
Applications of Proof Theory to Isabelle

Lawrence C Paulson
Computer Laboratory

University of Cambridge

August 13, 1996

Abstract

Isabelle [3, 4] is a generic theorem prover. It suppports interactive proof in several
formal systems, including first-order logic (intuitionistic and classical), higher-order
logic, Martin-Löf type theory, and Zermelo-Fraenkel set theory. New logics can be
introduced by specifying their syntax and rules of inference. Both natural deduction
and sequent calculi are allowed.

Isabelle’s approach is to represent the various formal systems, or object-logics,
within a single meta-logic. The meta-logic is a fragment of higher-order logic, formu-
lated in natural deduction. The proof theory of meta-logic is the main tool for proving
that an object-logic is correctly formalized in Isabelle.

Contents

1 A fragment of higher-order logic 2
1.1 Syntax of the meta-logic M . 2
1.2 Syntactic conventions . 2
1.3 Semantics of the meta-logic . 3
1.4 Inference rules . 3

2 Representing intuitionistic propositional logic 4

3 Quantification 8

1

1 A fragment of higher-order logic

Higher-order logic, which was developed by Alonzo Church, is used to represent logics
within Isabelle. In fact only a fragment of this logic is required for this purpose. It is
called M below (for “meta-logic”).

1.1 Syntax of the meta-logic M
The types1 consist of basic types and function types of the form σ → τ . Let the Greek
letters σ, τ , and υ stand for types.

The terms are those of the typed λ-calculus — constants, variables, abstractions,
combinations — with the usual type constraints. Let a, b, and c stand for terms, using f ,
g, and h for terms of function type. Typical bound variables will be x, y, and z. Write
a : σ to mean ‘a has type σ.’

The basic types and constants depend on the logic being represented. But they always
include the type of propositions, prop, and the logical constants of M. A formula is a
term of type prop. Let φ, ψ, and θ stand for formulae. The implication φ⇒ ψ means ‘φ
implies ψ.’ The universally quantified formula

∧
x.φ means ‘for all x, φ is true,’ where x

ranges over some type σ. The equality a ≡ b means ‘a equals b.’
The symbols ⇒,

∧
, and ≡ have been chosen to differ from symbols of object-logics:

those to be represented in M. In an object-logic presented below the corresponding
symbols are ⊃, ∀, and =. The words ‘meta-implication,’ ‘meta-equality,’ ‘meta-formula,’
‘meta-theorem,’ ‘meta-rule,’ etc., refer to expressions of M.

Quantification involves λ-abstraction. For every type σ, there is a constant
∧
σ of type

(σ → prop) → prop. The formula
∧
x.φ, where x has type σ, abbreviates

∧
σ(λx.φ).

Using λ-conversions every quantification can be put into the form
∧
σ(f), more readably∧

x.f(x), where f is a term of type σ → prop. Abstraction also expresses quantifiers in
object-logics, as we shall see in Section 3.

1.2 Syntactic conventions

The application of a to the successive arguments b1, . . . , bm is written a(b1, . . . , bm):

a(b1, . . . , bm) abbreviates (· · · (ab1) · · · bm)

In the absence of parentheses, implication (⇒) groups to the right. Let Φ, Ψ, and Θ
stand for lists of formulae. Implication can also be written for such lists: if Φ is the list
[φ1, . . . , φm], then

φ1 ⇒ · · · ⇒ φm ⇒ ψ
[φ1, . . . , φm]⇒ ψ

Φ⇒ ψ

 each abbreviate φ1 ⇒ (· · · ⇒ (φm ⇒ ψ) · · ·)

One λ or quantifier does the work of many:

λx1 . . . xm . a∧
x1 . . . xm . φ

}
abbreviates

{
λx1 λxm.a∧
x1

∧
xm.φ

1Sometimes called arities, following Martin-Löf, to avoid confusion with ml types or object-level types.

2

The scope of a λ or quantifier extends far to the right:

λx . f(x, g(x))∧
x . φ⇒ b ≡ c

}
abbreviates

{
λx . (f(x, g(x)))∧
x . (φ⇒ (b ≡ c))

A substitution has the form [a1/x1, . . . , ak/xk], where x1, . . . , xk are distinct variables
and a1, . . . , ak are terms. If b is an expression and s is the substitution above then bs is
the expression that results from simultaneously replacing every free occurrence of xi by ai
in b, for i = 1, . . . , k (of course ai must have the same type as xi). Substitution must be
carefully defined to avoid capture of free variables.

Substitutions are not part of M itself. The term f(a) indicates function application,
not substitution. The β-reduction law, namely ((λx.b)(a)) ≡ b[a/x], expresses substitution
at the object-level.

1.3 Semantics of the meta-logic

Higher-order logic is a language for writing formal mathematics. It can be justified on
intuitive grounds, or else we can demonstrate its consistency by constructing a standard
model in set theory.

Every type denotes a non-empty set. Given sets for each basic type, the interpretation
of σ → τ is the set of functions from σ to τ . A closed term of type σ denotes a value of
the corresponding set. Given a value for each constant, λ-abstractions denote functions.

The type prop denotes a set of truth values. Classical logic uses {T,F}, but intuitionis-
tic interpretations are possible. The logical constants (

∧
σ,⇒, and ≡σ) denote appropriate

truth-valued functions.

1.4 Inference rules

The constant symbols include, for every type σ,

⇒ : prop → (prop → prop)∧
σ : (σ → prop)→ prop
≡σ : σ → (σ → prop)

The implication rules are ⇒-introduction and ⇒-elimination:

[φ]
ψ

φ⇒ ψ

φ⇒ ψ φ

ψ

These are natural deduction rules; ⇒-introduction discharges the assumption φ. In most
other rules, the conclusion depends on all assumptions of the premises.

The universal quantification rules are
∧

-introduction and
∧

-elimination:

φ∧
x.φ

∧
x.φ

φ[b/x]

These are also called generalization and specialization. The generalization rule is subject
to the eigenvariable condition that x is not free in the assumptions.

The equality rules are reflexivity, symmetry, and transitivity:

a ≡ a a ≡ b
b ≡ a

a ≡ b b ≡ c
a ≡ c

3

The λ-conversions are α-conversion (bound variable renaming), β-conversion, and ex-
tensionality:

(λx.a) ≡ (λy.a[y/x]) ((λx.a)(b)) ≡ a[b/x]
f(x) ≡ g(x)

f ≡ g

The α-conversion axiom holds provided y is not free in a. Extensionality holds provided
x is not free in the assumptions, f , or g. Extensionality is equivalent to η-conversion,
namely (λx.f(x)) ≡ f where x is not free in f (see Hindley and Seldin [2, pages 72–74]).

The abstraction and combination rules are

a ≡ b
(λx.a) ≡ (λx.b)

f ≡ g a ≡ b
f(a) ≡ g(b)

Abstraction holds provided x is not free in the assumptions.
Logical equivalence means equality of truth values:

[φ]
ψ

[ψ]
φ

φ ≡ ψ
φ ≡ ψ φ

ψ

The typed λ-calculus satisfies the strong normalization and Church-Rosser properties
[2]. Thus repeatedly applying β and η-reductions always terminates. The reductions can
take place in any order; the resulting normal form will be the same up to α-conversion.
To summarize:

Theorem 1 Every term can be reduced to a normal form that is unique up to α-conversion.

Remark. Because of normal forms, equality is decidable in the typed λ-calculus — but
not in higher-order logic. The normal form does not take account of the logical rules. No
effective procedure can reduce every theorem to some unique true formula.

There is also a normalization procedure for hol proofs. This plays a crucial role in
demonstrating that an object-logic is faithfully expressed.

2 Representing intuitionistic propositional logic

To represent an object-logic in Isabelle we extend the meta-logic with types, constants,
and axioms. A simple example is intuitionistic propositional logic (ipl).

To represent the syntax of ipl, introduce the basic type form for denotations of for-
mulae. Introduce the constant symbols

⊥ : form
&,∨,⊃ : form → (form → form)

true : form → prop

Variables of type form include A, B, and C.
Object-sentences are enclosed in double brackets [[]]. The meta-formula [[A]] abbreviates

true(A) and means that A is true. Keeping the types form and prop distinct avoids
presuming that truth-values of the object-logic are identical to those of the meta-logic. To
avoid confusing these logics, let us use distinctive terminology. There is a meta-rule called

4

⇒-elimination. The similar object-rule is called the ⊃E rule, while the corresponding
meta-axiom is called the ⊃E axiom.

The natural deduction rules (Figure 1) of intuitionistic logic are represented by meta-
level axioms (Figure 2). The resulting extension of M is called Mipl. The outer quanti-
fiers of meta-axioms will often be dropped.

The new symbols have the usual interpretations. Let the type form denote a set of
truth values such that &, ∨, ⊃, and ⊥ have their intuitionistic meanings [1, Chapter 5].
The axioms are true under this semantics: for example, if A is true and B is true then
A & B is true. Meta-implication (⇒) expresses the discharge of assumptions. The ⊃I
axiom says that if the truth of A implies the truth of B, then the formula A ⊃ B is true.

The resemblance between the meta-level axioms and the rules should be regarded
as a happy coincidence. An axiom formalizes not the syntax of a rule but its semantic
justification. The resemblance diminishes in first-order logic (Section 3).

An obvious question is whether the object-logic is faithfully represented. The definition
below is oriented towards natural deduction: it concerns entailments rather than theorems.

Definition 1 Let L be a logic and A1, . . ., Am, B be formulae of L. Let ML be a meta-
logic obtained from M by adding types, constants, and axioms. Suppose that [[−]] is a
function mapping each formula A of L to a meta-formula [[A]] of ML. Then say

• ML is sound for L if, for every ML-proof of [[B]] from [[A1]], . . . , [[Am]], there is an
L-proof of B from A1, . . . , Am.

• ML is complete for L if, for every L-proof of B from A1, . . . , Am, there is an ML-
proof of [[B]] from [[A1]], . . . , [[Am]].

• ML is faithful for L if ML is sound and complete for L.

Informally,Mipl is sound for ipl because the additional axioms are true and the rules
of M are sound. A better argument is by induction on normal proofs in M. Here is a
summary of the proof-theoretic concepts of Prawitz [5, 6]. For simplicity, let us ignore
equality rules, identifying terms that are equivalent up to λ-conversions.

A branch in a proof traces the construction and destruction of a formula. Each branch
is obtained by repeatedly walking downwards from a premise of a rule to its conclusion,
but terminates at the second premise of ⇒-elimination. Thus in

φ⇒ ψ φ

ψ

a branch may connect φ ⇒ ψ with ψ but not φ with ψ since these formulae may be
syntactically unrelated. (This discussion is for M. For logics having other connectives,
most elimination rules are special cases.)

Every proof in M can be normalized such that, in every branch, no elimination rule
immediately follows an introduction rule. In a normal proof, every branch begins with
an assumption or axiom, then has a series of eliminations, then a series of introductions.
During the eliminations the formulae shrink to a minimum; during the introductions they
grow again.

Observe that [[B]] is an atomicMipl-formula. A normal proof can be put into expanded
normal form, where every minimum formula is atomic [6, page 254]. For example, if a

5

introduction (I) elimination (E)

Conjunction
A B

A&B

A&B

A

A&B

B

Disjunction
A

A ∨B
B

A ∨B
A ∨B

[A]
C

[B]
C

C

Implication

[A]
B

A ⊃ B
A ⊃ B A

B

Contradiction
⊥
A

Figure 1: The rules of intuitionistic propositional logic

∧
AB . [[A]]⇒ ([[B]]⇒ [[A&B]]) (&I)∧

AB . [[A&B]]⇒ [[A]]
∧
AB . [[A&B]]⇒ [[B]] (&E)

∧
AB . [[A]]⇒ [[A ∨B]]

∧
AB . [[B]]⇒ [[A ∨B]] (∨I)∧

ABC . [[A ∨B]]⇒ ([[A]]⇒ [[C]])⇒ ([[B]]⇒ [[C]])⇒ [[C]] (∨E)

∧
AB . ([[A]]⇒ [[B]])⇒ [[A ⊃ B]] (⊃ I)∧
AB . [[A ⊃ B]]⇒ [[A]]⇒ [[B]] (⊃ E)

∧
A . [[⊥]]⇒ [[A]] (⊥E)

Figure 2: Meta-level axioms for intuitionistic propositional logic

6

∧
AB . [[A]]⇒ ([[B]]⇒ [[A&B]])∧
B . [[C]]⇒ ([[B]]⇒ [[C &B]])
[[C]]⇒ ([[D]]⇒ [[C &D]])

...
[[C]]

[[D]]⇒ [[C &D]]

...
[[D]]

[[C &D]]

Figure 3: The meta-proof formalizing a &I inference

∧
AB . ([[A]]⇒ [[B]])⇒ [[A ⊃ B]]∧
B . ([[C]]⇒ [[B]])⇒ [[C ⊃ B]]
([[C]]⇒ [[D]])⇒ [[C ⊃ D]]

[[[C]]]
...

[[D]]
[[C]]⇒ [[D]]

[[C ⊃ D]]

Figure 4: The meta-proof formalizing an ⊃I inference

minimum formula is φ⇒ ψ, then the following can be spliced into the proof, reducing the
minimum formula to ψ:

φ⇒ ψ [φ]
ψ

φ⇒ ψ

Completeness holds because to each object-level inference there corresponds a meta-
proof involving anMipl axiom. Soundness holds because to each occurrence of anMipl
axiom in a meta-proof there corresponds an object-level inference. Figures 3 and 4 illus-
trate the correspondence.

Theorem 2 Mipl is sound for ipl.
Proof : By induction on the size of the expanded normal proof in Mipl of [[B]] from
[[A1]], . . . , [[Am]], construct an ipl proof of B from A1, . . . , Am.

Since [[B]] is atomic, the branch terminating with [[B]] cannot contain introduction rules,
and thus cannot discharge assumptions. The branch must consist entirely of elimination
rules. If it is just [[B]] then B is an assumption, one of A1, . . . , Am. Otherwise the branch
contains elimination rules, so its first formula cannot be atomic. It must consist of an
axiom followed by elimination rules. There is one case for each axiom.

For the &I axiom, B is C & D for some formulae C and D. The meta-proof must
have the structure of Figure 3. It has two

∧
-eliminations involving C and D, and two

⇒-eliminations, involving proofs of [[C]] and [[D]] from [[A1]], . . . , [[Am]]. By the induction
hypothesis, construct ipl proofs of C and D from A1, . . . , Am. Applying &I gives an ipl
proof of C &D.

For the ⊃I axiom, B is C ⊃ D. The meta-proof must have the structure of Figure 4.
It contains a proof of [[C]] ⇒ [[D]] from [[A1]], . . . , [[Am]]. By expanded normal form this
consists of a proof of [[D]] from [[A1]], . . . , [[Am]], [[C]], followed by ⇒-introduction, discharg-
ing the assumption [[C]]. By the induction hypothesis, construct an ipl proof of D from
A1, . . . , Am, C, and ⊃I gives an ipl proof of C ⊃ D from A1, . . . , Am.

The cases for the other axioms are similar. 2

7

Theorem 3 Mipl is complete for ipl.
Proof : By induction on the size of the ipl proof of B from A1, . . . , Am, construct a proof
of [[B]] from [[A1]], . . . , [[Am]] in Mipl.

Suppose the last inference of the ipl proof is ⊃I, and the conclusion is C ⊃ D. Then
the rule is applied to an ipl proof of D from A1, . . . , Am, C. By the induction hypothesis,
construct an Mipl-proof of [[D]] from [[A1]], . . . , [[Am]], [[C]]. Now it is easy to construct a
meta-proof like that in Figure 4.

The cases for the other axioms are similar. 2

3 Quantification

Many logical constants introduce bound variables: universal and existential quantifiers (∀
and ∃), description operators (λ, ι and ε), general product and sum (Π and Σ), union and
intersection of families (as in

⋃
i∈I Ai), and so on. Isabelle implements logics comprising

most of these.
Adding quantifiers to the previous object-logic gives intuitionistic first-order logic

(ifol). Formally, extendMipl to becomeMifol. Add the type term for denotations of
terms. The quantifiers are the constant symbols

∀,∃ : (term → form)→ form

If A, A(x), and A(x, y) each have type form then the three variables named A must
have different types, and so are different variables. Rather than declaring a fixed list
of variables with their types, let the context determine the types — avoiding things like
A&A(x). For emphasis, F , G, and H will stand for formula-valued functions.

Write ∀x.A for ∀(λx.A) and ∃x.A for ∃(λx.A). By λ-conversion every quantified for-
mula is equivalent to one of the form ∀(F) or ∃(F), where F has type term → form.

The rules (Figure 5) and their meta-level axioms (Figure 6) do not have the close
resemblance that we saw for propositional logic. The eigenvariable conditions of ∀I and
∃E are not formalized literally. Note that the two conditions differ in form but not in effect.
Both ensure that x serves only to specify a truth-valued function, through its occurrences
in A.

In the axioms, F denotes not the text of the quantification but its meaning: a truth-
valued function. The axiom ∀I states that if F is an everywhere-true function then ∀x.F (x)
is true. Similarly, B denotes not the text of a formula but a truth-value. The ∃E axiom
states that if ∃x.F (x) is true and F (x) implies B for all x, then B is true. The axioms
reflect the meanings of the corresponding rules.

Although the justification of each axiom is semantic, they behave as expected in syntax.
Substitution for the variables F and B avoids capture of the variable x. In particular, B
may not be replaced by a formula containing x. Assumptions also obey the eigenvariable
conditions, as we shall see below.

The demonstration that these axioms faithfully represent first-order logic is similar to
that for propositional logic (Section 2).

Theorem 4 Mifol is sound for ifol.
Proof : By induction over the expanded normal proof inMifol of [[B]] from [[A1]], . . . , [[Am]],
construct an ifol proof of B from A1, . . . , Am. The branch terminating with [[B]], unless
it is trivial, consists of an axiom followed by elimination rules.

8

introduction (I) elimination (E)

Universal quantifier
A

∀x.A∗
∀x.A
A[t/x]

Existential quantifier
A[t/x]
∃x.A

∃x.A
[A]
B

B
∗

*Eigenvariable conditions:
∀I: provided x not free in the assumptions

∃E: provided x not free in B or in any assumption save A

Figure 5: Quantifier rules

∧
F . (

∧
x . [[F (x)]])⇒ [[∀x.F (x)]] (∀I)∧

Fy . [[∀x.F (x)]]⇒ [[F (y)]] (∀E)

∧
Fy . [[F (y)]]⇒ [[∃x.F (x)]] (∃I)∧

FB . [[∃x.F (x)]]⇒ (
∧
x . [[F (x)]]⇒ [[B]])⇒ [[B]] (∃E)

Figure 6: Meta-level axioms for the quantifier rules

∧
Fy . [[F (y)]]⇒ [[∃x.F (x)]]∧
y . [[G(y)]]⇒ [[∃x.G(x)]]
[[G(u)]]⇒ [[∃x.G(x)]]

...
[[G(u)]]

[[∃x.G(x)]]

Figure 7: The meta-proof formalizing an ∃I inference

∧
FB . [[∃x.F (x)]]⇒ (

∧
x . [[F (x)]]⇒ [[B]])⇒ [[B]]∧

B . [[∃x.G(x)]]⇒ (
∧
x . [[G(x)]]⇒ [[B]])⇒ [[B]]

[[∃x.G(x)]]⇒ (
∧
x . [[G(x)]]⇒ [[C]])⇒ [[C]]

...
[[∃x.G(x)]]

(
∧
x . [[G(x)]]⇒ [[C]])⇒ [[C]]

[[[G(y)]]]
...

[[C]]
[[G(y)]]⇒ [[C]]∧
y . [[G(y)]]⇒ [[C]]

[[C]]

Figure 8: The meta-proof formalizing an ∃E inference

9

For the ∃I axiom, B is ∃x.G(x). The normalized proof must have the form shown in
Figure 7. Two

∧
-eliminations introduce G and u; then⇒-elimination is applied to a proof

of [[G(u)]] from [[A1]], . . . , [[Am]]. By the induction hypothesis construct an ifol proof of
G(u) from A1, . . . , Am, and use the ∃I rule to prove ∃x.G(x). The Mifol proof is shown
without β-conversions, identifying terms that have the same normal form. If G is λx.A
then G(u) ≡ A[u/x], and [[∃x.G(x)]] ≡ [[∃x.A]].

For ∃E, the proof (Figure 8) contains a proof of
∧
y . [[G(y)]]⇒ [[C]] from [[A1]], . . . ,

[[Am]]. Assuming expanded normal form, it consists of a proof of [[C]] followed by ⇒-
introduction, discharging [[G(y)]], followed by

∧
-introduction. (The bound variable y can

be chosen so that it is not free in [[A1]], . . . , [[Am]].) By the induction hypothesis, there are
ifol proofs of C from A1, . . . , Am, G(y) and of ∃x.G(x) from A1, . . . , Am. The ∃E rule
gives an ifol proof of C from A1, . . . , Am.

The cases for the other axioms are similar. 2

Theorem 5 Mifol is complete for ifol.
Proof : By induction over the ifol proof of B from A1, . . . , Am, construct a proof of [[B]]
from [[A1]], . . . , [[Am]] in Mifol.

The hardest case is when the last inference is ∃E. Then the rule is applied to an
ifol proof of ∃x.A, and to a proof of B from A. By the axiom for ∃E, it is enough to
prove the theorems [[∃x.A]] and

∧
x . [[A]]⇒ [[B]]. By the induction hypothesis, there is an

Mifol-proof of [[∃x.A]], and also a proof of [[B]] from [[A]]. The meta-proof resembles that
in Figure 8, where G is λx.A. Again, terms having the same normal form are identified.
2

Remark. Perhaps the type names term and form are overly syntactic; term denotes a
set of individuals while form denotes a set of truth-values. The meaning of A ⊃ B should
depend on the meanings of A and B, not on their syntactic structure.

Still, types play an important syntactic role. An expression of type term represents an
ifol term, and similarly form represents formulae. By assigning a type to each syntactic
category of the object-logic, type-checking in M enforces syntactic constraints.

References

[1] Michael Dummett. Elements of Intuitionism. Oxford University Press, 1977.

[2] J. Roger Hindley and Jonathon P. Seldin. Introduction to Combinators and λ-Calculus.
Cambridge University Press, 1986.

[3] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of Automated
Reasoning, 5(3):363–397, 1989.

[4] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic
and Computer Science, pages 361–386. Academic Press, 1990.

[5] Dag Prawitz. Natural Deduction: A Proof-theoretical Study. Almquist and Wiksell, 1965.

[6] Dag Prawitz. Ideas and results in proof theory. In J. E. Fenstad, editor, Second Scandinavian
Logic Symposium, pages 235–308. North-Holland, 1971.

10

