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1. Introduction
In this note we discuss the semantics of memory in C,
focussing on the non-concurrent aspects: the semantics of
pointers, casts, effective types, unspecified values, and so
on. These make up what we call the memory object model,
to distinguish it from the memory concurrency model that
addresses the relaxed-memory semantics of C; the two are
largely but not completely orthogonal, and together they give
a complete semantics of C memory. This is a part of our
larger Cerberus C semantics project.

We are concerned principally with the de facto standards
of C as it is used in practice: the existing usage of C, espe-
cially in systems code, and the behaviour of the dominant
compiler implementations and the idioms they support. We
also discuss C as specified in the ISO C11 standard. The
ISO and de facto standards can differ in important ways,
and in reality neither of them are singular: the C11 standard
is prose text, open to interpretation, and there are multiple
distinct de facto standards in different contexts (some spe-
cific to particular compilers or compiler flags). We are de-
veloping a formal model intended to capture one reasonable
view of the de facto standards, though, given the real con-

flicts seen between different views, this is intended only as a
precise reference point for discussion; no single model can
currently be acceptable to all parts of the C community. We
may later equip it with switches to express particular views
of de facto and/or ISO standards. We also discuss the in-
tended behaviour of CHERI C [14], with its hardware sup-
port for capabilities [55, 56].

In the longer term, this analysis may be helpful to under-
stand what a well-designed language for systems program-
ming would have to support.

One can look at the de facto semantics from several dif-
ferent perspectives:

1. the languages implemented by mainstream com-
pilers (GCC, Clang, ICC, MSVC, etc.), including
the assumptions their optimisation passes make
about user code and how these change with cer-
tain flags (e.g. GCC’s -fno-strict-aliasing and
-fno-strict-overflow);

2. the idioms used in the corpus of mainstream systems
code out there, especially in specific large-scale systems
(Linux, FreeBSD, Xen, Apache, etc.);

3. the language that systems programmers believe they are
writing in, i.e., the assumptions they make about what
behaviour they can rely on;

4. the issues that arise in making C code portable between
different compilers and architectures; and

5. the behaviour assumed, implicitly or explicitly, by code
analysis tools.

We focus throughout on current mainstream C implemen-
tations: commonly used compilers and hardware platforms.
One could instead consider the set of all current or histori-
cal C implementations, or even all conceivable implemen-
tations, but that (apart from being even harder to investi-
gate) would lead to a semantics which is significantly dif-
ferent from the one used by the corpus of code we are con-
cerned with, which does make more assumptions about C
than that would permit. Our goals are thus rather different
from those of the C standard committee, at least as expressed
in this from the C99 Rationale v5.10: “Beyond this two-
level scheme [conforming hosted vs freestanding implemen-
tations], no additional subsetting is defined for C, since the
C89 Committee felt strongly that too many levels dilutes the
effectiveness of a standard.”. Our impression is that main-
stream usage and implementations are using a significantly
different language from that defined by the standard; this di-
vergence makes the standard less relevant and leaves practice
on an uncertain footing.

The main body of this note is a collection of 85 specific
questions about the semantics of C, each stated reasonably
precisely in prose and most supported by one or more test-
case examples and by discussion of the ISO and de facto
standards. Each particular view of C will have its own an-
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swers (or be unclear) for each of these questions; for some
questions all views will agree on the answer, while for other
questions different views have quite different answers. The
answers for a particular view thus locate that view within an
85-dimensional space of conceivable Cs.

Our questions and test cases were developed in an iter-
ative process of reading the literature (the ISO standards,
defect reports, academic papers, and blog posts); building
candidate models; writing tests; experimenting with those on
particular compilers; writing the surveys we discuss below;
analysing our survey results; and discussions with experts.
We have tried to address all the important issues in the se-
mantics of C memory object models, but there may well be
others (as there is no well-defined space of “conceivable C
semantics”, this cannot be complete in any precise sense);
we would be happy to learn of others that we should add.

Our test cases are typically written to illustrate a partic-
ular semantic question as concisely as possible. Some are
“natural” examples, of desirable C code that one might find
in the wild, but many are testing corner cases, e.g. to ex-
plore just where the defined/undefined-behaviour boundary
is, and would be considered pathological if they occurred in
the form given in real code.

Making the tests concise to illustrate semantic questions
also means that most are not written to trigger interesting
compiler behaviour, which might only occur in a larger con-
text that permits some analysis or optimisation pass to take
effect. Moreover, following the spirit of C, compilers do not
report all instances of undefined behaviour. Hence, only in
some cases is there anything to be learned from the exper-
imental compiler behaviour. For any executable semantics,
on the other hand, running all of them should be instructive.

Direct investigation of (1) and (2) is challenging. For (1),
the behaviour of mainstream compilers is really defined only
by their implementations; it is not documented in sufficient
detail to answer all the important questions. Those are very
large bodies of code, and particular behaviour of analysis
and optimisation passes may only be triggered on relatively
complex examples. We include experimental data for all our
tests nonetheless, for various C implementations; in some
cases this is instructive.

Given a complete candidate model we could conceivably
do random testing against existing implementations, but that
is challenging in itself. One of our main concerns is the bor-
der between defined and undefined behaviour, but (a) we
do not have a good random test generator for programs on
that border (the existing Csmith test generator by Yang et
al. [57] is intended to only produce programs without unde-
fined behaviour, according to its authors’ interpretation), and
(b) mainstream C implementations are not designed to report
all instances of undefined behaviour; they instead assume its
absence to justify optimisations.

For (2), it is hard to determine what assumptions a body
of C code relies on. We draw on data from the ASPLOS 2015

paper by Chisnall et al. [14], both from instrumenting LLVM
and trying to port a number of C programs to a more-than-
usually restrictive implementation, their CHERI platform.

We can investigate (3) by asking the community of ex-
pert C programmers what properties they think they assume
of the language in practice, which we have done with two
surveys (to the best of our knowledge, this is a novel ap-
proach to investigating the de facto semantics of a widely
used language). The first version, in early 2013, had 42 ques-
tions, with concrete code examples and subquestions about
the de facto and ISO standards. We targeted this at a small
number of experts, including multiple contributors to the
ISO C or C++ standards committees, C analysis tool de-
velopers, experts in C formal semantics, compiler writers,
and systems programmers. The results were very instructive,
but this survey demanded a lot from the respondents; it was
best done by discussing the questions with them in person
over several hours. The concrete code examples helped make
the questions precise, but they also created confusion: being
designed to probe semantic questions about the language,
many are not natural idiomatic code, but many readers tried
to interpret them as such. Our second version (in mid 2015),
was simplified, making it feasible to collect responses from
a wider community. We designed 15 questions, focussed on
some of the most interesting issues, asked only about the
de facto standard (typically asking (a) whether some idiom
would work in normal C compilers and (b) whether it was
used in practice), and omitted the concrete code examples.
Aiming for a modest-scale but technically expert audience,
we distributed the survey among our local systems research
group, at EuroLLVM 2015, via technical mailing lists: gcc,
llvmdev, cfe-dev, libc-alpha, xorg, freebsd-developers, xen-
devel, and Google C user and compiler lists, and via John
Regehr’s blog, widely read by C experts. There were around
323 responses, including around 100 printed pages of tex-
tual comments. Most respondents reported expertise in C
systems programming (255) and many reported expertise in
compiler internals (64) and in the C standard (70). The re-
sults are available on the web1; we refer to them where ap-
propriate but do not include them here.

1.1 Experimental Testing
The examples are compiled and run with a range of tools:

• GCC 4.8, 4.9, and 5.3, and clang 33-37, all at O0, O2, and
O2 with -fno-strict-aliasing, on x86 on FreeBSD,
e.g.

gcc48 -O2 -std=c11 -pedantic -Wall -Wextra

-Wno-unused-variable -pthread

• clang37 with address, memory, and undefined-behaviour
sanitisers, e.g.

clang37 -fsanitize=address -std=c11 -pedantic

1 www.cl.cam.ac.uk/~pes20/cerberus/
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-Wall -Wextra -Wno-unused-variable -pthread

• CHERI clang at O0, O2, and O2 with
-fno-strict-aliasing, e.g.

clang -O2 -std=c11 -target=cheri-unknown-freebsd

-mcpu=mips3 -pedantic -Wall -Wextra -mabi=sandbox

-Wno-unused-variable -lc -lmalloc_simple

• The CHERI CPU running pure MIPS code, e.g.:

clang -O2 -std=c11 -target=mips64-unknown-freebsd

-mcpu=mips3 -pedantic -Wall -Wextra

-Wno-unused-variable

• the TrustInSoft tis-interpreter tool, version
Magnesium-20151002+dev

• the KCC tool, in the evaluation version RV-Match v0.1
distributed by Runtime Verification Inc. at https:

//runtimeverification.com/match/download/,
downloaded 2016-03-11.

Some tests rely on address coincidences for the interesting
execution; for these we include multiple variants, tuned to
the allocation behaviour in the implementations we consider.
Running the tests on other platforms may need additional
variants to be added.

The tests are run using a test harness, charon, that gen-
erates individual test instances from JSON files describing
the tests and tools; charon logs all the compile and exe-
cution output (together with the test itself and information
about the host) to another JSON file for analysis. The tests
and harness can be packaged up in a single tarball that can
be run easily. charon also supports cross-compilation, to let
the CHERI tests be compiled on a normal host and executed
on the CHERI FPGA-based hardware. Selected data from
the combined log files is automatically included in this doc-
ument.

1.2 Summary of answers
For each question we give multiple answers, as below. These
should be treated with caution: given the complex and con-
flicted state of C, many are subject to interpretation or to
revision, e.g. as we learn more about the de facto standards.

• iso: the ISO C11 standard
• defacto-usage: the de facto standard of usage in practice
• defacto-impl: the de facto standard of mainstream current

implementations
• cerberus-defacto: the intended behaviour of our candi-

date de facto formal model
• cheri: the intended behaviour of CHERI
• tis: the observed behaviour of the TrustInSoft
tis-interpreter

• kcc: the observed behaviour of the KCC tool

Note that the last two are inferences from the single data
points (and, for tis, some discussion with the developers);
they should be treated with caution.

Of the 85 questions,

• for 39 the ISO standard is unclear;
• for 27 the de facto standards are unclear, in some cases

with significant differences between usage and imple-
mentation; and

• for 27 there are significant differences between the ISO
and the de facto standards.

We discuss related work in some detail in §6.
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2. Abstract Pointers
The most important and subtle questions are about the extent
to which C values (especially pointers, but also unspecified
values, structures, and unions) are abstract, as opposed to
being simple bit-vector-represented quantities.

2.1 Pointer Provenance
It might be tempting to think that a C pointer is completely
concrete, simply a machine address, but things are not that
simple, either in the de facto or ISO standards.

2.1.1 Q1. Must the pointer used for a memory access
have the right provenance, i.e. be derived from
the pointer to the original allocation (with
undefined behaviour otherwise)? (This lets
compilers do provenance-based alias analysis)

ISO: yes DEFACTO-IMPL: yes DEFACTO-USAGE: yes
CERBERUS-DEFACTO: yes CHERI: yes TIS: example
not supported (memcmp of pointer representations) KCC:
Execution failed (unclear why)
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Consider the following pathological code (adapted from
the WG14 Defect Report DR2602 and its committee re-
sponse), first from the mainstream-implementation point of
view.

EXAMPLE (provenance_basic_global_yx.c):
#include <stdio.h>
#include <string.h>
int y=2, x=1;
int main() {

int *p = &x + 1;
int *q = &y;
printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // does this have undefined behaviour?
printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x600bd4 q=0x600bd4

x=1 y=2 *p=11 *q=2

ISO: undefined behaviour

DEFACTO: undefined behaviour

Depending on the implementation, x and y might happen
to be allocated in adjacent memory, in which case &x+1

and &y will have bitwise-identical representation values, the
memcmp will succeed, and p (derived from a pointer to x) will
have the same representation value as a pointer to a different
object, y, at the point of the update *p=11. This can occur in
practice with GCC -O2. The output of

x=1 y=2 *p=11 *q=2

suggests that the compiler is reasoning that *p does not alias
with y or *q, and hence that the initial value of y=2 can be
propagated to the final printf.

This outcome would not be correct with respect to a naive
concrete semantics, and so to make the compiler sound it is
necessary for this program to be deemed to have undefined
behaviour (which in C terms means that the compiler is al-
lowed to do anything at all). GCC does not report a compile-
or run-time warning or error for this example, but that is not
required by the standard for programs with undefined be-
haviour. Note that this example does not involve type-based
alias analysis, and the outcome is not affected by GCC’s
-fno-strict-aliasing flag. One might ask whether the
mere formation of the pointer &x+1 is legal. We return to
such questions later, but this case is explicitly permitted by
the ISO standard.

Clang and GCC -O0 allocate differently, so one has to in-
terchange the declarations of x and y to make p and q happen
to hold bitwise identical values, but then the outcome does
not exhibit the effects of similar analysis and optimisation.
One has to treat such negative results with caution, of course:

2 http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.

htm

it does not follow that this version of the compiler will not
optimise similar examples, as the negative result could be
simply because the test is not complex enough to cause par-
ticular optimisations to fire.

EXAMPLE (provenance_basic_global_xy.c):
GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x600bd8 q=0x600bd0

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: p=0x600ad0 q=0x600ad0

x=1 y=11 *p=11 *q=11

On the other hand, ICC on this version gives x=1 y=2

*p=11 *q=11, so also definitely needs this to be an
undefined-behaviour program to be sound.

Clang37-UBSAN does not detect this undefined be-
haviour. The clang37-ASAN execution does not have the ad-
dress coincidence needed to make the test result meaningful.
CHERI C behaves just like x86 Clang here because linker
support (which is needed to provide provenance to pointers
to globals) is not yet implemented.

For reference, consider similar examples but with two
malloc’d regions rather than global statically allocated ob-
jects, e.g. provenance_basic_malloc_offset+2.c and
provenance_basic_malloc_offset+12.c. Here accord-
ing to the ISO standard it is illegal to form the pointer re-
quired to get from one to the other (as it is not one-past).
We return to whether that is allowed in the de facto standard
in §2.13 (p.31). Here GCC 4.8 appears not to assume a lack
of aliasing; the Clang behaviour is the same as the previous
example.

The current CHERI implementation treats globals and
variables with automatic storage duration differently (pend-
ing improvements to the linker implementation). Accord-
ingly, we include variants of the first test with automatic stor-
age duration.

EXAMPLE (provenance_basic_auto_yx.c):

#include <stdio.h>
#include <string.h>
int main() {

int y=2, x=1;
int *p = &x + 1;
int *q = &y;
printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // does this have undefined behaviour?
printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x7fffffffe9f0 q=0x7fffffffe9e8

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: p=0x7fffffffe9fc q=0x7fffffffe9fc

x=1 y=11 *p=11 *q=11

ISO: undefined behaviour
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DEFACTO: undefined behaviour

EXAMPLE (provenance_basic_auto_xy.c):
#include <stdio.h>
#include <string.h>
int main() {

int x=1, y=2;
int *p = &x + 1;
int *q = &y;
printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // does this have undefined behaviour?
printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x7fffffffe9ec q=0x7fffffffe9ec

x=1 y=11 *p=11 *q=11

ISO: undefined behaviour

DEFACTO: undefined behaviour

From the ISO-standard point of view, the committee re-
sponse to Defect Report #260 appears to be regarded as
definitive, though it has not been folded into the standard
text. It takes the position that the provenance of a pointer
value is significant, writing “[an implementation] may also
treat pointers based on different origins as distinct even
though they are bitwise identical”. The pointer addition in
&x + 1 is legal3 but DR260 implies that the write *p = 11

gives rise to undefined behaviour, meaning that program-
mers should not write this code and the ISO standard does
not constrain how compilers have to treat it. This licenses
use of an analysis and optimisation that would otherwise be
unsound.

Our de facto and ISO standard semantics should both
deem this program to have undefined behaviour, to be sound
w.r.t. GCC and ICC.

2.1.2 Q2. Can equality testing on pointers be affected
by pointer provenance information?

ISO: yes (from DR260 CR) DEFACTO-USAGE: unknown
DEFACTO-IMPL: yes, nondeterministically at each occur-
rence CERBERUS-DEFACTO: yes, nondeterministically at
each occurrence CHERI: nondet TIS: Such pointer com-
parison is a source of nondeterminism which tis intention-
ally flags (with pointer comparable) KCC: unclear (the
printed addresses are not concrete values)

3 The addition is licensed by 6.5.6 “Additive operators”, where: 6.5.6p7 says
“For the purposes of these operators, a pointer to an object that is not an
element of an array behaves the same as a pointer to the first element of
an array of length one with the type of the object as its element type.”, and
6.5.6p8 says “[...] Moreover, if the expression P points to the last element
of an array object, the expression (P)+1 points one past the last element of
the array object [...]”.

[Question 4/15 of our What is C in practice? (Cerberus
survey v2)4 relates to this.]

The above example shows that C compilers have to be al-
lowed to do static alias analysis and optimisation based on
pointer provenance, but one would not expect a conventional
C implementation to keep provenance information at run-
time (unconventional and more defensive implementations
such as Softbound [40], Hardbound [17], or CHERI might
do that). To see this in practice, we form pointers p and q

as above, with different provenance but identical represen-
tations, and then test their equality with == (instead of their
representation equality with memcmp). The result is variously
true or false depending on the context.

In this first example the equality result is false in GCC
-O2 (even though the two pointers print the same):

EXAMPLE (provenance_equality_global_yx.c):
#include <stdio.h>
#include <string.h>
int y=2, x=1;
int main() {

int *p = &x + 1;
int *q = &y;
printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
_Bool b = (p==q);
// can this be false even with identical addresses?
printf("(p==q) = %s\n", b?"true":"false");
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x600b4c q=0x600b4c

(p==q) = false

ISO: nondeterministically true or false

DEFACTO: nondeterministically true or false

The same holds (perhaps surprisingly) if the test is
pulled out into another function (provenance_equality_
global_fn_yx.c), but if that function is put into a sep-
arate compilation unit (provenance_equality_global_
cu_yx_a.c and provenance_equality_global_cu_yx_

b.c) the comparison gives true:

p=0x601024 q=0x601024

(p==q) = true

For Clang, again flipping the order of x and y, we see just
true for all these tests where the addresses print the same.

EXAMPLE (provenance_equality_global_xy.c):
GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x600b50 q=0x600b48

(p==q) = false

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: p=0x600ab0 q=0x600ab0

(p==q) = true

4 www.cl.cam.ac.uk/~pes20/cerberus/

notes50-survey-discussion.html
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EXAMPLE (provenance_equality_global_fn_xy.c):
GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x600b90 q=0x600b88

(p==q) = false

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: p=0x600b08 q=0x600b08

(p==q) = true

and provenance_equality_global_cu_xy_a.c /
provenance_equality_global_cu_xy_b.c.

For CHERI, we again give a version of the example using
automatic storage location variables.

EXAMPLE (provenance_equality_auto_yx.c):
CLANG36-O2-NO-STRICT-ALIASING:
Addresses: p=0x7fffffffe9ec q=0x7fffffffe9ec

(p==q) = true

EXAMPLE (provenance_equality_auto_fn_yx.c):
CLANG36-O2-NO-STRICT-ALIASING:
Addresses: p=0x7fffffffe9dc q=0x7fffffffe9dc

(p==q) = true

and provenance_equality_auto_cu_yx_a.c /
provenance_equality_auto_cu_yx_b.c.

To allow this variation, our candidate de facto model
and any ISO standard semantics should both allow pointer
comparison to either use provenance-aware or provenance-
oblivious comparison nondeterministically. In many cases
the two will give identical results (for performance of the
executable semantics, for those one might choose not to
make an explicit nondeterministic choice).

2.1.3 GCC and ISO C11 differ on the result of a ==

comparison on a one-past pointer
This arises from the preceeding examples: a defect in the
ISO standard text, in which the DR260 position has not been
consistently incorporated.

From the ISO standard point of view, the standard is clear
that in general pointers to different objects of compatible
type can be compared with == (in contrast to relational oper-
ators, where such comparison gives undefined behaviour).5

But the text of C11 and DR260 seem inconsistent w.r.t. the
result of the comparison. In the former, it is specified by
6.5.9p6: “Two pointers compare equal if and only if both are
null pointers, both are pointers to the same object (includ-
ing a pointer to an object and a subobject at its beginning)
or function, both are pointers to one past the last element of
the same array object, or one is a pointer to one past the end
of one array object and the other is a pointer to the start of

5 The use of == to compare the two pointers is licensed by 6.5.9 Equality
operators, which allows the case in which “both operands are pointers to
qualified or unqualified versions of compatible types;”.

a different array object that happens to immediately follow
the first array object in the address space.109)”

Footnote 109: “Two objects may be adjacent in memory
because they are adjacent elements of a larger array or adja-
cent members of a structure with no padding between them,
or because the implementation chose to place them so, even
though they are unrelated. If prior invalid pointer operations
(such as accesses outside array bounds) produced undefined
behavior, subsequent comparisons also produce undefined
behavior.”

The last clause of 6.5.9p6 is surprising: given “a pointer
to one past the end of one array object and the other is a
pointer to the start of a different array object that happens
to immediately follow the first array object in the address
space” the standard requires them to compare equal rather
than merely permitting them to compare equal. This seems
to conflict with the spirit of DR260, which allows the pointer
provenance to be taken into account. The variation in experi-
mental results can be licensed by the may in the DR260 “[an
implementation] may also treat pointers based on different
origins as distinct even though they are bitwise identical”.

The provenance_equality_global_yx.c behaviour
is arguably a bug in GCC, violating 6.5.9p6, as we reported
(see Fig. 1). The developer comments disagree, arguing that
pointers need not have stable numerical values (we think that
implausible, as it would break lots of code; we return to sta-
bility in §2.9, p.26). But probably the behaviour should be
allowed in any case, and the standard should have something
better than the if-and-only-if in 6.5.9p6. The proposal above
to nondeterministically choose provenance-aware or con-
crete comparison relaxes the if-and-only-if (taking DR260
to have precedence over the C11 text).

2.2 Pointer provenance via integer types
In practice it seems to be routine to convert from a pointer
type to a sufficiently wide integer type and back, e.g. to use
unused bits of the pointer to store tag bits. The interaction
between that and provenance is interesting.

2.2.1 Q3. Can one make a usable pointer via casts to
intptr t and back?

ISO: yes DEFACTO-USAGE: yes DEFACTO-IMPL: yes
CERBERUS-DEFACTO: yes CHERI: yes TIS: yes KCC:
yes

2.2.2 Q4. Can one make a usable pointer via casts to
unsigned long and back?

ISO: implementation-defined DEFACTO-USAGE: yes (nor-
mally) DEFACTO-IMPL: yes (normally) CERBERUS-
DEFACTO: yes (if unsigned long is wide enough)
CHERI: no TIS: yes KCC: yes

10 2016/3/17

provenance_equality_global_fn_xy.c
provenance_equality_global_cu_xy_a.c
provenance_equality_global_cu_xy_b.c
provenance_equality_auto_yx.c
provenance_equality_auto_fn_yx.c
provenance_equality_auto_cu_yx_a.c
provenance_equality_auto_cu_yx_b.c
provenance_equality_global_yx.c


https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61502

Bug ID: 61502

Summary: == comparison on "one-past" pointer gives wrong result

Product: gcc

Version: 4.8.1

Status: UNCONFIRMED

Severity: normal

Priority: P3

Component: c

Assignee: unassigned at gcc dot gnu.org

Reporter: [...]

Created attachment 32934

--> https://gcc.gnu.org/bugzilla/attachment.cgi?id=32934&action=edit

C code as pasted into bug report

The following code can produce a pointer to one-past the x object. When it

does, according to the C11 standard text, the result of the pointer comparison

should be true, but gcc gives false.

#include <stdio.h>

int y = 2, x=1;

int main()

{

int *p;

p = &x +1 ;

printf("&x=%p &y=%p p=%p\n",(void*)&x, (void*)&y, (void*)p);

_Bool b1 = (p==&y);

printf("(p==&y) = %s\n", b1?"true":"false");

return 0;

}

gcc-4.8 -std=c11 -pedantic -Wall -Wextra -O2 -o a.out

pointer_representation_1e.c && ./a.out

&x=0x601020 &y=0x601024 p=0x601024

(p==&y) = false

gcc-4.8 --version

gcc-4.8 (Ubuntu 4.8.1-2ubuntu1~12.04) 4.8.1

The pointer addition is licensed by 6.5.6 "Additive operators", where:

6.5.6p7 says "For the purposes of these operators, a pointer to an object that

is not an element of an array behaves the same as a pointer to the first

element of an array of length one with the type of the object as its element

type.", and

6.5.6p8 says "[...] Moreover, if the expression P points to the last element of

an array object, the expression (P)+1 points one past the last element of the

array object [...]".

The pointer comparison is licensed by 6.5.9 "Equality operators", where:

6.5.9p7 says "For the purposes of these operators, a pointer to an object that

is not an element of an array behaves the same as a pointer to the first

element of an array of length one with the type of the object as its element

type.",

6.5.9p6 says "Two pointers compare equal if and only if [...] or one is a

pointer to one past the end of one array object and the other is a pointer to

the start of a different array object that happens to immediately follow the

first array object in the address space.109)", and

Footnote 109 says "Two objects may be adjacent in memory because they are

adjacent elements of a larger array or adjacent members of a structure with no

padding between them, or because the implementation chose to place them so,

even though they are unrelated. [...]".

Figure 1. Bug ID: 61502

We first have to consider the basic question of simple
roundtrips, casting a pointer to an integer type and back,
either via intptr t or unsigned long:

EXAMPLE (provenance_roundtrip_via_intptr_t.c):
#include <stdio.h>
#include <inttypes.h>
int x=1;
int main() {

int *p = &x;
intptr_t i = (intptr_t)p;
int *q = (int *)i;
*q = 11; // is this free of undefined behaviour?
printf("*p=%d *q=%d\n",*p,*q);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
*p=11 *q=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
ISO: defined behaviour (if the intptr type is provided)

DEFACTO: defined behaviour

EXAMPLE (provenance_roundtrip_via_unsigned_long.c):
#include <stdio.h>
int x=1;
int main() {

int *p = &x;
unsigned long i = (unsigned long)p;
int *q = (int *)i;
*q = 11; // is this free of undefined behaviour?
printf("*p=%d *q=%d\n",*p,*q);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
*p=11 *q=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
ISO: implementation-defined
DEFACTO: defined behaviour

In the de facto standards this is clearly allowed, both for
intptr t and (as in Linux or more generally in Unix) some
other integer types (e.g. unsigned long). This involves the
Int: storing a pointer in an integer variable in memory of the
CHERI ASPLOS paper, which they observed commonly in
practice.

One respondent comments that the 8086 model (up to
80286) had 16-bit near pointers (relying on segment registers
for 4 more bits) and longer far pointers, so just copying the
former wouldn’t be sufficient. CDC6600 had pointers to 60-
bit words, so character pointers were complex. Neither are
current mainstream C.

The ISO standard leaves conversions between pointer and
integer types almost entirely implementation-defined (ex-
cept for conversion of integer constant 0 and null pointers),
with:

6.3.2.3p5: “An integer may be converted to any
pointer type. Except as previously specified, the result is
implementation-defined, might not be correctly aligned,
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might not point to an entity of the referenced type, and might
be a trap representation.67)”

6.3.2.3p6: “Any pointer type may be converted to an
integer type. Except as previously specified, the result is
implementation-defined. If the result cannot be represented
in the integer type, the behavior is undefined. The result need
not be in the range of values of any integer type.”

(Footnote 67 says “The mapping functions for converting
a pointer to an integer or an integer to a pointer are intended
to be consistent with the addressing structure of the execu-
tion environment.”; the exact force of this is not clear.)

On the other hand, 7.20 Integer types <stdint.h> in-
troduces optional types intptr t and uintptr t with
roundtrip properties from pointer to integer and back:

7.20.1.4p1 “The following type designates a signed in-
teger type with the property that any valid pointer to void
can be converted to this type, then converted back to pointer
to void, and the result will compare equal to the original
pointer: intptr t”. “The following type designates an un-
signed integer type with the property that any valid pointer
to void can be converted to this type, then converted back
to pointer to void, and the result will compare equal to the
original pointer: uintptr t”.

We presume that this “compare equal” is intended to
imply that the result is interchangeable with the original
pointer, but, as we have seen examples in which two pointers
compare equal but access via one gives undefined behaviour
while access via the other does not, this is unfortunate phras-
ing (it likely antedates DR260) and should be changed. In the
CHERI case tags are not visible in memory, so there also a
pointer and an integer might compare equal but not be equi-
usable.

Note that these examples do not involve function point-
ers; things might be different there.

2.2.3 Q5. Must provenance information be tracked via
casts to integer types and integer arithmetic?

ISO: yes DEFACTO-USAGE: yes DEFACTO-IMPL:
yes CERBERUS-DEFACTO: yes CHERI: yes TIS: tis-
interpreter sees the possibility of signed arithmetic overflow
(correctly so, if one assumes nothing about memory layout)
KCC: Execution failed (unclear why)

Should one be allowed to use intptr t (or uintptr t)
arithmetic to work around provenance limitations? The next
example (also pathological code) is a variant of the §2.1.1
(p.7) provenance_basic_global_yx.c in which we use
integer arithmetic (and casts to and from intptr t) instead
of pointer arithmetic. The arithmetic again just happens (in
these implementations) to be the right offset between the two
global variables.

EXAMPLE (provenance_basic_using_intptr_t_global_yx.c):
#include <stdio.h>

#include <string.h>
#include <stdint.h>
#include <inttypes.h>
int y = 2, x = 1;
int main() {

intptr_t ux = (intptr_t)&x;
intptr_t uy = (intptr_t)&y;
intptr_t offset = 4;
int *p = (int *)(ux + offset);
int *q = &y;
printf("Addresses: &x=%"PRIiPTR" p=%p &y=%"PRIiPTR\

"\n",ux,(void*)p,uy);
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // does this have undefined behaviour?
printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

}
}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: &x=6294512 p=0x600bf4 &y=6294516

x=1 y=2 *p=11 *q=2

ISO: undefined behaviour

DEFACTO: undefined behaviour

As before, we see that GCC seems to be assuming that
this cannot occur, by making an optimisation that would be
unsound if this program does not have undefined behaviour.

This is consistent with the GCC documentation, which
says: “When casting from pointer to integer and back again,
the resulting pointer must reference the same object as the
original pointer, otherwise the behavior is undefined. That
is, one may not use integer arithmetic to avoid the undefined
behavior of pointer arithmetic as proscribed in C99 and C11
6.5.6/8.”6

Note that this GCC text presumes that there is an obvious
“original pointer” associated with any integer value which is
cast back to a pointer; as we discuss in §2.3 (p.15), that is
not always the case.

As before, for this version of Clang we don’t see the opti-
misation for the analogous example with the two allocations
flipped, so this is uninformative.

EXAMPLE (provenance_basic_using_intptr_t_global_xy.c):
GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: &x=6294516 p=0x600bf8 &y=6294512

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: &x=6294236 p=0x600ae0 &y=6294240

x=1 y=11 *p=11 *q=11

EXAMPLE (provenance_basic_using_intptr_t_global_xy_
offset64.c):
TIS-INTERPRETER:
[value] Analyzing a complete application starting at

main

[value] Computing initial state

6 https://gcc.gnu.org/onlinedocs/gcc/

Arrays-and-pointers-implementation.html
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[value] Initial

state computed

provenance basic using intptr t global xy

offset64.c:10:[kernel] warning: signed overflow. assert

-9223372036854775808 ux+offset;

stack: main

provenance basic using intptr t global xy of

fset64.c:10:[kernel] warning: signed overflow. assert

ux+offset 9223372036854775807;

stack: main

[value] Stopping at nth alarm

[value] user

error: Degeneration occurred:

results are not correct for lines of code that can be

reached from the degeneration point.

For CHERI we include a variant with automatic storage
duration variables:

EXAMPLE (provenance_basic_using_intptr_t_auto_yx.c):
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
int main() {

int y = 2, x = 1;
intptr_t ux = (intptr_t)&x;
intptr_t uy = (intptr_t)&y;
intptr_t offset = 4;
int *p = (int *)(ux + offset);
int *q = &y;
printf("Addresses: &x=%"PRIiPTR" p=%p &y=%"PRIiPTR\

"\n",ux,(void*)p,uy);
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // does this have undefined behaviour?
printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

}
}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: &x=140737488349644 p=0x7fffffffe9d0

&y=140737488349640

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: &x=140737488349656 p=0x7fffffffe9dc

&y=140737488349660

x=1 y=11 *p=11 *q=11

ISO: undefined behaviour

DEFACTO: undefined behaviour

EXAMPLE (provenance_basic_using_intptr_t_auto_yx_
offset-16.c):
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
int main() {

int y = 2, x = 1;
intptr_t ux = (intptr_t)&x;
intptr_t uy = (intptr_t)&y;
intptr_t offset = -16;
int *p = (int *)(ux + offset);
int *q = &y;
printf("Addresses: &x=%"PRIiPTR" p=%p &y=%"PRIiPTR\

"\n",ux,(void*)p,uy);
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // does this have undefined behaviour?
printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

}
}

TIS-INTERPRETER:
[value] Analyzing a complete application starting at

main

[value] Computing initial state

[value] Initial

state computed

provenance basic using intptr t auto yx o

ffset-16.c:10:[kernel] warning: signed overflow. assert

-9223372036854775808 ux+offset;

stack: main

provenance basic using intptr t auto yx offs

et-16.c:10:[kernel] warning: signed overflow. assert

ux+offset 9223372036854775807;

stack: main

[value] Stopping at nth alarm

[value] user

error: Degeneration occurred:

results are not correct for lines of code that can be

reached from the degeneration point.

EXAMPLE (provenance_basic_using_intptr_t_auto_xy.c):

#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
int main() {

int x = 1, y = 2;
intptr_t ux = (intptr_t)&x;
intptr_t uy = (intptr_t)&y;
intptr_t offset = 4;
int *p = (int *)(ux + offset);
int *q = &y;
printf("Addresses: &x=%"PRIiPTR" p=%p &y=%"PRIiPTR\

"\n",ux,(void*)p,uy);
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // does this have undefined behaviour?
printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

}
}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: &x=140737488349640 p=0x7fffffffe9cc

&y=140737488349644
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x=1 y=11 *p=11 *q=11

For reference, for a similar example using two malloc’d
regions and a constant offset we also see similar GCC and
Clang results as before: GCC sometimes assumes the two
pointers do not alias (interestingly, only with GCC 4.9 -O2,
not GCC 4.8 -O2), while these versions of Clang do not:

EXAMPLE (provenance_basic_using_intptr_t_malloc_offset_
8.c):
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <inttypes.h>
int main() {

int *xp=malloc(sizeof(int));
int *yp=malloc(sizeof(int));
*xp=1;
*yp=2;
int *p = (int*) (((uintptr_t)xp) + 8);
int *q = yp;
printf("Addresses: xp=%p p=%p q=%p\n",

(void*)xp,(void*)p,(void*)q);
// if (p == q) {
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // does this have undefined behaviour?
printf("*xp=%d *yp=%d *p=%d *q=%d\n",*xp,*yp,*p,*q);

}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: xp=0x801417058 p=0x801417060 q=0x801417060

*xp=1 *yp=2 *p=11 *q=2

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: xp=0x801417058 p=0x801417060 q=0x801417060

*xp=1 *yp=11 *p=11 *q=11

ISO: undefined behaviour

DEFACTO: undefined behaviour

This matches the provenance_basic_malloc_offset+

8.c example of §2.1.1 (p.7), which did the arithmetic di-
rectly on pointers instead of at uintptr t, and for which
the optimisation was observed in GCC.

2.2.4 Q6. Can one use bit manipulation and integer
casts to store information in unused bits of
pointers?

U:ISO
ISO: unclear – implementation-defined? DEFACTO-
USAGE: yes DEFACTO-IMPL: yes CERBERUS-
DEFACTO: yes CHERI: yes TIS: test not supported
( Alignof) KCC: Execution failed (unclear why)

Now we extend the first example of §2.2.1 (p.10), that cast
a pointer to intptr t and back, to use logical operations
on the integer value to store some tag bits. The following
code exhibits a strong form of this, storing the address and
tag bit combination as a pointer (which thereby creates a
misaligned pointer value, though one not used for accesses);

a weaker form would store the combined value only as an
integer.

EXAMPLE (provenance_tag_bits_via_uintptr_t_1.c):
#include <assert.h>
#include <stdio.h>
#include <stdint.h>
int x=1;
int main() {

int *p = &x;
// cast &x to an integer
uintptr_t i = (uintptr_t) p;
// check the bottom two bits of an int* are not used
assert(_Alignof(int) >= 4);
assert((i & 3u) == 0u);
// construct an integer like &x with low-order bit set
i = i | 1u;
// cast back to a pointer
int *q = (int *) i; // defined behaviour?
// cast to integer and mask out the low-order two bits
uintptr_t j = ((uintptr_t)q) & ~((uintptr_t)3u);
// cast back to a pointer
int *r = (int *) j;
// are r and p now equivalent?
*r = 11; // defined behaviour?
_Bool b = (r==p);
printf("x=%i *r=%i (r==p)=%s\n",x,*r,b?"true":"false");

}

GCC-5.3-O2-NO-STRICT-ALIASING:
x=11 *r=11 (r==p)=true

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour

ISO: unclear - implementation-defined?

This idiom seems to be widely relied on in practice, and
so our de facto standard semantics should allow it, for any
integer type of the right width. It is the Mask: simple masking
of pointers idiom of the CHERI ASPLOS paper, widely
observed in practice.

Beyond just manipulating the low-order bits, Linux has
“buddy allocators” in which one XORs some particular
pointer bits to move inside a tree structure, within some al-
located region (though perhaps not made by malloc).

In this example there is still an obvious unique prove-
nance that one can track through the integer computation; in
the next section we consider cases where that is not the case.

For mismatching widths, the GCC documentation7 gives
a concrete algorithm for converting between integers and
pointers which gives the identity on their bit representations
in this case: “A cast from pointer to integer discards most-
significant bits if the pointer representation is larger than
the integer type, sign-extends [Footnote 1: Future versions of
GCC may zero-extend, or use a target-defined ptr extend

pattern. Do not rely on sign extension.] if the pointer repre-
sentation is smaller than the integer type, otherwise the bits
are unchanged.” and “A cast from integer to pointer discards
most-significant bits if the pointer representation is smaller
than the integer type, extends according to the signedness of

7 Section 4.7 Arrays and pointers of C Implementation-defined behavior,
http://gcc.gnu.org/onlinedocs/gcc/C-Implementation.html
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the integer type if the pointer representation is larger than
the integer type, otherwise the bits are unchanged.”.

It does not comment on provenance, and it also leaves
open the question of whether the implementation might
use the low-order bits for its own purposes (making the
assert((i & 3u) == 0u) of the example false). We take
this to be an omission in the GCC documentation, and as-
sume implementations do not (otherwise much existing code
would break). Really, the set of unused bits of pointers of
each alignment should be explicitly implementation-defined
in the standard.

For mismatching widths a de facto semantic model has
to choose whether to follow this GCC documentation (loos-
ened according to the footnote and strengthened w.r.t. prove-
nance and unused bits), or be more nondeterministic.

This example tells us that at least the specific operations
on integers used here should preserve the provenance infor-
mation. The simplest proposal would be to have all integer
operations preserve provenance, but, as we discuss below,
that is not always appropriate.

The CHERI behaviour here, failing in the assert, is quite
subtle. The uintptr t value i is a capability. All arithmetic
on it is done on the offset. The assert at the start is failing
because i & 3u first promotes 3u to intcap t (the under-
lying type that uintptr t is a typedef for), which gives you
an untagged capability with base 0 and offset 3. This is then
anded with i, by getting the offsets of both, anding the result
together, and applying the offset to i. The result is therefore
a capability with the base/length/permissions of i, but an
offset of 0. This is then compared against a null capability,
and the comparison fails (because it is not a null capability).

The assertion seems like something that a reason-
able programmer ought to expect to work, so the
best design is an open question at present. Without
the assert, provenance_tag_bits_via_uintptr_t_1_

no_assert.c, the test works on CHERI, so, interestingly, it
is only code that is defensively written that will experience
the problem.

2.2.5 Q7. Can equality testing on integers that are
derived from pointer values be affected by their
provenance?

U:ISO
ISO: unclear (we suggest no) DEFACTO-USAGE: no?
DEFACTO-IMPL: no? (modulo Clang bug?) CERBERUS-
DEFACTO: no CHERI: ? TIS: pointer comparable
KCC: Execution failed (unclear why)

EXAMPLE (provenance_equality_uintptr_t_global_yx.c):
#include <stdio.h>
#include <inttypes.h>
int y=2, x=1;
int main() {

uintptr_t p = (uintptr_t)(&x + 1);
uintptr_t q = (uintptr_t)&y;
printf("Addresses: p=%" PRIxPTR " q=%" PRIxPTR "\n",

p,q);

_Bool b = (p==q);
// can this be false even with identical addresses?
printf("(p==q) = %s\n", b?"true":"false");
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=600b64 q=600b64

(p==q) = true

ISO: unclear - should be true when the addresses print

equal?

EXAMPLE (provenance_equality_uintptr_t_global_xy.c):
#include <stdio.h>
#include <inttypes.h>
int x=1, y=2;
int main() {

uintptr_t p = (uintptr_t)(&x + 1);
uintptr_t q = (uintptr_t)&y;
printf("Addresses: p=%" PRIxPTR " q=%" PRIxPTR "\n",

p,q);
_Bool b = (p==q);
// can this be false even with identical addresses?
printf("(p==q) = %s\n", b?"true":"false");
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=600b68 q=600b60

(p==q) = false

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: p=600ab8 q=600ab8

(p==q) = true

ISO: unclear - should be true when the addresses print

equal?

Can this print false even when the numeric addresses are
identical? This is suggested by an example from Kreb-
bers [29], as discussed in §6.11. The observed Clang ‘false’
behaviour seems to be a compiler bug, similar to the GCC
bug reported by them.

2.3 Pointers involving multiple provenances
We now consider examples in which a pointer is constructed
using computation based on multiple pointer values. How
widely this is used is not clear to us. There are at least two
important examples in the wild, the Linux and FreeBSD
per-CPU allocators, and also the classic XOR linked list
implementation (the latter, while much-discussed, appears
not to be a currently common idiom, though pointer XOR is
apparently used in L4 [48, §6.2]). We discuss both below.

2.3.1 Q8. Should intra-object pointer subtraction give
provenance-free integer results?

This is uncontroversial:

ISO: yes DEFACTO-USAGE: yes DEFACTO-IMPL:
yes CERBERUS-DEFACTO: yes CHERI: yes TIS: yes
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(third test has memcmp errors, as Q1) KCC: first tests ok,
later tests not supported, with Execution failed error

We begin with some simple cases. Given two pointers
within an array, one should certainly be able to calculate an
offset, by subtracting them, that can be used either within the
same array or within a different array, e.g.

&x([0]) + (&(x[1])-&(x[0]))

&x([0]) + (&(y[1])-&(y[0]))

and in full:

EXAMPLE (provenance_multiple_1_global.c):
#include <stdio.h>
int y[2], x[2];
int main() {

int *p = &(x[0]) + (&(x[1])-&(x[0]));
*p = 11; // is this free of undefined behaviour?
printf("x[1]=%d *p=%d\n",x[1],*p);
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
x[1]=11 *p=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour (x[1]=11 *p=11)

ISO: defined behaviour (x[1]=11 *p=11)

EXAMPLE (provenance_multiple_2_global.c):
#include <stdio.h>
int y[2], x[2];
int main() {

int *p = &(x[0]) + (&(y[1])-&(y[0]));
*p = 11; // is this free of undefined behaviour?
printf("x[1]=%d *p=%d\n",x[1],*p);
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
x[1]=11 *p=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour (x[1]=11 *p=11)

ISO: defined behaviour (x[1]=11 *p=11)

However, an offset constructed by intra-object subtrac-
tion within one object should not, when added to a pointer
to a distinct object, license its use to access the first: in the
examples below, the following should not be allowed to be
used to access y[0], and we observe GCC optimising based
on that assumption.

&x[1] + (&y[1]-&y[1]) + 1

&x[1] + (&y[1]-&y[0]) + 0

In full:

EXAMPLE (provenance_multiple_3_global_yx.c):
#include <stdio.h>
#include <string.h>
int y[2], x[2];
int main() {

int *p = &x[1] + (&y[1]-&y[1]) + 1;

int *q = &y[0];
printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // does this have undefined behaviour?
printf("y[0]=%d *p=%d *q=%d\n",y[0],*p,*q);

}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x600bf0 q=0x600bf0

y[0]=0 *p=11 *q=0

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: p=0x600ae0 q=0x600ae0

y[0]=11 *p=11 *q=11

ISO: undefined behaviour

DEFACTO: undefined behaviour

EXAMPLE (provenance_multiple_4_global_yx.c):
#include <stdio.h>
#include <string.h>
int y[2], x[2];
int main() {

int *p = &x[1] + (&y[1]-&y[0]) + 0;
int *q = &y[0];
printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // does this have undefined behaviour?
printf("y[0]=%d *p=%d *q=%d\n",y[0],*p,*q);

}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x600bf0 q=0x600bf0

y[0]=0 *p=11 *q=0

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: p=0x600ae0 q=0x600ae0

y[0]=11 *p=11 *q=11

ISO: undefined behaviour

DEFACTO: undefined behaviour

2.3.2 Q9. Can one make a usable offset between two
separately allocated objects by inter-object
subtraction (using either pointer or integer
arithmetic), to make a usable pointer to the
second by adding the offset to the first?

U:ISO D:ISO-VS-DEFACTO
ISO: unclear - no? DEFACTO-USAGE: unclear (per-
haps Linux/FreeBSD per-CPU variables? perhaps in
sqlite?) DEFACTO-IMPL: compilers apparently assume no
CERBERUS-DEFACTO: no CHERI: no TIS: no (fails with
signed overflow (correctly so, if one assumes nothing
about memory layout) KCC: no – flags UB

[Question 3/15 of our What is C in practice? (Cerberus
survey v2)8 relates to this.]

8 www.cl.cam.ac.uk/~pes20/cerberus/

notes50-survey-discussion.html
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This is a variant of the §2.2.3 (p.12) provenance_

basic_using_intptr_t_global_yx.c in which the con-
stant offset is replaced by a subtraction (here after casting
from pointer to integer type).

EXAMPLE (pointer_offset_from_subtraction_1_global.c):
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
int y = 2, x=1;
int main() {

intptr_t ux = (intptr_t)&x;
intptr_t uy = (intptr_t)&y;
intptr_t offset = uy - ux;
printf("Addresses: &x=%"PRIiPTR" &y=%"PRIiPTR\

" offset=%"PRIiPTR" \n",ux,uy,offset);
int *p = (int *)(ux + offset);
int *q = &y;
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // is this free of undefined behaviour?
printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

}
}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: &x=6294520 &y=6294524 offset=4

x=1 y=11 *p=11 *q=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above (modulo ad-
dresses)
ISO: unclear - no?

DEFACTO: used in practice but not supported in general

And again in an automatic-storage-duration version:

EXAMPLE (pointer_offset_from_subtraction_1_auto.c):
GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: &x=140737488349640 &y=140737488349644

offset=4

x=1 y=11 *p=11 *q=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above (modulo ad-
dresses)

We do not see the analysis and optimisation consequences
seen for the previous example, so this experimental data does
not force us to make this program have undefined behaviour.

None of the ISO standard text, DR260, and the GCC doc-
umentation discuss multiple-provenance pointers explicitly.
They are consistent either with a multiple-provenance se-
mantics or an aggressively single-provenance semantics that
would regard this program as having undefined behaviour.

In practice this idiom is used in Linux and in FreeBSD
for access to variables allocated by the per-CPU alloca-
tors9. The latter precomputes partially constructed pointers
for CPU-local variables. The linker creates a region for CPU
0’s copy of the kernel per-CPU variables x, y, . . . . A cor-
responding region for each other CPU is created early in
the boot process, before CPU bringup. Say these start at ad-

9 FreeBSD: _DPCPU_PTR, https://github.com/freebsd/freebsd/

blob/master/sys/sys/pcpu.h

dresses &x N for each CPU N. Then an array dpcpu off[N]

is initialised with &x N - &x 0, and to access a per-CPU
variable &y N. we add dpcpu off[N] and &y 0 to get &x N.
The point here is to optimise access to these variables. There
are not very many of them, but they are often used in critical
paths, e.g. in scheduler context switching.

The following example does essentially this, and is
very similar to pointer_offset_from_subtraction_

1_global.c above. It differs in using malloc’d regions
rather than global variables and in doing the subtraction at
unsigned char * type rather than after casting to an inte-
ger type.

EXAMPLE (pointer_offset_from_subtraction_1_malloc.c):
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stddef.h>
int main() {

void *xp=malloc(sizeof(int)); // allocation P
void *yp=malloc(sizeof(int)); // allocation Q
*((int*)xp)=1;
*((int*)yp)=2;
ptrdiff_t offset=(unsigned char*)yp-(unsigned char*)xp;

// provenance ?
unsigned char *p1 = (unsigned char*)xp;// provenance P
unsigned char *p2 = p1 + offset; // provenance ?
int *p = (int*)p2;
int *q = (int*)yp;
printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // is this free of undefined behaviour?
printf("*xp=%d *yp=%d *p=%d *q=%d\n",

*(int*)xp,*(int*)yp,*(int*)p,*(int*)q);
}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x801417060 q=0x801417060

*xp=1 *yp=11 *p=11 *q=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above

As before, we do not see an alias-analysis-based optimisa-
tion here. In previous tests we did see that for a version with
a constant offset, but in this dataset we do not, as below.
As usual, one should (of course) be cautious not to read too
much into a lack of optimisation.

EXAMPLE (pointer_offset_constant_8_malloc.c):
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stddef.h>
int main() {

void *xp=malloc(sizeof(int)); // allocation P
void *yp=malloc(sizeof(int)); // allocation Q
*((int*)xp)=1;
*((int*)yp)=2;
ptrdiff_t offset = 8;

// (unsigned char*)yp - (unsigned char*)xp;
unsigned char *p1 = (unsigned char*)xp;// provenance P
unsigned char *p2 = p1 + offset;
int *p = (int*)p2;
int *q = (int*)yp;
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printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // is this free of undefined behaviour?
printf("*xp=%d *yp=%d *p=%d *q=%d\n",

*(int*)xp,*(int*)yp,*(int*)p,*(int*)q);
}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x801417060 q=0x801417060

*xp=1 *yp=2 *p=11 *q=2

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: p=0x801417060 q=0x801417060

*xp=1 *yp=11 *p=11 *q=11

2.3.3 Q10. Presuming that one can have valid pointers
with multiple provenances, does an inter-object
pointer subtraction give a value with
explicitly-unknown provenance or something
more specific?

U:ISO
ISO: unclear – arguably N/A as the premise is false for
ISO? DEFACTO-USAGE: unknown (not significant in nor-
mal code?) DEFACTO-IMPL: n/a (multiple-provenance not
supported anyway?) CERBERUS-DEFACTO: no CHERI:
no TIS: fails with signed overflow KCC: no – flags
UB

The following example partly discriminates between the
choices for the provenance of the result of an inter-object
pointer subtraction (if such programs are not deemed to
have undefined behaviour): either treating it as a value with
explicitly-unknown provenance or one of the other two op-
tions. It uses an offset calculated between z and w to move
from a pointer to x to a pointer to y. GCC does seem to
assume that p and q cannot alias, suggesting that it isn’t us-
ing the explicitly-unknown provenance and might be consis-
tent with the left-provenance or union-of-provenances model
here.

EXAMPLE (pointer_offset_from_subtraction_2_global.c):
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <assert.h>
#include <inttypes.h>
int w=4, z=3, y = 2, x=1;
int main() {

intptr_t ux = (intptr_t)&x;
intptr_t uy = (intptr_t)&y;
intptr_t offsetxy = uy - ux;
intptr_t uz = (intptr_t)&z;
intptr_t uw = (intptr_t)&w;
intptr_t offsetzw = uw - uz;
printf("Addresses: &x=%"PRIiPTR" &y=%"PRIiPTR\

" offsetxy=%"PRIiPTR" \n",ux,uy,offsetxy);
printf("Addresses: &z=%"PRIiPTR" &w=%"PRIiPTR\

" offsetzw=%"PRIiPTR" \n",uz,uw,offsetzw);
assert(offsetzw==offsetxy);
int *p = (int *)(ux + offsetzw);
int *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {
*p = 11; // is this free of undefined behaviour?
printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

}
}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: &x=6294848 &y=6294852 offsetxy=4

Addresses: &z=6294856 &w=6294860 offsetzw=4

x=1 y=11

*p=11 *q=11

ISO: unclear - undefined behaviour?

In this dataset none of the compilers appear to optimise
based on reasoning about a lack of aliasing, though earlier
experiments (with GCC 4.6.3-14 and 4.7.2-5) did.

An automatic storage-duration analogue:

EXAMPLE (pointer_offset_from_subtraction_2_auto.c):
GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: &x=140737488349612 &y=140737488349608

offsetxy=-4

Addresses: &z=140737488349604

&w=140737488349600 offsetzw=-4

x=1 y=11 *p=11 *q=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above (modulo ad-
dresses)

2.3.4 Q11. Is the XOR linked list idiom supported?
U:ISO U:DEFACTO
ISO: unclear – no? DEFACTO-USAGE: unclear (not
really used in practice?) DEFACTO-IMPL: unclear
CERBERUS-DEFACTO: no CHERI: no TIS: no (fails at
the pointer XOR) KCC: Execution failed (unclear why)

The classic XOR linked list algorithm (implementing a
doubly linked list with only one pointer per node, by stor-
ing the XOR of two pointers) also makes essential use of
multiple-provenance pointers. In this example we XOR the
integer values from two pointers and XOR the result again
with one of them.

EXAMPLE (pointer_offset_xor_global.c):
#include <stdio.h>
#include <inttypes.h>
int x=1;
int y=2;
int main() {

int *p = &x;
int *q = &y;
uintptr_t i = (uintptr_t) p;
uintptr_t j = (uintptr_t) q;
uintptr_t k = i ^ j;
uintptr_t l = k ^ i;
int *r = (int *)l;
// are r and q now equivalent?
*r = 11; // does this have defined behaviour?
_Bool b = (r==q);
printf("x=%i y=%i *r=%i (r==p)=%s\n",x,y,*r,

b?"true":"false");
}
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GCC-5.3-O2-NO-STRICT-ALIASING:
x=1 y=11 *r=11 (r==p)=true

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
ISO: unclear - undefined behaviour?

DEFACTO: unclear - not really used in practice? Could be

defined behaviour in a multiple-provenance semantics

It is unclear whether this algorithm is important in mod-
ern practice. One respondent remarks that the XOR list im-
plementation interacts badly with modern pipelines and the
space saving is not a big win.

An automatic storage duration analogue:

EXAMPLE (pointer_offset_xor_auto.c):
GCC-5.3-O2-NO-STRICT-ALIASING:
x=1 y=11 *r=11 (r==p)=true

CLANG36-O2-NO-STRICT-ALIASING: . . . as above

2.3.5 Q12. For arithmetic over provenanced integer
values, is the provenance of the result invariant
under plus/minus associativity?

U:ISO U:DEFACTO
ISO: unclear – we suggest yes? DEFACTO-USAGE: unclear
- presume yes DEFACTO-IMPL: unclear - presume yes
CERBERUS-DEFACTO: yes CHERI: yes for CHERI256;
not always for CHERI128 TIS: no (first test ok; second test
fails at the addition of pointers cast to uintptr t) KCC:
test not supported (Translation failed; unclear why)

Normal integer arithmetic or modular arithmetic satisfies
various algebraic laws, e.g. a+(b−c) = (a+b)−c (which we
call “plus/minus associativity”, in the absence of a standard
name). Does that still hold for provenanced values? For C
pointer arithmetic, addition of two pointers is a type error
so there is no re-parenthesised variant of the §2.3.1 (p.15)
examples with, e.g.

(&x([0]) + &(y[1]))-&(y[0])

(in full: pointer_arith_algebraic_properties_1_

global.c). But in semantics in which integer values also
carry provenance data of some kind, we have the same
question for analogous examples that do the arithmetic at
uintptr t type, e.g. asking whether the following two pro-
grams behave the same:

EXAMPLE (pointer_arith_algebraic_properties_2_global.c):

#include <stdio.h>
#include <inttypes.h>
int y[2], x[2];
int main() {

int *p=(int*)(((uintptr_t)&(x[0])) +
(((uintptr_t)&(y[1]))-((uintptr_t)&(y[0]))));

*p = 11; // is this free of undefined behaviour?
printf("x[1]=%d *p=%d\n",x[1],*p);
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
x[1]=11 *p=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour (x[1]=11 *p=11)

ISO: defined behaviour (x[1]=11 *p=11)

EXAMPLE (pointer_arith_algebraic_properties_3_global.c):
#include <stdio.h>
#include <inttypes.h>
int y[2], x[2];
int main() {

int *p=(int*)(
(((uintptr_t)&(x[0])) + ((uintptr_t)&(y[1])))
-((uintptr_t)&(y[0])) );

*p = 11; // is this free of undefined behaviour?
//(equivalent to the &x[0]+(&(y[1])-&(y[0])) version?)
printf("x[1]=%d *p=%d\n",x[1],*p);
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
x[1]=11 *p=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: unclear
ISO: unclear

Analogues with automatic storage duration: pointer_

arith_algebraic_properties_2_auto.cand
pointer_arith_algebraic_properties_3_auto.c.

2.3.6 Multiple provenance semantics summarised
2.4 Pointer provenance via pointer representation

copying
C permits the representation bytes of objects to be accessed,
via unsigned char pointers, so whenever we introduce ab-
stract values we have to consider the semantics of reading
and writing of the associated representation bytes. In partic-
ular, we have to consider when manipulation of pointer value
representations produces usable pointers, and with what at-
tached provenance.

2.4.1 Q13. Can one make a usable copy of a pointer by
copying its representation bytes using the library
memcpy?

ISO: yes (not made explicit in ISO, but surely intended
to be yes) DEFACTO-USAGE: yes DEFACTO-IMPL: yes
CERBERUS-DEFACTO: yes CHERI: yes TIS: yes KCC:
Execution failed (unclear why)

EXAMPLE (pointer_copy_memcpy.c):
#include <stdio.h>
#include <string.h>
int x=1;
int main() {

int *p = &x;
int *q;
memcpy (&q, &p, sizeof p);
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*q = 11; // is this free of undefined behaviour?
printf("*p=%d *q=%d\n",*p,*q);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
*p=11 *q=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour (*p=11 *q=11)

ISO: defined behaviour (*p=11 *q=11)

This should be allowed in both de facto and ISO semantics.

2.4.2 Q14. Can one make a usable copy of a pointer by
copying its representation bytes (unchanged) in
user code?

U:ISO
ISO: not explicitly addressed in ISO – we suggest
yes DEFACTO-USAGE: yes DEFACTO-IMPL: yes
CERBERUS-DEFACTO: yes CHERI: not always TIS: yes
KCC: Execution failed (unclear why)

EXAMPLE (pointer_copy_user_dataflow_direct_bytewise.c):

#include <stdio.h>
#include <string.h>
int x=1;
void user_memcpy(unsigned char* dest,

unsigned char *src, size_t n) {
while (n > 0) {

*dest = *src;
src += 1;
dest += 1;
n -= 1;

}
}
int main() {

int *p = &x;
int *q;
user_memcpy((unsigned char*)&q, (unsigned char*)&p,

sizeof(p));
*q = 11; // is this free of undefined behaviour?
printf("*p=%d *q=%d\n",*p,*q);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
*p=11 *q=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour (*p=11 *q=11)

ISO: defined behaviour (*p=11 *q=11)

This should also certainly be allowed in the de facto seman-
tics. People do reimplement memcpy, and we believe this
works on most compilers and hardware.

The exceptions we are aware of are capability machines
such as CHERI or IBM system 38 and descendents. In
CHERI you have to copy pointers at pointer types for it to
work properly, but capability loads and stores can operate
generically, because the capability registers have tag bits.
There is also some new tagged memory support for Oracle
Sparc, to find invalid pointers.

Real memcpy implementations can be more complex. The
glibc memcpy10 involves copying byte-by-byte, as above,
and also word-by-word and, using virtual memory manipu-
lation, page-by-page. Word-by-word copying is not permit-
ted by the ISO standard, as it violates the effective type rules,
but should be permitted by our de facto semantics. Virtual
memory manipulation is outside our scope at present.

2.4.3 Q15. Can one make a usable copy of a pointer by
copying its representation bytes by user code that
indirectly computes the identity function on
those bytes?

U:ISO D:ISO-VS-DEFACTO
ISO: unclear DEFACTO-USAGE: yes DEFACTO-IMPL:
yes (presumably...) CERBERUS-DEFACTO: yes CHERI:
no TIS: no (fails at the XOR of a pointer representation
byte) KCC: Execution failed (unclear why)

[Question 5/15 of our What is C in practice? (Cerberus
survey v2)11 relates to this.]

For example, suppose one reads the bytes of a pointer rep-
resentation pointing to some object, encrypts them, decrypts
them, store them as the representation of another pointer
value, and tries to access the object. The following code is
a simplified version of this, just using a XOR twice; one
should imagine a more complex transform, with the trans-
form and its inverse separated in the code and in time so that
the compiler cannot analyse them.

EXAMPLE (pointer_copy_user_dataflow_indirect_bytewise.
c):

#include <stdio.h>
#include <string.h>
int x=1;
void user_memcpy2(unsigned char* dest,

unsigned char *src, size_t n) {
while (n > 0) {

*dest = ((*src) ^ 1) ^ 1;
src += 1;
dest += 1;
n -= 1;

}
}
int main() {

int *p = &x;
int *q;
user_memcpy2((unsigned char*)&q, (unsigned char*)&p,

sizeof(p));
*q = 11; // is this free of undefined behaviour?
printf("*p=%d *q=%d\n",*p,*q);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
*p=11 *q=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: unclear (*p=11 *q=11)

10 https://sourceware.org/git/?p=glibc.git;a=blob;f=

string/memcpy.c;hb=HEAD
11 www.cl.cam.ac.uk/~pes20/cerberus/

notes50-survey-discussion.html

20 2016/3/17

pointer_copy_user_dataflow_direct_bytewise.c
pointer_copy_user_dataflow_indirect_bytewise.c
pointer_copy_user_dataflow_indirect_bytewise.c
https://sourceware.org/git/?p=glibc.git;a=blob;f=string/memcpy.c;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=string/memcpy.c;hb=HEAD
www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html
www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html


ISO: unclear (probably undefined behaviour?)

It is unclear whether this needs to be or can be allowed.
Pages can and do get encrypted and compressed to disc, and
a C semantics that dealt with virtual memory would have
to support that, but it is not visible from normal C. One
would not do this by tracking provenance via the disc, in any
case, but instead more like our pointer IO semantics (§2.6,
p.24): arbitrary (legal...) pointer values can be read in, and
the point is that the compiler has to know that it does not
know anything about them. People do sometimes do user-
space paging, e.g. in user-space collection classes, but it is
not mainstream.

In CHERI you cannot copy pointers in this way, and
they haven’t yet found code that does this. (If you were
copying int-by-int, it would be using the capability-aware
instructions, so it would work.) This suggests that we could
deem this undefined in the de facto standard, though they
have not tried very much code yet.

As for the ISO standard semantics, DR260 is reasonably
clear that the first of the three examples is allowed, writing
“Note that using assignment or bitwise copying via memcpy

or memmove of a determinate value makes the destination
acquire the same determinate value.”. For the second and
third, DR260 is ambiguous: one could read its special treat-
ment of memcpy and memmove, coupled with its “[an imple-
mentation] may also treat pointers based on different origins
as distinct even though they are bitwise identical” as imply-
ing that these have undefined behaviour. On the other hand,
the standard’s 6.5p6 text on effective types suggests that at
least user memcpy (though perhaps not user memcpy2) can
copy values of any effective type, including pointers: “[...] If
a value is copied into an object having no declared type us-
ing memcpy or memmove, or is copied as an array of char-
acter type, then the effective type of the modified object for
that access and for subsequent accesses that do not modify
the value is the effective type of the object from which the
value is copied, if it has one. [...]” (bold emphasis added).

2.4.4 Q16. Can one carry provenance through
dataflow alone or also through control flow?

U:ISO U:DEFACTO
ISO: unclear DEFACTO-USAGE: unclear (not used in
normal code?) DEFACTO-IMPL: unclear CERBERUS-
DEFACTO: no CHERI: no TIS: no (fails at the switch on
a pointer representation byte or bit access – intentionally so,
given that this introduces nondeterminism) KCC: Execu-
tion failed (unclear why)

Our provenance examples so far have all only involved
dataflow; we also have to ask if a usable pointer can be
constructed via non-dataflow control-flow paths.

For example, consider a version of the previous indirect
memcpy example (§2.4.3, p.20) with a control-flow choice on
the value of the bytes:

EXAMPLE (pointer_copy_user_ctrlflow_bytewise.c):
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <limits.h>
int x=1;
unsigned char control_flow_copy(unsigned char c) {

assert(UCHAR_MAX==255);
switch (c) {
case 0: return(0);
case 1: return(1);
case 2: return(2);
...
case 255: return(255);
}

}
void user_memcpy2(unsigned char* dest,

unsigned char *src, size_t n) {
while (n > 0) {

*dest = control_flow_copy(*src);
src += 1;
dest += 1;
n -= 1;

}
}
int main() {

int *p = &x;
int *q;
user_memcpy2((unsigned char*)&q, (unsigned char*)&p,

sizeof(p));
*q = 11; // is this free of undefined behaviour?
printf("*p=%d *q=%d\n",*p,*q);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
*p=11 *q=11

CLANG36-O2-NO-STRICT-ALIASING:
pointer copy user ctrlflow bytewise.c:266:1: warning:

control may reach end of non-void function

[-Wreturn-type]

}
^

1 warning generated.

*p=11 *q=11

DEFACTO: undefined behaviour

ISO: unclear (probably undefined behaviour?)

Similarly, one can imagine copying a pointer via
uintptr t bit-by-bit via a control-flow choice for
each bit (adapting provenance_basic_using_intptr_

t_global_yx.c from §2.2.3 (p.12)):

EXAMPLE (pointer_copy_user_ctrlflow_bitwise.c):
#include <stdio.h>
#include <inttypes.h>
#include <limits.h>
int x=1;
int main() {

int *p = &x;
uintptr_t i = (uintptr_t)p;
int uintptr_t_width = sizeof(uintptr_t) * CHAR_BIT;
uintptr_t bit, j;
int k;
j=0;
for (k=0; k<uintptr_t_width; k++) {

bit = (i & (((uintptr_t)1) << k)) >> k;
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if (bit == 1)
j = j | ((uintptr_t)1 << k);

else
j = j;

}
int *q = (int *)j;
*q = 11; // is this free of undefined behaviour?
printf("*p=%d *q=%d\n",*p,*q);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
*p=11 *q=11

CLANG36-O2-NO-STRICT-ALIASING:
pointer copy user ctrlflow bitwise.c:17:9: warning:

explicitly assigning value of variable of type

’uintptr t’ (aka ’unsigned long’) to itself

[-Wself-assign]

j = j;

^

1 warning

generated.

*p=11 *q=11

DEFACTO: undefined behaviour

ISO: unclear (probably undefined behaviour?)

as opposed to a similar bitwise example with a dataflow path
for each bit:

EXAMPLE (pointer_copy_user_dataflow_direct_bitwise.c):
#include <stdio.h>
#include <inttypes.h>
#include <limits.h>
int x=1;
int main() {

int *p = &x;
uintptr_t i = (uintptr_t)p;
int uintptr_t_width = sizeof(uintptr_t) * CHAR_BIT;
uintptr_t bit, j;
int k;
j=0;
for (k=0; k<uintptr_t_width; k++) {

bit = (i & (((uintptr_t)1) << k)) >> k;
j = j | (bit << k);

}
int *q = (int *)j;
*q = 11; // is this free of undefined behaviour?
printf("*p=%d *q=%d\n",*p,*q);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
*p=11 *q=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour

ISO: unclear (probably undefined behaviour?)

Finally, contrasting with the first two examples above,
that recover all the concrete value information of
the original pointer, we can consider a variant of
the §2.1.1 (p.7) provenance_basic_using_intptr_t_

global_yx.c example in which there is a control-flow
choice based on partial information of the intended target
pointer (here just whether q is null) and the concrete value
information is obtained otherwise:

EXAMPLE (provenance_basic_mixed_global_offset+4.c):

#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
int y = 2, x=1;
int main() {

intptr_t ux = (intptr_t)&x;
intptr_t uy = (intptr_t)&y;
intptr_t offset = 4;
printf("Addresses: &x=%"PRIiPTR" &y=%"PRIiPTR\

"\n",ux,uy);
int *q = &y;
if (q != NULL) {

int *p = (int *)(ux + offset);
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // is this free of undefined behaviour?
printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

}
}

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: &x=6294488 &y=6294492

x=1 y=2 *p=11 *q=2

DEFACTO: undefined behaviour

ISO: unclear (probably undefined behaviour?)

EXAMPLE (provenance_basic_mixed_global_offset-4.c):

#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
int y = 2, x=1;
int main() {

intptr_t ux = (intptr_t)&x;
intptr_t uy = (intptr_t)&y;
intptr_t offset = -4;
printf("Addresses: &x=%"PRIiPTR" &y=%"PRIiPTR\

"\n",ux,uy);
int *q = &y;
if (q != NULL) {

int *p = (int *)(ux + offset);
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // is this free of undefined behaviour?
printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

}
}

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: &x=6294488 &y=6294492

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: &x=6294232 &y=6294228

x=1 y=11 *p=11 *q=11

The test suite also includes variant provenance_basic_
mixed_global_offset-64.c and, with automatic stor-
age duration: provenance_basic_mixed_auto_offset+
4.c, provenance_basic_mixed_auto_offset-4.c, and
provenance_basic_mixed_auto_offset-64.c.
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2.5 Pointer provenance and union type punning
Type punning via unions, as discused in §2.15.4 (p.38), gives
an additional way of constructing pointer values, and so we
have to consider how that interacts with the pointer prove-
nance semantics.

2.5.1 Q17. Is type punning between integer and
pointer values allowed?

U:ISO U:DEFACTO
ISO: unclear DEFACTO-USAGE: unclear – impl-def or yes?
DEFACTO-IMPL: unclear – impl-def or yes? CERBERUS-
DEFACTO: yes CHERI: yes TIS: yes KCC: yes

The following example (analogous to the roundtrip-
via-uintptr t example provenance_roundtrip_via_

intptr_t.c of §2.2.1 (p.10)) constructs a pointer by cast-
ing a pointer to uintptr t, storing that in a member of a
union of that type, and then reading from a member of the
union of pointer type.

EXAMPLE (provenance_union_punning_1_global.c):
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
int x=1;
typedef union { uintptr_t ui; int *p; } un;
int main() {

un u;
int *px = &x;
uintptr_t i = (uintptr_t)px;
u.ui = i;
int *p = u.p;
printf("Addresses: p=%p &x=%p\n",(void*)p,(void*)&x);
*p = 11; // is this free of undefined behaviour?
printf("x=%d *p=%d\n",x,*p);
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x600b40 &x=0x600b40

x=11 *p=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above (modulo ad-
dresses)
DEFACTO: implementation-defined
ISO: unclear

It is unclear whether this should be guaranteed to work.
The ISO standard (see §2.15.4, p.38) says “the appropriate
part of the object representation of the value is reinterpreted
as an object representation in the new type”, but says lit-
tle about that reinterpretation. In GCC and Clang it appears
to: the above prints x=11 *p=11 suggesting that there the
two types do have compatible representations, at least. What
alias analysis might be assuming about this situation is un-
clear to us.

One systems researcher said that it is fairly common
for implementations to satisfy this and for programmers to
exploit it, though more hygienic C would include an explicit
cast.

2.5.2 Q18. Does type punning between integer and
pointer values preserve provenance?

U:ISO
ISO: unclear DEFACTO-USAGE: presume yes
DEFACTO-IMPL: presume yes CERBERUS-DEFACTO:
yes CHERI: yes TIS: example not supported (memcmp
of pointer representations) KCC: Execution failed (unclear
why)

For consistency with the rest of the provenance-tracking
semantics, we imagine that at least the following exam-
ple (analogous to the pathological provenance_basic_

global_yx.c of §2.1.1 (p.7) but indirected via type pun-
ning) should have undefined behaviour:

EXAMPLE (provenance_union_punning_2_global_yx.c):

#include <stdio.h>
#include <string.h>
#include <inttypes.h>
int y=2, x=1;
typedef union { uintptr_t ui; int *p; } un;
int main() {

un u;
int *px = &x;
uintptr_t i = (uintptr_t)px;
i = i + sizeof(int);
u.ui = i;
int *p = u.p;
int *q = &y;
printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // does this have undefined behaviour?
printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x600bd4 q=0x600bd4

x=1 y=2 *p=11 *q=2

ISO: unclear
DEFACTO: undefined behaviour

EXAMPLE (provenance_union_punning_2_global_xy.c):
GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x600bd8 q=0x600bd0

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: p=0x600ad0 q=0x600ad0

x=1 y=11 *p=11 *q=11

EXAMPLE (provenance_union_punning_2_auto_xy.c):
GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x600bd8 q=0x600bd0

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: p=0x600ad0 q=0x600ad0

x=1 y=11 *p=11 *q=11
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A semantics that tracks provenance on integer values in
memory will naturally do that.

Here GCC exhibits the otherwise-unsound optimisation,
printing x=1 y=2 *p=11 *q=2.

2.6 Pointer provenance via IO
2.6.1 Q19. Can one make a usable pointer via IO?

ISO: yes DEFACTO-USAGE: yes DEFACTO-IMPL: yes
CERBERUS-DEFACTO: yes CHERI: no TIS: test not sup-
ported (fopen library call) KCC: Execution failed (unclear
why)

We now consider the extreme example of pointer prove-
nance flowing via IO, if one writes the address of an ob-
ject to a file and reads it back in. We give three versions:
one using fprintf/fscanf and the %p format, one using
fwrite/fread on the pointer representation bytes, and one
converting the pointer to and from uintptr t and using
fprintf/fscanf on that value with the PRIuPTR/SCNuPTR
formats. The first gives a syntactic indication of a potentially
escaping pointer value, while the others (after preprocessing)
do not.

EXAMPLE (provenance_via_io_percentp_global.c):
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
int x=1;
int main() {

int *p = &x;
FILE *f = fopen(

"provenance_via_io_percentp_global.tmp","w+b");
printf("Addresses: p=%p\n",(void*)p);
// print pointer address to a file
fprintf(f,"%p\n",(void*)p);
rewind(f);
void *rv;
int n = fscanf(f,"%p\n",&rv);
int *r = (int *)rv;
if (n != 1) exit(EXIT_FAILURE);
printf("Addresses: r=%p\n",(void*)r);
// are r and p now equivalent?
*r=12; // is this free of undefined behaviour?
_Bool b1 = (r==p); // do they compare equal?
_Bool b2 = (0==memcmp(&r,&p,sizeof(r)));//same reps?
printf("x=%i *r=%i b1=%s b2=%s\n",x,*r,

b1?"true":"false",b2?"true":"false");
}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x600df0

Addresses: r=0x600df0

x=12 *r=12 b1=true b2=true

CLANG36-O2-NO-STRICT-ALIASING: . . . as above (modulo ad-
dresses)
ISO: defined behaviour

EXAMPLE (provenance_via_io_bytewise_global.c):
#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
int x=1;
int main() {

int *p = &x;
FILE *f = fopen(

"provenance_via_io_bytewise_global.tmp","w+b");
printf("Addresses: p=%p\n",(void*)p);
// output pointer address to a file
int nw = fwrite(&p, 1, sizeof(int *), f);
if (nw != sizeof(int *)) exit(EXIT_FAILURE);
rewind(f);
int *r;
int nr = fread(&r, 1, sizeof(int *), f);
if (nr != sizeof(int *)) exit(EXIT_FAILURE);
printf("Addresses: r=%p\n",(void*)r);
// are r and p now equivalent?
*r=12; // is this free of undefined behaviour?
_Bool b1 = (r==p); // do they compare equal?
_Bool b2 = (0==memcmp(&r,&p,sizeof(r)));//same reps?
printf("x=%i *r=%i b1=%s b2=%s\n",x,*r,

b1?"true":"false",b2?"true":"false");
}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x600e08

Addresses: r=0x600e08

x=12 *r=12 b1=true b2=true

CLANG36-O2-NO-STRICT-ALIASING: . . . as above (modulo ad-
dresses)
ISO: defined behaviour

EXAMPLE (provenance_via_io_uintptr_t_global.c):

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
int x=1;
int main() {

int *p = &x;
uintptr_t i = (uintptr_t) p;
FILE *f = fopen(

"provenance_via_io_uintptr_t_global.tmp","w+b");
printf("Addresses: i=%"PRIuPTR" \n",i);
// print pointer address to a file
fprintf(f,"%"PRIuPTR"\n",i);
rewind(f);
uintptr_t k;
// read a pointer address from the file
int n = fscanf(f,"%"SCNuPTR"\n",&k);
if (n != 1) exit(EXIT_FAILURE);
printf("Addresses: k=%"PRIuPTR"\n",k);
int *r = (int *)k;
// are r and q now equivalent?
*r=12; // is this free of undefined behaviour?
_Bool b1 = (r==p); // do they compare equal?
_Bool b2 = (0==memcmp(&r,&p,sizeof(r)));//same reps?
printf("x=%i *r=%i b1=%s b2=%s\n",x,*r,

b1?"true":"false",b2?"true":"false");
}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: i=6295040

Addresses: k=6295040

x=12 *r=12 b1=true b2=true
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CLANG36-O2-NO-STRICT-ALIASING: . . . as above (modulo ad-
dresses)
ISO: defined behaviour

This is used in practice: in graphics code for mar-
shalling/unmarshalling, at least using %p, and SCNuPTR and
suchlike are used in xlib. Debuggers do this kind of thing
too.

In the ISO standard, the standard text for fprintf and
scanf for %p say that this should work: “If the input item is a
value converted earlier during the same program execution,
the pointer that results shall compare equal to that value;
otherwise the behavior of the %p conversion is undefined.”
(modulo the usual remarks about “compare equal”), and
the text for uintptr t and the presence of SCNuPTR in
inttypes.h implies the same there.

2.7 Q20. Can one make a usable pointer from a
concrete address (of device memory)?

U:ISO
ISO: unclear DEFACTO-USAGE: yes (at least in embedded)
DEFACTO-IMPL: yes (at least in embedded) CERBERUS-
DEFACTO: yes (for implementation-defined device-memory
addresses) CHERI: no TIS: test not informative (but
correctly detects UB for the out-of-bounds write) KCC:
Segmentation fault

C programs should normally not form pointers from
particular concrete addresses. For example, the following
should normally be considered to have undefined behaviour,
as address 0xABC might not be mapped or, if it is, might alias
with other data used by the runtime. By the ISO standard it
does have undefined behaviour. Cyclone did not aim to sup-
port it (this example is adapted from [19, Ch. 2]). Note that
our experimental data is (as usual) for execution in a user-
space process in a system with virtual memory, for which
that address is presumably not mapped to anything sensible,
so one would not expect it to work; they just illustrate how
and where the failure is detected.

EXAMPLE (pointer_from_concrete_address_1.c):

int main() {
// on systems where 0xABC is not a legal non-stack/heap
// address, does this have undefined behaviour?
*((int *)0xABC) = 123;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
CLANG36-O2-NO-STRICT-ALIASING: . . . as above
ISO: undefined behaviour

DEFACTO: implementation-defined whether

undefined-behaviour or not

But in some circumstances it is idiomatic to use concrete
addresses in C to access memory-mapped devices. For ex-

ample, ARM documentation12 states “In most ARM embed-
ded systems, peripherals are located at specific addresses
in memory. It is often convenient to map a C variable onto
each register of a memory-mapped peripheral, and then
read/write the register via a pointer. [...] The simplest way
to implement memory-mapped variables is to use pointers
to fixed addresses. If the memory is changeable by ‘external
factors’ (for example, by some hardware), it must be labelled
as volatile.” with an example similar to the following.

EXAMPLE (pointer_from_concrete_address_2.c):

#define PORTBASE 0x40000000
unsigned int volatile * const port =

(unsigned int *) PORTBASE;
int main() {

unsigned int value = 0;
// on systems where PORTBASE is a legal non-stack/heap
// address, does this have defined behaviour?
*port = value; /* write to port */
value = *port; /* read from port */

}

GCC-5.3-O2-NO-STRICT-ALIASING:
CLANG36-O2-NO-STRICT-ALIASING: . . . as above
ISO: undefined behaviour

DEFACTO: implementation-defined whether

undefined-behaviour or not

2.8 Pointer provenance for other allocators
ISO C has a distinguished malloc, but operating system
kernels have multiple allocators, e.g. the FreeBSD and Linux
per-CPU allocators mentioned earlier. GCC has a function
attribute attribute ((malloc)) documented with:

“This tells the compiler that a function is malloc-like,
i.e., that the pointer P returned by the function cannot alias
any other pointer valid when the function returns, and more-
over no pointers to valid objects occur in any storage ad-
dressed by P. Using this attribute can improve optimiza-
tion. Functions like malloc and calloc have this prop-
erty because they return a pointer to uninitialized or zeroed-
out storage. However, functions like realloc do not have
this property, as they can return a pointer to storage con-
taining pointers.” (https://gcc.gnu.org/onlinedocs/
gcc/Function-Attributes.html).

Ideally a de facto semantics would be able to treat all
malloc-like functions uniformly; we do not currently sup-
port this. Do compilers special-case malloc in any way be-
yond what that text says?

12 Placing C variables at specific addresses to access memory-
mapped peripherals, ARM Technical Support Knowledge Articles,
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.faqs/ka3750.html
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2.9 Stability of pointer values
2.9.1 Q21. Are pointer values stable?

ISO: yes (modulo GCC debate) DEFACTO-USAGE:
yes DEFACTO-IMPL: yes CERBERUS-DEFACTO: yes
CHERI: yes TIS: yes KCC: Execution failed (unclear
why)

We assume, in both de facto and ISO standard semantics,
that pointer values are stable over time, as are the results of
comparisons of them (modulo nondeterministic choices as
to whether their provenance is taken into account in those
comparisons).

This follows our understanding of normal implemen-
tations and our reading of the ISO standard, which says
(6.2.4p2): “[...] An object exists, has a constant address,
33) and retains its last-stored value throughout its lifetime.
[...]” where footnote 33 is: “The term “constant address”
means that two pointers to the object constructed at pos-
sibly different times will compare equal. The address may
be different during two different executions of the same pro-
gram.”. Though note that this is contrary to one interpre-
tation of the standard in a response to the GCC bug report
mentioned above. It rules out C implementations using a
moving garbage collector.

For example, we believe the following should be guaran-
teed to print true:

EXAMPLE (pointer_stability_1.c):
#include <stdio.h>
#include <inttypes.h>
int main() {

int x=1;
uintptr_t i = (uintptr_t) &x;
uintptr_t j = (uintptr_t) &x;
// is this guaranteed to be true?
_Bool b = (i==j);
printf("(i==j)=%s\n",b?"true":"false");
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
(i==j)=true

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour ((i==j)=true)

ISO: defined behaviour ((i==j)=true) (though debated)

(pointer_stability_2.c and pointer_stability_

3.c are similar but with the equality at pointer type and with
a pointer representation equality, respectively.)

2.10 Pointer Equality Comparison (with == and !=)
There are several notions of pointer equality which would
coincide in a completely concrete semantics but which in a
provenance-aware semantics can differ:

(a) comparison with ==

(b) comparison of their representations, e.g. with memcmp

(c) accessing the same memory

(d) giving rise to equally defined or undefined behaviour

(e) equivalent as far as alias analysis is concerned

As we note elsewhere, the standard appears to use “compare
equal” to imply that the pointers are equally usable, but that
is not the case. Our first examples show cases where two
pointers are memcmp-equal but ==-unequal, and where they
are memcmp- or ==-equal but accessing them is not equally
defined.

Jones [24] mentions some architectures, now more-or-
less exotic, in which (b) may not hold.

We say that two pointer values are equivalent if they are
interchangeable, satisfying all of (a–e). And we say that a
pointer value is usable if accesses using it access the right
memory and do not give rise to undefined behaviour.

2.10.1 Q22. Can one do == comparison between
pointers to objects of non-compatible types?

U:DEFACTO D:ISO-VS-DEFACTO
ISO: no DEFACTO-USAGE: unclear – should be impl-
def? DEFACTO-IMPL: unclear – should be impl-def?
CERBERUS-DEFACTO: yes CHERI: under debate TIS:
yes KCC: yes

[Question 6/15 of our What is C in practice? (Cerberus
survey v2)13 relates to this.]

As we noted in §2.1.3 (p.10), the ISO standard explicitly
permits == comparison between pointers to different objects
of compatible types. 6.5.9 Equality operators allows com-
parison between any two pointers if

• “both operands are pointers to qualified or unqualified
versions of compatible types;”

• “one operand is a pointer to an object type and the other
is a pointer to a qualified or unqualified version of void;
or”

• “one operand is a pointer and the other is a null pointer
constant.”

As we saw in §2.1.2 (p.9), pointer comparison with ==

should be nondeterministically allowed to be provenance-
aware or not.

It is not clear whether the restriction to compatible types
is needed for typical modern implementations. It is also
not clear whether == comparison between pointers to non-
compatible types is used in practice, and similarly below for
relational comparison with < etc.

For the following, GCC and Clang both give warnings;
GCC says that this comparison without a cast is enabled
by default, perhaps suggesting that it is used in the de facto
standard corpus of code and hence that our de facto standard
semantics should allow it.

13 www.cl.cam.ac.uk/~pes20/cerberus/

notes50-survey-discussion.html

26 2016/3/17

pointer_stability_1.c
pointer_stability_2.c
pointer_stability_3.c
pointer_stability_3.c
www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html
www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html


EXAMPLE (pointer_comparison_eq_1_global.c):
#include <stdio.h>
#include <string.h>
int x=1;
float f=1.0;
int main() {

int *p = &x;
float *q = &f;
_Bool b = (p == q); // free of undefined behaviour?
printf("(p==q) = %s\n", b?"true":"false");
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
pointer comparison eq 1 global.c: In function ’main’:

pointer comparison eq 1 global.c:8:16: warning:

comparison of distinct pointer types lacks a cast

Bool b = (p == q); // free of undefined behaviour?

^

(p==q) = false

CLANG36-O2-NO-STRICT-ALIASING:
pointer comparison eq 1 global.c:8:16: warning:

comparison of distinct pointer types (’int *’ and ’float

*’) [-Wcompare-distinct-pointer-types]

Bool b = (p ==

q); // free of undefined behaviour?

^

1 warning generated.

(p==q) = false

DEFACTO: implementation-defined
ISO: undefined behaviour

EXAMPLE (pointer_comparison_eq_1_auto.c):
GCC-5.3-O2-NO-STRICT-ALIASING:
pointer comparison eq 1 auto.c: In function ’main’:

pointer comparison eq 1 auto.c:8:16: warning: comparison

of distinct pointer types lacks a cast

Bool b = (p

== q); // free of undefined behaviour?

^

(p==q) = false

CLANG36-O2-NO-STRICT-ALIASING:
pointer comparison eq 1 auto.c:8:16: warning: comparison

of distinct pointer types (’int *’ and ’float *’)

[-Wcompare-distinct-pointer-types]

Bool b = (p == q);

// free of undefined behaviour?

^

1

warning generated.

(p==q) = false

DEFACTO: implementation-defined

ISO: undefined behaviour

Compilers might conceivably optimise such comparisons
(between pointers of non-compatible type) to false, but the
following example shows that (at least in this case) GCC
does not:

EXAMPLE (pointer_comparison_eq_2_global.c):
#include <stdio.h>
#include <string.h>
int x=1;
float f=1.0;
int main() {

int *p = (int *)&f;
float *q = &f;
_Bool b = (p == q); // free of undefined behaviour?
printf("(p==q) = %s\n", b?"true":"false");
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
pointer comparison eq 2 global.c: In function ’main’:

pointer comparison eq 2 global.c:8:16: warning:

comparison of distinct pointer types lacks a cast

Bool b = (p == q); // free of undefined behaviour?

^

(p==q) = true

CLANG36-O2-NO-STRICT-ALIASING:
pointer comparison eq 2 global.c:8:16: warning:

comparison of distinct pointer types (’int *’ and ’float

*’) [-Wcompare-distinct-pointer-types]

Bool b = (p ==

q); // free of undefined behaviour?

^

1 warning generated.

(p==q) = true

DEFACTO: implementation-defined
ISO: undefined behaviour

EXAMPLE (pointer_comparison_eq_2_auto.c):
GCC-5.3-O2-NO-STRICT-ALIASING:
pointer comparison eq 2 auto.c: In function ’main’:

pointer comparison eq 2 auto.c:8:16: warning: comparison

of distinct pointer types lacks a cast

Bool b = (p

== q); // free of undefined behaviour?

^

(p==q) = true

CLANG36-O2-NO-STRICT-ALIASING:
pointer comparison eq 2 auto.c:8:16: warning: comparison

of distinct pointer types (’int *’ and ’float *’)

[-Wcompare-distinct-pointer-types]

Bool b = (p == q);
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// free of undefined behaviour?

^

1

warning generated.

(p==q) = true

DEFACTO: implementation-defined
ISO: undefined behaviour

2.10.2 Q23. Can one do == comparison between
pointers (to objects of compatible types) with
different provenances that are not strictly
within their original allocations?

ISO: yes DEFACTO-USAGE: unclear how much this is
used DEFACTO-IMPL: yes (modulo §2.1.3 discussion)
CERBERUS-DEFACTO: yes CHERI: ? TIS: fails with
pointer comparable, as expected KCC: yes

EXAMPLE (klw-itp14-2.c):
#include <stdio.h>
int x=1, y=2;
int main() {

int *p = &x + 1;
int *q = &y;
_Bool b = (p == q); // free of undefined behaviour?
printf("(p==q) = %s\n", b?"true":"false");
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
(p==q) = false

CLANG36-O2-NO-STRICT-ALIASING:
(p==q) = true

This example is from Krebbers et al. [32], as we discuss in
§6.7. Their model forbids this, while our candidate de facto
model should allow arbitrary pointer comparison.

2.10.3 Q24. Can one do == comparison of a pointer
and (void*)-1?

U:ISO
ISO: unclear DEFACTO-USAGE: yes DEFACTO-IMPL:
yes CERBERUS-DEFACTO: yes CHERI: ? TIS: fails
with pointer comparable (but needed for sqlite?) KCC: yes

EXAMPLE (besson_blazy_wilke_6.2.c):
#include <stdlib.h>
int main() {

void *p = malloc(sizeof(int));
_Bool b = (p == (void*)-1); // defined behaviour?

}

GCC-5.3-O2-NO-STRICT-ALIASING:
CLANG36-O2-NO-STRICT-ALIASING: . . . as above
ISO: unclear

This is from Besson et al. [9], as we discuss in §6.8. Their
§6.2 notes that system calls such as mmap return -1 on error,

and so one must be able to compare pointers against -1. Our
test uses malloc as the source of the pointer, just to avoid
dependence on sys/mman.h, even though malloc should
not return -1. Their model permits the mmap analogue of this,
apparently by building in the fact that mmap should return
aligned values.

John Regehr observes that sqlite also compares against -2
and other error codes.

In a semantics in which == might respect provenance,
both -1 values should be constructed in a provenance-free
fashion, otherwise such a comparison might mistakenly give
false.

2.11 Pointer Relational Comparison (with <, >, <=, or
>=)

Here the ISO standard seems to be significantly more restric-
tive than common practice. First, there is a type constraint,
as for ==: 6.5.8p2 “both operands are pointers to qualified
or unqualified versions of compatible object types.”.

Then 6.5.8p5 allows comparison of pointers only to the
same object (or one-past) or to members of the same array,
structure, or union: 6.5.8p5 “When two pointers are com-
pared, the result depends on the relative locations in the ad-
dress space of the objects pointed to. If two pointers to ob-
ject types both point to the same object, or both point one
past the last element of the same array object, they compare
equal. If the objects pointed to are members of the same ag-
gregate object, pointers to structure members declared later
compare greater than pointers to members declared earlier
in the structure, and pointers to array elements with larger
subscript values compare greater than pointers to elements
of the same array with lower subscript values. All pointers
to members of the same union object compare equal. If the
expression P points to an element of an array object and the
expression Q points to the last element of the same array ob-
ject, the pointer expression Q+1 compares greater than P. In
all other cases, the behavior is undefined.”

(Similarly to 6.5.6p7 for pointer arithmetic, 6.5.8p4 treats
all non-array element objects as arrays of size one for this:
6.5.8p4 “For the purposes of these operators, a pointer to an
object that is not an element of an array behaves the same as
a pointer to the first element of an array of length one with
the type of the object as its element type.”)

This rules out the following comparisons, between point-
ers to two separately allocated objects and between a pointer
to a structure member and one to a sub-member of another
member, but some of these seem to be relied upon in prac-
tice.

2.11.1 Q25. Can one do relational comparison (with <,
>, <=, or >=) of two pointers to separately
allocated objects (of compatible object types)?

D:ISO-VS-DEFACTO
ISO: no DEFACTO-USAGE: impl-def or yes? DEFACTO-
IMPL: impl-def or yes? CERBERUS-DEFACTO: yes
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CHERI: yes TIS: no (fails with pointer comparable, in-
tentionally) KCC: no (flags UB)

[Question 7/15 of our What is C in practice? (Cerberus
survey v2)14 relates to this.]

EXAMPLE (pointer_comparison_rel_1_global.c):

#include <stdio.h>
int y = 2, x=1;
int main() {

int *p = &x, *q = &y;
_Bool b1 = (p < q); // defined behaviour?
_Bool b2 = (p > q); // defined behaviour?
printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
printf("(p<q) = %s (p>q) = %s\n",

b1?"true":"false", b2?"true":"false");
}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x600b68 q=0x600b6c

(p<q) = true (p>q) = false

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: p=0x600ad0 q=0x600acc

(p<q) = false (p>q) = true

DEFACTO: defined behaviour

ISO: undefined behaviour

And with automatic storage duration:

EXAMPLE (pointer_comparison_rel_1_auto.c):
GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x7fffffffe9ec q=0x7fffffffe9e8

(p<q) = false (p>q) = true

CLANG36-O2-NO-STRICT-ALIASING:
Addresses: p=0x7fffffffe9e8 q=0x7fffffffe9ec

(p<q) = true (p>q) = false

DEFACTO: defined behaviour

ISO: undefined behaviour

In practice, comparison of pointers to different objects seems
to be used heavily, e.g. in memory allocators and for a lock
order in Linux, and we believe the de facto semantics should
allow it, leaving aside segmented architectures. Though
one respondent reported for pointer_comparison_rel_

1_global.c: “May produce inconsistent results in prac-
tice if p and q straddle the exact middle of the address
space. We’ve run into practical problems with this. Cast to
intptr t first in the rare case you really need it.”.

2.11.2 Q26. Can one do relational comparison (with <,
>, <=, or >=) of a pointer to a structure member
and one to a sub-member of another member, of
compatible object types?

U:ISO D:ISO-VS-DEFACTO
ISO: unclear - no? (subject to interpretation) DEFACTO-
USAGE: yes DEFACTO-IMPL: yes CERBERUS-

14 www.cl.cam.ac.uk/~pes20/cerberus/
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DEFACTO: yes CHERI: yes TIS: yes KCC: Execution
failed (unclear why)

EXAMPLE (pointer_comparison_rel_substruct.c):
#include <stdio.h>
typedef struct { int i1; float f1; } st1;
typedef struct { int i2; st1 s2; } st2;
int main() {

st2 s = {.i2=2, .s2={.i1=1, .f1=1.0 } };
int *p = &(s.i2), *q = &(s.s2.i1);
_Bool b = (p < q); // does this have defined behaviour?
printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
printf("(p<q) = %s\n", b?"true":"false");

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p=0x7fffffffe9e0 q=0x7fffffffe9e4

(p<q) = true

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour (true)

ISO: undefined behaviour?

Whether this is allowed in the ISO standard depends on
one’s interpretation of 6.5.8p5 “If the objects pointed to are
members of the same aggregate object”. A literal reading
suggests that it is not, as the object pointed to by q is not a
member of the struct, but merely a part of a member of it.

2.11.3 Q27. Can one do relational comparison (with <,
>, <=, or >=) of pointers to two members of a
structure that have incompatible types?

U:DEFACTO D:ISO-VS-DEFACTO
ISO: no DEFACTO-USAGE: unclear - should be impl-
def? DEFACTO-IMPL: unclear - should be impl-def?
CERBERUS-DEFACTO: yes CHERI: under debate TIS:
yes KCC: Execution failed (unclear why)

The ISO standard constraint also rules out comparison of
pointers to two members of a structure with different types:

EXAMPLE (pointer_comparison_rel_different_type_members.
c):
#include <stdio.h>
typedef struct { int i; float f; } st;
int main() {

st s = {.i=1, .f=1.0 };
int *p = &(s.i);
float *q = &(s.f);
_Bool b = (p < q); // does this have defined behaviour?
printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
printf("(p<q) = %s\n", b?"true":"false");

}

GCC-5.3-O2-NO-STRICT-ALIASING:
pointer comparison rel different type members.c: In

function ’main’:

pointer comparison rel different type m

embers.c:7:16: warning: comparison of distinct pointer

types lacks a cast

Bool b = (p < q); // does this

have defined behaviour?

^

29 2016/3/17

pointer_comparison_rel_1_global.c
pointer_comparison_rel_1_auto.c
pointer_comparison_rel_1_global.c
pointer_comparison_rel_1_global.c
www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html
www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html
pointer_comparison_rel_substruct.c
pointer_comparison_rel_different_type_members.c
pointer_comparison_rel_different_type_members.c


Addresses: p=0x7fffffffe9d0 q=0x7fffffffe9d4

(p<q) = true

CLANG36-O2-NO-STRICT-ALIASING:
pointer comparison rel different type members.c:7:16:

warning: comparison of distinct pointer types (’int *’

and ’float *’) [-Wcompare-distinct-pointer-types]

Bool b = (p < q); // does this have defined behaviour?

^

1 warning generated.

Addresses: p=0x7fffffffe9d8 q=0x7fffffffe9dc

(p<q) = true

DEFACTO: implementation-defined
ISO: undefined behaviour

As for == comparison (pointer_comparison_eq_1_
global.c, §2.10.1, p.26), this is presumably to let im-
plementations use different representations for pointers to
different types. In practice GCC gives the same warn-
ing, comparison of distinct pointer types lacks

a cast [enabled by default], which weakly implies
that this is used in practice and that our de facto semantics
should allow it.

2.12 Null pointers
2.12.1 Q28. Can one make a null pointer by casting

from a non-constant integer expression?
D:ISO-VS-DEFACTO
ISO: no DEFACTO-USAGE: yes DEFACTO-IMPL: yes
(modulo segmented or multiple-address-space architectures)
CERBERUS-DEFACTO: yes CHERI: yes TIS: yes KCC:
yes

[Question 12/15 of our What is C in practice? (Cerberus
survey v2)15 relates to this.]

The standard permits the construction of null pointers
by casting from integer constant zero expressions, but not
from other integer values that happen to be zero (6.3.2.3p3):
“An integer constant expression with the value 0, or such
an expression cast to type void *, is called a null pointer
constant.66) If a null pointer constant is converted to a
pointer type, the resulting pointer, called a null pointer, is
guaranteed to compare unequal to a pointer to any object
or function. 66) The macro NULL is defined in <stddef.h>

(and other headers) as a null pointer constant; see 7.19.”

EXAMPLE (null_pointer_1.c):
#include <stdio.h>
#include <stddef.h>
#include <assert.h>
int y=0;
int main() {

assert(sizeof(long)==sizeof(int*));
long x=0;
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int *p = (int *)x;
// is the value of p a null pointer?
_Bool b1 = (p == NULL);// guaranteed to be true?
_Bool b2 = (p == &y); // guaranteed to be false?
printf("(p==NULL)=%s (p==&y)=%s\n", b1?"true":"false",

b2?"true":"false");
}

GCC-5.3-O2-NO-STRICT-ALIASING:
(p==NULL)=true (p==&y)=false

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: implementation-defined (typically true/false)

ISO: defined behaviour (nondeterministic results)?

The situation in practice is not completely clear. The CHERI
ASPLOS paper observes that “this distinction is difficult to
support in modern compilers” and points to an LLVM mail-
ing list thread16 that suggests that lots of code depends on be-
ing able to form null pointers from non-constant zero expres-
sions. The comp.lang.c FAQ17 has an example claimed to
show that in some cases the compiler will get it wrong if
not given an explicit cast, but this is essentially just telling
the compiler the right type. It would be useful to know of
any current platforms in which the NULL pointer isn’t rep-
resented with a zero value (perhaps embedded systems?).

2.12.2 Q29. Can one assume that all null pointers have
the same representation?

D:ISO-VS-DEFACTO
ISO: no DEFACTO-USAGE: yes DEFACTO-IMPL: yes
(modulo segmented or multiple-address-space architectures)
CERBERUS-DEFACTO: iff the implementation-defined set of
null pointer values is a singleton CHERI: yes? TIS: yes
KCC: Execution failed (unclear why)

6.3.2.3p3 says this for == comparison: “Conversion of
a null pointer to another pointer type yields a null pointer
of that type. Any two null pointers shall compare equal.”
but leaves open whether they have the same representation
bytes.

EXAMPLE (null_pointer_2.c):

#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include <assert.h>
int y=0;
int main() {

assert(sizeof(int*)==sizeof(char*));
int *p = NULL;
char *q = NULL;
// are two null pointers guaranteed to have the
// same representation?
_Bool b = (memcmp(&p, &q, sizeof(p))==0);
printf("p=%p q=%p\n",(void*)p,(void*)q);
printf("%s\n",b?"equal":"unequal");

}

16 http://lists.cs.uiuc.edu/pipermail/llvmdev/

2015-January/080288.html
17 http://c-faq.com/null/null2.html
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GCC-5.3-O2-NO-STRICT-ALIASING:
p=0x0 q=0x0

equal

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: implementation-defined (typically equal)

ISO: defined behaviour but nondeterministic results?

Should be an implementation-defined set of null-pointer

representations

A de facto semantics could base this on the implementation-
defined set of null-pointer values. Or, even more simply and
consistent with the desire for calloc to initialise memory
that will be used as pointer values to the representation of
NULL, just fix on zero.

2.12.3 Q30. Can null pointers be assumed to have
all-zero representation bytes?

D:ISO-VS-DEFACTO
ISO: no DEFACTO-USAGE: yes DEFACTO-IMPL: yes
(modulo segmented or multiple-address-space architectures)
CERBERUS-DEFACTO: iff the implementation-defined set of
null pointer values contains just zero CHERI: yes TIS:
yes KCC: Execution failed (unclear why)

[Question 13/15 of our What is C in practice? (Cerberus
survey v2)18 relates to this.]

EXAMPLE (null_pointer_3.c):
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include <stdlib.h>
int y=0;
int main() {

int *p = NULL;
int **q = (int **) calloc(1,sizeof(int*));
// is this guaranteed to be true?
_Bool b = (memcmp(&p, q, sizeof(p))==0);
printf("%s\n",b?"zero":"nonzero");

}

GCC-5.3-O2-NO-STRICT-ALIASING:
zero

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: implementation-defined (typically zero)

ISO: defined behaviour but nondeterministic results

2.13 Pointer Arithmetic
The ISO standard permits only very limited pointer arith-
metic, restricting the formation of pointer values.

First, there is arithmetic within an array: 6.5.6 Additive
operators (6.5.6p{8,9}) permits one to add a pointer and
integer (or subtract an integer from a pointer) only within
the start and one past the end of an array object, inclusive.
6.5.6p7 adds “For the purposes of these operators, a pointer

18 www.cl.cam.ac.uk/~pes20/cerberus/
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to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of
length one with the type of the object as its element type.”.
Subtraction of two pointers is permitted only if both are in
a similar range (and only if the result is representable in the
result type).

Second, 6.3.2.3p7 says that one can do pointer arithmetic
on character-type pointers to access representation bytes:
“[...] When a pointer to an object is converted to a pointer
to a character type, the result points to the lowest addressed
byte of the object. Successive increments of the result, up to
the size of the object, yield pointers to the remaining bytes of
the object.”.

2.13.1 Q31. Can one construct out-of-bounds (by more
than one) pointer values by pointer arithmetic
(without undefined behaviour)?

U:DEFACTO D:ISO-VS-DEFACTO
ISO: no DEFACTO-USAGE: yes sometimes DEFACTO-
IMPL: yes sometimes but not in general CERBERUS-
DEFACTO: yes CHERI: yes in 256-bit CHERI, not always
in 128-bit CHERI TIS: yes for first test; correctly found a
bug in mis-edited second test KCC: no (flags UB at pointer
arithmetic)

[Question 9/15 of our What is C in practice? (Cerberus
survey v2)19 relates to this.]

In practice it seems to be common to transiently con-
struct out-of-bounds pointer values, e.g. with (px +11)

-10 rather than px + (11-10), as below, and we are not
aware of examples where this will go wrong in standard
implementations, at least for small deltas. There are cases
where pointer arithmetic subtraction can overflow20. There
might conceivably be an issue on some platforms if the tran-
sient value is not aligned and only aligned values are rep-
resentable at the particular pointer type, or if the hardware
is doing bounds checking, but both of those seem exotic
at present. There are also cases where pointer arithmetic
might wrap at values less than the obvious word size, e.g. for
“near” or “huge” pointers on 8086 [53, §2.4], but it is not
clear if any of these are current. We give examples involving
pointers to an integer array and to representation bytes, and
with both addition and subtraction.

EXAMPLE (cheri_03_ii.c):
#include <stdio.h>
int main() {

int x[2];
int *p = &x[0];
//is this free of undefined behaviour?
int *q = p + 11;
q = q - 10;
*q = 1;
printf("x[1]=%i *q=%i\n",x[1],*q);

19 www.cl.cam.ac.uk/~pes20/cerberus/

notes50-survey-discussion.html
20 http://sourceforge.net/p/png-mng/mailman/

png-mng-implement/?viewmonth=201511
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}

GCC-5.3-O2-NO-STRICT-ALIASING:
x[1]=1 *q=1

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour

ISO: undefined behaviour

EXAMPLE (cheri_03_ii_char.c):
#include <stdio.h>
int main() {

unsigned char x;
unsigned char *p = &x;
//is this free of undefined behaviour?
unsigned char *q = p + 11;
q = q - 10;
*q = 1;
printf("x=0x%x *p=0x%x *q=0x%x\n",x,*p,*q);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
cheri 03 ii char.c: In function ’main’:

cheri 03 ii char.c:9:3: warning: ’x’ is used

uninitialized in this function [-Wuninitialized]

printf("x=0x%x *p=0x%x *q=0x%x\n",x,*p,*q);
^

x=0x0 *p=0x0 *q=0x1

CLANG36-O2-NO-STRICT-ALIASING:
x=0x0 *p=0x0 *q=0x0

DEFACTO: defined behaviour

ISO: undefined behaviour

This is the II invalid intermediate idiom of the CHERI AS-
PLOS paper; the second example also involves the Sub
pointer subtraction idiom and perhaps the IA performing
integer arithmetic on pointers idiom (it’s not clear exactly
what that is). All are widely observed in practice.

2.13.2 Q32. Can one form pointer values by pointer
addition that overflows (without undefined
behaviour)?

D:ISO-VS-DEFACTO
ISO: no DEFACTO-USAGE: yes sometimes DEFACTO-
IMPL: yes sometimes but not in general CERBERUS-
DEFACTO: yes? CHERI: ? yes in 256-bit CHERI, not al-
ways in 128-bit CHERI TIS: yes KCC: no (flags UB at
pointer arithmetic)

EXAMPLE (pointer_add_wrap_1.c):
#include <stdio.h>
int main() {

unsigned char x;
unsigned char *p = &x;
unsigned long long h = ( 1ull << 63 );
//are the following free of undefined behaviour?
unsigned char *q1 = p + h;
unsigned char *q2 = q1 + h;

printf("Addresses: p =%p q1=%p\n",
(void*)p,(void*)q1);

printf("Addresses: q2=%p h =0x%llx\n",
(void*)q2,h);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p =0x7fffffffea0f q1=0x80007fffffffea0f

Addresses: q2=0x7fffffffea0f h =0x8000000000000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above (modulo ad-
dresses)
ISO: undefined behaviour

Obviously this presumes that constructing an out-of-bounds
(by more than one) pointer value by pointer arithmetic, as
per §2.13.1 (p.31), is itself allowed.

2.13.3 Q33. Can one assume pointer addition wraps on
overflow?

U:DEFACTO
ISO: no DEFACTO-USAGE: ? DEFACTO-IMPL: ?
CERBERUS-DEFACTO: ? CHERI: ? TIS: no (or, if so, tis
is not assuming a 64-bit address space). Unclear? KCC:
no (flags UB at pointer arithmetic)

EXAMPLE (pointer_add_wrap_2.c):
#include <stdio.h>
int main() {

unsigned char x;
unsigned char *p = &x;
unsigned long long h = ( 1ull << 63 );
//are the following free of undefined behaviour?
unsigned char *q1 = p + h;
unsigned char *q2 = q1 + h;
*q2 = 1;
printf("Addresses: p =%p q1=%p\n",

(void*)p,(void*)q1);
printf("Addresses: q2=%p h =0x%llx\n",

(void*)q2,h);
printf("x=0x%x *p=0x%x *q2=0x%x\n",x,*p,*q2);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: p =0x7fffffffea0f q1=0x80007fffffffea0f

Addresses: q2=0x7fffffffea0f h

=0x8000000000000000

x=0x1 *p=0x1 *q2=0x1

CLANG36-O2-NO-STRICT-ALIASING: . . . as above (modulo ad-
dresses)
ISO: undefined behaviour

This presumes that the previous question is allowed.

2.13.4 Q34. Can one move among the members of a
struct using representation-pointer arithmetic
and casts?

U:ISO D:ISO-VS-DEFACTO
ISO: unclear – impl-def? DEFACTO-USAGE: yes
DEFACTO-IMPL: yes CERBERUS-DEFACTO: yes
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CHERI: yes TIS: yes KCC: no ((mistakenly) de-
tects UB: A pointer (or array subscript) outside the bounds
of an object)

The standard is ambiguous on the interaction between
the allowable pointer arithmetic (on unsigned char* rep-
resentation pointers) and subobjects. For example, consider:

EXAMPLE (cast_struct_inter_member_1.c):
#include <stdio.h>
#include <stddef.h>
typedef struct { float f; int i; } st;
int main() {

st s = {.f=1.0, .i=1};
int *pi = &(s.i);
unsigned char *pci = ((unsigned char *)pi);
unsigned char *pcf = (pci - offsetof(st,i))

+ offsetof(st,f);
float *pf = (float *)pcf;
*pf = 2.0; // is this free of undefined behaviour?
printf("s.f=%f *pf=%f s.i=%i\n",s.f,*pf,s.i);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
s.f=2.000000 *pf=2.000000 s.i=1

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour

ISO: unclear

This forms an unsigned char* pointer to the second mem-
ber (i) of a struct, does arithmetic on that using offsetof to
form an unsigned char* pointer to the first member, casts
that into a pointer to the type of the first member (f), and
uses that to write.

In practice we believe that this is all supported by most
compilers and it is used in practice, e.g. as in the Container
idiom of the CHERI ASPLOS paper, where they discuss
container macros that take a pointer to a structure member
and compute a pointer to the structure as a whole. They
see it heavily used by one of the example programs they
studied. We are told that Intel’s MPX compiler does not
support the container macro idiom, while Linux, FreeBSD,
and Windows all rely on it.

The standard says (6.3.2.3p7): “...When a pointer to an
object is converted to a pointer to a character type, the result
points to the lowest addressed byte of the object. Successive
increments of the result, up to the size of the object, yield
pointers to the remaining bytes of the object.”. This licenses
the construction of the unsigned char* pointer pci to the
start of the representation of s.i (presuming that a structure
member is itself an “object”, which itself is ambiguous in
the standard), but allows it to be used only to access the
representation of s.i.

The offsetof definition in stddef.h, 7.19p3, “[...]
offsetof(type, member-designator) which expands to an
integer constant expression that has type size t, the value
of which is the offset in bytes, to the structure member (des-
ignated by member-designator), from the beginning of its
structure (designated by type). [...]”, implies that the cal-

culation of pcf gets the correct numerical address, but does
not say that it can be used, e.g. to access the representation
of s.f. As we saw in the discussion of provenance, the mere
fact that a pointer has the correct address does not necessar-
ily mean that it can be used to access that memory without
giving rise to undefined behaviour.

Finally, if one deems pcf to be a legitimate char* pointer
to the representation of s.f, then the standard says that it can
be converted to a pointer to any object type if sufficiently
aligned, which for float* it will be. 6.3.2.3p7: “A pointer
to an object type may be converted to a pointer to a different
object type. If the resulting pointer is not correctly aligned
68) for the referenced type, the behavior is undefined. Oth-
erwise, when converted back again, the result shall compare
equal to the original pointer....”. But whether that pointer has
the right value and is usable to access memory is left unclear.

2.13.5 Q35. Can one move between subobjects of the
members of a struct using pointer arithmetic?

U:ISO D:ISO-VS-DEFACTO
ISO: unclear DEFACTO-USAGE: yes DEFACTO-IMPL:
yes CERBERUS-DEFACTO: yes CHERI: ? TIS: guess
yes, but tis appears not to support %td format KCC: no
(detects UB at the pointer arithmetic)

EXAMPLE (struct_inter_submember_1.c):
#include <stdio.h>
#include <stddef.h>
struct S { int a[3]; int b[3]; } s;
int main() {

s.b[2]=10;
ptrdiff_t d;
d = &(s.b[2]) - &(s.a[0]); // defined behaviour?
int *p;
p = &(s.a[0]) + d; // defined behaviour?
*p = 11; // defined behaviour?
printf("d=%td s.b[2]=%d *p=%d\n",d,s.b[2],*p);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
d=5 s.b[2]=11 *p=11

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
ISO: unclear

This is inspired by an example from Krebbers [29], as dis-
cussed in §6.11.

2.13.6 Q36. Can one implement offsetof using the
addresses of members of a NULL struct
pointer?

U:ISO
ISO: unclear DEFACTO-USAGE: yes DEFACTO-IMPL:
yes CERBERUS-DEFACTO: yes CHERI: ? TIS: unclear
(the print seems to stop at the %p) KCC: no (flags a null-
dereference UB)

EXAMPLE (ubc_addr_null_1.c):
#include <stddef.h>
#include <inttypes.h>
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#include <stdio.h>
struct s { uint8_t a; uint8_t b; };
int main () {

struct s *f = NULL;
uint8_t *p = &(f->b); // free of undefined behaviour?
// and equal to the offsetof result?
printf("p=%p offsetof(struct s,b)=0x%zx\n",

(void*)p,offsetof(struct s, b));
}

GCC-5.3-O2-NO-STRICT-ALIASING:
p=0x1 offsetof(struct s,b)=0x1

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
ISO: unclear

This seems to be a common idiom in practice. The test
is inspired by examples from Regehr’s UB Canaries, as
discussed in §6.18.

If one views p->x as syntactic sugar for (*p).x (as stated
by Jones [24, p.982], but, interestingly, not the ISO standard)
then this is undefined behaviour when p is null. CompCert
seems to do this, while GCC seems to keep the -> at least as
far as GIMPLE.

2.14 Casts between pointer types
Standard The standard (6.3.2.3p{1–4,7,8}) identifies var-
ious circumstances in which conversion between pointer
types is legal, with some rather weak constraints on the re-
sults:

1 “A pointer to void may be converted to or from a pointer
to any object type. A pointer to any object type may be
converted to a pointer to void and back again; the result
shall compare equal to the original pointer.”

2 “For any qualifier q, a pointer to a non-q-qualified type
may be converted to a pointer to the q-qualified version of
the type; the values stored in the original and converted
pointers shall compare equal.”

7 “A pointer to an object type may be converted to a
pointer to a different object type. If the resulting pointer
is not correctly aligned 68) for the referenced type, the
behavior is undefined. Otherwise, when converted back
again, the result shall compare equal to the original
pointer. When a pointer to an object is converted to a
pointer to a character type, the result points to the low-
est addressed byte of the object. Successive increments of
the result, up to the size of the object, yield pointers to the
remaining bytes of the object.”

8 “A pointer to a function of one type may be converted to
a pointer to a function of another type and back again;
the result shall compare equal to the original pointer. If
a converted pointer is used to call a function whose type
is not compatible with the referenced type, the behavior
is undefined.”

Paragraphs 3 and 4 relate to null pointers, as discussed in
§2.12 (p.30). Paragraphs 5 and 6 relate to casts between

pointer and integer types, as discussed in §2.2 (p.10). Foot-
note 68 just says that “correctly aligned” should be transi-
tive.

This raises several questions. First, this “compare equal”
is probably supposed to mean the the pointers are (in our
sense discussed in §2.10, p.26) equivalent: that they not
only compare equal with == but also are equally usable to
access (the same) memory and have equal representations.
We imagine that this is pre-DR260 text, when these concepts
arguably coincided.

Second, the standard only covers roundtrips of size two,
via one other pointer type and back. This seems curiously
irregular: there seems to be no reason not to give a roundtrip
property for longer roundtrips via multiple pointer types, and
both our ISO and de facto standard semantics should allow
that.

Third, (7) gives undefined behaviour for a conversion
between object types where the result value is not aligned
for the new type, while (1) allows such a conversion via
(void *), albeit with no guarantee on the result.

Fourth, it gives no guarantees for the usability of pointers
constructed by a combination of casts and arithmetic, as
discussed in §2.13.4 (p.32).

Additionally, 6.7.2.1 Structure and union specifiers li-
censes conversions (in both directions) between pointers to
structures and their initial members, and between unions and
their members.

The Friendly C proposal (Point 4) by Cuoq et al., dis-
cussed in §6.17, has a link21 which points to C committee
discussion22 in which they considered interconvertability of
object and function pointers. POSIX apparently requires it,
for dlsym.

2.14.1 Q37. Are usable pointers to a struct and to its
first member interconvertable?

ISO: yes DEFACTO-USAGE: yes DEFACTO-IMPL: yes
CERBERUS-DEFACTO: yes CHERI: yes TIS: yes KCC:
yes

A Linux kernel developer says that they rely on this,
and also that they use offsetof to move between members.
If offsetof is not available, it is faked up (with subtraction
between address-of a member reference off the null pointer).

EXAMPLE (cast_struct_and_first_member_1.c):
#include <stdio.h>
typedef struct { int i; float f; } st;
int main() {

st s = {.i = 1, .f = 1.0};
int *pi = &(s.i);
st* p = (st*) pi; // free of undefined behaviour?

21 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

2008/n2605.pdf
22 Defect Report 195 in http://www.open-std.org/jtc1/sc22/

wg21/docs/cwg_defects.html
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p->f = 2.0; // and this?
printf("s.f=%f p->f=%f\n",s.f,p->f);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
s.f=2.000000 p->f=2.000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour

ISO: defined behaviour

This is allowed in the standard: 6.7.2.1p15 “Within a struc-
ture object, the non-bit-field members and the units in which
bit-fields reside have addresses that increase in the order in
which they are declared. A pointer to a structure object,
suitably converted, points to its initial member (or if that
member is a bit-field, then to the unit in which it resides),
and vice versa. There may be unnamed padding within a
structure object, but not at its beginning.” (bold emphasis
added).

2.14.2 Q38. Are usable pointers to a union and to its
current member interconvertable?

ISO: yes DEFACTO-USAGE: yes DEFACTO-IMPL: yes
CERBERUS-DEFACTO: yes CHERI: yes TIS: yes KCC:
yes

EXAMPLE (cast_union_and_member_1.c):
#include <stdio.h>
typedef union { int i; float f; } un;
int main() {

un u = {.i = 1};
int *pi = &(u.i);
un* p = (un*) pi; // free of undefined behaviour?
p->f = 2.0; // and this?
printf("u.f=%f p->f=%f\n",u.f,p->f);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
u.f=2.000000 p->f=2.000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour

ISO: defined behaviour

The standard says: 6.7.2.1p16 “The size of a union is
sufficient to contain the largest of its members. The value of
at most one of the members can be stored in a union object
at any time. A pointer to a union object, suitably converted,
points to each of its members (or if a member is a bit-field,
then to the unit in which it resides), and vice versa.” (bold
emphasis added).

This is likewise allowed in practice and in the standard.

2.15 Accesses to related structure and union types
If one only accesses structures via assignment and member
projections, the standard treats structure types abstractly.
Type declarations create new types:

• 6.7.2.1p8 “The presence of a struct-declaration-list in a
struct-or-union-specifier declares a new type, within a
translation unit. [...]”

• 6.7.2.3p5 “Two declarations of structure, union, or enu-
merated types which are in different scopes or use dif-
ferent tags declare distinct types. Each declaration of a
structure, union, or enumerated type which does not in-
clude a tag declares a distinct type.”;

accessing a structure member requires the name of a member
of the type:

• 6.5.2.3p1 “The first operand of the . operator shall have
an atomic, qualified, or unqualified structure or union
type, and the second operand shall name a member of
that type.”

• 6.5.2.3p2 “The first operand of the -> operator shall
have type “pointer to atomic, qualified, or unqualified
structure” or “pointer to atomic, qualified, or unqualified
union”, and the second operand shall name a member of
the type pointed to.”;

and assignment requires the left and right-hand-side types to
be compatible:

• 6.5.16.1p1b2 “the left operand has an atomic, qualified,
or unqualified version of a structure or union type com-
patible with the type of the right;”

• 6.5.16.1p1b3 “the left operand has atomic, qualified, or
unqualified pointer type, and (considering the type the
left operand would have after lvalue conversion) both
operands are pointers to qualified or unqualified versions
of compatible types, and the type pointed to by the left has
all the qualifiers of the type pointed to by the right;”,

where (6.2.7p1) for two structure types to be compatible they
have to be either the same or (if declared in separate trans-
lation units) very similar: broadly, with the same ordering,
names, and compatible types of members.

But the standard permits several ways to break this type
abstraction: conversion between pointers to object types,
reading from a union of structures sharing a common initial
sequence, and type punning by writing and reading different
union members.

Most simply, one can initialise a structure by initialising
its individual members at their underlying types:

EXAMPLE (struct_initialise_members.c):
#include <stdio.h>
void f(char* cp, float*fp) {

*cp=’A’;
*fp=1.0;

}
typedef struct { char c; float f; } st;
int main() {

st s1;
f(&s1.c, &s1.f);
st s2;
s2 = s1;
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printf("s2.c=0x%x s2.f=%f\n",s2.c,s2.f);
}

GCC-5.3-O2-NO-STRICT-ALIASING:
s2.c=0x41 s2.f=1.000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour

ISO: defined behaviour

This suggests that isomorphic structs could be interchange-
able as memory objects, at least if one can cast from one
pointer type to the other. This is reasonable in the de facto
semantics, but the standard’s effective types (discussed in §4,
p.61) make it false in the standard.

Even in the de facto semantics, isomorphic struct types
are not directly interchangeable. The following example
gives a static type error in GCC and Clang, and is clearly
forbidden in the standard (for the two struct types to be com-
patible they have to be almost identical).

EXAMPLE (use_struct_isomorphic.c):
#include <stdio.h>
typedef struct { int i1; float f1; } st1;
typedef struct { int i2; float f2; } st2;
int main() {

st1 s1 = {.i1 = 1, .f1 = 1.0 };
st2 s2;
s2 = s1;
printf("s2.i2=%i2 s2.f2=%f\n",s2.i2,s2.f2);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
use struct isomorphic.c: In function ’main’:

use struct isomorphic.c:7:6: error: incompatible types

when assigning to type ’st2 {aka struct <anonymous>}’
from type ’st1 {aka struct <anonymous>}’
s2 = s1;

^

use struct isomorphic.c.gcc-5.3-O2-no-strict-aliasing.ou

t: not found

CLANG36-O2-NO-STRICT-ALIASING:
use struct isomorphic.c:7:6: error: assigning to ’st2’

from incompatible type ’st1’

s2 = s1;

^

1

error generated.

use struct isomorphic.c.clang36-O2-no-strict-aliasing.ou

t: not found

DEFACTO: type error

ISO: type error

Most generally, 6.3.2.3p7 says that “A pointer to an ob-
ject type may be converted to a pointer to a different object
type”, if “the resulting pointer is correctly aligned”, other-
wise undefined behaviour results. (6.5.4 Cast operators does
not add any type restrictions to this.)

There are two interesting cases here: conversion to a
char * pointer and conversion to a related structure type.
In the former, 6.3.2.3p7 (as discussed in §2.14, p.34) goes
on to specify enough about the value of the resulting pointer
to make it usable for accessing the representation bytes of
the original object. In the latter, the standard says little about
the resulting value, but it might be used to access related
structures without going via a union type:

2.15.1 Q39. Given two different structure types
sharing a prefix of members that have
compatible types, can one cast a usable pointer
to an object of the first to a pointer to the
second, that can be used to read and write
members of that prefix (with strict-aliasing
disabled and without packing variation)?

D:ISO-VS-DEFACTO
ISO: n/a (ISO does not specify semantics with strict
aliasing disabled, and effective types forbid this)
DEFACTO-USAGE: yes DEFACTO-IMPL: yes (with
-fno-effective-types, at least) CERBERUS-
DEFACTO: yes CHERI: yes TIS: yes KCC: yes
(contrary to ISO effective types)

[Question 10/15 of our What is C in practice? (Cerberus
survey v2)23 relates to this.]

First we consider a case with two isomorphic structure
types:

EXAMPLE (cast_struct_isomorphic.c):
#include <stdio.h>
typedef struct { int i1; float f1; } st1;
typedef struct { int i2; float f2; } st2;
int main() {

st1 s1 = {.i1 = 1, .f1 = 1.0 };
st2 *p2 = (st2 *) (&s1);// is this free of undef.beh.?
p2->f2=2.0; // and this?
printf("s1.f1=%f p2->f2=%f\n",s1.f1,p2->f2);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
s1.f1=2.000000 p2->f2=2.000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour

ISO: undefined behaviour

And now with a common prefix but differing after that:

EXAMPLE (cast_struct_same_prefix.c):
#include <stdio.h>
typedef struct { int i1; float f1; char c1; double d1; }

st1;
typedef struct { int i2; float f2; double d2; char c2; }

st2;
int main() {

st1 s1 = {.i1 = 1, .f1 = 1.0, .c1 = ’a’, .d1 = 1.0};
st2 *p2 = (st2 *) (&s1);// is this free of undef.beh.?
p2->f2=2.0; // and this?
printf("s1.f1=%f p2->f2=%f\n",s1.f1,p2->f2);

23 www.cl.cam.ac.uk/~pes20/cerberus/

notes50-survey-discussion.html
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}

GCC-5.3-O2-NO-STRICT-ALIASING:
s1.f1=2.000000 p2->f2=2.000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour (with effective types switched

off)

ISO: undefined behaviour

Several survey respondents reported that this idiom is
both used and supported in practice, e.g. in some C object
systems and in the Perl interpreter.

For it to work in implementations,

1. the offsets of f1 and f2 have to be equal,

2. the code emitted by the compiler for the f2 access has
to be independent of the subsequent members of the
structure (in particular, it cannot use an over-wide write
that would only hit padding in one structure but hit data
in the other). Or we need a more elaborate condition: the
last member of the common prefix is only writable if it
is aligned and sized such that wide writes will never be
used (an implementation-defined property).

3. either the alignments of st1 and st2 have to be equal or
the code emitted by the compiler for the f2 access has
to be independent of the structure alignment (we imagine
that the latter holds in practice), and

4. the compiler has to not be doing some alias analysis that
assumes that it is illegal.

For the offsets, the standard implies that within the scope
of each compilation, there is a fixed layout for the members
of each structure, and that that is available to the program-
mer via offsetof(type, member-designator), “the offset
in bytes, to the structure member (designated by member-
designator), from the beginning of its structure (designated
by type).” (7.19p3, in Common definitions <stddef.h>),
and via the the 6.5.3.4 sizeof and Alignof operators. The
C standard provides only weak constraints for these layout
values24; it does not guarantee that st1 and st2 have the
same offsets for f1 and f2.25

In practice, however, these values are typically com-
pletely determined by the ABI, with constant sizes and align-
ments for the fundamental types and the algorithm “Each
member is assigned to the lowest available offset with the ap-
propriate alignment.” for structures, from the x86-64 Unix
ABI [37]. There is similar text for Power [6], MIPS [45], and
Visual Studio [38]. The ARM ABI [5] is an exception in that
it does not clearly state this, but the wording suggests that
the writers may well have had the same algorithm in mind.
This algorithm will guarantee that the offsets are equal.

24 e.g. that they increase along a structure, per 6.7.2.1p15
25 DR074CR confirms this: http://www.open-std.org/jtc1/sc22/

wg14/www/docs/dr_074.html

W.r.t. the (hypothetical) use of wide writes, the situation
is unclear to us.

We should recall also that there are various compiler flags
and pragmas to control packing, so it can (and does) happen
that the same type (and code manipulating it) is compiled
with different packing in different compilation units, rely-
ing on the programmer to not intermix them. We currently
ignore this possibility but it should be relatively straight-
forward to add the packing flags to the structure name used
within the semantics.

If one wanted to argue that this example should be illegal
(e.g. to license an otherwise-unsound analysis), one might
attempt to do so in terms of the effective types of 6.5p{6,7}.
The key question here is whether one considers the effective
type of a structure member to be simply the type of the
member itself or also to involve the structure type that it is
part of, which the text (with its ambiguous use of “object”)
leaves unclear. In the former case the example would be
allowed, while in the latter it would not. We return to this
in §4 (p.61).

2.15.2 Q40. Can one read from the initial part of a
union of structures sharing a common initial
sequence via any union member (if the union
type is visible)?

ISO: yes DEFACTO-USAGE: yes DEFACTO-IMPL: yes
CERBERUS-DEFACTO: yes CHERI: yes TIS: yes (though
they ask whether union type visibility is obscured by *&?)
KCC: yes

Next we have 6.5.2.3p6, which licenses reading from a
common initial sequence of two structure types which are
members of a union type declaration: “One special guar-
antee is made in order to simplify the use of unions: if a
union contains several structures that share a common ini-
tial sequence (see below), and if the union object currently
contains one of these structures, it is permitted to inspect
the common initial part of any of them anywhere that a dec-
laration of the completed type of the union is visible. Two
structures share a common initial sequence if corresponding
members have compatible types (and, for bit-fields, the same
widths) for a sequence of one or more initial members.”

EXAMPLE (read_union_same_prefix_visible.c):
#include <stdio.h>
typedef struct { int i1; float f1; char c1; } st1;
typedef struct { int i2; float f2; double d2; } st2;
typedef union { st1 m1; st2 m2; } un;
int main() {

un u = {.m1 = {.i1 = 1, .f1 = 1.0, .c1 = ’a’}};
int i = u.m2.i2; // is this free of undef.beh.?
printf("i=%i\n",i);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
i=1
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CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour

ISO: defined behaviour

2.15.3 Q41. Is writing to the initial part of a union of
structures sharing a common initial sequence
allowed via any union member (if the union
type is visible)?

U:DEFACTO
ISO: no DEFACTO-USAGE: unclear DEFACTO-IMPL:
unclear CERBERUS-DEFACTO: yes CHERI: yes TIS:
yes KCC: yes

We presume the above is restricted to reading to avoid the
case in which a write to one structure type might overwrite
what is padding there but not padding in the other structure
type. We return to padding below.

EXAMPLE (write_union_same_prefix_visible.c):
#include <stdio.h>
typedef struct { int i1; float f1; char c1; } st1;
typedef struct { int i2; float f2; double d2; } st2;
typedef union { st1 m1; st2 m2; } un;
int main() {

un u = {.m1 = {.i1 = 1, .f1 = 1.0, .c1 = ’a’}};
u.m2.i2 = 2; // is this free of undef.beh.?
printf("u.m1.i1=%i u.m2.i2=%i\n",u.m1.i1,u.m2.i2);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
u.m1.i1=2 u.m2.i2=2

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour (under the ‘more elaborate

condition’)

ISO: undefined behaviour

2.15.4 Q42. Is type punning by writing and reading
different union members allowed (if the lvalue
is syntactically obvious)?

U:DEFACTO D:ISO-VS-DEFACTO
ISO: yes DEFACTO-USAGE: yes (subject to GCC “syn-
tactically obvious” notion) DEFACTO-IMPL: yes (sub-
ject to GCC “syntactically obvious” notion) CERBERUS-
DEFACTO: yes? CHERI: yes TIS: yes KCC: Execution
failed (unclear why)

[Question 15/15 of our What is C in practice? (Cerberus
survey v2)26 relates to this.]

And finally, in some cases subsuming the previous clause,
6.5.2.3p3 and Footnote 95 explicitly license much more gen-
eral type punning for union members, allowing the represen-
tation of one member to be reinterpreted as another member.

• 6.5.2.3p3 “A postfix expression followed by the . operator
and an identifier designates a member of a structure or

26 www.cl.cam.ac.uk/~pes20/cerberus/
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union object. The value is that of the named member,95)
and is an lvalue if the first expression is an lvalue. If the
first expression has qualified type, the result has the so-
qualified version of the type of the designated member.”.

• Footnote 95) “If the member used to read the contents of
a union object is not the same as the member last used
to store a value in the object, the appropriate part of
the object representation of the value is reinterpreted as
an object representation in the new type as described in
6.2.6 (a process sometimes called “type punning”). This
might be a trap representation.”

The GCC documentation27 suggests that for this to work
the union must be somehow syntactically visible in the ac-
cess, in the construction of the lvalue, or in other words that
GCC pays attention to more of the lvalue than just the lvalue
type (at least with -fstrict-aliasing; without that, it’s
not clear):

-fstrict-aliasing Allow the compiler to assume the
strictest aliasing rules applicable to the language being
compiled. For C (and C++), this activates optimizations
based on the type of expressions. In particular, an object of
one type is assumed never to reside at the same address as
an object of a different type, unless the types are almost the
same. For example, an unsigned int can alias an int, but
not a void* or a double. A character type may alias any
other type.

Pay special attention to code like this:

EXAMPLE (union_punning_gcc_1.c):
// adapted from GCC docs
#include <stdio.h>
union a_union {

int i;
double d;

};
int main() {

union a_union t;
t.d = 3.1415;
int j = t.i; // is this defined behaviour?
printf("j=%d\n",j);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
j=-1065151889

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour (with implementation-defined

value)

ISO: defined behaviour (with implementation-defined

value)

The practice of reading from a different union member than
the one most recently written to (called “type-punning”)
is common. Even with -fstrict-aliasing, type-punning is al-
lowed, provided the memory is accessed through the union

27 https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.

html#Type-punning
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type. So, the code above works as expected. See Structures
unions enumerations and bit-fields implementation. How-
ever, this code might not:

EXAMPLE (union_punning_gcc_2.c):
// adapted from GCC docs
#include <stdio.h>
union a_union {

int i;
double d;

};
int main() {

union a_union t;
int* ip;
t.d = 3.1415;
ip = &t.i; // is this defined behaviour?
int j = *ip; // is this defined behaviour?
printf("j=%d\n",j);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
j=-1065151889

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: undefined behaviour

ISO: unclear (perhaps defined behaviour with

implementation-defined value?)

See also the LLVM mailing list thread on the
same topic: http://lists.cs.uiuc.edu/pipermail/

cfe-dev/2015-March/042034.html

Hence one should presumably regard both of these as
giving undefined behaviour in the a facto semantics. The
ISO standard text is unclear about whether it is allowed in
the standard or not.

For reference: a GCC mailing list post28 observes that
upcasts from int to union can go wrong in practice, and
another29 says that GCC conforms to TC3 with respect to
type punning through union accesses.

2.16 Pointer lifetime end
After the end of the lifetime of an object30, one can ask
whether pointers to that object retain their values, or, in more
detail, whether:

1. they can be compared (with == and !=) against other
pointers,

2. they can be compared (with <, >, <=, or >=) against other
pointers,

3. their representation bytes can be inspected and still con-
tain their address values,

28 https://gcc.gnu.org/ml/gcc/2010-01/msg00013.html
29 https://gcc.gnu.org/ml/gcc/2010-01/msg00027.html
30 For an object of thread storage duration, the lifetime ends at the termi-
nation of the thread (6.2.4p4). For an object of automatic storage duration
(leaving aside those that “have a variable length array type” for the mo-
ment), the lifetime ends when “execution of that block ends in any way”
(6.2.4p6). For an object of allocated storage duration, the lifetime ends at
the deallocation of an associated free or realloc call (7.22.3p1).

4. pointer arithmetic and member offset calculations can be
performed,

5. they can be used to access a newer object that happens to
be allocated at the same address, or

6. they can be used to access the memory that was used for
the lifetime-ended object.

The ISO standard is clear that these are not allowed in a
useful way: 6.2.4 Storage durations of objects says (6.4.2p2)
“If an object is referred to outside of its lifetime, the behavior
is undefined. The value of a pointer becomes indeterminate
when the object it points to (or just past) reaches the end
of its lifetime.”. More precisely, the first sentence makes 6
and 5 undefined behaviour. The second sentence means that
1, 2, 3, and 4 are not guaranteed to have useful results, but
(in our reading, and in the absence of trap representations)
the standard text does not make these operations undefined
behaviour. Other authors differ on this point.

This side-effect of lifetime end on all pointer values that
point to the object, wherever they may be in the abstract-
machine state, is an unusual aspect of C when compared with
other programming language definitions.

Note that there is no analogue of this “lifetime-end zap”
in the standard text for pointers to objects stored within a
malloc’d region when those objects are overwritten (with
a strong update) with something of a different type; the
lifetime end zap is not sufficient to maintain the invariant
that all extant pointer values point to something live of the
appropriate type.

In practice the situation is less clear:

1. some debugging environments null out the pointer being
freed (though presumably not other pointers to the same
object)

2. one respondent notes “After a pointer is freed, its value
is undefined. A fairly common optimisation is to reuse the
stack slot used for a pointer in between it being freed and
it having a defined value assigned to it.” though it is not
clear whether this actually happens.

On the other hand, several respondents suggest that checking
equality (with == or !=) against a pointer to an object whose
lifetime has ended is used and is supported by implementa-
tions. One remarks that whether the object has gone out of
scope or been free’d may be significant here, and so we give
an example below for each.

In a TrustInSoft blog post31, Julian Cretin gives examples
showing GCC giving surprising results for comparisons be-
tween lifetime-ended pointers. He argues that those pointers
have indeterminate values and hence that any uses of them,
even in a == comparison, give undefined behaviour. The first
is clear in the ISO standard; the second is not, at least in our
reading – especially in implementations where there are no
trap representations at pointer types. The behaviour he ob-

31 http://trust-in-soft.com/dangling-pointer-indeterminate/
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serves for pointer comparison could also be explained by
the semantics we envision that nondeterministically takes
pointer provenance into account, without requiring an appeal
to undefined behaviour. The behaviour of the corresponding
integers (cast from pointers to uintptr t) is less clear, but
that could arguably be a compiler bug.

2.16.1 Q43. Can one inspect the value, (e.g. by testing
equality with ==) of a pointer to an object whose
lifetime has ended (either at a free() or block
exit)?

D:ISO-VS-DEFACTO
ISO: no DEFACTO-USAGE: yes DEFACTO-IMPL:
yes (except in debugging environments) CERBERUS-
DEFACTO: yes CHERI: yes TIS: no (warning of access
to escaping addresses) KCC: no (flags UB)

[Question 8/15 of our What is C in practice? (Cerberus
survey v2)32 relates to this.]

EXAMPLE (pointer_comparison_eq_zombie_1.c):
#include <stdio.h>
#include <stdlib.h>
int main() {

int i=0;
int *pj = (int *)(malloc(sizeof(int)));
*pj=1;
printf("(&i==pj)=%s\n",(&i==pj)?"true":"false");
free(pj);
printf("(&i==pj)=%s\n",(&i==pj)?"true":"false");
// is the == comparison above defined behaviour?
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
pointer comparison eq zombie 1.c: In function ’main’:

pointer comparison eq zombie 1.c:8:3: warning: attempt

to free a non-heap object ’i’ [-Wfree-nonheap-object]

free(pj);

^

(&i==pj)=false

(&i==pj)=false

CLANG36-O2-NO-STRICT-ALIASING:
(&i==pj)=false

(&i==pj)=false

DEFACTO: switchable
ISO: unclear -- nondeterministic or undefined behaviour

Here the comparison against pj after the free() is unde-
fined behaviour according to the ISO standard. GCC -O2
gives a misleading warning about the free() itself (the
warning goes away if one omits either printf() or with
-O0); that might be a GCC bug.

EXAMPLE (pointer_comparison_eq_zombie_2.c):
#include <stdio.h>

32 www.cl.cam.ac.uk/~pes20/cerberus/

notes50-survey-discussion.html

#include <stdlib.h>
int main() {

int i=0;
int *pj;
{

int j=1;
pj = &j;
printf("(&i==pj)=%s\n",(&i==pj)?"true":"false");

}
printf("(&i==pj)=%s\n",(&i==pj)?"true":"false");
// is the == comparison above defined behaviour?
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
(&i==pj)=false

(&i==pj)=false

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: switchable
ISO: unclear -- nondeterministic or undefined behaviour

One could construct similar examples for rest of the first
four items above (relational comparison, access to represen-
tation bytes, and pointer arithmetic). We do not expect the
last two of the six (access to newly allocated objects or to
now-deallocated memory) are used in practice, at least in
non-malicious code.

2.16.2 Q44. Is the dynamic reuse of allocation
addresses permitted?

ISO: yes DEFACTO-USAGE: yes DEFACTO-IMPL: yes
CERBERUS-DEFACTO: yes? CHERI: ? TIS: test not sup-
ported (tis fails with escaping address, even though it’s cast
to intptr t – perhaps intentionally due to nondetermin-
ism?) KCC: mistakenly flags reference to an object outside
its lifetime

EXAMPLE (compcertTSO-2.c):
#include <stdio.h>
#include <inttypes.h>
uintptr_t f() {

int a;
return (uintptr_t)&a; }

uintptr_t g() {
int a;
return (uintptr_t)&a; }

int main() {
_Bool b = (f() == g()); // can this be true?
printf("(f()==g())=%s\n",b?"true":"false");

}

GCC-5.3-O2-NO-STRICT-ALIASING:
compcertTSO-2.c: In function ’f’:

compcertTSO-2.c:5:10: warning: function returns address

of local variable [-Wreturn-local-addr]

return

(uintptr t)&a; }
^

compcertTSO-2.c: In

function ’g’:

compcertTSO-2.c:8:10: warning: function
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returns address of local variable [-Wreturn-local-addr]

return (uintptr t)&a; }
^

(f()==g())=true

CLANG36-O2-NO-STRICT-ALIASING:
(f()==g())=false

This example based on one from CompCertTSO, as dis-
cussed in §6.5. This version casts to uintptr t to make the
out-of-lifetime == comparison permitted (at least w.r.t. our
reading of ISO), though GCC 4.8 -O2 still warns that the
functions return addresses of local variables. One could
write analogous tests using other constructs that expose
the concrete address of a pointer value, e.g. casting to an
integer type, examining the pointer representation bytes,
or using printf with %p. The CompCertTSO example
compcertTSO-1.c uses == on the pointer values directly
because (as in CompCert 1.5) none of those are supported
there, while CompCertTSO does allow that comparison.

2.17 Invalid Accesses
In the ISO standard, reads and writes to invalid pointers give
undefined behaviour, and likewise in typical implementa-
tions. For a conventional C implementation, undefined be-
haviour for general invalid writes is essentially forced, given
that they might (e.g.) write over return addresses on the
stack. But accesses to NULL pointers and reads from an in-
valid pointer could conceivably be strengthened, as in the
following two questions.

2.17.1 Q45. Can accesses via a null pointer be assumed
to give runtime errors, rather than give rise to
undefined behaviour?

ISO: no DEFACTO-USAGE: no? DEFACTO-IMPL: no?
CERBERUS-DEFACTO: should flag UB CHERI: ? TIS:
flags UB KCC: flags UB

EXAMPLE (null_pointer_4.c):
#include <stdio.h>
int main() {

int x;
// is this guaranteed to trap (rather than be
// undefined behaviour)?
x = *(int*)NULL;
printf("x=%i\n",x);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
CLANG36-O2-NO-STRICT-ALIASING:
null pointer 4.c:6:7: warning: indirection of

non-volatile null pointer will be deleted, not trap

[-Wnull-dereference]

x = *(int*)NULL;

^

null pointer 4.c:6:7: note: consider using

builtin trap() or qualifying pointer with ’volatile’

1

warning generated.

x=-5512

ISO: undefined behaviour

This is inspired by the fifth example of Wang et al. [53],
discussed in §6.14.

2.17.2 Q46. Can reads via invalid pointers be assumed
to give runtime errors or unspecified values,
rather than undefined behaviour?

ISO: no DEFACTO-USAGE: no DEFACTO-IMPL: no
CERBERUS-DEFACTO: no CHERI: ? TIS: flags UB
KCC: reads some value, mistakenly not flagging UB

EXAMPLE (read_via_invalid_1.c):
#include <stdio.h>
int main() {

int x;
// is this free of undefined behaviour?
x = *(int*)0x654321;
printf("x=%i\n",x);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
CLANG36-O2-NO-STRICT-ALIASING: . . . as above
ISO: undefined behaviour

This is from the Friendly C proposal (Point 4) by Cuoq
et al., discussed in §6.17. For such a semantics one would
nonetheless want to identify a (different, not expressed in
terms of undefined behaviour) sense in which such reads
indicate programmer errors.

3. Abstract Unspecified Values
[Question 2/15 of our What is C in practice? (Cerberus
survey v2)33 relates to uninitialised values.]

The ISO standard introduces:

• indeterminate values which are “either an unspecified
value or a trap representation” (3.19.2),

• unspecified values, saying “valid value of the relevant
type where this International Standard imposes no re-
quirements on which value is chosen in any instance. 2
NOTE An unspecified value cannot be a trap representa-
tion.” (3.19.3), and

• trap representations, “an object representation that need
not represent a value of the object type” (3.19.4).

In the standard text, reading uninitialised values can give rise
to undefined behaviour in two ways, either

33 www.cl.cam.ac.uk/~pes20/cerberus/

notes50-survey-discussion.html
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1. if the type being read does have some trap representations
in the particular implementation being used, or

2. if the last sentence of 6.3.2.1p2 applies (c.f. the DR338
CR34): “If the lvalue designates an object of automatic
storage duration that could have been declared with the
register storage class (never had its address taken), and
that object is uninitialized (not declared with an initial-
izer and no assignment to it has been performed prior
to use), the behavior is undefined.”. This makes reading
such lvalues undefined behaviour irrespective of the ex-
istence of trap representations.

For the de facto standard, as far as we can tell, trap
representations can be neglected, and the last sentence of
6.3.2.1p2 has debatable force.

3.1 Trap Representations
In the ISO standard, trap representations are object repre-
sentations that do not represent values of the object type, for
which reading a trap representation, except by an lvalue of
character type, is undefined behaviour. Note that this gives
undefined behaviour to programs that merely read such a
representation, even if they do not operate on it. Note also
that this need not give rise to a hardware trap35; trap repre-
sentations might simply licence some compiler optimisation,
by imposing an obligation on the programmer to avoid them.

6.2.6.1p5 “Certain object representations need not rep-
resent a value of the object type. If the stored value of an
object has such a representation and is read by an lvalue
expression that does not have character type, the behavior
is undefined. If such a representation is produced by a side
effect that modifies all or any part of the object by an lvalue
expression that does not have character type, the behavior is
undefined.50) Such a representation is called a trap repre-
sentation.”. Footnote 50: “Thus, an automatic variable can
be initialized to a trap representation without causing unde-
fined behavior, but the value of the variable cannot be used
until a proper value is stored in it.”.

However, it is not clear that trap representations are sig-
nificant in practice for current mainstream C implementa-
tions. For integer types it appears not:

• 6.2.6.1p5 makes clear that trap representations are partic-
ular concrete bit patterns, and in the most common inte-
ger type implementations there are no spare bits for inte-
ger types (See DR338 for similar reasoning), and

• the GCC documentation states “GCC supports only two’s
complement integer types, and all bit patterns are or-
dinary values.”36. (This resolves 6.2.6.2p2 “Which of

34 http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_

338.htm
35 3.19.5 Footnote 2 “[...] Note that fetching a trap representation might
perform a trap but is not required to [...]”
36 https://gcc.gnu.org/onlinedocs/gcc/

Integers-implementation.html#Integers-implementation

these applies is implementation-defined, as is whether the
value with sign bit 1 and all value bits zero (for the first
two), or with sign bit and all value bits 1 (for ones’ com-
plement), is a trap representation or a normal value.”.)

It is sometimes suggested that trap representations exist to
model Itanium’s NaT (“not a thing”) flag, e.g. in a stack-
overflow discussion37: “Such variables are treated specially
because there are architectures that have real CPU registers
that have a sort of extra state that is ”uninitialized” and that
doesn’t correspond to a value in the type domain.” and “Ita-
nium CPUs have a NaT (Not a Thing) flag for each integer
register. The NaT Flag is used to control speculative execu-
tion and may linger in registers which aren’t properly initial-
ized before usage.”. But that is at odds with this 6.2.6.1p5
text that makes clear that trap representations are storable
concrete bit patterns.

If it were not for this 6.2.6.1p5 text, one might deem there
to be shadow semantic state determining whether any value
is a trap representation, analogous to the pointer provenance
data discussed earlier, but we see no reason to introduce that.

For pointer types, one can imagine machines that check
well-formedness of a pointer value when an address is
loaded (e.g. into a particular kind of register), but this doesn’t
occur in the most common current hardware. We would be
interested to hear of any cases where it does, or where a com-
piler internally uses an analysis about trap representations.

There is also the case of floating point Signalling NaN’s.
One respondent remarks that in general we wouldn’t expect
to get a trap by reading an uninitialised value unless the FP
settings enable signalling NaNs, and that Intel FPUs can do
that but Clang doesn’t support them, and so arranges for
there to never be signalling NaNs.

3.1.1 Q47. Can one reasonably assume that no types
have trap representations?

U:DEFACTO D:ISO-VS-DEFACTO
ISO: no DEFACTO-USAGE: yes DEFACTO-IMPL: yes for
most integer types; debatable for Bool, float, and pointer
types CERBERUS-DEFACTO: yes? CHERI: yes TIS:
yes KCC: no (flags UB indeterminate value used in ex-
pression)

The following example has undefined behaviour in the
ISO standard if and only if the implementation has a trap
representation for type int; one can also consider similar
examples for any other object type (the address of i is taken,
so the last sentence of 6.3.2.1p2 does not apply here).

EXAMPLE (trap_representation_1.c):
int main() {

int i;
int *p = &i;
int j=i; // is this free of undefined behaviour?
// note that i is read but the value is not used

37 http://stackoverflow.com/questions/11962457/

why-is-using-an-uninitialized-variable-undefined-behavior-in-c
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}

GCC-5.3-O2-NO-STRICT-ALIASING:
trap representation 1.c: In function ’main’:

trap representation 1.c:4:7: warning: ’i’ is used

uninitialized in this function [-Wuninitialized]

int

j=i; // is this free of undefined behaviour?

^

CLANG36-O2-NO-STRICT-ALIASING:
DEFACTO: defined behaviour

ISO: defined or undefined behaviour depending on

implementation-defined presence of trap representations

at this type

Do any current C implementations rely on concrete trap
representations that are representable as bit patterns? The
only possible case we are aware of is “signalling NaNs”.
Supposedly definitely not for Clang. Do any current C im-
plementations rely on semantic shadow-state trap “represen-
tations”?

3.1.2 Q48. Does reading an uninitialised object give
rise to undefined behaviour?

U:DEFACTO D:ISO-VS-DEFACTO
ISO: in some cases, depending on trap representations
and whether the address is taken DEFACTO-USAGE: no
DEFACTO-IMPL: unclear – perhaps for Bool and some
float types, and on Itanium? CERBERUS-DEFACTO: no
CHERI: no more than the base Clang implementation TIS:
no for some tests, yes for others (guess that reading unini-
tialised is not flagged as UB, but branching on one is, as
nondeterministic) KCC: yes (flags UB Indeterminate value
used in an expression)

The real question is then whether compiler writers as-
sume that reading an uninitialised value gives rise to unde-
fined behaviour (not merely an unspecified value), and rely
on that to permit optimisation.

EXAMPLE (trap_representation_2.c):
int main() {

int i;
int j=i; // does this have undefined behaviour?
// note that i is read but the value is not used

}

GCC-5.3-O2-NO-STRICT-ALIASING:
trap representation 2.c: In function ’main’:

trap representation 2.c:3:7: warning: ’i’ is used

uninitialized in this function [-Wuninitialized]

int

j=i; // does this have undefined behaviour?

^

CLANG36-O2-NO-STRICT-ALIASING:
trap representation 2.c:3:9: warning: variable ’i’ is

uninitialized when used here [-Wuninitialized]

int

j=i; // does this have undefined behaviour?

^

trap representation 2.c:2:8: note: initialize the

variable ’i’ to silence this warning

int i;

^

= 0

1 warning generated.

DEFACTO: defined behaviour

ISO: undefined behaviour

In practice we suspect that this would be at odds with too
much extant code. For example, it would mean that a partly
initialised struct could not be copied by a function that reads
and writes all its members.

Uninitialised memory is sometimes intentionally read as
a source of entropy, e.g. in openSSL, but whether this hap-
pens at non-character type is unclear, and it is now widely
agreed to be undesirable in any case (see the Xi Wang blog
post38 which notes the problems involved).

On the other hand, Chris Lattner’s What Every C Pro-
grammer Should Know About Undefined Behavior #1/3 blog
post39 says without qualification that “use of an uninitialized
variable” is undefined behaviour (though this is in an intro-
ductory section which might have been simplified for expo-
sition). Looking at the LLVM IR generated from

EXAMPLE (trap_representation_3.c):

int f() {
int i,j;
j=i;
// int* ip=&i;
return j;

}

the front-end of Clang doesn’t seem to be assuming unde-
fined behaviour.

Besson et al. [9] seem to interpret the standard to mean
that reading an uninitialised variable always gives rise to
undefined behaviour, but it’s not clear why.

A Frama-C blog post by Pascal Cuoq40 gives examples
which it argues show that GCC has to be considered at treat-
ing reads of an uninitialised int as undefined behaviour, not
unspecified behaviour, and (in the second example below)
even if its address is taken:

EXAMPLE (frama-c-2013-03-13-2.c):
#include <stdio.h>

38 http://kqueue.org/blog/2012/06/25/

more-randomness-or-less/
39 http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.

html
40 http://blog.frama-c.com/index.php?post/2013/03/13/

indeterminate-undefined
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int main(int c, char **v)
{

unsigned int j;
if (c==4)

j = 1;
else

j *= 2;
// does this have undefined behaviour for c != 4 ?
printf("j:%u ",j);
printf("c:%d\n",c);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
frama-c-2013-03-13-2.c: In function ’main’:

frama-c-2013-03-13-2.c:3:24: warning: unused parameter

’v’ [-Wunused-parameter]

int main(int c, char **v)

^

frama-c-2013-03-13-2.c:9:7:

warning: ’j’ may be used uninitialized in this function

[-Wmaybe-uninitialized]

j *= 2;

^

j:0 c:1

CLANG36-O2-NO-STRICT-ALIASING:
frama-c-2013-03-13-2.c:3:24: warning: unused parameter

’v’ [-Wunused-parameter]

int main(int c, char **v)

^

frama-c-2013-03-13-2.c:9:5: warning:

variable ’j’ is uninitialized when used here

[-Wuninitialized]

j *= 2;

^

frama-c-2013-03-13-2.c:5:17: note: initialize the

variable ’j’ to silence this warning

unsigned int j;

^

= 0

2 warnings

generated.

j:0 c:1

DEFACTO: nondeterministic value for j

ISO: undefined behaviour

EXAMPLE (frama-c-2013-03-13-3.c):
#include <stdio.h>

int main(int c, char **v)
{

unsigned int j;
unsigned int *p = &j;
if (c==4)

j = 1;
else

j *= 2;
// does this have undefined behaviour for c != 4 ?
printf("j:%u ",j);
printf("c:%d\n",c);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
frama-c-2013-03-13-3.c: In function ’main’:

frama-c-2013-03-13-3.c:3:24: warning: unused parameter

’v’ [-Wunused-parameter]

int main(int c, char **v)

^

frama-c-2013-03-13-3.c:10:7:

warning: ’j’ may be used uninitialized in this function

[-Wmaybe-uninitialized]

j *= 2;

^

j:0 c:1

CLANG36-O2-NO-STRICT-ALIASING:
frama-c-2013-03-13-3.c:3:24: warning: unused parameter

’v’ [-Wunused-parameter]

int main(int c, char **v)

^

1 warning generated.

j:0 c:1

DEFACTO: nondeterministic value for j

ISO: nondeterministic value for j
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The same happens using unsigned char instead of int41.
But this behaviour is still consistent with a semantics that
treats reads of uninitialised variables as giving a symbolic
undefined value which arithmetic operations are strict in,
which is a possible semantics not discussed in that blog
post; it does not force a semantics giving global undefined
behaviour.

Returning to the last sentence of 6.3.2.1p2, it is restricted
in two ways: to objects of automatic storage duration, and
moreover to those whose address is not taken. That makes
the above trap_representation_2.c have undefined be-
haviour but the following example just read an unspecified
value (presuming that int has no trap representations).

EXAMPLE (trap_representation_1.c):
int main() {

int i;
int *p = &i;
int j=i; // is this free of undefined behaviour?
// note that i is read but the value is not used

}

GCC-5.3-O2-NO-STRICT-ALIASING:
trap representation 1.c: In function ’main’:

trap representation 1.c:4:7: warning: ’i’ is used

uninitialized in this function [-Wuninitialized]

int

j=i; // is this free of undefined behaviour?

^

CLANG36-O2-NO-STRICT-ALIASING:
DEFACTO: defined behaviour

ISO: defined or undefined behaviour depending on

implementation-defined presence of trap representations

41

EXAMPLE (frama-c-2013-03-13-3-uc.c):
GCC-5.3-O2-NO-STRICT-ALIASING:
frama-c-2013-03-13-3-uc.c: In function ’main’:

frama-c-2013-03-13-3-uc.c:2:24: warning: unused

parameter ’v’ [-Wunused-parameter]

int main(int c, char

**v) {

^

frama-c-2013-03-13-3-uc.c:8:7: warning: ’j’ may be

used uninitialized in this function

[-Wmaybe-uninitialized]

j *= 2;

^

j:0 c:1

CLANG36-O2-NO-STRICT-ALIASING:
frama-c-2013-03-13-3-uc.c:2:24: warning: unused

parameter ’v’ [-Wunused-parameter]

int main(int c, char

**v) {
^

1 warning generated.

j:0 c:1

DEFACTO: nondeterministic value for j

ISO: nondeterministic value for j

at this type

3.2 Unspecified Values
Standard Unspecified values are introduced in the stan-
dard principally:

1. for otherwise-uninitialized objects with automatic stor-
age duration (6.2.4p6 and 6.7.9p10), and

2. for the values of padding bytes on writes to structures or
unions (6.2.6.1p6 “When a value is stored in an object
of structure or union type, including in a member object,
the bytes of the object representation that correspond to
any padding bytes take unspecified values.51) [...]” with
Footnote 51: “Thus, for example, structure assignment
need not copy any padding bits.”).

In principle those two could have different semantics, but so
far we see no reason to distinguish them.

The behaviour of an unspecified value is described as:
“[...] valid value of the relevant type where this International
Standard imposes no requirements on which value is chosen
in any instance. [...]” (3.19.3).

Semantics That standard text leaves several quite different
semantic interpretations of unspecified values open:

1. the semantics could choose a concrete value nondeter-
ministically (from among the set of valid values) for each
unspecified value, at the time of the initialization or store
(and keeping that concrete value stable thereafter), or

2. the semantics could include a symbolic constant repre-
senting an abstract unspecified value, allow that to occur
in memory writes, and either

(a) choose a concrete value nondeterministically each
time such a constant is read from, or

(b) propagate the abstract unspecified value through arith-
metic, regarding all operations as strict (giving the
unspecified-value result if any of their arguments are
unspecified values). Then on a control-flow choice
based on an unspecified value, it could either

i. nondeterministically branch or

ii. give undefined behaviour.

And on any library call (or perhaps better any I/O sys-
tem call?) involving an unspecified-value argument, it
could either:

A. nondeterministically choose a concrete value, or

B. give undefined behaviour.

Or it could have a per-representation-bit undefined-value
constant rather than a per-abstract-value undefined-value
constant (with the same sub-choices)

3. Or (as per Besson et al. [9]) pick a fresh symbolic value
(per bit, byte, or value) and allow computation on that.
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The following examples explore what one can assume
about the behaviour of uninitialised variables. We use
unsigned char in these examples so that there is no ques-
tion of trap representations being involved. We take unspec-
ified values directly from uninitialised variables with auto-
matic storage duration, so the compiler can easily see that
they are uninitialised, but they could equally be taken from
reads of a computed pointer that happens to end up point-
ing at a structure padding byte. We also take the address of
the uninitialised variable in each example to ensure the last
sentence of 6.3.2.1p2 does not apply, though in our de facto
semantics that makes no difference.

See the LLVM discussion of its undef and
poison 42. And this LLVM thread about “poison”:
http://lists.cs.uiuc.edu/pipermail/llvmdev/

2015-January/081310.html

Chris Lattner’s What Every C Programmer Should Know
About Undefined Behavior #3/3 blog post43 says that “Arith-
metic that operates on undefined values is considered to pro-
duce a undefined value instead of producing undefined be-
havior.” and “Arithmetic that dynamically executes an un-
defined operation (such as a signed integer overflow) gen-
erates a logical trap value which poisons any computation
based on it, but that does not destroy your entire program.
This means that logic downstream from the undefined op-
eration may be affected, but that your entire program isn’t
destroyed. This is why the optimizer ends up deleting code
that operates on uninitialized variables, for example.”.

It also says “The optimizer does go to some effort to
”do the right thing” when it is obvious what the program-
mer meant (such as code that does ”*(int*)P” when P is a
pointer to float). This helps in many common cases, but you
really don’t want to rely on this, and there are lots of ex-
amples that you might think are ”obvious” that aren’t after
a long series of transformations have been applied to your
code.”, which suggests that it’s a bit more liberal than one
might imagine for type-based alias analysis?

3.2.1 Q49. Can library calls with unspecified-value
arguments be assumed to execute with an
arbitrary choice of a concrete value (not
necessarily giving rise to undefined behaviour)?

U:ISO D:ISO-VS-DEFACTO
ISO: unclear (unless one follows DR451) DEFACTO-
USAGE: yes DEFACTO-IMPL: yes CERBERUS-
DEFACTO: yes CHERI: no more than the
base Clang implementation TIS: no (warning
unspecified value libary call argument) KCC:
Execution failed (unclear why)

We start with this so that printf can be used in later
examples.

42 http://llvm.org/docs/LangRef.html#undefined-values
43 http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_

21.html

EXAMPLE (unspecified_value_library_call_argument.c):
#include <stdio.h>
int main()
{

unsigned char c;
unsigned char *p = &c;
printf("char 0x%x\n",(unsigned int)c);
// does this have defined behaviour?

}

GCC-5.3-O2-NO-STRICT-ALIASING:
unspecified value library call argument.c: In function

’main’:

unspecified value library call argument.c:6:3:

warning: ’c’ is used uninitialized in this function

[-Wuninitialized]

printf("char 0x%x\n",(unsigned
int)c);

^

char 0x0

CLANG36-O2-NO-STRICT-ALIASING:
char 0x0

DEFACTO: nondeterministic value

ISO: unclear - nondeterministic value or (from DR451CR)

undefined behaviour

GCC and Clang both print a zero value.
The CR to DR451, below (§3.2.3, p.47), implies that call-

ing library functions on indeterminate values is undefined
behaviour, but that seems too restrictive, e.g. preventing se-
rialising a struct that contains padding or uninitialised mem-
bers by printing it (byte-by-byte or member-by-member).
And we don’t see how it is exploitable by compilers.

We also have to consider library calls with unspecified-
value arguments of pointer type; they should give undefined
behaviour if the pointer is used for access, and perhaps could
be deemed to give undefined behaviour whether or not the
pointer is used.

3.2.2 Q50. Can control-flow choices based on
unspecified values be assumed to make an
arbitrary choice (not giving rise to undefined
behaviour)?

U:ISO U:DEFACTO
ISO: unclear - yes? DEFACTO-USAGE: yes DEFACTO-
IMPL: unclear - yes? CERBERUS-DEFACTO: yes CHERI:
yes TIS: no KCC: yes

EXAMPLE (unspecified_value_control_flow_choice.c):
#include <stdio.h>
int main()
{

unsigned char c;
unsigned char *p = &c;
if (c == ’a’)

printf("equal\n");
else

printf("nonequal\n");
// does this have defined behaviour?
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}

GCC-5.3-O2-NO-STRICT-ALIASING:
unspecified value control flow choice.c: In function

’main’:

unspecified value control flow choice.c:6:9:

warning: ’c’ is used uninitialized in this function

[-Wuninitialized]

if (c == ’a’)

^

nonequal

CLANG36-O2-NO-STRICT-ALIASING:
nonequal

DEFACTO: defined behaviour (printing a nondeterministic

value)

ISO: defined behaviour (printing a nondeterministic

value)

One respondent remarks that Clang decides c is definitely
not equal to ’a’; GCC appears to do the same. This is con-
sistent with the docmentation for the Clang internal undef:
“undefined ‘select’ (and conditional branch) conditions can
go either way, but they have to come from one of the two
operands.”44.

An example from Joseph Myers, with a switch derived
from several uninitialised Bool values, suggests that com-
pilers could do wild jumps if the values are not in {0, 1},
but he didn’t observe GCC actually do that. If they do, and
if such values are not regarded as trap representations (in
which case the program would already have undefined be-
haviour due to the loads), then this question would have to
be ‘no’.

In the de facto standards this example seems to be permit-
ted. The ISO standard does not address the question explic-
itly, but the value of c is unambigously an unspecified value
w.r.t. the standard, and 3.19.3p1 “unspecified value: valid
value of the relevant type where this International Standard
imposes no requirements on which value is chosen in any
instance” implies that one should be able to make a compar-
ison and branch based on it.

3.2.3 Q51. In the absence of any writes, is an
unspecified value potentially unstable, i.e., can
multiple usages of it give different values?

U:ISO
ISO: unclear - yes? DEFACTO-USAGE: yes DEFACTO-
IMPL: yes CERBERUS-DEFACTO: yes CHERI: yes
TIS: test not supported – it seems printing the uninitialised
value makes tis flag an error KCC: flags UB indeterminate
value in expression (also reports error for printing signed
int with %x)

EXAMPLE (unspecified_value_stability.c):

44 http://llvm.org/docs/LangRef.html#undefined-values

#include <stdio.h>
int main() {

// assume here that int has no trap representations and
// that printing an unspecified value is not itself
// undefined behaviour
int i;
int *p = &i;
// can the following print different values?
printf("i=0x%x\n",i);
printf("i=0x%x\n",i);
printf("i=0x%x\n",i);
printf("i=0x%x\n",i);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
unspecified value stability.c: In function ’main’:

unspecified value stability.c:9:3: warning: ’i’ is used

uninitialized in this function [-Wuninitialized]

printf("i=0x%x\n",i);
^

i=0x0

i=0x0

i=0x0

i=0x0

CLANG36-O2-NO-STRICT-ALIASING:
i=0xffffea60

i=0x4007cd

i=0x4007cd

i=0x4007cd

DEFACTO: defined behaviour (printing nondeterministic

values)

ISO: unclear - nondeterministic value or (from DR451CR)

undefined behaviour

If we assume that printing an unspecified value is not itself
undefined behaviour, we can test with this example. Note
that in a semantics (like our Cerberus candidate de facto
model) with a symbolic unspecified value, and in which op-
erations are strict in unspecified-value-ness, this question
only really makes sense for external library calls, as other
(data-flow) uses of an unspecified value will result in the
(unique) symbolic unspecified value, not in a nondetermin-
istic choice of concrete values.

Both GCC and Clang warn that i is used uninitialized;
Clang sometimes prints distinct values. That is the first time
that we’ve seen instability in practice; it (under the above
assumption) rules out (1).

This is consistent with the Clang internal undef docu-
mentation: “an ‘undef’ “variable” can arbitrarily change
its value”45.

DR 451 by Freek Wiedijk and Robbert Krebbers46 asks
about stability of uninitialised variables with automatic stor-
age duration, and also about library calls with indeterminate
values. Their questions and the committee responses are:

45 http://llvm.org/docs/LangRef.html#undefined-values
46 http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_

451.htm
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1 “Can an uninitialized variable with automatic storage
duration (of a type that does not have trap values, whose
address has been taken so 6.3.2.1p2 does not apply, and
which is not volatile) change its value without direct
action of the program?”. CR: yes

2 “If the answer to question 1 is ”yes”, then how far can
this kind of ”instability” propagate?” CR: any operation
performed on indeterminate values will have an indeter-
minate value as a result.
Note that this strong strictness is stronger than Clang’s
documented behaviour, as we discuss in §3.2.4 (p.48).

3 “If “unstable” values can propagate through function
arguments into a called function, can calling a C stan-
dard library function exhibit undefined behavior because
of this?” CR: “library functions will exhibit undefined
behavior when used on indeterminate values”.
Note that this means one cannot print an uninitialised
value or padding byte. For our de facto semantics, we
argue otherwise (c.f. §3.2.1, p.46).

The CR also says “ The committee agrees that this area
would benefit from a new definition of something akin to a
“wobbly” value and that this should be considered in any
subsequent revision of this standard. The committee also
notes that padding bytes within structures are possibly a
distinct form of “wobbly” representation. ”

The unspecified values of our de facto semantics seem to
be serving the same role as those “wobbly” values.

See also §3.3.2 (p.56) for the question of whether padding
bytes intrinsically hold unspecified values (even if concrete
values are written over the top), and whether that varies be-
tween structs in malloc’d regions and those with automatic,
static, and thread storage durations.

The observed behaviour forces this to be “yes”, and rules
out the unspecified-value semantics in which a concrete
value is chosen nondeterministically at allocation time.

The ISO semantics similarly has nondeterministic prints
(unless one follows the DR451CR notion that a print of an
unspecified value immediately gives undefined behaviour,
which we do not).

3.2.4 Q52. Do operations on unspecified values result
in unspecified values?

U:ISO U:DEFACTO
ISO: unclear - yes? DEFACTO-USAGE: unclear - yes?
(though see some cases in which the LLVM docs
give stronger guarantees, and [9]) DEFACTO-IMPL: yes
CERBERUS-DEFACTO: yes CHERI: yes TIS: test not
supported (fails either on first read of uninitialised value or
on the arithmetic) KCC: flags UB indeterminate value in
expression

EXAMPLE (unspecified_value_strictness_int.c):
#include <stdio.h>
int main() {

int i;
int *p = &i;
int j = (i-i); // is this an unspecified value?
_Bool b = (j==j); // can this be false?
printf("b=%s\n",b?"true":"false");

}

GCC-5.3-O2-NO-STRICT-ALIASING:
b=true

CLANG36-O2-NO-STRICT-ALIASING:
unspecified value strictness int.c:6:15: warning:

self-comparison always evaluates to true

[-Wtautological-compare]

Bool b = (j==j); // can this

be false?

^

1 warning generated.

b=false

ISO: unclear

GCC gives true and Clang gives false (despite the Clang
warning that a self-comparison always gives true, presum-
ably a bug in Clang). This could be explained by taking sub-
traction on one or more unspecified values to give an un-
specified value which can then be instantiated to any valid
value.

For an unsigned char variant, both GCC and Clang
give true:

EXAMPLE (unspecified_value_strictness_unsigned_char.c):
#include <stdio.h>
int main() {

unsigned char c;
unsigned char *p=&c;
int j = (c-c); // is this an unspecified value?
_Bool b = (j==j); // can this be false?
printf("b=%s\n",b?"true":"false");

}

GCC-5.3-O2-NO-STRICT-ALIASING:
b=true

CLANG36-O2-NO-STRICT-ALIASING:
unspecified value strictness unsigned char.c:6:15:

warning: self-comparison always evaluates to true

[-Wtautological-compare]

Bool b = (j==j); // can this

be false?

^

1 warning generated.

b=true

DEFACTO: defined behaviour (printing nondeterministically

true or false)

ISO: unclear

For another test of whether arithmetic operators are strict
w.r.t. unspecified values, consider:

EXAMPLE (unspecified_value_strictness_mod_1.c):
#include <stdio.h>
int main() {
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unsigned char c;
unsigned char *p=&c;
unsigned char c2 = (c % 2);
// can reading c2 give something other than 0 or 1?
printf("c=%i c2=%i\n",(int)c,(int)c2);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
unspecified value strictness mod 1.c: In function

’main’:

unspecified value strictness mod 1.c:5:17:

warning: ’c’ is used uninitialized in this function

[-Wuninitialized]

unsigned char c2 = (c % 2);

^

c=0 c2=0

CLANG36-O2-NO-STRICT-ALIASING:
c=0 c2=0

DEFACTO: defined behaviour (printing nondeterministically

true or false)

ISO: unclear

GCC and Clang both print c=0 c2=0 on x86 (though not
on non-CHERI MIPS). Making the computation of c2 more
complex by appending a +(1-c) makes them both print
c=0 c2=1, weakly suggesting that they are not (in this
instance) aggressively propagating unspecifiedness strictly
through these arithmetic operators.

EXAMPLE (unspecified_value_strictness_mod_2.c):
#include <stdio.h>
int main() {

unsigned char c;
unsigned char *p=&c;
unsigned char c2 = (c % 2) + (1-c);
// can reading c2 give something other than 0 or 1?
printf("c=%i c2=%i\n",(int)c,(int)c2);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
unspecified value strictness mod 2.c: In function

’main’:

unspecified value strictness mod 2.c:5:17:

warning: ’c’ is used uninitialized in this function

[-Wuninitialized]

unsigned char c2 = (c % 2) +

(1-c);

^

c=0 c2=1

CLANG36-O2-NO-STRICT-ALIASING:
c=0 c2=1

DEFACTO: defined behaviour (printing nondeterministically

true or false)

ISO: unclear

An LLVM developer remarks that different parts of
LLVM assume that undef is propagated aggressively or that
it represents an unknown particular number.

The Clang undef documentation below47 suggests that
their internal undef is a per-value not a per-bit entity, and
any instance can be regarded as giving any bit pattern, but
operations are not simply strict. Instead, if any resulting rep-
resentation bit is unaffected by the choice of a concrete value
for the undefs, the text suggests it is guaranteed to hold its
“proper” value. Does the fact that they go to this trouble im-
ply that it is needed for code found in the wild? The text does
not mention correlations between bits; presumably those are
simply lost. And is this affected by any value-range-analysis
facts the compiler knows about the non-undef values in-
volved?

%A = add %X, undef
%B = sub %X, undef
%C = xor %X, undef

Safe:
%A = undef
%B = undef
%C = undef

This is safe because all of the output bits are affected by the
undef bits. Any output bit can have a zero or one depending on
the input bits.

%A = or %X, undef
%B = and %X, undef

Safe:
%A = -1
%B = 0

Unsafe:
%A = undef
%B = undef

These logical operations have bits that are not always affected
by the input. For example, if %X has a zero bit, then the output
of the ‘and‘ operation will always be a zero for that bit, no
matter what the corresponding bit from the ‘undef‘ is. As such,
it is unsafe to optimize or assume that the result of the ‘and‘
is ‘undef‘. However, it is safe to assume that all bits of the
‘undef‘ could be 0, and optimize the ‘and‘ to 0. Likewise, it is
safe to assume that all the bits of the ‘undef‘ operand to the
‘or‘ could be set, allowing the ‘or‘ to be folded to -1.

3.2.5 Q53. Do bitwise operations on unspecified values
result in unspecified values?

U:ISO U:DEFACTO
ISO: unclear - yes? DEFACTO-USAGE: unclear - yes? (as
for previous question) DEFACTO-IMPL: ? CERBERUS-
DEFACTO: yes CHERI: ? TIS: test not supported, simi-
larly KCC: Execution failed (unclear why)

EXAMPLE (unspecified_value_strictness_and_1.c):
#include <stdio.h>
int main() {

unsigned char c;
unsigned char *p=&c;
unsigned char c2 = (c | 1);
unsigned char c3 = (c2 & 1);
// does c3 hold an unspecified value (not 1)?
printf("c=%i c2=%i c3=%i\n",(int)c,(int)c2,(int)c3);

}

TIS-INTERPRETER:
[value] Analyzing a complete application starting at

main

[value] Computing initial state

47 http://llvm.org/docs/LangRef.html#undefined-values
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[value] Initial

state computed

unspecified value strictness and 1.c:5:[k

ernel] warning: accessing uninitialized left-value:

assert \initialized(&c);
stack:

main

[value] Stopping at nth alarm

[value] user error:

Degeneration occurred:

results are

not correct for lines of code that can be reached from

the degeneration point.

DEFACTO: defined behaviour (printing a nondeterministic

unsigned char value)

ISO: unclear

Refining the previous question, this tests whether bits of an
unspecified value can be set and cleared individually to result
in a specified value.

3.2.6 Q54. Must unspecified values be considered
daemonically for identification of other possible
undefined behaviours?

U:ISO
ISO: unclear – yes? DEFACTO-USAGE: yes DEFACTO-
IMPL: yes CERBERUS-DEFACTO: yes CHERI: yes
TIS: test not supported (any arithmetic on uninitialised val-
ues makes it flag an error?) KCC: (flags UB indeterminate
value in expression)

EXAMPLE (unspecified_value_daemonic_1.c):

int main() {
int i;
int *p = &i;
int j = i;
int k = 1/j; // does this have undefined behaviour?

}

GCC-5.3-O2-NO-STRICT-ALIASING:
unspecified value daemonic 1.c: In function ’main’:

unspecified value daemonic 1.c:4:7: warning: ’i’ is used

uninitialized in this function [-Wuninitialized]

int

j = i;

^

CLANG36-O2-NO-STRICT-ALIASING:
DEFACTO: undefined behaviour

ISO: unclear, but should be undefined behaviour

Similarly, division by the Clang internal undef is considered
to give rise to undefined behaviour48.

48 http://llvm.org/docs/LangRef.html#undefined-values

3.2.7 Q55. Can a structure containing an
unspecified-value member can be copied as a
whole?

U:ISO
ISO: unclear – yes? DEFACTO-USAGE: yes DEFACTO-
IMPL: yes CERBERUS-DEFACTO: yes CHERI: yes
TIS: yes KCC: yes

This and the following questions investigate whether the
property of being an unspecified value is associated with
arbitrary (possibly struct) C values, or with “leaf” (non-
struct/non-union) values, or with individual bitfields, or with
individual representation bytes of values, or with individual
representation bits of values (see the later examples and
LLVM documentation in §3.2.4 for the last).

It seems intuitively clear (though not specified in the ISO
standard) that a structure value as a whole should not be
allowed to be an unspecified value; instead one should have a
struct containing unspecified values for each of its members
(or hereditarily, for nested structs). It’s not clear that one can
express a test that distinguishes the two in ISO C, however.

Consistent with this, forming a structure value should not
be strict in unspecified-value-ness: in the following example,
the read of the structure value from s1 and write to s2

should both be permitted, and should copy the value of i1=1.
The read of the uninitialised member should not give rise
to undefined behaviour (is this contrary to the last sentence
of 6.3.2.1p2, or could the structure not “have been declared
with the register storage class” in any case?) . What s2.i2
holds after the structure copy depends on the rest of the
unspecified-value semantics.

EXAMPLE (unspecified_value_struct_copy.c):
#include <stdio.h>
typedef struct { int i1; int i2; } st;
int main() {

st s1;
s1.i1 = 1;
st s2;
s2 = s1; // does this have defined behaviour?
printf("s2.i1=%i\n",s2.i1);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
s2.i1=1

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour (s2.i1=1)

ISO: unclear, but should be defined behaviour (s2.i1=1)

Then there is a similar question for unions: can a union
value as a whole be an unspecified value? Here there might
be a real semantic difference, between an unspecified value
as whole and a union that contains a specific member which
itself is an unspecified value. However, it’s again unclear
whethere there is a test in ISO C that distinguishes between
them. Consider:

EXAMPLE (unspecified_value_union_1.c):
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#include <stdio.h>
typedef union { int i; float f; } un;
int main() {

un u;
int j;
u.i = j;
// does u contain an unspecified union value, or an
// i member that itself has an unspecified int value?
int k;
float g;
k = *((int*)&u); //does this have defined behaviour?
g = *((float*)&u);//does this have undefined behaviour?

}

If those are both true, then u does not contain an unspecified
union value, but rather it contains an i member which con-
tains an unspecified int value. Because the two accesses to
u are via int* and float* pointers, not via pointers to the
union type, the type punning allowed by Footnote 9549 does
not apply. Then we were hoping that the effective type of the
subobject addressed by (int*)&u would be int and hence
that the 65p6 effective type rules would forbid the second
access. But in fact 6.5p6 doesn’t treat subobjects properly
and the effective type is just the union type, and the second
load is permitted.

3.2.8 Q56. Given multiple bitfields that may be in the
same word, can one be a well-defined value while
another is an unspecified value?

ISO: yes DEFACTO-USAGE: yes DEFACTO-IMPL: yes
CERBERUS-DEFACTO: yes CHERI: ? TIS: yes KCC:
yes

EXAMPLE (besson_blazy_wilke_bitfields_1u.c):
#include <stdio.h>
struct f {

unsigned int a0 : 1; unsigned int a1 : 1;
} bf ;
int main() {

unsigned int a;
bf.a1 = 1;
a = bf.a1;
printf("a=%u\n",a);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
a=1

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
ISO: defined behaviour (a=1)

This example is from Besson et al. [10], discussed in §6.9.
The obvious de facto standards semantics answer is “yes”,
with a per-leaf-value unspecified value. Though Cerberus
does not currently support bitfields, so our candidate formal
model likely will also not.

49 95) If the member used to read the contents of a union object is not the
same as the member last used to store a value in the object, the appropriate
part of the object representation of the value is reinterpreted as an object
representation in the new type as described in 6.2.6 (a process sometimes
called type punning). This might be a trap representation.

The Besson et al. example suggests a per-bit property.
The Clang undef documentation is a hybrid, with some per-
bit reasoning but a per-leaf-value undef.

3.2.9 Q57. Are the representation bytes of an
unspecified value themselves also unspecified
values? (not an arbitrary choice of concrete byte
values)

U:ISO U:DEFACTO
ISO: unclear DEFACTO-USAGE: unclear DEFACTO-
IMPL: unclear CERBERUS-DEFACTO: yes? CHERI: un-
clear TIS: unclear – either reading or printing a represen-
tation byte of an uninitialised value makes it flag an error
KCC: (flags indeterminate value used in an expression for
this uninitialised unsigned char)

If so, then a bytewise hash or checksum computation
involving them would produce an unspecified value (given
the other answers above), or (in a more concrete semantics)
would produce different results in different invocations, even
if the value is not mutated in the meantime. It is not clear
whether that is an issue in practice, and similarly for the
padding bytes of structs.

EXAMPLE (unspecified_value_representation_bytes_1.c):
#include <stdio.h>
int main() {

// assume here that the implementation-defined
// representation of int has no trap representations
int i;
unsigned char c = * ((unsigned char*)(&i));
// does c now hold an unspecified value?
printf("i=0x%x c=0x%x\n",i,(int)c);
printf("i=0x%x c=0x%x\n",i,(int)c);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
unspecified value representation bytes 1.c: In function

’main’:

unspecified value representation bytes 1.c:8:3:

warning: ’i’ is used uninitialized in this function

[-Wuninitialized]

printf("i=0x%x

c=0x%x\n",i,(int)c);
^

unspecified value representati

on bytes 1.c:6:17: warning: ’i’ is used uninitialized in

this function [-Wuninitialized]

unsigned char c = *

((unsigned char*)(&i));

^

i=0x8 c=0x8

i=0x8 c=0x8

CLANG36-O2-NO-STRICT-ALIASING:
i=0x0 c=0x0

i=0x0 c=0x0

DEFACTO: defined behaviour (printing nondeterministically

true or false)
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ISO: unclear

3.2.10 Q58. If one writes some but not all of the
representation bytes of an uninitialized value,
do the other representation bytes still hold
unspecified values?

U:ISO U:DEFACTO
ISO: unclear DEFACTO-USAGE: unclear DEFACTO-
IMPL: unclear CERBERUS-DEFACTO: yes CHERI: un-
clear TIS: yes KCC: (flags indeterminate value used in
an expression for this uninitialised unsigned char)

EXAMPLE (unspecified_value_representation_bytes_4.c):
#include <stdio.h>
int main() {

// assume here that the implementation-defined
// representation of int has no trap representations
int i;
printf("i=0x%x\n",i);
printf("i=0x%x\n",i);
unsigned char *cp = (unsigned char*)(&i);
*(cp+1) = 0x22;
// does *cp now hold an unspecified value?
printf("*cp=0x%x\n",*cp);
printf("*cp=0x%x\n",*cp);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
unspecified value representation bytes 4.c: In function

’main’:

unspecified value representation bytes 4.c:6:3:

warning: ’i’ is used uninitialized in this function

[-Wuninitialized]

printf("i=0x%x\n",i);
^

i=0x0

i=0x0

*cp=0x0

*cp=0x0

CLANG36-O2-NO-STRICT-ALIASING:
unspecified value representation bytes 4.c:6:21:

warning: variable ’i’ is uninitialized when used here

[-Wuninitialized]

printf("i=0x%x\n",i);

^

unspecified value representation bytes 4.c:5:8:

note: initialize the variable ’i’ to silence this

warning

int i;

^

= 0

1 warning

generated.

i=0x2200

i=0x2200

*cp=0x0

*cp=0x0

ISO: unclear

3.2.11 Q59. If one writes some but not all of the
representation bytes of an uninitialized value,
does a read of the whole value still give an
unspecified value?

U:ISO U:DEFACTO
ISO: unclear DEFACTO-USAGE: unclear DEFACTO-
IMPL: unclear CERBERUS-DEFACTO: yes CHERI: un-
clear TIS: yes KCC: (flags indeterminate value used in
an expression)

EXAMPLE (unspecified_value_representation_bytes_2.c):
#include <stdio.h>
int main() {

// assume here that the implementation-defined
// representation of int has no trap representations
int i;
printf("i=0x%x\n",i);
printf("i=0x%x\n",i);
* (((unsigned char*)(&i))+1) = 0x22;
// does i now hold an unspecified value?
printf("i=0x%x\n",i);
printf("i=0x%x\n",i);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
unspecified value representation bytes 2.c: In function

’main’:

unspecified value representation bytes 2.c:6:3:

warning: ’i’ is used uninitialized in this function

[-Wuninitialized]

printf("i=0x%x\n",i);
^

i=0x0

i=0x0

i=0x2200

i=0x2200

CLANG36-O2-NO-STRICT-ALIASING:
unspecified value representation bytes 2.c:6:21:

warning: variable ’i’ is uninitialized when used here

[-Wuninitialized]

printf("i=0x%x\n",i);

^

unspecified value representation bytes 2.c:5:8:

note: initialize the variable ’i’ to silence this

warning

int i;

^

= 0

1 warning

generated.

i=0x2200

i=0x2200

i=0x2200

i=0x2200
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DEFACTO: defined behaviour (printing nondeterministic

values)

ISO: unclear

If one comments out the first two printfs, neither give a
warning:

EXAMPLE (unspecified_value_representation_bytes_3.c):

#include <stdio.h>
int main() {

// assume here that the implementation-defined
// representation of int has no trap representations
int i;
// printf("i=0x%x\n",i);
// printf("i=0x%x\n",i);
* (((unsigned char*)(&i))+1) = 0x22;
// does i now hold an unspecified value?
printf("i=0x%x\n",i);
printf("i=0x%x\n",i);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
i=0x2200

i=0x2200

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
ISO: unclear

These two observations weakly suggest that Clang forgets
that any part of the int is an unspecified value after a write
of one of the representation bytes.

3.3 Structure and Union Padding
[Question 1/15 of our What is C in practice? (Cerberus
survey v2)50 relates to structure padding]

Standard The standard discusses two quite different kinds
of padding: padding bits within the representation of integer
types (6.2.6.2), and padding bytes in structures and unions.
We focus here on the latter51.

Padding can be added by an implementation between the
members of a structure, or at the end of a structure or union,
but not before the first member:

• 6.7.2.1p15 “[...] There may be unnamed padding within
a structure object, but not at its beginning.”

• 6.7.2.1p17 “There may be unnamed padding at the end
of a structure or union.”

Padding might be needed simply to ensure alignment:

50 www.cl.cam.ac.uk/~pes20/cerberus/

notes50-survey-discussion.html
51 In fact, in the implementations we are most familiar with, there seem to
be no integer-type padding bits, and we neglect them in our semantics. The
C99 Rationale [2, p.43] refers to a machine that implements a 32-bit signed
integer type with two 16-bit signed integers, with one of those two sign bits
being deemed a padding bit. That machine is not named, so it is hard to tell
whether it still exists.

(1) for performance, where some machine instructions are
significantly faster when used on suitably aligned data
than on misaligned data; or

(2) for correctness, where the machine instruction has the
right width but must be suitably aligned to operate cor-
rectly (e.g. for some synchronisation instructions).

or to ensure that there is some spare space that the imple-
mentation is free to overwrite:

(a) for performance, where it is faster to use a wider machine
memory access than the actual size of the data, and hence
for the wider stores one has to allow spare space (other-
wise the implementation would be wrong for concurrent
accesses — just reading and writing back adjacent data
would be incorrect); or

(b) for correctness, where the machine does not have an
instruction that touches just the right width of footprint,
and so again one needs spare space (e.g. again for some
synchronisation instructions — though some cases of
those are dealt with not by padding but by making the
size of the relevant atomic type larger than one would
expect from its precision).

We call these alignment padding and space padding respec-
tively. There is also the space between the end of a union’s
current member and the size of the maximally sized mem-
ber of its union type. The standard does not refer to this as
padding, writing instead (6.2.6.1p7) “...the bytes of the ob-
ject representation that do not correspond to that member
but do correspond to other members...”, but it behaves in a
similar way; we call it union member padding.

It is also conceivable that the compiler would reserve
space in a structure or union type for its own purposes,
e.g. to store a runtime representation of the name of the most
recently written union member, or other bounds-checking or
debug information, which would appear to the programmer
as padding but which they would have to take care never to
overwrite; we call this metadata padding.

Usage For the current processors that we are familiar with,
we are not aware of any cases of (b) that are not handled
by fixing the type size. Simple code with GCC does not
seem to exhibit (a) except for struct copying, but we ex-
pect that compilers using vector instructions for optimisation
might well do so. It’s possible that implementations over-
write union member padding in a similar way. We would
like more ground-truth data on all this.

Semantics Space padding is semantically more interesting
that alignment padding as the semantics has to permit the
implementation to overwrite those padding bytes. There are
two main options:

(i) regard the padding bytes as holding unspecified values
throughout the lifetime of the object, or
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(ii) write unspecified values to the padding bytes when any
member of the object is written (or perhaps (ii′): when an
adjacent member is written)

Standard The standard is unclear which of these it
chooses. On the one hand, we have:

• 6.2.6.1p6 “When a value is stored in an object of struc-
ture or union type, including in a member object, the
bytes of the object representation that correspond to any
padding bytes take unspecified values.51) [...]” Footnote
51: “Thus, for example, structure assignment need not
copy any padding bits.”

that suggests (ii), with similar text for object member
padding:

• 6.2.6.1p7 “When a value is stored in a member of an
object of union type, the bytes of the object representation
that do not correspond to that member but do correspond
to other members take unspecified values.”

This is reiterated in J.1 Unspecified behavior p1: “The fol-
lowing are unspecified:”

...
• “The value of padding bytes when storing values in struc-

tures or unions (6.2.6.1).”

• “The values of bytes that correspond to union members
other than the one last stored into (6.2.6.1).”

...

Then the 6.7.9p10 text on initialization says that in some
circumstances padding is initialized “to zero bits”: 6.7.9p10
“If an object that has automatic storage duration is not
initialized explicitly, its value is indeterminate. If an object
that has static or thread storage duration is not initialized
explicitly, then:

• if it has pointer type, it is initialized to a null pointer;

• if it has arithmetic type, it is initialized to (positive or
unsigned) zero;

• if it is an aggregate, every member is initialized (recur-
sively) according to these rules, and any padding is ini-
tialized to zero bits;

• if it is a union, the first named member is initialized
(recursively) according to these rules, and any padding
is initialized to zero bits;”

This suggests that one can sometimes depend on the values
of padding bytes, and hence that in the absence of writes to
the structure, they are stable.

Note that this text does not say anything about the value
of padding for an object (of automatic, static, or thread
storage duration) that is initialized explicitly. An oversight?

On the other hand, 7.24.4.1 The memcmp function implies
that padding bytes within structures always hold unspeci-
fied values: Footnote 310 “The contents of “holes” used as

padding for purposes of alignment within structure objects
are indeterminate. Strings shorter than their allocated space
and unions may also cause problems in comparison.” (even
in the standard there are no trap representations here so in-
determinate values are unspecified values).

Reading uninitialised local variables one might perhaps
take to be undefined behaviour, but reading padding bytes
(at least bytewise) surely has to be allowed, even if com-
pletely nondeterministic or symbolic-undefined with strict
computation. And should that strictness extend to making
a structure value an undefined value if one of its members
is? Surely not.

3.3.1 Q60. Can structure-copy copy padding?
U:ISO
ISO: unclear DEFACTO-USAGE: yes DEFACTO-IMPL:
yes CERBERUS-DEFACTO: yes CHERI: yes? TIS: un-
clear (the test seems to fail on the first print) KCC: yes
(though also reports %x error)

EXAMPLE (padding_struct_copy_1.c):
#include <stdio.h>
#include <stddef.h>
#include <assert.h>
#include <inttypes.h>
typedef struct { char c; uint16_t u; } st;
int x;
void f(st* s2p, st* s1p) {

*s2p=*s1p;
}
int main() {

// check there is a padding byte between c and u
size_t offset_padding = offsetof(st,c)+sizeof(char);
assert(offsetof(st,u)>offset_padding);
st s1 = { .c = ’A’, .u = 0x1234 };
unsigned char *padding1 =

(unsigned char*)(&s1) + offset_padding;
// printf("*padding1=0x%x\n",(int)*padding1);
*padding1 = 0xBA;
printf("*padding1=0x%x\n",(int)*padding1);
st s2;
unsigned char *padding2 =

(unsigned char*)(&s2) + offset_padding;
// can this print something other than 0xBA then the
// last line print 0xBA ?
printf("*padding2=0x%x\n",(int)*padding2);//warn
f(&s2,&s1); //s2 = s1;
printf("*padding2=0x%x\n",(int)*padding2);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
padding struct copy 1.c: In function ’main’:

padding struct copy 1.c:25:3: warning: ’*((void

*)&s2+1)’ is used uninitialized in this function

[-Wuninitialized]

printf("*padding2=0x%x\n",(int)*pad
ding2);//warn

^

*padding1=0xba

*padding2=0x0

*padding2=0xba

CLANG36-O2-NO-STRICT-ALIASING:
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*padding1=0xba

*padding2=0x0

*padding2=0xba

DEFACTO: defined behaviour (printing 0xBA then two

nondeterministic values)

ISO: unclear

(padding_struct_copy_2.c is the same with the padding
at the end of the struct:

EXAMPLE (padding_struct_copy_2.c):
GCC-5.3-O2-NO-STRICT-ALIASING:
padding struct copy 2.c: In function ’main’:

padding struct copy 2.c:25:3: warning: ’*((void

*)&s2+3)’ is used uninitialized in this function

[-Wuninitialized]

printf("*padding2=0x%x\n",(int)*pad
ding2);//warn

^

*padding1=0xba

*padding2=0x0

*padding2=0xba

CLANG36-O2-NO-STRICT-ALIASING:
*padding1=0xba

*padding2=0x0

*padding2=0xba

However, slightly surprisingly, in the following example
neither GCC nor Clang appear to recognise that copying the
two members of the structure (with one-byte and two-byte
instructions) could be optimised to a single four-byte copy:

EXAMPLE (padding_struct_members_copy.c):
#include <stdio.h>
#include <stddef.h>
#include <assert.h>
#include <inttypes.h>
typedef struct { char c; uint16_t u; } st;
int x;
int main() {

// check there is a padding byte between c and u
size_t offset_padding = offsetof(st,c)+sizeof(char);
assert(offsetof(st,u)>offset_padding);
st s1 = { .c = ’A’, .u = 0x1234 };
unsigned char *padding1 =

(unsigned char*)(&s1) + offset_padding;
// printf("*padding1=0x%x\n",(int)*padding1);
*padding1 = 0xBA;
printf("*padding1=0x%x\n",(int)*padding1);
st s2;
unsigned char *padding2 =

(unsigned char*)(&s2) + offset_padding;
printf("*padding2=0x%x\n",(int)*padding2);//warn
s2.c = s1.c;
s2.u = s1.u;
printf("*padding2=0x%x\n",(int)*padding2);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
padding struct members copy.c: In function ’main’:

padding struct members copy.c:20:3: warning: ’*((void

*)&s2+1)’ is used uninitialized in this function

[-Wuninitialized]

printf("*padding2=0x%x\n",(int)*pad
ding2);//warn

^

*padding1=0xba

*padding2=0x0

*padding2=0x0

CLANG36-O2-NO-STRICT-ALIASING:
*padding1=0xba

*padding2=0x0

*padding2=0x0

DEFACTO: defined behaviour (printing 0xBA then two

nondeterministic values)

ISO: unclear

padding_struct_copy_3.c is similar except with the
copy in a separate function:

EXAMPLE (padding_struct_copy_3.c):
GCC-5.3-O2-NO-STRICT-ALIASING:
padding struct copy 3.c: In function ’main’:

padding struct copy 3.c:24:3: warning: ’*((void

*)&s2+1)’ is used uninitialized in this function

[-Wuninitialized]

printf("*padding2=0x%x\n",(int)*pad
ding2);//warn

^

*padding1=0xba

*padding2=0x0

*padding2=0x0

CLANG36-O2-NO-STRICT-ALIASING:
*padding1=0xba

*padding2=0x0

*padding2=0x0

DEFACTO: defined behaviour (printing 0xBA then two

nondeterministic values)

ISO: unclear

Nonetheless, we presume that a reasonable compiler might
combine member writes. And that it might be dependent
on inlining and code motion, and so that one cannot tell
locally syntactically whether a write is “really” to a single
struct member or whether the padding might be affected by
combining it with writes of adjacent members?

Similarly, when we think about writing a struct member
to a malloc’d region, differentiating between a write of the
value qua the struct member and a write of the value sim-
ply of its underlying type is problematic, as optimisations
inlining might convert the latter to the former? Unclear.
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3.3.2 Q61. After an explicit write of a padding byte,
does that byte hold a well-defined value? (not an
unspecified value)

U:ISO U:DEFACTO
ISO: unclear DEFACTO-USAGE: unclear – well-defined as-
sumed for security leak prevention and CAS? DEFACTO-
IMPL: unclear – well-defined? CERBERUS-DEFACTO:
well-defined CHERI: well-defined? TIS: well-defined
(surprisingly so, given the previous test result) KCC: well-
defined

EXAMPLE (padding_unspecified_value_1.c):

#include <stdio.h>
#include <stddef.h>
typedef struct { char c; float f; int i; } st;
int main() {

// check there is a padding byte between c and f
size_t offset_padding = offsetof(st,c)+sizeof(char);
if (offsetof(st,f)>offset_padding) {

st s;
unsigned char *p = ((unsigned char*)(&s))

+ offset_padding;
*p = ’A’;
unsigned char c1 = *p;
// does c1 hold ’A’, not an unspecified value?
printf("c1=%c\n",c1);

}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
c1=A

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour (printing A)

ISO: unclear

The observations (of A) don’t constrain the answer to this
question.

In the ISO standard, for objects with static, thread, or
automatic storage durations, and leaving aside unions, for
each byte it’s fixed whether it’s a padding byte or not for
the lifetime of the object, and one could conceivably regard
the padding bytes as being unspecified values irrespective of
any explicit writes to them (for a union, the padding status
of a byte depends on which member the union “currently
contains”). But for objects with allocated storage duration,
that is at odds with the idea that a malloc’d region can be
reused.

In practice we imagine (though without data) that “wide
writes” for a single struct member only ever extend over the
preceeding and following padding (or perhaps just only the
following padding). Then the fact that concurrent access to
distinct members is allowed (§3.3.12, p.60) constrains wide
writes to not touch other members, at least in the absence of
sophisticated analysis. There is again an issue here if memcmp
or uniform hashing of structure representations is desired;
it is debatable what circumstances one might reasonable
expect those to work.

There is also a security-relevant issue here: one might
want an assurance that potentially secret data does not leak
into reads from padding bytes, and hence might (a) explicitly
clear those bytes and (b) rely on the compiler not analysing
that those bytes contain unspecified values and hence using
values that happen to be found in registers in place of reads.

3.3.3 Q62. After an explicit write of a padding byte
followed by a write to the whole structure, does
the padding byte hold a well-defined value? (not
an unspecified value)

U:ISO
ISO: unclear DEFACTO-USAGE: unspecified value
DEFACTO-IMPL: unspecified value CERBERUS-
DEFACTO: unspecified value CHERI: unspecified value
TIS: test not supported (tis bug, reported and fixed) KCC:
(reports error for printing signed int with %x)

EXAMPLE (padding_unspecified_value_2.c):
#include <stdio.h>
#include <stddef.h>
typedef struct { char c; float f; int i; } st;
int main() {

// check there is a padding byte between c and f
size_t offset_padding = offsetof(st,c)+sizeof(char);
if (offsetof(st,f)>offset_padding) {

st s;
unsigned char *p =

((unsigned char*)(&s)) + offset_padding;
*p = ’B’;
s = (st){ .c=’E’, .f=1.0, .i=1};
unsigned char c2 = *p;
// does c2 hold ’B’, not an unspecified value?
printf("c2=0x%x\n",(int)c2);

}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
c2=0x42

CLANG36-O2-NO-STRICT-ALIASING:
c2=0x0

DEFACTO: defined behaviour (printing a nondeterministic

value)

ISO: unclear (printing an unspecified value?)

Here we see reads both of B and of 0x0.
Changing the example to one in which the compiler might

naturally use a 4-byte copy, we sometimes see an overwrite
of the padding byte on the write of the struct value:

EXAMPLE (padding_unspecified_value_3.c):
#include <stdio.h>
#include <stddef.h>
#include <inttypes.h>
#include <assert.h>
typedef struct { char c; uint16_t u; } st;
int main() {

// check there is a padding byte between c and u
size_t offset_padding = offsetof(st,c)+sizeof(char);
assert(offsetof(st,u)>offset_padding);
st s;
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unsigned char *p =
((unsigned char*)(&s)) + offset_padding;

*p = ’B’;
s = (st){ .c=’E’, .u=1};
unsigned char c = *p;
// does c hold ’B’, not an unspecified value?
printf("c=0x%x\n",(int)c);
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
c=0x42

CLANG36-O2-NO-STRICT-ALIASING:
c=0x0

DEFACTO: defined behaviour (printing a nondeterministic

value)

ISO: unclear (printing an unspecified value?)

and again here, copying another struct value on top as a
whole:

EXAMPLE (padding_unspecified_value_4.c):

#include <stdio.h>
#include <stddef.h>
#include <inttypes.h>
#include <assert.h>
typedef struct { char c; uint16_t u; } st;
int main() {

// check there is a padding byte between c and u
size_t offset_padding = offsetof(st,c)+sizeof(char);
assert(offsetof(st,u)>offset_padding);
st s;
unsigned char *p =

((unsigned char*)(&s)) + offset_padding;
*p = ’B’;
st s2 = { .c=’E’, .u=1};
s = s2;
unsigned char c = *p;
// does c hold ’B’, not an unspecified value?
printf("c=0x%x\n",(int)c);
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
padding unspecified value 4.c: In function ’main’:

padding unspecified value 4.c:15:5: warning: ’*((void

*)&s+1)’ is used uninitialized in this function

[-Wuninitialized]

s = s2;

^

c=0x0

CLANG36-O2-NO-STRICT-ALIASING:
c=0x0

DEFACTO: defined behaviour (printing a nondeterministic

value)

ISO: unclear (printing an unspecified value?)

3.3.4 Q63. After an explicit write of a padding byte
followed by a write to adjacent members of the
structure, does the padding byte hold a
well-defined value? (not an unspecified value)

U:ISO U:DEFACTO
ISO: unclear DEFACTO-USAGE: unclear – unspecified
value? DEFACTO-IMPL: unclear – unspecified value?
CERBERUS-DEFACTO: unspecified value CHERI: unclear
– unspecified value? TIS: well-defined value KCC: well-
defined value

EXAMPLE (padding_unspecified_value_7.c):
#include <stdio.h>
#include <stddef.h>
typedef struct { char c; float f; int i; } st;
int main() {

// check there is a padding byte between c and f
size_t offset_padding = offsetof(st,c)+sizeof(char);
if (offsetof(st,f)>offset_padding) {

st s;
unsigned char *p =

((unsigned char*)(&s)) + offset_padding;
*p = ’C’;
s.c = ’A’;
s.f = 1.0;
s.i = 42;
unsigned char c3 = *p;
// does c3 hold ’C’, not an unspecified value?
printf("c3=%c\n",c3);

}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
c3=C

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: unspecified value

ISO: unclear (printing an unspecified value?)

3.3.5 Q64. After an explicit write of zero to a padding
byte followed by a write to adjacent members of
the structure, does the padding byte hold a
well-defined zero value? (not an unspecified
value)

U:ISO U:DEFACTO
ISO: unclear DEFACTO-USAGE: unclear DEFACTO-
IMPL: unclear CERBERUS-DEFACTO: unspecified value
CHERI: unspecified value TIS: well-defined zero KCC:
well-defined zero (though also reports %x error)

EXAMPLE (padding_unspecified_value_8.c):
#include <stdio.h>
#include <stddef.h>
typedef struct { char c; float f; int i; } st;
int main() {

// check there is a padding byte between c and f
size_t offset_padding = offsetof(st,c)+sizeof(char);
if (offsetof(st,f)>offset_padding) {

st s;
unsigned char *p =

((unsigned char*)(&s)) + offset_padding;
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*p = 0;
s.c = ’A’;
s.f = 1.0;
s.i = 42;
unsigned char c3 = *p;
// does c3 hold 0, not an unspecified value?
printf("c3=0x%x\n",c3);

}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
c3=0x0

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: unspecified value

ISO: unclear (printing an unspecified value?)

(There was a typo c in an earlier version of this test.)
This is perhaps the most relevant of these cases in prac-

tice, covering the case where the whole footprint of the struct
has been filled with zero before use, and also covering the
case where all members of the struct have been written (and
hence where compilers might coalesce the writes). By re-
quiring the explicit write to be of zero, compilers could im-
plement this either by preserving the in-memory padding
byte value or by writing a constant zero to it. Whether that
would be sound w.r.t. actual practice is unclear.

3.3.6 Q65. After an explicit write of a padding byte
followed by a write to a non-adjacent member of
the whole structure, does the padding byte hold a
well-defined value? (not an unspecified value)

U:ISO U:DEFACTO
ISO: unclear DEFACTO-USAGE: well-defined value?
DEFACTO-IMPL: well-defined value? CERBERUS-
DEFACTO: well-defined value CHERI: well-defined value?
TIS: well-defined value KCC: well-defined value

EXAMPLE (padding_unspecified_value_5.c):
#include <stdio.h>
#include <stddef.h>
typedef struct { char c; float f; int i; } st;
int main() {

// check there is a padding byte between c and f
size_t offset_padding = offsetof(st,c)+sizeof(char);
if (offsetof(st,f)>offset_padding) {

st s;
unsigned char *p =

((unsigned char*)(&s)) + offset_padding;
*p = ’C’;
s.i = 42;
unsigned char c3 = *p;
// does c3 hold ’C’, not an unspecified value?
printf("c3=%c\n",c3);

}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
c3=C

CLANG36-O2-NO-STRICT-ALIASING: . . . as above

DEFACTO: defined behaviour (printing C)

ISO: unclear (printing an unspecified value?)

These observations (of C) don’t constrain the answer to this
question.

3.3.7 Q66. After an explicit write of a padding byte
followed by a writes to adjacent members of the
whole structure, but accessed via pointers to the
members rather than via the structure, does the
padding byte hold a well-defined value? (not an
unspecified value)

U:ISO U:DEFACTO
ISO: unclear DEFACTO-USAGE: well-defined value?
DEFACTO-IMPL: well-defined value? CERBERUS-
DEFACTO: well-defined value CHERI: well-defined value?
TIS: well-defined value KCC: well-defined value

EXAMPLE (padding_unspecified_value_6.c):

#include <stdio.h>
#include <stddef.h>
void g(char *c, float *f) {

*c=’A’;
*f=1.0;

}
typedef struct { char c; float f; int i; } st;
int main() {

// check there is a padding byte between c and f
size_t offset_padding = offsetof(st,c)+sizeof(char);
if (offsetof(st,f)>offset_padding) {

st s;
unsigned char *p =

((unsigned char*)(&s)) + offset_padding;
*p = ’D’;
g(&s.c, &s.f);
unsigned char c4 = *p;
// does c4 hold ’D’, not an unspecified value?
printf("c4=%c\n",c4);

}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
c4=D

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour (printing D)

ISO: unclear (printing an unspecified value?)

These observations (of D) don’t constrain the answer to
this question.

3.3.8 Q67. Can one use a malloc’d region for a union
that is just big enough to hold the subset of
members that will be used?

U:ISO U:DEFACTO D:ISO-VS-DEFACTO
ISO: unclear – no? DEFACTO-USAGE: yes? DEFACTO-
IMPL: yes? CERBERUS-DEFACTO: no CHERI: unclear?
TIS: yes KCC: no (flags UB Trying to write outside the
bounds of an object)
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One of our respondents remarks that it is an acceptable
idiom, if one has a union but knows that only some of the
members will be used, to malloc something only big enough
for those members.

EXAMPLE (padding_subunion_1.c):
#include <stdio.h>
#include <stdlib.h>
typedef struct { char c1; } st1;
typedef struct { float f2; } st2;
typedef union { st1 s1; st2 s2; } un;
int main() {

// is this free of undefined behaviour?
un* u = (un*)malloc(sizeof(st1));
u->s1.c1 = ’a’;
printf("u->s1.c1=0x%x\n",(int)u->s1.c1);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
u->s1.c1=0x61

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: undefined behaviour

ISO: unclear - undefined behaviour?

If that is supported, then presumably one can rely on the
compiler, for a union member write, not writing beyond the
footprint of that member:

EXAMPLE (padding_subunion_2.c):
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
typedef struct { char c1; } st1;
typedef struct { float f2; } st2;
typedef union { st1 s1; st2 s2; } un;
int main() {

// check that st2 is bigger than st1
// (otherwise the test is uninteresting)
assert(sizeof(st2) > sizeof(st1));
// is this free of undefined behaviour?
unsigned char* p = malloc(sizeof(st1)+sizeof(int));
un* pu = (un*)p;
char *pc = (char*)(p + sizeof(st1));
*pc=’B’;
pu->s1.c1 = ’A’;
// is this guaranteed to read ’B’?
unsigned char c = *pc;
printf("c=0x%x\n",(int)c);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
c=0x42

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour (printing a nondeterministic

value)

ISO: unclear

But that is at odds with the idea that after writing a union
member, the footprint of the union holds unspecified values
beyond the footprint of that member.

If one does want this to be allowed, should be be allowed
only when the lvalue is manifestly part of the union, or is it

just a fact about struct writes, that they are never widened
(very much or at all)?

3.3.9 More remarks on padding
One respondent remarks:

• The C frontend of Clang will make packed structs with
i8 members wherever padding is needed (because the IR
is too underspecified). So the mid-level optimisers don’t
know what’s padding and what’s not

• A struct copy might really emit particular loads and stores
for a small struct (rather than a memcpy); in that case it
wouldn’t copy the padding.

• Doing wide writes to narrow members was mostly an al-
pha thing? Not sure on x86 if there are shorter encod-
ings that do that. Something in LLVM “scalar evolution”
optimisation might do this, but probably only when they
know they’re working over a bunch of members.

• He hasn’t actually seen generic hash-all-the-bytes-of-
a-struct code. Maybe for deduplication and content-
addressable stores? Also for encrypting structs and do-
ing CRCs. But the only code he knows care about this
use byte arrays or packed structs. Another respondent re-
marks he thinks he has seen code that does something
like this - in one of the SPEC CPU2006 benchmarks.

With respect to the semantic options outlined earlier, with
(i), continuously unspecified values for padding bytes, c1
gets an unspecified value despite the fact that ’A’ was just
written to the address that c1 is read from. And c2, c3, and
c4 are likewise all unspecified values.

With (ii), c1 is guaranteed to get ’A’, but c2 gets an
unspecified value, as the structure members are all written to
after the write of *p=’B’. c3 similarly gets an unspecified
value due to the intervening write of s.i, despite the fact
that i is not adjacent to the padding pointed to by p.

With (ii′), c2 gets an unspecified value but c3 is guaran-
teed to get ’C’.

Finally, with either (ii) or (ii′), we believe that c4 should
be guaranteed to get ’D’, unaffected by the writes within
members of s that are performed by f (which might be in a
different compilation unit).

For union member padding, we presume that the standard
semantics should synthesise explicit writes of undefined val-
ues whenever a short member is written. But if compilers
don’t walk over that space, the concrete semantics need not
and both can leave it stable inbetween.

If compilers ever do write to structure padding, then this
interacts with the use of a pointer to access a structure with a
similar prefix, illustrated in Example cast_struct_same_

prefix.c of §2.15.1 (p.36). The most plausible case seems
to be for a compiler to make a wider-than-expected write
starting at the base address of the member representation but
continuing strictly beyond it, but the padding after a struc-
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ture member is determined (in the common ABIs, as dis-
cussed above) by the alignment requirement of the subse-
quent member, so the structures would have to have similar
prefixes up to one member past the last one used for write
accesses.

There is also an interaction between padding and the def-
inition of data races: should a programmer access to padding
be regarded as racing with a non-happens-before-related
write to any member of the structure, or to an adjacent (or
preceding) member of the structure?

Padding also relates to memcmp and to related functions,
e.g. hash functions that hash all the representation bytes of
a structure. The 7.24.4.1 memcmp text quoted above suggests
that memcmp over structures that contain padding is not use-
ful, and with (i), in our symbolic, strict interpretation of un-
specified values (2b of §3.2, p.45) it (and hash functions) will
return the unspecified value for all such. But it appears that
in at least some cases in practice one relies on the padding
have been initialised and not overwritten.

3.3.10 Q68. Can the user make a copy of a structure or
union by copying just the representation bytes
of its members and writing junk into the
padding bytes?

ISO: yes? (though not made explicit) DEFACTO-USAGE:
yes DEFACTO-IMPL: yes CERBERUS-DEFACTO: yes
CHERI: yes TIS: yes KCC: (fails with a mistaken OOB
pointer UB)

We also have to ask whether the compiler can use padding
bytes for its own purposes, e.g. to hold some array bounds
information or dynamic representations of union tags. In
other words, is it legal to copy a structure or union by
copying just the representation bytes of its member(s), and
writing junk into the padding bytes?

EXAMPLE (padding_struct_copy_of_representation_bytes.c):
#include <stdio.h>
#include <stddef.h>
#include <string.h>
typedef struct { char c; float f; } st;
int main() {

st s1 = {.c = ’A’, .f = 1.0 };
st s2;
memcpy(&(s2.c), &(s1.c), sizeof(char));
memset(&(s2.c)+sizeof(char),’X’,

offsetof(st,f)-offsetof(st,c)-sizeof(char));
memcpy(&(s2.f), &(s1.f), sizeof(float));
//memset(&(s2.f)+sizeof(float),’Y’,
// sizeof(st)-offsetof(st,f)-sizeof(float));
// is s2 now a copy of s1?
printf("s2.c=%c s2.f=%f\n",s2.c,s2.f);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
s2.c=A s2.f=1.000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour (s2.c=A s2.f=1.000000)

ISO: defined behaviour (s2.c=A s2.f=1.000000)

We are not aware of any implementations that use padding
bytes in that way, and for a de facto sematics it should be
legal to copy a structure or union by just copying the member
representation bytes.

3.3.11 Q69. Can one read an object as aligned words
without regard for the fact that the object’s
extent may not include all of the last word?

D:ISO-VS-DEFACTO
ISO: no DEFACTO-USAGE: yes DEFACTO-IMPL: yes
CERBERUS-DEFACTO: no? CHERI: ? TIS: no (flags
OOB read) KCC: flags UB for a pointer conversion align-
ment (arguably correctly), UB for an effective type error (de-
batable), and an OOB read (mistaken)

[Question 14/15 of our What is C in practice? (Cerberus
survey v2)52 relates to this.]

This is a question from the CHERI ASPLOS paper, where
they write: “This is used as an optimization for strlen() in
FreeBSD libc. While this is undefined behavior in C, it works
in systems with pagebased memory protection mechanisms,
but not in CHERI where objects have byte granularity. We
have found this idiom only in FreeBSD’s libc, as reported by
valgrind.”

EXAMPLE (cheri_08_last_word.c):

#include <assert.h>
#include <stdio.h>
#include <inttypes.h>
char c[5];
int main() {

char *cp = &(c[0]);
assert(sizeof(uint32_t) == 4);
uint32_t x0 = *((uint32_t *)cp);
// does this have defined behaviour?
uint32_t x1 = *((uint32_t *)(cp+4));
printf("x0=%x x1=%x\n",x0,x1);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
x0=0 x1=0

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
ISO: undefined behaviour

3.3.12 Q70. Does concurrent access to two
(non-bitfield) distinct members of a structure
constitute a data race?

ISO: no DEFACTO-USAGE: no DEFACTO-IMPL: no
CERBERUS-DEFACTO: no CHERI: no TIS: no concur-
rency support

This is part of the C11 concurrency model.

52 www.cl.cam.ac.uk/~pes20/cerberus/

notes50-survey-discussion.html
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It puts an upper bound on the “wide writes” that a com-
piler might do for a struct member write: they cannot overlap
any other members.

3.3.13 Q71. Does concurrent access to a structure
member and a padding byte of that structure
constitute a data race?

U:ISO U:DEFACTO
ISO: unclear DEFACTO-USAGE: unclear DEFACTO-
IMPL: unclear CERBERUS-DEFACTO: unclear CHERI:
unclear TIS: no concurrency support

It is hard to imagine that this will matter for any reason-
able code, but any semantics will have to decide one way or
the other, and it will impact the design of race detectors that
aim to be complete.

3.3.14 Q72. Does concurrent (read or write) access to
an unspecified value constitute a data race?

U:ISO U:DEFACTO
ISO: unclear DEFACTO-USAGE: unclear DEFACTO-
IMPL: unclear CERBERUS-DEFACTO: unclear CHERI:
unclear TIS: no concurrency support

One might conceivably want to allow this, to allow con-
current accesses to adjacent members of a struct to write un-
specified values to padding without creating a bogus data
race. It could be restricted to just padding bytes, but it is
simpler to allow races on all unspecified-value accesses.

(Note that you don’t see those accesses in a naive source
semantics, but in a semantics in which writes to a member
also write unspecified values to the adjacent padding on both
sides, it matters, and in Core and the memory model those
writes have to be there.)

4. Effective Types
Paragraphs 6.5p{6,7} of the standard introduce effective
types. These were added to C in C99 to permit compil-
ers to do optimisations driven by type-based alias analy-
sis, by ruling out programs involving unannotated aliasing
of references to different types (regarding them as having
undefined behaviour). This is one of the less clear, less
well-understood, and more controversial aspects of the stan-
dard, as one can see from various GCC and Linux Kernel
mailing list threads5354 55 and blog postings5657585960. The

53 https://gcc.gnu.org/ml/gcc/2010-01/msg00013.html
54 https://lkml.org/lkml/2003/2/26/158
55 http://www.mail-archive.com/linux-btrfs@vger.kernel.

org/msg01647.html
56 http://blog.regehr.org/archives/959
57 http://cellperformance.beyond3d.com/articles/2006/06/

understanding-strict-aliasing.html
58 http://davmac.wordpress.com/2010/02/26/c99-revisited/
59 http://dbp-consulting.com/tutorials/StrictAliasing.

html
60 http://stackoverflow.com/questions/2958633/

gcc-strict-aliasing-and-horror-stories

type-based aliasing question of our preliminary survey was
the only one which received a unanimous response: “don’t
know”.

Several major systems software projects, including the
Linux Kernel, the FreeBSD Kernel, and PostgreSQL (though
not Apache) disable type-based alias analyis with the
-fno-strict-aliasing compiler flag [53]. Our de facto
standard semantics should either simply follow that or have
a corresponding switch; for the moment we go for the for-
mer.

Standard “6.5p6 The effective type of an object for an
access to its stored value is the declared type of the object, if
any.87) If a value is stored into an object having no declared
type through an lvalue having a type that is not a character
type, then the type of the lvalue becomes the effective type of
the object for that access and for subsequent accesses that
do not modify the stored value. If a value is copied into an
object having no declared type using memcpy or memmove,
or is copied as an array of character type, then the effective
type of the modified object for that access and for subsequent
accesses that do not modify the value is the effective type of
the object from which the value is copied, if it has one. For
all other accesses to an object having no declared type, the
effective type of the object is simply the type of the lvalue
used for the access.

6.5p7 An object shall have its stored value accessed
only by an lvalue expression that has one of the following
types:88)

• a type compatible with the effective type of the object,

• a qualified version of a type compatible with the effective
type of the object,

• a type that is the signed or unsigned type corresponding
to the effective type of the object,

• a type that is the signed or unsigned type corresponding
to a qualified version of the effective type of the object,

• an aggregate or union type that includes one of the afore-
mentioned types among its members (including, recur-
sively, a member of a subaggregate or contained union),
or

• a character type.

Footnote 87) Allocated objects have no declared type.
Footnote 88) The intent of this list is to specify those cir-

cumstances in which an object may or may not be aliased.”

As Footnote 87 says, allocated objects (from malloc,
calloc, and presumably any fresh space from realloc)
have no declared type, whereas objects with static, thread,
or automatic storage durations have some declared type.

For the latter, 6.5p{6,7} say that the effective types are
fixed and that their values can only be accessed by an lvalue
that is similar (“compatible”, modulo signedness and qual-
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ifiers), an aggregate or union containing such a type, or (to
access its representation) a character type.

For the former, the effective type is determined by the
type of the last write, or, if that is done by a memcpy,
memmove, or user-code char array copy, the effective type
of the source.

4.1 Basic effective types
4.1.1 Q73. Can one do type punning between arbitrary

types?

ISO: no DEFACTO-USAGE: yes, with
-fno-strict-aliasting DEFACTO-IMPL: yes,
with -fno-strict-aliasting CERBERUS-DEFACTO:
? CHERI: ? TIS: yes KCC: no (flags effective-type
UB)

EXAMPLE (effective_type_1.c):
#include <stdio.h>
#include <inttypes.h>
#include <assert.h>
void f(uint32_t *p1, float *p2) {

*p1 = 2;
*p2 = 3.0; // does this have defined behaviour?
printf("f: *p1 = %" PRIu32 "\n",*p1);

}
int main() {

assert(sizeof(uint32_t)==sizeof(float));
uint32_t i = 1;
uint32_t *p1 = &i;
float *p2;
p2 = (float *)p1;
f(p1, p2);
printf("i=%" PRIu32 " *p1=%" PRIu32

" *p2=%f\n",i,*p1,*p2);
}

GCC-5.3-O2-NO-STRICT-ALIASING:
f: *p1 = 1077936128

i=1077936128 *p1=1077936128 *p2=3.000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour iff -no-strict-aliasing, with

implementation-defined value for the first three prints

ISO: undefined behaviour

With -fstrict-aliasing (the default for GCC here),
GCC assumes in the body of f that the write to *p2 can-
not affect the value of *p1, printing 2 (instead of the integer
value of the representation of 3.0 that would the most recent
write in a concrete semantics):
gcc-4.8 -O2 -fstrict-aliasing -std=c11 -pedantic -Wall

-Wextra -pthread effective_types_13.c && ./a.out
f: *p1 = 2
i=1077936128 *p1=1077936128 *p2=3.000000

while with -fno-strict-aliasing (as used in the Linux
kernel, among other places) it does not assume that:
gcc-4.8 -O2 -fno-strict-aliasing -std=c11 -pedantic -Wall

-Wextra -pthread effective_types_13.c && ./a.out
f: *p1 = 1077936128
i=1077936128 *p1=1077936128 *p2=3.000000

The former behaviour can be explained by regarding the
program as having undefined behaviour, due to the write of
the uint32 t i with a float* lvalue.

We give another basic effective type example below, here
just involving integer types and without the function call.

EXAMPLE (effective_type_10.c):
#include <stdio.h>
#include <stdint.h>
int main() {

int32_t x;
uint16_t y;
x = 0x44332211;
y = *(uint16_t *)&x; // defined behaviour?
printf("x=%i y=0x%x\n",x,y);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
x=1144201745 y=0x2211

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
ISO: undefined behaviour

4.1.2 Q74. Can one do type punning between distinct
but isomorphic structure types?

ISO: no DEFACTO-USAGE: yes, with
-fno-strict-aliasting DEFACTO-IMPL: yes,
with -fno-strict-aliasting CERBERUS-DEFACTO:
? CHERI: ? TIS: yes KCC: yes (contrary to ISO)

Similar compiler behaviour occurs with pointers to two
distinct but isomorphic structure types:

EXAMPLE (effective_type_2.c):
#include <stdio.h>
typedef struct { int i1; } st1;
typedef struct { int i2; } st2;
void f(st1* s1p, st2* s2p) {

s1p->i1 = 2;
s2p->i2 = 3;
printf("f: s1p->i1 = %i\n",s1p->i1);

}
int main() {

st1 s = {.i1 = 1};
st1 * s1p = &s;
st2 * s2p;
s2p = (st2*)s1p;
f(s1p, s2p); // defined behaviour?
printf("s.i1=%i s1p->i1=%i s2p->i2=%i\n",

s.i1,s1p->i1,s2p->i2);
}

GCC-5.3-O2-NO-STRICT-ALIASING:
f: s1p->i1 = 3

s.i1=3 s1p->i1=3 s2p->i2=3

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour iff -no-strict-aliasing

ISO: undefined behaviour

gcc-4.8 -O2 -fstrict-aliasing -std=c11 -pedantic -Wall
-Wextra -pthread effective_types_12.c && ./a.out

f: s1p->i1 = 2
s.i1=3 s1p->i1=3 s2p->i2=3
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gcc-4.8 -O2 -fno-strict-aliasing -std=c11 -pedantic -Wall
-Wextra -pthread effective_types_12.c && ./a.out

f: s1p->i1 = 3
s.i1=3 s1p->i1=3 s2p->i2=3

4.2 Effective types and character arrays
4.2.1 Q75. Can an unsigned character array with

static or automatic storage duration be used (in
the same way as a malloc’d region) to hold
values of other types?

D:ISO-VS-DEFACTO
ISO: no DEFACTO-USAGE: yes DEFACTO-IMPL: no
(w.r.t. compiler respondents) CERBERUS-DEFACTO: yes
(for -fno-strict-aliasing) CHERI: yes TIS: yes?
test not supported – fails to find stdalign.h KCC: no
(flags alignment and effective type errors – though the
Alignas makes the former incorrect)

[Question 11/15 of our What is C in practice? (Cerberus
survey v2)61 relates to this.]

A literal reading of the effective type rules prevents the
use of an unsigned character array as a buffer to hold values
of other types (as if it were an allocated region of storage).
For example, the following has undefined behaviour due to
a violation of 6.5p7 at the access to *fp62.

EXAMPLE (effective_type_3.c):
#include <stdio.h>
#include <stdalign.h>
int main() {

_Alignas(float) unsigned char c[sizeof(float)];
float *fp = (float *)c;
*fp=1.0; // does this have defined behaviour?
printf("*fp=%f\n",*fp);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
*fp=1.000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour iff -no-strict-aliasing

ISO: undefined behaviour

In the de facto semantics we imagine this should be allowed.
Even bytewise copying of a value via such a buffer leads

to unusable results in the standard:

EXAMPLE (effective_type_4.c):
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdalign.h>
int main() {

_Alignas(float) unsigned char c[sizeof(float)];
// c has effective type char array
float f=1.0;

61 www.cl.cam.ac.uk/~pes20/cerberus/

notes50-survey-discussion.html
62 This reasoning presumes that the conversion of the (float *)c cast
gives a usable result — the conversion is permitted by 6.3.2.3p7 but the
standard text only guarantees a roundtrip property.

memcpy((void*)c, (const void*)(&f), sizeof(float));
// c still has effective type char array
float *fp = (float *) malloc(sizeof(float));
// the malloc’d region initially has no effective type
memcpy((void*)fp, (const void*)c, sizeof(float));
// does the following have defined behaviour?
// (the ISO text says the malloc’d region has effective type
// unsigned char array, not float, and hence that
// the following read has undefined behaviour)
float g = *fp;
printf("g=%f\n",g);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
g=1.000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour iff -no-strict-aliasing

ISO: undefined behaviour

This seems to be unsupportable for a systems programming
language: a character array and malloc’d region should be
interchangeably usable, and this too should be allowed in
the de facto standard semantics.

4.3 Effective types and subobjects
Another difficulty with the standard text relates to the treat-
ment of subobjects: members of structures and unions writ-
ten into allocated regions. Suppose we write a single member
of a structure into a fresh allocated region, then does

(i) the footprint of the member take on an effective type as
the type of that struct member, or

(ii) the footprint of the member take on an effective type of
the type of that structure member annotated as coming
from that member of that structure type, or

(iii) the footprint of the whole structure take on the structure
type as its effective type?

4.3.1 Q76. After writing a structure to a malloc’d
region, can its members can be accessed via
pointers of the individual member types?

ISO: yes DEFACTO-USAGE: yes DEFACTO-IMPL: yes
CERBERUS-DEFACTO: yes CHERI: yes TIS: yes KCC:
yes

This is uncontroversial.

EXAMPLE (effective_type_5.c):
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
typedef struct { char c1; float f1; } st1;
int main() {

void *p = malloc(sizeof(st1)); assert (p != NULL);
st1 s1 = { .c1=’A’, .f1=1.0};
*((st1 *)p) = s1;
float *pf = &(((st1 *)p)->f1);
// is this free of undefined behaviour?
float f = *pf;
printf("f=%f\n",f);
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}

GCC-5.3-O2-NO-STRICT-ALIASING:
f=1.000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour

ISO: defined behaviour

4.3.2 Q77. Can a non-character value be read from an
uninitialised malloc’d region?

D:ISO-VS-DEFACTO
ISO: no DEFACTO-USAGE: yes (for
-fno-strict-aliasing) DEFACTO-IMPL: yes (for
-fno-strict-aliasing) CERBERUS-DEFACTO:
yes (for -fno-strict-aliasing) CHERI: yes (for
-fno-strict-aliasing) TIS: no KCC: no (looks like
you can read but not print – flags UB Indeterminate value
used in an expression)

EXAMPLE (effective_type_6.c):
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
int main() {

void *p = malloc(sizeof(float)); assert (p != NULL);
// is this free of undefined behaviour?
float f = *((float *)p);
printf("f=%f\n",f);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
f=0.000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour iff -no-strict-aliasing,

reading an unspecified value

ISO: undefined behaviour

The effective type rules seem to deem this undefined be-
haviour.

4.3.3 Q78. After writing one member of a structure to
a malloc’d region, can its other members be
read?

D:ISO-VS-DEFACTO
ISO: no DEFACTO-USAGE: yes (for
-fno-strict-aliasing) DEFACTO-IMPL: yes (for
-fno-strict-aliasing) CERBERUS-DEFACTO:
yes (for -fno-strict-aliasing) CHERI: yes (for
-fno-strict-aliasing) TIS: no (similarly?) KCC:
no (flags UB Indeterminate value used in an expression)

EXAMPLE (effective_type_7.c):
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
typedef struct { char c1; float f1; } st1;
int main() {

void *p = malloc(sizeof(st1)); assert (p != NULL);
((st1 *)p)->c1 = ’A’;
// is this free of undefined behaviour?
float f = ((st1 *)p)->f1;
printf("f=%f\n",f);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
f=0.000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour iff -no-strict-aliasing

ISO: undefined behaviour

If the write should be considered as affecting the effective
type of the footprint of the entire structure, then it would
change the answer to effective_type_5.c here. It seems
unlikely but not impossible that such an interpretation is
desirable.

4.3.4 Q79. After writing one member of a structure to
a malloc’d region, can a member of another
structure, with footprint overlapping that of the
first structure, be written?

U:ISO D:ISO-VS-DEFACTO
ISO: unclear DEFACTO-USAGE: yes (for
-fno-strict-aliasing) DEFACTO-IMPL: yes (for
-fno-strict-aliasing) CERBERUS-DEFACTO: yes
(for -fno-strict-aliasing) CHERI: yes TIS: yes
KCC: yes

EXAMPLE (effective_type_8.c):

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
typedef struct { char c1; float f1; } st1;
typedef struct { char c2; float f2; } st2;
int main() {

assert(sizeof(st1)==sizeof(st2));
assert(offsetof(st1,c1)==offsetof(st2,c2));
assert(offsetof(st1,f1)==offsetof(st2,f2));
void *p = malloc(sizeof(st1)); assert (p != NULL);
((st1 *)p)->c1 = ’A’;
// is this free of undefined behaviour?
((st2 *)p)->f2 = 1.0;
printf("((st2 *)p)->f2=%f\n",((st2 *)p)->f2);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
((st2 *)p)->f2=1.000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour

ISO: unclear

Again this is exploring the effective type of the footprint of
the structure type used to form the lvalue.
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4.3.5 Q80. After writing a structure to a malloc’d
region, can its members be accessed via a pointer
to a different structure type that has the same
leaf member type at the same offset?

D:ISO-VS-DEFACTO
ISO: no DEFACTO-USAGE: yes (for
-fno-strict-aliasing) DEFACTO-IMPL: yes (for
-fno-strict-aliasing) CERBERUS-DEFACTO:
yes (for -fno-strict-aliasing) CHERI: yes iff
-fno-strict-aliasing) TIS: yes KCC: yes

EXAMPLE (effective_type_9.c):
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
typedef struct { char c1; float f1; } st1;
typedef struct { char c2; float f2; } st2;
int main() {

assert(sizeof(st1)==sizeof(st2));
assert(offsetof(st1,c1)==offsetof(st2,c2));
assert(offsetof(st1,f1)==offsetof(st2,f2));
void *p = malloc(sizeof(st1)); assert (p != NULL);
st1 s1 = { .c1=’A’, .f1=1.0};
*((st1 *)p) = s1;
// is this free of undefined behaviour?
float f = ((st2 *)p)->f2;
printf("f=%f\n",f);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
f=1.000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour iff -no-strict-aliasing

ISO: undefined behaviour

The standard seems to deem this undefined behaviour.

4.3.6 Q81. Can one access two objects, within a
malloc’d region, that have overlapping but
non-identical footprint?

U:ISO D:ISO-VS-DEFACTO
ISO: unclear - no? DEFACTO-USAGE: yes (for
-fno-strict-aliasing) DEFACTO-IMPL: yes (for
-fno-strict-aliasing; no without) CERBERUS-
DEFACTO: yes (for -fno-strict-aliasing) CHERI:
yes iff -fno-strict-aliasing) TIS: yes KCC: yes

Robbert Krebbers asks on the GCC list63 whether “GCC
uses 6.5.16.1p3 of the C11 standard as a license to perform
certain optimizations. If so, could anyone provide me an
example program. In particular, I am interested about the
“then the overlap shall be exact” part of 6.5.16.1p3: “If
the value being stored in an object is read from another
object that overlaps in any way the storage of the first object,
then the overlap shall be exact and the two objects shall
have qualified or unqualified versions of a compatible type;
otherwise, the behavior is undefined.” ”. Richard Biener
replies with this example (rewritten here to print the result),

63 https://gcc.gnu.org/ml/gcc/2015-03/msg00083.html

saying that it will be optimised to print 1 and that this is
basically effective-type reasoning.

EXAMPLE (krebbers_biener_1.c):
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
struct X { int i; int j; };
int foo (struct X *p, struct X *q) {

// does this have defined behaviour?
q->j = 1;
p->i = 0;
return q->j;

}
int main() {

assert(sizeof(struct X) == 2 * sizeof(int));
unsigned char *p = malloc(3 * sizeof(int));
printf("%i\n", foo ((struct X*)(p + sizeof(int)),

(struct X*)p));
}

GCC-5.3-O2-NO-STRICT-ALIASING:
0

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
ISO: unclear

5. Other Questions
5.1 Q82. Given a const-qualified pointer to an object

defined with a non-const-qualified type, can the
pointer be cast to a non-const-qualified pointer and
used to mutate the object?

ISO: yes DEFACTO-USAGE: yes DEFACTO-IMPL: yes
CERBERUS-DEFACTO: yes CHERI: no TIS: yes KCC:
yes

This is the Deconst idiom from the CHERI ASPLOS
paper, where they write: “Deconst refers to programs that
remove the const qualifier from a pointer. This will break
with any implementation that enforces the const at run time.
6.7.3.4 states: If an attempt is made to modify an object de-
fined with a const-qualified type through use of an lvalue
with nonconst-qualified type, the behavior is undefined. This
means that such removal is permitted unless the object iden-
tified by the pointer is declared const, but this guarantee is
very hard to make statically and the removal can violate pro-
grammer intent. We would like to be able to make a const
pointer a guarantee that nothing that receives the pointer
may write to the resulting memory. This allows const point-
ers to be passed across security-domain boundaries.”

The current standard text is 6.7.3p6 “If an attempt is
made to modify an object defined with a const-qualified type
through use of an lvalue with non-const-qualified type, the
behavior is undefined. If an attempt is made to refer to an ob-
ject defined with a volatile-qualified type through use of an
lvalue with non-volatile-qualified type, the behavior is un-
defined.133)” and, in Appendix L, “All undefined behavior
shall be limited to bounded undefined behavior, except for
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the following which are permitted to result in critical unde-
fined behavior: [...] An attempt is made to modify an object
defined with a const-qualified type through use of an lvalue
with non-const-qualified type (6.7.3).”

EXAMPLE (cheri_01_deconst.c):
#include <stdio.h>
int main() {

int x=0;
const int *p = (const int *)&x;
//are the next two lines free of undefined behaviour?
int *q = (int*)p;
*q = 1;
printf("x=%i *p=%i *q=%i\n",x,*p,*q);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
x=1 *p=1 *q=1

CLANG36-O2-NO-STRICT-ALIASING: . . . as above
DEFACTO: defined behaviour

ISO: defined behaviour

5.2 Q83. Can char and unsigned char be assumed to
be 8-bit bytes?

ISO: no DEFACTO-USAGE: yes DEFACTO-IMPL: yes
CERBERUS-DEFACTO: yes?

5.3 Q84. Can one assume two’s-complement
arithmetic?

ISO: no DEFACTO-USAGE: yes DEFACTO-IMPL: yes
CERBERUS-DEFACTO: yes?

5.4 Q85. In the absence of floating point, can one
assume that no base types have multiple
representations of the same value?

U:DEFACTO
ISO: no DEFACTO-USAGE: yes? DEFACTO-IMPL:
yes? (or perhaps pointer values?) CERBERUS-DEFACTO:
yes?

This is not necessarily true for CHERI pointers, at least.
Where there are multiple representations, one has to con-

sider the extent to which the representation bytes are stable.

6. Related Work
In this section we discuss some of the related work in a
moderately in-depth way. For work that involves a model,
a verification tool, or an implementation of much of C,
a fully detailed comparison would involve going through
each of our earlier questions one by one, considering both
the intended semantics and any observable results for the
test cases. This would require an extended discussion with
the authors of each work, which at the time of writing we
only just embarked on, though we do have experimental

data and have had some limited discussion (including survey
responses) for a few systems. Instead, here we consider
the related work as it is described in the literature (with
a subsection for each paper or group of papers), focussing
on the motivating examples they give and checking whether
they suggest additional questions.

We first consider several lines of work building memory
models for C to support mechanised formal reasoning in a
proof assistant. We begin with the fully concrete model used
by Norrish, who aimed to make (aspects of) the ISO C90
standard precise:

• C formalised in HOL; Norrish; PhD thesis 1998 [43],
§6.1

Tuch et al. develop a concrete model used for the seL4
verification, aiming to provide a model that is sound for the
particular C used in that work (a particular compiler and
underlying architecture) rather than a model for either ISO
or de facto standards in general.

• A unified memory model for pointers; Tuch, Klein; LPAR
2005 [50], §6.2

• Types, bytes, and separation logic; Tuch, Klein, Norrish;
POPL 2007 [48], §6.3

Work by several groups on verified compilation has pro-
duced a number of models. These too are not trying to ex-
actly capture either the ISO or the de facto standards in gen-
eral, but rather to provide a semantics for the C-like language
of some particular verified compiler, that justifies or eases
reasoning about its compiler transformations. Most of these
models are abstract, based on a block-ID/offset notion; the
later work in this line aims at supporting more low-level pro-
gramming idioms.

• Formal verification of a C-like memory model and its
uses for verifying program transformations; Leroy and
Blazy; JAR 2008 [34], §6.4

• CompCertTSO: A Verified Compiler for Relaxed-
Memory Concurrency; Ševčı́k, Vafeiadis, Zappa Nardelli,
Jagannathan, Sewell; POPL 2011, JACM 2013 [51, 52] ,
§6.5

• The CompCert Memory Model, Version 2; Leroy, Appel,
Blazy, Stewart; INRIA RR-7987 2012 [33], §6.6

• Formal C semantics: CompCert and the C standard;
Krebbers, Leroy, and Wiedijk; ITP 2014 [32], §6.7

• A Precise and Abstract Memory Model for C using Sym-
bolic Values, Besson, Blazy, and Wilke; APLAS 2014 [9],
§6.8

• A Concrete Memory Model for CompCert; Besson, Blazy,
Wilke; ITP 2015 [10], §6.9

• A formal C memory model supporting integer-pointer
casts; Kang, Hur, Mansky, Garbuzov, Zdancewic,
Vafeiadis; PLDI 2015 [25], §6.10
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Work by Krebbers and by Krebbers and Wiedijk aims at
a semantics “corresponding to a significant part of [...] the
C11 standard, as well as technology to enable verification of
C programs in a standards compliant and compiler indepen-
dent way”:

• The C standard formalized in Coq; Krebbers; PhD thesis
2015 [29] and also [27, 28, 30, 31], §6.11

Ellison et al. give another semantics for a substantial frag-
ment of C, expressed as a rewrite system in the K framework
rather than within an interactive prover:

• An Executable Formal Semantics of C with Applications;
Ellison and Roşu; POPL 2012 [18], and also [21, 22],
§6.12

Cohen et al. describe the model used in their VCC sys-
tem:

• A precise yet efficient memory model for C; SSV 2009;
Cohen, Moskał, Tobies, Schulte [15], §6.13

A number of papers and blog posts look at undefined
behaviour in C (much but not all of which concerns the
memory and pointer behaviour we focus on here) from a
systems point of view, without mathematical models:

• Undefined Behavior: What Happened to My Code?;
Wang, Chen, Cheung, Jia, Zeldovich, Kaashoek; APSys
2012 [53] and Towards Optimization-Safe Systems: An-
alyzing the Impact of Undefined Behavior. Wang, Zel-
dovich, Kaashoek, Solar-Lezama; SOSP 13 [54], §6.14

• Beyond the PDP-11: Architectural support for a memory-
safe C abstract machine; Chisnall et al.; ASPLOS
2015 [14], §6.15

• What every C programmer should know about undefined
behavior; Lattner; Blog post 2011, §6.16

• Proposal for a Friendly Dialect of C; Cuoq, Flatt,
Regehr; Blog post 2014, §6.17

• UB Canaries; Regehr; Blog post 2015, §6.18

For completeness we mention early work on sequential
C semantics, by Gurevich and Higgens [20], Cook and Sub-
ramanian [16], Papaspyrou [46], Bofinger [13], Black and
Windley [11, 12], and Anderson [4].

On the concurrency side, Batty et al. [8] formalised the
concurrency aspects of the ISO C/C++11 standards during
the standardisation process, with the resulting mathematical
models and standard prose in close correspondence; this
was later extended and related the IBM POWER hardware
model [7, 47], and used for compiler testing by Morisset et
al. [39].

Then there are very extensive literatures on static and dy-
namic analysis, symbolic execution, model-checking, and
formal verification for C, and systems-oriented work on
bug-finding tools, including tools such as Valgrind [42], the
Clang sanitisers, and the Csmith tool of Yang et al. [57],

which aims to generate programs that cover a large subset of
C while avoiding undefined and unspecified behaviors. Yet
another line of related work includes C-like languages that
provide additional safety guarantees, such as Cyclone [23],
and tools for hardening C execution, such as Softbound [40],
and many more. We cannot begin to summarise all of these
here, but each implicitly embodies some notion of C seman-
tics.

Our work on Cerberus began with Justus Matthiesen’s
undergraduate and MPhil project dissertations [35, 36].

6.1 C formalised in HOL; Norrish; PhD thesis 1998
This model [43] (the basis also for the expression determi-
nacy proof of [44]), adopts an almost fully concrete model,
in which memory is a map from addresses to concrete 8-
bit byte values (together with a map saying which addresses
have been initialised). These bit-sequences are interpreted as
values when read, including a check that “the bytes read out
of memory constitute a valid value for the given type” [43,
§3.3.2]. Pointer values are allowed to point one-past any al-
located address, but there is no notion of provenance.

6.2 A unified memory model for pointers; Tuch, Klein;
LPAR 2005

This paper [50] aims at a “heap abstraction that allows for
effective reasoning about both typed and untyped views of
the heap and the effects of updates on the heap”. It de-
scribes a model consisting concretely of a map from ad-
dresses to concrete bitvector values (word32) together with
a map from addresses to optional source-language types.
The Isabelle/HOL types corresponding to those have to be
equipped with maps to and from their concrete represen-
tations and with sizes. For programs that respect this type
information, a heap abstraction lets the concrete heap be
viewed as a collection of heaps, one for each type; this
supports formal reasoning that exploits type-based lack-of-
aliasing properties.

6.3 Types, bytes, and separation logic; Tuch, Klein,
Norrish; POPL 2007

This paper [48] presents a memory model for C intended
to support formal verification of C systems code by mecha-
nised interactive proof, following automated program-logic
verification condition generation (VCG) for a translation of
the C source program and its semantics into a prover (Is-
abelle/HOL). The paper includes example verifications of a
simple list reversal and the L4 kernel memory allocator, and
the model was used for the seL4 verification [26]. More de-
tails are in Tuch’s 2008 PhD thesis [49]. The paper presents
“a formal model of memory that both captures the low-level
features of Cs pointers and memory, and that forms the basis
for an expressive implementation of separation logic.” How-
ever, the work targets C code written for verification in mind,
rather than systems code found in the wild, and it targets that
code as compiled for a specific architecture. That permits
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a number of simplifications w.r.t. general C ([26, §4.3],[48,
§3]):

• syntactically, expressions are restricted to be largely side-
effect-free; this and other restrictions make the evaluation
order deterministic;

• the C implementation-defined behaviour choices can be
fixed based on the intended compiler and machine archi-
tecture; and

• some unspecified behaviours are handled by automati-
cally inserting guards when translating into the prover,
covering “division by zero, dereferencing the null pointer,
and dereferencing an improperly aligned pointer”. Any
verification has to show that these hold whenever they are
encountered.

The basic memory model is completely concrete, similar
to that of Tuch and Klein [50]: a heap memory state is a
total function from addresses (word32 ) to bytes (word8 ).
Each language type has an associated Isabelle/HOL type in a
type class recording its representation functions to and from
byte sequences, a type-name tag, and size and alignment
information.

There is no allocation ID or other provenance informa-
tion, and whether the model is sound w.r.t. the behaviour of
the specific compiler (GCC) used for seL4 for our test cases
involving provenance (if indeed those are supported by their
translation into the prover and VCG) is unclear from the pa-
per.

The model does not support structs whose members have
their address taken or which involve padding, or local veri-
ables whose address is taken [48, §4.1].

The model also contains a history variable mapping ad-
dresses to optional source-language types, with proof anno-
tations updating this added by the verifier. Above this con-
crete model the paper builds an abstraction of multiple typed
heaps and a separation logic.

The first example is a C program with well-defined but
nondeterministic behaviour w.r.t. the ISO standard that is
excluded by their syntactic restrictions:

EXAMPLE (tkn-1.c):
#include <stdio.h>
int i = 0, a[2] = {0,0};
int f(void) {

i++;
return i; }

/* will print either 0 or 1 */
int main(void) {

a[i] = f();
printf("%i\n",a[0]); }

GCC-5.3-O2-NO-STRICT-ALIASING:
1

CLANG36-O2-NO-STRICT-ALIASING:
0

(adapted to print the result rather than return it).

The second and third examples illustrate what can be
verified in this system; they also illustrate the specific “low-
level features of C’s pointers and memory” that this model
supports. The second is an in-place linked list reverse, for
lists which contain no data beyond the link pointer:

EXAMPLE (tkn-2.c):
#include <stdio.h>
typedef unsigned long word_t;

word_t reverse(word_t *i) {
word_t j = 0;
while (i) {

word_t *k = (word_t*)*i;
*i = j;
j = (word_t)i;
i = k;

}
return j;

}

int main() {
word_t a[3];
a[0] = (word_t) &a[1];
a[1] = (word_t) &a[2];
a[2] = (word_t) 0;
word_t b;
printf("a[0]=%lu a[1]=%lu a[2]=%lu\n",

a[0],a[1],a[2]);
b = reverse(a);
printf("a[0]=%lu a[1]=%lu a[2]=%lu b=%lu\n",

a[0],a[1],a[2],b);
}

GCC-5.3-O2-NO-STRICT-ALIASING:
a[0]=140737488349720 a[1]=140737488349728 a[2]=0

a[0]=0 a[1]=140737488349712 a[2]=140737488349720

b=140737488349728

CLANG36-O2-NO-STRICT-ALIASING:
a[0]=140737488349704 a[1]=140737488349712 a[2]=0

a[0]=0 a[1]=140737488349696 a[2]=140737488349704

b=140737488349712

adapted with a typedef to capture the prose definition
of word t, though to unsigned long rather than their
unsigned int, to match the types of the 64-bit machine
used to run the example) and with the main() usage added.

The third is an allocation function:

EXAMPLE (tkn-3.c):
#include <stdio.h>
#include <stdlib.h>

typedef unsigned long word_t;

word_t* kfree_list;

void * alloc(word_t size) {
word_t *prev, *curr, *tmp;
word_t i;
size = size >= 1024 ? size : 1024;
for (prev = (word_t*) &kfree_list, curr = kfree_list;

curr;
prev = curr, curr = (word_t*) *curr) {

if (!((word_t) curr & (size - 1))) {
tmp = (word_t*) *curr;
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for (i = 1; tmp && (i < size / 1024); i++) {
if ((word_t) tmp != ((word_t) curr + 1024*i)) {

tmp = 0;
break;

};
tmp = (word_t*) *tmp;

}
if (tmp) {

*prev = (word_t) tmp;
for (i = 0; i < (size / sizeof(word_t)); i++) {

curr[i] = 0;
}
return curr;

}
}

}
return 0;

}

void print_free_list(word_t* p) {
word_t* q = p;
printf("free list: ");
while (q != NULL) {

printf("%p ",(void*)q);
q = (word_t*) *q;

}
printf("%p\n",(void*)q);

}

int main() {
int n=10; // number of blocks
void *r = malloc(1024*(n+1));
// crudely force r to be 1024-byte-aligned
if (((word_t)r & (1024-1)) != 0)

r = (void*)((((word_t)r) & ~((word_t)(1024-1)))
+ (word_t)1024);

// initialise the internal next-block pointers
int i;
for (i=0; i < n-1; i++)

*((word_t *)((word_t)r+i*1024))
= (word_t)r+(i+1)*1024;

*(word_t *)((word_t)r+(n-1)*1024) = 0;
kfree_list = (word_t *)r;
// try some allocations
print_free_list(kfree_list);
void *a, *b, *c;
a = alloc(1024); // should succeed
b = alloc(2048); // should succeed
c = alloc(65536);// should fail
printf("a=%p b=%p c=%p\n",a,b,c);
print_free_list(kfree_list);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
free list: 0x801417000 0x801417400 0x801417800

0x801417c00 0x801418000 0x801418400 0x801418800

0x801418c00 0x801419000 0x801419400 0x0

a=0x801417000

b=0x801417800 c=0x0

free list: 0x801417400 0x801418000

0x801418400 0x801418800 0x801418c00 0x801419000

0x801419400 0x0

CLANG36-O2-NO-STRICT-ALIASING: . . . as above

This is adapted similarly with a specific choice of word t

and with a usage example, and also to fix an error: the paper
has word t* prev, curr, tmp; which should be word t

*prev, *curr, *tmp; (in their supplementary pdf proof

document the three declarations are separated out, so this
seems to be a typo introduced when they typeset the code).

6.4 Formal verification of a C-like memory model and
its uses for verifying program transformations;
Leroy and Blazy; JAR 2008

The early CompCert memory model, as described by Leroy
and Blazy [34], is rather abstract from our de facto standards
point of view.

They present both an axiomatisation and a “concrete
model” [34, §4] that satisfies it. The main focus is the es-
tablishment of the memory injection machinery used in the
CompCert compiler correctness proof to relate memory con-
tents across compilation phases. Their concrete model has a
memory state consisting of: a block ID counter; blocks with
unique non-reused IDs; a boolean for each block ID saying
whether it has been deallocated; the bounds (in Z) for each
block, supplied as arguments to the allocation operation;
and a optional abstract typed value (option (memtype

val)) for each block ID. The memory types (int8signed,
int8unsigned, int16signed, int16unsigned, int32,
float32, float64) have sizes and alignment restrictions
(in numbers of bytes). The values are “defined as the dis-
criminated union of 32-bit integers int(n ), 64-bit double-
precision floating-point numbers float(f ), memory loca-
tions ptr(b, i ) where b is a memory block reference and
i a byte offset within this block, and the constant undef rep-
resenting an undefined value such as the value of an unini-
tialized variable”.

In this semantics the IDs are used to give a strong prove-
nance semantics, e.g. with == pointer comparison compar-
ing the IDs, but more concrete manipulations of pointers and
memory are not supported. In particular:

• pointer values do not contain anything corresponding to
the numeric address of a pointer value in a conventional C
implementation. They therefore cannot be meaningfully
cast to integer types.

• there is no support for manipulation of the representa-
tion bytes of values. For the integer and floating-point
types that would need a relatively straightforward adap-
tation of their store function, at least given a fixed
implementation-defined representation. But for pointer
values, because there is no address information, it would
require more radical change.

• there is (correspondingly) no modelling of the layout and
padding of C struct and union types.

It is important to note that the CompCert C semantics is
intended to be the semantics of a particular implementation
(that of the CompCert compiler), rather than a semantics
that captures the envelope of all behaviour permitted by any
particular version of the ISO or de facto standards; in that
sense their goals are quite different from ours.
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6.5 CompCertTSO: A Verified Compiler for
Relaxed-Memory Concurrency; Ševčı́k, Vafeiadis,
Zappa Nardelli, Jagannathan, Sewell; POPL 2011,
JACM 2013

CompCertTSO [51, 52] is a verified compiler for a C-
like language with x86 TSO concurrency. The development
started with that of CompCert 1.5, and the sequential as-
pects of the behaviour of pointers and memory are broadly
as above, but there are some interesting differences.

In the relaxed-memory TSO setting, the lifetime of an
allocation becomes a more involved concept, as an allocation
or free event may be in the local write buffer of the thread
performing it before becoming visible to other threads. To
prevent this complicating the compiler correctness proof,
CompCertTSO relaxed the ISO-like restriction of pointer ==
comparison to pointers to live blocks, allowing comparison
of arbitrary pointer values. In turn, to be sound w.r.t. the
behaviour of a reasonable implementation, which will often
reuse memory for allocations that are separated in time, this
means the semantics had to permit both true and false for the
example below [52, §3.4], which we use in §2.16.2.

EXAMPLE (compcertTSO-1.c):
#include <stdio.h>
int* f() {

int a;
return &a; }

int* g() {
int a;
return &a; }

int main() {
_Bool b = (f() == g()); // can this be true?
printf("(f()==g())=%s\n",b?"true":"false");

}

The CompCertTSO back-end semantics and correctness
proof also supported finite memory [52, §3.4], in which “al-
location can fail and in which pointer values in the running
machine-code implementation can be numerically equal to
their values in the semantics”, with the back-end allocations
all at concrete addresses in a single block (ID 0), but the
concrete values and representations of pointers were not ex-
posed in the source language.

6.6 The CompCert Memory Model, Version 2; Leroy,
Appel, Blazy, Stewart; INRIA RR-7987 2012

This paper [33] describes an updated memory model for
CompCert, introduced in CompCert 1.7 and refined in Com-
pCert 1.11. The principal changes are support for byte-level
manipulations of integers and floats (while keeping pointer
representations abstract) and the introduction of per-byte
permissions on memory.

This paper writes (§3.1) “The CompCert memory model
version 1 correctly models the memory behaviour of C
programs that conform to the ISO C99 standard.”, but
this is not entirely correct according to our reading of the
ISO standards. For example, the C99 and C11 text on ef-
fective types [1, 3, 6.5p6] licenses copying values as ar-

rays of character type, e.g. as in our §2.4.2 with exam-
ple pointer_copy_user_dataflow_direct_bytewise.
c, but that earlier CompCert memory model does not. In-
deed, given that ISO C99 is not defined in a mathematically
rigorous way, and the absence of any proof or test-based
evaluation, the exact force of the claim is unclear.

Their §3.1 also gives two idioms which the CompCert
memory model version 1 permits which they say ISO C99
does not. The first is roundtrip casts of one pointer type to
another and back, e.g.

EXAMPLE (compcertMMv2-1.c):
#include <stdio.h>
int main() {

int x=3;
*((int *) (float *)&x) = 4;
printf("x=%i\n",x);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
x=4

CLANG36-O2-NO-STRICT-ALIASING: . . . as above

As we discuss in §2.14, this is permitted in C11, and also in
C99 [3, 6.3.2.3p7], [1, 6.3.2.3p7], for pointers to object types
(as opposed to pointers to function types) if the intermediate
value is correctly aligned. In practice it seems reasonably
common for implementations to use the same representation
for all pointer types; there it could be allowed in general.

The second is a consequence of the use of concrete byte-
count offsets for access within a block and of the particular
layout algorithm used, which makes the following two ex-
amples well-defined.

EXAMPLE (compcertMMv2-2.c):
#include <stdio.h>
struct { int x, y, z; } s;
int main() {

s.y = 41;
((int *) &s)[1] = 42;
printf("s.y=%i ",s.y);
*((int *) ((char *) &s + sizeof(int))) = 43;
printf("s.y=%i\n",s.y);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
s.y=42 s.y=43

CLANG36-O2-NO-STRICT-ALIASING: . . . as above

EXAMPLE (compcertMMv2-3.c):
#include <stdio.h>
union point3d {

struct { int x, y, z; } s;
int d[3];

};
int main() {

union point3d p;
p.s.y = 42;
int w;
w = p.d[1];
printf("w=%i\n",w);
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}

GCC-5.3-O2-NO-STRICT-ALIASING:
w=42

CLANG36-O2-NO-STRICT-ALIASING: . . . as above

The first relies (in the last assignment) on the absence of
padding between the ints in the struct, which may often be
true but is certainly not guaranteed by ISO; both examples
rely on struct and array layout corresponding, and the sec-
ond also relies on union type punning, which we discuss in
§2.15.4.

Their §3.2 discusses several limitations of the CompCert
memory model version 1. The first three involve bytewise
access to the representations of integers and floats:

EXAMPLE (compcertMMv2-4.c):
#include <stdio.h>
unsigned int bswap(unsigned int x) {

union { unsigned int i; char c[4];} src, dst;
int n;
src.i=x;
dst.c[3]=src.c[0]; dst.c[2]=src.c[1];
dst.c[1]=src.c[2]; dst.c[0]=src.c[3];
return dst.i;

}
int main() {

unsigned int x=0x11223344;
unsigned int y;
y = bswap(x);
printf("y=0x%x\n",y);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
y=0x44332211

CLANG36-O2-NO-STRICT-ALIASING: . . . as above

EXAMPLE (compcertMMv2-5.c):
#include <stdio.h>
float fabs_single(float x) {

union { float f; unsigned int i; } u;
u.f = x;
u.i = u.i & 0x7FFFFFFF;
return u.f;

}
int main() {

float f=-1.0;
float g;
g = fabs_single(f);
printf("g=%f\n",g);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
g=1.000000

CLANG36-O2-NO-STRICT-ALIASING: . . . as above

(we omit the third, which is broadly similar). The model
proposed in this Leroy et al. 2012 paper permits these two,
essentially by building particular representation choices into
the load and store functions and by shifting to a memory
state that stores bytes that can be Undef, a concrete 8-bit
byte value, or the nth byte of an abstract pointer.

The last is a bytewise user memcpy

EXAMPLE (compcertMMv2-6.c):
#include <stdio.h>
void* memcpy(void *dest,const void *src,size_t n) {

unsigned long i;
for (i=0; i<n; i++)

((char *)dest)[i] = ((const char *) src)[i];
return dest;

}
int main () {

int x[2], y[2];
x[0] = 0; x[1] = 1;
memcpy(y, x, sizeof(x));
printf("y[0]=%i y[1]=%i\n",y[0],y[1]);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
y[0]=0 y[1]=1

CLANG36-O2-NO-STRICT-ALIASING: . . . as above

similar to the pointer_copy_user_dataflow_direct_

bytewise.c example we discuss in our §2.4.2; it is not
supported by the CompCert memory model version 2.

The paper also adds a fine-grained access control permis-
sion mechanism, aimed both at the separation-logic verifica-
tion of CompCert C programs in Appel’s Verified Software
Toolchain project and at supporting compiler optimisations
for const globals.

6.7 Formal C semantics: CompCert and the C
standard; Krebbers, Leroy, and Wiedijk; ITP 2014

This paper [32] extends CompCert 1.12 to bring it closer
to something that could be soundly described by Krebbers’s
Formalin C semantics. It adds support (in CompCert 1.13)
for:

• comparison with end-of-array pointers, and
• byte-wise pointer copy.

The motivating example is a user-code memcpy imple-
mentation, essentially the same as our pointer_copy_

user_dataflow_direct_bytewise.c in §2.4.2:

EXAMPLE (klw-itp14-1.c):
void my_memcpy(void *dest, void *src, int n) {

unsigned char *p = dest, *q = src, *end = p + n;
while (p < end) // end may be end-of-array

*p++ = *q++;
}
int main() {

struct S { short x; short *r; } s = { 10, &s.x }, s2;
my_memcpy(&s2, &s, sizeof(struct S));
return *(s2.r);

}

GCC-5.3-O2-NO-STRICT-ALIASING:
CLANG36-O2-NO-STRICT-ALIASING: . . . as above
ISO: defined behaviour

Krebbers et al. note “In CompCert 1.12, this program
has undefined behavior, for two reasons: the comparison p
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< end that involves an end-of-array pointer, and the byte-
wise reads of the pointer s.r”. They go on to relax those
restrictions slightly. For comparison (at least for equality
comparison – whether they also mean to include relational
comparison is unclear), they write:

• Comparison of pointers in the same block is defined only
if both are weakly valid. A pointer is weakly valid if it is
valid or end-of-array

• Comparison of pointers with different block identifiers is
defined for valid pointers only.

They argue that this is “more sensible than the naive reading
of the C standard because it is stable under compilation”.

We agree that this stability property would be desirable,
but the downside, that comparison becomes more partial, is
potentially significant. It is already somewhat partial in the
ISO standard, but arguably not in important de facto stan-
dards. Whether code in practice does comparisons of point-
ers with different provenances that are not strictly within
their original allocations is unknown (we guess it is un-
common but does occur). This suggests another question for
§2.10, added in §2.10.2 with the following example.

EXAMPLE (klw-itp14-2.c):
#include <stdio.h>
int x=1, y=2;
int main() {

int *p = &x + 1;
int *q = &y;
_Bool b = (p == q); // free of undefined behaviour?
printf("(p==q) = %s\n", b?"true":"false");
return 0;

}

Turning to bytewise reads and writes of pointer values,
the CompCert 1.12 they describe [32, §3] stores “integer
and floating point values by sequences of numeric bytes, but
pointer values and uninitialized memory by symbolic bytes”:

Inductive memval: Type :=

| Undef: memval

| Byte: byte -> memval

| Pointer: block -> int -> nat -> memval

where Pointer b i n is the n’th byte of pointer with
block ID n and offset i, but pointer values could only be read
or written as complete sequences.

They extend CompCert values with a corresponding sym-
bolic pointer byte constructor, Vptrfrag: block -> int

-> nat -> val (they also needed an additional memval
constructor, PointerPad, to represent the upper bytes of
an in-memory representation of a Vptrfrag, determined by
sign-extension in the implementation).

These two extensions are enough to support user-defined
bytewise memcpy, but arithmetic on those byte values is
given undefined behaviour, so it will not support examples
such as our pointer_copy_user_dataflow_indirect_
bytewise.c, §2.4.3. They remark “Reading a pointer byte
from memory, adding 0 to it, and writing it back remains

undefined behavior. It would be tempting give an ad-hoc
semantics to such corner cases, but that will result in a loss
of algebraic properties like associativity”.

6.8 A Precise and Abstract Memory Model for C using
Symbolic Values, Besson, Blazy, and Wilke;
APLAS 2014

This paper [9] aims at a semantics in which reading unini-
tialised variables and “low-level pointer operations” (by
which they mean manipulations of unused pointer bits) have
well-defined behaviour, not the undefined behaviour of the
ISO standard, without “resorting to a concrete representa-
tion of pointers as machine integers”.

They give two motivating examples. The first [9, Fig. 1
and §6.3] reads an uninitialised variable, OR’s it with 1 and
writes it (we adapt their example to split the calculation of
status and add the calculation of b and printfs). They
state that this occurs in practice, in an implementation of
memalign, but do not explain why author of this code wants
to preserve some bits of an uninitialised variable.

EXAMPLE (besson_blazy_wilkie_Fig_1_adapted.c):
#include <stdio.h>
int set(int p, int flag) {

return p | (1 << flag); }
int isset(int p, int flag) {

return (p & (1 << flag)) != 0; }
int main() {

int status;
printf("status=0x%x\n",status);
status = set(status,0);
_Bool b = isset(status,0);
printf("status=0x%x b=%s\n",status,b?"true":"false");
return isset(status,0); }

GCC-5.3-O2-NO-STRICT-ALIASING:
besson blazy wilkie Fig 1 adapted.c: In function ’main’:

besson blazy wilkie Fig 1 adapted.c:8:3: warning:

’status’ is used uninitialized in this function

[-Wuninitialized]

printf("status=0x%x\n",status);

^

status=0x0

status=0x1 b=true

CLANG36-O2-NO-STRICT-ALIASING:
besson blazy wilkie Fig 1 adapted.c:8:26: warning:

variable ’status’ is uninitialized when used here

[-Wuninitialized]

printf("status=0x%x\n",status);

^

besson blazy wilkie Fig 1 ada

pted.c:7:13: note: initialize the variable ’status’ to

silence this warning

int status;

^
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= 0

1 warning generated.

status=0xffffea50

status=0xffffffff b=true

DEFACTO: defined behaviour (printing nondeterministic

values)

ISO: unclear

With respect to the ISO standard, Besson et al. write (their
§2.1, “Access to Uninitialised Variables”):

The C standard states that any read access to
uninitialised memory triggers undefined behaviours
[10, section 6.7.8, §10]: If an object that has automatic
storage duration is not initialised explicitly, its value is
indeterminate.” Here, “indeterminate” means that the
behaviour is undefined.

Here their [10] refers to the C99 standard [1], but what
they say does not seem to be exactly supported by that text.
Appendix J.2 of C99 says that behaviour is undefined if
“The value of an object with automatic storage duration is
used while it is indeterminate (6.2.4, 6.7.8, 6.8).” but (a) this
refers only to objects with automatic storage duration, and
(b) Appendix J is “informative” not “normative”, and it is
not clear how (even for those) the listed subsections imply
undefined behaviour. In any case, in C11 the standard text
for this has been changed, and is as we describe in §3. In our
reading of ISO C11 the example has undefined behaviour by
6.3.2.1p2, because the address of status is not taken.

With respect to the de facto standards, this is essen-
tially the question we discuss in §3.2.4, with examples such
as unspecified_value_strictness_int.c, of whether
various operations are strict w.r.t. unspecified values. Our
choice for our candidate de facto semantics model is to make
all operations strict, which will not permit this idiom but will
permit compiler optimisations that propagate undef through
operations.

Besson et al. give a symbolic semantics that permits this
example. Their model has symbolic values (a grammar of
unary, binary, conditional, and cast operations), some extra
alignment knowledge, and symbolic byte-n-of symbolic val-
ues. These are normalised to a concrete value when read-
ing/writing or making a control-flow choice. It has been ex-
ercised on the Doug Lea allocator, NaCl crypto, and Com-
pCert benchmarks.

Note that “symbolic” is used in two senses: these are
symbolic identifiers that are eventually resolved to concrete
values, not to be confused with the symbolic undef which is
a distinguished single constructor of a value type, (roughly)
as used in the LLVM implementation, in the CompCert
memory models, and in our de facto standard model.

Note also that a semantics that nondeterministically picks
a value at each read of an undefined value would also permit
the above motivating example.

Their second motivating example uses the low-order bits
of a pointer (to store a hash of the pointer as a hardening
technique, apparently based on a technique in Doug Lea’s
allocator):

EXAMPLE (besson_blazy_wilkie_Fig_2.c):
#include <inttypes.h>
#include <stdlib.h>
char hash(void *ptr);
char hash(void *ptr) {

char h=0;
unsigned int i;
for (i=0;i<sizeof(ptr);i++)

h = h ^ *((char *)ptr+i);
return h; }

int main(){
int *p = (int *) malloc(sizeof(int));
*p = 0;
int *q = (int *) ((uintptr_t) p | (hash(p) & 0xF));
int *r = (int *) (((uintptr_t) q >> 4) << 4);
return *r; }

(They assume that pointers are 4-byte values and malloc

returns a 16-byte aligned value.) This is essentially just like
our earlier pointer-bitmask examples, e.g. provenance_

tag_bits_via_uintptr_t_1.c, in §2.2.4.
Their §6.2 notes that system calls such as mmap return -1

on error, and so one must be able to compare pointers against
-1. We add a question and test for this in §2.10.3.

EXAMPLE (besson_blazy_wilke_6.2.c):
#include <stdlib.h>
int main() {

void *p = malloc(sizeof(int));
_Bool b = (p == (void*)-1); // defined behaviour?

}

In §6.4 they give another example that contains a poten-
tially inter-allocation pointer relational comparison, from a
memmove implementation found in practice:
void* memmove(void *s1, const void *s2, size_t n) {

char * dest = (char *) s1;
const char * src = (const char *) s2;
if ( dest <= src )

while ( n-- ) { *dest++ = *src++; }
else {

src += n; dest += n;
while ( n-- ) { *--dest = *--src; }

}
return s1;

}

This seems to be an issue for their semantics because there
is no way to resolve the conditional control-flow choice.
They write “In other words, a program whose control-
flow depends on the memory layout has an undefined be-
haviour. This dependance on the memory layout (e.g. on the
memory allocator) is a portability bug that is detected by
our semantics.”. As we discuss in §2.11.1 with pointer_

comparison_rel_1_global.c, such comparisons are un-
defined behaviour w.r.t. ISO but should be allowed in many
de facto semantics; we believe that for real OS code the
above has to be permitted and that it is not really a porta-
bility bug.
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6.9 A Concrete Memory Model for CompCert;
Besson, Blazy, Wilke; ITP 2015

This paper [10] shows that the model of [9] described in the
preceding subsection (§6.8) is an abstraction of the Com-
pCert model, and that the CompCert front-end correctness
proof (from CompCert C to Cminor) can be adapted to the
new model.

As additional motivation, they mention the CompCert
treatment of bitfields, which are translated away (to bitwise
operations) by a non-verified elaboration pass before the
formally verified front-end. Together with the strictness of
arithmetic and logical operations w.r.t. the CompCert sym-
bolic undef, this means that for structs containing multiple
bitfields that the translation represents in the same back-end
word, one cannot set one bitfield at a time.

Their example Fig. 1(a) (adapted below to print the re-
sult rather than return it) refines an earlier question about
whether unspecified-value-ness is a per-leaf-value property,
a per-byte property, or a per-bit property; we include this in
§3.2.8.

EXAMPLE (besson_blazy_wilke_bitfields_1u.c):

#include <stdio.h>
struct f {

unsigned int a0 : 1; unsigned int a1 : 1;
} bf ;
int main() {

unsigned int a;
bf.a1 = 1;
a = bf.a1;
printf("a=%u\n",a);

}

The example above has been adapted in another way from
the original version [10, Fig. 1(a)]: the latter had bitfields
a0 and a1 declared as simple ints. In C11 (6.7.2p5, and
similarly in C99), for bitfields it is implementation-defined
whether int designates signed int or unsigned int.
For the int version (besson_blazy_wilke_bitfields_
1.c), GCC-4.8 -O2 warns of overflow in implicit

constant conversion, as one might expect when storing
the value 1 in a signed bitfield of size 1, and that conversion
results in a print of -1. We avoid this complexity, which is
not relevant for this example, by using unsigned int bit-
fields.

Their discussion of unspecified values implicitly assumes
that they should be stable, as they write in their §3.1: “For
instance, consider two uninitialised char variables x and y.
Expressions x-x and x-y both construct the symbolic ex-
pression undef-undef, which does not normalise. However
we would like x-x to normalise to 0, since whatever the
value stored in memory for x, say v, the result of v-v should
always be 0.”. This is at odds with our understanding of the
de facto standards and experimental observations in §3.2.3,
where we see unstable uninitialised values in Clang. It may
or may not be sound w.r.t. the CompCert optimisations, but

other compilers may optimise usages of an undef value to
uses of values that happen to be left in registers.

Inter-block pointer relational comparison is not sup-
ported, which is also at odds with our de facto standards un-
derstanding, as we discuss in the previous subsection. They
write: “The normalisation of e w.r.t. a memory m returns a
value v if and only if the side-effect free expression e evalu-
ates to v for every concrete mapping cm : block → B32 of
blocks to concrete 32 bits addresses which are compatible
with the block-based memory m”.

They identified a glitch w.r.t. pointer wraparound in Com-
pCert: in the semantics used for all phases of the verification,
successive incrementing of a pointer to an allocated region
will never produce something that compares equal to NULL,
while in the final implementation (compiled in a non-verified
way from the CompCert assembly with semantic values) to
machine code, it will. They write that this was fixed in the
CompCert trunk by making the comparison of a pointer with
NULL defined behaviour only if the pointer is either within or
one-past its allocation. This is tighter than the ISO seman-
tics and our understanding of the de facto semantics, both of
which allow such comparisons freely.

Their model supports finite memory and an allocation op-
eration that can fail. CompCertTSO [51, 52] also had those
properties (though it is not discussed in [10]). Referring to
a fully concrete memory model in which allocations return
non-deterministic currently-fresh pointers, they write (§2.3)
“However, this model lacks an essential property of Com-
pCert’s semantics: determinism. For instance, with a fully
concrete memory model, allocating a memory chunk returns
a non-deterministic pointer – one of the many that does
not overlap with an already allocated chunk. In CompCert,
the allocation returns a block that is computed in a deter-
ministic fashion. Determinism is instrumental for the sim-
ulation proofs of the compiler passes and its absence is a
show stopper.” The CompCertTSO development shows that
allocation nondeterminism can be accommodated in such a
proof: its memory model was not fully concrete, but it did
have nondeterministic allocation. The proof separated out
the threadwise semantics of each thread from its interactions
with memory, thus keeping the former deterministic and al-
lowing relatively straightforward adaptations of many Com-
pCert compiler-phase proofs [52, §4.2–4.4].

6.10 A formal C memory model supporting
integer-pointer casts; Kang, Hur, Mansky,
Garbuzov, Zdancewic, Vafeiadis; PLDI 2015

This paper [25] is also focussed on C compiler verification:
it aims to support casts between pointers and integers and
arithmetic over them, in the way a fully concrete model does,
while simultaneously making a range of compiler optimisa-
tions sound and verifiable, in the way that the abstract block-
ID/offset models do.

Their motivating example is:
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int f(void) { int f(void) { int f(void) {
int a = 0; int a = 0;
g(); → g(); → g();
return a; return 0; return 0;

} } }

where g is an unknown external function, for which they
would like the compiler to be able to deduce that a is not
known to g() in the code on the left, and hence that constant
propagation can soundly convert it to the middle code. This
is not sound in a fully concrete model, as g() might happen
to write to whatever address the semantics chooses for a.
They would also like to permit the removal of the now-
unused allocation of a to give the code on the right. This
optimisation is also not sound in general in a fully concrete
model: in a finite-memory semantics g() might attempt to
allocate enough memory to exactly exhaust the available
memory of the right-hand code, giving a non-error behaviour
that the middle code cannot match.

Their approach (their quasi-concrete model) adapts the
abstract block-ID/offset model: blocks are created as ab-
stract, and only when/if a pointer to a block is first cast to
an integer is a concrete address chosen and associated to the
block. A memory state is a map from block IDs to blocks.
A block (v, p, n, c) has a boolean flag v indicating whether
it is valid or had been freed, a natural-number size n, an
n-tuple of values c, and a p that is either a concrete int32
address or an undef indicating that the block is still abstract
(this should not be confused with the C unspecified values or
LLVM undef). Values are a disjoint union of concrete int32
values and block-ID/offset pairs.

This justifies the above optimisations: because the ad-
dress of a is not cast to an integer type before the call to
g(), the block is still abstract. Hence, pointers to it cannot
be forged within g(), justifying the first optimisation, and
it has not yet consumed any of the finite-memory address
space, justifying the second.

Our candidate de facto model will treat this rather dif-
ferently. As discussed in §2.2.3, while we permit meaning-
ful casts between pointers and integers, we associate prove-
nance information with integer values, and one cannot nor-
mally forge a valid pointer from an arbitrary integer. That
should make the first optimisation sound, but we need to
consider two “abnormal” cases.

First, there is access to device memory via concrete
addresses (see §2.7). This is simple: the implementation-
defined range of device-memory addresses we propose,
guaranteed to be disjoint from normal C-accessible mem-
ory, means the compiler can still soundly assume a lack of
aliasing, with other accesses via concrete unprovenanced ad-
dresses giving rise to undefined behaviour.

Second, there are accesses via pointers read in from IO
(see §2.6). For IO is done in a controlled fashion, e.g. with
the scanf %p, we previously proposed tagging such pointer
values with a wildcard provenance, indicating that they
might alias with any other pointer. That would disallow the

first optimisation above (g() could read in a concrete ad-
dress that happened to be equal to that of a and then use it to
mutate a). But one could refine the proposal in the spirit of
the Kang et al. paper, but for IO-escape rather than cast-to-
integer escape: dynamically marking block IDs (aka prove-
nances) which might have escaped to the outside world, and
letting the wildcard-provenance pointers produced by input
alias only with those. This tagging would not have to be at
pointer-to-integer cast time; it could be as late as the actual
IO. For IO done in an uncontrolled bytewise fashion, one
could do something similar: for output, dynamically mark-
ing block IDs for which any value tagged with that prove-
nance might have escaped, and for use of pointer values ob-
tained from bytewise input (which is essentially the same as
casts from arbitrary unprovenanced integers) treating them
as having that wildcard provenance. What mainstream com-
pilers currently do in these cases is an interesting question.

Our candidate de facto model, as currently envisaged,
will not licence the second optimisation in general: it is a
finite-memory model which will nondeterministically allo-
cate memory from the finite address space at each alloca-
tion site and free it at each block kill. Kang et al. are essen-
tially arranging for the memory they wish to optimise away
to be in a separate and unbounded region (following Com-
pCertTSO in this, as they say). They argue that this will still
permit common optimisation cases, but from a mainstream
compiler point of view it seems more likely that compilers
will do such optimisations whether or not they are sound in
the strong sense implied by the example (they may remove
allocations even if their addresses are taken and concretely
manipulated), and that the real challenge is to understand
some more subtle sense in which they are sound.

Their §3.2 has an interesting argument against models in
which (in our terms) integer values derived from pointers
carry provenance information. They write that this prevents
the optimisation below:
a = (a - b) + (2 * b - b);
q = (ptr) a; → q = (ptr) a;
*q = 123; *q = 123;

“Suppose the variable b contains an integer with permission
to access some valid block l, and a contains an integer
without any permission that is equal to the concrete address
of the block l. Then the source program successfully stores
123 into the block l because q has the relevant permission,
whereas the target program fails because q does not have
the permission.”

To make a concrete test case, we need to construct such
a numerically correct but unprovenanced a value program-
matically. This is difficult, especially if one wishes to avoid
the questions of provenance for IO mentioned above, so we
simply use a constant value appropriate to one particular im-
plementation and platform.

EXAMPLE (khmgzv-1.c):
#include <stdio.h>
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#include <string.h>
#include <inttypes.h>
int x=0;
int main() {

uintptr_t b = (uintptr_t) &x;
uintptr_t a = 0x60102C;
printf("Addresses: b=0x%" PRIXPTR " a=0x%" PRIXPTR

"\n",b,a);
if (memcmp(&b, &a, sizeof(b)) == 0) {

a = (a - b) + (2 * b - b);
int *q = (int *) a;
*q = 123; // does this have undefined behaviour?
printf("*((int*)b=%d *q=%d\n",*((int*)b),*q);

}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: b=0x600BE8 a=0x60102C

CLANG36-O2-NO-STRICT-ALIASING: . . . as above (modulo ad-
dresses)

[TODO: RE-EXAMINE THIS (depending on the integer
provenance semantics, we might forbid the original be-
haviour)] (taking the result provenance of binary arithmetic
operations of a provenanced and unprovenanced argument
to be that of the former) but will forbid the following:

EXAMPLE (khmgzv-2.c):
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
int x=0;
int main() {

uintptr_t b = (uintptr_t) &x;
uintptr_t a = 0x60102C;
printf("Addresses: b=0x%" PRIXPTR " a=0x%" PRIXPTR

"\n",b,a);
if (memcmp(&b, &a, sizeof(b)) == 0) {

int *q = (int *) a;
*q = 123; // does this have undefined behaviour?
printf("*((int*)b=%d *q=%d\n",*((int*)b),*q);

}
return 0;

}

GCC-5.3-O2-NO-STRICT-ALIASING:
Addresses: b=0x600BE8 a=0x60102C

CLANG36-O2-NO-STRICT-ALIASING: . . . as above (modulo ad-
dresses)

In §3.5 Kang et al. point out that in an abstract block-
ID/offset model, with integer values a disjoint union of hon-
est integers and abstract pointer values, arithmetic optimisa-
tions on integers must be limited to exclude examples such
as this:

t = a + b;
d1 = a + (b - c1); → d1 = t - c1;
d2 = a + (b - c2); d2 = t - c2;

where a and b happen to be abstract pointer values (or, in
our candidate de facto model, integer values with nonempty
provenance), as the result of the addition on the right will
give rise to undefined behaviour (or, in our model, per-

haps an unprovenanced value – leaving aside the multiple-
provenance possibility of §2.3). This also holds for our can-
didate model, but (as above) it is more of an issue for com-
piler verification, using the same model across such optimi-
sation phases, than for a source-language definition.

6.11 The C standard formalized in Coq; Krebbers;
PhD thesis 2015

Krebbers, partly in collaboration with Wiedijk, has devel-
oped a semantics in Coq for a substantial fragment of C,
in their CH2O project [27–31]. We discuss the version pre-
sented in Krebbers’ 2015 PhD thesis [29]. Starting with an
abstract-syntax representation of C produced by the FrontC
parser (based on the version used by CompCert version 2.2,
in turn based on the CIL FrontC parser [41]), this work is
based on a translation into CH2O Core C, which is equipped
with a type system, an operational semantics, an executable
version of that, an axiomatic semantics for reasoning about
programs, and machinery for refinements, with metatheory
proved in Coq relating these.

Krebbers writes: “The goal of the CH2O project is to
develop a formal version of the non-concurrent fragment of
the C11 standard that is usable in proof assistants.” [29, p.5]
and “It makes the standard utterly precise.” [29, p.4], but the
reality is more nuanced: for the aspects of C that it covers,
CH2O is more like a maximally strict interpretation of the
ISO C11 standard, as discussed in [29, Ch.2]: “CH2O errs
on the side of caution: it makes certain behaviors undefined
that some people deem defined according to the standard”. It
aims thereby to be sound w.r.t. any compiler that conforms to
the ISO standard, but at the cost of excluding some programs
that others would deem legitimate; it is not attempting to
reflect the de facto standards.

The memory model is basically an abstract one, in terms
of abstract object identifiers rather than numerical address-
esd. These identifiers correspond to the provenances sug-
gested by DR #260, as we discuss in §2.1. However, if (as
we imagine) it follows Krebbers, Leroy, and Wiedijk [32]
(discussed in §6.7) in making pointer equality comparison
defined only for “valid” pointers, not one-past pointers, some
of our examples there will have undefined behaviour in this
semantics.

Casting pointers to integer types and back (see our §2.2)
is not supported: “The CH2O semantics uses an abstract
memory model with symbolic pointer values and therefore
fails to account for pointer to integer casts. Casting a pointer
to an integer, and vice versa, has undefined behavior in
the CH2O semantics.” [29, 2.6.2 Integer representations of
pointers].

It differs from earlier abstract memory models in associ-
ating a tree-structured object (corresponding to the C data
type structure) rather than a vector of bytes with each object
ID, and pointer values therefore include paths through those
trees rather than offsets within such vectors.
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They aim throughout at a semantics that takes effective
types into account (and also using this tree structure for that),
while our candidate de facto model aims at C compiled with
-fno-strict-aliasing.

Pointer manipulation (relational comparison, subtraction,
and addition) appears to be permitted only within the same
leaf subobject (or one-past for the latter two). For example,
[29, p.102]:
struct S { int a[3]; int b[3]; } s1, s2;
s1.a == s2.b;
// OK, neither of the two pointers is end-of-array
s1.a == s1.b+3; // OK, same object
s1.a == s2.b+3; // Undefined, different objects,

// s2.b+3 end-of-array
s1.a <= s1.b;
// OK, <= into the same object
s1.a <= s2.a;
// Undefined, <= with different objects

and [29, p.66]:
struct S { int a[3]; int b[3]; } s;
s.a - s.b;
// Undefined, different array objects
(s.a + 3) - s.b; // Undefined, different array objects
(s.a + 3) - s.a; // OK, same array objects

Pointer addition has undefined behaviour when it goes more
than one-past the (presumably sub)object [29, p.103]. We
add a question for the different-subobject-array case in
§2.13.5.

Pointer casts give undefined behaviour if they “break
dynamic typing”, e.g. [29, p.103]:
int x;
(short*)(void*)&x;
// Undefined, int* cast to short*
(int*)((unsigned char*)&x + 1); // Undefined, ill-aligned

This seems stricter than ISO; see our §2.14 discussion.
There is support for bytewise manipulation of the repre-

sentation bytes of C values, with symbolic “bit i of pointer
value p” values, presumably permitting pointer values to be
copied bytewise but not supporting arithmetic on them.

The treatment of type punning and unions [29, §2.5.6
Type-punning] seems to aim at the GCC interpretation,
c.f. our discussion in §2.15.4. They make the following
example disallowed [29, p.28], following that GCC text,
though a literal reading of the ISO text might suggest oth-
erwise.
short g(int *p, short *q) {
short z = *q; *p = 10; return z;
}
union int_or_short { int x; short y; } u = { .y = 3 };
int *p = &u.x;
// p points to the x variant of u
short *q = &u.y; // q points to the y variant of u
return g(p, q); // g is called with aliased pointers p,q

Their pointer values include a bit saying whether they can be
used for type punning; see [29, p.66,80,81]:
union U { int x; short y; } u = { .x = 3 };
short *p = &u.y; // a frozen version of the pointer

// &u.y is stored
printf("%d", *p); // type-punning via a frozen pointer

// -> undefined

and
union U { int x; short y; } u = { .x = 3 };
printf("%d", u.y);

At the end of an object lifetime, they make all pointers to
that object indeterminate [29, §2.5.7 Indeterminate memory
and pointers, p.30]; see our discussion in §2.16.1. They also
assert that “using an indeterminate pointer in pointer arith-
metic and pointer comparisons also yields undefined behav-
ior”, but the justification of that w.r.t. the ISO text is not
clear to us. The [29, p.30] example:
int *p = malloc(sizeof(int)); assert (p != NULL);
free(p);
int *q = malloc(sizeof(int)); assert (q != NULL);
if (p == q) {//undefined, p indeterminate due to the free

*q = 10;
*p = 14;
printf("%d\n", *q);//p and q alias, expected to print 14

}

seems intended to justify it, but that could be explained
in other ways, e.g. by giving a nondeterministic result to
such a comparison, coupled with the manifest undefined
behaviour of the *p=14 in a provenance-aware semantics.
The C99 Rationale [2, p.49, l.22–33] does introduce the
notion of an invalid pointer and says that any of use of
it gives rise to undefined behaviour. It justifies this with
a “hypothetical segmented architecture” in which arrays
might be represented using mulitple segments, where pointer
comparison involves some metadata that might no longer
exist after an object has been deallocated. We would like to
know whether such implementations actually exist.

[29, §2.6.1 Integer representations of indeterminate mem-
ory] relates to our §3.2.1 and following.

For indeterminate values, they say [29, p.104]: “Branch-
ing on an indeterminate value has undefined behavior.” See
our §3.2.2.

Their “implementation environment” specifies sizes and
alignments (and hence struct layout in the normal ABI
way, see [29, p.138]), with explicit modelling of padding
bytes, but “In our tree based memory model we enforce
that padding bytes always have an indeterminate value” [29,
p.27].

[29, §2.5.8 End-of-array pointers] relates to our §2.1.3.
The [29, p.36] example:

int x = 30, y = 31;
int *p = &x + 1, *q = &y;
intptr_t i = (intptr_t)p, j = (intptr_t)q;
printf("%ld %ld %d\n", i, j, i == j);

(reported by them as a GCC bug, and fixed from 4.7.1 to
4.8) suggests another possible question we add in §2.2.5:
Can equality testing on integers, for integers derived from
pointer values, be affected by their provenance?

In [29, p.63] they suggest that reading from abstract
memory may affect its effective type information, with the
example below in which the member of a union is left unre-
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solved until the read [29, p.77]. This is not clearly mandated
by the ISO text, by our reading thereof. But as our modelling
is aiming at the -fno-strict-aliasing case, the point is
moot as far as comparison goes.
short g(int *p, short *q) {
short z = *q; *p = 10; return z;
}
int main() {
union int_or_short { int x; short y; } u;
// initialize u with zeros, the variant of u remains
// unspecified
for (size_t i = 0; i < sizeof(u); i++)

((unsigned char*)&u)[i] = 0;
return g(&u.x, &u.y);
}

In [29, p.194] the discussion of Kang et al. [25] has this
amusing example:
int x = 0, *p = 0;
for (uintptr_t i = 0; ; i++) {

if (i == (uintptr_t)&x) {
p = (int*)i;
break;

}
}
*p = 15;
printf("%d\n", x);

We ran CH2O on our tests (test run
from 2016-02-01, ch2o github checkout
64d98faf7631252524230c859a4fc3bb4767f6e2 from
Tue Nov 17 14:10:57 2015). Most tests (all except those
for around 11 questions) were not supported in this version,
many due to missing features in the CH2O printf and
standard libraries.

6.12 An Executable Formal Semantics of C with
Applications; Ellison and Roşu; POPL 2012

This paper [18] describes a semantics for a substantial frag-
ment of C expressed in the K rewriting logic, explained
in more detail in Ellison’s 2012 PhD thesis [22] and ex-
tended by Hathhorn et al. [21]. The authors claim to give
“the first complete formal semantics of the C programming
language” [22, Abstract], but again the reality is more nu-
anced.

The memory model is described as a map [18, §4.3] from
block IDs to blocks with a size (in bytes) and a sequence
of bytes of that size. In the rewriting setting those bytes
are not necessarily ground numbers, and pointer values are
represented essentially as a pair of a block ID and a nu-
meric offset with the block, encoded e.g. as sym(B) + O
where sym seems to be a fresh function symbol, B is
a block ID, and O is an offset. Pointer values are them-
selves represented in memory with symbolic bytes, e.g. as a
list subObject(sym(B)+O), 0), . . . , subObject(sym(B)+
O), 3) [22, p.81] (the sym of the paper seems to correspond
to the loc of the thesis). This is very broadly similar to the
CompCert memory model of Krebbers et al. discussed in
§6.7. It is considerably more abstract than either the ISO or
de facto standards, e.g. in the fact that pointers are not asso-

ciated to concrete addresses, and so cannot be meaningfully
cast to integer types.

Uninitialised values can be represented in memory with
another function symbol, Unknown(N) [22, p.82] (where
N is the bitwidth).

Hathhorn et al. [21] extend KCC with additional machin-
ery for detecting undefined behaviour. The basic memory
model is as above. They “use a trap representation wherever
the standard allows one to be used” [21, §3.4], which (as
they observe) leads to more undefinedness; it is significantly
different from the de facto standards. They also add a record
of the last-stored type of memory values, for effective-type
checks (though see the experimental data below). Then there
is additional provenance-related metadata attached to pointer
values:

• “the union variant a pointer or lvalue expression is based
on so we can mark the section of memory not overlapping
with the active variant as unspecified”

• “the size of an array that a pointer is based on and its
current offset into the array in order to catch violations
dealing with undefined pointer arithmetic and out-of-
bounds pointer dereferences”

• “when a pointer can be traced back to the value stored in
some restrict-qualified pointer variable”

• “a pointers’s alignment”

KCC detected two potential alignment errors in earlier
versions of our tests. But it gave ‘Execution failed’, with no
further details, for the tests of 20 of our questions; ‘Transla-
tion failed’ for one; segfaulted at runtime for one; and gave
results contrary to our reading of the ISO standard for at
least 6: it exhibited a very strict semantics for reading unini-
tialised values (but not for padding bytes), and permitted
some tests that ISO effective types forbid.

6.13 A precise yet efficient memory model for C; SSV
2009; Cohen, Moskal, Tobies, Schulte

Cohen et al. [15] describe a model implicit in their “Ver-
ifying C Compiler”. This translates annotated C code into
BoogiePL; the verification condition generator Boogie takes
BoogiePL as input, and feeds the generated verification con-
ditions into the Z3 SMT solver. The main focus of the paper
is on capturing type-based aliasing properties, though they
do not refer to the C99/C11 effective types; they relate a
fully concrete model to one in which memory is a “collec-
tion of typed objects”. There is no discussion of provenance,
of reading uninitialised memory, or of undefined behaviour
in general.
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Construct Sufficient condition Undefined behavior
Language (1) p+ x p∞ + x∞ ∈ [0, 2n − 1] pointer overflow

(2) p p = NULL null pointer dereference
(3) xopsy x∞opsy∞ ∈ [2n−1, 2n−1 − 1] signed integer overflow
(4) x/y, x%y y = 0 division by zero
(5) x<<y, x>>y y < 0 ∨ y ≥ n oversized shift
(6) a[x] x < 0 ∨ x ≥ ARRAY SIZE(a) buffer overflow

Library (7) abs(x) x = −2n−1 absolute value overflow
(8) memcpy(dst , src, len) |dst − src| < len overlapping memory copy
(9) use q after free(p) alias(p, q) use after free
(10) use q after p := realloc(p, ...) alias(p, q) ∧ p 6= NULL use after realloc

A list of sufficient (though not necessary) conditions for undefined behavior in certain C constructs [3, §J.2]. Here p, p , q are
n-bit pointers; x, y are n-bit integers; a is an array, the capacity of which is denoted as ARRAY SIZE(a); ops refers to binary
operators +, -, *, /, % over signed integers; x∞ means to consider x as infinitely ranged; NULL is the null pointer; alias(p, q)
predicates whether p and q point to the same object.

Figure 2. Reproduced from Wang et al. [54, Fig. 3]

6.14 Undefined Behavior: What Happened to My
Code?; Wang, Chen, Cheung, Jia, Zeldovich,
Kaashoek; APSys 2012, and Towards
Optimization-Safe Systems: Analyzing the
Impact of Undefined Behavior. Wang, Zeldovich,
Kaashoek, Solar-Lezama; SOSP 13

The first of these two papers [53] “investigates whether bugs
due to programmers using constructs with undefined behav-
ior happen in practice”. Similarly to our position that the de
facto standards differ significantly from the ISO standard,
they write “Our results show that programmers do use un-
defined behavior in real-world systems, including the Linux
kernel and the PostgreSQL database, and that some cases
result in serious bugs.”

The investigation consists of a collection of 7 such cases,
taken from PostgreSQL, the Linux kernel, and FreeBSD,
each with a code snippet, and a preliminary evaluation of the
combined cost of three optimisation-limiting compiler flags
used by some of these:

-fno-strict-overflow

-fno-delete-null-pointer-checks

-fno-strict-aliasing

Their first three examples relate to the arithmetic unde-
fined behaviours, which are not our focus in this document:
division by zero, oversized shifts, and signed integer over-
flow.

Their fourth example involves formation of pointers that
are (more than one) beyond their original allocation, which
can occur in some bounds-checking code. We discuss this in
§2.13.

Their fifth example is one where dereferencing a null
pointer was expected to cause a kernel oops, but where GCC
removes a program-order-later null-pointer check based on
such dereferences being undefined behaviour. Our candidate
de facto model follows ISO in this respect, but conceivably

one could strengthen the behaviour of null-pointer derefer-
ences to definitely trap rather than be undefined behaviour.
It is not clear how widely that would be feasible. We add a
question to §2.17 for this.

Their sixth example involves integer type aliasing, with
a write of a uint16 t struct member followed by a read
at type int (within a Linux-kernel memcpy). This is an
effective-type question, as we discuss in §4.1.

Their seventh example is an intentional read of unini-
tialised memory in an attempt to produce entropy, as we dis-
cuss in §3.1.2.

The second of these two papers [54] describes a tool,
STACK, to identify some instances of what they term “un-
stable code”: “code that is unexpectedly discarded by com-
piler optimizations due to undefined behavior in the pro-
gram”. They give six motivating examples, where an opti-
mising compiler might remove the body of a conditional, in
most cases based on reasoning that it could only be executed
in the presence of undefined behaviour:

if (p + 100 < p)

{p dereferencable} if (!p)

if (x + 100 < x)

{x non-negative} if (x + 100 < 0)

if (!(1 << x))

if (abs(x) < 0)

Their tool detects cases where their (solver-based) opti-
miser optimises based on ten undefined-behaviour condi-
tions, which we reproduce in Fig. 2. It found significant
numbers of bugs in real systems code and many instances
of unstable code across a snapshot of all debian packages.

These ten conditions are (as the authors note) sufficient
for undefined behaviour but do not characterise it in general;
they are very specific. Looking at them in more detail:
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• their (1) identifies pointer addition overflow but not
the ISO-forbidden more-than-one out-of-bounds pointer
arithmetic (this suggests another test, below);

• their (2,6) identify null pointer dereference and out-of-
bounds array access but not other illegal pointer derefer-
ences.

• their (3,4,5,7) are arithmetic issues, which are not our
focus in this document

• their (8), overlapping memory copy, refers to the ISO
memcpy text: “If copying takes place between objects
that overlap, the behavior is undefined” [3, §7.24.2.1]. In
Cerberus this library call can be implemented in C except
that it needs this explicit undefined-behaviour check.

• their (9,10) identify use-after-free and use-after-realloc
cases, which are clearly forbidden in both ISO and de
facto standards.

We add two questions following §2.13.1 (p.31), first just
forming a pointer value by arithmetic that overflows (on an
architecture with 64-bit pointer representations), and then a
test that makes an access using such a pointer value.

6.15 Beyond the PDP-11: Architectural support for a
memory-safe C abstract machine; Chisnall et al.;
ASPLOS 2015

The following examples give simple forms of the “difficult
idioms” listed in this paper [14]. The data there shows that
most of these idioms occur often in practice and hence that
those (mostly) should be allowed in a semantics for a de
facto standard C, while a CHERI C semantics will be tighter
in some respects.
“DECONST refers to programs that remove the const quali-
fier from a pointer”. We used the following example in §5.1.

EXAMPLE (cheri_01_deconst.c):
#include <stdio.h>
int main() {

int x=0;
const int *p = (const int *)&x;
//are the next two lines free of undefined behaviour?
int *q = (int*)p;
*q = 1;
printf("x=%i *p=%i *q=%i\n",x,*p,*q);

}

[TODO: fix up the following (cf David’s email)]
“CONTAINER describes behavior in a macro common in the
Linux, BSD, and Windows kernels that, given a pointer to a
structure member, returns a pointer to the enclosing struc-
ture”. This is essentially the question of §2.13.4.

EXAMPLE (cheri_02_container.c):
#include <stdio.h>
#include <stddef.h>
typedef struct { int i; float f; int j; } st;
int main() {

st s = {.i=1, .f=2.0, .j=3};
int *pj = &(s.j);
char *pcj = ((char *)pj);
char *pcst = (pcj - (offsetof(st,j)-offsetof(st,i)));
//are these two lines free of undefined behaviour?
st *ps = (st *)pcst;
ps->f = 22.0;
printf("s.i=%i s.f=%f s.j=%i ps->f=%f\n",s.i,s.f,s.j,

ps->f);
}

“II refers to computation of invalid intermediate results. [...]
This case refers to pointer arithmetic where the end result is
within the bounds of an object, but intermediate results are
not”. We used the next two tests in §2.13.1.

EXAMPLE (cheri_03_ii.c):
#include <stdio.h>
int main() {

int x[2];
int *p = &x[0];
//is this free of undefined behaviour?
int *q = p + 11;
q = q - 10;
*q = 1;
printf("x[1]=%i *q=%i\n",x[1],*q);

}

EXAMPLE (cheri_03_ii_char.c):
#include <stdio.h>
int main() {

unsigned char x;
unsigned char *p = &x;
//is this free of undefined behaviour?
unsigned char *q = p + 11;
q = q - 10;
*q = 1;
printf("x=0x%x *p=0x%x *q=0x%x\n",x,*p,*q);

}

“INT refers to storing a pointer in an integer variable in
memory — implementation-defined behavior in C. [...] Dis-
allowing this behavior makes accurate garbage collection
possible, as the compiler can statically track every pointer
use”. These are the examples we used in §2.2.2:

EXAMPLE (provenance_roundtrip_via_intptr_t.c):
#include <stdio.h>
#include <inttypes.h>
int x=1;
int main() {

int *p = &x;
intptr_t i = (intptr_t)p;
int *q = (int *)i;
*q = 11; // is this free of undefined behaviour?
printf("*p=%d *q=%d\n",*p,*q);

}

EXAMPLE (provenance_roundtrip_via_unsigned_long.c):
#include <stdio.h>
int x=1;
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int main() {
int *p = &x;
unsigned long i = (unsigned long)p;
int *q = (int *)i;
*q = 11; // is this free of undefined behaviour?
printf("*p=%d *q=%d\n",*p,*q);

}

“IA refers to performing integer arithmetic on pointers —
such as storing a pointer in an integer value and then per-
forming arbitrary arithmetic on it. This is a more general
case of the Int idiom and relies on the same implementation-
defined behavior”. This is essentially a combination of II
and Int.

EXAMPLE (cheri_05_ia.c):
#include <stdio.h>
#include <inttypes.h>
int main() {

int x=0;
int *px = &x;
uintptr_t ql = (uintptr_t)px;
ql = ql + 287343;
ql = ql - 287343;
int *q = (int *)ql;
*q = 1;
printf("x=%i *px=%i *q=%i\n",x,*px,*q);

}

“MASK refers to simple masking of pointers. For example,
to store some other data in the low bits”. This is the test
below from §2.2.4.

EXAMPLE (provenance_tag_bits_via_uintptr_t_1.c):
#include <assert.h>
#include <stdio.h>
#include <stdint.h>
int x=1;
int main() {

int *p = &x;
// cast &x to an integer
uintptr_t i = (uintptr_t) p;
// check the bottom two bits of an int* are not used
assert(_Alignof(int) >= 4);
assert((i & 3u) == 0u);
// construct an integer like &x with low-order bit set
i = i | 1u;
// cast back to a pointer
int *q = (int *) i; // defined behaviour?
// cast to integer and mask out the low-order two bits
uintptr_t j = ((uintptr_t)q) & ~((uintptr_t)3u);
// cast back to a pointer
int *r = (int *) j;
// are r and p now equivalent?
*r = 11; // defined behaviour?
_Bool b = (r==p);
printf("x=%i *r=%i (r==p)=%s\n",x,*r,b?"true":"false");

}

“WIDE refers to storing a pointer in an integer variable of a
smaller size. This is undefined according to the C specifica-
tion, but may work if you are able to guarantee that pointers
are within a certain range, for example by allocating mem-
ory with malloc and the MAP 32BIT flag. Code using this
idiom is broken by existing implementations, and most likely

reflects bugs in the code. We were surprised to see examples
of this in programs that we inspected, but fortunately it is
sufficiently rare that fixing all of the cases would be easy in
these codebases.” This seems sufficiently pathological that
we do not include a question for it.

EXAMPLE (cheri_07_wide.c):
#include <stdio.h>
#include <inttypes.h>
#include <limits.h>
#include <assert.h>
int x=1;
int main() {

int *p = &x;
uintptr_t i = (uintptr_t) p;
assert( i <= UINT_MAX);
unsigned int j = (unsigned int)i;
uintptr_t k = (uintptr_t)j;
int *q = (int *)k;
*q = 2;
printf("i=0x%"PRIxPTR" UINT_MAX=0x%x ULONG_MAX=0x%lx\n",

i,UINT_MAX,ULONG_MAX);
printf("x=%i *q=%i\n",x,*q);

}

“LAST WORD refers to accessing an object as aligned
words without regard for the fact that the objects extent may
not include all of the last word. This is used as an optimiza-
tion for strlen() in FreeBSD libc. While this is undefined be-
havior in C, it works in systems with pagebased memory pro-
tection mechanisms, but not in CHERI where objects have
byte granularity. We have found this idiom only in FreeBSDs
libc, as reported by valgrind”. This is the example we used
in §3.3.11.

EXAMPLE (cheri_08_last_word.c):
#include <assert.h>
#include <stdio.h>
#include <inttypes.h>
char c[5];
int main() {

char *cp = &(c[0]);
assert(sizeof(uint32_t) == 4);
uint32_t x0 = *((uint32_t *)cp);
// does this have defined behaviour?
uint32_t x1 = *((uint32_t *)(cp+4));
printf("x0=%x x1=%x\n",x0,x1);

}

6.16 What every C programmer should know about
undefined behavior; Lattner; Blog post 2011

Part 1 of this three-part blog post by Chris Lattner64 dis-
cusses how six forms of undefined behaviour permit desir-
able compiler optimisation:

• Use of an uninitialized variable

As we discuss in §3, in ISO C11 this does not always give
rise to undefined behaviour. The motivation given by Lat-
tner for treating this as undefined behaviour would apply

64 http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.

html
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equally to a semantics in which reading uninitialised vari-
ables gives unspecified values.

• Signed integer overflow

• Oversized Shift Amounts

These two are both integer arithmetic undefined be-
haviours, which are not our focus in this document.

• Dereferences of Wild Pointers and Out of Bounds Array
Accesses

• Dereferencing a NULL Pointer

These are both discussed in the previous subsection
(§6.17, point 4).

• Violating Type Rules

This explains the motivation for type-based alias anal-
ysis, but for our candidate de facto memory model we
focus on the -fno-strict-aliasing case.

Part 3 of this series lists some cases where Clang adopts
a stronger semantics than ISO, including:

“2 Arithmetic that operates on undefined values is con-
sidered to produce a undefined value instead of producing
undefined behavior.”

“3 Arithmetic that dynamically executes an undefined
operation (such as a signed integer overflow) generates a
logical trap value which poisons any computation based on
it, but that does not destroy your entire program.”

6.17 Proposal for a Friendly Dialect of C; Cuoq, Flatt,
Regehr; Blog post 2014

This blog post65 makes an initial proposal for a more pre-
dictable dialect of C. They write: “As a starting point, we
imagine that friendly C is like the current C standard, but
replacing many occurrences of ‘X has undefined behavior’
with ‘X results in an unspecified value’. That adjustment
alone can produce a much friendlier language. In other
cases, we may be forced to refer to machine-specific details
that are not features of the C abstract machine, and we are
OK with that.” and list 14 features, as below. Many of these
relate to integer arithmetic undefined behaviours, which are
not our focus in this document. In the other direction, the
blog post does not discuss most of our memory-model ques-
tions.

1 The value of a pointer to an object whose lifetime has
ended remains the same as it was when the object was
alive.

This would change the ISO “no” to a “yes” for our ques-
tion in §2.16.1.

2 Signed integer overflow results in twos complement
wrapping behavior at the bitwidth of the promoted type.

65 http://blog.regehr.org/archives/1180 and followup http://

blog.regehr.org/archives/1287

Integer arithmetic UB. This could be accommodated in
the Cerberus semantics with an easy change to the elabo-
ration function.

3 Shift by negative or shift-past-bitwidth produces an un-
specified result.

Integer arithmetic UB. This could be accommodated in
the Cerberus semantics with an easy change to the elabo-
ration function.

4 Reading from an invalid pointer either traps or produces
an unspecified value. In particular, all but the most ar-
cane hardware platforms can produce a trap when deref-
erencing a null pointer, and the compiler should preserve
this behavior.

See §2.17.2.
For null pointers, on many platforms one could require
them to definitely give a runtime failure, as per our ques-
tion in §2.17.1.

5 Division-related overflows either produce an unspecified
result or else a machine-specific trap occurs.

Integer arithmetic UB. This could be accommodated in
the Cerberus semantics with an easy change to the elabo-
ration function.

6 If possible, we want math- and memory-related traps to
be treated as externally visible side-effects that must not
be reordered with respect to other externally visible side-
effects (much less be assumed to be impossible), but we
recognize this may result in significant runtime overhead
in some cases.

The impact of 4–6 on optimisations that involve code
motion isn’t clear to us.

7 The result of any signed left-shift is the same as if the
left-hand shift argument was cast to unsigned, the shift
performed, and the result cast back to the signed type.

Integer arithmetic UB. This could be accommodated in
the Cerberus semantics with an easy change to the elabo-
ration function.

8 A read from uninitialized storage returns an unspecified
value.

This is our question in §3.1.2. Though exactly
how Friendly-C unspecified values should behave,
e.g. w.r.t. strictness and our other §3.2 questions, is not
stated.

9 It is permissible to compute out-of-bounds pointer val-
ues including performing pointer arithmetic on the null
pointer. This works as if the pointers had been cast to
uintptr t. However, the translation from pointer math
to integer math is not completely straightforward since
incrementing a pointer by one is equivalent to increment-
ing the integer-typed variable by the size of the pointed-to
type.
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The first part is our question from §2.13.1. The second is
handled in Cerberus by the elaboration.

10 The strict aliasing rules simply do not exist: the represen-
tations of integers, floating-point values and pointers can
be accessed with different types.

This matches our candidate de facto memory model
choice to focus on the -fno-strict-aliasing be-
haviour.

11 A data race results in unspecified behavior. Informally,
we expect that the result of a data race is the same as in
C99: threads are compiled independently and then data
races have a result that is dictated by the details of the
underlying scheduler and memory system. Sequentially
consistent behavior may not be assumed when data races
occur.

This is rather unclear: what does this usage of “unspeci-
fied behaviour” mean?

12 memcpy() is implemented by memmove(). Additionally,
both functions are no-ops when asked to copy zero bytes,
regardless of the validity of their pointer arguments.

This is a library undefined-behaviour issue; we’ve so far
not looked into those.

13 The compiler is granted no additional optimization
power when it is able to infer that a pointer is invalid. In
other words, the compiler is obligated to assume that any
pointer might be valid at any time, and to generate code
accordingly. The compiler retains the ability to optimize
away pointer dereferences that it can prove are redun-
dant or otherwise useless.

The force of this is unclear, especially w.r.t. provenance-
based alias analysis.

14 When a non-void function returns without returning a
value, an unspecified result is returned to the caller.

This is presumably also an easy elaboration change.

6.18 UB Canaries; Regehr; Blog post 2015
This blog post66 by John Regehr gives “a collection of ca-
naries for undefined behavior: little test programs that au-
tomate the process of determining whether a given compiler
configuration is willing to exploit particular UBs.”, together
with the results for several versions of GCC and LLVM.

The first two examples (addr_null_p1.c and addr_

null_p2.c) test whether one can use the address of mem-
bers of a NULL struct pointer in place of offsetof. We add
an example to §2.13.6 for this.

array_oob_p1.c contains a straightforward out-of-
bounds array-read undefined behaviour (the question for
the canaries is whether compilers aggressively exploit that).
array_oob_p2.c is similar.

66 http://blog.regehr.org/archives/1234

The dangling_pointer_p1.c, dangling_pointer_

p2.c, and dangling_pointer_p3.c examples check
whether compilers optimise based on an assumption that an
out-of-lifetime pointer is distinct from another pointer, after
the end of a block scope, a realloc, and a free respec-
tively. See our §2.16.1, where we give block-end and free

tests.
The int_min_mod_minus_1_p1.c tests INT MIN %

-1. Not being a memory object question, this is not in the
scope of this note.

memcpy_overlap_p1.c tests random memcpy’s, pre-
sumably to check whether the compiler exploits the [3,
§7.24.2.1] statement that overlapping memcpy’s (unlike over-
lapping memmove’s) give undefined behaviour. We could add
another question, asking whether such a memcpy gives a
well-defined copy, unspecified values in the target footprint,
or undefined behaviour.

modify_string_literal_p1.c tries to modify a string
literal, undefined behaviour by [3, §6.4.5p7].

pointer_casts_p1.c tries to cast away a const from
a pointer and write using the result.

pointer_casts_p2.c tries to use a non-volatile pointer
to mutate a volatile int; we have not considered
volatile in this note.

shift_by_bitwidth_p1.c tests whether “it’s OK
to shift an integer by its bitwidth and the result is 0”;
an arithmetic property we do not consider in this note.
signed_integer_overflow_p1.c, signed_integer_

overflow_p2.c, signed_left_shift_p1.c, and
signed_left_shift_p2.c are similarly outside our scope
here.

strict_aliasing_p1.c is a basic effective-types type
punning question, as in our §4.1.1.

uninitialized_variable_p1.c, uninitialized_

variable_p2.c, and uninitialized_variable_p3.c

involve stability, strictness, and control-flow choices of
unspecified values, as in our questions 50, 51, and 52.

uninitialized_variable_p4.c asks whether a com-
parison x < INT MIN, where x is uninitialised, is guaran-
teed false. If all operations on unspecified values give un-
specified values (c.f. our Question 52) then the answer to this
would be no. uninitialized_variable_p5.c is similar
but for >.
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