
Lecture 10

0

Reduction with �-rules
x Assume as primitive constants (atoms):u integersu unary operatorsu binary operatorsx atom packages these into a single datatypex unary operators and binary operators have:u a nameu a semantics { ML function coding a � ruledatatype atom = Num of int| Op1 of string * (int->int)| Op2 of string * (int*int->int);

1

conapply
x Application of atomic operation to a value de-�ned by ConApplyu computes �-reductionx Application of a binary operator b to mu results in a unary operator named mbu expecting the other argumentx So for each binary operator b and number mthere will be a unary operator named mbu allows all �-rules to be binary:b m �!� bmu need to compute name of bm by concatenating nameof b with name of m

2

Converting numbers to strings
x Need to convert number m to a stringu for concatenation with the name of operatorfun StringOfNum 0 = "0"| StringOfNum 1 = "1"| StringOfNum 2 = "2"| StringOfNum 3 = "3"| StringOfNum 4 = "4"| StringOfNum 5 = "5"| StringOfNum 6 = "6"| StringOfNum 7 = "7"| StringOfNum 8 = "8"| StringOfNum 9 = "9"| StringOfNum n =(StringOfNum(n div 10)) ^ (StringOfNum(n mod 10));StringOfNum 1574;> val it = "1574" : string

3

De�nition of conapply
fun ConApply(Op1(_,f1), Num m) = Num(f1 m)| ConApply(Op2(x,f2), Num m) =Op1((StringOfNum m^x), fn n => f2(m,n));> val ConApply = fn : atom * atom -> atomConApply(Op2("+",op +), Num 2);> val it = Op1 ("2+",fn) : atomConApply(it, Num 3);> val it = Num 5 : atom

4

�-calculus with constants (atoms)
x Rede�ne lamdatatype lam = Var of string| Con of atom| App of (lam * lam)| Abs of (string * lam);x Normal order evaluation with �-rulesfun EvalN (e as Var _) = e| EvalN (e as Con _) = e| EvalN (Abs(x,e)) = Abs(x, EvalN e)| EvalN (App(e1,e2)) =case EvalN e1of (Abs(x,e3))=> EvalN(Subst e3 e2 x)| (e1' as Con a1)=> (case EvalN e2of (Con a2) => Con(ConApply(a1,a2))| e2' => App(e1',e2'))| e1'=> App(e1', EvalN e2);> val EvalN = fn : lam -> lamx Consider App(Num 1, Num2) : : :

5

Call-by-value with �-rules
fun EvalV (e as Var _) = e| EvalV (e as Con _) = e| EvalV (e as Abs(_,_)) = e| EvalV (App(e1,e2)) =let val e2' = EvalV e2in(case EvalV e1of (Abs(x,e3))=> EvalV(Subst e3 e2' x)| (e1' as Con a)=> (case e2'of (Con a2) => Con(ConApply(a1,a2))| _ => App(e1',e2'))| e1'=> App(e1',e2'))end;

6

Representing the recursive functions
x Recursive functions are an important class of nu-merical functionsx Shortly after Church invented the �-calculus,Kleene proved that every recursive functioncould be represented in itx This provided evidence for Church's thesisu the hypothesis that any intuitively computable func-tion could be represented in the �-calculusu has been shown that many other models of com-pution de�ne the same class of functions that canbe de�ned in the �-calculus.u e.g. Turing machines

7

Representing a numerical function
x Number n is represented by the �-expression nx �-expression f represents function f i�u for all numbers x1, : : :, xn:f(x1; : : : ; xn) = y if f(x1; : : : ; xn) = y
x A function is primitive recursive if it can be con-structed by a �nite sequence of applications ofthe operations of substitution and primitive re-cursion starting from 0, S and the projectionfunctions U in (all de�ned below)

8

Base functions and Substitution
x Successor function S:u S(x) = x + 1x Projection functions U in (n and i are numbers):u U in(x1; x2; : : : ; xn) = xix Suppose:u g is a function of r argumentsu h1, : : : , hr are r functions each of n argumentsx We say f is de�ned from g and h1, : : : , hr bysubstitution if:f(x1; : : : ; xn) = g(h1(x1; : : : ; xn); : : : ; hr(x1; : : : ; xn))

9

Primitive recursion
x Suppose:u g is a function of n�1 argumentsu h is a function of n+1 argumentsx Then f is de�ned from g and h by primitiverecursion if:f(0; x2; : : : ; xn) = g(x2; : : : ; xn)f(S(x1); x2; : : : ; xn) = h(f(x1; x2; : : : ; xn); x1; x2; : : : ; xn)u g is called the base functionu h is called the step functionx Primitive Recursion Theorem:u Can proved that for any base and step function therealways exists a unique function de�ned from them byprimitive recursionx Addition function sum is primitive recursive:sum(0; x2) = x2sum(S(x1); x2) = S(sum(x1; x2))

10

PR functions in �-calculus
x Obvious that:u 0 represents 0u suc represents Su �p: p n# i represents U inx Supposeu function g of r variables is represented by gu functions hi (1�i�r) of n variables represented by hix Then if a function f of n variables is de�ned bysubstitution by:f(x1; : : : ; xn) = g(h1(x1; : : : ; xn); : : : ; hr(x1; : : : ; xn))then f is represented by f where:f = �(x1; : : : ; xn): g(h1(x1; : : : ; xn); : : : ; hr(x1; : : : ; xn))

11

Representing Primitive Recursionx Suppose f of n variables is de�ned inductivelyu from a base function g of n�1 variablesand an inductive step function h of n+1 variablesu then f(0; x2; : : : ; xn) = g(x2; : : : ; xn)f(S(x1); x2; : : : ; xn) = h(f(x1; x2; : : : ; xn); x1; x2; : : : ; xn)x Thus if g represents g and h represents h thenf will represent f iff (x1; x2; : : : ; xn) =(iszero x1! g(x2; : : : ; xn)j h(f (pre x1; x2; : : : ; xn); pre x1; x2; : : : ; xn))x A solution to this equation is:Y(�f: �(x1; x2; : : : ; xn):(iszero x1! g(x2; : : : ; xn)j h(f(pre x1; x2; : : : ; xn); pre x1; x2; : : : ; xn)))x Primitive recursive functions are representable
12

The recursive functions
x A function is called recursiveu if it can be constructed from 0, the successor functionand the projection functionsu by a sequence of substitutions, primitive recursionsu and minimizationsx Suppose g is a function of n argumentsu f is de�ned from g by minimization if:f(x1; x2; : : : ; xn) = `the smallest y such that g(y; x2; : : : ; xn)=x1'x MIN(f) denotes the minimization of f

13

Unde�nedness
x Functions de�ned by minimization may be un-de�ned for some argumentsx For example, if one is the function that alwaysreturns 1u i.e. one(x) = 1 for every xx MIN(one) is only de�ned for arguments withvalue 1x Obvious because if f(x) = MIN(one)(x), then:f(x) = `the smallest y such that one(y)=x'and clearly this is only de�ned if x = 1x Thus MIN(one)(x) = 8>>>>>><>>>>>>: 0 if x = 1unde�ned otherwise

14

Representing minimisation
x Suppose g represents a function g of n variablesand f is de�ned by f = MIN(g)x If a �-expression min can be devised such thatmin x f (x1; : : : ; xn)represents least y greater than x such thatf(y; x2; : : : ; xn) = x1then g will represent g where:g = �(x1; x2; : : : ; xn): min 0 f (x1; x2; : : : ; xn)x min will have the desired property if:min x f (x1; x2; : : : ; xn) =(eq (f(x; x2; : : : ; xn)) x1)! x j min (suc x) f (x1; x2; : : : ; xn))(eq m n = true if m=n, eq m n = false if m6=n)x Thus min can simply be de�ned to be:Y(�m:�x f (x1; x2; : : : ; xn):(eq (f(x; x2; : : : ; xn)) x1! x j m (suc x) f (x1; x2; : : : ; xn)))15

Higher-order primitive recursion
x Ackermann's function, , is recursive but notprimitive recursive (0; n) = n+1 (m+1; 0) = (m; 1) (m+1; n+1) = (m; (m+1; n))
x If one allows functions as arguments, thenmany more recursive functions can be de�nedby a primitive recursionx De�ne rec by primitive recursion as follows:rec(0; x2; x3) = x2rec(S(x1); x2; x3) = x3(rec(x1; x2; x3))x Then can be de�ned by: (m;n) = rec (m; S; f 7! (x 7! rec(x; f(1); f))) (n)� where x 7! �(x) maps x to �(x)� the third argument of rec , x3, is a function� in the de�nition of , x2 is a function, viz. S

16

Power of higher-order recursion
x A function which takes another function as anargument, or returns another function as a re-sult, is called higher-orderx The example shows that higher-order prim-itive recursion is more powerful than ordinaryprimitive recursionx Operators like rec make functional program-ming very powerful

17

The partial recursive functions
x A partial function is one that is not de�ned forall argumentsu the function MIN(one) described above is partialu the division function is also partial, since division by0 is not de�nedx Functions that are de�ned for all arguments arecalled totalx A partial function is partial recursive if it can beconstructed from 0, the successor function andthe projection functions by a sequence of sub-stitutions, primitive recursions and minimiza-tionsu thus the recursive functions are just the partial re-cursive functions which happen to be totalx Can be shown that every partial recursive func-tion f can be represented by a �-expression fin the sense that(i) f (x1; : : : ; xn) = y if f(x1; : : : ; xn) = y(ii) If f(x1; : : : ; xn) is unde�ned then f(x1; : : : ; xn)has no normal form.18

