Lecture 10

Reduction with δ-rules

- Assume as primitive constants (atoms):
- integers
- unary operators
- binary operators
- atom packages these into a single datatype
- unary operators and binary operators have:
- a name
- a semantics - ML function coding a δ rule

```
datatype atom = Num of int
    Op1 of string * (int->int)
    Op2 of string * (int*int->int);
```


conapply

- Application of atomic operation to a value defined by ConApply
- computes δ-reduction
- Application of a binary operator b to m
- results in a unary operator named mb
- expecting the other argument
- So for each binary operator b and number m there will be a unary operator named mb
- allows all δ-rules to be binary:

$$
\mathrm{bm} \underset{\delta}{\longrightarrow} \mathrm{bm}
$$

- need to compute name of bm by concatenating name of b with name of m

Converting numbers to strings

- Need to convert number m to a string
- for concatenation with the name of operator

> fun StringOfNum $0=$ "0"
> StringOfNum $1=" 1 "$
> StringOfNum $2=" 2 "$
> StringOfNum $3=" 3 "$
> StringOfNum $4=" 4 "$
> StringOfNum 5 = "5"
> StringOfNum $6=$ "6"
> StringOfNum $7=" 7 "$
> StringOfNum $8=" 8 "$
> StringOfNum $9=" 9 "$
> StringOfNum $\mathrm{n}=$
> (StringOfNum(n div 10)) ^ (StringOfNum(n mod 10));

StringOfNum 1574;
> val it = "1574" : string

Definition of conapply

```
fun ConApply(Op1(_,f1), Num m) = Num(f1 m)
    | ConApply(Op2(x,f2), Num m) =
    Op1((StringOfNum m^x), fn n => f2(m,n));
> val ConApply = fn : atom * atom -> atom
ConApply(Op2("+",op +), Num 2);
> val it = Op1 ("2+",fn) : atom
ConApply(it, Num 3);
> val it = Num 5 : atom
```


λ-calculus with constants (atoms)

- Redefine lam

$$
\begin{aligned}
\text { datatype lam } & =\text { Var of string } \\
& \mid \text { Con of atom } \\
& \mid \text { App of (lam } * \text { lam) } \\
& \mid \text { Abs of (string * lam); }
\end{aligned}
$$

- Normal order evaluation with δ-rules

```
fun EvalN (e as Var _ ) = e
    | EvalN (e as Con _) = e
    | EvalN (Abs(x,e)) = Abs(x, EvalN e)
    | EvalN (App(e1,e2)) =
    case EvalN e1
    of (Abs(x,e3))
        => EvalN(Subst e3 e2 x)
    | (e1' as Con a1)
        => (case EvalN e2
                            of (Con a2) => Con(ConApply(a1,a2))
                            e2' => App(e1',e2'))
    | e1'
        => App(e1', EvalN e2);
> val EvalN = fn : lam -> lam
```

- Consider App(Num 1, Num2)...

Call-by-value with δ-rules

```
fun EvalV (e as Var _) =e
    | EvalV (e as Con _) =e
    EvalV (e as Abs(_,_)) = e
    EvalV (App(e1,e2)) =
    let val e2' = EvalV e2
    in
    (case EvalV e1
    of (Abs (x,e3))
    => EvalV(Subst e3 e2' x)
    | (e1' as Con a)
    => (case e2'
                                of (Con a2) \(=>\) Con(ConApply (a1, a2))
                            | _ \(\quad\) > \(\left.\operatorname{App}\left(e 1^{\prime}, e 2^{\prime}\right)\right)\)
        | e1'
    \(\left.\Rightarrow \operatorname{App}\left(e 1^{\prime}, e 2^{\prime}\right)\right)\)
    end;
```


Representing the recursive functions

- Recursive functions are an important class of numerical functions
- Shortly after Church invented the λ-calculus, Kleene proved that every recursive function could be represented in it
- This provided evidence for Church's thesis
- the hypothesis that any intuitively computable function could be represented in the λ-calculus
- has been shown that many other models of compution define the same class of functions that can be defined in the λ-calculus.
- e.g. Turing machines

Representing a numerical function

- Number n is represented by the λ-expression \underline{n}
- λ-expression \underline{f} represents function f iff
- for all numbers x_{1}, \ldots, x_{n} :

$$
\underline{f}\left(\underline{x_{1}}, \ldots, \underline{x_{n}}\right)=\underline{y} \quad \text { if } \quad f\left(x_{1}, \ldots, x_{n}\right)=y
$$

- A function is primitive recursive if it can be constructed by a finite sequence of applications of the operations of substitution and primitive recursion starting from $0, S$ and the projection functions U_{n}^{i} (all defined below)

Base functions and Substitution

- Successor function S :
- $S(x)=x+1$
- Projection functions U_{n}^{i} (n and i are numbers):
- $U_{n}^{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{i}$
- Suppose:
- g is a function of r arguments
- h_{1}, \ldots, h_{r} are r functions each of n arguments
- We say f is defined from g and h_{1}, \ldots, h_{r} by substitution if:

$$
f\left(x_{1}, \ldots, x_{n}\right)=g\left(h_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, h_{r}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

Primitive recursion

- Suppose:
- g is a function of $n-1$ arguments
- h is a function of $n+1$ arguments
- Then f is defined from g and h by primitive recursion if:

$$
\begin{aligned}
f\left(0, x_{2}, \ldots, x_{n}\right) & =g\left(x_{2}, \ldots, x_{n}\right) \\
f\left(S\left(x_{1}\right), x_{2}, \ldots, x_{n}\right) & =h\left(f\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

- g is called the base function
- h is called the step function
- Primitive Recursion Theorem:
- Can proved that for any base and step function there always exists a unique function defined from them by primitive recursion
- Addition function sum is primitive recursive:

$$
\begin{aligned}
\operatorname{sum}\left(0, x_{2}\right) & =x_{2} \\
\operatorname{sum}\left(S\left(x_{1}\right), x_{2}\right) & =S\left(\operatorname{sum}\left(x_{1}, x_{2}\right)\right)
\end{aligned}
$$

PR functions in λ-calculus

- Obvious that:
- $\underline{0}$ represents 0
- suc represents S
- $\lambda p . p \stackrel{n}{\downarrow} i$ represents U_{n}^{i}
- Suppose
- function g of r variables is represented by g
- functions $h_{i}(1 \leq i \leq r)$ of n variables represented by h_{i}
- Then if a function f of n variables is defined by substitution by:

$$
f\left(x_{1}, \ldots, x_{n}\right)=g\left(h_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, h_{r}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

then f is represented by f where:

$$
\mathrm{f}=\lambda\left(x_{1}, \ldots, x_{n}\right) \cdot \mathrm{g}\left(\mathrm{~h}_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, \mathrm{h}_{r}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

Representing Primitive Recursion

- Suppose f of n variables is defined inductively
- from a base function g of $n-1$ variables and an inductive step function h of $n+1$ variables
- then

$$
\begin{aligned}
f\left(0, x_{2}, \ldots, x_{n}\right) & =g\left(x_{2}, \ldots, x_{n}\right) \\
f\left(S\left(x_{1}\right), x_{2}, \ldots, x_{n}\right) & =h\left(f\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

- Thus if g represents g and h represents h then f will represent f if

$$
\begin{aligned}
& \mathrm{f}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \\
& \quad\left(\text { iszero } x_{1}\right. \\
& \quad \rightarrow \mathrm{g}\left(x_{2}, \ldots, x_{n}\right) \\
& \left.\quad \mid \mathrm{h}\left(\mathrm{f}\left(\text { pre } x_{1}, x_{2}, \ldots, x_{n}\right), \text { pre } x_{1}, x_{2}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

- A solution to this equation is:

$$
\begin{aligned}
& \mathrm{Y}\left(\lambda f . \quad \lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right. \\
& \quad\left(\text { iszero } x_{1}\right. \\
& \quad \rightarrow \mathrm{g}\left(x_{2}, \ldots, x_{n}\right) \\
& \left.\left.\quad \mid \mathrm{h}\left(f\left(\text { pre } x_{1}, x_{2}, \ldots, x_{n}\right), \text { pre } x_{1}, x_{2}, \ldots, x_{n}\right)\right)\right)
\end{aligned}
$$

- Primitive recursive functions are representable

The recursive functions

- A function is called recursive
- if it can be constructed from 0 , the successor function and the projection functions
- by a sequence of substitutions, primitive recursions
- and minimizations
- Suppose g is a function of n arguments
- f is defined from g by minimization if:
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ 'the smallest y such that $g\left(y, x_{2}, \ldots, x_{n}\right)=x_{1}$ '
- $\operatorname{MIN}(f)$ denotes the minimization of f

Undefinedness

- Functions defined by minimization may be undefined for some arguments
- For example, if one is the function that always returns 1
-i.e. one $(x)=1$ for every x
- $\operatorname{MIN}($ one $)$ is only defined for arguments with value 1
- Obvious because if $f(x)=\operatorname{MIN}(o n e)(x)$, then:
$f(x)=$ 'the smallest y such that one $(y)=x$ ' and clearly this is only defined if $x=1$
- Thus

$$
\operatorname{MIN}(o n e)(x)= \begin{cases}0 & \text { if } x=1 \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Representing minimisation

- Suppose g represents a function g of n variables and f is defined by $f=\operatorname{MIN}(g)$
- If a λ-expression min can be devised such that

$$
\min \underline{x} f\left(\underline{x}_{1}, \ldots, \underline{x}_{n}\right)
$$

represents least y greater than x such that

$$
f\left(y, x_{2}, \ldots, x_{n}\right)=x_{1}
$$

then g will represent g where:

$$
\mathrm{g}=\lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right) \cdot \min \underline{0} \mathrm{f}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- min will have the desired property if:

$$
\begin{aligned}
& \min x f\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \\
& \quad\left(\mathrm{eq}\left(f\left(x, x_{2}, \ldots, x_{n}\right)\right) x_{1}\right) \\
& \left.\quad \rightarrow x \mid \min (\operatorname{suc} x) f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \\
& \text { (eq } \underline{m} \underline{n}=\text { true if } m=n, \text { eq } \underline{m} \underline{n}=\text { false if } m \neq n)
\end{aligned}
$$

- Thus min can simply be defined to be:

$$
\begin{aligned}
& \mathrm{Y}(\lambda m \\
& \quad \lambda x f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \quad\left(\mathrm{eq}\left(f\left(x, x_{2}, \ldots, x_{n}\right)\right) x_{1}\right. \\
& \left.\left.\quad \rightarrow x \mid m(\operatorname{suc} x) f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)\right)
\end{aligned}
$$

Higher-order primitive recursion

- Ackermann's function, ψ, is recursive but not primitive recursive

$$
\begin{aligned}
& \psi(0, n)=n+1 \\
& \psi(m+1,0)=\psi(m, 1) \\
& \psi(m+1, n+1)=\psi(m, \psi(m+1, n))
\end{aligned}
$$

- If one allows functions as arguments, then many more recursive functions can be defined by a primitive recursion
- Define rec by primitive recursion as follows:

$$
\begin{aligned}
& \operatorname{rec}\left(0, x_{2}, x_{3}\right)=x_{2} \\
& \operatorname{rec}\left(S\left(x_{1}\right), x_{2}, x_{3}\right)=x_{3}\left(\operatorname{rec}\left(x_{1}, x_{2}, x_{3}\right)\right)
\end{aligned}
$$

- Then ψ can be defined by:

$$
\psi(m, n)=\operatorname{rec}(m, S, f \mapsto(x \mapsto \operatorname{rec}(x, f(1), f)))(n)
$$

- where $x \mapsto \theta(x)$ maps x to $\theta(x)$
- the third argument of rec, x_{3}, is a function
- in the definition of ψ, x_{2} is a function, viz. S

Power of higher-order recursion

- A function which takes another function as an argument, or returns another function as a result, is called higher-order
- The example ψ shows that higher-order primitive recursion is more powerful than ordinary primitive recursion
- Operators like rec make functional programming very powerful

The partial recursive functions

- A partial function is one that is not defined for all arguments
- the function MIN(one) described above is partial
- the division function is also partial, since division by 0 is not defined
- Functions that are defined for all arguments are called total
- A partial function is partial recursive if it can be constructed from 0 , the successor function and the projection functions by a sequence of substitutions, primitive recursions and minimizations
- thus the recursive functions are just the partial recursive functions which happen to be total
- Can be shown that every partial recursive function f can be represented by a λ-expression \underline{f} in the sense that
(i) $\underline{f}\left(\underline{x_{1}}, \ldots, \underline{x_{n}}\right)=\underline{y} \quad$ if $\quad f\left(x_{1}, \ldots, x_{n}\right)=y$
(ii) If $f\left(x_{1}, \ldots, x_{n}\right)$ is undefined then $\underline{f}\left(x_{1}, \ldots, \underline{x_{n}}\right)$ has no normal form.

