## Lecture 11

## Theory of Combinators

- Combinators are an alternative theory of functions to the $\lambda$-calculus
- Originally introduced by logicians as a way of studying the process of substitution
- More recently, Turner has argued that combinators provide a good 'machine code' into which functional programs can be compiled
- Several experimental computers have been built based on Turner's ideas
- Combinators also provide a good intermediate code for conventional machines
- several of the best compilers for functional languages are based on them


## Formulations of theory of combinators

- Two equivalent ways of formulating the theory of combinators:
(i) within the $\lambda$-calculus, or
(ii) as a completely separate theory.
- approach (i) taken here
- approach (ii) was the original one
- It will be shown that any $\lambda$-expression is equal to an expression built from variables and two particular expressions, $K$ and $S$, using only function application
- This is done by mimicking $\lambda$-abstractions using combinations of $K$ and $S$
- $\beta$-reductions can be simulated by simpler operations involving $K$ and $S$
- it is these simpler operations that combinator machines implement directly in hardware


## S and K

- The definitions of K and S are:

$$
\begin{aligned}
& \text { LET } \mathrm{K}=\lambda x y \cdot x \\
& \text { LET } \mathrm{S}=\lambda f g x \cdot(f x)(g x)
\end{aligned}
$$

- By $\beta$-reduction, for all $E_{1}, E_{2}$ and $E_{3}$ :

$$
\begin{aligned}
& \mathrm{K} E_{1} E_{2}=E_{1} \\
& \mathrm{~S} E_{1} E_{2} E_{3}=\left(\begin{array}{ll}
E_{1} & E_{3}
\end{array}\right)\left(\begin{array}{ll}
E_{2} & E_{3}
\end{array}\right)
\end{aligned}
$$

## Combinators

- Any expression built by application (i.e. combination) from K and S is called a combinator
- $K$ and $S$ are the primitive combinators
- Combinators have the following syntax: <combinator $>::=\mathrm{K}|\mathrm{S}|(<$ combinator $><$ combinator $>$ )
- A combinatory expression is an expression built from K, S and zero or more variables
- a combinator is a combinatory expression not containing variables
- Syntax of combinatory expressions:
<combinatory expression>
$::=\mathrm{K} \mid \mathrm{S}$
< variable>
(<combinatory expression> <combinatory expression>)


## The identity combinator I

- The identity function I is often taken as a primitive combinator, but this is not necessary as it can be defined from $K$ and $S$
- Define I by:

$$
\text { LET } \mathrm{I}=\lambda x \cdot x
$$

- Then I = S K K
- exercise!


## Combinator reduction

- If $E$ and $E^{\prime}$ are combinatory expressions then $E \longrightarrow E^{\prime}$ means:
- $E \equiv E^{\prime}$
- or $E^{\prime}$ can be got from $E$ by a sequence of rewritings of the form:
(i) K $E_{1} E_{2} \underset{\mathrm{c}}{\longrightarrow} E_{1}$
(ii) $\mathrm{S} E_{1} E_{2} E_{3} \longrightarrow\left(\begin{array}{lll}E_{1} & E_{3}\end{array}\right)\left(E_{2} E_{3}\right)$
(iii) I $E \xrightarrow[\mathrm{c}]{\longrightarrow} E$
- Example: for any $E$

$$
\begin{align*}
\mathrm{S} \mathrm{~K} \mathrm{~K} E & \underset{\mathrm{c}}{\longrightarrow} \mathrm{~K} E(\mathrm{~K} E)  \tag{ii}\\
& \tag{i}
\end{align*}
$$

- thus (iii) is derivable from (i) and (ii)
- Any sequence of combinatory reductions can be expanded into a sequence of $\beta$-conversions
- K $E_{1} E_{2} \longrightarrow E_{1}$
- $\mathrm{S} E_{1} E_{2} E_{3} \longrightarrow\left(E_{1} E_{3}\right)\left(E_{2} E_{3}\right)$


## Functional completeness

- Every $\lambda$-expression is equal to some combinatory expression
- called the functional completeness of combinators
- basis for compilers for functional languages to the machine code of combinator machines
- Key idea:
- for variable $V$ and combinatory expression $E$ a combinatory expression $\lambda^{*} V$. $E$ will be defined
- $\lambda^{*} V$. $E$ uses K and S to simulate adding ' $\lambda V$ ' to an expression
- $\lambda^{*} V . E=\lambda V . E$


## Bracket abstraction $\lambda^{*} V$. $E$

- If $V$ a variable and $E$ a combinatory expression, then $\lambda^{*} V$. $E$ is defined inductively on the structure of $E$ as follows:
(i) $\lambda^{*} V \cdot V=I$
(ii) $\lambda^{*} V \cdot V^{\prime}=\mathrm{K} V^{\prime} \quad\left(\right.$ if $\left.V \neq V^{\prime}\right)$
(iii) $\lambda^{*} V . C=\mathrm{K} C \quad$ (if $C$ is a combinator)
(iv) $\lambda^{*} V .\left(E_{1} E_{2}\right)=\mathrm{S}\left(\lambda^{*} V . E_{1}\right)\left(\lambda^{*} V . E_{2}\right)$
- Note that $\lambda^{*} V$. $E$ is a combinatory expression not containing $V$
- Example: if $f$ and $x$ are variables and $f \neq x$, then:

$$
\begin{aligned}
\lambda^{*} x . \quad f x & =\mathrm{S}\left(\lambda^{*} x . f\right)\left(\lambda^{*} x . x\right) \\
& =\mathrm{S}(\mathrm{~K} f) \mathrm{I}
\end{aligned}
$$

## Proof of functional completeness

- THEOREM:
- $\left(\lambda^{*} V . E\right)=\lambda V . E$
- PROOF:
- $\operatorname{show}\left(\lambda^{*} V . E\right) V=E$
- follows immediately that $\lambda V .\left(\lambda^{*} V . E\right) V=\lambda V . E$
- and hence by $\eta$-reduction that $\lambda^{*} V . E=\lambda V$. $E$

Proof that $\left(\lambda^{*} V . E\right) V=E$

- Mathematical induction on the 'size' of $E$ :
(i) if $E=V$ then:

$$
\left(\lambda^{*} V . E\right) V=\mathrm{I} V=(\lambda x \cdot x) V=V=E
$$

(ii) if $E=V^{\prime}$ where $V^{\prime} \neq V$ then:

$$
\left(\lambda^{*} V . E\right) V=\mathrm{K} V^{\prime} V=(\lambda x y . x) V^{\prime} V=V^{\prime}=E
$$

(iii) if $E=C$ where $C$ is a combinator, then:

$$
\left(\lambda^{*} V . E\right) V=\mathrm{K} C=(\lambda x y . x) C V=C=E
$$

(iv) if $E=\left(E_{1} E_{2}\right)$ then we can assume by induction that:

$$
\begin{aligned}
& \left(\lambda^{*} V . E_{1}\right) V=E_{1} \\
& \left(\lambda^{*} V . E_{2}\right) V=E_{2}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left(\lambda^{*} V . E\right) V & =\left(\lambda^{*} V .\left(E_{1} E_{2}\right)\right) V \\
& =\left(\mathrm{S}\left(\lambda^{*} V . E_{1}\right)\left(\lambda^{*} V . E_{2}\right)\right) V \\
& =(\lambda f g x \cdot f x(g x))\left(\lambda^{*} V . E_{1}\right)\left(\lambda^{*} V . E_{2}\right) V \\
& =\left(\lambda^{*} V . E_{1}\right) V\left(\left(\lambda^{*} V \cdot E_{2}\right) V\right) \\
& =E_{1} E_{2} \quad \text { (by induction assumption) } \\
& =E
\end{aligned}
$$

## Translation to combinators

- The notation

$$
\lambda^{*} V_{1} V_{2} \cdots V_{n} . E
$$

is used to mean

$$
\lambda^{*} V_{1} . \lambda^{*} V_{2} . \quad \cdots \quad \lambda^{*} V_{n} . E
$$

- Define the translation of $\lambda$-expression $E$ to a combinatory expression $(E)_{\mathrm{C}}$ :
(i) $(V)_{\mathrm{C}}=V$
(ii) $\left(E_{1} E_{2}\right)_{\mathrm{C}}=\left(E_{1}\right)_{\mathrm{C}}\left(E_{2}\right)_{\mathrm{C}}$
(iii) $(\lambda V \cdot E)_{\mathrm{C}}=\lambda^{*} V \cdot(E)_{\mathrm{C}}$

$$
E=(E)_{\mathrm{C}}
$$

## - THEOREM:

- for every $\lambda$-expression $E$ we have: $E=(E)_{\mathrm{c}}$
- PROOF: induction on the size of $E$
(i) If $E=V$ then $(E)_{\mathrm{C}}=(V)_{\mathrm{C}}=V$
(ii) If $E=\left(\begin{array}{ll}E_{1} & E_{2}\end{array}\right)$ we can assume by induction that

$$
\begin{aligned}
& E_{1}=\left(E_{1}\right)_{\mathrm{C}} \\
& E_{2}=\left(E_{2}\right)_{\mathrm{C}}
\end{aligned}
$$

hence
$(E)_{\mathrm{C}}=\left(E_{1} E_{2}\right)_{\mathrm{C}}=\left(E_{1}\right)_{\mathrm{C}}\left(E_{2}\right)_{\mathrm{C}}=E_{1} E_{2}=E$
(iii) If $E=\lambda V . E^{\prime}$ then we can assume by induction that

$$
\left(E^{\prime}\right)_{\mathrm{C}}=E^{\prime}
$$

hence

$$
\begin{array}{rlr}
(E)_{\mathrm{C}} & =\left(\lambda V \cdot E^{\prime}\right)_{\mathrm{C}} & \\
& =\lambda^{*} V \cdot\left(E^{\prime}\right)_{\mathrm{C}} \quad \text { (by translation rules) } \\
& =\lambda^{*} V \cdot E^{\prime} \quad \text { (by induction assumption) } \\
& =\lambda V \cdot E^{\prime} \quad & \text { (by previous theorem) } \\
& =E &
\end{array}
$$

## Consequences of last theorem

- Every $\lambda$-expression is equal to a $\lambda$-expression built up from $K$ and $S$ and variables by application
- the class of $\lambda$-expressions $E$ defined by:

$$
E::=V|\mathrm{~K}| \mathrm{S} \mid E_{1} E_{2}
$$

is equivalent to the full $\lambda$-calculus

- A collection of $n$ combinators $C_{1}, \ldots, C_{n}$ is called an $n$-element basis
- if every $\lambda$-expression $E$ is equal to an expression built from $C_{i} \mathrm{~s}$ and variables by function applications
- theorem above shows K and S form a 2-element basis
- There exists a 1-element basis!


## Exercise

Find a combinator, $X$ say, such that any $\lambda$-expression is equal to an expression built from $X$ and variables by application. Hint: Let $\left\langle E_{1}, E_{2}, E_{3}\right\rangle=\lambda p . \quad p \quad E_{1} \quad E_{2} \quad E_{3}$ and consider $\langle\mathrm{K}, \mathrm{S}, \mathrm{K}\rangle\langle\mathrm{K}, \mathrm{S}, \mathrm{K}\rangle\langle\mathrm{K}, \mathrm{S}, \mathrm{K}\rangle$ and $\langle K, S, K\rangle\langle\langle K, S, K\rangle\langle K, S, K\rangle\rangle$

## Examples

- Part of $Y$ :

$$
\begin{aligned}
& \lambda^{*} f . \lambda^{*} x . f(x x) \\
& =\lambda^{*} f .\left(\lambda^{*} x . f(x x)\right) \\
& =\lambda^{*} f .\left(\mathrm{S}\left(\lambda^{*} x . f\right)\left(\lambda^{*} x . x x\right)\right) \\
& =\lambda^{*} f .\left(\mathrm{S}(\mathrm{~K} f)\left(\mathrm{S}\left(\lambda^{*} x . x\right)\left(\lambda^{*} x . x\right)\right)\right) \\
& =\lambda^{*} f .(\mathrm{S}(\mathrm{~K} f)(\mathrm{S} \text { I I })) \\
& =\mathrm{S}\left(\lambda^{*} f . \mathrm{S}(\mathrm{~K} f)\right)\left(\lambda^{*} f . \mathrm{S} \text { I I }\right) \\
& =\mathrm{S}\left(\mathrm{~S}\left(\lambda^{*} f . \mathrm{S}\right)\left(\lambda^{*} f . \mathrm{K} f\right)\right)(\mathrm{K}(\mathrm{~S} \text { I I I) }) \\
& =\mathrm{S}\left(\mathrm{~S}(\mathrm{~K} \mathrm{~S})\left(\mathrm{S}\left(\lambda^{*} f . \mathrm{K}\right)\left(\lambda^{*} f . f\right)\right)\right)(\mathrm{K}(\mathrm{~S} \text { I I })) \\
& =\mathrm{S}(\mathrm{~S}(\mathrm{~K} \mathrm{~S})(\mathrm{S}(\mathrm{~K} \mathrm{~K}) \mathrm{I}))(\mathrm{K}(\mathrm{SI} \text { I }))
\end{aligned}
$$

- Y:

$$
\begin{aligned}
(\mathrm{Y})_{\mathrm{C}} & =(\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x)))_{\mathrm{C}} \\
& =\lambda^{*} f \cdot((\lambda x \cdot f(x x))(\lambda x \cdot f(x x)))_{\mathrm{C}} \\
& =\lambda^{*} f \cdot\left((\lambda x \cdot f(x x))_{\mathrm{C}}(\lambda x \cdot f(x x))_{\mathrm{C}}\right) \\
& =\lambda^{*} f \cdot\left(\lambda^{*} x \cdot(f(x x))_{\mathrm{C}}\right)\left(\lambda^{*} x \cdot(f(x x))_{\mathrm{C}}\right) \\
& =\lambda^{*} f \cdot\left(\lambda^{*} x \cdot f(x x)\right)\left(\lambda^{*} x \cdot f(x x)\right) \\
& =\mathrm{S}\left(\lambda^{*} f . \lambda^{*} x \cdot f(x x)\right)\left(\lambda^{*} f . \lambda^{*} x \cdot f(x x)\right) \\
& =\mathrm{S}(\mathrm{~S}(\mathrm{~S}(\mathrm{KS})(\mathrm{S}(\mathrm{KK}) \mathrm{I}))(\mathrm{K}(\mathrm{SII})))(\mathrm{S}(\mathrm{~S}(\mathrm{KS})(\mathrm{S}(\mathrm{KK}) \mathrm{I}))(\mathrm{K}(\mathrm{SII})))
\end{aligned}
$$

## Reduction machines

- Represent combinatory expressions by trees
- Example: $\mathrm{S}(f x)(\mathrm{K} y) z$ represented by:

- Such trees are represented as pointer structures in memory
- special hardware or firmware can then be implemented to transform such trees according to the rules of combinator reduction defining $\xrightarrow[c]{ }$


## Examples of tree reduction

- The tree:


Could be transformed to:


Using the transformation:


- Implements: $\mathrm{S} E_{1} E_{2} E_{3} \longrightarrow\left(E_{1} E_{3}\right)\left(E_{2} E_{3}\right)$


## Graph reduction

- Tree transformation for S just given duplicates a subtree
- wastes space
- a better transformation would be to generate one subtree with two pointers to it:

- Generates a graph rather than a tree


## Using combinators for evaluation

- Valid way of reducing $\lambda$-expressions is:
(i) translating to combinators
- i.e. $E \mapsto(E)_{\mathrm{c}}$
(ii) applying the rewrites

$$
\begin{aligned}
& \mathrm{K} E_{1} E_{2} \xrightarrow[\mathrm{c}]{ } E_{1} \\
& \mathrm{~S} E_{1} E_{2} \underset{E_{3}}{\longrightarrow}\left(E_{1} E_{3}\right)\left(E_{2} E_{3}\right)
\end{aligned}
$$

until no more rewriting is possible

- If $E_{1} \longrightarrow E_{2}$ in the $\lambda$-calculus
- then not necessarily $\left(E_{1}\right)_{\mathrm{c}} \underset{\mathrm{c}}{ }\left(E_{2}\right)_{\mathrm{c}}$
- for example, take

$$
\begin{aligned}
& E_{1}=\lambda y \cdot(\lambda z \cdot y)(x y) \\
& E_{2}=\lambda y \cdot y
\end{aligned}
$$

## Combinatory normal form

- A combinatory expression is in combinatory normal form if it contains no subexpressions of the form K $E_{1} E_{2}$ or $\mathrm{S} E_{1} E_{2} E_{3}$
- Normalization theorem holds for combinatory expressions
- i.e. always reducing the leftmost combinatory redex will find a combinatory normal form if it exists
- If $E$ is in combinatory normal form, then it does not necessarily follow that it is a $\lambda$-expression in normal form
- $S K$ is in combinatory normal form, but it contains a $\beta$-redex, namely:

$$
(\lambda f .(\lambda g x \cdot(f x(g x)))(\lambda x y \cdot x)
$$

## Improving translation to combinators

- Simple $\lambda$-expressions can translate to complex combinatory expressions
- To make the 'code' executed by reduction machines more compact, various optimizations have been devised
- Let $E$ be a combinatory expression and $x$ a variable not occurring in $E$
- then:

$$
\mathrm{S}(\mathrm{~K} E) \mathrm{I} x \underset{\mathrm{c}}{\longrightarrow}(\mathrm{~K} E x)(\mathrm{I} x) \underset{\mathrm{c}}{\longrightarrow} E x
$$

- hence $\mathrm{S}(\mathrm{K} E)$ I $x=E x$ (because $E_{1} \xrightarrow[c]{ } E_{2}$ implies $\left.E_{1} \longrightarrow E_{2}\right)$
- so by extensionality:

$$
\mathrm{S}(\mathrm{~K} E) \mathrm{I}=E
$$

- Whenever $\mathrm{S}(\mathrm{K} E$ ) I is generated
- it can be 'peephole optimized' to just $E$


## Another optimisation

- Let $E_{1}, E_{2}$ be combinatory expressions and $x$ a variable not occurring in either of them
- then:

$$
\mathrm{S}\left(\mathrm{~K} E_{1}\right)\left(\mathrm{K} E_{2}\right) x \underset{\mathrm{c}}{\longrightarrow} \mathrm{~K} E_{1} x\left(\mathrm{~K} E_{2}\right) x \underset{\mathrm{c}}{\longrightarrow} E_{1} E_{2}
$$

- thus

$$
\mathrm{S}\left(\mathrm{~K} E_{1}\right)\left(\mathrm{K} E_{2}\right) x=E_{1} E_{2}
$$

- now

$$
\mathrm{K}\left(E_{1} E_{2}\right) x \xrightarrow[\mathrm{c}]{\longrightarrow} E_{1} E_{2}
$$

- hence $\mathrm{K}\left(E_{1} E_{2}\right) x=E_{1} E_{2}$
- thus

$$
\mathrm{S}\left(\mathrm{~K} E_{1}\right)\left(\mathrm{K} E_{2}\right) x=E_{1} E_{2}=\mathrm{K}\left(E_{1} E_{2}\right) x
$$

- it follows by extensionality that:

$$
\mathrm{S}\left(\mathrm{~K} E_{1}\right)\left(\mathrm{K} E_{2}\right)=\mathrm{K}\left(E_{1} E_{2}\right)
$$

- Whenever $\mathrm{S}\left(\mathrm{K} E_{1}\right)\left(\mathrm{K} E_{2}\right)$ is generated
- it can be optimized to $\mathrm{K}\left(E_{1} E_{2}\right)$


## Example optimisation

- Example: showed earlier that:

$$
\lambda^{*} f . \lambda^{*} x . f(x x)=\mathrm{S}(\mathrm{~S}(\mathrm{~K} \mathrm{~S})(\mathrm{S}(\mathrm{~K} \text { K) I) })(\mathrm{K}(\mathrm{~S} \text { I I) })
$$

- Using the optimization

$$
\mathrm{S}(\mathrm{~K} E) \mathrm{I}=E
$$

- This simplifies to:

$$
\lambda^{*} f . \lambda^{*} x . f(x x)=\mathrm{S}(\mathrm{~S}(\mathrm{~K} \mathrm{~S}) \mathrm{K})(\mathrm{K}(\mathrm{~S} \operatorname{I} \mathrm{I}))
$$

## More combinators

- Easy to recognize applicability of optimization $\mathrm{S}(\mathrm{K} E) \mathrm{I}=E$ if I has not been expanded to S K K
- i.e. if I is taken as a primitive combinator
- Other combinators similarly useful
- Define B and C by:

$$
\begin{aligned}
& \text { LET } \mathrm{B}=\lambda f g x . f(g x) \\
& \text { LET } \mathrm{C}=\lambda f g x . f x g
\end{aligned}
$$

- These have the following reduction rules:

$$
\begin{aligned}
& \text { B } E_{1} E_{2} E_{3} \xrightarrow{c} E_{1}\left(E_{2} E_{3}\right) \\
& \text { C } E_{1} E_{2} E_{3} \xrightarrow[\mathrm{c}]{\longrightarrow} E_{1} E_{3} E_{2}
\end{aligned}
$$

- It follows that:

$$
\begin{aligned}
& \mathrm{S}\left(\mathrm{~K} E_{1}\right) E_{2}=\mathrm{B} \quad E_{1} E_{2} \\
& \mathrm{~S} E_{1}\left(\mathrm{~K} E_{2}\right)=\mathrm{C} \quad E_{1} E_{2}
\end{aligned}
$$

( $E_{1}, E_{2}$ are any two combinatory expressions)

## Curry's algorithm

- Combining the various optimizations yields Curry's algorithm for translating $\lambda$-expressions to combinatory expressions
- Use the definition of $(E)_{\mathrm{C}}$
- Whenever an expression of the form $\mathrm{S} E_{1} E_{2}$ is generated, try to apply the following rewrite rules:

1. S $\left(\mathrm{K} E_{1}\right)\left(\mathrm{K} E_{2}\right) \longrightarrow \mathrm{K}\left(E_{1} E_{2}\right)$
2. $\mathrm{S}(\mathrm{K} E) \mathrm{I} \longrightarrow E$
3. $\mathrm{S}\left(\mathrm{K} E_{1}\right) E_{2} \longrightarrow \mathrm{~B} E_{1} E_{2}$
4. $\mathrm{S} E_{1}\left(\mathrm{~K} E_{2}\right) \longrightarrow \mathrm{C} E_{1} E_{2}$

- Always use earliest applicable rule
- $\mathrm{S}\left(\mathrm{K} E_{1}\right)\left(\mathrm{K} E_{2}\right)$ is translated to $\mathrm{K}\left(E_{1} E_{2}\right)$
- Y is translated to S (C B (S I I)) (C B (S I I))

