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Gödel [3] published a monograph in 1940 proving a highly significant the-
orem, namely that the axiom of choice (AC) and the generalized continuum
hypothesis (GCH) are consistent with respect to the other axioms of set theory.
This theorem addresses the first of Hilbert’s famous list of unsolved problems
in mathematics. I have mechanized this work [8] using Isabelle/ZF [5, 6]. Obvi-
ously, the theorem’s significance makes it a tempting challenge; the proof also
has numerous interesting features. It is not a single formal assertion, as most
theorems are. Gödel [3, p. 33] states it as follows, using Σ to denote the axioms
for set theory:

What we shall prove is that, if a contradiction from the axiom of choice
and the generalized continuum hypothesis were derived in Σ, it could be
transformed into a contradiction obtained from the axioms of Σ alone.

Gödel presents no other statement of this theorem. Neither does he introduce a
theory of syntax suitable for reasoning about transformations on proofs, surely
because he considers it to be unnecessary.

Gödel’s work consists of several different results which, taken collectively,
express the relative consistency of the axiom the choice. The concluding inference
takes place at the meta-level and is not formalized. Standard proofs use meta-
level reasoning extensively. Gödel writes [3, p. 34],

However, the only purpose of these general metamathematical consid-
erations is to show how the proofs for theorems of a certain kind can
be accomplished by a general method. And, since applications to only a
finite number of instances are necessary . . ., the general metamathemat-
ical considerations could be left out entirely, if one took the trouble to
carry out the proofs separately for any instance.

I decided to take the trouble, with the help of a mechanical theorem prover.
In brief, the proof goes as follows. We define a class model, called L, for

the axioms of set theory.1 L can be seen as containing just the sets that must
exist because they can be defined by formulas. Since L is a proper class and
1 A class in ZF is simply a first-order formula in one variable. We typically endow

classes with set notation, e.g. writing a ∈ L rather than L(a), but they exist only in
the metalanguage.



not a set, we need to be careful about the notion of satisfaction. We cannot
talk within ZF about a formula being satisfied by a class model. Instead we
transform the formula, restricting each quantifier to range over L instead of
ranging over all sets. For example, we transform ∀xφ(x) into ∀x [x ∈ L→ φL(x)],
where φL(x) is the result of recursively transforming φ. This transformation is
called relativization. If the relativized formula is a theorem, then we say that the
original formula is true in L. We must prove that L satisfies (in that sense) all
the axioms of set theory, and we must further prove that L satisfies the axiom of
choice. Although we continue to work in first-order logic and ZF, relativizing all
quantifiers to L has the effect of augmenting our axiom system with the axiom
of choice.

– Provided we work entirely with formulas relativized to L, we can prove all
the consequences of the axioms of set theory including the axiom of choice.

– Because relativization is merely a syntactic transformation within first-order
logic, every proof in L is also a proof in the original set theory, which lacks
the axiom of choice.

– The relativization of false is false.

Thus, if we prove false using the axiom of choice, then we have also found a
contradiction in the original set theory. This is a strong form of relative consis-
tency. Gödel specifically notes that a contradiction in basic set theory “could
actually be constructed” [3, p. 87] from a contradiction in L. We merely have
to express this contradiction using formulas relativized to L. However, to show
that a proof exists using relativized formulas seems to require a small amount
of proof theory [8].

The main steps of the proof are as follows:

1. Define the class L.
2. Prove that L satisfies the axioms of set theory. For ZF, the main difficulty

is the axiom scheme of comprehension, also known as separation.
3. Prove that L satisfies the assertion “every set belongs to L,” which is tradi-

tionally written V = L.
4. Prove that V = L implies AC.

Set-theoretic notation complicates the formalization. We are accustomed to
writing unions, intersections, etc, with variable binding as in

⋃
x∈A B(x). But

formally, the language of set theory consists of first-order logic plus the member-
ship relation and equality. It has no terms other than individual variables. Before
we can relativize an expression E(x), we must translate it into a pure formula
φ(x, y) such that φ(x, y) ↔ y = E(x). We must even translate the complicated
expressions generated by Isabelle/ZF as it processes recursive definitions of sets
and functions. In mathematical textbooks, relativization is done implicitly: all
you have to do is put the superscript L on a term or formula. For example,
the claim that L satisfies V = L is trivially expressed by (V = L)L. In the
Isabelle/ZF proof, I have had to write out each relativized expression explicitly
for each concept used in the construction of L, in order to express (V = L)L.



Proving that L satisfies V = L is a key part of the proof, and despite first
appearances, it is not trivial. It amounts to saying that the construction of L is
idempotent. In other words, if starting in L we repeat the construction of L, then
it will yield the whole of L and not some subclass of it. The underlying concept
is called absoluteness, which expresses that a given notion or expression is the
same in every transitive model of set theory.2 Most constructions are absolute.
For example, A ⊆ B can only mean that each element of A also belongs to B.
The empty set, obviously, can only be a set containing no elements. If A and B
are sets then their union can only be the set containing precisely the elements
of those sets. Wellorderings and ordinals are absolute. Powersets however are
not absolute, for there could be many subsets even of the natural numbers that
cannot be shown to exist; they could exist in some models and not in others.

Skolem’s paradox [4, p. 141] is a striking illustration that cardinality is not
absolute. Set theorists naturally assume that models exist of the ZF axioms, from
which it follows by the downward Löwenheim-Skolem theorem that there exists a
countable model M of ZF. The “paradox” is that this countable model “thinks”
that it contains arbitrarily large cardinals. More precisely, if α is an uncountable
cardinal according to M , then obviously α must be really be countable because
α ⊆M . The point is that none of the bijections between α and ω belong to M ;
although the property of being a bijection is absolute, the property of being the
set of all functions from α to ω is not. Neither is the property of being a cardinal.

Papers on formal verification often describe the work as “straightforward
but tedious.” The idempotence proof meets this description in the extreme. It
has been necessary to relativize all the concepts of set theory, from the empty
set to ordinals, recursive functions, etc. Then I had to prove that each of these
concepts was absolute. In essence, this amounts to examining each definition
to ensure that it uses only absolute constructions. Powersets are not absolute,
but they appear surprisingly often, and then an alternative definition must be
found and proved equivalent to the original one. The treatment of recursion was
particularly difficult. I had to prove much of the foundations of recursion again
from first principles. Having done this, we cannot merely note that all functions
defined by recursion are absolute, as textbooks do. We must take each recursive
definition, take it apart piece by piece, prove absoluteness for the pieces and
feed those results into a theorem that will yield absoluteness for that particular
function. I have done all of this with respect to an arbitrary transitive class
model M, and later instantiated the proofs to L.

Further tedium arises from the need to internalize the notion of formula. A
recursive datatype of formulas is defined, since it is needed to define L. Most of
the relativized formulas mentioned in the previous paragraph have to be trans-
lated a second time into this datatype of formulas. Fortunately, some of the
translations are done automatically.

Once the idempotence proof is done, we are justified in assuming V = L.
I have separately proved that V = L implies the axiom of choice. This proof
is straightforward both in concept and in execution. By transfinite induction,

2 M is transitive if x ∈M implies x ⊆M.



each level of the construction of L is well-ordered. The wellordering comes in an
obvious way from the countability of the set of formulas. Gödel went on to prove
that V = L implies the generalized continuum hypothesis. Although I omitted
this step, it can probably be done with an acceptable amount of effort.

My formalization has two limitations. First, I am not able to prove that
L satisfies the axiom scheme of comprehension. Although Isabelle/ZF handles
schematic proofs easily, the proof of comprehension for the formula φ requires an
instance of the reflection theorem for φ. Each instance of reflection [7] involves
recursion over the structure of φ. Each instance of comprehension therefore has
a different proof and must be proved separately. At the meta-level, of course, all
of these proofs are instances of one algorithm, and they are generated by nearly
identical proof scripts. Reasoning at the meta-level, we can see that all instances
of the reflection theorem are available and that they imply all instances of the
axiom of comprehension. But these meta-level inferences cannot be formalized
in my framework. The inability to prove comprehension once and for all added
further tedium to the project: in the absoluteness proofs, I had to keep track of
each instance of comprehension that I used. Then, in order to instantiate these
proofs to L, I had to prove that each of those instances held in L. There are
about 35 such instances.

My formalization has another limitation. The proof that L satisfies V = L
cannot be combined with the proof that V = L implies the axiom of choice in
order to conclude that L satisfies the axiom of choice. The reason is that the
two instances of V = L are formalized very differently: one is relativized and
the other is not. These problems arise because my work builds on the existing
Isabelle/ZF formalization of set theory, comprising some 20 000 lines of proof
scripts, rather than creating an new mechanized proof system specifically for
Gödel’s proof. Using Isabelle/ZF allows much of the work to be undertaken in
the style of textbook proofs, and it enjoys the property that every proof involving
relativized formulas (including one of false) is also a proof in ZF.

We could remedy both limitations by tackling Gödel’s proof in a quite dif-
ferent way, working entirely in the metatheory. Unfortunately, experience shows
that a formalized metatheory is convenient only for proving metatheorical re-
sults and not for proving, e.g., specific theorems of set theory. The formaliza-
tion of the theorem statement would have to be done with care: the obvious
Con(ZF) → Con(ZF + (V=L)) sacrifices a crucial aspect of Gödel’s result,
namely that a contradiction in ZF + (V=L) can be effectively transformed into
a contradiction in ZF. Thus it appears necessary to introduce both proof theory
and a model of computation, imposing two unenlightening technical layers onto
Gödel’s construction. I leave such issues as a challenge for the theorem-proving
community.

A few other researchers have undertaken mechanized proof in set theory.
Quaife [9] has generated proofs of hundreds of elementary results using the Ot-
ter resolution theorem prover, starting with a machine-oriented formalization of
Bernays-Gödel set theory. BG set theory differs from ZF in that it replaces the
axiom scheme of comprehension by a finite set of primitives that can be used to



express particular comprehensions; these primitives are difficult to use, but they
allow the axiom system to be finite. Building on Quaife’s work, Belinfante has
implemented a Mathematica program for translating comprehensions into the
BG formalism; he submits these to Otter and thereby has proved facts about
the ordinals [2], for example. The Mizar system is based on Tarski-Grothendieck
set theory. It is designed for formalizing mathematics [1] and not merely for for-
malizing set theory; however, much set theory has been formalized using Mizar,
for example some elementary facts concerning large cardinal axioms [10].

In many respects, my formalization follows traditional ones. My development
is largely based on Kunen [4]. My use of native set theory (as embodied in
Isabelle/ZF) is very much in the spirit of those proofs, although it leads to the
difficulties mentioned above. A byproduct of the work is a general theory of
absoluteness for arbitrary class models of ZF. It could be used for other formal
investigations of inner models.
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