
1

Software Security Growth Modeling:

Examining Vulnerabilities with Reliability

Growth Models

Andy Ozment?

Computer Security Group
Computer Laboratory, University of Cambridge

Abstract. The software engineering tools historically used to examine
faults can also be used to examine vulnerabilities and the rate at which
they are discovered. I discuss the challenges of the collection process and
compare two sets of vulnerability characterization criteria. I collected
fifty-four months of vulnerability data for OpenBSD 2.2 and applied
seven reliability growth models to the two data sets. These models only
passed applicability tests for the data set that omits dependent data
points. Musa’s Logarithmic model has the best one-step-ahead predictive
accuracy of the three acceptably accurate models for that data set. It
estimated that fifty-four months after OpenBSD 2.2’s release, the mean
time to vulnerability discovery for OpenBSD 2.2 was 42.5 days and that
58.4% of the vulnerabilities it contains had been found. However, a trend
analysis cannot rule out the possibility that there is no trend at all in
the rate of vulnerability detection, and this result casts doubts on the
accuracy of the reliability growth models. The lack of a clear decreasing
trend in that analysis highlights one of the challenges of using reliability
growth models on vulnerability data: it may be a true reflection of the
system or it may be caused by the changes over time in the effort invested
in vulnerability detection.

1 Introduction

Most commercial software suffers from significant design and implementation se-
curity vulnerabilities. This lack of security can be traced to two primary factors:
complexity and motivation. Software developers push to create ever more com-
plex products and work constantly on the boundary of manageable complexity.
However, even taking this difficulty into account, most software contains secu-
rity flaws that its creators were readily capable of preventing. The second cause
of software insecurity is motivation: although vendors are capable of creating
more secure software, the economics of the software industry provide them with
little incentive. Consumers generally reward vendors for adding features and for
being first to market. These two motivations are in direct tension with the goal

? This work was funded by a Marshall Scholarship and a United Kingdom Overseas
Research Student Award.

This paper has been published in the proceedings of the:

First Workshop on Quality of Protection (QoP). Milan, Italy: September 15, 2005.



2

of writing more secure software, which requires time consuming testing and a
focus on simplicity. Nonetheless, the problems of software insecurity, viruses,
and worms are frequently in the headlines; why does the potential damage to
vendors’ reputations not motivate them to invest in more secure software?

Vendors’ lack of motivation is readily explained: the software market is a
‘market for lemons’ [1]. In a Nobel prize-winning work, economist George Akerlof
employed the used car market as a metaphor for a market with asymmetric
information [2]. In his model, buyers cannot ascertain the quality of the used
cars on the market, and as a result they are unwilling to pay a premium to
obtain a higher quality car. After all, why pay more for quality when you are
uncertain of obtaining it? Owners of high quality cars thus become unwilling to
sell them, because they cannot obtain a reasonable premium.

The software market suffers from the same asymmetry of information. Ven-
dors may have some intuition as to the security of their products, but buyers have
no reason to trust the vendors’ assertions. Worse, even the vendor is unlikely to
have a truly accurate picture of its software’s security. As a result, buyers have
no reason to pay the premium required to obtain more secure software, and
vendors are disinclined to invest in securing their products.

An effective means of measuring software security could decrease the asym-
metry of information and ameliorate the ‘market for lemons’ effect. Unfortu-
nately, the current measures of security are a consideration of the process by
which the product was made, a superficial security review of the product, or
a gross consideration of its vulnerability history. In addition to being impre-
cise, none of these techniques are consistently reliable or particularly useful in
cross-product comparison.

However, in a related domain, software engineers have invested a great deal
of effort in the measurement and prediction of quality. These efforts have largely
focused on three areas [3]:

1. Estimating the total number of faults in a system

2. Estimating the time-to-failure of the system

3. Quantifying the impact of design and implementation methodologies

This work has often utilized the study of faults (defects) identified during the
testing and post-release lifespan of the software.

There exists a security corollary to the study of faults: the study of vulnera-
bilities. This work examines the feasibility of applying software reliability growth
models to vulnerability data, which I refer to as software security growth model-
ing. Security growth modeling has the potential to provide useful predictions or
metrics of security. Security growth models can produce useful and readily un-
derstandable results like the mean time to the next failure or the total estimated
number of vulnerabilities in that product. These results could be used as both
relative measures (with respect to competing products) and absolute measures
(with respect to a desired level of assurance). However, these models are nec-
essarily applied to noisy data and are highly dependent upon the vulnerability
hunting environment. Nonetheless, security growth modeling may provide useful



3

quantitative insight to supplement the current approaches to assessing software
security.

The next section provides an overview of reliability growth modeling and
previous work. Section 3 describes the data collection challenge that is the most
significant barrier to the adoption of security growth modeling. It also describes
the two perspectives on vulnerability characterization that are examined here:
failure and flaw. Next, in Sect. 4, I apply traditional reliability growth models
to both perspectives of the same data set, and I discuss the results of this effort.
In Sect. 4.3, I emphasize the need for data normalization. Section 5 highlights
areas of potential future work.

2 Reliability Growth Modeling

Reliability growth models are based upon the assumption that the reliability of
a program is a function of the number of faults that it contains. Such models
“apply statistical techniques to the observed failures during software testing and
operation to forecast the product’s reliability” [4, p. 6]. As faults are identified
and removed, the system will fail less frequently and hence be more reliable.
These models can thus be utilized to estimate characteristics about the number
of faults remaining in the system and when those faults may cause failures.
They are useful for scheduling testing and for ensuring that a product meets its
reliability requirements.

Unfortunately, applying reliability growth models to vulnerabilities rather
than faults is impeded by a significant problem: the lack of high-quality data.
The literature on reliability growth models generally assumes that they have
been applied during pre-release testing and in settings where the collection of
failure data was an integral part of the testing environment. Vulnerabilities are
extremely unlikely to be identified as such in that stage of software development:
if they are found at all, they will probably be perceived simply as faults. As a
result, vulnerabilities are most often identified after the product is released—
when the collection of precise data is much more difficult.

In order to be effective, reliability growth models require that the environ-
ment from which the data is obtained (usually the testing environment) must
be equivalent to the environment in which the software will be utilized after
deployment [5]. However, many vulnerabilities rely upon the adversary inten-
tionally inputting abnormal data—data outside the bounds of a normal opera-
tional profile. Nonetheless, over a long period of time and the wide range of real
world environments, it can be considered that the operational profile includes all

possible input. This perspective justifies the application of these models to vul-
nerabilities, but it does imply that vulnerabilities may be identified more slowly
than faults would be identified.

These models also require that time be normalized for testing effort. If pro-
gram execution time is utilized, this assumption is readily satisfied. However,
if calendar time is used then it should be normalized for the number of testers



4

participating, work days, holidays, etc. This assumption has strong implications
for the usage of vulnerability data and is discussed in Sect. 4.3.

2.1 Previous Work

The ideal security metric would enable the measurement of both a product’s
changing security over time and its security relative to other products. Stuart
Schechter noted that software producers can use a market for vulnerabilities to
establish that a vulnerability in their own program is more expensive than one
in a competitor’s program; the vendor can thus credibly argue that its software
is more secure than that of the competitor [6], [7]. I argued that a vulnerability
market can be better designed as an auction; the large body of work on auction
theory can then be used to optimize it [8]. Several organizations are now actively
purchasing vulnerabilities, so these proposals are not unfeasible. Unfortunately,
the current purchasers of vulnerabilities are not sharing pricing information, and
there is no broad movement towards an open market or auction. Until such an
entity or entities arise, other means of measuring software security are necessary.

Eric Rescorla has previously applied reliability growth models to post-release
vulnerability data from the ICAT database [9]. In general, he found no clear
trend of security growth, and he questions the social utility of publicly disclosing
vulnerabilities.

However, the ICAT database is not focused on vulnerability age; as a result,
it may not report all of the out-of-date versions of a program to which a vul-
nerability applies. This aspect of the database limits the accuracy of Rescorla’s
work. In previous work, I utilized a data set with full vulnerability birth and
death data to challenge Rescorla’s results and argue that a trend towards secu-
rity growth could not yet be ruled out [10]. However, that work focused on the
social utility question posed by Rescorla and the data collection process used
was not well described. In particular, this process requires decisions and utilizes
assumptions that have a significant bearing on the results of the analysis. This
work assess two different approaches to data characterization and considers the
more broad use of reliability growth models as one tool for evaluating software
security.

3 Collection Technique for this Data Set

OpenBSD was selected for this study because its developers emphasize secure
programming and code audit; furthermore, its entire source code and every
change that has been made to it are readily accessible via internet CVS (a
version control system). Version 2.2 was selected as the starting point for the
data set because vulnerabilities were fixed silently in the prior two versions; this
analysis relies upon the careful documentation of all vulnerabilities identified.
The data set was created through the following process:

1. A list of vulnerabilities was compiled from the OpenBSD web page and the
most prominent public vulnerability databases: ICAT, Bugtraq, OSVDB,
and ISS X-Force.



5

2. The source code was examined to identify the date on which the vulnerability
was repaired (the vulnerability’s ‘death’ date).1

3. Prior versions of the source code were then examined until the date on which
the vulnerability was introduced into the software could be identified (the
vulnerability’s ‘birth’ date).

4. Vulnerabilities were then grouped according to the version in which they
were introduced. For this work, only vulnerabilities that were introduced
prior to the release of version 2.2 were considered.

Although the process described above seems precise, the reality is that the
data is complex and is not always readily categorizable. The most significant
challenges in characterizing the vulnerabilities dealt with inclusion and unique-
ness.

3.1 Inclusion

The vulnerability sources listed above included vulnerabilities that affected only
specific hardware platforms or particular localizations. In the interest of univer-
sality and simplicity, vulnerabilities were included only if they were location and
platform neutral (however, those specific to Intel 386 were also included, under
the assumption that this platform is the most common).

In addition, the OpenBSD security page lists vulnerabilities whose inclu-
sion stretches the definition of a vulnerability. For example, the patch descrip-
tion for one vulnerability listed on the OpenBSD security page is: “Improve
xlock(1)’s authentication by authenticating via a pipe in an early forked process.
No known vulnerability exists, this is just a precautionary patch” [11]. Although
the OpenBSD security philosophy is commendable (and was the motivation for
its selection as the software to model), including vulnerabilities like these has
a negative impact on the models’ assessment of OpenBSD’s security. One way
of resolving this dilemma is to include only vulnerabilities of a clearly speci-
fied and easily tested severity: e.g. remote root vulnerabilities. Unfortunately,
assessing the risk of a potential vulnerability is enormously time consuming and
risk prone. For the purposes of this analysis, no vulnerability was excluded for
being unlikely or debatable. The results are thus potentially negatively biased:
OpenBSD 2.2 will appear less secure than it actually is.

A similar question is posed by vulnerabilities for which the default config-
uration of OpenBSD is not vulnerable. Should those be counted? A default
configuration in which most services are disabled is another commendable as-
pect of OpenBSD’s security policy; however, in practice, many of those services
will be enabled by the users. As a result, such vulnerabilities were also included
in this analysis. As with the previous decision, the results are thus potentially
negatively biased.

1 If the fix was itself faulty, the date of the first effort is used rather than that of the
last effort. This simplification is in accordance with most models’ assumptions that
flaws are fixed instantly and without introducing new flaws.



6

3.2 Uniqueness, or Flaw vs. Failure

The most difficult task was deciding upon uniqueness: whether a patch or group
of patches repaired one vulnerability or multiple vulnerabilities.

OpenBSD includes some software that is maintained by third parties (e.g.
sendmail). Those third parties often released a new version of their software that
contained fixes for multiple (previously secret) security flaws. One solution is to
simply count such a ‘bundle’ patch as repairing only one vulnerability and use
the birth date of the youngest vulnerability. However, this solution will result in
a positive bias and hence an inflated perception of security for the product: the
models will indicate fewer vulnerabilities than actually exist and a more rapid
trend towards depletion. Conversely, counting each individual security flaw in the
bundle patch as a vulnerability will cause the death date of those vulnerabilities
to be recorded as later than it should be: they were actually identified and
repaired at some unknown date prior to the release of the bundle patch. That
solution would thus bias the model away from depletion and result in an overly
negative measure of security.

Similarly, individuals may find multiple related security flaws at once: either
by discovering a number of security flaws of one type or by discovering a poor
quality section of the code base. Often these related security flaws are remediated
in the same patch; should they be considered as individual vulnerabilities or as
a single, combined vulnerability?

The question of whether to consider these bundled/related security flaws as
unique vulnerabilities or as a single combined vulnerability has a significant im-
pact on the analysis. In a theoretical sense, counting them as unique is equivalent
to performing the security growth modeling on flaw discovery data: such a data
set would include dependent data points. From this perspective, each flaw is
considered to be a separate vulnerability. Counting them instead as a single vul-
nerability is the theoretical equivalent to performing security growth modeling
on failure data, in which every data point is independent of the others. From
this perspective, a single failure initiated the discovery of multiple related secu-
rity flaws. Traditionally, reliability growth models have used the times of system
failure as their input data and require that the data points be independent.

The approach chosen has a significant impact on the analysis. In this work,
the data were analyzed from both failure and flaw perspectives. Table 1 shows the
differing vulnerability counts when each approach is used. The first row shows
the number of vulnerabilities discovered per year when related and bundled vul-
nerabilities are grouped (the failure/independent perspective). The second row
shows the number of vulnerabilities discovered per year when vulnerabilities are
considered individually (the flaw/dependent perspective). For the flaw perspec-
tive, each of those unique–but possibly dependent–vulnerabilities was used as
a data point, thus increasing the total number of data points considered. Note
that the data for 2002 covers only the first five months of the year.



7

Table 1. Vulnerabilities identified in OpenBSD 2.2 from 1998-01 – 2002-05†

Perspective 1998 1999 2000 2001 2002‡ Total

Treated as failures (only independent data points) 19 17 17 13 2 68
Treated as flaws (dependent data points included) 24 18 22 13 2 79

†No vulnerabilities were found in December 1997, the first month that version 2.2 was available.

‡The first five months of 2002.

4 Results

4.1 Rate of Vulnerability Detection

I analyzed both the failure- and flaw-perspective data sets with seven time-
between-faults reliability growth models.2

The data indicate the number of days that elapsed between the identification
of faults. The mean, median, and standard deviation for the failure-perspective
data are: 23.7, 13.5, and 28.0. For the flaw-perspective data: 19.8, 7.0, and 26.54.
For both data sets, the minimum was 0 and the maximum was 126.

Three models were applied successfully to the failure-perspective data set;
these three models had acceptable bias, noise, trend, and goodness-of-fit results.
Table 2 shows the pertinent applicability results. For each quantitative result,
that model’s ranking with respect to the other two models is shown in parenthe-
ses. The first row shows bias, as determined by a µ-plot; this measure assesses
the absolute predictive accuracy of the models. The noise and trend results in
the second and third rows are useful primarily to ensure that the predictive accu-
racy indicated by the µ-plot results was not due to opposing trends of inaccuracy
canceling each other out on the average. The prequential likelihood values of the
three models, shown in row four, are used to assess the relative accuracy of the
models with respect to each other. Overall, Musa’s Logarithmic model was the
most accurate and was ranked first (1).3

Table 2. Applicability results for models applied to the failure-perspective data

Successful Models
Statistic Musa’s Logarithmic Geometric Littlewood/Verrall (L)

Bias (µ-plot) 0.12 (1) 0.13 (2) 0.18 (3)
Noise 0.31 (1) 2.39 (2) 2.44 (3)
Trend (y-plot) 0.20 (3) 0.18 (2) 0.14 (1)
Prequential Likelihood 148.35 (1) 150.23 (2) 150.50 (3)

Overall Rank (1) (2) (3)

2 The SMERFS3 reliability growth modeling tool was used to assess the models [12].
3 For a more detailed explanation of the acceptability tests, see [13]



8

None of the seven models were successfully applied to the flaw-perspective
data. Each model applied to this data set failed one of four tests: bias, trend,
noise, or goodness-of-fit. This failure is not surprising: reliability growth models
require that their data points be independent: the flaw-perspective data included
vulnerabilities whose discovery was clearly dependent upon the recent discovery
of a similar vulnerability. As a result, it seems likely that failure-perspective
analysis is a superior method of considering vulnerabilities; it has a sound the-
oretical basis and the attempt to model the quantitative data was much more
successful with this approach. However, data filtering, regardless of the theoret-
ical justification, is always suspect. I am gathering three more years of data in
order to verify the accuracy of these results.

Table 3 displays the various estimates produced by the models successfully
applied to the failure-perspective data. The intensity is the expected number
of vulnerabilities per day. Rows one and two display the intensity at the first
and last day of the analysis. The purification level, shown in row three, is a
normalized estimate of how vulnerability-free the program is at the end of the
period covered by the data set. A purification level of one would indicate a pro-
gram entirely free of vulnerabilities. The purification level formula used here is
undefined for infinite-failure models like Littlewood/Verrall Linear; however, al-
ternative formulations of purification level can be used for these models [14]. The
fourth row displays the current Mean Time To Failure (MTTF), the expected
number of days before the next vulnerability is identified.

Table 3. Estimates made by the successful models using the failure-perspective
data set

Successful Models
Statistic Musa’s Logarithmic Geometric Littlewood/Verrall (L)

Initial Intensity 0.059 0.062 0.066
Current Intensity 0.031 0.030 0.030
Purification Level 0.584 0.505 N/A
Current MTTF 42.5 33.1 33.8

Figure 1 shows both the failure-perspective data set (left) and the flaw-
perspective data set (right). For the former, the successfully fitted Musa’s Loga-
rithmic model is shown superimposed over the data set; this model was ranked as
most accurate of the three successful models. For the latter data set, no models
were successfully applied, so the data points alone are displayed.

4.2 Trend Analysis

Reliability growth models assume an eventual trend in which the rate of vulner-
ability detection decreases over time. One way to test for such trends is through
the use of a Laplace test [5]. The calculated Laplace Factors for each data set



9

Fig. 1. Time-between-fault data sets

(a) Failure-perspective data with fitted
Musa’s Logarithmic model

(b) Flaw-perspective data

are shown in Fig. 2. Values below 0 indicate a trend towards decreasing rate of
vulnerability detection. However, only values below −1.96 indicate that trend
within a 95% confidence level for a two-tailed test (−1.64 for a 90% confidence
level). The null hypothesis, that the data exhibits no trend, cannot be rejected
for the failure-perspective data set. The flaw-perspective data set shows a more
clear trend towards decreasing rate of vulnerability detection. Again, however,
the null hypothesis of no trend cannot be ruled out for large periods of time.
Both data sets have an initial period in which the rate of vulnerability detection
increased. This initial increase is likely caused by the sudden increase in users
and environments of use after the software was released; it suggests that an S-
shaped reliability growth model may be most appropriate. However, none of the
models with acceptable predictive accuracy were of this category.

Fig. 2. Trend Analysis

0 500 1000 1500
Vulnerability Age (days)

La
pl

ac
e 

Fa
ct

or

−4

−2

0

2

4

90%

95%

Co
nf

id
en

ce
 In

te
rv

al
s

(a) Failure-perspective data

0 500 1000 1500
Vulnerability Age (days)

La
pl

ac
e 

Fa
ct

or

−4

−2

0

2

4

90%

95%

Co
nf

id
en

ce
 In

te
rv

al
s

(b) Flaw-perspective data



10

4.3 Data Normalization

The results indicate that a decreasing rate of vulnerability detection cannot sim-
ply be assumed for this data set. Why would the rate of vulnerability detection
have increased or stayed constant? One possible answer is that the effort invested
in vulnerability discovery during the time period covered in this study increased:
more individuals searched for vulnerabilities or those who searched grew more
capable of finding vulnerabilities.

As discussed in Sect. 2, one of the underlying assumptions of all reliability
growth models is that the data is normalized for effort. The data for the time
necessary to find a vulnerability should ideally be the execution time; if such
data is not available, the time should be the skill-equivalent person hours. Un-
fortunately, the data available on vulnerabilities does not include the number of
individuals examining that software, much less their relative skill.

This data set thus cannot provide an accurate characterization of the ‘true’
security of the product (i.e. the number of unknown vulnerabilities in the prod-
uct). The time period from which data was collected, 1997-12-01 to 2002-05-31,
witnessed an explosion of interest in computer security and the identification of
vulnerabilities. It thus seems likely that many more individuals were searching
for vulnerabilities in 2002 than in 1997, but the data used here does not take
this change into account. As a result, the the trend analysis and the estimate
of the total number of vulnerabilities discussed below may not be an accurate
characterization of the underlying product: they are probably conservative and
thus characterizes the product as less secure than is actually the case.

The three reliability growth models in Sect. 4.1 have demonstrated acceptable
predictive accuracy, but the analysis in Sect. 4.2 cannot rule out the possibility of
no significant change in the rate of vulnerability detection. The successfully ap-
plied reliability growth models may be accurately characterizing the decreasing
rate that appeared in the trend analysis towards the end of the study. Although
this data set lacks the normalization discussed above, reliability growth models
can still provide insight into the changing rate of vulnerability detection over
time. At the very least, these models can describe that rate given the current
vulnerability hunting environment. However, the discrepancies between the reli-
ability growth results and the trend analysis indicate that more data is needed
before a confident assessment of the system can be made.

5 Future Work

This work highlights five interesting areas for further research: normalize the
data for effort, examine the return on security investment, utilize more sophisti-
cated modeling techniques, and combine vulnerability analysis with traditional
‘software metrics.’

As discussed in Sect. 4.3, the data set used is not normalized for effort: the
skill of and number of individuals searching for vulnerabilities. Unfortunately,
OpenBSD does not release usage figures; because it is often used as a server



11

operating system, other available sources of usage data are also inadequate (e.g.
the proportion of web browsing done from OpenBSD). Moreover, the number
of users of a product is not necessarily a useful correlate to the number of in-
dividuals searching for vulnerabilities in the product. One area of future work
is to find a proxy for effort, at least with respect to the number of individuals
searching for vulnerabilities. One possible proxy is the relative numbers of indi-
viduals posting to ‘full-disclosure’ security lists like Bugtraq and Full Disclosure.
Although finding an exact measure of effort would be prohibitively difficult, a
relative measure would still be useful: e.g. there were twice as many individuals
searching for vulnerabilities in 2000 as there were in 1998.

Another direction for this research is to examine the return on investment for
secure coding practices. Do models fitted to Microsoft’s post-2002 secure coding
initiative indicate that it is producing results?

An additional path forward is to employ more sophisticated techniques for
modeling security growth. The reliability growth literature is rich with means
of improving models’ accuracy. Finally, vulnerability analysis can be combined
with traditional ‘software metrics:’ metrics that attempt to measure the size,
complexity, etc. of a program. This line of research might lead to other fruitful
measurements or predictors of security.

6 Conclusion

Software engineering provides useful tools for the analysis and potential mea-
surement of software vulnerabilities. In this work, 54 months of vulnerability
data were gathered for the OpenBSD operating system. The source code was
examined to ascertain the exact dates when the vulnerability was first added to
the code and when it was repaired.

The data collection process was complex, and I struggled to find rules for data
characterization that covered all possible situations. For OpenBSD, collection
difficulties centered around inclusion (when is a defect considered a vulnerability)
and uniqueness (when do a number of defects qualify as one vulnerability and
when do they qualify as multiple vulnerabilities). Two different characterization
criterion were analyzed here: as expected, the reliability growth modeling was
only successful when considering the data set that excluded dependent data
points.

Three of the seven reliability growth models tested were found to have accept-
able one-step-ahead predictive accuracy for the set of independent data points.
Musa’s Logarithmic model was the model ascertained to be most accurate of
those three; it estimated that the mean time to failure at the end of the study is
42.5 days and 58.4% of the estimated total vulnerabilities in the product have
been identified. Together, these estimates could serve as both a useful relative
and absolute measure of the security of the product.

However, a trend analysis cannot rule out the possibility that vulnerabilities
are being detected at a constant overall rate, which casts doubt on the results
produced by the reliability growth models. If these results are a more accurate



12

reflection of the system, the lack of a decreasing vulnerability detection rate may
be due to an increase in the amount of effort invested in finding vulnerabilities
during the course of the study. Reliability growth models and trend analysis are
designed for data in which the amount of effort invested in finding vulnerabilities
is constant. Unfortunately, no information is available on the growth in the
number of individuals searching for vulnerabilities and the effort they invested;
as a result, the data set cannot be normalized to take this information into
account.

The results of this analysis are thus inconclusive. More data is needed be-
fore a definitive assessment can be made of the rate of vulnerability detection
in OpenBSD. This problem highlights the main challenge in using software en-
gineering tools to analyze vulnerabilities: the significant effort required in order
to collect accurate data and the lack of availability of important information.

Despite these difficulties, this analysis has shown that software engineering
tools can provide useful insight into software vulnerabilities. Security growth
modeling, the application of reliability growth models to vulnerabilities, can
build upon a long tradition of software engineering work, adapting that work
as appropriate. If the technique increases in popularity, data collection could
be readily incorporated into the vulnerability remediation process. Better data
collection would, in turn, result in more accurate and more useful models.

References

1. Anderson, R.: Why information security is hard - an economic perspective. In:
17th Annual Computer Security Applications Conference. (2001) New Orleans,
LA, USA.

2. Akerlof, G.A.: The market for ‘lemons’: Quality uncertainty and the market mech-
anism. The Quarterly Journal of Economics 84 (1970) 488–500

3. Fenton, N.E., Neil, M.: A critique of software defect prediction models. IEEE
Transactions on Software Engineering 25 (1999) 675–689

4. AIAA/ANSI: Recommended Practice: Software Reliability. ANSI (1993) R-013-
1992.

5. Lyu, M.R., ed.: Handbook of Software Reliability Engineering. McGraw-Hill (1996)
6. Schechter, S.: Quantitatively differentiating system security. In: Workshop on

Economics and Information Security. (2002) Berkeley, CA, USA.
7. Schechter, S.: How to buy better testing: Using competition to get the most

security and robustness for your dollar. In: Infrastructure Security Conference.
(2002) Bristol, UK.

8. Ozment, A.: Bug auctions: Vulnerability markets reconsidered. In: Workshop on
Economics and Information Security. (2004) Minneapolis, MN, USA.

9. Rescorla, E.: Is finding security holes a good idea? In: Workshop on Economics
and Information Security. (2004) Minneapolis, Minnesota.

10. Ozment, A.: The likelihood of vulnerability rediscovery and the social utility of vul-
nerability hunting. In: Workshop on Economics and Information Security. (2005)
Cambridge, MA, USA.

11. OpenBSD: OpenBSD 2.8 errata, 014: Security fix (2000)
http://www.openbsd.org/errata28.html#xlock.

http://www.openbsd.org/errata28.html#xlock


13

12. Stoneburner, W.: SMERFS (Statistical Modeling and Estimation of Reliability
Functions for Systems) (2003) http://www.slingcode.com/smerfs/.

13. Abdel-Ghaly, A.A., Chan, P.Y., Littlewood, B.: Evaluation of competing software
reliability predictions. IEEE Transactions on Software Engineering 12 (1986) 950–
967

14. Tian, J.: Integrating time domain and input domain analyses of software reliability
using tree-based models. IEEE Transactions on Software Engineering 21 (1995)
945–958

http://www.slingcode.com/smerfs/

	Software Security Growth Modeling: Examining Vulnerabilities with Reliability Growth Models
	Andy Ozment
	Introduction
	Reliability Growth Modeling
	Previous Work

	Collection Technique for this Data Set
	Inclusion
	Uniqueness, or Flaw vs. Failure

	Results
	Rate of Vulnerability Detection
	Trend Analysis
	Data Normalization

	Future Work
	Conclusion



