Getting Started With Isabelle Lecture II: Theory Files

Lawrence C. Paulson Computer Laboratory

sorts to classify types for overloading* **types** to classify terms (including polymorphism) **terms** and formulas (which are just Boolean terms) **inference rules** as assertions of the meta-logic **theory files** to declare types, constants, etc. **proof files** containing Goal, by, ged commands **new-style theories** by Markus Wenzel (Isar)*

*not in this course

Types in Isabelle/HOL

- 'a, 'b, ... type variables (like in ML)
- bool, nat, ... base types
 - 'a list,... type constructors
- (bool*nat)list instance of a type constructor

 $x :: \tau$ means "x has type τ "

Type bool: *Formulas* of *Higher-Order Logic*

- ~ P negation of P
- P & Q conjunction of P and Q
- $P \mid Q$ disjunction of P and Q
- $P \rightarrow Q$ implication between P and Q
- (P) = (Q) logical equivalence of P and Q
- ALL x. P or ! x. P for all (universal quantifier)
 - **EX x.** P or ? x. P for some (existential quantifier)

Also conditional expressions: if P then t else u

Numeric Types nat, int, real, ...

-x	unary minus of <u>x</u>	all numerics
+ - *	sum, difference, product	all numerics
#ddd	binary numerals	all numerics
div mod	quotient, remainder	types nat, int
Suc n	successor $n+1$	type nat
0 1 2	unary numerals	type nat
< <=	orderings	overloaded
= ~=	equality, non-equality	overloaded

Automatic simplification, including linear arithmetic

Lists: the Type Constructor 'a list

Nil	the	empty	list
-----	-----	-------	------

- Cons x l list with head x, tail l
 - xs @ ys append of xs, ys
- hd tl rev... common list functions
- map filter... common list functionals
- $[x_1, \ldots, x_n]$ list notation
 - [x:l. P] nice syntax for filter

Sets: the Type Constructor 'a set

- x : A membership, $x \in A$
- $x \sim A$ non-membership, $x \notin A$
- $A \ll B$ subset, $A \subseteq B$
 - -A complement of A
- A Un B union of A and B
- A Int B intersection of A and B
- ALL x:A. *P* bounded quantifier (also EX)
 - UN x:A. P union of a family of sets (also INT)

Tupled and Curried Functions

$[\sigma_1, \ldots, \sigma_n] \implies \tau$	curried function type
$\mathscr{C}x_1 \ldots x_n \cdot t$	curried λ -abstraction
$f t_1 \ldots t_n$	curried function application
$\sigma_1 * \cdots * \sigma_n \Longrightarrow \tau$	tupled function type
1 <i>N</i>	tupled function type tupled λ -abstraction

Tupled abstraction allowed elsewhere:

ALL (x,y):edges. $x \sim y$

Name spaces resolve duplicate constant declarations Identifiers not declared as constants can be variables Unknowns are instantiated automatically

- T.c constant c declared in theory T
 - c constant declared most recently
 - x free variable (if not declared as a constant)
- ?x schematic variable (unknown)

Format of a Theory File

$$T = T_1 + \cdots + T_n +$$

consts uList :: "'a => 'a list"

<u>rules</u> f_axiom "f(f n) < f (Suc n)"

<u>record</u> ...

inductive ...

<u>end</u>

Extend theories T_1, \ldots, T_n with constants, axioms, record declarations, etc., etc.

Further Material Provided by Isabelle/HOL

Relations — their properties and operations on them **Equivalence classes** — quotients and congruences Well-foundedness of many orderings including multisets **Cardinality** including binomials and powersets **Non-standard analysis** (thanks to Jacques Fleuriot) **Prime numbers** — GCDs, unique factorization Browse the Isabelle theory library on the WWW

