
Computational Logic
and the Quest for Greater Automation

Lawrence C Paulson, Distinguished Affiliated Professor for Logic in Informatics

Technische Universität München

(and Computer Laboratory, University of Cambridge)

Themes of This Lecture

I. Logic and the Real World

II.Computers, Logic and Mathematical Proofs

III. Achievements

IV. The Quest for Greater Automation

I. Logic and the Real World

The Two Forms of Logical Reasoning

• Inductive logic draws general
conclusions from observations

• It is the basis of science, and it
concerns the real world

• ... but it never gives an absolute
YES or NO.

• Deductive logic draws specific
conclusions by “pure reasoning”
from axioms

• It is the basis of mathematics

• ... and is 100% certain, except
for human error.

Chickens Can Reason Inductively!

The man is our friend!

...or is he?

Can People Reason Deductively?

• A Sudoku has just one solution.

• An answer is right or wrong—
the rules are simple and clear.

• Chickens can’t solve this, and
neither can most people.

• However, as a logic problem,
it’s trivial!

What Can Deduction Say About the Real World?

• Self-assembly furniture is like a
Sudoku:

• millions of combinations, but
only one solution.

• Chickens can’t solve them, and
neither can most people.

• Deduction can help solve real-
world problems, if we can find
the right mathematical model.

What is the Right Type of Model?

Too simple: deductions about
this say nothing about how to
build the real bookshelf.

Too complicated: do we really
need to understand the fine
structure of the wood?

A good model will identify the
problem’s important features.

II. Computers, Logic and Mathematical Proofs

Myth: “Computers Can’t Do Logic”

• Reason 1: Gödel proved it was impossible.

He didn’t.

• Reason 2: Church did prove it was impossible. (No computer can answer all
problems in first-order logic.)

Computers can still help in many cases.

• Reason 3: Whitehead and Russell needed 362 pages to prove 1+1=2!

There are other ways of formalizing mathematics—
or, would you fly in a 100-year-old aeroplane?

A Formal Proof of 1+1=2 (Back in 1910)

What’s In a Formal Logic?

• Syntax: a grammar for logical statements

• Semantics: a definition of what each grammar element means

• Proof theory: mechanisms for transforming problems into simpler problems
(typically consisting of axioms and inference rules)

! Computers handle the syntax and proof theory. The semantics is for us.

A Simple Formal Logic: Boolean Satisfiability

• A problem is a list of OR-statements. Can they all be true at the same time?

rainy | cloudy | sunny
–sunny | hot! ! ! “if sunny, then hot”

–rainy | wet!! ! ! “if rainy, then wet”

–hot
–wet

• We conclude that it must be cloudy. A SAT-solver can handle problems
100,000 times this size.

• Is this logic trivial? No, it has endless applications, such as finding bugs in
Microsoft device drivers—or solving Sudokus!

The Classic Formalism: First-Order Logic (FOL)

• for all X, Y and Z, if father(X,Y) and father(Y,Z) then grandfather(X,Z)

∀X Y Z. father(X,Y) & father(Y,Z) → grandfather(X,Z)

• for all X, there exists y such that father(X,Y)

∀X. ∃Y. father(X,Y)

• Much of mathematics can be expressed in FOL.

• Powerful automatic provers exist. (Unlike SAT-solvers, they are hardly used.)

Limitations of Automatic Proof Tools

• If automatic software is so powerful, why do we need anything else?

Because it restricts us to small problems and simple models.

• With richer formalisms, we could model almost anything:

• computer processors

• networked systems

• security environments

• advanced mathematics

D(X): the definable subsets of X

L0 = 0

Lα+1 = D(Lα)

Lα =
�

ξ<α

Lξ when α is limit

fin L =
�

α∈ON
Lα

Interactive Theorem Proving

• Formal logics with deeper
concepts: functions, sets,
induction, recursion.

• Hierarchies of mathematical books
(or “theories”):

• Each book defines some
concept, such as cryptography.

• Books can build on other books,
so developments can be huge.

• Users prove the theorems:

• The software knows what proof
steps are legal at a given point.

• It helps by doing basic steps
automatically.

• We are constantly adding to this
automation.

Isabelle: A Generic Interactive Prover

• Generic means the user can
introduce new logical formalisms, in
addition to the standard ones.

• The syntax and axioms can simply
be listed.

• A general mechanism, called
higher-order unification, combines
separate proof steps.

• Over the years, researchers at TUM
have given Isabelle...

• an elaborate formalization of
higher-order logic;

• a structured language, Isar, for
writing proofs in traditional style;

• automatic typesetting of
mathematical proofs.

!Isa
be

lle

III. Achievements

Verified Computer Systems

• Goal: to increase reliability through a mathematical
proof of correctness

• Results are only as accurate as the formal model.

• Traditional testing guards against errors in the model.

computer

proof

human

judgement

How to Verify a Computer System

• Define what it means for a
computation to be OK.

• Safety means nothing has gone
wrong (so far).

• Progress issues—does it do
anything?—are reduced to
safety properties.

• Show all initial states to be OK.

• Show that all possible actions yield
an OK state if they start in one.

• The model needs to include enough
detail about states and possible
state changes.

• Whom are you talking to really?

• Can a spy on the Internet trick your
bank into revealing your details?

• In Isabelle, realistic models of
protocols can be formalized.

• Industrial protocols such as SET
(Secure Electronic Transaction) can be
proved correct.

!"#$%&'()#(*"('+

!"#$%&'$(#
#(!()*(+,
-.#!%"+(
#(+-&/+(

$&#,%-.,(#
$-/!"+(#

/(#$%&0+
$-/!"+(#

0(#!%"/1
-#&!(++(+
#(2.(+1
0(++"3(

!"#$%&'(
#(*"('+

!"#$%&'(
#('!-0'(

101+1&+(
#('!-0'(

101+1&+()
#(*"('+

!"#$%&'$(#
#(!()*(+,
#(+-&/+(

"/$
+(/$+
#(2.(+1

!"#$%&'$(#
)/)1)"1(+
#(2.(+1

0(#!%"/1
+(/$+

!(#1)4)!"1(5+6

Verification Example: Security Protocols

These message exchanges use
encryption to keep data secret while
authenticating the remote computer

Verified Mathematics

• Mathematical techniques are of
unlimited variety and sophistication.

• Verifying known mathematics helps
us improve our tools.

• Algebra requires a flexible
treatment of abstractions.

• Real analysis requires special
solvers for inequalities.

• Formalization finds exceptional
cases and can yield historical
insights.

• Known proofs of the Four Colour
Theorem and of the Kepler
Conjecture are too complicated for
manual methods.

Isabelle Milestones in Verified Mathematics

• Equivalents of the Axiom of Choice:
Gr!bczewski (1996) verified two
chapters of this famous book by
Rubin and Rubin.

• Newton's Principia: Fleuriot (1998)
combined geometry with non-
standard analysis to formalize
Newton’s logic and check some
proofs.

• The relative consistency of the
axiom of choice: was Gödel right to
claim that his proof did not require
meta-mathematical reasoning?

• The prime number theorem: Avigad
(2004) formalized this landmark of
number theory.

• Tame graphs: Nipkow and
colleagues (2006) are contributing
to the effort to prove the Kepler
Conjecture formally.

Verifying Newton’s Principia

• Newton’s great book on motion and
gravity did not use the calculus.

• In this proof of the inverse-square
law, he merely asks what happens
when “the points P and Q coincide.”

• Fleuriot formalized Newton’s
infinitesimal geometry using non-
standard analysis.

• He found an error in this proof, but
found an alternative way to the result.

Proposition XI: a
body in elliptical orbit

IV. The Quest for Greater Automation

Interactive Proof: What’s the Catch?

• Proving theorems interactively
is like building one of these.

• Even obvious facts can be
difficult to prove.

• Legal proof steps are tiny, so
the proofs are long.

• The work can be tiresome and
frustrating...

• and only experts can do it.

Greater Automation: What’s Been Done?

• Most proof tools can use equations like
this one to simplify formulas.

• Isabelle can also use implications like
these to search for proofs, using forward
and backward chaining ...

• thanks to which it can prove
complicated things automatically.

x �= 0 =⇒ x
x
= 1

Still we need more automation!

Idea 1: Combine Isabelle with Automatic Provers

• The best automatic provers—E, SPASS, Vampire—do much more than
chaining.

• To use them requires encoding Isabelle’s rich formalism into the spartan
language of first-order logic.

• They can beat Isabelle’s built-in provers, but not always: they will require
tuning before they become effective on problems generated by Isabelle.

• Parallelism can be exploited: we can call multiple provers, take the best result
and record it permanently.

Idea 2: Proving Inequalities

• We often need to prove formulas
involving functions like sin, cos,
exp, log. There is no general
solution procedure...

• but often the function is bounded
above or below by a polynomial
(at least in a finite range).

• Inequalities involving polynomials
can be solved using a procedure
for real closed fields.

Idea 3: Telling the User When to Give Up

• Often our problem has no solution:

• the chip design isn’t correct, or

• we have expressed it wrongly, or

• forgot to mention essential facts.

• Trying to solve impossible problems
is a terrible waste of time!

• People at TUM have built tools for
warning Isabelle users of this
situation.

• One way to do this is simply by
testing the problem on a few
values. (More complicated than it
sounds!)

The Future?

• Proof technologies of all sorts have developed rapidly.

• In the past, we have benefitted from faster processors,

• ... and now we are ready to exploit the new multi-core computers.

• Large-scale trials are under way, such as the VeriSoft project,

• ... with other applications in the U. S. and Australia,

• ... and research projects in many countries.

