor code, to
enforce memory isolation (or confinement) between arbitrary
untrusted binaries. However, MMU protection scales poorly
with larger numbers of compartments and operates only at
page granularity, limiting its applicability.

CHERI supports scalable compartmentalisation by extend-
ing the core capability system described above with additional
mechanisms for controlled communication between mutually
untrusting compartments. Memory isolation is achieved with
the same mechanism as above: if a compartment does not
possess (and is not passed) a capability with permission
to access a region of memory, CHERI guarantees that it
cannot access that region. Controlled communication between
compartments is achieved as follows. A compartment can use
a CSeal instruction to seal a capability with an object type
(a 24-bit field within the 256-bit capability), which makes it
temporarily unable to authorise memory accesses. Concretely,
sealing just sets the sealed bit and the object type within
the capability (see Fig. 5 in the Appendix). A pair of sealed
capabilities, one for code and one for data, both with the
same object type, can be used to transition to another domain.
CHERI supports secure domain transition with an instruction
to invoke the pair of sealed capabilities: this jumps directly
to the address of the sealed code capability, and atomically

unseals both the code and the data capability (see CCallFast,
in Fig. 6 in the Appendix). The authority of a sealed capability
can also be restored by unsealing it.

For example (Fig. 3), libcheri within CheriBSD [14] pro-
vides an interface for sandboxed compartments to perform

libcheri Sandbox

cC code code

cD data datacB

Fig. 3. A sandbox and libcheri
sharing only restricted or sealed
capabilities

I/O operations. Upon initialisa-
tion, a sandbox receives a sealed
code capability cC to a particular
entry point within libcheri, and
a sealed data capability cD to
the local data of libcheri, both
sealed with some particular ob-
ject type o. These sealed capabil-
ities do not authorise direct ac-
cess to code or data of libcheri,
but a sandbox can invoke them
to jump to that specific entry point. When doing so, it can also
pass a capability cB to a specific buffer of its own local data,
e.g. containing a string to be printed. After the jump, libcheri is
in control, and can access its own data using the now-unsealed
data capability. The sealing and unsealing of capabilities is
itself capability-controlled; for the above to be secure it is
essential that sandboxes are set up without the capability to
unseal object type o. Theorem 11 shows, for example, that if
libcheri and the sandbox are set up without other capabilities
to each other’s memory regions, then during the execution of
the sandbox it cannot change code or data of libcheri or vice
versa, with the exception of explicitly shared buffers.

In some compartmentalisation scenarios one trusts compart-
ments to not leak their own capabilities, but in others one
wants to prevent (malicious or compromised) compartments
from cooperating. To support that, CHERI defines separate
permissions for storing/loading data and for storing/loading
capabilities. For example, to allow two compartments to com-
municate plain data while preventing them from exchanging
their capabilities, one could give them authority to load and
store data (only) to a shared region. Additionally, CHERI has
a mechanism to allow some capabilities to be shared but not
others: capabilities can be flagged as local (as opposed to
global). To store local capabilities one needs an additional
permission. By setting up compartments with just the authority
to read capabilities, and to store global capabilities to a shared
region, they cannot exchange their local capabilities.

These mechanisms can be used for secure encapsulation at
various scales, from protection of individual C++ objects that
call each other’s methods, to vulnerability-prone compression
or media code libraries, to whole processes within the same
address space, protected from each other using CHERI alone
rather than with MMU protection.

III. LIGHTWEIGHT RIGOROUS ENGINEERING

Formal specifications, in security and elsewhere, are often
introduced solely to support mechanised proofs, and the skills
and techniques this needs often makes formal specification
divorced from normal engineering practice. For example, much

(though not all) of the large literature on security protocol ver-
ification only addresses abstract models of protocols, discon-
nected from their actual implementations, and its techniques
are often not accessible to the engineers who code those.

In contrast, in bringing rigorous techniques to bear on the
CHERI secure architecture design, an important goal was
to support the security, architecture, and operating systems
researchers and developers involved, who are not theorem-
prover experts, by fitting in with and complementing their
normal engineering practice – while simultaneously enabling
formal statement and proof of security properties of their ac-
tual architecture design, not just some idealised model thereof.
We aimed to improve their engineering practice in multiple
lightweight ways, with immediate benefits long before the
formal proof was complete.

Industrial processor architecture specifications, including
AMD64, IBM POWER, Intel 64, MIPS, RISC-V, and SPARC,
usually define their envelopes of programmer-visible allowed
behaviour with documents containing a mix of prose and
pseudocode [29]–[33]. These are typically multi-thousand-
page books containing masses of detail, about instruction
behaviour, encodings, address translation, interrupts, etc. They
are not computational artefacts, so vendors typically also
develop internal “golden” reference models to use as ora-
cles for hardware testing, often in conventional programming
languages such as C++. Arm, exceptionally, have recently
transitioned to a machine-processed pseudocode, so what is
in their manual can actually be tested against [34].

A reference model could be written in almost any language,
but a rigorous architecture specification should be clear enough
to also use as readable documentation of instruction behaviour.
For this, it is desirable to use as simple a language as
possible, close in appearance to the imperative pseudocode
common in industrial architectures, with intentionally limited
expressiveness compared to general-purpose languages such
as C or C++. Many such Instruction Definition Languages
(IDLs) have been developed [35]. Then, for use in testing, it
has to be possible to execute the definitions efficiently enough,
and to support proof, the IDL must have a straightforward
semantics that can be mapped directly into the input languages
of theorem provers.

For CHERI, we started off in 2011 with traditional pseu-
docode descriptions, together with experimental formal mod-
elling (unpublished) of key instructions in PVS [36]. In 2014,
starting the work reported on in this paper, we began work on
complete formal models in the L3 [21] IDL, and more recently
in Sail [22], partly developed with CHERI in mind.

L3 and Sail are both strongly typed, first-order imperative
language that aim to be accessible to engineers without a
formal background. To illustrate this, Fig. 4 shows the L3
specification of the CHERI-MIPS CLB rd, rt, offset(cb) in-
struction, to load a byte via the capability in register cb. This
takes a capability from cb, calculates an effective address
(Line 15) by summing its virtual address, the value in register
rt, and the sign-extended offset, uses that to load a byte from
memory (Line 29), and writes the appropriate value (possibly

1 define CLoad (rd::reg, cb::reg, rt::reg, offset::bits(8),
2 s::bits(1), t::bits(2)) =
3 if not CP0.Status.CU2 then
4 SignalCP2UnusableException
5 else if not getTag(CAPR(cb)) then
6 SignalCapException(capExcTag,cb)
7 else if getSealed(CAPR(cb)) then
8 SignalCapException(capExcSeal,cb)
9 else if not getPerms(CAPR(cb)).Permit_Load then

10 SignalCapException(capExcPermLoad,cb)
11 else {
12 cap_cb = CAPR(cb);
13 cursor = getBase(cap_cb) + getOffset(cap_cb);
14 extOff = (([offset<7>]::bits(1))^3:offset) << [t];
15 addr = cursor + GPR(rt) + SignExtend(extOff);
16 var size; var access; var bytesel = ’000’;
17 match t {
18 case 0 => {
19 size <- 1;
20 access <- BYTE;
21 bytesel <- addr<2:0> ?? BigEndianCPU^3 }
22 [...OTHER CASES ELIDED, FOR 2,4,8-BYTE LOADS...] };
23 if (’0’:addr) + (’0’:size) >+
24 (’0’:getBase(cap_cb)) + (’0’:getLength(cap_cb)) then
25 SignalCapException(capExcLength,cb)
26 else if addr <+ getBase(cap_cb) then
27 SignalCapException(capExcLength,cb)
28 else {
29 data = LoadMemoryCap(access, true, [addr], false);
30 when not exceptionSignalled do {
31 data_list = [data]::bool list;
32 bottom = ([bytesel]::nat)*8;
33 top = ([bytesel]::nat)*8 + ([size]::nat)*8 - 1;
34 final_data = data_list<top:bottom>;
35 if s == 0 then
36 GPR(rd) <- [ZeroExtendBitString(64, final_data)]
37 else GPR(rd) <- [SignExtendBitString(64, final_data)]
38 } } }

Fig. 4. The L3 specification of the CLB rd, rt, offset(cb) Load Integer
via Capability Register instruction, and variants.

sign-extended) back into rd. The instruction checks several
conditions, e.g. (Lines 5–10) that the capability has its tag
set, is not sealed, and has permission to load, and (Lines 23–
27) that the address is within the bounds of the capability.
Together, these define what it means for a capability to
authorise this load. If any of the conditions fail, the instruction
raises a hardware exception.

The complete model includes everything that is neces-
sary to boot an operating system, including exceptions, the
translation lookaside buffer (TLB), and the programmable
interrupt controller (PIC). The Sail specification is broadly
similar; Sail differs from L3 mainly in providing a rich but
decidable type system, with lightweight dependent types to
let computed bitvector lengths be statically checked. The L3
and Sail versions are each around 7k lines of specification.

A. Using the Models as Design Documents

Our first lightweight use of these rigorous models is as
improved design documentation. L3 and Sail parse and type-
check their input, immediately catching errors that are easy to
make in non-mechanised pseudocode specifications, and they
allow no ambiguity. For example, Fig. 4 makes clear exactly

what checks are done, which exceptions will be flagged if
they fail, and the priority among these. The Sail specifications
of each instruction are now (2019) included verbatim in the
CHERI architecture document [6], replacing earlier informal
pseudocode that had to be maintained separately.

B. Using the Models as Oracles for Hardware Testing

The second lightweight use is as oracles for testing our
Bluespec FPGA hardware implementations of CHERI pro-
cessors against. L3 and Sail both automatically generate
emulators from ISA models, variously in SML, OCaml, and
C. For CHERI-MIPS these run at 300–400 KIPS, which is
fast enough to boot FreeBSD in around four minutes, and
to run many hardware tests. Being able to automatically
re-run such tests against the architecture specification in a
continuous integration environment has been invaluable, as
both the architecture and the hardware implementations have
been developed in parallel.

The simplicity of the L3 and Sail IDLs enabled Computer
Architecture and Security researchers to directly edit and own
the CHERI models, and to automatically see the benefits in the
continuous integration setup. In turn, this assisted in updating
the other artifacts in the project (FPGA implementation, soft-
ware unit tests, etc.), which ultimately led to the adoption of
this approach by the whole research team.

Furthermore, executable specifications make it easier to ex-
periment with design alternatives, as one can compute their be-
haviours without needing micro-architectural implementations.
For example, early exploration of compression schemes for
CHERI capabilities and their potential architectural impacts
were explored in the CHERI L3 model. We also extended
the models with some microarchitectural details, such as a
cache hierarchy, to rapidly explore potential uses of CHERI
capabilities within the memory subsystem. This is also an
appealing feature to a Computer Architecture researcher.

We also wrote a traditional QEMU [37] CHERI emulator,
by hand. This was useful, with 100x the speed of the L3
model, and support for many devices, but it was in C, in a
not particularly readable style, and was quite error prone.

The L3 model and the original prose ISA specification do
have some intentional subtle differences, to ease comparison
of hardware-implementation and L3 model traces in a few
cases where the former is non-deterministic. For example, the
TLBWR instruction architecturally writes a random TLB entry,
but our hardware implementation writes a certain entry based
on a counter, and the L3 model follows that.

C. Using the Models for Software Bring-up

Being a whole-system project, CHERI involves extensive
hardware and software work by different sub-teams. This
means that when something goes wrong, it may not be clear
whether the hardware is failing to meet the spec, or the
software is making an invalid assumption. A big benefit of
the architecture specification being executable is that it can
help answer this question. For example, when first bring-
ing up multicore CHERI on FPGA, FreeBSD was getting

stuck late in boot. It seemed most likely that this was a
hardware issue in the new cache coherency mechanism, but
we could use our recently-developed L3 model to reproduce
the problem, suggesting a software issue. After exploring the
trace, we identified a kernel bug in which the programmable
interrupt controller was being mapped to an incorrect address,
preventing inter-processor interrupts. Simply narrowing down
the source of the problem saved many futile hours of painful
hardware debugging. We now routinely bring up new software,
e.g. CHERI compiler support, above the formal models.

D. Using the Models for Test Generation

Our initial hardware development relied on a manually (and
painfully) written test suite. With authoritative formal models,
it is no longer necessary to manually specify the intended
outcomes of tests, as one can simply compare hardware vs
model running arbitrary code, so it becomes possible to auto-
generate tests. To generate random sequences of instructions
that achieve good coverage in the presence of a large number
of security tests in the capability instructions, it was important
to control which instructions could generate a processor excep-
tion and why. We used a combination of symbolic execution of
the L3 specification and automatic constraint solving [38] to
find an initial processor state where only the chosen instruction
would fault. A few thousand tests generated in this way were
sufficient to cover almost all of the instruction behaviour in
the specification. These revealed discrepancies between the L3,
the hardware, and the QEMU simulator, including bugs in the
modelling and simulation of delay slots and exceptions (one
in the upstream QEMU MIPS), and a security-relevant bug in
the hardware. This automatic technique was easily adapted to
changes as the ISA was developed.

IV. STATING ARCHITECTURAL SECURITY PROPERTIES

Formal security properties have two main benefits over
prose properties. First, prose properties are prone to ambi-
guities, which may lead to security vulnerabilities if users,
designers, and implementers misunderstand each other. For-
malisation helps by forcing one to identify and resolve these
ambiguities. Second, it is hard to establish that prose properties
actually hold, as they are not susceptible to either experimental
validation (by testing or model-checking) or mathematical
proof. It is possible to formally state properties about L3 or
Sail specifications because these can be automatically exported
to theorem prover definitions: variously Isabelle/HOL [39],
HOL4 [40] and/or Coq [41].

To illustrate the first benefit, we identify ambiguities in
the prose definition of a fundamental property of CHERI’s
capability system, namely capability monotonicity. The prose
documentation defines this as the property that “new capa-
bilities must be derived from existing capabilities only via
valid manipulations that may narrow (but never broaden) rights
ascribed to the original capability” [42, §2.3.4]. But what
constitutes broadening the rights of a capability? Broadening
its bounds and increasing its permissions are given as exam-
ples, but does unsealing a capability also broaden its rights?

This is left unclear. Furthermore, the documentation states that
“controlled violation of monotonicity can be achieved via the
exception delivery mechanism [. . .] and also by the CCall
instruction”, without specifying what “controlled violation”
means. It continues with “monotonicity allows reasoning about
the set of reachable rights for executing code, as they are
limited to the rights in any capability registers, and inductively,
the set of any rights reachable from those capabilities”. This
property describes an upper bound of the rights that (untrusted)
code can use if we allow it to execute arbitrary instructions.
This upper bound is defined as the rights that are transitively
reachable from the capabilities in the capability registers.
However, the documentation does not define when a right is
reachable from a capability, so one cannot know exactly what
this upper bound is.

To illustrate the second benefit we discuss a security prop-
erty that describes how CHERI’s capability system can be used
to protect a reference monitor from untrusted code [42, §9.4].
The property describes the guarantees and the assumptions
under which they hold in great detail, but originally the
property was verified only by a high-level paper proof outline.
During our work we discovered that the CHERI ISA does not
satisfy the property, not because of a bug in the ISA, but
because of a mistake in the definition of the security property:
the property mistakenly states that after a domain transition
to the reference monitor, the reference monitor does not have
permission to its own memory anymore. While it would be
easy to fix the mistake in the prose definition, it would remain
difficult to validate whether the property would then be correct,
and whether the CHERI ISA would satisfy it.

To show that it is possible to formally define and prove
security properties over a production scale architecture, in the
remainder of this section we formally define the following
properties about CHERI, and formally prove (in Isabelle/HOL)
that the CHERI ISA satisfies them in §V.

• We define an order over capabilities, capturing when the
authority of one capability is contained in the authority
of another capability (§IV-A). This order clarifies what
“broadening the rights of a capability” should mean in
the prose definition of capability monotonicity.

• We define an abstraction of CHERI-MIPS with abstract
actions for each type of memory access and capability
manipulation, capturing the intentions of CHERI-MIPS
instructions by mapping them onto these actions (§IV-B).
For each action, we state under what conditions it can
be performed, and what effects it has. Amongst other
things, this precisely states the effects of instructions
that can broaden the rights of a capability, clarifying
what “controlled violation of capability monotonicity”
should mean. It also states properties that have no prose
counterparts in the CHERI documentation, but that are
nonetheless crucial to the capability system.

• We characterise which capabilities a (potentially com-
promised) compartment could access or construct if it is
allowed to execute arbitrary code, and we state related

properties about which part of the memory and which
registers the compartment can overwrite (§IV-C). This
captures the “reachable rights for executing code”.

• Turning from properties about the capability system itself
to use-cases thereof, we state what assumptions need to
be satisfied in order to isolate a compartment from the rest
of the program, and we state which guarantees CHERI-
MIPS then offers (§IV-D). This property is inspired by
the reference monitor example discussed above.

When formalising security properties one should consider
which mathematical concepts to use to express them: more
sophisticated mathematics can let one state properties closer
to one’s intention, or more elegantly, but it can also make
them less accessible. Here, we spell out properties in terms of
concrete traces of the ISA model, for accessibility.

A. The Order Over the Authority of Capabilities

Recall from §II that a capability can authorise memory
accesses and the sealing/unsealing of other capabilities, if it
has a tag, is unsealed itself, its permissions allows the type of
access or operation (e.g. load, store, execute, seal, unseal), and
its memory region contains the footprint of the access or the
object type of the sealed/to be sealed capability. Also recall
that invoking a pair of sealed capabilities sets the program
counter to the address of the code capability and atomically
unseals both capabilities.

Here we define an order, ≤, that captures when one capa-
bility has at least as much authority as another capability. It is
based on the following observations. The authorities of sealed
and unsealed capabilities are incomparable even if they have
the same bounds and permissions: sealed capabilities cannot
authorise memory accesses or operations on other capabilities,
while unsealed capabilities cannot be invoked. We also observe
that invalid capabilities have no authority; sealed capabilities
are immutable while they stay sealed; unsealed capabilities
can be restricted by shrinking their bounds or removing their
permissions; and the virtual address of unsealed capabilities
can be changed to any value without affecting the authority.
This leads to the following.

Definition 1 (Order over capabilities). We say cap ≤ cap′

if either cap is invalid (Line 2 below), or cap and cap′ are
equal (Line 3), or both capabilities are valid and unsealed
(Lines 4 and 5) and: the bounds of cap is contained in the
bounds of cap′ (Line 6), the permissions of cap are less then
or equal to those of cap′ (Line 7) and similarly for the user
permissions (Line 8), their object types agree (Line 9), and
their reserved bits agree (Line 10). Note that Lines 4–10 do
not constrain the virtual addresses. As usual in Isabelle and in
functional languages, we write function application just with
juxtaposition, e.g. IsSealed cap is just the IsSealed function
(returning a boolean) applied to cap.

1 cap ≤ cap ′ is defined as
2 not Tag cap
3 or cap = cap ′

4 or Tag cap and Tag cap ′

5 and not IsSealed cap and not IsSealed cap ′

6 and CapBounds cap ⊆ CapBounds cap ′

7 and Perms cap ≤bitwise Perms cap ′

8 and UPerms cap ≤bitwise UPerms cap ′

9 and ObjectType cap = ObjectType cap ′

10 and Reserved cap = Reserved cap ′

This order is reflexive and transitive (a preorder). It is not
antisymmetric: if cap and cap′ are valid, unsealed, and differ
only by their virtual addresses, we can have cap ≤ cap′,
cap′ ≤ cap, and cap 6= cap′. The preorder is also not total: if
cap and cap′ are respectively the sealed and unsealed version
of the same capability, then cap 6≤ cap′ and cap′ 6≤ cap.

B. Capturing the Intention of Instructions

We now define properties about the effects of a single
execution step, abstracting from the detailed behaviour of
CHERI-MIPS instructions defined by the L3 (or Sail) model.
Our first goal is to capture the principle of intentional use: for
example, if the intention of the execution step is to load data
using the authority of the capability in register 2, then our
properties should forbid this execution step if that does not
have enough authority, even if capabilities in other registers
would be able to authorise the load. We capture the intentions
of each instruction by mapping them onto abstract actions:
we define an abstract action for each kind of memory access
(loading data, storing data, loading capabilities, and storing
capabilities), one for each kind of capability manipulation
(restricting, sealing, unsealing, and invoking it), and one for
hardware exceptions. Abstract actions contain some extra
information, for example the register index of the capability
that is used as authority (if applicable). By mapping the 180-
odd CHERI-MIPS instructions onto these nine actions we
abstract away from many details but retain the ability to define
different security properties for different intentions.

Our second goal is that the properties defined in this
subsection are strong enough to imply the properties in §IV-C
and §IV-D. To achieve this we define an invariant about
address translation, and properties that describe what happens
when a certain abstract action is not intended, for example if
the instruction does not intend to store anything to an address
a, then the memory at a should remain unchanged.

We first define the non-domain-crossing abstract actions.
• LoadDataAction has parameters auth , the register of the

capability that is used as authority, a , the physical address
of the data, and l , the length of the data that is loaded.
StoreDataAction is the analogue for stores.

• LoadCapAction has parameters auth , the register of the
capability that is used as authority, a , the physical address
of the capability that is loaded, and r , the destination
register. StoreCapAction is the analogue for storing
capabilities, except here r is the source register and a
the physical address of the destination.

• RestrictCapAction has parameters r , the source register,
and r ′, the destination register where a restricted version
of the source is copied to.

• SealCapAction has parameters auth , the register of the
capability that is used as authority, r , the source register,
and r ′, the destination register where a sealed version of
the source is copied to. UnsealCapAction is the analogue
for unsealing capabilities.

The following actions yield the execution to another domain:
• RaiseException has no parameters.
• InvokeCapability has parameters r, the register of the

code capability, and r′, the register of the data capability
that is invoked.

An instruction intention can either be a single action that yields
the execution, or a set of actions that do not (e.g. for the
CJALR “jump and link capability register” instruction, which
manipulates two capabilities in one execution step):
• SwitchDomain has parameter a , an action that yields the

execution to another domain,
• KeepDomain has parameter actions , a set of actions that

continue the execution in same domain.
Mapping instructions onto the abstraction is mostly straight-

forward. For example, the CSeal instruction executed with
parameters (cd , cs, ct) maps to

KeepDomain {SealCapAction ct cs cd}.

Instructions that access memory are less straightforward, as
their parameters refer to virtual memory, while the parameters
of abstract actions refer to physical memory. When mapping
these instructions we therefore translate the addresses. Since
CHERI-MIPS instructions only access memory from at most
one page, these translated addresses form a contiguous region
of physical memory. Furthermore, instructions that load capa-
bilities map to both a LoadCapAction and a LoadDataAction
because they can indirectly be used to load data (for example,
by loading data into a capability register and inspecting the
fields of the capability). Similarly, instructions that store ca-
pabilities map to a StoreCapAction and a StoreDataAction .

1) Defining security properties for the abstraction: For
each abstract action we define a property that states the
prerequisites and effects of that action. These are properties
of an arbitrary CHERI-MIPS ISA semantics sem , which we
later prove hold of the actual semantics. The property about
restricting capabilities is the simplest, requiring only that the
resulting capability is less than or equal to the original:

Property 2 (Restricting capabilities). An ISA semantics sem
satisfies this property if Lines 2–6 below hold. Assume s is a
valid machine state (Line 3). This is a technical assumption:
the type state can express things that are not supported by
CHERI-MIPS, e.g. little-endian mode, so we need to require
that s does not. Then consider an execution step from state s
to s′ that keeps the domain and performs a number of actions
(Line 4) and assume that RestrictCapAction r r′ is one of
those (Line 5). The property then requires that the capability

in the destination register r′ in the resulting state s′ is less than
or equal (in the §IV-A order) to the capability in the source
register r in the original state s (Line 6).

1 RestrictCapProp sem is defined as
2 for all s s ′ actions r r ′.
3 if StateIsValid s
4 and (KeepDomain actions, s ′) ∈ sem s
5 and RestrictCapAction r r ′ ∈ actions
6 then CapReg s ′ r ′ ≤ CapReg s r

The next property states that to store data one needs a
valid, unsealed capability with the PermitStore permission, and
the physical addresses stored to should correspond to virtual
addresses that lie within the bounds of the capability:

Property 3 (Storing data). A semantics sem satisfies this
property if the following holds. Assume s is a valid state
(Line 3), consider an execution step from state s to s′ that
keeps the domain and performs a number of actions (Line 4),
and assume that StoreDataAction auth a ln is one of those
(Line 5). The property then requires the capability used as
authority has a tag (Line 6), is unsealed (Line 7), and has
PermitStore permission (Line 8); that the length ln of the
stored segment is non-zero (Line 9); that the addresses of
the segment are all translations of virtual addresses that the
capability has authority to (Line 10); and that the tag at address
a has been stripped, or the capability at that address remained
unchanged (Line 13). The latter case allows the action to
behave as a no-op, relevant e.g. for stores to UART devices.

1 StoreDataProp sem is defined as
2 for all s s ′ actions auth a ln.
3 if StateIsValid s
4 and (KeepDomain actions, s ′) ∈ sem s
5 and StoreDataAction auth a ln ∈ actions
6 then Tag (CapReg s auth)
7 and not IsSealed (CapReg s auth)
8 and PermitStore (CapReg s auth)
9 and ln 6= 0
10 and MemSegment a ln
11 ⊆ TranslateAddresses (CapBounds (CapReg s auth))
12 Store s
13 and not Tag (MemCap s ′ (GetCapAddress a))
14 or MemCap s ′ (GetCapAddress a) =
15 MemCap s (GetCapAddress a)

The property for storing capabilities is similar: it assumes
that StoreCapAction auth r a is one of the performed
actions, and requires the capability used as authority has
a tag, is unsealed, and has both the PermitStore and the
PermitStoreCapability permissions; that the addresses of the
capability-sized segment starting at a are all translations of
virtual addresses that the capability has authority to; and that
the capability at address a in the resulting state s′ equals the
capability in register r in state s.

The properties for loading data and loading capabilities are
analogues of the above. The fact that the capability at the
right of Fig. 2 in §II-A cannot be used to load the secret

key is a consequence of the property about loading data.
For the other abstract actions we also define properties that
describes the necessary authority and the effects of the action,
and we define two security properties that are not directly
linked to performing a specific action, but that are linked to
the execute and access-system-register permissions. These are
in the appendix.

2) Defining invariants of the execution step: There are two
invariants capturing what happens if certain abstract actions
are not performed. The first requires that if no action specifies
that anything was stored to address a, then the memory at a
remains unchanged. The second requires that if no action has
capability register r as its destination register, the capability
at r remains unchanged. Their formal definitions are given
in the appendix. Then there is an invariant that requires that
the address translation function remains unchanged during
execution steps from s to s′ that do not raise an exception and
where the PCC of s does not have the permission to access
system registers.

3) Defining capability derivations: The CHERI documen-
tation describes informal properties about capability deriva-
tions. For example, capability provenance states that valid
capabilities can only be “derived from” other valid capabil-
ities [42, §2.3.1], and capability monotonicity states that new
capabilities must be “derived from” existing capabilities via
manipulations that do not broaden the rights of the capability.
But what “derive” precisely means is not defined.

We can now precisely define what derivations are, in terms
of the abstract actions an instruction maps to. For example, if
an instruction maps to RestrictCapAction r r′, we say the
capability in register r′ in the resulting state is derived from
the capability in r in the original state. Capability provenance
can then be formalised by stating that the derived capability
can only be valid if the capability it is derived from is
valid, and capability monotonicity can be formalised by stating
that for all actions except SealCapAction , UnsealCapAction ,
InvokeCapability , and RaiseException the derived capability
is less than or equal to the capability it is derived from.

Capability provenance and monotonicity capture properties
about derivations that should certainly hold and that help ex-
plain the capability system. Nevertheless, in our proofs we did
not find them useful as independent properties: whenever we
needed to relate a derived capability to the original capability,
we also needed to know that the capability that authorised
the derivation had enough authority and, in the case of non-
monotonic derivations, what the resulting capability could be,
which is not captured by these. In other words, the proof forced
us to identify more fundamental properties about the design.

C. Characterising Reachable Capabilities

We now characterise which capabilities a (potentially un-
trusted) compartment can access or construct if it is allowed
to execute arbitrary code. This is a fundamental property
for compartmentalisation, as it allows reasoning about which
memory or system registers the compartment can access,

whether it can delegate its own capabilities to other compart-
ments, and which addresses in other compartments it can jump
to. CHERI supports many compartmentalisation scenarios, for
example compartments that can communicate via a region of
shared memory, or that can only communicate via another
compartment, or that share the same code but work on isolated
data, or have isolated code but share their data. Much of what
compartmentalisation means is common to all these.

Our definition of reachable capabilities depends on the capa-
bilities in the current state. The definition is inductive because
reaching a capability can make other capabilities reachable.
For example, a capability in a register might authorise loading
another capability from memory, and that capability might be
able to authorise unsealing a capability, etc.

Definition 4. The set of reachable capabilities in a state s are
inductively defined by the following rules.

• The base case: if a register r is always accessible (either
a normal register, or the special registers DDC or TLSC)
and the capability cap in that register is valid, then cap
is reachable.

• If cap is a reachable, unsealed capability with the Permit-
LoadCapability permission, a is a physical address that
is a translation of a virtual address within the bounds of
cap, and the capability cap′ at address a is valid, then
cap′ is reachable.

• If cap is a reachable capability, and cap′ is a valid capa-
bility less than or equal to cap, then cap′ is reachable.

• If cap is a reachable, unsealed capability, and sealer
is a reachable, unsealed capability with the PermitSeal
permission, and the object type t lies within its bounds,
then the capability that is the result of sealing cap with
object type t is reachable.

• If cap is a reachable, sealed capability, and unsealer is
a reachable, unsealed capability with the PermitUnseal
permission, and the object type of cap lies within its
bounds, then the capability that is the result of unsealing
cap is reachable.

The property that justifies the name “reachable capabilities”
says that, until the execution is yielded to another domain, the
set of reachable capabilities is monotonic. To avoid confusion
with capability monotonicity (above), we call that property
intra-instruction capability monotonicity and the property we
define here reachable capability monotonicity:

Property 5 (Reachable capability monotonicity). An ISA
semantics sem satisfies this if the following holds. Assume
s is a valid state (Line 3) and the access-system-register
permission is not reachable from s (Line 4). Consider an
execution trace from s to s′ (Line 6) and assume it is intra-
domain (no instruction in the trace yields the execution to
another domain, Line 7). Then the property requires that the
capabilities reachable in s′ were already reachable in s.

1 MonotonicityReachableCaps sem is defined as
2 for all s s ′ trace.
3 if StateIsValid s
4 and not SystemRegisterAccess
5 (ReachablePermissions s)
6 and s ′ ∈ FutureStates sem s trace
7 and IntraDomainTrace trace
8 then ReachableCaps s ′ ⊆ ReachableCaps s

From reachable capability monotonicity we can derive prop-
erties about which memory a compartment can overwrite:

Property 6 (Intra-domain memory invariant). If each reach-
able capability in s either does not have the PermitStore and
PermitStoreCapability permissions, or does not contain an
address within its bounds that translates to a; the execution
trace from s to s′ is intra-domain; and s is valid and in user
mode; then the memory at a in s′ is the same as in s.

The memory does not change during execution steps that
yield the execution, so we define the same property for traces
that are intra-domain except for the last step, which yields the
execution to another domain. For the invariance of memory
tags and special registers we define similar properties.

D. Isolating a User-space Compartment

Finally, we consider a simple compartmentalisation sce-
nario, where a compartment is isolated from the rest of the
program. Isolation here means that the compartment can only
access its own region of memory, it cannot access any special
registers, and when it yields the execution it can jump only
to a restricted set of addresses. CHERI only guarantees this
if the compartment is set up correctly. The definition below
gives the top-level statement, referring to some definitions we
define later.

Property 7 (Compartment isolation). An ISA semantics sem
satisfies this property if the following holds. Assume s is a
state that is correctly set up (Line 3); we define this precisely
in Definition 17. Consider an execution trace consisting of
a prefix trace that is intra-domain, meaning none of its steps
yield the execution (Line 4), and a final step that does yield the
execution (Line 5). Let s′ be the state after the latter (Line 6).
Then the property requires that the isolation guarantees hold
in s′ (Line 7). We define what these guarantees entail in
Definition 8.

1 CompartmentIsolation sem is defined as
2 for all addrs types s s ′ trace step.
3 if IsolatedState addrs types s
4 and IntraDomainTrace trace
5 and SwitchesDomain step
6 and s ′ ∈ FutureStates sem s (trace; step)
7 then IsolationGuarantees addrs types s s ′

The predicate IsolatedState that defines when a state is
correctly set up is defined in detail in Definition 17 in the
appendix. The intuition is that the capabilities the compartment
can reach (according to Definition 4) do not have authority out-
side the region of memory that we grant to the compartment,

and that the compartment does not have permission to unseal
the capabilities of other protection domains (cf. the example
in §II-B). Below we define the predicate IsolationGuarantees
that defines the guarantees that CHERI offers.

Definition 8 (Isolation guarantees). Let addrs be the set of
virtual addresses that we grant to the compartment, types the
set of object types we grant to the compartment, and s and
s′ arbitrary states. The following describes the guarantees that
one expects if a compartment starts in s and has yielded the
execution in s′.

1 IsolationGuarantees addrs types s s ′ is defined as
2 Base (PCC s ′) + PC s ′

3 ∈ ExceptionPCs ∪ InvokableAddresses addrs s
4 and for all a.
5 if not a ∈ TranslateAddresses addrs Store s
6 then MemData s ′ a = MemData s a
7 and MemTag s ′ (GetCapAddress a) =
8 MemTag s (GetCapAddress a)
9 and for all r.
10 if r 6= 0 and r 6= 1 and r 6= 31
11 then SpecialCapReg s ′ r = SpecialCapReg s r

Lines 2–3 limit the exit points of the compartment. They
state that the address of the next instruction in s′ (given by the
base of the PCC plus the PC) is either an exception handler
entry address (CHERI-MIPS has a fixed set of these) or an
address that one of the invokable capabilities point to.

Lines 4–8 state that the memory that is not granted to
the compartment remained unchanged. More precisely, if the
physical address a is not a translation of a virtual address in
addrs (Line 5), then the memory value at a in s′ is still the
same as it was in s (Line 6), and the tag of the 32-byte region
that a belongs to is still the same (Lines 7–8).

Finally, Lines 9–11 state that the special registers stayed
the same, except for registers 0, 1, and 31 (DDC, TLSC, and
EPCC). The DDC and TLSC are always accessible, while the
EPCC is overwritten if the compartment raises a hardware
exception.

V. PROVING THE ARCHITECTURAL SECURITY PROPERTIES

Mathematical proof can give much higher confidence than
traditional testing-based methods, because it considers every
possible corner case, not just those exercised by the tests.
This is especially important for security properties. However,
there are three challenges in proving security properties for
production-scale architectures. The first is that architectures
contain many low-level details that are easy to miss, so check-
ing a paper proof by hand would be unusably error-prone. To
solve this we mechanised all our proofs in Isabelle [39], an
interactive theorem prover. Such tools (Isabelle, Coq, HOL4,
and others) let one write proof scripts – instructions for how to
construct a proof, combining automated and manual reasoning
– and the machine checks that they do construct valid proofs.
To minimise the trusted computing base (TCB) Isabelle has
an LCF-style inference kernel [43]: proof scripts generate a
series of simple inference steps that are checked by a small

kernel. Because we use the Isabelle export of the L3 model as
the definition of CHERI-MIPS, our TCB consists only of this
L3-to-Isabelle translation and the Isabelle kernel. This gives
very high assurance that the proved statements are indeed true
in the L3 definition of CHERI-MIPS (the user also has to read
and understand the statements, of course).

The second challenge is the scale of the proof development.
Production-scale architecture specifications are large, and any
part of the architecture could potentially break security prop-
erties, even if it does not directly interact with the security
mechanisms. For example, in CHERI-MIPS, the majority of
the 180-odd instructions do not interact with capabilities, but
could still break the properties of §IV. To solve this challenge
we developed automated proof methods, tailored to L3 spec-
ifications, that reduce the need for manual proof scripts. We
used Eisbach [44], an extension of Isabelle’s proof language,
for these. Our custom tactics can automatically prove the
security properties for most CHERI-MIPS instructions that
do not directly interact with the capability mechanisms, and
significantly simplify the proofs for the others.

The third challenge is that architectures keep evolving.
As a research architecture, CHERI has evolved rapidly, but
industrial architectures such as Intel 64/IA-32 and ARMv8-A
do too, with new versions every six months or so. It would
be infeasible to continuously re-check whether a manual
proof still holds for updated versions of the architecture, but
automated theorem provers can do this automatically, and will
point out any places where the proof fails. Our automatic proof
tactics are somewhat resilient to changes in the model. To
further reduce the effort needed to change our proofs we use
python scripts to generate the statements and proofs of many
lemmas. The Isabelle LCF-style kernel means that these scripts
are not part of our TCB.

We finished the proof of our first variant of monotonicity
of reachable capabilities in October 2016 and since then have
rerun the proof regularly on new versions of the L3 model. In
our experience the effort needed to adapt our proofs to changes
in the ISA were reasonable. Some changes caused us to invent
new properties, for example the introduction of capability
invocation; and other changes involved refactoring properties
and proofs, for example when capability registers were split
into normal and special registers; but for most changes we only
needed to update the scripts that auto-generate the majority of
our proofs. This did need prover expertise, though.

All this made it possible to integrate our proofs in the
CHERI-MIPS design process.

Theorem 9. The L3 model of the CHERI-MIPS ISA satisfies
the properties defined or mentioned in §IV-B, namely proper-
ties about execution, loading and storing data, loading, storing,
restricting, sealing, unsealing and invoking capabilities, ac-
cessing system registers, and exceptions; and invariants about
memory values, tags, valid states, and address translation.

Theorem 10. Any semantics that satisfies the security proper-
ties defined in §IV-B, satisfies reachable capability monotonic-
ity (Property 5), the intra-domain memory invariant (Prop-

erty 6), and the other properties mentioned in §IV-C.

Together with Theorem 9 this shows that CHERI-MIPS
satisfies the properties we defined in §IV-C.

Theorem 11. Any semantics that satisfies the security proper-
ties defined in §IV-B, satisfies the property about compartment
isolation (Property 7).

The entire proof development is 33k lines of Isabelle/HOL,
of which 16k lines are generated. Checking the proof in
Isabelle takes 25 minutes on a 16GB Intel i7-2600. Inventing
and proving the properties took around three person-years, a
significant effort, but only a small fraction of the roughly 120
academic person-years for the CHERI project as a whole.

The proofs consider predictable and unpredictable behaviour
separately. In the latter case, the execution step does not
change the memory or any capability registers, and the proof is
straightforward. In the former case, the semantics of CHERI-
MIPS is deterministic and can be expressed in a state monad.
We express our properties as Hoare triples [45] over this
monad and use proof tactics to compute preconditions that
imply the postcondition. This is complicated by the fact that
the L3 model uses many auxiliary definitions that in principle
can read and modify any part of the state. The core of our
custom proof tactics is a tactic that decides whether two
auxiliary definitions commute, for example if they do not write
to the same part of the state, and neither reads the part of the
state that the other writes to.

VI. BUGS FOUND BY PROOF WORK

The point of our proof is to provide assurance that the
properties hold of the CHERI-MIPS architecture, not merely
to find some bugs, but, unsurprisingly, we did find some along
the way. CHERI-MIPS was already reasonably mature when
we started the proof, so these are not very numerous – but
each could lead to security vulnerabilities, and it is instructive
to see what can remain, even in a carefully considered and
reviewed design, without proof.
• The CLC instruction loads a capability cap if the capability

cap′ that is used as authority has the PermitLoadCapa-
bility permission. If cap′ does not have that permission,
the instruction still loads the byte representation of cap,
but without its tag. This does not violate our property
about loading capabilities, but it does violate our property
about loading data, as CLC loads from the memory without
checking the PermitLoad permission. This bug was in the
architecture document and the L3 model.

• Legacy MIPS stores allowed writing one byte past the
region of memory the code had permission to, and, if the
code had access to the end of the address space, stores
could write to the beginning of the address space. (In L3)

• In some cases, unaligned MIPS loads allowed loading
from a region of memory without permission. (In the L3
model and the Bluespec hardware implementation.)

• The CBuildCap instruction created a capability with the
wrong base. (In L3)

• Exception return (ERET) could access a system register
(the EPCC) without permission. (In L3)

• The CCallFast instruction, which invokes capabilities,
exposed the unsealed code capability, breaking isolation
between compartments that can invoke each other’s ca-
pabilities. (In L3)

We also found counter-intuitive behaviour that led to the
discovery of a vulnerability in CheriBSD, allowing a leak of
an unsealed data capability. Throwing an exception just after
performing a “CCallFast” gave the exception handler access
to the unsealed data capability. By registering a signal handler
to deal with segfaults and triggering a segfault in the delay
slot of CCallFast, the signal handler could obtain the unsealed
data capability of another protection domain and use it to
access memory. One could conceivably fix this in CheriBSD,
but correct code would be harder to write and understand, so
we removed the CCallFast delay slot.

VII. TRANSITION FROM L3 TO SAIL

In another aspect of formal engineering maintenance, we
are in the process of shifting our ISA specifications from L3
to Sail [22], the design of which has been informed by our
experience with L3. Sail generates emulators in OCaml and C,
as well as theorem prover definitions for Isabelle/HOL, HOL4,
and Coq, and Sail definitions can be integrated with multicore
relaxed memory models. Sail models include CHERI-MIPS
(ported from the L3 model and included in the CHERI archi-
tecture document [6]), a complete ISA semantics for ARMv8-
A (automatically derived from the Arm-internal definition),
and new hand-written models for RISC-V and CHERI-RISC-
V. In ongoing and future work (not part of the contribution of
this paper) we aim to uniformly prove security properties of
multiple realisations of CHERI for different base architectures;
we have already established a version of intra-instruction
capability monotonicity for Sail CHERI-MIPS.

VIII. RELATED WORK

In terms of formalising full-scale ISA definitions, using
them in mainstream engineering, and proving security prop-
erties of them, the closest related work is Reid et al.’s within
Arm, shifting essentially the entire ARMv8-M and ARMv8-A
sequential ISA specifications from pseudocode to machine-
readable definitions, which are now used for documentation
and hardware verification [34], [46], [47]. These specifications
are 10x or more larger, and much more complex, than CHERI-
MIPS. For ARMv8-M, he formalised 59 properties about the
ISA, based on prose statements in the architecture document,
and used an SMT model-checking approach to verify that
they hold [48]. Some of these properties are security-relevant,
but they are much more specific than the whole-architecture
properties we consider, which are strong enough to prove a
use case correct (Property 7). On the other hand, his SMT ap-
proach is largely automated, while our proofs require theorem-
proving expertise. In earlier work we proved correctness of an
abstraction of address translation w.r.t. the Sail version of this
ARMv8-A model [22].

Schwarz and Dam [49] use the HOL4 interactive theorem
prover to verify noninterference properties of MIPS and a
fragment of ARMv7, showing that the contents of privileged
registers do not have observable effects during user-mode
execution. These properties are certainly necessary, but are
not by themselves strong enough to prove the correctness of
use cases.

Turning to security properties for capability systems, the
closest related work is by Skorstengaard et al. [50]. Our
properties give an upper bound on what (untrusted) code can
do until it yields the execution, but their capability safety result
also allows reasoning about intermingled trusted and untrusted
execution. They use it to prove that a certain calling convention
guarantees control-flow correctness and encapsulation of local
state. This is a stronger result than ours, but it is w.r.t. an
idealised capability machine, inspired by CHERI but much
simpler, rather than a complete ISA; their security properties
are defined in terms of a step-indexed Kripke logical relation,
which is hard to understand for practitioners; and their proofs
are not mechanised. Ideally one would combine the two.

De Amorim et al. [51], [52] prove that their PUMP [53],
[54] architecture, supporting multiple hardware security poli-
cies, correctly implements a memory safety policy. This is
mechanised, but for an idealised PUMP, not a full ISA.

To reason about confidentiality in x86 SGX enclave pro-
grams, Sinha et al. [55] extend BAP [56] with a model of the
SGX instructions, mapped into BoogiePL [57], but they do
not discuss validation of this model, or its relationship with
the complex x86 system semantics.

Ferraiuolo et al. [58] describe a RISC-V-based processor im-
plementation that enforces secure information flow, including
controlled timing channels, established using a security-typed
hardware description language. Zagieboylo et al. [59] discuss
an ISA for this and non-mechanised proofs, albeit somewhat
idealised.

There is a very extensive literature discussing capabilities,
access control, and information flow control in general, both
informally and formally, dating back to the 1960s. We situate
CHERI in that context in [6, Ch. 11]; space precludes detailed
discussion here. In the context of software capability systems,
Doerrie [60, Ch. 12] illustrates the need for proof mechani-
sation, identifying flaws in an earlier pen-and-paper proof of
confinement for an idealised capability machine [61]. Their
“proof that the potential access of the system is attenuating”
is broadly similar to our Property 5 Reachable capability
monotonicity. Murray et al. [62] give a mechanised proof of
information flow properties for seL4.

Leaving security aside, there is extensive work on formal
ISA modelling for hardware verification, e.g. for x86 in
ACL2 [63], [64], in Coq [65], for RISC-V [66], and for
Arm [34].

ACKNOWLEDGEMENTS

We thank Wes Filardo and Prashanth Mundkur for com-
ments, and all the members of the CHERI team for their work
on the project as a whole.

This work was supported by EPSRC programme grant
EP/K008528/1 (REMS: Rigorous Engineering for Mainstream
Systems). This work was supported by a Gates studentship
(Nienhuis). This project has received funding from the Euro-
pean Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement 789108, ELVER). This work was supported by the
Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL), under contracts
FA8750-10-C-0237 (CTSRD), HR0011-18-C-0016 (ECATS),
and FA8650-18-C-7809 (CIFV). The views, opinions, and/or
findings contained in this paper are those of the authors and
should not be interpreted as representing the official views
or policies, either expressed or implied, of the Department of
Defense or the U.S. Government. Approved for public release;
distribution is unlimited.

APPENDIX

A. Stating More Architectural Security Properties

In §IV we defined the properties about restricting capabili-
ties (Property 2) and storing data (Property 3). Here we define
some of the additional properties needed, all of which have
been established by our proof (Theorem 9).

The property about unsealing capabilities is stated below:

Property 12 (Unsealing capabilities). A semantics sem satis-
fies this property if the following holds. Assume s is a valid
state (Line 3), consider an execution step from s to s′ that
keeps the domain and performs a number of actions (Line 4),
and assume that UnsealCapAction auth r r′ is one of those
actions (Line 5). The property then requires the capability that
is used as authority has a tag (Line 6), is unsealed (Line 7),
and has the PermitUnseal permission (Line 8); that the object
type of the capability that is being unsealed lies within the
bounds of the capability that is used as authority (Line 9);
that the capability that is being unsealed was sealed in state s
(Line 11); and that the capability in the destination register r′

in the resulting state s′ is less than or equal to the unsealed
version of the original capability (Line 12).

1 UnsealCapProp sem is defined as
2 for all s s ′ actions auth r r ′.
3 if StateIsValid s
4 and (KeepDomain actions, s ′) ∈ sem s
5 and UnsealCapAction auth r r ′ ∈ actions
6 then Tag (CapReg s auth)
7 and not IsSealed (CapReg s auth)
8 and PermitUnseal (CapReg s auth)
9 and UCast (ObjectType (NormalCapReg s r))
10 ∈ CapBounds (CapReg s auth)
11 and IsSealed (NormalCapReg s r)
12 and NormalCapReg s ′ r ′

13 ≤ NormalCapReg s r with
14 IsSealed ← False, ObjectType ← 0

The property about sealing capabilities is the analogue of
the above. Then there are two security properties that are

1 define COP2 > CHERICOP2 > CSeal (cd::reg, cs::reg, ct::reg)
=

2 if not CP0.Status.CU2 then
3 SignalCP2UnusableException
4 else if not getTag(CAPR(cs)) then
5 SignalCapException(capExcTag,cs)
6 else if not getTag(CAPR(ct)) then
7 SignalCapException(capExcTag,ct)
8 else if getSealed(CAPR(cs)) then
9 SignalCapException(capExcSeal,cs)

10 else if getSealed(CAPR(ct)) then
11 SignalCapException(capExcSeal,ct)
12 else if not getPerms(CAPR(ct)).Permit_Seal then
13 SignalCapException(capExcPermSeal,ct)
14 else if getOffset(CAPR(ct)) >=+ getLength(CAPR(ct)) then
15 SignalCapException(capExcLength,ct)
16 else if (getBase(CAPR(ct)) + getOffset(CAPR(ct))) >=+

[2**OTYPEWIDTH] then
17 SignalCapException(capExcLength,ct)
18 else if not canRepSeal (CAPR(cs), true) then
19 SignalCapException(capExcInexact,cs)
20 else
21 {
22 var new_cap = CAPR(cs);
23 new_cap <- setSealed(new_cap, true);
24 new_cap <- setType(new_cap, (getBase(CAPR(ct)) +

getOffset(CAPR(ct)))<(OTYPEWIDTH-1):0>);
25 CAPR(cd) <- new_cap
26 }

Fig. 5. The L3 specification of the CSeal cd, cs, ct Seal a Capability
instruction. Capability register cs is sealed with otype ct.base+ct.offset
and the result placed in cd. ct must grant Permit_Seal permission, and the
new otype of cd must be between ct.base and ct.base+ct.length-1.

1 define COP2 > CHERICOP2 > CCallFast (cs::reg, cb::reg) =
2 if not CP0.Status.CU2 then
3 SignalCP2UnusableException
4 else if not getTag(CAPR(cs)) then
5 SignalCapException(capExcTag,cs)
6 else if not getTag(CAPR(cb)) then
7 SignalCapException(capExcTag,cb)
8 else if not getSealed(CAPR(cs)) then
9 SignalCapException(capExcSeal,cs)

10 else if not getSealed(CAPR(cb)) then
11 SignalCapException(capExcSeal,cb)
12 else if getType(CAPR(cs)) <> getType(CAPR(cb)) then
13 SignalCapException(capExcType,cs)
14 else if not getPerms(CAPR(cs)).Permit_CCall then
15 SignalCapException(capExcPermCCall,cs)
16 else if not getPerms(CAPR(cb)).Permit_CCall then
17 SignalCapException(capExcPermCCall,cb)
18 else if not getPerms(CAPR(cs)).Permit_Execute then
19 SignalCapException(capExcPermExe,cs)
20 else if getPerms(CAPR(cb)).Permit_Execute then
21 SignalCapException(capExcPermExe,cb)
22 else if getOffset(CAPR(cs)) >=+ getLength(CAPR(cs)) then
23 SignalCapException(capExcLength,cs)
24 else
25 {
26 CheckBranch;
27 BranchDelayPCC <- Some(getOffset(CAPR(cs)), setType(

setSealed(CAPR(cs), false),0));
28 IDC <- setType(setSealed(CAPR(cb), false), 0)
29 }

Fig. 6. The L3 specification of the CCallFast cs, cb instruction. The new
PCC and IDC are unsealed versions of cs and cb.

not linked to performing a specific action. The first describes
the authority the PCC must have if an action was performed
without raising an exception:

Property 13 (Executing). A semantics sem satisfies this prop-
erty if the following holds. Assume s is a valid state (Line 3),
and consider an execution step from s to s′ (Line 4) that did
not raise an exception (Line 5). The property then requires
that the PCC has a tag (Line 6), is unsealed (Line 7), has the
PermitExecute permission (Line 8), and that the address of the
next instruction lies within its bounds (Line 9).

1 ExecuteProp sem is defined as
2 for all s s ′ step.
3 if StateIsValid s
4 and (step, s ′) ∈ sem s
5 and step 6= SwitchDomain RaiseException
6 then Tag (PCC s)
7 and not IsSealed (PCC s)
8 and PermitExecute (PCC s)
9 and Base (PCC s) + PC s ∈ CapBounds (PCC s)

The second requires that if r is a special register (except the
DDC or TLSC) that is the parameter of a performed action,
then the PCC must have permission to access system registers
(the DDC and TLSC are accessible without that permission):

Property 14 (System register access). A semantics sem sat-
isfies this property if the following holds. Assume s is a valid
state (Line 3). Consider an execution step from s to s′ that
keeps the domain and performs a number of actions (Line 4).
Let r be a register that is not equal to 0 or 1 (respectively the
DDC and TLSC, Line 5) and that is a parameter of one of the
performed actions (Line 6). The property then requires that the
PCC has the permission to access system registers (Line 9).

1 SystemRegisterProp sem is defined as
2 for all s s ′ actions r.
3 if StateIsValid s
4 and (KeepDomain actions, s ′) ∈ sem s
5 and r 6= 0 and r 6= 1
6 and exists action.
7 action ∈ actions
8 and r ∈ CapDerivationRegisters action
9 then PermitAccessSystemRegisters (PCC s)

Then there are two invariants about what happens
when certain actions are not taken. The auxiliary function
CapDerivationTargets returns the target locations of an ac-
tion. For example, the target of StoreCapAction auth r a is
the address a and the target of SealCapAction auth r r′ is
the register r′. The first invariant states that the capability at
location loc remains invariant of none of the performed actions
has loc as their target:

Property 15 (Capability invariant). A semantics sem satisfies
this property if the following holds. Assume s is a valid state
(Line 3), consider an execution step from s to s′ that keeps
the domain and performs a number of actions (Line 4), and
assume that none of these actions has the location loc as their

target (Line 5). The property then requires that the capability
at location loc in the resulting state equals the capability at
loc in the original state (Line 8).

1 CapabilityInvariant sem is defined as
2 for all s s ′ actions loc.
3 if StateIsValid s
4 and (KeepDomain actions, s ′) ∈ sem s
5 and not exists action.
6 action ∈ actions
7 and loc ∈ CapDerivationTargets action
8 then Cap s ′ loc = Cap s loc

The second invariant is similar: if none of the performed
actions has the address a as their target, then the value at a in
the memory remains invariant. This property is more granular
than the capability invariant. For example, if an action changes
one byte in the byte representation of a capability, this invariant
requires that the other 31 bytes of the representation remain
unchanged even though the capability (as a whole) changes.

Then there are two properties about actions that yield the
execution. The first describes capability invocation:

Property 16 (Invoking capabilities). A semantics sem satis-
fies this property if the following holds.

1 InvokeCapProp sem is defined as
2 for all s s ′ r r ′.
3 if StateIsValid s
4 and (SwitchDomain (InvokeCapability r r ′), s ′)
5 ∈ sem s
6 then let codeCap = NormalCapReg s r in
7 let dataCap = NormalCapReg s r ′ in
8 Tag codeCap and Tag dataCap
9 and IsSealed codeCap and IsSealed dataCap
10 and PermitCCall codeCap
11 and PermitCCall dataCap
12 and PermitExecute codeCap
13 and not PermitExecute dataCap
14 and ObjectType codeCap = ObjectType dataCap
15 and PC s ′ = Offset codeCap
16 and PCC s ′ = codeCap with IsSealed ← False,
17 ObjectType ← 0
18 and BranchDelay s ′ = None
19 and BranchDelayPCC s ′ = None
20 and IDC s ′ = dataCap with IsSealed ← False,
21 ObjectType ← 0
22 and for all cb.
23 if cb 6= 26
24 then NormalCapReg s ′ cb =
25 NormalCapReg s cb
26 and for all cb. SpecialCapReg s ′ cb =
27 SpecialCapReg s cb
28 and for all a. Mem s ′ a = Mem s a

Assume s is a valid state (Line 3) and consider an execution
step from s to s′ that invokes a pair of a code and a data
capability (Line 4). The property then requires that both
code and data capability are valid (Line 8), sealed (Line 9),

have the permission to be invoked (Line 10–11), the code
capability has the permission to execute (Line 12), but the data
capability does not (Line 13), and both capabilities have the
same object type (Line 14). Furthermore, it requires that the
offset of the code capability is copied to the PC (Line 15), the
unsealed code capability is copied to the PCC (Line 16), the
MIPS branch slots are cleared (Line 18–19), the unsealed data
capability is copied to the IDC (Line 20), all normal registers
except register 26 (the IDC) remain unchanged (Line 22), all
special registers remain unchanged (Line 26), and the memory
remains unchanged (Line 28).

The second describes the effects of a hardware exception:
if an execution step from a valid state s to s′ raises an
exception, then the exception flag is set, the address of the next
instruction is one of a fixed set of exception entry addresses,
the KCC is copied to the PCC, all the normal capability
registers remain unchanged, the PCC is copied to the EPCC
(unless the exception flag was already set in s in which case
the EPCC remains unchanged), the special registers other than
EPCC remain unchanged, the memory remains unchanged,
and the MIPS branch slots are cleared.

Finally, we define two invariants. The first simply says that
if s is a valid state and there is an execution step from s to
s′, then s′ is also a valid state. The second says that if an
execution step from s to s′ did not raise an exception and the
PCC in s does not have permission to access system registers,
then the translation of any address a is the same in s as in s′.

Moving to the compartmentalisation scenario described in
§IV-D we define in detail when a state is correctly set up.

Definition 17 (Isolation assumptions). Let addrs be the set
of virtual addresses that we grant to the compartment, types
the set of object types we grant to the compartment, and s
an arbitrary state. Our aim is to require that each unsealed
capability the compartment can reach (according to Defini-
tion 4) does not have authority outside the virtual addresses
addrs and types types that we granted to the compartment.
Because the inductive definition of reachable capabilities is
difficult to work with, we overapproximate the authority of
unsealed, reachable capabilities as follows. First, consider
the set grantedCaps of capabilities that we granted to the
compartment, consisting of the program counter capability
(PCC), the capability in the MIPS branch slot (if there is one),
capabilities in normal capability registers, capabilities in the
special registers 0 and 1 (DDC and TLSC), and the capabilities
in the physical region of memory that correspond to the
virtual addresses addrs . From that set, we take each capability
whose authority can be used by the compartment, namely each
capability that has a tag, and that is either unsealed, or sealed
with an object type in types . The resulting set, grantedAuth ,
is the overapproximation (the following lines do not claim that,
but we prove it as part of Theorem 11).

Line 2 requires that capabilities in grantedAuth do not have
the permission to access system registers; Line 3 requires that
the bounds of capabilities in grantedAuth with permission to
access memory are contained in addrs; and Line 4 requires

that capabilities in grantedAuth with permission to seal or
unseal have authority only to object types in types . Line 5
is an assumption on the capabilities that the compartment
can invoke. The compartment can invoke any capability in
grantedCaps that has a tag and that has the PermitCCall
permission. The assumption requires that these capabilities are
sealed and that their object type is not contained in types ,
which ensures that the compartment cannot directly use the
authority of these capabilities. Line 6 below requires that
addrs is capability aligned. This means that for every a and a′

within the same capability (only differing in their last 5 bits)
either both or neither are in addrs . Finally, Line 7 requires
that s is a valid state.

1 IsolatedState addrs types s is defined as
2 NoSystemRegisterAccess addrs types s
3 and ContainedCapBounds addrs types s
4 and ContainedObjectTypes addrs types s
5 and InvokableCapsNotUsable addrs types s
6 and CapabilityAligned addrs
7 and StateIsValid s

REFERENCES

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 48–62.

[2] M. Miller, “Trends, challenge, and shifts in software vulnerabil-
ity mitigation,” https://github.com/Microsoft/MSRC-Security-Research/
tree/master/presentations/2019_02_BlueHatIL, Februari 2019, Mi-
crosoft Security Response Center.

[3] B. Martin, M. Brown, A. Paller, D. Kirby, and S. Christey, “2011
CWE/SANS top 25 most dangerous software errors,” Common Weakness
Enumeration, 2011.

[4] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey et al., “The matter
of Heartbleed,” in Proceedings of the 2014 conference on Internet
Measurement. ACM, 2014, pp. 475–488.

[5] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
CHERI capability model: Revisiting RISC in an age of risk,” in
ACM/IEEE 41st International Symposium on Computer Architecture,
ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014, 2014, pp. 457–
468.

[6] R. N. Watson, P. G. Neumann, J. Woodruff, M. Roe, H. Almatary,
J. Anderson, J. Baldwin, D. Chisnall, B. Davis, N. W. Filardo,
A. Joannou, B. Laurie, A. T. Markettos, S. W. Moore, S. J.
Murdoch, K. Nienhuis, R. Norton, A. Richardson, P. Rugg,
P. Sewell, S. Son, and H. Xia, “Capability hardware enhanced RISC
instructions: CHERI instruction-set architecture (version 7),” University
of Cambridge, Computer Laboratory, Tech. Rep., 2019. [Online].
Available: http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf

[7] “CHERI,” https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/.
[8] J. Saltzer, “Protection and the control of information sharing in

Multics,” Communications of the ACM, vol. 17, no. 7, pp. 388–402,
July 1974. [Online]. Available: https://multicians.org/saltzer-pacisim.pdf

[9] N. Hardy, “The confused deputy (or why capabilities might have been
invented),” ACM SIGOPS Operating Systems Review, vol. 22, no. 4, pp.
36–38, 1988.

[10] I. T. LTD, “MIPS R© architecture for programmers volume II-A: The
MIPS64 R© instruction set reference manual,” 2016.

[11] R. Nikhil, “Bluespec System Verilog: efficient, correct RTL from high
level specifications,” in Proceedings. Second ACM and IEEE Interna-
tional Conference on Formal Methods and Models for Co-Design, 2004.
MEMOCODE’04. IEEE, 2004, pp. 69–70.

[12] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: feedback-directed
and runtime optimization. IEEE Computer Society, 2004, p. 75.

[13] M. K. McKusick, G. V. Neville-Neil, and R. N. Watson, The design and
implementation of the FreeBSD operating system. Pearson Education,
2014.

[14] B. Davis, R. N. Watson, A. Richardson, P. G. Neumann, S. W. Moore,
J. Baldwin, D. Chisnall, J. Clarke, N. W. Filardo, K. Gudka et al.,
“CheriABI: Enforcing valid pointer provenance and minimizing pointer
privilege in the POSIX C run-time environment,” University of Cam-
bridge, Computer Laboratory, Tech. Rep., 2019.

[15] J. Woodruff, A. Joannou, H. Xia, B. Davis, P. G. Neumann, R. N. M.
Watson, S. Moore, A. Fox, R. Norton, and D. Chisnall, “Cheri concen-
trate: Practical compressed capabilities,” IEEE Transactions on Comput-
ers, 2019.

[16] K. Gudka, R. N. Watson, J. Anderson, D. Chisnall, B. Davis, B. Laurie,
I. Marinos, P. G. Neumann, and A. Richardson, “Clean application
compartmentalization with SOAAP,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 1016–1031.

[17] A. Joannou, J. Woodruff, R. Kovacsics, S. W. Moore, A. Bradbury,
H. Xia, R. N. Watson, D. Chisnall, M. Roe, B. Davis et al., “Efficient
tagged memory,” in Computer Design (ICCD), 2017 IEEE International
Conference on. IEEE, 2017, pp. 641–648.

[18] R. N. Watson, R. M. Norton, J. Woodruff, S. W. Moore, P. G. Neumann,
J. Anderson, D. Chisnall, B. Davis, B. Laurie, M. Roe et al., “Fast
protection-domain crossing in the CHERI capability-system architec-
ture,” IEEE Micro, vol. 36, no. 5, pp. 38–49, 2016.

[19] R. Grisenthwaite (SVP, Chief Architect & Fellow, Arm), “A
safer digital future, by design,” https://www.arm.com/blogs/blueprint/
digital-security-by-design, Oct. 2019.

[20] Department for Business, Energy & Industrial Strategy, Depart-
ment for Digital, Culture, Media & Sport, Home Office, UK Re-
search and Innovation, The Rt Hon Andrea Leadsom MP, and
Matt Warman MP, “Confronting cyber threats to businesses and
personal data (press release),” https://www.gov.uk/government/news/
confronting-cyber-threats-to-businesses-and-personal-data, Oct. 2019.

[21] A. C. Fox, “Directions in ISA specification,” in ITP, 2012, pp. 338–344.
[Online]. Available: https://doi.org/10.1007/978-3-642-32347-8_23

[22] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M.
Norton, P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I. Stark,
N. Krishnaswami, and P. Sewell, “ISA semantics for ARMv8-A, RISC-
V, and CHERI-MIPS,” in POPL 2019: Proc. 46th ACM SIGPLAN
Symposium on Principles of Programming Languages, 2019.

[23] S. Bishop, M. Fairbairn, H. Mehnert, M. Norrish, T. Ridge, P. Sewell,
M. Smith, and K. Wansbrough, “Engineering with logic: Rigorous
test-oracle specification and validation for TCP/IP and the Sockets
API,” J. ACM, vol. 66, no. 1, pp. 1:1–1:77, Dec. 2018. [Online].
Available: http://doi.acm.org/10.1145/3243650

[24] R. N. M. Watson, J. Woodruff, M. Roe, S. W. Moore, and
P. G. Neumann, “Capability Hardware Enhanced RISC Instructions
(CHERI): Notes on the Meltdown and Spectre Attacks,” University
of Cambridge, Computer Laboratory, Tech. Rep. UCAM-CL-TR-916,
Feb. 2018. [Online]. Available: https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-916.pdf

[25] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of C,” in USENIX Annual Technical
Conference, General Track, 2002, pp. 275–288.

[26] G. C. Necula, S. McPeak, and W. Weimer, “CCured: Type-safe
retrofitting of legacy code,” in ACM SIGPLAN Notices, vol. 37, no. 1.
ACM, 2002, pp. 128–139.

[27] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
Highly compatible and complete spatial memory safety for C,” ACM
Sigplan Notices, vol. 44, no. 6, pp. 245–258, 2009.

[28] K. Memarian, V. B. F. Gomes, B. Davis, S. Kell, A. Richardson, R. N. M.
Watson, and P. Sewell, “Exploring C semantics and pointer provenance,”
in Proc. 46th ACM SIGPLAN Symposium on Principles of Programming
Languages, Jan. 2019, proc. ACM Program. Lang. 3, POPL, Article 67.
Also available as ISO/IEC JTC1/SC22/WG14 N2311.

[29] AMD, “AMD64 Architecture Programmer’s Manual, Volumes 1–
5,” http://developer.amd.com/resources/developer-guides-manuals/, Mar.
2017, 3178 pages.

[30] IBM, “Power ISA Version 3.0,” Nov. 2015, 1246 pages.
[31] Intel Corporation, “Intel 64 and IA-32 Architectures Software Devel-

oper’s Manual. Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C,
3D, and 4.” https://software.intel.com/en-us/articles/intel-sdm, Jul. 2017,
325462-063US. 4744 pages.

[32] “The RISC-V Instruction Set Manual. Volume I: User-Level ISA;
Volume II: Privileged Architecture,” https://riscv.org/specifications/, May
2017, 236 pages.

[33] The SPARC Architecture Manual, Version 9. SPARC International, Inc.,
1994, sAV09R1459912.

[34] A. Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes, W. Keen,
A. Pathirane, O. Shepherd, P. Vrabel, and A. Zaidi, “End-to-end ver-
ification of processors with ISA-Formal,” in International Conference
on Computer Aided Verification. Springer, 2016, pp. 42–58.

[35] P. Misra and N. Dutt, Eds., Processor Description Languages. Morgan
Kaufmann, 2008.

[36] “PVS specification and verification system,” http://pvs.csl.sri.com/, ac-
cessed 2019-07-27.

[37] “QEMU: the FAST! processor emulator,” 2017, https://www.qemu.org/.
[38] B. Campbell and I. Stark, “Extracting behaviour from an executable

instruction set model,” in Formal Methods in Computer-Aided Design
(FMCAD), 2016. IEEE, 2016, pp. 33–40.

[39] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Springer, 2012.

[40] M. Gordon and A. Pitts, “The HOL logic and system,” in Real-Time
Safety Critical Systems. Elsevier, 1994, vol. 2, pp. 49–70.

[41] P. Castéran and Y. Bertot, “Interactive theorem proving and program
development. Coq’Art: The calculus of inductive constructions.” 2004.

[42] R. N. Watson, P. G. Neumann, J. Woodruff, M. Roe, J. Anderson,
J. Baldwin, D. Chisnall, B. Davis, A. Joannou, B. Laurie,
S. W. Moore, S. J. Murdoch, R. Norton, S. Son, and H. Xia,
“Capability hardware enhanced RISC instructions: CHERI instruction-
set architecture (version 6),” University of Cambridge, Computer
Laboratory, Tech. Rep., 2017. [Online]. Available: http://www.cl.cam.
ac.uk/techreports/UCAM-CL-TR-907.pdf

[43] M. Gordon, R. Milner, and C. Wadsworth, Edinburgh LCF: a mecha-
nised logic of computation. Springer-Verlag, 1979.

[44] D. Matichuk, T. Murray, and M. Wenzel, “Eisbach: A proof method
language for Isabelle,” Journal of Automated Reasoning, vol. 56, no. 3,
pp. 261–282, 2016.

[45] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[46] A. Reid, “Trustworthy Specifications of Arm v8-A and v8-M
system Level Architecture,” in Proceedings of Formal Methods
in Computer-Aided Design (FMCAD 2016), October 2016,
pp. 161–168. [Online]. Available: https://alastairreid.github.io/papers/
fmcad2016-trustworthy.pdf

[47] ——, “Defining interfaces between hardware and software: Quality
and performance,” Ph.D. dissertation, School of Computing Science,
University of Glasgow, March 2019.

[48] ——, “Who guards the guards? Formal validation of the Arm v8-M
architecture specification,” Proceedings of the ACM on Programming
Languages, vol. 1, no. OOPSLA, p. 88, 2017.

[49] O. Schwarz and M. Dam, “Automatic derivation of platform
noninterference properties,” in Software Engineering and Formal
Methods - 14th International Conference, SEFM 2016, ser. Lecture
Notes in Computer Science, R. De Nicola and eva Kühn, Eds.,
vol. 9763. Springer, 2016, pp. 27–44. [Online]. Available: https:
//doi.org/10.1007/978-3-319-41591-8_3

[50] L. Skorstengaard, D. Devriese, and L. Birkedal, “Reasoning about a ma-
chine with local capabilities,” in European Symposium on Programming.
Springer, 2018, pp. 475–501.

[51] A. A. De Amorim, M. Dénes, N. Giannarakis, C. Hriţcu, B. C.
Pierce, A. Spector-Zabusky, and A. Tolmach, “Micro-policies: Formally
verified, tag-based security monitors,” in Security and Privacy (SP),
2015 IEEE Symposium on. IEEE, 2015, pp. 813–830.

[52] A. Azevedo de Amorim, N. Collins, A. DeHon, D. Demange,
C. Hriţcu, D. Pichardie, B. C. Pierce, R. Pollack, and A. Tolmach,
“A verified information-flow architecture,” in Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’14. New York, NY, USA: ACM, 2014, pp. 165–
178. [Online]. Available: http://doi.acm.org/10.1145/2535838.2535839

[53] U. Dhawan, C. Hriţcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M. Smith,
T. F. Knight Jr, B. C. Pierce, and A. DeHon, “Architectural support for
software-defined metadata processing,” in ACM SIGARCH Computer
Architecture News, vol. 43, no. 1. ACM, 2015, pp. 487–502.

[54] U. Dhawan, N. Vasilakis, R. Rubin, S. Chiricescu, J. M. Smith, T. F.
Knight Jr, B. C. Pierce, and A. DeHon, “PUMP: a programmable unit
for metadata processing,” in Proceedings of the Third Workshop on

Hardware and Architectural Support for Security and Privacy. ACM,
2014, p. 8.

[55] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani, “Moat: Verifying
confidentiality of enclave programs,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 1169–1184.

[56] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP:
A binary analysis platform,” in Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings, 2011, pp. 463–469. [Online]. Available:
https://doi.org/10.1007/978-3-642-22110-1_37

[57] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino,
“Boogie: A modular reusable verifier for object-oriented programs,”
in Formal Methods for Components and Objects, 4th International
Symposium, FMCO 2005, Amsterdam, The Netherlands, November
1-4, 2005, Revised Lectures, 2005, pp. 364–387. [Online]. Available:
https://doi.org/10.1007/11804192_17

[58] A. Ferraiuolo, M. Zhao, A. C. Myers, and G. E. Suh, “Hyperflow: A
processor architecture for nonmalleable, timing-safe information-flow
security,” in 25th ACM Conf. on Computer and Communications
Security (CCS), October 2018. [Online]. Available: http://www.cs.
cornell.edu/andru/papers/hyperflow

[59] D. Zagieboylo, G. E. Suh, and A. C. Myers, “Using information flow
to design an isa that controls timing channels,” in 32nd IEEE Computer
Security Foundations Symp. (CSF), June 2019. [Online]. Available:
http://www.cs.cornell.edu/andru/papers/hyperisa

[60] M. S. Doerrie, “Confidence in confinement: An axiom-free, mechanized
verification of confinement in capability-based systems,” Ph.D. disser-
tation, Johns Hopkins University, 2015.

[61] J. S. Shapiro and S. Weber, “Verifying the EROS confinement mecha-
nism,” in Proceeding 2000 IEEE Symposium on Security and Privacy.
S&P 2000. IEEE, 2000, pp. 166–176.

[62] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein, “sel4: From general
purpose to a proof of information flow enforcement,” in 2013
IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA,
USA, May 19-22, 2013, 2013, pp. 415–429. [Online]. Available:
https://doi.org/10.1109/SP.2013.35

[63] S. Goel et al., “Formal verification of application and system programs
based on a validated x86 ISA model,” Ph.D. dissertation, The University
of Texas at Austin, 2016.

[64] W. A. Hunt, M. Kaufmann, J. S. Moore, and A. Slobodova, “Industrial
hardware and software verification with ACL2,” Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 375, 2017.

[65] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind,
“Kami: a platform for high-level parametric hardware specification and
its modular verification,” PACMPL, vol. 1, no. ICFP, pp. 24:1–24:30,
2017. [Online]. Available: https://doi.org/10.1145/3110268

[66] C. Wolf, “End-to-end formal ISA verification of RISC-V processors
with riscv-formal,” In 7th RISC-V Workshop Proceedings, Nov. 2017,
http://www.clifford.at/papers/2017/riscv-formal/.

