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Abstract—The process of driving a car involves a cognitive
load that varies over time. Additional load comes from secondary
factors not directly associated with the driving process, including
navigation devices, entertainment systems and the car’s own
warnings. In this paper, we present a framework for intelligent
scheduling of in-car notifications based on the driver’s estimated
cognitive load. As the single channel for communication, it
reschedules the notifications using a priority queue, and relays
them to the driver based on the urgency of the notification and
the overall estimated cognitive load being experienced by the
driver at any given moment. We evaluate our system using a
dataset collected from a car’s CAN bus during multiple on-
road trials and show that our proposed approach reduces the
number of simultaneous calls on the driver’s attention during the
driving task. We also demonstrate that our intelligent scheduling
significantly reduces the maximum cognitive load experienced by
the driver and the frequency with which high loads occur.

I. INTRODUCTION

Cognitive load is commonly defined as the relationship
between the cognitive demands placed on a user by a task and
the user’s cognitive resources [1]. For a driver, the process
of controlling the vehicle safely along a road while avoiding
collisions and obeying the necessary regulations is the primary
load source, but increasingly there are other calls upon the
driver’s attention: entertainment systems, phone calls, social
network alerts, satellite navigation instructions, and informa-
tion from the car itself about fuel warnings, tyre pressures, and
scheduled maintenance. Such ‘secondary’ events are generally,
at present, simply presented to the driver at the time they
occur. But the moment at which the driver is negotiating
a difficult sliproad onto a fast-moving highway may not be
the most appropriate time for a sudden audiovisual warning
that they need to arrange a service in the next 1000 miles.
Studies reported that when a secondary in-vehicle distractor is
presented to the driver at a highly demanding driving instance,
such as when approaching a light-controlled stop, the primary
driving task is significantly affected [2], [3], [4], even if the
secondary task requires cognitive, rather than visual, attention.

As more functionality is added to in-vehicle systems, there
will be an increasing load on the driver’s attention resources
[5], [6]. In this paper, we propose a framework for intelligently

scheduling those secondary tasks, such that they do not coin-
cide with the unavoidable primary tasks (or with each other),
with the aim of improving the safety and comfort of the driver,
passengers and other road users.

The main contributions of this paper can be summarised as
follows:

1) Presenting a system for intelligent scheduling of in-
car audio notifications based on the driver’s estimated
cognitive load. See Figure 1 for an overview diagram
of our system, which has two main components: mes-
sage classification (priority queue), and cognitive load
estimation modeling, based on real-world recordings of
controller area network-bus (CAN-bus) data.

2) Demonstrating that our scheduling approach significantly
reduces the maximum cognitive load experienced by the
driver and the frequency with which high loads occur.

II. RELATED WORK

In-vehicle information systems are believed to introduce
increased cognitive loads on the driver [5], especially in the
case of elderly drivers [7]. Previous work has emphasised
the importance of detecting when a driver is distracted by
those systems, typically with the aim of alerting the driver
that they should pay more attention. However, there is no
quantitative analysis of such distractions, especially for the
auditory/cognitive distractions. (For an overview of the meth-
ods employed in past studies, see Bach et al [5].)

In-vehicle distractions can be divided into two types: visual
and cognitive. Bach et al [5] describe them as eyes-off-the-
road time and mind-off-the-road time (the latter being when
the driver may be looking at the road, but their thoughts are
elsewhere and hence reaction times are slower). Cognitive
distraction may often be caused by auditory signals, and is
particularly apparent during phone calls [8], [4], [3].

Visual distractions can be measured through the use of head-
and gaze-tracking [9]. Liang et al [10] compared different
approaches of measuring off-road glancing behaviour in order
to estimate a driver’s visual distraction. Cognitive distractions,
on the other hand, are harder to detect or estimate, as mea-
suring cognitive load in real-world situations is a difficult



Fig. 1: System overview showing the main components of our proposed framework: message classification, priority queue and
cognitive load estimation.

task. A common technique for measuring cognitive load is
to challenge the participant to perform a secondary task at the
same time as a primary one, and measure the degree to which
the primary, or secondary, performance is impaired. This is not
safe to apply in our real-world on-road driving trials. Other
studies have involved manual annotation of the estimated load
based on video recordings watched after the drive. These
perception methods are useful in measuring visual, rather than
cognitive distractions [9]. Finally, biometric sensors have also
been tried [11], [12], but their inconvenience means that any
system depending on them could not readily be deployed for
general use.

Many studies explored the relationship between different
driving parameters, which can be obtained from vehicle data
and the driver’s cognitive load. The driving speed has been
found to be inversely correlated with the cognitive load [13].
This is because highway driving imposes fewer distractions
than urban driving, or because drivers only speed up in the
absence of such challenges. Another study suggests that the
driver, under identical road conditions, would slow down when
the cognitive load was introduced, perhaps because they are
attempting to free-up resources for the secondary task by
simplifying the primary (driving) task [14]. Moreover, drivers’
cognitive load has been found to be highest while approaching
and driving through junctions [13], which indicates that the
steering wheel angle, acceleration and deceleration are useful
metrics for estimating cognitive load.

Although several studies reported the effect of in-car no-
tifications, only few investigated redistributing, rescheduling
or controlling the flow of the messages. Pompei et al [15]
developed a platform for investigating the use of driver activity
monitoring with the aim of controlling information flow in the
vehicle and reducing the driver’s cognitive load. However, no
qualitative experiments were reported.

III. DATA COLLECTION

The dataset we use is collected in real-driving scenarios.
Eight participants took an instrumented vehicle around the
same 90-minute route, chosen to include urban, rural and
highway sections to get diverse driving conditions. Activity
inside and outside the car was captured by several cameras,
and data from the car’s CAN-bus was recorded, including
pedal pressures, the use of controls such as indicators, and
steering wheel angle. Since we aim to inform real systems
deployed in production vehicles, we have avoided more intru-
sive measures such as the collection of biometric data through
ECGs, EEGs, or skin conductivity, focussing on data sources
which can readily be captured in a production vehicle.

IV. SYSTEM DESIGN

In the Apollo space missions, all communications to the
astronauts from mission control went through a single indi-
vidual, to avoid the possible confusion of multiple simultane-
ous communications. This individual, designated the ‘Capsule
Communicator’ or CAPCOM, was typically a trained astronaut
who had some understanding of what the crew was going
through.

The system we are proposing for in-car communications
closely resembles that of the CAPCOM, in that messages from
all driver aids are passed to it, analysed and placed at the
appropriate position in a priority queue. Then, the message at
the head of the queue is relayed at a time when the driver’s
estimated cognitive load is below a certain threshold. This
threshold is set according to the importance of the message.

A. Message Classification and Priority Queue

To classify the different messages and define the mechanics
of the queue, we associate two different values with each
message: Message Importance and Message Priority.
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(a) Speed
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(b) Steering angle
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(c) Steering instability
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(d) Brake pressure
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(e) Cruising state likeli-
hood

Fig. 3: Modeling of Cognitive Load (CL) as a function of different car parameters.

Critical Very High High Medium Low

Message ImportanceHead Tail

Fig. 2: Partitioning of the message queue into five smaller
independent queues according to importance classification.

Message Importance is the primary classification; a five-
tier system with the following categories: Critical, Very high,
High, Medium and Low. Once assigned, Message Importance
remains static. The message queue is also partitioned into five
small, independent queues, one for each category, illustrated
in Figure 2. Partition independence guarantees that a message
with critical importance cannot be held up by one with low
importance even if the latter has been in the queue for some
considerable time.

We define the criteria for a message to be placed in one of
the above categories as follows:

• Critical messages are those requiring a prompt response
from the driver. Relayed immediately, they generally
convey information about safety risks such as seatbelts
not being in use, or urgent navigation instructions.

• Very High importance messages alert the driver to situ-
ations where action is required in the short term. These
messages include fuel and vehicle fault warnings.

• High importance messages convey information which
does not require immediate action, such as traffic warn-
ings.

• Medium importance messages contain notifications of
future events, such as a service due date.

• Low importance messages are purely for the driver’s
entertainment. They include social media and interesting
landmark notifications.

Message Priority is a secondary ranking mechanism which
defines the order of messages within a given partition of the
queue. This is necessary because some messages are time- or
distance-dependent and may ‘time-out’ (become redundant) if
held up for too long. An example would be an incoming phone
call.

Each type of message has a specified initial priority value,
which gives a natural ordering should multiple messages enter
the queue in quick succession. If the message is time- or

distance-dependent it will also have a specified time-out value.
The priority of each message increases linearly over time so
that, all other things being equal, messages which have been
waiting longest will be relayed first. Messages with a time-out
value increase priority at a faster rate, depending on its expiry,
and get discarded if they are not delivered before becoming
redundant.

When the time comes to feed another message to the driver,
which in our system is done by a text-to-speech module, the
queues are consulted in turn: from the ‘Critical’ down to the
‘Low’ importance. Messages from a later queue will only be
processed when the earlier queues are empty. Then, within
a queue, the Message Priorities will be used to select the
message to be played first.

B. Cognitive Load Estimation

The cognitive load (CL) resulting from the driving task was
estimated using the CAN data from the vehicle. Although
correlations have been presented, very little work has been
done previously to quantify the factors which affect the driver’s
CL. We have defined and modelled five factors believed to
affect the driver’s CL (summerised in Figure 3). Each of these
factors was defined on a scale between 0 and 1 and then scaled
by a constant factor based on estimates of how large an effect
it would have on the driver’s CL. Finally, all of these scaled
values are summed to give a total CL value. The factors we
considered are:

Speed – It has been shown that CL is inversely correlated
with driving speed, v [13], [14]. Building on this, we modelled
CL as a Gaussian function of car speed as illustrated in Figure
3a. When driving, if v ≤ 20mph, one of two scenarios is
taking place: 1. There is a speed limit of 20mph, or 2. Traffic
conditions prohibit driving any faster. Both of these imply a
very high hazard density [16] and hence a heightened CL for
the driver, so when v ≤ 20mph we assume CL due to speed
is maximum. When v = 30mph, CL starts decreasing but
stays relatively high because 30mph speed limits are imposed
in ‘built-up’ areas, meaning the hazard density remains high
[16]. As speed increases above v = 30mph, the CL decreases
rapidly because of a sharp decrease in hazards posed by
pedestrians and cyclists. This trend continues to the point
where CL is minimum when v = 70mph, which is the
maximum speed limit in UK [17].



(a) Estimated cognitive load experienced by the driver from the
primary driving task (in blue) + additional cognitive load imposed
by simulated notifications (in red,orange and yellow) without the
smart scheduling intervention. Messages of all categories, from the
critical (in red) to those of lower importance (orange and yellow) are
delivered at the time they occur, even if they overlap.

(b) Cognitive load redistribution with the smart scheduling interven-
tion. Critical messages are still presented immediately, while less
urgent ones are delayed until times of lower CL. All messages are
queued up to avoid audio overlap, though our model of the cognitive
load induced does extend a little beyond the duration of the message,
so some overlap of CL may be seen in our analysis.

Fig. 4: A case study showing the operation of our scheduling system on a segment of the route containing urban driving.

Steering Angle – Previous work showed that CL is in-
creased when driving around corners or performing other
turning manoeuvres [5]. These driving events can be captured
by measuring the steering wheel angle, θ. We observed that
|θ| < 15◦ is consistent with driving on straight roads, or roads
which have a very large radius of curvature. Steering angles
in the range 15◦ ≤ |θ| < 25◦ indicated stretches of road
with a much smaller radius of curvature, but not corners or
roundabouts. |θ| ≥ 25◦ was found to be broadly consistent
with turning corners and negotiating roundabouts. Based on
this, we modelled CL(θ) as an inverted Gaussian function
with mean 0◦ and standard deviation 20◦, illustrated in Figure
3b.

Steering Instability – Besides steering angle, we defined
steering instability in terms of a sliding window of previous
3 seconds of driving. That is because a steering angle of 0
that happens while exiting a roundabout, for example, might
incorrectly indicate that the driver is having a low CL if only
the instantaneous angle is considered, although the opposite
is true [13]. Therefore, we modelled CL due to steering
instability as a Gaussian function with mean 22.5 and standard
deviation 2.0, depicted in Figure 3c. This function changes
significantly over a small critical region, chosen such that the
CL values obtained would show whether the driver had turned
a corner (or not) in the last three seconds based on the steering
angle threshold |θ| ≥ 25◦, discussed in the previous section.

Brake Pressure – Since using the brakes is an indication
of increased CL, we modelled CL as an inverse function of
brake pressure as shown in Figure 3d with a p > 8 indicating

that the driver intends to slow down significantly or bring the
vehicle to a halt ,i.e. the CL increases significantly.

Cruise – We define the term cruising to describe a situation
where a low CL is imposed upon the driver. While hard to
define precisely, phrases like ‘cruising along’ or ‘motorway
cruising’ imply that the driver is on a straight road, travelling at
a reasonably high, steady speed – not in stop-start traffic – for
an extended period of time. To capture this idea, the likelihood
of being in a cruising state is calculated as a function of
instantaneous high speed and lack of braking pressure and
recent stability of both steering and speed over a window of
4 seconds. CL is then modelled as an inverse function of the
likelihood of being in a cruising state, as shown in Figure 3e.

The total CL value at a given point is calculated as a
weighted sum of all of the above mentioned factors and used to
determine the categories of the messages which can be relayed
to the driver at this point in time.

V. EVALUATION

To evaluate our framework performance when applied to
data captured in real driving scenarios, we created simula-
tions where a range of events/notifications were generated
and injected into the recorded driving data as if they had
been generated by in-car systems. Our intelligent scheduling
framework takes these, queues them up, prioritises them and
delivers them at the appropriate time according to the approach
described above. To assess the effectiveness of our system,
we modelled the additional cognitive load resulting from the
messages being fed to the driver.



In our implementation, the total CL value varied from 0 to
7. The CL thresholds chosen for different message categories
were as follows: Critical messages can be relayed in all CL
values, CL value must be below 4.0 in order to relay Very
High importance messages, for High importance messages the
CL must be less than 3.2, Medium importance messages can
only be relayed when CL is below 3.1, and Low messages are
relayed when the CL is below 3.0. These values were chosen
empirically based on our data. In the future, the deciding of
these thresholds could be done by safety authorities or vehicle
manufacturers. Moreover, since our notifications consist of
spoken audio of different lengths, we assume that they impose
a single unit of load for the duration of the audio plus two
further seconds, then that the load decays to zero over the
following three seconds. This was chosen as representing the
hearing, parsing, understanding and processing of the audio
messages.

In this section we first present a case study illustrating the
impact of using our system on message delivery during a short
section of the route during urban driving. We show how our
system redistributes the cognitive load and reduces the number
of simultaneous calls on driver’s attention. Then we apply the
intelligent scheduling to the full dataset recorded by multiple
participants, showing the effect of our system on the overall
estimated cognitive load on longer journeys.

A. Case study analysis

Given our models of the baseline load caused by driving and
the additional load resulting from notifications, we can add
these together to get the approximate overall load experienced
by the driver at any given moment. It may be argued that the
load resulting from context-switching in the case of multiple
simultaneous tasks is greater than simply the sum of those
tasks when experienced individually, but we have not assumed
any multi-tasking overhead in our model.

Our case study presented in Figure 4 shows in detail how our
system affects the scheduling of secondary event notifications
on top of the driving baseline in a short segment of urban
driving route representing 80 seconds where the driver navi-
gates a roundabout then enters a highway. For the purposes of
demonstration, we inject a few sample notifications, including
three overlapping at the beginning of the route segment.

We measure the estimated cognitive load with and without
our scheduling system. Figure 4a shows the notifications at the
time they occur, without any scheduling intervention, while
Figure 4b shows how the notifications are redistributed with
the scheduler. Some notifications stay in their place because
they are in ‘high importance’ categories, such as satellite
navigation instructions. Other lower-importance messages are
delayed, and so end up in the troughs, when the baseline load
is lower. High peaks of overall cognitive load are therefore
redistributed or‘smoothed out’.

B. Overall cognitive load analysis

For a broader evaluation of the effect of the scheduler on the
overall cognitive load of the driver, we analysed eight CAN

data files from the dataset described in ‘Data collection’ above,
one for each of 8 different participants driving our full route
( 10 hrs of driving in total).

An appropriate number of messages were generated for the
length of each journey and were randomly distributed through
the duration of each driver’s route. To simulate real-world
scenarios, messages were injected at random locations on the
route, at rates depending on the type of message as follows:
Sat-Nav messages on average once per minute, Personal
messages (emails/social notifications) on average once every
two minutes, and High-importance messages on average every
half-hour. In real life, these frequencies can differ according
to each driver’s situation and notification preferences, but
overall this does not have a significant effect on our estimated
cognitive load results, as the same frequencies of messages
were used for all participants’ data.

The first evaluation metric was to check if our scheduling
approach affects the maximum cognitive load on the driver.
The peak cognitive load can be the point of driving where an
accident is highly likely to occur, especially due to unforeseen
circumstances. At this time the driver’s attention is already
significantly occupied.

Participant Max CL (baseline) Max CL w/ scheduling
P1 12.0 9.0
P2 12.0 8.8
P3 13.0 8.8
P4 9.3 8.0
P5 10.2 8.9
P6 15.2 8.4
P7 11.9 8.9
P8 9.8 8.4

TABLE I: Comparing the estimated maximum cognitive load
for each participant with and without our system. Our schedul-
ing approach significantly decreases the maximum value of the
estimated cognitive load (p < 0.005).

In our analysis, we calculated the total estimated cognitive
load (baseline estimated cognitive load from CAN-bus data
plus additional cognitive load due to simulated notifications)
at each point in the route. We then compared the peak values
of estimated cognitive load with and without our scheduling
approach for each of the eight participants. As shown in Table
I, our scheduling approach significantly decreases the peak
value for all of the eight participants’ data. Performing a paired
sample t-test demonstrated that the estimated cognitive load
peaks were significantly lower when our scheduling approach
was used (p < 0.005). This shows that using our scheduling
approach, the worst case events of high peaks of CL can have
less negative effect, as they will be associated with lower
values of CL.

As a second evaluation metric, we wanted to consider our
system’s effect in reducing other high values of the driver’s
cognitive load: how much of the journey involved CL peaks
exceeding certain thresholds? We defined the thresholds to
be multiples of standard deviations above the mean. Table
II shows the percentage of the journey spent above these
thresholds for each of the eight participants’ data, comparing



Percentage of the drive above different thresholds
Parti- 1xSD 1xSD 2xSD 2xSD 3xSD 3xSD
cipant w/out with w/out with w/out with

P1 16.32 16.79 0.89 0.40 0.21 0.0
P2 11.78 12.88 1.04 0.50 0.26 0.0
P3 12.78 13.90 1.00 0.68 0.45 0.0
P4 14.25 14.54 0.54 0.29 0.0 0.0
P5 15.41 16.53 0.80 0.53 0.05 0.0
P6 15.83 16.36 0.89 0.56 0.37 0.0
P7 10.88 11.42 0.59 0.54 0.28 0.0
P8 12.76 13.92 0.80 0.47 0.01 0.0

TABLE II: Comparing the percentage of the total route
where the driver’s estimated cognitive load exceeds different
thresholds (as multiples of Standard Deviations (SD) above
the mean). Note that our scheduling framework reduces the
amount of time spent with a load greater than 2SD and 3SD
above the mean.

between the two scenarios: with and without our scheduling
system.

The comparison shows that the amount of time spent with
a load greater than 2 or 3 standard deviations above the mean
is reduced by our scheduler. The time spent above 1 S.D. is
slightly increased, but this is expected since the load removed
from the higher peaks is redistributed, in part, to these less-
stressful times.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an intelligent scheduling
system for in-car notifications which aims to reduce the overall
cognitive load experienced by drivers from in-vehicle systems.
We described the two components of our system, namely:
message classification using priority queues, and cognitive
load estimation. We evaluated our approach using CAN-
bus data collected from a dataset of real-world recordings.
We demonstrated that our scheduling approach significantly
reduces the peak cognitive load experienced by the driver and
the frequency with which high loads occur. Thus, our system
smooths out the cognitive load on the driver by presenting less
urgent messages at a time when the driver is not occupied with
difficult driving situations.

Future work includes comparing our system’s rescheduling
of messages to the timing that human passengers would use
based on their judgment of the driver’s cognitive load. We
also plan to incorporate additional modalities for cognitive
load estimation, such as gaze and head pose. Finally, the
scheduling could also be made dependent on external sources
such as the proximity of other vehicles, and events likely
to be encountered in the future, such as approaching traffic
congestion or upcoming navigation directions.
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