Lecture 11

Theory of Combinators

- Combinators are an alternative theory of functions to the λ -calculus
- Originally introduced by logicians as a way of studying the process of substitution
- More recently, Turner has argued that combinators provide a good 'machine code' into which functional programs can be compiled
- Several experimental computers have been built based on Turner's ideas
- Combinators also provide a good intermediate code for conventional machines
 - several of the best compilers for functional languages are based on them

Formulations of theory of combinators

- Two equivalent ways of formulating the theory of combinators:
 - (i) within the λ -calculus, or
 - (ii) as a completely separate theory.
 - approach (i) taken here
 - approach (ii) was the original one
- It will be shown that any λ -expression is equal to an expression built from variables and two particular expressions, K and S, using only function application
- This is done by mimicking λ -abstractions using combinations of K and S
- β -reductions can be simulated by simpler operations involving K and S
 - it is these simpler operations that combinator machines implement directly in hardware

S and K

• The definitions of K and S are: LET $K = \lambda x \ y \ x$

LET
$$S = \lambda f g x$$
. $(f x) (g x)$

- By β -reduction, for all E_1 , E_2 and E_3 : K E_1 $E_2 = E_1$
 - $S E_1 E_2 E_3 = (E_1 E_3) (E_2 E_3)$

Combinators

- Any expression built by application (i.e. combination) from K and S is called a *combinator*
 - K and S are the primitive combinators
- Combinators have the following syntax:
 <combinator> ::= K | S | (<combinator> <combinator>)
- A combinatory expression is an expression built from K, S and zero or more variables
 - a combinator is a combinatory expression not containing variables
- Syntax of combinatory expressions:

```
<combinatory expression>

::= K | S

| <variable>

| (<combinatory expression> <combinatory expression>)
```

The identity combinator I

- The identity function I is often taken as a primitive combinator, but this is not necessary as it can be defined from K and S
- Define I by:

LET I = $\lambda x. x$

- Then I = S K K
 - exercise!

Combinator reduction

- If E and E' are combinatory expressions then $E \xrightarrow{c} E'$ means:
 - $E \equiv E'$
 - or E' can be got from E by a sequence of rewritings of the form:

(i) K
$$E_1 E_2 \xrightarrow[]{c} E_1$$

(ii) S $E_1 E_2 E_3 \xrightarrow[]{c} (E_1 E_3) (E_2 E_3)$
(iii) I $E \xrightarrow[]{c} E$

• Example: for any E

- thus (iii) is derivable from (i) and (ii)
- Any sequence of combinatory reductions can be expanded into a sequence of β -conversions
 - K $E_1 \ E_2 \longrightarrow E_1$
 - S $E_1 E_2 E_3 \longrightarrow (E_1 E_3) (E_2 E_3)$

Functional completeness

- Every λ -expression is equal to some combinatory expression
 - called the functional completeness of combinators
 - basis for compilers for functional languages to the machine code of combinator machines
- Key idea:
 - for variable V and combinatory expression E a combinatory expression λ^*V . E will be defined
 - $\lambda^* V$. E uses K and S to simulate adding ' λV ' to an expression
 - $\lambda^* V$. $E = \lambda V$. E

Bracket abstraction $\lambda^* V$. E

• If V a variable and E a combinatory expression, then λ^*V . E is defined inductively on the structure of E as follows:

(i)
$$\lambda^* V$$
. $V = I$

(ii)
$$\lambda^* V$$
. $V' = K V'$ (if $V \neq V'$)

- (iii) $\lambda^* V$. C = K C (if C is a combinator)
- (iv) $\lambda^* V$. $(E_1 \ E_2) = S \ (\lambda^* V . \ E_1) \ (\lambda^* V . \ E_2)$
- Note that $\lambda^* V$. E is a combinatory expression not containing V
- Example: if f and x are variables and $f \neq x$, then:

$$egin{array}{lll} \lambda^*x. & f \ x = {\tt S} \ (\lambda^*x. \ f) \ (\lambda^*x. \ x) \ &= {\tt S} \ ({\tt K} \ f) \ {\tt I} \end{array}$$

Proof of functional completeness

- THEOREM:
 - $(\lambda^* V. E) = \lambda V. E$
- PROOF:
 - show $(\lambda^* V. E) V = E$
 - follows immediately that λV . $(\lambda^* V. E) V = \lambda V.E$
 - and hence by η -reduction that $\lambda^* V$. $E = \lambda V$. E

Proof that $(\lambda^* V. E) V = E$

Mathematical induction on the 'size' of E:
(i) if E = V then:

$$(\lambda^* V. \ E) \ V \ = \ {\tt I} \ V \ = \ (\lambda x. \ x) \ V \ = \ V \ = \ E$$

(ii) if E = V' where $V' \neq V$ then:

$$(\lambda^* V. E) V = K V' V = (\lambda x y. x) V' V = V' = E$$

(iii) if E = C where C is a combinator, then:

 $(\lambda^*V\!.\ E)\ V\ =\ {\rm K}\ C\ =\ (\lambda x\ y.\ x)\ C\ V\ =\ C\ =\ E$

(iv) if $E = (E_1 \ E_2)$ then we can assume by induction that:

$$(\lambda^* V. E_1) V = E_1$$
$$(\lambda^* V. E_2) V = E_2$$

and hence

$$\begin{aligned} (\lambda^*V. \ E) \ V &= (\lambda^*V. \ (E_1 \ E_2)) \ V \\ &= (\mathbb{S} \ (\lambda^*V. \ E_1) \ (\lambda^*V. \ E_2)) \ V \\ &= (\lambda f \ g \ x. \ f \ x \ (g \ x)) \ (\lambda^*V. \ E_1) \ (\lambda^*V. \ E_2) \ V \\ &= (\lambda^*V. \ E_1) \ V \ ((\lambda^*V. \ E_2) \ V) \\ &= E_1 \ E_2 \quad \text{(by induction assumption)} \\ &= E \end{aligned}$$

Translation to combinators

• The notation

$$\lambda^* V_1 \ V_2 \ \cdots \ V_n. \ E$$

is used to mean

$$\lambda^* V_1. \ \lambda^* V_2. \ \cdots \ \lambda^* V_n. \ E$$

• Define the translation of λ -expression E to a combinatory expression $(E)_{C}$:

(i)
$$(V)_{\mathsf{C}} = V$$

- (ii) $(E_1 \ E_2)_{C} = (E_1)_{C} \ (E_2)_{C}$
- (iii) $(\lambda V. E)_{C} = \lambda^* V. (E)_{C}$

 $E = (E)_{\mathsf{C}}$

• THEOREM:

• for every λ -expression E we have: $E = (E)_{C}$

• **PROOF:** induction on the size of E

- (i) If E = V then $(E)_{c} = (V)_{c} = V$
- (ii) If $E = (E_1 \ E_2)$ we can assume by induction that

$$E_1 = (E_1)_{\mathsf{C}}$$
$$E_2 = (E_2)_{\mathsf{C}}$$

hence

$$(E)_{\mathsf{C}} = (E_1 \ E_2)_{\mathsf{C}} = (E_1)_{\mathsf{C}} (E_2)_{\mathsf{C}} = E_1 \ E_2 = E_1$$

(iii) If $E = \lambda V$. E' then we can assume by induction that

 $(E')_{\rm C} = E'$

hence

$$\begin{array}{ll} (E)_{\texttt{C}} &= (\lambda V. \ E')_{\texttt{C}} \\ &= \lambda^* V. \ (E')_{\texttt{C}} \\ &= \lambda^* V. \ E' \\ &= \lambda V. \ E' \\ &= E \end{array} \quad (by \ \text{induction assumption}) \\ &= E \end{array}$$

Consequences of last theorem

- Every λ -expression is equal to a λ -expression built up from K and S and variables by application
 - the class of λ -expressions E defined by:

 $E ::= V \mid \mathbf{K} \mid \mathbf{S} \mid E_1 E_2$

is equivalent to the full λ -calculus

- A collection of n combinators C_1, \ldots, C_n is called an n-element basis
 - if every λ -expression E is equal to an expression built from C_i s and variables by function applications
 - theorem above shows K and S form a 2-element basis
- There exists a 1-element basis!

Exercise

Find a combinator, X say, such that any λ -expression is equal to an expression built from X and variables by application. Hint: Let $\langle E_1, E_2, E_3 \rangle = \lambda p. p E_1 E_2 E_3$ and consider $\langle K, S, K \rangle \langle K, S, K \rangle \langle K, S, K \rangle$ and $\langle K, S, K \rangle \langle \langle K, S, K \rangle \langle K, S, K \rangle \rangle$ • Part of Y:

$$\begin{split} \lambda^* f. \ \lambda^* x. \ f \ (x \ x) \\ &= \lambda^* f. \ (\lambda^* x. \ f \ (x \ x)) \\ &= \lambda^* f. \ (\mathbb{S} \ (\lambda^* x. \ f) \ (\lambda^* x. \ x \ x)) \\ &= \lambda^* f. \ (\mathbb{S} \ (\mathbb{K} f) \ (\mathbb{S}(\lambda^* x. \ x) \ (\lambda^* x. \ x))) \\ &= \lambda^* f. \ (\mathbb{S} \ (\mathbb{K} f) \ (\mathbb{S} \ \mathbb{I} \ \mathbb{I})) \\ &= \mathbb{S} \ (\lambda^* f. \ \mathbb{S} \ (\mathbb{K} f)) \ (\lambda^* f. \ \mathbb{S} \ \mathbb{I} \ \mathbb{I}) \\ &= \mathbb{S} \ (\mathbb{S} \ (\lambda^* f. \ \mathbb{S}) \ (\lambda^* f. \ \mathbb{K} \ f)) \ (\mathbb{K} \ (\mathbb{S} \ \mathbb{I} \ \mathbb{I})) \\ &= \mathbb{S} \ (\mathbb{S} \ (\mathbb{K} \ \mathbb{S}) \ (\mathbb{S} \ (\lambda^* f. \ \mathbb{K}) \ (\lambda^* f. \ f))) \ (\mathbb{K} \ (\mathbb{S} \ \mathbb{I} \ \mathbb{I})) \\ &= \mathbb{S} \ (\mathbb{S} \ (\mathbb{K} \ \mathbb{S}) \ (\mathbb{S} \ (\mathbb{K} \ \mathbb{K}) \ \mathbb{I})) \ (\mathbb{K} \ (\mathbb{S} \ \mathbb{I} \ \mathbb{I})) \end{split}$$

• Y:

$$\begin{split} (\mathbf{Y})_{\mathbf{C}} &= (\lambda f. \ (\lambda x. \ f(x \ x)) \ (\lambda x. \ f(x \ x)))_{\mathbf{C}} \\ &= \lambda^* f. \ ((\lambda x. \ f(x \ x)) \ (\lambda x. \ f(x \ x)))_{\mathbf{C}} \\ &= \lambda^* f. \ ((\lambda x. \ f(x \ x))_{\mathbf{C}} \ (\lambda x. \ f(x \ x))_{\mathbf{C}}) \\ &= \lambda^* f. \ (\lambda^* x. \ (f(x \ x))_{\mathbf{C}}) \ (\lambda^* x. \ (f(x \ x))_{\mathbf{C}}) \\ &= \lambda^* f. \ (\lambda^* x. \ f(x \ x)) \ (\lambda^* x. \ f(x \ x)) \\ &= \mathbf{S} \ (\lambda^* f. \ \lambda^* x. \ f(x \ x)) \ (\lambda^* f. \ \lambda^* x. \ f(x \ x)) \\ &= \mathbf{S}(\mathbf{S}(\mathbf{S}(\mathbf{KS})(\mathbf{S}(\mathbf{KK})\mathbf{I}))(\mathbf{K}(\mathbf{S}\mathbf{II})))(\mathbf{S}(\mathbf{S}(\mathbf{KK})\mathbf{I}))(\mathbf{K}(\mathbf{S}\mathbf{II}))) \end{split}$$

Reduction machines

- Represent combinatory expressions by trees
- Example: S(f x) (K y) z represented by:

- Such trees are represented as pointer structures in memory
 - special hardware or firmware can then be implemented to transform such trees according to the rules of combinator reduction defining \xrightarrow{c}

Examples of tree reduction

• Implements: S $E_1 \ E_2 \ E_3 \xrightarrow{\ } (E_1 \ E_3) \ (E_2 \ E_3)$

Graph reduction

- Tree transformation for S just given duplicates a subtree
 - wastes space
 - a better transformation would be to generate one subtree with two pointers to it:

• Generates a *graph* rather than a tree

Using combinators for evaluation

- Valid way of reducing λ -expressions is:
 - (i) translating to combinators
 - i.e. $E \mapsto (E)_{C}$
 - (ii) applying the rewrites

until no more rewriting is possible

- If $E_1 \longrightarrow E_2$ in the λ -calculus
 - then not necessarily $(E_1)_{\mathsf{C}} \xrightarrow[]{} (E_2)_{\mathsf{C}}$
 - for example, take

$$E_1 = \lambda y. \ (\lambda z. \ y) \ (x \ y)$$
 $E_2 = \lambda y. \ y$

Combinatory normal form

- A combinatory expression is in *combinatory nor*mal form if it contains no subexpressions of the form K E_1 E_2 or S E_1 E_2 E_3
- Normalization theorem holds for combinatory expressions
 - i.e. always reducing the leftmost combinatory redex will find a combinatory normal form if it exists
- If E is in combinatory normal form, then it does not necessarily follow that it is a λ-expression in normal form
 - S K is in combinatory normal form, but it contains a β -redex, namely:

 $(\lambda f. \ (\lambda g \ x. \ (f \ x \ (g \ x))) \ (\lambda x \ y. \ x))$

Improving translation to combinators

- Simple λ -expressions can translate to complex combinatory expressions
- To make the 'code' executed by reduction machines more compact, various optimizations have been devised
- Let E be a combinatory expression and x a variable not occurring in E
 - then:

S (K E) **I**
$$x \xrightarrow{c}$$
 (K E x) (**I** x) \xrightarrow{c} E x

- hence S (KE) I x = E x (because $E_1 \xrightarrow[]{c} E_2$ implies $E_1 \longrightarrow E_2$)
- so by extensionality:

$$\mathbf{S} \ (\mathbf{K} \ E) \ \mathbf{I} = E$$

- Whenever S (K E) I is generated
 - it can be 'peephole optimized' to just E

Another optimisation

- Let E_1 , E_2 be combinatory expressions and x a variable not occurring in either of them
 - then:

 $\mathbf{S} \ (\mathbf{K} \ E_1) \ (\mathbf{K} \ E_2) \ x \xrightarrow[]{\mathbf{c}} \mathbf{K} \ E_1 \ x \ (\mathbf{K} \ E_2) \ x \xrightarrow[]{\mathbf{c}} E_1 \ E_2$

• thus

 ${f S}$ (K E_1) (K E_2) x = E_1 E_2

• now

 $K (E_1 \ E_2) \ x \longrightarrow E_1 \ E_2$

• hence K $(E_1 \ E_2) \ x = E_1 \ E_2$

• thus

 $\mathbf{S} \hspace{0.1 cm} (\mathbf{K} \hspace{0.1 cm} E_{1}) \hspace{0.1 cm} (\mathbf{K} \hspace{0.1 cm} E_{2}) \hspace{0.1 cm} x \hspace{0.1 cm} = \hspace{0.1 cm} E_{1} \hspace{0.1 cm} E_{2} \hspace{0.1 cm} = \hspace{0.1 cm} \mathbf{K} \hspace{0.1 cm} (E_{1} \hspace{0.1 cm} E_{2}) \hspace{0.1 cm} x$

• it follows by extensionality that:

$$\mathbf{S}$$
 (K E_1) (K E_2) = K $(E_1 \ E_2)$

- Whenever S (K E_1) (K E_2) is generated
 - it can be optimized to K $(E_1 \ E_2)$

Example optimisation

• Example: showed earlier that: $\lambda^* f. \ \lambda^* x. \ f(x \ x) = S \ (S \ (K \ S) \ (S \ (K \ K) \ I)) \ (K \ (S \ I \ I))$

• Using the optimization

$$\mathbf{S} \ (\mathbf{K} \ E) \ \mathbf{I} = E$$

• This simplifies to:

 $\lambda^*f. \ \lambda^*x. \ f(x \ x) = \mathbf{S} \ (\mathbf{S} \ (\mathbf{K} \ \mathbf{S}) \ \mathbf{K}) \ (\mathbf{K} \ (\mathbf{S} \ \mathbf{I} \ \mathbf{I}))$

More combinators

- Easy to recognize applicability of optimization S (K E) I = E if I has not been expanded to S K K
 - i.e. if I is taken as a primitive combinator
- Other combinators similarly useful
- Define B and C by:

LET $\mathbf{B} = \lambda f \ g \ x. \ f \ (g \ x)$

LET $C = \lambda f g x. f x g$

• These have the following reduction rules:

• It follows that:

$$S (K E_1) E_2 = B E_1 E_2$$

 $S E_1 (K E_2) = C E_1 E_2$

 $(E_1, E_2 \text{ are any two combinatory expressions})$

Curry's algorithm

- Combining the various optimizations yields Curry's algorithm for translating λ -expressions to combinatory expressions
- Use the definition of $(E)_{C}$
- Whenever an expression of the form S $E_1 E_2$ is generated, try to apply the following rewrite rules:

1. S (K
$$E_1$$
) (K E_2) \longrightarrow K ($E_1 \ E_2$)
2. S (K E) I $\longrightarrow E$
3. S (K E_1) $E_2 \longrightarrow$ B $E_1 \ E_2$
4. S E_1 (K E_2) \longrightarrow C $E_1 \ E_2$

- Always use earliest applicable rule
- S (K E_1) (K E_2) is translated to K $(E_1 \ E_2)$
- Y is translated to S(C B(S I I))(C B(S I I))