
Lecture 11

0

Theory of Combinators
x Combinators are an alternative theory of func-tions to the �-calculusx Originally introduced by logicians as a way ofstudying the process of substitutionx More recently, Turner has argued that com-binators provide a good `machine code' intowhich functional programs can be compiledx Several experimental computers have beenbuilt based on Turner's ideasx Combinators also provide a good intermediatecode for conventional machinesu several of the best compilers for functional languagesare based on them

1

Formulations of theory of combinators
x Two equivalent ways of formulating the theoryof combinators:(i) within the �-calculus, or(ii) as a completely separate theory.u approach (i) taken hereu approach (ii) was the original onex It will be shown that any �-expression is equalto an expression built from variables and twoparticular expressions, K and S, using only func-tion applicationx This is done by mimicking �-abstractions usingcombinations of K and Sx �-reductions can be simulated by simpler oper-ations involving K and Su it is these simpler operations that combinator ma-chines implement directly in hardware

2

S and K
x The de�nitions of K and S are:LET K = �x y: xLET S = �f g x: (f x) (g x)
x By �-reduction, for all E1, E2 and E3:K E1 E2 = E1S E1 E2 E3 = (E1 E3) (E2 E3)

3

Combinators
x Any expression built by application (i.e. com-bination) from K and S is called a combinatoru K and S are the primitive combinatorsx Combinators have the following syntax:<combinator> ::= K j S j (<combinator> <combinator>)x A combinatory expression is an expression builtfrom K, S and zero or more variablesu a combinator is a combinatory expression not con-taining variablesx Syntax of combinatory expressions:<combinatory expression>::= K j Sj <variable>j (<combinatory expression> <combinatory expression>)

4

The identity combinator I
x The identity function I is often taken as a prim-itive combinator, but this is not necessary as itcan be de�ned from K and Sx De�ne I by: LET I = �x: x
x Then I = S K Ku exercise!

5

Combinator reduction
x If E and E 0 are combinatory expressions thenE �!c E 0 means:u E � E0u or E0 can be got from E by a sequence of rewritingsof the form:(i) K E1 E2 �!c E1(ii) S E1 E2 E3 �!c (E1 E3) (E2 E3)(iii) I E �!c E
x Example: for any ES K K E �!c K E (K E) by (ii)�!c E by (i)u thus (iii) is derivable from (i) and (ii)x Any sequence of combinatory reductions can beexpanded into a sequence of �-conversionsu K E1 E2 �! E1u S E1 E2 E3 �! (E1 E3) (E2 E3)

6

Functional completeness
x Every �-expression is equal to some combina-tory expressionu called the functional completeness of combinatorsu basis for compilers for functional languages to themachine code of combinator machinesx Key idea:u for variable V and combinatory expression E a com-binatory expression ��V: E will be de�nedu ��V: E uses K and S to simulate adding `�V ' to anexpressionu ��V: E = �V: E

7

Bracket abstraction ��V: E
x If V a variable and E a combinatory expres-sion, then ��V: E is de�ned inductively on thestructure of E as follows:(i) ��V: V = I(ii) ��V: V 0 = K V 0 (if V 6= V 0)(iii) ��V: C = K C (if C is a combinator)(iv) ��V: (E1 E2) = S (��V: E1) (��V: E2)x Note that ��V: E is a combinatory expressionnot containing Vx Example: if f and x are variables and f 6= x,then: ��x: f x = S (��x: f) (��x: x)= S (K f) I

8

Proof of functional completeness
x THEOREM:u (��V: E) = �V: Ex PROOF:u show (��V: E) V = Eu follows immediately that �V: (��V: E) V = �V:Eu and hence by �-reduction that ��V: E = �V: E

9

Proof that (��V: E) V = E
x Mathematical induction on the `size' of E:(i) if E = V then:(��V: E) V = I V = (�x: x) V = V = E(ii) if E = V 0 where V 0 6= V then:(��V: E) V = K V 0 V = (�x y: x) V 0 V = V 0 = E(iii) if E = C where C is a combinator, then:(��V: E) V = K C = (�x y: x) C V = C = E(iv) if E = (E1 E2) then we can assume by induc-tion that: (��V: E1) V = E1(��V: E2) V = E2and hence(��V: E) V = (��V: (E1 E2)) V= (S (��V: E1) (��V: E2)) V= (�f g x: f x (g x)) (��V: E1) (��V: E2) V= (��V: E1) V ((��V: E2) V)= E1 E2 (by induction assumption)= E

10

Translation to combinators
x The notation ��V1 V2 � � � Vn: Eis used to mean��V1: ��V2: � � � ��Vn: Ex De�ne the translation of �-expression E to acombinatory expression (E)C:(i) (V)C = V(ii) (E1 E2)C = (E1)C (E2)C(iii) (�V: E)C = ��V: (E)C

11

E = (E)C
x THEOREM:u for every �-expression E we have: E = (E)Cx PROOF: induction on the size of E(i) If E = V then (E)C = (V)C = V(ii) If E = (E1 E2) we can assume by inductionthat E1 = (E1)CE2 = (E2)Chence(E)C = (E1 E2)C = (E1)C (E2)C = E1 E2 = E(iii) If E = �V: E 0 then we can assume by induc-tion that (E 0)C = E 0hence(E)C = (�V: E 0)C= ��V: (E 0)C (by translation rules)= ��V: E 0 (by induction assumption)= �V: E 0 (by previous theorem)= E

12

Consequences of last theorem
x Every �-expression is equal to a �-expressionbuilt up from K and S and variables by applica-tionu the class of �-expressions E de�ned by:E ::= V j K j S j E1 E2is equivalent to the full �-calculusx A collection of n combinators C1, : : : , Cn iscalled an n-element basisu if every �-expression E is equal to an expression builtfrom Cis and variables by function applicationsu theorem above shows K and S form a 2-element basisx There exists a 1-element basis!ExerciseFind a combinator, X say, such that any�-expression is equal to an expressionbuilt from X and variables by application.Hint: Let hE1; E2; E3i = �p: p E1 E2 E3and consider hK; S; Ki hK; S; Ki hK; S; Ki andhK; S; Ki hhK; S; Ki hK; S; Kii

13

Examples
x Part of Y:��f: ��x: f (x x)= ��f: (��x: f (x x))= ��f: (S (��x: f) (��x: x x))= ��f: (S (Kf) (S(��x: x) (��x: x)))= ��f: (S (Kf) (S I I))= S (��f: S (Kf)) (��f: S I I)= S (S (��f: S) (��f: K f)) (K (S I I))= S (S (K S) (S (��f: K) (��f: f))) (K (S I I))= S (S (K S) (S (K K) I)) (K (S I I))
x Y:(Y)C = (�f: (�x: f(x x)) (�x: f(x x)))C= ��f: ((�x: f(x x)) (�x: f(x x)))C= ��f: ((�x: f(x x))C (�x: f(x x))C)= ��f: (��x: (f(x x))C) (��x: (f(x x))C)= ��f: (��x: f(x x)) (��x: f(x x))= S (��f: ��x: f(x x)) (��f: ��x: f(x x))= S(S(S(KS)(S(KK)I))(K(SII)))(S(S(KS)(S(KK)I))(K(SII)))

14

Reduction machines
x Represent combinatory expressions by treesx Example: S (f x) (K y) z represented by:

���� AAAA���� AAAA ���� AAAA���� @@@@���
� AAAA

mf mxmS mK my
mz

�� �� �

x Such trees are represented as pointer structuresin memoryu special hardware or �rmware can then be imple-mented to transform such trees according to therules of combinator reduction de�ning �!c

15

Examples of tree reduction
x The tree:

���� AAAA���� AAAA ���� AAAA���� @@@@���
� AAAA

mf mxmS mK my
mz

�� �� �

Could be transformed to:
���� AAAA ���� AAAA���� AAAA ���� AAAA���� @@@@
mf mx mK mymz mz� �� ��

Using the transformation:
���� AAAA���

� AAAA���
� AAAA ���� AAAA ���� AAAA���� @@@@

mS ��SS1 ��SS2
��SS3 ��SS1 ��SS3 ��SS2 ��SS3� � � � ��-

x Implements: S E1 E2 E3 �!c (E1 E3) (E2 E3)
16

Graph reduction
x Tree transformation for S just given duplicatesa subtreeu wastes spaceu a better transformation would be to generate onesubtree with two pointers to it:

���� AAAA���
� AAAA���

� AAAA ���� �������� @@@@" !�mS ��SS1 ��SS2
��SS3

��SS3��SS1 ��SS2� � � � ��-
x Generates a graph rather than a tree

17

Using combinators for evaluation
x Valid way of reducing �-expressions is:(i) translating to combinators� i.e. E 7! (E)C(ii) applying the rewritesK E1 E2 �!c E1S E1 E2 E3 �!c (E1 E3) (E2 E3)until no more rewriting is possiblex If E1 �! E2 in the �-calculusu then not necessarily (E1)C �!c (E2)Cu for example, takeE1 = �y: (�z: y) (x y)E2 = �y: y

18

Combinatory normal form
x A combinatory expression is in combinatory nor-mal form if it contains no subexpressions of theform K E1 E2 or S E1 E2 E3x Normalization theorem holds for combinatoryexpressionsu i.e. always reducing the leftmost combinatory redexwill �nd a combinatory normal form if it existsx If E is in combinatory normal form, then it doesnot necessarily follow that it is a �-expressionin normal formu S K is in combinatory normal form, but it contains a�-redex, namely:(�f: (�g x: (f x (g x))) (�x y: x)

19

Improving translation to combinators
x Simple �-expressions can translate to complexcombinatory expressionsx To make the `code' executed by reduction ma-chines more compact, various optimizationshave been devisedx Let E be a combinatory expression and x a vari-able not occurring in Eu then: S (K E) I x �!c (K E x) (I x) �!c E xu hence S (KE) I x = E x (because E1 �!c E2 impliesE1 �! E2)u so by extensionality:S (K E) I = E
x Whenever S (K E) I is generatedu it can be `peephole optimized' to just E

20

Another optimisation
x Let E1, E2 be combinatory expressions and x avariable not occurring in either of themu then:S (K E1) (K E2) x �!c K E1 x (K E2) x �!c E1 E2u thus S (K E1) (K E2) x = E1 E2u now K (E1 E2) x �!c E1 E2u hence K (E1 E2) x = E1 E2u thus S (K E1) (K E2) x = E1 E2 = K (E1 E2) xu it follows by extensionality that:S (K E1) (K E2) = K (E1 E2)x Whenever S (K E1) (K E2) is generatedu it can be optimized to K (E1 E2)

21

Example optimisation
x Example: showed earlier that:��f: ��x: f(x x) = S (S (K S) (S (K K) I)) (K (S I I))
x Using the optimizationS (K E) I = E
x This simpli�es to:��f: ��x: f(x x) = S (S (K S) K) (K (S I I))

22

More combinators
x Easy to recognize applicability of optimizationS (K E) I = E if I has not been expanded to S K Ku i.e. if I is taken as a primitive combinatorx Other combinators similarly usefulx De�ne B and C by:LET B = �f g x: f (g x)LET C = �f g x: f x g
x These have the following reduction rules:B E1 E2 E3 �!c E1 (E2 E3)C E1 E2 E3 �!c E1 E3 E2x It follows that:S (K E1) E2 = B E1 E2S E1 (K E2) = C E1 E2(E1, E2 are any two combinatory expressions)

23

Curry's algorithm
x Combining the various optimizations yieldsCurry's algorithm for translating �-expressions tocombinatory expressionsx Use the de�nition of (E)Cx Whenever an expression of the form S E1 E2 isgenerated, try to apply the following rewriterules:1. S (K E1) (K E2) �! K (E1 E2)2. S (K E) I �! E3. S (K E1) E2 �! B E1 E24. S E1 (K E2) �! C E1 E2x Always use earliest applicable rulex S (K E1) (K E2) is translated to K (E1 E2)x Y is translated to S (C B (S I I)) (C B (S I I))

24

