Formalizing Abstract Mathematics: Issues and Progress

Lawrence C. Paulson

Computer Laboratory

Milestones in Formalized Mathematics

- Gödel's incompleteness theorem (Shankar, 1985)
- Quadratic reciprocity (Russinoff, 1992)
- Real analysis, measure theory and probability (Harrison, 1996; Hurd, 2002)
- Continuous lattices (Bancerek \& Rudnicki, 2003)
- Relative consistency of the axiom of choice (2003)

Abstract Mathematics

- concerns classes of objects specified by axioms, not concrete objects like the integers or reals
- objects are typically structures: $\left(G, \cdot, 1,{ }^{-1}\right)$
- groups, rings, lattices, topological spaces, ...
- concepts are frequently combined and extended
- instances may be concrete (the integers are a ring) or abstract (the product of two groups is a group)

Essentials for Formalization

- Structures are not "theories" (of proof tools)
- Carriers must be sets, not types.
- Structures must be first-class values.
- Syntax should reflect the context: if G is a group, then $(x y)^{-1}=y^{-1} x^{-1}$ refers implicitly to G.
- Inheritance of syntax and theorems should be automatic.

Isabelle Overview

- A generic proof tool supporting (among others)
- higher-order logic with polymorphism
- ZF set theory
- rewriting, classical reasoning, arithmetic
- flexible mixfix syntax with LaTeX output
- User interface: Proof General

Support for Abstraction

- $\backslash<$ index> arguments in syntax declarations
- extensible records (HOL only)
- locales: portable contexts
- locale instantiation
- choice of typed or untyped formalism

\<index> Arguments in Syntax Declarations

- One function argument may be \<index>
- Even works for infix operators: $\mathrm{a} \otimes_{\mathrm{G}} \mathrm{b}$
- Good for denoting record fields
- Can declare a default by(structure G)
- Yields a concise syntax for G while allowing references to other groups.

Records

- Can have polymorphic types
- Can be extended with additional fields
- Fields are functions and can have special syntax

Locales: A Lightweight Module System

- Named contexts including variables (with syntax), assumptions and theorems
- "G is a group"
- " h is a homomorphism between G and H "
- Multiple inheritance
- One can reason within a locale but also reason about a locale: it is simply a predicate.

A Locale for Monoids

A Locale for Groups

A group is a monoid whose elements have inverses.
locale group = monoid + assumes inv_ex:
$" \bigwedge x . x \in \operatorname{carrier} G \Longrightarrow \exists y \in \operatorname{carrier} G . y \otimes x=1 \& x \otimes y=1 "$
Reasoning in locale group makes implicit the assumption that G is a group.

We can use the syntax defined in the locale.

A Proof In Locale group

```
    The default group is G
lemma (in group) l_cancel [simp]:
    assumes [simp]: "x \in carrier G" "y \in carrier G" "z \in carrier G"
    shows "(x & y = x & z) = (y = z)"
proof
    assume eq: "x \otimes y = x \otimes z"
    hence "(inv x \otimes x) \otimes y = (inv x \otimes x) \otimes z"
        by (simp only: m_assoc inv_closed prems)
    thus "y = z" by simp
next
    assume eq: "y = z"
    then show "x \otimes y = x \otimes z" by simp
    Axiom of the monoid locale
```


Defining the Direct Product

- The carrier is the Cartesian product of G and H.
- The operator and unit are the pairwise combination of those of G and H.

$$
\begin{aligned}
& " G \times \times H \equiv(\mid \text { carrier }=\text { carrier } G \times \text { carrier } H \\
& \quad \begin{array}{l}
\text { mult }=\left(\lambda(g, h)\left(g^{\prime}, h^{\prime}\right)\right. \\
\text { one } \left.=\left(\mathbf{1}_{G}, \mathbf{1}_{H}\right) \mid\right) "
\end{array}
\end{aligned}
$$

Subscripting identifies the group

The Product of Two Groups is a Group

The Set of Homomorphisms

```
"hom \(G H \equiv\)
    \{h. \(h \in\) carrier \(G \rightarrow\) carrier \(H \&\)
        ( \(\left.\left.\forall x \in \operatorname{carrier} G . \forall y \in \operatorname{carrier} G . h\left(x \otimes_{G} y\right)=h x \otimes_{H} h y\right)\right\}^{\prime \prime}\)
```


Two trivial consequences

lemma hom_mult:
$" \llbracket h \in \operatorname{hom} G H ; x \in \operatorname{carrier} G ; y \in \operatorname{carrier} G \rrbracket \Longrightarrow h\left(x \otimes_{G} y\right)=h x \otimes_{H} h y "$
by (simp add: hom_def)
lemma hom_closed:
$" \llbracket h \in \operatorname{hom} G H ; x \in$ carrier $G \rrbracket \Longrightarrow h x \in$ carrier $H "$
by (auto simp add: hom_def funcset_mem)

A Locale for

Homomorphism Proofs

A Proof: Homomorphisms Preserve Inverses

Facts about h and about groups G and H are implicitly present.

```
lemma (in group_hom) hom_inv [simp]:
    assumes [simp]: "x \in carrier G" shows "h (inv x) = inv (h (h x)"
proof -
    have "h x * 有 h (inv x) = 1 1 "
        by (simp add: hom_mult [symmetric] del: hom_mult)
    also have "... = h x * # inv (h x)"
        by simp
    finally have "h x * # h (inv x) = h x * # inv (h x)".
    thus ?thesis by (simp del: inv add: is_group)
qed
```


More Formalized Algebra

- Groups of permutations and automorphisms
- Cosets, normal subgroups, Lagrange's theorem
- The first Sylow theorem (Kammüller, 1999)
- Quotient groups, the first isomorphism theorem
- Beginnings of ring theory

Related Work: Mizar

- structures with multiple inheritance
- adjectives for constraining structures
- coercions by widening and by proved closure properties
- Substantial formal developments
- commutative algebra
- Compendium of Continuous Lattices

Related Work: Others

- Pioneering attempts: E. Gunter (1989); Yu (1990)
- Recent experiments by Arthan (2004)
- Massive development by Kobayashi et al. (2004)
- Jordan-Hölder theorem
- Chinese remainder theorem for rings
- Modules: exact sequences, tensor products

Conclusions

- Without notational support, users can still do much by pure stamina (Kobayashi).
- Excellent support for abstraction can be hardwired into an assertion language (Mizar).
- The elements of formal abstract mathematics are records, subscripting (with infixes and defaults) and locales (contexts formalized as predicates).

