Lecture 10

Reduction with δ -rules

- Assume as primitive constants (atoms):
 - integers
 - unary operators
 - binary operators
- atom packages these into a single datatype
- unary operators and binary operators have:
 - a name
 - a semantics ML function coding a δ rule

datatype	atom	=	Num	of	int		
			Op1	of	string	*	(int->int)
			Op2	of	string	*	<pre>(int*int->int);</pre>

- Application of atomic operation to a value defined by ConApply
 - computes δ -reduction
- Application of a binary operator b to m
 - results in a unary operator named mb
 - expecting the other argument
- So for each binary operator b and number m there will be a unary operator named mb
 - allows all δ -rules to be binary:

$$\mathtt{b} \ \mathtt{m} \xrightarrow[\delta]{} \mathtt{b} \mathtt{m}$$

• need to compute name of bm by concatenating name of b with name of m

Converting numbers to strings

- Need to convert number m to a string
 - for concatenation with the name of operator

```
fun StringOfNum 0 = "0"
| StringOfNum 1 = "1"
| StringOfNum 2 = "2"
| StringOfNum 3 = "3"
| StringOfNum 4 = "4"
| StringOfNum 5 = "5"
| StringOfNum 6 = "6"
| StringOfNum 7 = "7"
| StringOfNum 8 = "8"
| StringOfNum 9 = "9"
| StringOfNum n =
      (StringOfNum n =
      (StringOfNum 1574;
> val it = "1574" : string
```

Definition of conapply

```
fun ConApply(Op1(_,f1), Num m) = Num(f1 m)
| ConApply(Op2(x,f2), Num m) =
        Op1((StringOfNum m^x), fn n => f2(m,n));
> val ConApply = fn : atom * atom -> atom
ConApply(Op2("+",op +), Num 2);
> val it = Op1 ("2+",fn) : atom
ConApply(it, Num 3);
> val it = Num 5 : atom
```

λ -calculus with constants (atoms)

• Redefine lam

• Normal order evaluation with δ -rules

```
fun EvalN (e as Var _ ) = e
   EvalN (e as Con _) = e
 EvalN (Abs(x,e)) = Abs(x, EvalN e)
   EvalN (App(e1,e2)) =
 case EvalN e1
         (Abs(x,e3))
     of
            => EvalN(Subst e3 e2 x)
     (e1' as Con a1)
            => (case EvalN e2
                    (Con a2) => Con(ConApply(a1,a2))
                of
                    e2' => App(e1',e2'))
                e1'
            => App(e1', EvalN e2);
> val EvalN = fn : lam -> lam
```

• Consider App(Num 1, Num2) ...

Call-by-value with δ -rules

```
fun EvalV (e as Var _)
                           = e
    EvalV (e as Con _)
 = e
    EvalV (e as Abs(_,_)) = e
    EvalV (App(e1,e2))
 =
     let val e2' = EvalV e2
     in
     (case EvalV e1
           (Abs(x,e3))
      of
             => EvalV(Subst e3 e2' x)
           (e1' as Con a)
      \Rightarrow (case e2'
                     (Con a2) => Con(ConApply(a1,a2))
                  of
                                => App(e1',e2'))
                  e1'
      => App(e1',e2'))
     end;
```

Representing the recursive functions

- Recursive functions are an important class of numerical functions
- Shortly after Church invented the λ-calculus, Kleene proved that every recursive function could be represented in it
- This provided evidence for *Church's thesis*
 - the hypothesis that any intuitively computable function could be represented in the λ -calculus
 - has been shown that many other models of compution define the same class of functions that can be defined in the λ -calculus.
 - e.g. Turing machines

Representing a numerical function

- Number *n* is represented by the λ -expression <u>n</u>
- λ -expression <u>f</u> represents function f iff
 - for all numbers x_1, \ldots, x_n :

 $\underline{f}(\underline{x_1},\ldots,\underline{x_n}) = \underline{y}$ if $f(x_1,\ldots,x_n) = y$

• A function is *primitive recursive* if it can be constructed by a finite sequence of applications of the operations of substitution and primitive recursion starting from 0, S and the projection functions U_n^i (all defined below)

Base functions and Substitution

- Successor function S:
 - S(x) = x + 1
- Projection functions U_n^i (n and i are numbers):
 - $U_n^i(x_1, x_2, \dots, x_n) = x_i$
- Suppose:
 - g is a function of r arguments
 - h_1, \ldots, h_r are r functions each of n arguments
- We say f is defined from g and h_1, \ldots, h_r by substitution if:

 $f(x_1,\ldots,x_n) = g(h_1(x_1,\ldots,x_n),\ldots,h_r(x_1,\ldots,x_n))$

Primitive recursion

- Suppose:
 - g is a function of n-1 arguments
 - h is a function of n+1 arguments
- Then f is defined from g and h by primitive recursion if:

 $f(0, x_2, \dots, x_n) = g(x_2, \dots, x_n)$ $f(S(x_1), x_2, \dots, x_n) = h(f(x_1, x_2, \dots, x_n), x_1, x_2, \dots, x_n)$

- g is called the base function
- h is called the step function
- Primitive Recursion Theorem:
 - Can proved that for any base and step function there always exists a unique function defined from them by primitive recursion
- Addition function *sum* is primitive recursive:

$$sum(0, x_2) = x_2$$

 $sum(S(x_1), x_2) = S(sum(x_1, x_2))$

PR functions in λ -calculus

- Obvious that:
 - <u>0</u> represents 0
 - suc represents S
 - $\lambda p. \ p \stackrel{n}{\downarrow} i$ represents U_n^i
- Suppose
 - function g of r variables is represented by g
 - functions h_i ($1 \le i \le r$) of *n* variables represented by h_i
- Then if a function f of n variables is defined by substitution by:

 $f(x_1,\ldots,x_n) = g(h_1(x_1,\ldots,x_n),\ldots,h_r(x_1,\ldots,x_n))$

then f is represented by f where:

 $\mathtt{f} = \lambda(x_1, \ldots, x_n). \ \mathtt{g}(\mathtt{h}_1(x_1, \ldots, x_n), \ldots, \mathtt{h}_r(x_1, \ldots, x_n))$

Representing Primitive Recursion

- Suppose f of n variables is defined inductively
 - from a base function g of n-1 variables and an inductive step function h of n+1 variables
 - then

$$f(0, x_2, \dots, x_n) = g(x_2, \dots, x_n)$$

$$f(S(x_1), x_2, \dots, x_n) = h(f(x_1, x_2, \dots, x_n), x_1, x_2, \dots, x_n)$$

• Thus if g represents g and h represents h then f will represent f if

$$\begin{array}{l} \texttt{f} \ (x_1, x_2, \dots, x_n) = \\ (\texttt{iszero} \ x_1 \\ \rightarrow \texttt{g}(x_2, \dots, x_n) \\ \mid \ \texttt{h}(\texttt{f} \ (\texttt{pre} \ x_1, x_2, \dots, x_n), \texttt{pre} \ x_1, x_2, \dots, x_n)) \end{array}$$

• A solution to this equation is:

$$\begin{array}{ccc} \mathtt{Y}(\lambda f. \ \lambda(x_1, x_2, \dots, x_n). \\ & (\texttt{iszero} \ x_1 \\ & \rightarrow \mathtt{g}(x_2, \dots, x_n) \\ & | \ \mathtt{h}(f(\texttt{pre} \ x_1, x_2, \dots, x_n), \texttt{pre} \ x_1, x_2, \dots, x_n))) \end{array}$$

• Primitive recursive functions are representable

The recursive functions

- A function is called *recursive*
 - if it can be constructed from 0, the successor function and the projection functions
 - by a sequence of substitutions, primitive recursions
 - and minimizations
- Suppose g is a function of n arguments
 - f is defined from g by minimization if:

 $f(x_1, x_2, \ldots, x_n)$ = 'the smallest y such that $g(y, x_2, \ldots, x_n) = x_1$ '

• MIN(f) denotes the minimization of f

- Functions defined by minimization may be undefined for some arguments
- For example, if *one* is the function that always returns 1
 - i.e. one(x) = 1 for every x
- MIN(*one*) is only defined for arguments with value 1
- Obvious because if f(x) = MIN(one)(x), then:

f(x) = 'the smallest y such that one(y)=x'

and clearly this is only defined if x = 1

• Thus

$$MIN(one)(x) = \begin{cases} \underline{0} & \text{if } x = 1\\ undefined \text{ otherwise} \end{cases}$$

Representing minimisation

- Suppose g represents a function g of n variables and f is defined by f = MIN(g)
- If a λ -expression min can be devised such that

min
$$\underline{x}$$
 f $(\underline{x}_1,\ldots,\underline{x}_n)$

represents least y greater than x such that

$$f(y, x_2, \dots, x_n) = x_1$$

then g will represent g where:

 $\mathsf{g} \;=\; \lambda(x_1, x_2, \ldots, x_n). \; \min \; \underline{0} \; \mathsf{f} \; (x_1, x_2, \ldots, x_n)$

• min will have the desired property if:

$$\begin{array}{l} \min \ x \ f \ (x_1, x_2, \dots, x_n) = \\ (\operatorname{eq} \ (f(x, x_2, \dots, x_n)) \ x_1) \\ \rightarrow x \ \mid \min \ (\operatorname{suc} \ x) \ f \ (x_1, x_2, \dots, x_n)) \end{array}$$

(eq $\underline{m} \ \underline{n} = \texttt{true if } m = n$, eq $\underline{m} \ \underline{n} = \texttt{false if } m \neq n$)

• Thus min can simply be defined to be:

$$\begin{array}{c|c} \mathsf{Y}(\lambda m. \\ \lambda x \ f \ (x_1, x_2, \dots, x_n). \\ (\mathsf{eq} \ (f(x, x_2, \dots, x_n)) \ x_1 \\ \rightarrow x \ \mid \ m \ (\mathsf{suc} \ x) \ f \ (x_1, x_2, \dots, x_n))) \end{array}$$

Higher-order primitive recursion

• Ackermann's function, ψ , is recursive but not primitive recursive

- If one allows functions as arguments, then many more recursive functions can be defined by a primitive recursion
- Define *rec* by primitive recursion as follows:

 $\begin{array}{lll} \operatorname{rec}(0,x_2,x_3) &=& x_2 \\ \operatorname{rec}(S(x_1),x_2,x_3) &=& x_3(\operatorname{rec}(x_1,x_2,x_3)) \end{array}$

• Then ψ can be defined by:

 $\psi(m,n) \ = \ rec \ (m, \ S, \ f \mapsto (x \mapsto rec(x,f(1),f))) \ (n)$

- where $x \mapsto \theta(x)$ maps x to $\theta(x)$
- the third argument of rec, x_3 , is a function
- in the definition of ψ , x_2 is a function, viz. S

Power of higher-order recursion

- A function which takes another function as an argument, or returns another function as a result, is called *higher-order*
- The example ψ shows that higher-order primitive recursion is more powerful than ordinary primitive recursion
- Operators like *rec* make functional programming very powerful

The partial recursive functions

- A partial function is one that is not defined for all arguments
 - the function MIN(*one*) described above is partial
 - the division function is also partial, since division by 0 is not defined
- Functions that are defined for all arguments are called *total*
- A partial function is *partial recursive* if it can be constructed from 0, the successor function and the projection functions by a sequence of substitutions, primitive recursions and minimizations
 - thus the recursive functions are just the partial recursive functions which happen to be total
- Can be shown that every partial recursive function f can be represented by a λ -expression \underline{f} in the sense that
 - (i) $\underline{f}(\underline{x_1},\ldots,\underline{x_n}) = \underline{y}$ if $f(x_1,\ldots,x_n) = y$
 - (ii) If $f(x_1, \ldots, x_n)$ is undefined then $\underline{f}(\underline{x_1}, \ldots, \underline{x_n})$ has no normal form.