Lecture 11

Theory of Combinators

e Combinators are an alternative theory of func-
tions to the A-calculus

e Originally introduced by logicians as a way of
studying the process of substitution

e More recently, Turner has argued that com-
binators provide a good ‘machine code’ into
which functional programs can be compiled

e Several experimental computers have been
built based on Turner’s ideas

e Combinators also provide a good intermediate
code for conventional machines

e several of the best compilers for functional languages
are based on them

Formulations of theory of combinators

e Two equivalent ways of formulating the theory
of combinators:

(i) within the A-calculus, or

(ii) as a completely separate theory.

e approach (i) taken here

e approach (ii) was the original one

e It will be shown that any A-expression is equal
to an expression built from variables and two
particular expressions, K and S, using only func-
tion application

e This is done by mimicking A-abstractions using
combinations of K and S

e (-reductions can be simulated by simpler oper-
ations involving K and S

e it is these simpler operations that combinator ma-
chines implement directly in hardware

S and K

® The definitions of K and S are:
LETK=Ar y. x

LETS=MAfgz (f z) (g x)
e By (-reduction, for all £, Fy and Ejs:
K By By =FE;

S Ey By Es = (E, E3) (E, E)

Combinators

e Any expression built by application (i.e. com-
bination) from K and S is called a combinator

e K and S are the primitive combinators

e Combinators have the following syntax:

<combinator> := K | S | (<combinator> <combinator>)

e A combinatory expression is an expression built
from K, S and zero or more variables

e a combinator is a combinatory expression not con-
taining variables

e Syntax of combinatory expressions:

<combinatory expression>
=K | S
| <variable>
| (<combinatory expression> <combinatory expression>)

The identity combinator I

The identity function I is often taken as a prim-
itive combinator, but this is not necessary as it
can be defined from K and S

Define I by:

LET I AT, T

Then I =S KK

e exercise!

Combinator reduction

e If £ and E' are combinatory expressions then
E — E'" means:

) EEE’

e or [can be got from £ by a sequence of rewritings
of the form:

(i) K E1 E2 —C) E1
(ii) S F, Es E3 —C> (E1 Eg) <E2 Eg)
(i) T B — E

e Example: for any £

SKKE—KE (K E) by (ii)
— E by (i)

e thus (iii) is derivable from (i) and (ii)

e Any sequence of combinatory reductions can be
expanded into a sequence of S-conversions

e K B, Esy — E;

e S F| Ey E3 — (E1 Eg) (EQ Eg)

Functional completeness

e Every M-expression is equal to some combina-
tory expression

e called the functional completeness of combinators

e basis for compilers for functional languages to the
machine code of combinator machines

e Key idea:

e for variable V' and combinatory expression £ a com-
binatory expression *V. E will be defined

e \'V. F uses K and S to simulate adding ‘AV’ to an
expression

e M'V.E = ANV. E

Bracket abstraction *V. E

e If V a variable and £ a combinatory expres-
sion, then *V. E is defined inductively on the
structure of £ as follows:

(i) V. V=1

i) V. V=K V' (if V #V')
(iii) *V. ¢ =KX ¢ (if C' is a combinator)
(iv) X*V. (Ey Ey) =S (V. Ey) (A*V. Ey)

e Note that *V. I/ is a combinatory expression
not containing V

e Example: if f and x are variables and f # z,
then:

Nx., foz=8 Nzx. f) (Nzx. x)
=S (K f)I

Proof of functional completeness

e THEOREM:

e« MV.E)=)\V. E

e PROOF:
e show (\'V. E) V =F
o follows immediately that A\V. (*V. E) V = AV.E

e and hence by n-reduction that *V. = \V. E

Proof that (*V. E) V = FE

e Mathematical induction on the ‘size’ of E:
(i) if £ =V then:
ANV.E)YV =1V = M. 2)V =V = F
(ii) if £ =V’ where V' # V then:
AMV.E)V =KV'V = Qey. o) V'V =V = F
(iii) if £ = C where C' is a combinator, then:

AMV.E)V =KC = Ay x2)CV =C = F

(iv) if £ = (F, E;) then we can assume by induc-
tion that:

(AMV. E)V =F
(A*V. Ey) V = Ey
and hence
(NV. E)V =NV, (B, By)) V
= (8 (A*V. Ey) (NV. Ey)) V
=ANfgzx. fx(gz) NV. Ey) (NV. Ey) V
= (AMV. E)) V (NV. Ey) V)
= F, F;, (by induction assumption)
=F

10

Translation to combinators

e The notation
NXViVy oo VO FE
is used to mean

NV AV s XV, B

e Define the translation of A-expression E to a
combinatory expression (F)¢:

(i) (V)e=V
(i) (B1 E2)c = (E1)c (Ea)c
(i) (\V. E)e = MV, (E)e

11

E=(E)c

e THEOREM:

e for every M-expression F we have: F = (F)q

e PROOF: induction on the size of £
(i) If E=V then (E)¢= (V)c=V

(ii) If £ = (F, E,;) we can assume by induction

that
Fy = (E1)c

Ey = (Es)c
hence

(E)e = (Bl Ey)e = (Eh)e (By)e = EW By = E

(iii) If £ = AV. £’ then we can assume by induc-

tion that
(E)c = E'
hence
<E>C — ()\V E/)C
=NV, (E')¢ (by translation rules)
= *V. ' (by induction assumption)
= \V. £ (by previous theorem)

=F

12

Consequences of last theorem

e Every M-expression is equal to a A-expression
built up from K and S and variables by applica-
tion

e the class of M\-expressions I/ defined by:
E:V|K|S|E1E2

is equivalent to the full A-calculus

e A collection of n combinators C4, ... , (), is
called an n-element basis

e if every A-expression F is equal to an expression built
from C;s and variables by function applications

e theorem above shows K and S form a 2-element basis

® There exists a 1-element basis!

Exercise

Find a combinator, X say, such that any
A-expression is equal to an expression
built from X and variables by application.
Hint: Let <E1,E2,E3> —)\p D E1 E2 Eg
and consider (K, S,K) (K,S,K) (K,S,K) and
(K,S,K) ({(K,S,K) (K,S,K))

13

Examples

e Part of Y:

*
Y X)
SlnrnaL KX

*
SRS nna

~ %
KKK <nwnonon
Do | | | AV (A V|
~

N——

— N N T

14

Reduction machines

e Represent combinatory expressions by trees

e Example: S (f =) (K y) z represented by:

& ® O
O @

® Such trees are represented as pointer structures
in memory

e special hardware or firmware can then be imple-
mented to transform such trees according to the
rules of combinator reduction defining —

15

Examples of tree reduction

® The tree:

©
S ® @
O @

Could be transformed to:

© ©
O © ® O

Using the transformation:

o Implements: S By Es Eg — (El Eg) (EQ Eg)

Graph reduction

Tree transformation for S just given duplicates
a subtree

e wastes space

e a better transformation would be to generate one
subtree with two pointers to it:

Generates a graph rather than a tree

17

Using combinators for evaluation

e Valid way of reducing \-expressions is:
(i) translating to combinators
eie. B (E)o
(ii) applying the rewrites

K Fi1 Es — Eq
S El E2 Eg — (El Eg) <E2 Eg)

until no more rewriting is possible

e If F1 — E5 in the M-calculus

e then not necessarily (E))c — (E»)c

e for example, take

Ey=Xy. (Az. y) (z y)

=My, y

18

Combinatory normal form

e A combinatory expression is in combinatory nor-

mal form if it contains no subexpressions of the
form K El E2 or S E1 E2 Eg

e Normalization theorem holds for combinatory
expressions

e i.e. always reducing the leftmost combinatory redex
will find a combinatory normal form if it exists

e If F is in combinatory normal form, then it does
not necessarily follow that it is a A-expression
in normal form

e S K is in combinatory normal form, but it contains a
f-redex, namely:

(Af. (Ag z. (f = (9 %)) (A\z y. z)

19

Improving translation to combinators

e Simple M-expressions can translate to complex
combinatory expressions

e To make the ‘code’ executed by reduction ma-
chines more compact, various optimizations
have been devised

e Let E be a combinatory expression and z a vari-
able not occurring in £

e then:

SKE)Iz—KFEux) (Ir)—Fux

e hence S (KE) I z = F z (because Ly — F, implies
E1 — Eg)

e so by extensionality:

SKE)I=FE

¢ Whenever S (K F) I is generated

e it can be ‘peephole optimized’ to just £

20

Another optimisation

Let £, E5 be combinatory expressions and r a
variable not occurring in either of them

e then:

S(KEl) (KEQ)SL’—C>KE1$(KE2)$—C>E1 Es

thus

S (K El) (K EQ) r = E1 E2

e NOW
K (El EQ) x —C> E1 E2

hence K (El Eg) r = E1 E2

thus

S(KEl)(KE2)$ = E1E2 = K(ElEQ)CB

it follows by extensionality that:

S (K Fy) (K Ey) = K (B Es)

Whenever S (K Fy) (K E,) is generated

e it can be optimized to K (E; E»)

21

Example optimisation

e Example: showed earlier that:

Nf. Nz, f(za) =8 (S(KS) (S (KK I) (K(SITI))

e Using the optimization

SKE)I=E

e This simplifies to:
Nf. XNz, flx x) =S (S(KS)K) (K(STITI))

22

More combinators

e Easy to recognize applicability of optimization
S (K £) I = Fif T has not been expanded to S KK

e i.e. if T is taken as a primitive combinator
e Other combinators similarly useful

e Define B and C by:
LETB=Afgzx f (g

LETC=Afgz fxg

® These have the following reduction rules:

B E1 E2 Eg — E1 <E2 Eg)
CE1 E2 E3—6>E1 E3 E2

e It follows that:
S (K Ey) E; =B E; Es
S Fy (K E3)=C Ey Es

(Ey, E> are any two combinatory expressions)

23

Curry’s algorithm

e Combining the various optimizations yields
Curry’s algorithm for translating A-expressions to
combinatory expressions

e Use the definition of (F)c

® Whenever an expression of the form S E; Fs is
generated, try to apply the following rewrite
rules:

1.5 (K Ey) (K Ey) — K (E) Ey)
2.S(KE)I — FE

3.5 (K Ey) E; — B E, E,
4.8 B (K BE,) — C E, B,

e Always use earliest applicable rule
e S (K E}) (K Es) is translated to K (F; E»)

e Y is translated to S (CB(SII)) (CB(STITI))

24

