Getting Started With Isabelle

Lecture IV: The Mutilated Chess Board

Lawrence C. Paulson
Computer Laboratory

㚠图 UNIVERSITY OF
(WMBRIDGE

Lecture Outline

- The informal problem
- Inductive definitions
- The Isabelle/HOL specification
- Proof overview

The Mutilated Chess Board

After cutting off the corners, can the board be tiled with dominoes?

The point: find a suitably abstract model.

General Tiling Problems

A tile is a set of points (such as squares).
Given a set of tiles (such as dominoes):

- The empty set can be tiled.
- If t can be tiled, and a is a tile disjoint from t, then the set $a \cup t$ can be tiled.

For A a set of tiles, inductively define tiling (A) :

```
consts tiling :: "'a set set => 'a set set"
inductive "tiling A"
    intrs
        empty "{} : tiling A"
        Un
```

```
"[| a: A; t: tiling \(A\); \(a<=-t \mid]\)
```

"[| a: A; t: tiling A; $a<=-t \mid]$
==> a Un t : tiling A"

```
==> a Un t : tiling A"
```


Inductive Definitions in Isabelle/HOL

We get (proved from a fixedpoint construction)

- rules tiling.empty and tiling. Un for making tilings
- rule tiling.induct to do induction on tilings:

```
[| xa : tiling A;
```

 P \{\};
 !!at. [| a : A; t : tiling A; \(P\) t; \(a<=-t \mid]\)
 \(=\Rightarrow P(a \operatorname{Un} t) \mid]\)
 $==>P$ xa

If property P holds for $\}$ and if P is closed under adding a tile, then P holds for all tilings.

Example: The Union of Disjoint Tilings

If $t, u \in \operatorname{tiling}(A)$ and $t \subseteq \bar{u}$ then $t \cup u \in \operatorname{tiling}(A)$.
base case Here $t=\{ \}$, so $t \cup u=u \in \operatorname{tiling}(A)$ by assumption.
induction step Here $t=a \cup t^{\prime}$, with a disjoint from t^{\prime}.
Assume that $a \cup t^{\prime}$ is disjoint from u.
By induction $t^{\prime} \cup u$ is a tiling, since t^{\prime} is disjoint from u.
And $a \cup\left(t^{\prime} \cup u\right)$ is a tiling, since a is disjoint from $t^{\prime} \cup u$. So $t \cup u=a \cup t^{\prime} \cup u \in \operatorname{tiling}(A)$.

The Proof Script for Our Example

```
Goal "t: tiling A ==> \
    u: tiling A --> t <= -u --> t Un u : tiling A";
by (etac tiling.induct 1);
    perform induction over tiling(A)
by (simp_tac (simpset() addsimps [Un_assoc]) 2);
by Auto_tac;
    tidy up remaining subgoals
qed_spec_mp "tiling_UnI";
    store the theorem
```


The Isabelle Theory File

```
Mutil = Main +
consts tiling ...
consts domino :: "(nat*nat)set set"
inductive domino
    intrs dominoes too are inductive!
    horiz "{(i, j), (i, Suc j)} : domino"
    vertl "{(i, j), (Suc i, j)} : domino"
constdefs
    below :: "nat => nat set" row/column numbering
        "below n == {i. i<n}"
        colored :: "nat => (nat*nat)set"
        "colored b == {(i,j). (i+j) mod 2 = b}"
end
```


Proof Outline

Two disjoint tilings form a tiling.
Simple facts about below: chess board geometry
Then some facts about tiling with dominoes:

Every row of length $2 n$ can be tiled.
Every $m \times 2 n$ board can be tiled.
Every tiling has as many black squares as white ones.
If t can be tiled, then the area obtained by removing two black squares cannot be tiled.

No $2 m \times 2 n$ mutilated chess board ($m, n>0$) can be tiled.

The Cardinality Proof Script

```
Goal "t: tiling domino ==> \
\ card(colored 0 Int t) = card(colored 1 Int t)";
by (etac tiling.induct 1);
    perform induction over tiling(A)
by (dtac domino_singletons 2);
                                a domino has a white square & a black one
by Auto_tac;
by (subgoal_tac "ALL p C. C Int a = p --> p ~: t" 1);
    lemma about the domino a and tiling t
by (Asm_simp_tac 1);
by (blast_tac (claset() addEs [equalityE]) 1);
        using, and proving, this lemma
```


Benefits of the Inductive Model

Follows the informal argument
Admits a general proof, not just the 8×8 case
Yields a short proof script:

- 15 theorems
- 2.4 tactic calls per theorem
- 4.5 seconds run time

Other Applications of Inductive Definitions

- Proof theory
- Operational semantics
- Security protocol verification
- Modelling the λ-calculus

