

# A Formalisation of the Balog–Szemerédi–Gowers Theorem in Isabelle/HOL

Angeliki Koutsoukou-Argyraki | Mantas Bakšys | Chelsea Edmonds

ak2110@cam.ac.uk | mb2412@cam.ac.uk | cle47@cl.cam.ac.uk

Department of Computer Science & Technology, University of Cambridge, UK

CPP2023

11 August 2023

# **Additive Combinatorics**

# Additive combinatorics is, at heart, the study of combinatorial questions involving *the additive structure of sets*



Given an additive abelian group G and finite subsets A and B we define:

- ▶ Sumset:  $A + B = \{a + b | a \in A, b \in B\}.$
- ▶ Difference Set:  $A B = \{a b | a \in A, b \in B\}.$
- Additive Energy:

 $E(A) = |\{(a, b, c, d) \in A \times A \times A \times A | a + b = c + d\}|/|A|^3.$ 

#### Simple concepts = many questions

e.g. Is the sumset a subgroup or is it close to being one? What are the bounds on cardinality? Do sets contain an arithmetic progression?

. . .

**Balog & Szemerédi (1994):** Every finite subset A (of given additive energy) in an abelian group *must* contain a subset A' of A so that the cardinality of A' is large *but* the cardinality of the sumset A' + A' is small.

**Gowers (2001)**: New proof of the above with much better bounds on the cardinalities (BSG). Key ingredient of Gowers's new proof of the celebrated Szemerédi's Theorem on arithmetic progressions.

# Why Formalise?

### Modern Interesting Relevant

- Additive combinatorics: active field with many open problems.
- BSG formal theorem: first formalisation & crucial tool in current research on additive combinatorics.
- BSG proof techniques: a fascinating interplay between additive combinatorics, graph theory and probability theory.
- Formal combinatorics libraries are quickly growing. Isabelle AFP: 58/316 Mathematics entries. Mirrored in other proof assistants (e.g. Lean).



# **Our Key Contributions**

- Background formalisations in additive combinatorics and probability theory as required.
- A new, extensive, extensible, generalised graph theory library.
- Formalisation of the Balog–Szemerédi–Gowers Theorem in Isabelle/HOL (first in any proof assistant).
- A case study on the locale-centric approach in Isabelle/HOL including the interplay in proof of different mathematical fields.
- Formalisation of some additional related results in additive combinatorics & an alternative version of the main theorem (sumsets vs difference sets).

### **Background Resources**

- Previous work on basic sumset theory from the AFP entry "The Plünnecke-Ruzsa Inequality" by Koutsoukou-Argyraki & Paulson.
- ...built on the AFP entry "A Case Study in Basic Algebra" by Ballarin.
- 2022 lecture notes by Gowers: "Introduction to Additive Combinatorics" for the University of Cambridge.

# A new general undirected graph theory library

#### Motivated by:

- Limitations and inflexibility of existing libraries specific to entries.
- Unnecessary complexity introduced by general *directed* library in Isabelle (Noschinski, 2015).

```
type_synonym uvert = nat
type_synonym uedge = "nat set"
type_synonym ugraph = "uvert set × uedge set"
```

Basic Undirected Graphs (Noschinski)

```
record ('v, 'w) graph =
    nodes :: "'v set"
    edges :: "('v × 'w × 'v) set"
```

### Dijkstra's Algorithm (Nordhoff & Lammich)

```
record ('a,'b) pre_digraph =
verts :: "'a set"
arcs :: "'b set"
tail :: "'b ⇒ 'a"
head :: "'b ⇒ 'a"
```

Digraphs (Noschinski)

### Locales



# The Balog–Szemerédi–Gowers Theorem

#### The formal statement of the theorem:

### Theorem (Balog–Szemerédi–Gowers)

Let c > 0. For every finite subset of an abelian group A with additive energy 2c there exists a subset A' in A of cardinality at least  $c^2|A|/4$  such that  $|A' - A'| \le 2^{30}|A|/c^{34}$ .

Note: analogous version for sumsets, various different versions and refinements of the theorem/proof are available (Zhao, Sudakov & Szemerédi & Vu).

### Sketch of the proof



# The Dependent Random Selection Method



### Lemma (3.1)

Intuitively: Given a dense bipartite graph  $(\delta = |E|/|X||Y|)$ , we can restrict one of its vertex sets to a large subset in which almost all pairs of vertices are joined by many paths of length two (codegree = number of paths of length two).

How do we find a random subset with better properties, based on the structure of the original set?

# The Dependent Random Selection Method

### Method Sketch.

Instead of defining X' randomly, define X' by picking  $y \in Y$  at random, and let X' = neighbourhood(y). Now determine properties of X', e.g. the expected size of X' is average degree of  $y \in Y$ .

```
let ?M = "uniform count measure Y"
interpret P: prob space ?M
  by (simp add: Y not empty partitions finite prob space uniform count measure)
have sp: "space ?M = Y"
  by (simp add: space uniform count measure)
(* First show that the expectation of the size of X' is the average degree of a vert
have avg degree: "P.expectation (\lambda y . card (neighborhood y)) = density * (card X)"
proof -
  have "density = (\sum y \in Y \cdot degree y)/(card X * card Y)"
    using edge size degree sumY density simp by simp
  then have d: "density * (card X) = (\sum y \in Y), degree y)/(card Y)"
    using card edges between set edge size degree sumY partitions finite(1) partitio
  have "P.expectation (\lambda y . card (neighborhood y)) = P.expectation (\lambda y . degree y)
    using alt deg neighborhood by simp
  also have "... = (\sum y \in Y), degree y)/(card Y)" using P.expectation uniform count
    by (simp add: partitions finite(2))
  finally show ?thesis using d by simp
aed
```



### There are many paths of length 3 between vertices in subsets



Lemma 3.2 Diagrammatically (Zhao, 2019)



### There are many paths of length 3 between vertices in subsets

#### Lemma

Let *G* be a bipartite graph with finite vertex sets *X* and *Y* and density  $\delta$ . Then there are subsets  $X' \subseteq X$  and  $Y' \subseteq Y$  with  $|X'| \ge \delta^2 |X|/16$  and  $|Y'| \ge \delta |Y|/4$  such that for every  $x \in X'$  and  $y \in Y'$  the number of paths of length 3 between *x* and *y* in *G* is at least  $\delta^6 |X||Y|/2^{13}$ .

lemma (in fin\_bipartite\_graph) walks\_of\_length\_3\_subsets\_bipartite: obtains X' and Y' where "X' ⊆ X" and "Y' ⊆ Y" and "card X' ≥ (edge\_density X Y)^2 \* card X / 16" and "card Y' ≥ edge\_density X Y \* card Y / 4" and "∀ x ∈ X'. ∀ y ∈ Y'. card {p. connecting\_walk x y p ∧ walk\_length p = 3} ≥ (edge\_density X Y)^6 \* card X \* card Y / 2^13"

#### Lemma 3.2 involves many different probability spaces ( $X2 \subset X$ )

interpret P1: prob\_space "uniform\_count\_measure X" interpret P2: prob\_space "uniform\_count\_measure X2" interpret P3: prob space "uniform count measure Y"

... And several graph constructs

```
interpret H: fin_bipartite_graph "(?X1 \cup Y)" "{e \in E. e \subseteq (?X1 \cup Y)}" "?X1" "Y"
let ?E_loops = "mk_edge ` {(x, x') | x x'. x \in X2 \land x' \in X2 \land
(H.codegree_normalized x x' Y) \geq ?\delta ^ 3 / 128}"
interpret \Gamma: ulgraph "X2" "?E_loops"
```

#### We can transport information easily using locale definitions

have neighborhood\_unchanged: " $\forall x \in ?X1$ . <u>neighbors ss x Y</u> = <u>H.neighbors ss x Y</u>" using <u>neighbors ss def</u> <u>H.neighbors ss def</u> <u>vert adj def</u> <u>H.vert adj def</u> <u>by</u> auto then have degree\_unchanged: " $\forall x \in ?X1$ . <u>degree x</u> = <u>H.degree x</u>" using H.degree neighbors ssX degree neighbors ssX <u>by</u> auto

# The Graph Theoretic "BSG" Lemma 3.6

#### Lemma

Let *A* be a finite subset of an abelian group *G* with additive energy 2c. Then *A* has subsets *B* and *C* with  $|B| \ge c^4 |A|/16$  and  $|C| \ge c^2 |A|/4$  such that  $|C - B| \le 2^{13}c^{-15}|A|$ .

**Proof Elements:** 

- Create an auxiliary graph using the θ-popular difference: d ∈ G is θ-popular if |{(a, b) ∈ A<sup>2</sup>|a − b = d}| ≥ θ|A|.
- Apply Lemma 3.2.
- Find number of unique sextuples for each  $d \in C B$  based on popularity properties (Lemma 3.5) and paths of length 3.
- Determine bounds on |C B|.

# Application of the lemma to additive combinatorics



Credit: Zhao, 2019

### **Graph Construct**

- Vertices: B is a copy of  $A \subseteq G$
- ► Edges:  $(x_i, y_i) \in E$  if and only if  $y_i x_i$  is  $\theta$ -popular.
- Lemma 3.2 then gives large subsets with paths of length 3.

### Working in the additive abelian group context:

```
let ?X = "A × {0:: nat}"

let ?Y = "A × {1:: nat}"

let ?E = "mk_edge ` {(x, y) | x y. x \in ?X \land y \in ?Y \land (popular_diff (fst y <math>\ominus fst x) c A)}'

interpret H: fin_bipartite_graph "?X \cup ?Y" ?E ?X ?Y
```

# The Graph Theoretic "BSG" Formalisation

#### Formalisation Challenges:

Counting and cardinalities: This statement took 113 lines to prove formally compared to 1 sentence in literature.

have card\_ineq1: " $\land x y. x \in ?B \implies y \in ?C \implies$  card ({(z, w) | z w. z  $\in A \land w \in A \land popular_diff (z <math>\ominus x)$  c A  $\land popular_diff (z <math>\ominus w$ ) c A  $\land popular_diff (y \ominus w)$  c A})  $\geq$  (c^12) \* ((card A)^2) / 2^13"

#### Functions for projections: e.g. tuple of 3 pairs from sextuples:

 $\begin{array}{l} \mbox{define f:: "`a $\times$ 'a $\times$ 

# Main Theorem On Paper

### Theorem (Balog–Szemerédi–Gowers)

Let c > 0. For every finite subset of an abelian group A with additive energy 2c there exists a subset A' in A of cardinality at least  $c^2|A|/4$  such that  $|A' - A'| \le 2^{30}|A|/c^{34}$ .

### Proof.

- 1. We simply take A' = C in the previous lemma.
- 2. and apply the Ruzsa triangle inequality. That tells us that  $|B||C C| \le |B C|^2$ .
- 3. which by the lemma is at most  $(2^{13}c^{-15}|A|)^2$ .
- 4. Since  $|B| \ge c^4 |A|/16$  from (1) we obtain the bound stated.

### Main theorem in Isabelle/HOL



# Challenges and Highlights

### The locale approach:

- Building on previous work the graph theory library again proved to be modular, easy to work with, and flexible.
- NEW: Critical to managing the interplay between different mathematical fields.
- Probabilistic Methods:
  - Main challenge = finding theorems, and setting up the formal prob space.
  - Examples of proof structure in combinatorics.
- de Bruijn Factor: 13.9 cardinality/counting/arithmetic lemmas continue to be key contributors.

# **Concluding Thoughts**

- With 3 contributors, the formalisation took less than 2 months (including new graph theory library).
- Key Contributions: The first formalisation of the Balog–Szemerédi–Gowers Theorem, formal techniques for probabilistic methods in combinatorics, and development of the locale-centric approach.
- Other supplementary results and the sumset alternate also formalised.
- Future work: More additive combinatorics, further development of probabilistic methods.

### Acknowledgements and Contacts





Angeliki<sup>1</sup>: ak2110@cam.ac.uk

Mantas<sup>2</sup>: mb2412@cam.ac.uk

Chelsea<sup>3</sup>: cle47@cl.cam.ac.uk

#### Isabelle AFP Entries:

- https://www.isa-afp.org/entries/Balog\_Szemeredi\_Gowers.html
- https://www.isa-afp.org/entries/Undirected\_Graph\_Theory.html

**Funding**: This work was funded by the ERC Advanced Grant ALEXANDRIA (Project GA 742178)<sup>1,2</sup>, the Cambridge Mathematics Placements (CMP) Internship Programme<sup>2</sup>, the Cambridge Trust (Cambridge Australia Scholarships)<sup>3</sup>, and a Cambridge Department of Computer Science and Technology Premium Research Studentship<sup>3</sup>.

### **Examples of Additional Results**

#### Lemma

Let *A* be a finite subset of an Abelian group with  $|A + A| \le C|A|$ . Then the additive energy of *A* is at least  $C^{-1}$ .

proposition additive\_energy lower\_bound\_sumset: fixes C::real assumes "finite A" and "A  $\subseteq$  G" and "(card (sumset A A))  $\leq$  C \* card A" and "card A  $\neq$  0" shows "additive\_energy A  $\geq$  1/C"

(And analogous result with difference set).