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Abstract

We describe contributions to algorithmic proof techniques for deciding the satisfia-

bility of boolean combinations of many-variable nonlinear polynomial equations and

inequalities over the real and complex numbers.

In the first half, we present an abstract theory of Gröbner basis construction al-

gorithms for algebraically closed fields of characteristic zero and use it to introduce

and prove the correctness of Gröbner basis methods tailored to the needs of modern

satisfiability modulo theories (SMT) solvers. In the process, we use the technique of

proof orders to derive a generalisation of S-polynomial superfluousness in terms of

transfinite induction along an ordinal parameterised by a monomial order. We use this

generalisation to prove the abstract (“strategy-independent”) admissibility of a number

of superfluous S-polynomial criteria important for efficient basis construction. Finally,

we consider local notions of proof minimality for weak Nullstellensatz proofs and give

ideal-theoretic methods for computing complex “unsatisfiable cores” which contribute

to efficient SMT solving in the context of nonlinear complex arithmetic.

In the second half, we consider the problem of effectively combining a heteroge-

neous collection of decision techniques for fragments of the existential theory of real

closed fields. We propose and investigate a number of novel combined decision meth-

ods and implement them in our proof tool RAHD (Real Algebra in High Dimensions).

We build a hierarchy of increasingly powerful combined decision methods, culminat-

ing in a generalisation of partial cylindrical algebraic decomposition (CAD) which we

call Abstract Partial CAD. This generalisation incorporates the use of arbitrary sound

but possibly incomplete proof procedures for the existential theory of real closed fields

as first-class functional parameters for “short-circuiting” expensive computations dur-

ing the lifting phase of CAD. Identifying these proof procedure parameters formally

with RAHD proof strategies, we implement the method in RAHD for the case of

full-dimensional cell decompositions and investigate its efficacy with respect to the

Brown-McCallum projection operator.

We end with some wishes for the future.
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Since a decision method, by its

very nature, requires no intel-

ligence for its application, it is

clear that, whenever one can give

a decision method for a class K

of sentences, one can also devise

a machine to decide whether an

arbitrary sentence belongs to K.

It often happens in mathematical

research, both pure and applied,

that problems arise as to the

truth of complicated sentences of

elementary algebra or geometry.

The decision method presented in

this work gives the mathematician

the assurance that he will be able

to solve every such problem by

working at it long enough.

– Alfred Tarski, “A Decision

Method for Elementary Algebra

and Geometry,” 1948.
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Chapter 1

Introduction

1.1 Kissing Spheres and a Theorem of Tarski

Our work begins with an astounding theorem of Alfred Tarski.

Theorem 1.1.1. The elementary theory of real closed fields admits effective elimina-

tion of quantifiers [Tar48].

From this result, the decidability of elementary real and complex algebra and ge-

ometry readily follow, and a most tantalising situation arises: In principle, every ele-

mentary arithmetical conjecture over finite-dimensional real and complex spaces may

be decided simply by formalising the conjecture and asking a computer of its truth. All

one needs is the fortitude to implement a decision method, the dedication to express

conjectures formally, access to high-powered computing machinery, and the game is

won. The world is filled with few marvels this profound. So why then do we still not

know how many unit hyperspheres may kiss1 in five dimensions? Is it 41? 42?

§

The issue is one of complexity. Though decidable, the theory of real closed fields

(RCF) is fundamentally infeasible. This observation is made precise by a landmark

algorithmic complexity result of the 1980s.

1The n-dimensional kissing problem asks: Given an n-dimensional unit hypersphere U centered at
the origin in Rn, how many other identical hyperspheres may be arranged so that they each “kiss” U
(touch U at a single point) without further overlaps? (For a beautiful telling of the problem, see [PZ04].)
In principle, the kissing problem may be solved for each dimension n through iterated application of
a quantifier elimination algorithm for elementary algebra and geometry, i.e., by the engine Tarski’s
theorem guarantees us. But, in practice, this approach is hopeless for reasons we soon discuss.

1



2 Chapter 1. Introduction

Theorem 1.1.2 (Davenport-Heinz). There are families of n-dimensional RCF formulas

of length O(n) whose only quantifier-free equivalences must contain polynomials of

degree 22Ω(n)
and of length 22Ω(n)

.

Thus, arithmetical problems (especially those high-dimensional, i.e., many-variable)

will not in general be realistically solvable by full RCF decision methods. Yet, there

are many examples of difficult high-dimensional RCF problems solved in mathemati-

cal and engineering practice. What is the disconnect?

1. RCF problems solved in practice – especially those solved by hand – are most

often solved using an ad hoc combination of methods, not by a general decision

method.

2. RCF problems arising in scientific practice commonly have special structural

properties dictated by the application domain from which they originated. Such

structural properties can often be exploited making such problems more amenable

to analysis and pushing them within the reaches of restricted, more efficient vari-

ants of known decision methods.

Our dissertation uses these two observations as the basis of a principled combined

approach to making real algebraic decisions. Key to this work is being practically-

minded: No single complete method can scale to a high-dimensional setting. Thus,

we propose a methodology for deciding high-dimensional sentences in the ∃ fragment

of RCF based upon combining sound but possibly incomplete proof procedures which

are effective for (and, in fact, can be tailored to) classes of problems arising in practical

verification applications. We are especially interested in manners in which fast, sound

but incomplete procedures can be used to enhance the practical efficacy of sound and

complete methods such as cylindrical algebraic decomposition (CAD) by, for instance,

recognising when certain expensive computations can be avoided.

1.2 In More Depth

In attempting to make real algebraic decision methods scale to high-dimensional set-

tings, we are faced with what seems to be a rather insurmountable obstacle: the full

first-order theory of RCF has infeasible complexity, and there are currently no known

complete methods for the ∃ fragment of RCF which seem to fare better in practice

than full RCF quantifier elimination. If we restrict our focus to the ∃ fragment of
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RCF, then there is a key algorithmic complexity result which brings a sliver of opti-

mism towards the dream of practical, scalable decision methods for high-dimensional

∃ RCF sentences.

Theorem 1.2.1 (Grigor’ev-Vorobjov). The ∃ fragment of RCF can be solved in time

singly exponential in dimension.

However, even the apparent good news found in this result — that the ∃ fragment

of RCF has an exponential speed-up over the full first-order theory — is misleading in

a practical sense. Analysis by Hong [Hon91] suggests that known singly-exponential

algorithms for ∃ RCF will perform much worse2 than even full first-order quantifier

elimination algorithms such as cylindrical algebraic decomposition for all but astro-

nomically large input formulas. As if this were not enough, the complexities of known

RCF and ∃ RCF decision methods are dependent primarily upon the dimension of their

input formulas. In this regard, scaling RCF decision methods to high-dimensional set-

tings seems utterly hopeless.

Yet, there is no denying the fact that applying a full quantifier elimination algorithm

to decide the unsatisfiability (i.e., falsity over R) of a formula such as

∃x1, . . . ,x100(x1 ∗ x1 + . . .+ x100 ∗ x100 < 0)

is an obvious misappropriation of computational (and temporal) resources. While an

example such as this may seem contrived, consider the fact that when an RCF deci-

sion method is used in the context of formal verification efforts, it is often fed huge

collections of machine-generated formulas which may very well be (un)satisfiable for

extremely simple reasons.

In addition, problems arising from a particular application domain often share sim-

ilar structure which traditional general methods will fail to exploit. We have observed

these phenomena first-hand with many of the applications users have made of our

RAHD tool.

2There is a very recent development showing promise in the other direction: Galen Huntington’s
beautiful 2008 Berkeley PhD thesis, “Towards an efficient decision procedure for the existential theory
of the reals,” has shown that Canny’s singly exponential decision method for ∃ RCF, a procedure not
considered by Hong in his analysis (Hong’s analysis was in 1991, and Canny’s method was first fully
published in 1993 [Can93]), can in fact be implemented and made to solve a number of very small
(bivariate, quadratic) examples. While a practical implementation of Canny’s method is still a long
way off, this work leaves one with a compelling optimism towards the possibility that, in contrast to
Hong’s conclusions in 1991, practically useful singly exponential decision procedures for ∃ RCF may
eventually be realised.
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Thus, it seems advantageous to investigate algorithmic proof methods which at-

tempt to make “easy decisions” quickly. And when such easy decisions fail, it will be

desirable if the computations undertaken in attempting them could contribute to less-

ening the workload required of more heavy-weight analysis procedures which may be

subsequently applied.

Finally, if one knows in advance that a large collection of “similar” problems will

be encountered, it would be desirable to provide mechanisms for specialising the ap-

proach of the proof procedure to exploit structural aspects of the formula class when-

ever possible. These concerns give rise to a particular combined approach to develop-

ing practical proof procedures for ∃ RCF.

1.2.1 Our Approach

At the highest level, we would like proof procedures for ∃ RCF which

• scale to problems of realistic size (especially in many variables),

• are customisable for classes of problems with similar structure.

In working to accomplish this, we are faced with a rather wonderful difficulty:

there are many different approaches to making RCF decisions, each with their own

strengths and weaknesses. These include

• quantifier elimination by Muchnik sign matrices [Sch04, MO02],

• quantifier elimination by Cohen-Hörmander sign matrices [MH05],

• quantifier elimination by partial cylindrical algebraic decomposition [Bro04],

• quantifier elimination by virtual term substitution [Wei97],

• Positivstellensatz witness search by the Tiwari method [Tiw05a],

• Positivstellensatz witness search by semidefinite programming [Har07],

• interval constraint propagation and related methods [GB06, FHR+07, Neu90,

Rat06],

• connected component sampling by Basu-Pollock-Roy PSPACE methods [BPR06],

• techniques based on complex triangulation for zero-dimensional systems [CMXY09],
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• Nelson-Oppen-like “distributivity-free” combinations of separate decision pro-

cedures for the additive and multiplicative fragments [AF06],

• and many others.

We wish to take advantage of this vast variety of powerful (semi-)decision methods.

Our general programme then has been to do roughly as follows:

1. Study deeply, implement, and experiment with a number of different approaches

to making ∃ RCF decisions.

2. Develop new variants of these decision methods by devising methods to effec-

tively combine them in compelling ways. Such combinations are compelling,

for instance, if with them it possible to decide sentences outside of the practical

reach of the individual decision methods when they are used in isolation.

3. Build a tool which incorporates the most compelling decision methods we have

investigated and provides a framework for developing, investigating and apply-

ing new combinational methods.

This programme has resulted both in a number of novel combined decision meth-

ods and in a principled approach (based upon a proof strategy language) for facilitating

the arbitrary combination of a heterogeneous collection of RCF decision techniques in

a working tool.

1.3 Parallel Strands: SMT and RAHD

Given our pragmatic methodology, creating tools which allow us to experiment with

and guide the development of our combined decision methods is crucial. We have done

this via two parallel projects, each giving rise to contributions of both a theoretical and

applied character, and each roughly comprising half of our thesis.

The first half considers the integration of nonlinear arithmetical techniques —

chiefly, Gröbner bases and related polynomial ideal calculations — into a breed of

automatic theorem provers called Satisfiability Modulo Theories (SMT) solvers. SMT

solvers will orchestrate the combination of this nonlinear arithmetical reasoning with

many other proof search methods for theories very different from nonlinear (real or
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complex) arithmetic. To do this effectively, SMT solvers require their proof proce-

dures to behave in very special ways. Great care must be taken to tailor Gröbner basis

construction algorithms and the like to the peculiar requirements of efficient SMT.

The second half considers the development of a stand-alone tool RAHD (Real

Algebra in High Dimensions) strictly for ∃ RCF reasoning. To realise this tool, we

propose and implement a hierarchy of novel combined decision methods, and de-

velop techniques enabling verification practitioners to further create their own deci-

sion method combinations suitable for their needs. This involves decomposing and

parameterising known decision methods such as CAD or the Tiwari Positivstellensatz

method in such a way that other user-specified proof procedures are able to contribute

to their processing. This theme culminates in a theoretical framework we call Abstract

Partial CAD, which prescribes a way for user-specified proof procedures to augment

CAD-based decision methods.

Let us further discuss these two strands. As we do so, we will keep an eye towards

why each of them, while informing and reinforcing the other, requires quite distinct

foci and contributions.

1.3.1 Part I: SMT and Gröbner Bases

SMT solvers are sophisticated automatic theorem provers which orchestrate a com-

bination of DPLL-based SAT solving and the application of so-called theory solvers

(T-solvers) for decidable (usually quantifier-free) elementary theories including lin-

ear real arithmetic, bit-vector arithmetic and uninterpreted functions with equality.

SMT solvers (e.g., Z3 [MB08], Yices [DdM06] and CVC3 [BT07]) have seen seri-

ous academic and industrial uptake, and form the automated reasoning engines for

many widely-used program verification tools. To scale to real-world verification ef-

forts, SMT solvers must support the expression of rich verification conditions and be

highly efficient in their processing.

Classically, the lack of T-solvers for nonlinear real arithmetic has been a pressing

problem barring the extension of SMT methods into the verification of programs with

nonlinear arithmetical components. However, the special requirements an effective

SMT solver places on its T-solvers preclude full ∃ RCF decision methods from being

integrated as T-solvers directly. Fundamentally, complete decision methods are far too

computationally expensive for real-world scalable SMT decision loops.

Thus, to effectively integrate ∃ RCF reasoning into an SMT solver, it is sensible
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to look for fast, sound but incomplete proof procedures which are nevertheless effec-

tive on classes of problems arising in practice. Luckily, a number of such techniques

have been recently put forth: Tiwari and Harrison have proposed methods based upon

the Positivstellensatz [Tiw05a, Har07], Jackson and myself have investigated com-

binations of full-dimensional CAD and Gröbner bases [PJ09] (cf. Chapter 8), and

Platzer, Quesel and Rümmer have given methods based on Real Nullstellensatz search

[PQR09].

Interestingly, all of these new proof procedures require or can be seriously en-

hanced by Gröbner basis methods taken over the complex numbers. Thus, for the

goal of obtaining robust nonlinear real arithmetic reasoning in the context of SMT, it

seems prudent to first focus upon obtaining efficient methods for nonlinear complex

arithmetic, in particular the adaptation of Gröbner basis methods to the needs of SMT

solvers. This is the nature of our contributions to nonlinear arithmetics and SMT: We

give a theory of Gröbner basis construction algorithms and use it to prove the correct-

ness of a new class of Gröbner basis algorithms and related methods designed to meet

key requirements of efficient T-solvers. What are these requirements?

For the orchestration mechanisms used to combine decision procedures to be effec-

tive, SMT solvers require their T-solvers to behave in a manner allowing other aspects

of SMT proof search to gain the most benefit from a T-solver’s conclusions. For ex-

ample, when a T-solver proves a conjunctive formula to be unsatisfiable, the T-solver

should communicate a minimal subset of the assumptions required to obtain the unsat-

isfiability. This subset, known as an unsatisfiable core, allows the central DPLL engine

of the SMT solver to prune more branches of its search tree. In addition, a T-solver

should be prepared for formulas with massive numbers of constraints (sometimes tens

of thousands), and should work in an incremental manner, e.g., avoiding duplicate

proof search effort when it is given a sequence of formulas each sharing some atomic

constraints.

We will outline our contributions to these goals shortly. Let us for now look to the

second half of our dissertation.

1.3.2 Part II: RAHD and Strategic Proof Procedure Combinations

In the second half of our dissertation, we turn our focus to the development of “stand-

alone” proof procedures for ∃ RCF. By this we mean proof methods which are not

intrinsically tied to the needs of SMT solvers. Instead, we take a much broader view:
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Not only do we wish to devise novel, powerful combinations of decision methods and

make them available in a working tool, but we also want to provide a platform in

which users can synthesise their own combined proof procedures tailored to the types

of problems they encounter in practice. Our answer to this goal is realised within our

tool RAHD.

RAHD is a proof tool for orchestrating and applying a heterogeneous collection

of RCF proof procedures to decide the satisfiability of nonlinear arithmetical formulas

over the real numbers. RAHD contains original implementations of a vast array of real

algebraic algorithms and decision procedures, and is designed to facilitate the combi-

nation of such techniques into custom heuristic proof procedures. This specification of

custom proof procedures is done using a simple proof strategy language.

In addition to its general use as a platform for building and deploying custom ∃
RCF proof procedures, RAHD can also be seen as a first realisation of our framework

of Abstract Partial CAD. This framework is a generalisation of the well-known partial

CAD decision method of Collins and Hong [CH91]. The key idea behind Abstract

Partial CAD is that once ∃ RCF proof procedures can be synthesised and tailored

as needed to specific problem domains, then these ∃ RCF proof procedures can be

treated as first-class objects and given as parameters to augment the processing of

other cooperating decision methods. In particular, CAD-based decision methods can

be augmented to allow for this kind of proof procedure parameterisation to influence

the lifting or stack construction phase of CAD. This then allows one to externally exert

strategic control over CAD computations. We will be most interested in fast, sound but

incomplete ∃ RCF proof procedures which can be given as parameters to a CAD-based

decision method and used to recognise when certain expensive CAD computations can

be avoided. Crucially, Abstract Partial CAD will apply these fast, sound but incomplete

proof procedure parameters in the context of a complete CAD-based decision method

in a way that never sacrifices the completeness of the underlying CAD-based method.

RAHD can be used in both interactive and automatic modes. Its interactive mode is

designed both to facilitate a practitioner’s analysis of ∃ RCF formulas and to provide a

platform in which customised ∃ RCF proof procedures may be built and applied. The

methods provided for interactively exploring the proof search and real solution space

allow a user to gain much intuition about the formulas in which they are interested,

intuition which can then be used to devise appropriate proof strategies. From this per-

spective, RAHD more closely resembles general-purpose tactic-based proof assistants

à la PVS, HOL-Light or Coq than it does normal automatic decision procedures such as
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SMT solvers. But, once an appropriate proof strategy is installed, the system can then

be used in the same way one would any other push-button decision method. In fact, if

a user is satisfied with a proof strategy, the system can be instructed to automatically

recompile itself and build a binary executable which invokes only the strategy desired.

This allows the system, once tailored to a problem domain, to be cleanly integrated

into formal verification tool-chains.

At its core, RAHD provides original implementations of many RCF decision

methods and techniques from algorithmic (real) algebraic geometry. We have chosen

to write these ourselves (in the programming language Common Lisp) for a number of

reasons. Perhaps it is worth a brief discussion to justify this decision.

First of all, to enable the non-trivial combination of different decision methods,

we often found it necessary to decompose them into smaller pieces, exposing many

aspects of their internal processing to outside influence. For instance, there would be

no way to apply our framework of Abstract Partial CAD — allowing proof procedure

parameters to be used internally by a CAD-based decision algorithm to augment CAD

construction — and experiment with variants of CAD derived from it if we merely

utilised another CAD implementation as a monolithic black-box. One must get inside

the core algorithms to build in such hooks, and writing these generalised algorithms

ourselves seemed much easier than trying to decompose an already existing partial

CAD implementation. Similarly, we want to make use of the Gröbner basis insights

found during our SMT investigations within RAHD. This of course requires their im-

plementation.

Thus, it seemed quite clear that to really build the platform we desired, enabling

deep combinations between different proof procedures, we needed to implement the

core algorithms ourselves. This has a nice pedagogical byproduct: Namely, we often

found it difficult to gain a deep understanding of known proof procedures, and without

fail, our understanding was always greatly enhanced by actually implementing them.

When it comes to truly learning deep mathematical ideas, we are, after finishing this

dissertation, of the resolute opinion that there is no substitute for undertaking imple-

mentations of concrete algorithmic aspects of the ideas and experimenting with them

heavily.

Finally, given our goals, one may wonder why we did not go a different route:

Why was RAHD not developed within a general-purpose proof assistant? Ideally, it

would have been. But, the mathematics underlying some of the techniques we wished

to exploit (e.g., CAD) are deep and difficult to formalise. For instance, Mahboubi’s
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beautiful 2006 PhD dissertation involved programming CAD within Coq and verify-

ing some background algebra and elimination theory including the theory of subresul-

tants [Mah06]. Completing this work so that the full CAD procedure is proved correct

involves serious formalisation, especially for the justification of a CAD projection op-

erator. This work could certainly be the topic of a number of future remarkable PhD

theses. But, we wished to go another route.

Our goal is to radically enhance the scope of ∃ RCF problems solvable in prac-

tice. That is, we want to develop new approaches which make practical impact, and

to do this, we require much freedom to experiment. We could not commit to verifying

the correctness of a new, practically useful decision method before we knew what it

was. Thus, we decided to postpone the goal of formally verifying our proof techniques

within a general-purpose proof assistant until after we had converged upon methods

which truly were compelling. To find these methods, we needed to develop a tool.

Hence, RAHD evolved in the way it did. We should note that preliminary work has

begun on making restricted classes of RAHD proofs replayable within foundational

proof assistants [KP10]. This happens by RAHD generating proof traces which are

interpreted and elaborated by the proof assistant, rather than through the formal veri-

fication3 of RAHD itself. But, this work is in its infancy. The verification of RAHD
and its proof traces are long-term goals beyond the scope of this thesis.

1.4 Contributions

Our main contributions are as follows.

• Contributions to decision procedures for nonlinear arithmetic over C

1. A theory of Gröbner basis procedures (Abstract Gröbner Bases) based upon

the Bachmair-Dershowitz theory of Abstract Completion and designed to

aid the analysis of superfluous S-polynomial criteria w.r.t. arbitrary correct

basis construction strategies.

2. A generalisation of the notion of S-polynomial superfluousness in terms of

proof normalisation.

3There is an exception: We will see in Chapter 6 that one key aspect of the RAHD source code, the
bulk of our machinery for generalised interval constraint propagation, has been formally verified.
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3. Proofs of the strategy-independent admissibility of three superfluous S-

polynomial criteria using the above generalisation.

4. Gröbner basis construction algorithms based on the OTTER and DISCOUNT

saturation loops prominent in first-order automated theorem proving. These

algorithms were designed to address the needs of SMT solvers to com-

pute Gröbner bases arising from large, largely linear nonlinear polynomial

constraint systems in the context of industrial software verification. These

algorithms are proved correct using Abstract Gröbner Bases and are thus

able to make use of the superfluous S-polynomial criteria referenced above.

They have been implemented by our co-author de Moura in the SMT solver

Z3 [MB08] and preliminary experimental results obtained by our co-author

Jackson are presented. These techniques form the basis of the current non-

linear reasoning mechanisms of Z3.

5. Algebraic machinery and algorithms for eliminating redundancy in weak

Nullstellensatz proofs of complex unsatisfiability in the context of SMT

solvers. This contributes to the minimisation of such proofs to unsatisfiable

cores.

• Contributions to decision procedures for nonlinear arithmetic over R

1. The development of a large arsenal of combinable heterogeneous ∃ RCF
proof procedures. These include generalised interval constraint propaga-

tion, extensions of the Tiwari Positivstellensatz method, and a large num-

ber of other saturation and simplification techniques based on parametric

discriminants, root bounds, Dolzmann degree shifts, and more. This results

in a hierarchy of increasingly powerful combined (and easily combinable)

proof procedures.

2. The theoretical framework of Abstract Partial CAD, a generalisation of

partial CAD which allows arbitrary sound but possibly incomplete ∃ RCF
proof procedures to be given as first-class functional parameters for “short-

circuiting” expensive computations during the lifting phase of CAD. This

gives one the ability to exert strategic control over key aspects of CAD

construction.

3. The implementation of the above techniques, together with machinery for
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facilitating their combination, in our proof tool RAHD (Real Algebra in

High Dimensions). RAHD’s proof strategy language is used to allow users

to synthesise their own combined decision methods tailored to their needs.

4. An identification the functional proof procedure parameters of Abstract

Partial CAD with RAHD proof strategies. This allows us to implement

the Abstract Partial CAD framework in RAHD, which we do for the case

of full-dimensional cell decompositions (using the Brown-McCallum pro-

jection operator). Throughout, we pay close attention to how RAHD may

be trustworthily extended and tailored to exploit structural properties aris-

ing in specific problem domains.

5. An empirical investigation into combining full-dimensional CAD and Gröbner

basis calculations to extend the use of full-dimensional CAD from ∧,∨
combinations of strict inequalities to those involving equations and in-

equalities which are non-strict.

6. An empirical investigation into a concrete instance of our Abstract Par-

tial CAD framework which uses interval-based techniques to reduce the

number of cells one must lift over during partial CAD construction. This

investigation is done w.r.t. full-dimensional cell decompositions and the

Brown-McCallum projection operator.

1.5 How to Read This Dissertation

This dissertation is composed of nine chapters and two appendices. There is also

a large software system, RAHD, which can be obtained (cf. Appendix A). Six of

these chapters (Chapters 3 - 8) consist of original contributions. The other three are

this introduction, a chapter on mathematical preliminaries (Chapter 2) and the final

conclusion (Chapter 9).

Discussion of related work is interleaved throughout the chapters. In each chapter

containing original research, we begin with an overview of the nature of our contribu-

tions. When results were obtained with collaborators, we explain roughly the division

of labours and give reference to our relevant publications.

In Figure 1.5, we present the high-level dependencies between chapters. We use

a box (only for Chapter 8) to mean that this chapter can be read independently as

a user’s manual for our RAHD system. We can imagine a practically-minded user
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beginning with this chapter and only referring to previous chapters when he finds it

necessary to understand the mathematics underlying aspects of the system.

As our thesis consists of two rather independent strands (SMT and Gröbner bases

on the one hand, combined RCF procedures and RAHD on the other), there are a

number of approaches a reader could take depending on his interests.

Let us characterise some possible readers and provide them with a roadmap.

• A reader interested in our entire thesis should, of course, read everything from

start to finish.

• A reader interested in Gröbner bases and SMT, theory and practice should read

Section 2.1.1, Section 2.3, Chapter 3, Chapter 4 and Chapter 5.

• A reader interested in Gröbner bases and SMT, practice should read Chapter
5 and refer back to Chapter 3, Section 2.1.1, Section 2.3 and Chapter 4 as

required.

• A reader interested in combined ∃ RCF proof procedures, theory and practice

should read Chapter 6, Chapter 7, Chapter 8 and refer back to Section 2.2,
Section 2.1 and Section 2.3 as required.

• A reader interested in combined ∃ RCF proof procedures, practice should read

Chapter 8 and refer back to Chapter 6, Chapter 7, Section 2.2, Section 2.1 and

Section 2.3 as required. This would be appropriate for a user simply wishing to

experiment with our RAHD system, for instance.

• A reader interested in the framework of Abstract Partial CAD should read Chap-
ter 7 and then refer to Chapter 6 and Chapter 8 as needed.

• A reader interested in a self-contained proof that both the elementary theory of

algebraically closed fields of characteristic zero and the theory of real closed

fields admit elimination of quantifiers should read Section 2.1 and Section 2.2.

• A reader interested in a brief introduction to Gröbner basis theory from the

rewriting perspective should read Section 2.3 and refer to Section 2.1 as re-

quired.
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3 (Abstract GBs)

2 (Maths Prelims)

1 (Introduction)

4 (Minimal Nsatz Proofs)

5 (GB Algorithms)

6 (Combined RCF Proof Procs)

8 (RAHD)

7 (Abstract PCAD)

9 (Conclusion)

Figure 1.1: Chapter Dependencies

Chapter 8 can be read more-or-less independently as a manual for our RAHD system,

with the reader when necessary referring to previous chapters for the mathematics

underlying the decision techniques present in the system.



Chapter 2

Mathematical Preliminaries

Assumptions

We assume the reader has a grounding in mathematical logic and commutative algebra.

We do not however assume exposure to any (real or complex) algebraic geometry and

give a self-contained treatment of the relevant (all pre-Grothendieck) foundations.

2.1 Algebraically Closed Fields

2.1.1 Ideals and Affine Varieties

In classical algebraic geometry, the most basic geometric objects of interest are affine

varieties, which are the sets (“loci”) of simultaneous complex zeros of systems of

polynomial equations. The descriptive limitation of such objects as being the zeros of

polynomial equations is no accident — it is forced upon us by the fact that C admits no

ordering as an ordered field. The fundamental notion connecting algebra and geometry

in this context is the relationship between varieties and ideals.

Let Q[�x] =Q[x1, . . . ,xn] denote the ring of polynomials with coefficients in Q and

n ∈ N indeterminates x1, . . . ,xn. Recall the defining property of a polynomial ideal.

Definition 2.1.1 (Polynomial ideal). I ⊆Q[�x] is a polynomial ideal iff

0 ∈ I,

p,q ∈ I ⇒ p+q ∈ I,

p ∈ I, q ∈Q[�x] ⇒ pq ∈ I.

We then have the following basic relationship between varieties and ideals.

15
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Definition 2.1.2 (Ideal of a variety). Given a complex affine variety

VC(S) = {�c ∈ Cn | ∀p ∈ S (p(�c) = 0)},

with S ⊆Q[�x], VC(S) gives rise to a corresponding algebraic object,

I(VC(S)) = {p ∈Q[�x] | ∀�c ∈ VC(S) (p(�c) = 0)} ,

the ideal of polynomials vanishing on VC(S).

Definition 2.1.3 (Ideal generated by polynomials). Given a finite collection of poly-

nomials S = {p1, . . . , pk} ⊆ Q[�x], we define the ideal generated by S, written I(S),
as

I(S) = I({p1, . . . , pk}) =

�
k

∑
i=1

piqi | qi ∈Q[�x]

�
.

We then have by construction,

I(VC(S))⊇ I(S).

Observation 2.1.4. It is important to note that these two objects above are not in

general equal. Consider S = {x2,y2}, noting that x,y /∈ I(S). Then, VC(S) = {(0,0)}
and so {x,y}⊂ I(VC(S)), yielding I(S)⊂ I(VC(S)).

We now turn to an important property of ideals in polynomial rings over Noetherian

rings of coefficients. For concreteness, we state the result only for Q[�x].

Theorem 2.1.5 (Hilbert’s Basis Theorem). Let I ⊆Q[�x] be a polynomial ideal. Then,

∃ b1(�x), . . . ,bk(�x) ∈Q[�x] s.t. I = I({b1, . . . ,bk}) (k ∈ N).

That is, Hilbert’s Basis Theorem guarantees an ideal I ⊆ Q[�x] is always finitely

generated, provided that Q[�x] is a polynomial ring in finitely many indeterminates,

which will hold for all polynomial rings in this dissertation. So, over C we may reduce

the definition of I(VC(S)) above to one in which each member of the ideal is a sum

of products of members of Q[�x] and only k-many generating basis polynomials. Thus,

taking {b1, . . . ,bk} to be such a basis,

I(VC(S)) = I({b1, . . . ,bk}) =
�

k

∑
i=1

biqi | qi ∈Q[�x]

�
.

With this in mind, we see it is no geometric restriction to require all ideals to be

finitely presented. We may now pose a question over C central to our decision methods

of interest:
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Question 2.1.6. Given S ⊂Q[�x] s.t. |S|< ω, is VC(S) empty?

Note that this question is equivalent to the following perhaps more familiar one:

Question 2.1.7. Given a finite collection of polynomial equations:

p1(�x) = q1(�x),
...

pn(�x) = qn(�x),

does �C,+,−,∗,=,0,1� |= ∃�x(p1(�x) = q1(�x) ∧ . . .∧ pn(�x) = qn(�x))?

That is, a decision method for Question 2.1.6 would result in a decision method for

the satisfiability of finitely-presented equational polynomial constraints over C. This

decision problem does indeed admit an algorithmic solution. In this dissertation, we

will consider techniques for solving this problem based both on quantifier elimination

and on Gröbner bases.

In order to prepare the reader for work that follows, we will present an axioma-

tisation of the elementary theory of algebraically closed fields (ACF) and prove the

classical result that the theory of algebraically closed fields of characteristic zero ad-

mits elimination of quantifiers. The detailed presentation of such a proof is important

as it introduces concepts which will be helpful in subsequent chapters. Following this,

we will then present the relevant foundations of Gröbner basis theory in Section 2.3.

2.1.2 Axiomatisation of ACF

We now present an axiomatisation of the elementary theory of algebraically closed

fields. We shall then prove that the characteristic zero extension of this theory admits

elimination of quantifiers. This result is due, using predominantly syntactic methods,

to Tarski [Tar48], though it was subsequently recast in model-theoretic terms by Abra-

ham Robinson in his 1949 PhD thesis [Rob49]. Many approaches to this result have

since been developed. We have chosen to present a method due to Muchnik1 and

discuss why we made this choice below.

1Unfortunately, it seems Muchnik never published his result. Instead, it was communicated to his
students and colleagues and then appeared in two publications in Russian [Sem86, SV00] in which it
was attributed to him. We have learned the method from two English reconstructions of Muchnik’s
approach [Sch04, MO02]. Our exposition is original, however, and develops the method — for better or
for worse — in substantially more detail than the sources from which we learned it.
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Definition 2.1.8 (Axiomatisation of ACF). Let LR be the first-order language with

constants {0,1}, relation symbol {=}, function symbols {+,−,∗}, and logical sym-

bols {∧,∨,¬,∀,∃}. LR is called the language of rings. Given an LR term t, we use tn

as shorthand for t ∗ t ∗ . . . ∗ t and (t �= 0) as shorthand for ¬(t = 0). As no ambiguity

will arise, we use = as both object-theoretic and meta-theoretic equality. ACF, the

elementary theory of algebraically closed fields, is then the LR-theory defined as:

ACF = F
�

U,

where

1. F is an axiomatisation of the elementary LR-theory of fields,

2. U = {∀a0, . . . ,an−1∃x(a0+a1∗x+a2∗x2+ . . .+an∗xn = 0) | n∈N s.t. n≥ 1}.

Note that U, the collection of LR-sentences stating that every univariate non-constant

polynomial with coefficients in the field has a root in the field, is a countably infinite

first-order axiom scheme. Note also that in the case of F, field properties are read-

ily expressed in LR by eliminating multiplicative inverses in favour of their defining

multiplicative property (e.g., x−1 is replaced with a fresh variable y and the constraint

x ∗ y = 1 is conjoined with y quantified as is contextually appropriate). This is done

so that every function symbol in LR denotes a total function. The observant reader

may notice an apparent impoverishing of our term language by taking polynomials in

Z[�x] as opposed to Q[�x] as in the previous pages. This is of course not a real restric-

tion of expressibility as equations between polynomials in Q[�x] may be transformed by

multiplying through denominators to semantically (i.e., field-theoretically) equivalent

equations between polynomials in Z[�x].

As it stands, ACF is not a complete theory. This is because the characteristic of

the field is not specified. For instance, in the absence of a specified characteristic, the

ground sentence (1+1 = 0) cannot be decided. If we specify a characteristic to obtain

a theory ACFp of algebraically closed fields of characteristic p, then ACFp is com-

plete, decidable, and admits elimination of quantifiers. As our interest in algebraically

closed fields is chiefly motivated by making decisions over the complex numbers, we

henceforth deal only with algebraically closed fields of characteristic zero.

2.1.3 ACF0 Admits Quantifier Elimination

We shall now prove the important theorem on quantifier elimination which will lead

to the decidability of ACF0. Geometrically, it is essentially the theorem of Chevalley
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stating projections of constructible sets are themselves constructible, though proved

effectively by presenting an algorithm for obtaining explicit descriptions of such pro-

jections as constructible sets. When proving this general quantifier elimination result

about ACF0, we will often reason concretely over the complex numbers. Each time

this is done, however, the reader should observe that the properties of Cn actually used

in fact hold over every algebraically closed field of characteristic zero, and so our rea-

soning carries over to the theory ACF0 as a whole.

We prove this theorem by presenting the complex specialisation of a real quantifier

elimination procedure due originally to Muchnik. This procedure is very elementary

compared to those we will encounter in subsequent chapters, and is of limited practical

interest. But, its simple nature makes it pedagogically superior to other more advanced

methods, and it provides a vehicle for introducing many important concepts which will

be needed for decision procedures covered later. It also has the advantage that much of

the algebraic machinery we define in the context of this ACF0 result will be reusable

in the RCF case in the next section where we present the Muchnik procedure in its full

RCF form.

The result we will prove is as follows.

Theorem 2.1.9 (ACF0 Quantifier Elimination). The theory of algebraically closed

fields of characteristic zero admits effective elimination of quantifiers.

We prove this by induction by showing how to eliminate a single existential quan-

tifier from a formula with parameters. First, we introduce some algebraic machinery.

2.1.3.1 Complex Root Diagrams

Definition 2.1.10 (Labeled Row of Roots). If p ∈ Z[x] and C ⊂ C s.t. |C| < ω, then a

(1× |C|) labeled binary matrix α with its columns uniquely labeled by members of C

is a labeled row of roots for p iff

• p �= 0 =⇒
[(∃ζ ∈C s.t. α(ζ) = 1) ∧ (|{ζ ∈C | α(ζ) = 0}|= |{ζ ∈ C | p(ζ) = 0}|)],

• ∀ζ ∈C (α(ζ) = 0 ⇐⇒ p(ζ) = 0).

Note that since α is a row matrix with its columns uniquely labeled by members of C,

we use α(c) for c ∈C to mean the binary value α holds in the unique column labeled c

(i.e., we are, when convenient, treating α as a function in {0,1}C). We write RC(α, p)

to mean that α is a labeled row of roots for p.
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Observation 2.1.11. If α is a labeled row of roots for p �= 0, then α contains precisely

as many 0’s as there are distinct roots of p.

Observation 2.1.12. If α is a labeled row of roots for p = 0, then α is a row of 0’s.

Definition 2.1.13 (Root Diagram). If P = {p1, . . . , pk} is a set of polynomials in Z[x]
then a root diagram for P is a labeled binary matrix M with columns labeled by mem-

bers of C ⊂ C s.t. |C|< ω and rows labeled p1, . . . , pk s.t.

• ∀pi ∈ P (RC(M(pi), pi)),

• ∃ζ ∈C ∀pi ∈ P (M(pi,ζ) = 0 ⇐⇒ pi = 0),

where M(pi) is the row labeled by pi. We call columns ζ witnessing the second prop-

erty above anti-solutions, as they correspond to sample points within regions of C in

which no non-zero pi ∈ P vanishes.

Observation 2.1.14. If M is a root diagram for P and M� is obtained from M by some

combination of

• permuting the columns of M,

• adding or removing some (but not all) anti-solution columns from M,

• choosing a different label for an anti-solution column of M (while still preserving

its status as an anti-solution column),

then M� is still a root diagram for P.

Lemma 2.1.15. Up to the modifications described in Observation 2.1.14, a root dia-

gram M for P is uniquely determined.

Proof. This is immediate, as every root diagram for P must contain a minimal core

consisting of columns labeled by every root of each p ∈ P, together with at least one

anti-solution column for P. It is clear that none of these columns may be removed from

M while maintaining its status as a root diagram for P, though a different label may be

used for the anti-solution column. Thus, given two distinct root diagrams M,M� for P,

M and M� may only differ by the operations given in Observation 2.1.14.

Given this relative uniqueness, we will now write D(P) (“the root diagram for P”) to

mean a canonically chosen root diagram for P.
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2.1.3.2 Muchnik Sets and Sequences

We now present the concepts of Muchnik sets and sequences which we will use to

compute root diagrams for sets of polynomials.

Let A be a unique factorisation domain (UFD) and let p ∈ A[x] s.t.

(p = 0) ∨ (p =
d

∑
j=0

c jx j ∧ cd �= 0).

Definition 2.1.16 (Polynomial Degree).

deg(p) =

�
d if p �= 0,

−∞ if p = 0.

Definition 2.1.17 (Polynomial Tail).

τ(p) =

�
∑d−1

j=0 c jx j if p �= 0,

0 if p = 0.

We now face a problem: we will need to perform division upon pairs of polyno-

mials in A[x], where A is some non-Euclidean UFD such as Z[y1,y2]. Recall that if A
is a UFD, then A[x] is as well. We will thus make use of polynomial pseudo-division,

as the unique pseudo-remainder it computes for pairs of polynomials will be sufficient

for inductively obtaining root diagrams.

Let q ∈ A[x] s.t.

q =
e

∑
j=0

b jx j ∧ q �= 0 ∧ deg(q) = e ≤ d.

Definition 2.1.18 (Polynomial Pseudo-remainder). Given p,q as specified above, poly-

nomial pseudo-division of p by q will compute unique h,r ∈ A[x] s.t.

bd−e+1
e p = hq+ r ∧ deg(r)< e.

We refer to r = rem(p,q) as the pseudo-remainder2 of p by q.

Let M �= /0 ⊂ A[x] s.t. |M|< ω.

Definition 2.1.19 (Muchnik Set). We say M is a Muchnik set iff
2Knuth gives an excellent presentation of polynomial pseudo-division on pp 425-428 of [Knu97].

Sufficient background on UFDs is given on pp 422-424. To reiterate the elementary nature of the quan-
tifier elimination procedure we are presenting, though, let us note that computing pseudo-remainders is
conceptually very simple: In fact, over a UFD such as our A[x] above, one can compute the pseudo-
remainder of p by q by first multiplying p by bd−e+1

e and then performing standard polynomial division
(that is, the division algorithm for polynomials over a field) between the product (bd−e+1

e p) and q.
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1. p ∈M=⇒ τ(p) ∈M,

2. p ∈M=⇒ ∂p
∂x ∈M,

3. p,q �= 0 ∈M ∧ deg(q)≤ deg(p) =⇒ rem(p,q) ∈M.

Observation 2.1.20. If M is Muchnik, then 0 ∈M.

Definition 2.1.21 (Muchnik Closure). Given M⊂ A[x], let M∗ be the smallest Much-

nik set containing M. We say M∗ is the Muchnik closure of M.

Observation 2.1.22. If M⊂ A s.t. |M|< ω and 0 ∈M then M is Muchnik.

Definition 2.1.23 (Constant Fragment). A constant is a polynomial p ∈ A. If M is

Muchnik then let M0 be M∩A – the constant fragment of M – which is also Muchnik.

Lemma 2.1.24 (Finiteness). Let M⊂ A[x] s.t. |M|< ω. Then |M∗|< ω.

Proof. Immediate as each of the three operations placing polynomials into M∗ are

strictly degree reducing.

All Muchnik sets we encounter will be finite and we henceforth omit the explicit

assumption. We now introduce the notion of a Muchnik sequence and prove its impor-

tant substructural property.

Definition 2.1.25 (Muchnik Sequence). Let M be Muchnik. Then any sequence β ∈
M|M| is a Muchnik sequence iff

∀1 ≤ i < |M| (deg(β(i))≤ deg(β(i+1)).

Observe that as deg(0) =−∞, a Muchnik sequence always begins with 0.

The following lemma will be important for inductively extending Muchnik se-

quences.

Lemma 2.1.26 (Muchnik Subsequence). Let β be a Muchnik sequence. Then, any

non-empty initial segment β� of β is a Muchnik sequence.

Proof. By the definition of Muchnik, we must show β� is closed under the operations

of tail, partial differentiation and pseudo-remainder. But this is immediate by the

fact that these three closure operations are strictly degree reducing, and in a Muchnik

sequence β (and hence any initial segment), the polynomials must be ordered so that

(deg(β(i))≤ deg(β(i+1)).
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2.1.3.3 Elimination of a Single Existential Quantifier

With the Muchnik machinery in hand, let us now discuss our strategy for eliminating

an existential quantifier. Given a set of polynomials P = {p1, . . . , pk}⊂Z[y1, . . . ,yn][x]

(e.g., A = Z[�y] is our ambient ring of coefficients for polynomials in x), let P(�c) =

{p1(�c), . . . , pk(�c)} ⊂ Z[x] for any �c ∈ Cn. Recall that P∗ is the Muchnik closure of P

with P∗
0 = (P∗ ∩Z[�y]) its subset of constants w.r.t. x. We will present an algorithm for

computing all possible root diagrams for P∗. This will be done in such a way that each

root diagram for P∗ will be derived (and uniquely determined) from a root diagram for

P∗
0 . By viewing P∗ as a collection of univariate polynomials in x, the set of all root

diagrams for P∗ arises by considering the specialisations of A= Z[�y] to points�c ∈ Cn.

Let us introduce the notion of an extended root diagram to formalise this process.

Definition 2.1.27 (Extended Root Diagram). Let P = {p1, . . . , pk} be a set of polyno-

mials in Z[y1, . . . ,yn][x]. Then, an extended root diagram for P w.r.t.�c ∈Cn is a labeled

binary matrix M ∈ {0,1}P×C with C ⊂ C and |C|< ω s.t.

• ∀pi ∈ P(RC(M(pi), pi(�c))),

• ∃ζ ∈C ∀pi ∈ P (M(pi,ζ) = 0 ⇐⇒ pi(�c) = 0),

where M(pi) is identified with a function in {0,1}C in the obvious way.

Intuitively, if M is an extended root diagram for P w.r.t.�c, then M is in principle a

normal root diagram for P(�c)⊂Z[x], but constructed so that row the labels of M hold a

record of the polynomials pi ∈Z[�y][x] from which the pi(�c)∈Z[x] were derived. Thus,

one may see such an extended root diagram as what happens when one computes a

root diagram for a specialisation of P to P(�c) and then forgets the specialisation of the

row labels.

It is easy to see that the same uniqueness properties that hold for root diagrams (à

la Lemma 2.1.15) also hold for extended root diagrams.

Finally, it turns out that all of the information needed to perform quantifier elimina-

tion can actually be obtained from a variant of extended root diagrams in which neither

the columns nor rows carry explicit labels.

Definition 2.1.28 (Unlabeled Extended Root Diagram). Let P = {p1, . . . , pk} be a set

of polynomials in Z[y1, . . . ,yn][x]. Then, an unlabeled extended root diagram for P

w.r.t. �c ∈ Cn is an (k×m) binary matrix M obtained from an extended root diagram

M� for P w.r.t. �c by forgetting the row and column labels of M�. That is, M is simply
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the underlying binary matrix of M�. Given that P is ordered, we will use M(pi) and

“the row corresponding to pi” to mean the ith row of M, even though M is formally

simply a matrix (without explicit polynomial row labels). If M is a matrix consisting

of a single column, then we will use M(pi) to mean the value of the single entry in the

row corresponding to pi.

From now on, when we say “the unlabeled extended root diagram for P w.r.t.�c,” we

will mean a canonically chosen unlabeled extended root diagram for P w.r.t.�c. We will

write D∗(P,�c) to mean the unlabeled extended root diagram for P w.r.t.�c. Similarly, if

β is a Muchnik sequence of polynomials in Z[�y][x], then D∗(β,�c) will be the unlabeled

extended root diagram for the underlying set of β w.r.t.�c.

Let

D= {D∗(P∗,�c) |�c ∈ Cn},

and

D0 = {D∗(P∗
0 ,�c) |�c ∈ Cn}.

The key observations are:

1. Both sets D and D0 are finite (and every member of D0 consists of a single-

column binary matrix), and

2. Given any �c ∈ Cn, the unlabeled extended root diagram for P∗ w.r.t. �c (i.e.,

D∗(P∗,�c) ∈ D) may be obtained from the unlabeled extended root diagram for

P∗
0 w.r.t.�c (i.e., D∗(P∗

0 ,�c) ∈ D0).

This derivation of D∗(P∗,�c) from D∗(P∗
0 ,�c) , which we call diagram lifting, will

be done by an algorithm AC with the following universal property:

∀�c ∈ Cn(AC(D∗(P∗
0 ,�c)) =D∗(P∗,�c)).

Let us now see how this machinery can be applied.

Consider a quantifier-free formula

ϕ(�y,x) = (
k�

i=1
(pi σpi 0)) with (σpi ∈ {=, �=}).

Let Z(σpi) hold iff σpi is ‘=’. Say that the unlabeled extended root diagram C for P∗ is

ϕ-compatible iff there exists a column j in C s.t.

∀1 ≤ i ≤ k(C(pi, j) = 0 ⇐⇒ Z(σpi)).
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Given any�c ∈ Cn, we will then have

∃x(ϕ(�c,x)) ⇐⇒ AC(D∗(P∗
0 ,�c)) is ϕ-compatible.

Let k0 be s.t. P∗
0 = {p1, . . . , pk0}. Observe that |D0| ≤ 2k0 . That is, there are at most

2k0 possible unlabeled extended root diagrams which could arise in the process of

specialising P∗
0 to any point in Cn. Let M0 be the set of all (k0 × 1) binary matrices.

Observe that D0 ⊆M0. Then, conditions ψ(�y) upon�y s.t.

∀�y(ψ(�y) ⇐⇒ ∃x(ϕ(�y,x)))

are given by

ψ(�y) =
�

d0∈Qϕ

ELR(d0),

where

Qϕ = {d0 ∈M0 | AC(d0) is ϕ-compatible}

and

ELR(d0) =
�

q∈P∗
0

(q ⊙d0(q) 0)

s.t.

⊙d0(q) =

�
‘=’ if d0(q) = 0,

‘�=’ if d0(q) = 1.

Now, there is one aspect of the above derivation of ψ(�y) which is counterintuitive.

Naively, one would expect Qϕ to be defined as the set S as follows:

S = {d0 ∈ D0 | AC(d0) is ϕ-compatible}.

The issue with this definition is that in practice, we will not a priori know if a given

binary matrix d0 ∈M0 is actually the unlabeled extended root diagram for P∗
0 w.r.t. any

�c ∈Cn. That is, given some d0 ∈M0, we will not know in advance if it is a member of

D0 or not. Thankfully, it will will not actually matter what our lifting algorithm gives

as the value of AC(d0) when d0 ∈ (M0 \D0). Let us see why this is so.

Lemma 2.1.29. Let d0 ∈ (M0\D0). Then, based upon our construction of ψ(�y) above,

it does not matter which (k×m) binary matrix our lifting algorithm constructs as the

value AC(d0).

Proof. Assume we are eliminating ∃x from ∃xϕ(�y,x) to obtain a quantifier-free equiv-

alent formula ψ(�y) as above. Consider d0 ∈ (M0 \D0). That is, d0 is a k0 × 1 binary
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matrix that is not realisable as the unlabeled extended root diagram for P∗
0 w.r.t. any

�c∈Cn. Now, let us apply AC to lift d0 and obtain an (k×m) binary matrix d =AC(d0).

We have two cases: either d is ϕ-compatible, or it is not. If d is not ϕ-compatible, then

d0 will not contribute at all to our construction of ψ(�y) and so the value of d does not

matter. On the other hand, assume that d is ϕ-compatible. Then, d will contribute to

our construction of ψ(�y) in the following way: ELR(d0) will be present as a disjunct in

ψ(�y). But, since d0 is not realisable as the unlabeled extended root diagram of P∗
0 w.r.t.

any�c ∈ Cn, this means that

�C,+,−,∗,0,1� |= ∀�y(ELR(d0) ⇐⇒ 0 = 1).

Thus, ELR(d0) is only contributing a contradictory conjunction as a disjunct in our

formula ψ(�y), which means ψ(�y) is logically equivalent to ψ(�y) with ELR(d0) removed.

So, it is indeed the case that if d0 is not realisable as the unlabeled extended root

diagram of P∗
0 w.r.t. any �c ∈ Cn, then it does not matter which (k×m) binary matrix

our lifting algorithm constructs as the value AC(d0).

This fact permits us a simple approach to constructing ψ(�y): We will generate all

2k0 possible (k0×1) binary matrices as candidate unlabeled extended root diagrams for

P∗
0 , lift each of them, and construct ψ(�y) as a disjunction of conjuncts corresponding

to the ϕ-compatible lifted candidates.

Thus, once we have exhibited an algorithm AC for diagram lifting, we will have

proved the following theorem establishing, by induction, that ACF0 admits elimination

of quantifiers.

Theorem 2.1.30 (Projective Closure of Definability). Given any quantifier-free LR-

formula ϕ(�y,x) there exists a quantifier-free LR-formula ψ(�y) s.t.

ACF0 |= ∀�y (∃xϕ(�y,x) ⇐⇒ ψ(�y)) .

Moreover, ψ(�y) is effectively computable from ϕ(�y,x).

Let us now finish the proof by constructing such an AC. Recall that by Lemma
2.1.26, every subsequence β� of β is Muchnik. Given an unlabeled extended root di-

agram for β0 w.r.t. �c, AC will use this property of Muchnik sequences to build an

extended root diagram for β w.r.t.�c inductively, by building one for each of its subse-

quences β�. We now construct an algorithm A1
C which will handle the inductive step

of this lifting process.
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Lemma 2.1.31 (ACF0 Single-Step Diagram Lifting Algorithm). There is an algorithm

A1
C which takes as input �β,C, p� s.t.

• β ∈ Z[�y][x]k is a Muchnik sequence,

• C is a (k×m) binary matrix (a candidate unlabeled extended root diagram for

β),

• p ∈ Z[�y][x] is a non-constant polynomial w.r.t. x s.t. β+ = �β(1), . . . ,β(k), p� is

Muchnik

and constructs a (k+1×m�) binary matrix C+ s.t.

• if C is the unlabeled extended root diagram for β w.r.t. �c ∈ Cn, then C+ is the

unlabeled extended root diagram for β+ w.r.t. the same�c. That is,

C=D∗(β,�c) =⇒ C+ =D∗(β+,�c).

As established by Lemma 2.1.26, if C is in fact not an unlabeled extended root diagram

for β w.r.t. any �c ∈ Cn, then it is of no consequence which (k+ 1×m�) binary matrix

this algorithm returns. In certain cases, this algorithm may be able to “short-circuit”

its processing by recognising that the candidate C is not the unlabeled extended root

diagram for β w.r.t. any �c ∈ Cn. In these cases, the algorithm will return a special

value ⊥ to signify this.

Proof. Let deg(p) = d and α ∈ Z[y1, . . . ,yn] be the highest degree coefficient of p

(both w.r.t. x). Recall that as Muchnik sets are closed under partial differentiation,

d!α appears in β and thus corresponds to a row in C. Let r be this row. If r is not a

constant row, then C cannot be an unlabeled extended root diagram for β, so we return

⊥. Otherwise, we have two cases:

[Case I: r =�0] In this case, the root conditions for p are equivalent to those for

0∗xd +τ(p) = τ(p)∈Z[�y][x]. But, note that deg(τ(p))< d w.r.t. x. Thus, by definition

of Muchnik sequence, we have that the row of roots for τ(p) already exists in C. Hence

we may simply copy this row of roots as the row for p and we are done.

[Case II: r =�1] If C = D∗(β,�c) for �c ∈ Cn, then r =�1 yields that α(�c) �= 0. To

extend C to C+ by taking into account p, we must meet the following requirements:

• Any root of p not already represented by a column of C must be represented by

a column of C+ (columns must be added for these roots),
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• The nullity of every polynomial represented by a row of C at each new root of p

must be determined,

• The nullity of p at all points represented by columns of C must be determined (p

will be 0 in every column of C+ which is not present in C, as these are roots of

p),

• The existence of an anti-solution column must be maintained.

Let ζ be a column of C. We have two cases:

[Case II.a: ζ is not an anti-solution column] So, the column ζ contains a 0 which

does not come from a 0-row. Let q ∈ β be of minimal degree (deg(q) = e) s.t. C(q,ζ) =
0 and C(q) �=�0. If C is an extended root diagram for β w.r.t. �c ∈ Cn, then this means

that q(�c,ζ) = 0 and q(�c) ∈ Z[x] is not identically zero. Let γ ∈ Z[�y] be the highest

degree coefficient of q s.t. q = γxe + τ(q). Observe by definition of Muchnik sequence

that e!γ corresponds to a row in C. If C(e!γ) is not a constant row, then C cannot be an

unlabeled extended root diagram for β and we return ⊥. Thus we assume C(e!γ) is a

constant row.

Let us now observe that if C(e!γ) =�0, then C cannot be an unlabeled extended root

diagram for β. If C(e!γ) =�0, then we have that the root conditions of q are equivalent

to those of 0+ τ(q) = τ(q) ∈ Z[�y][x]. So, τ(q)(�c,ζ) = 0. But then by assumption that

q was of minimal degree with q(�c,ζ) = 0 and C(q) �=�0, we have that C(τ(q)) must

be a 0-row. But, then C(q) would be a 0-row as well, which is a contradiction. So, if

C(e!γ) =�0 then C cannot be an unlabeled extended root diagram for β and we return

⊥. Thus we assume C(e!γ) =�1.

Let r = rem(p,q) be the pseudo-remainder of p by q. So, γd−e+1 p = hq+ r for

some h,r ∈ Z[�y][x] s.t. deg(r) ≤ e− 1. As C(q,ζ) = 0, if C is an unlabeled extended

root diagram for β w.r.t.�c ∈Cn, then p(�c) = r(�c). By definition of Muchnik sequence,

r is represented by a row in C. Therefore we simply set C+(p,ζ) = C(r,ζ) and this

case is complete. Observe that this process allows us to determine the nullity of p for

every column of C which is a root of some non-constant polynomial in β.

[Case II.b: ζ is an anti-solution column] So, the ζ only has 0’s coming from 0-rows.

We have two requirements left to meet:

• We must add columns to C+ corresponding to the roots of p which are not rep-

resented by columns of C and determine the nullity of each polynomial corre-

sponding to a row of C at these new roots of p,
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• We must guarantee the existence of an anti-solution column for C+.

As p ∈ Z[�y][x] is non-constant by assumption, we can extend ζ to be an anti-solution

column of C+ by simply setting C+(p,ζ) = 1. Thus, the requirements of both deter-

mining the nullity of p at every column label of C and guaranteeing the existence of an

anti-solution column for C+ have been met.

It now remains to add columns to C+ representing the roots of p not already repre-

sented by columns of C and to determine the nullity of every polynomial represented by

a row of C at these new roots. Observe that any root of p not represented by a column

of C must have multiplicity 1, as otherwise it would be a root of ∂p
∂x and hence would

be already represented by a column of C. By the Fundamental Theorem of Algebra,

we may determine the number of new roots of p to add to C+ as (deg(p)−#κ) where

#κ is the number of roots of p already represented in C counted with multiplicity. To

determine #κ, it will suffice to determine the multiplicity m(ξ) of every root ξ of p

appearing in C. To compute m(ξ), we examine the successive derivatives ∂p
∂x ,

∂2 p
∂x2 , . . .

and check the nullity of each derivative at ξ. By definition of Muchnik sequence, all

such derivatives will correspond to rows of C, and thus this information may be com-

puted from C. Then, m(ξ) = j where j is the least power s.t. C(∂ j p
∂x j ,ξ) = 1. Thus,

#κ = ∑ξ∈χ m(ξ) where χ is the collection of points represented by columns of C s.t.

C(p,ξ) = 0. Now, we add (deg(p)−#κ) new columns to C+ with 0’s in their bottom

row (corresponding to p), 0’s in their rows corresponding to 0-rows, and 1’s in all other

rows. As we have met our final requirements, this completes our proof.

As it is easy to see all properties of C used in the above construction hold over

every F s.t. F |= ACF0, Theorem 2.1.30 follows by induction along β. That is, we

may always eliminate a single existential quantifier. From this result, Theorem 2.1.9
follows by induction by placing LR formulas in prenex normal form and successively

eliminating the innermost existential quantifier until no quantified variables remain.

2.2 Real Closed Fields

2.2.1 Ideals and Real Algebraic Varieties

Whereas classical algebraic geometry takes place over an algebraically closed field

such as C, real algebraic geometry takes place over a real closed field such as R. The

genesis of modern real algebraic geometry began most fervently with Artin-Schreier

theory and Artin’s subsequent solution to Hilbert’s 17th Problem.
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Question 2.2.1 (Hilbert’s 17th Problem). Let p ∈R[�x] =R[x1, . . . ,xn] s.t. p(�r)≥ 0 for

all�r ∈ Rn. Does there then necessarily exist a representation of p as a sum of squares

of finitely many real rational functions? That is, do there exist some r1, . . . ,rk ∈ R(�x)
s.t.

p =
k

∑
i=1

r2
i

where R(�x) is the field of real rational functions in�x?

Hilbert’s 17th Problem was solved in the affirmative by Artin in 1926. Artin’s ap-

proach can now be seen as being distinctively model-theoretic, and the theory both he

and Schreier developed in the process of explicating the elementary structures sharing

the ordered field properties of the real numbers introduced the notion of real closed

fields and allowed real algebraic geometry to develop in a fairly general way (i.e., most

core real algebraic constructions are given as taking place over any real closed field,

not simply over R).

2.2.2 Axiomatisation of RCF

We will give an elementary axiomatisation of the theory of real closed fields (RCF) as

follows.

Definition 2.2.2 (Axiomatisation of RCF). Let L be the first-order language with con-

stants {0,1}, relation symbols {=,<}, function symbols {+,−,∗}, and logical sym-

bols {∧,∨,¬,∀,∃}. L is called the language of ordered rings. Then RCF, the elemen-

tary theory of real closed fields, is the L-theory defined as follows:

RCF = OF
�

PSQR
�

OP,

where

1. OF is an axiomatisation of the elementary L-theory of ordered fields,

2. PSQR = {∀x∃y(x < 0 ∨ x = y∗ y},

3. OP = {∀a0, . . . ,an−1∃x(a0 +a1 ∗x+a2 ∗x2 + . . .+a2n+1 ∗x2n+1 = 0) | n ∈N}

Note that OP, the collection of L-sentences stating that every odd degree univariate

polynomial with coefficients in the field has a root in the field, is a countably infinite

first-order axiom scheme.
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The elementary theory RCF has many important properties. First and foremost,

it is a complete theory. This groundbreaking result was proved by Tarski [Tar48].

Moreover, as RCF is recursively axiomatised, its completeness implies its decidability.

In fact, as shown by Robinson [Rob56], RCF is model-complete. Most importantly

for our work, RCF admits effective elimination of quantifiers. Let us now adapt the

Muchnik quantifier elimination procedure given for ACF0 in Section 2.1.3 to obtain a

quantifier elimination procedure over RCF.

2.2.3 RCF Admits Quantifier Elimination

This section assumes the reader has mastered the analogous material over C presented

in Section 2.1.3.

2.2.3.1 Real Sign Diagrams

Over R, the analogue of complex rows of roots and root diagrams will be real ordered

rows of signs and sign diagrams.

Definition 2.2.3 (Ordered Row of Signs). Let p ∈ Z[x] with ζ2 < ζ4 < .. . < ζ2m its

real roots, ignoring multiplicity. Observe that p has constant sign on the open intervals

induced by the roots:

• ]−∞,ζ2[,

• ]ζ2i,ζ2i+2[ (∀1 ≤ i < m), and

• ]ζ2m,+∞[.

Given a pair of consecutive roots ζ2i,ζ2i+2, let ζ2i+1 be any point in ]ζ2i,ζ2i+2[. Simi-

larly, let ζ1 be any point in ]−∞,ζ2[ and ζ2k+1 be any point in ]ζ2k,+∞[ (we will see

in Chapter 6 that choosing a rational point within the open intervals can be advanta-

geous, though for now this does not matter). All such points ζ j (including the roots)

are called sample points. Then, an ordered row of signs for p is simply the sequence

of signs of p at each ζ j, e.g.,

�sgn(p(ζ1),sgn(p(ζ2)), . . . ,sgn(p(ζ2m+1))�,

where

sgn(x) =






−1 if x < 0,

0 if x = 0,

1 if x > 0.
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We write RR(α, p) to mean that α is an ordered row of signs for p.

We must now extend our single polynomial machinery so as to handle a set of

polynomials. In the set case, roots of polynomials will not necessarily appear as the

sample points with even index. This leads naturally to the definition of a sign diagram.

Definition 2.2.4 (Sign diagram). Let P = {p1, . . . , pk} ⊂ Z[x]. Let M be a (k ×m)

matrix with entries in {−1,0,1}. M will be a sign diagram for P if there exists a

sequence of sample points Θ = �ζ1, . . . ,ζm� ∈ Rm with ζ1 < ζ2 < .. . < ζm s.t.

• ∀pi �= 0 ∈ P ∀r ∈ R
�

pi(r) = 0 =⇒ ∃ζ j ∈ Θ(ζ j = r)
�
,

• ∀ζi �= ζ j ∈ Θ[(∃pu �= 0, pv �= 0 ∈ P(pu(ζi) = 0 ∧ pv(ζ j) = 0))

=⇒ ∃ζw ∈ Θ(ζi < ζw < ζ j ∧ ∀ps ∈ P(ps(ζw) �= 0)],

• ∀pi ∈ P ∀ζ j ∈ Θ
�
M(pi,ζ j) = sgn(pi(ζ j))

�
,

• ∀pi �= 0 ∈ P(pi(ζ1) �= 0 ∧ pi(ζm) �= 0) ,

where members of P have been used to refer the rows of M and members of Θ to refer

its columns: M(pi,ζ j) is the �i, j�-th entry of M, M(pi) is the j-th row of M and M(ζ j)

is the j-th column of M. If M is a sign diagram for P as above, then we will call Θ a

witnessing sample point sequence for M.

Observation 2.2.5. If M is a sign diagram for P, then M(pi) is essentially an ordered

row of signs for pi, with the caveat that from the perspective of pi, M(pi) may contain

some duplicate entries. These duplicate entries correspond to extra sample points in

the intervals between roots of pi, and may be roots of other p j ∈ P, or sample points

in between them.

In the following, let M ∈ {−1,0,1}k×m be a sign diagram for P = {p1, . . . , pk} with

Θ = �ζ1, . . . ,ζm� a witnessing sample point sequence for M.

Observation 2.2.6. If pi ∈ P is identically 0, then M(pi) =�0.

Definition 2.2.7 (Root of P). A sample point ζ j which is a root of some pi ∈ P is called

a root of P.

Observation 2.2.8. The collection of roots of P is the same as the collection of roots

of the single polynomial ∏pi∈P pi.
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Definition 2.2.9 (Non-root of P). A sample point ζ j which is not a root of any pi ∈ P

is called a non-root of P.

Observation 2.2.10. Two adjacent columns M(ζi) and M(ζi+1) of M cannot be equal

unless both ζi and ζi+1 are non-roots of P.

Observation 2.2.11. If two adjacent columns of M are equal and M� is obtain from M

by removing one of the duplicate columns, then M� is again a sign diagram for P.

Definition 2.2.12 (Minimal sign diagram). A minimal sign diagram for P is a sign

diagram M for P s.t. M does not contain any duplicate adjacent columns. In particular,

M consists of

• an initial column corresponding to a sample point ζ1 which is less than any root

of P,

• sequences of adjacent columns corresponding to sample points of the form ζ j <

ζ j+1 < ζ j+2 s.t. ζ j and ζ j+2 are roots of P and ζ j+1 is a non-root of P, and

• a final column corresponding to a sample point ζm which is greater than any root

of P.

There is then an analogue of Lemma 2.1.15 for sign diagrams, whose proof is imme-

diate:

Lemma 2.2.13 (Uniqueness of Minimal Sign Diagrams). Let M,M� be minimal sign

diagrams for P. Then, M = M�.

Observation 2.2.14. If M is a sign diagram for P, then for any r ∈ R, we may find a

column M(ζ j) of M s.t. ∀pi ∈ P(M(pi,ζ j) = sgn(pi(r))).

Observation 2.2.15. If M is a sign diagram for P, then there can never be two consec-

utive columns M(ζ j),M(ζ j+1) s.t. M(pi,ζ j) = M(pi,ζ j+1) = 0 for any pi ∈ P, unless

M(pi) =�0. That is, there can never be two consecutive 0’s in a row of M unless they

appear in a row consisting only of 0’s (corresponding to pi ∈ P which is identically 0).

2.2.3.2 Elimination of a Single Existential Quantifier

With our adjusted algebraic machinery in hand, the proof of quantifier elimination over

RCF will go through identically as it did for ACF0, except for the construction of the

diagram lifting algorithm. It will thus suffice to present the real adapation (AR) of the
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complex diagram lifting algorithm (AC). As with the complex case, AR will exploit

the inductive nature of Muchnik sequences by recursively making use of a “single-

step lifting algorithm,” A1
R. Once we have exhibited such an algorithm, we will have

proved the following theorem establishing, by induction, that RCF admits elimination

of quantifiers.

Theorem 2.2.16 (Projective Closure of Definability). Given any quantifier-free L-

formula ϕ(�y,x) there exists a quantifier-free L-formula ψ(�y) s.t.

RCF |= ∀�y (∃xϕ(�y,x) ⇐⇒ ψ(�y)) .

Moreover, ψ(�y) is effectively computable from ϕ(�y,x).

Observe that unlike root diagrams in the complex case, sign diagrams are by def-

inition simply matrices and do not carry explicit row nor column labels. We will use

the notion of an extended sign diagram to be the real analogue of a complex unlabeled

extended root diagram (Definition 2.1.28) in the obvious way. Given a finite set of

polynomials S ⊂ Z[�y][x] and�r ∈ Rn, we will write D∗(S,�r) to mean the minimal ex-

tended sign diagram for S w.r.t.�r. Similarly, if β is a Muchnik sequence of polynomials

in Z[�y][x], then D∗(β,�r) will be the extended sign diagram for the underlying set of β
w.r.t.�r.

Recall that by Lemma 2.1.26, every subsequence β� of β is Muchnik. Given an

unlabeled extended root diagram for β0 w.r.t.�r, we will use this property of Muchnik

sequences to build an extended sign diagram for β w.r.t.�r inductively, by building one

for each of its subsequences β�.

Lemma 2.2.17 (RCF Diagram Lifting Algorithm). There is an algorithm A1
R which

takes as input �β,C, p� s.t.

• β ∈ Z[�y][x]k is a Muchnik sequence,

• C is a (k×m) binary matrix (a candidate minimal extended sign diagram for β),

• p ∈ Z[�y][x] is a non-constant polynomial w.r.t. x s.t. β+ = �β(1), . . . ,β(k), p� is

Muchnik

and constructs a (k+1×m�) binary matrix C+ s.t.

• if C is the minimal extended sign diagram for β w.r.t. �r ∈ Rn, then C+ is the

minimal extended sign diagram for β+ w.r.t. the same�r. That is,

C=D∗(β,�r) =⇒ C+ =D∗(β+,�r).
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It follows by the real analogue of Lemma 2.1.26 that if C is in fact not a minimal

extended sign diagram for β w.r.t. any �r ∈ Rn, then it is of no consequence which

(k+1×m�) binary matrix this algorithm returns. In certain cases, this algorithm may

be able to “short-circuit” its processing by recognising that the candidate C is not the

minimal extended sign diagram for β w.r.t. any�r ∈ Rn. In these cases, the algorithm

will return a special value ⊥ to signify this.

Proof. Assume that C is the minimal extended sign diagram for β w.r.t.�r ∈ Rn. Thus,

there exists a witnessing sample point sequence for M, Θ = �ζ1, . . . ,ζm�. Let deg(p) =

d and α ∈ Z[y1, . . . ,yn] be the highest degree coefficient of p (both w.r.t. x). Recall

that as Muchnik sets are closed under partial differentiation, d!α appears in β and thus

corresponds to a row in C. Let r be this row. If r is not a constant row, then C cannot

be an extended sign diagram for β, so we return ⊥. Otherwise, we have two cases:

[Case I: r =�0] In this case, the sign conditions for p are equivalent to those for

0∗xd +τ(p) = τ(p)∈Z[�y][x]. But, note that deg(τ(p))< d w.r.t. x. Thus, by definition

of Muchnik sequence, we have that the row of signs for τ(p) already exists in C. Hence

we may simply copy this row of signs as the row for p and we are done.

[Case II: r �=�0] We must incorporate the sign conditions of p(�r) ∈R[x] into C+. In

obtaining C+ from C, this requires we accomplish the following goals:

• Columns must be added corresponding to roots of p(�r) which do not correspond

to any columns in C (i.e., columns must be added corresponding to roots of p(�r)

which do not already appear in Θ),

• Columns must be added corresponding to sample points in between roots and

before and after the first and last roots (if these change in the process of adding

columns corresponding to the roots of p(�r)),

• The sign of p(�r) at the sample point ζi corresponding to each column must be

determined,

• The sign of all other polynomials in β (i.e., those corresponding to the rows of

C), must be determined for all new columns which are added.

We have a number of subcases to consider. Let ζi be a sample point corresponding to

a column of C. Note that in all of the reasoning below, we never have to determine a

value for the sample point ζi — all of the information we need about ζi is contained in

the column corresponding to it.
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[Case II.a: ζi = ζ1 or ζi = ζm] In this case, we are determining the sign of p at

either the first or last column of C. Recall that a polynomial is eventually (w.r.t. the

absolute value of its input) dominated by its highest degree monomial. Thus, C+(p,ζi)

should be set to the sign of p(�r) at either −∞ or +∞, respectively. By definition of

Muchnik sequence, the leading coefficient α of p w.r.t. x corresponds to a (constant)

row of C, and so we know its sign at�r: sgn(α(�r)) = C(α,ζi). Thus, we set C+(p,ζi)

to either (−1)dC(α,ζi) or C(α,ζi).

[Case II.b: ζi is a root of a non-zero polynomial in β] Then, there is some q ∈ β s.t.

C(q,ζi) = 0 and C(q) �=�0. Let q ∈ β be of minimal degree (deg(q) = e) s.t. C(q,ζi) = 0

and C(q) �=�0. By assumption that C is the minimal extended sign diagram for β w.r.t.

�r ∈ Rn, it follows that q(�r,ζi) = 0 and q(�r) ∈ Z[x] is not identically zero. Let γ ∈ Z[�y]
be the highest degree coefficient of q s.t. q = γxe + τ(q). Observe by definition of

Muchnik sequence that e!γ corresponds to a row in C. If C(e!γ) is not a constant row,

then C cannot be an extended sign diagram for β and we return ⊥. Thus we assume

C(e!γ) is a constant row.

Let us now observe that if C(e!γ) =�0, then C cannot be an extended sign diagram

for β. If C(e!γ) =�0, then we have that the sign conditions of q are equivalent to those

of 0+ τ(q) = τ(q) ∈ Z[�y][x]. So, τ(q)(�r,ζ) = 0. But then by assumption that q was of

minimal degree with q(�r,ζ) = 0 and C(q) �=�0, we have that C(τ(q)) must be a 0-row.

But, then C(q) would be a 0-row as well, which is a contradiction. So, if C(e!γ) =�0

then C cannot be an extended sign diagram for β and we return ⊥. Thus we assume

C(e!γ) =�1.

Let r = rem(p,q) be the pseudo-remainder of p by q. So, γd−e+1 p = hq+ r for

some h,r ∈ Z[�y][x] s.t. deg(r) ≤ e− 1. As C(q,ζ) = 0, for C to be an extended sign

diagram for β w.r.t.�r ∈ Rn, then we must have p(�r) = r(�r). By definition of Muchnik

sequence, r ∈ β so r corresponds to a row in C. Therefore we simply set C+(p,ζi) =

C(r,ζi) and this case is complete. Observe that this process allows us to determine the

nullity of p at every column corresponding to a sample point ζi which is a root of some

non-constant polynomial in β.

[Case II.c: ζi is not the root of non-constant polynomial in β] As the first and

last columns have already been handled, it follows that ζi must be a sample point

between two roots of non-constant polynomials in β. Let ζ− and ζ+ be these two roots

(which correspond to the columns immediately to the left and right of the column

represented by ζi). By the argument in the previous case, we have already determined

the sign of p at these two roots as C+(p,ζ−) and C+(p,ζ+). Let ε− = C+(p,ζ−) and
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ε+ = C+(p,ζ+). Let us now consider the possible values of ε− and ε+ below.

[Case II.c.i: (ε− = ε+ = 0)] By Rolle’s Theorem, which holds over every real

closed field, there must be some η ∈ ]ζ−,ζ+[ s.t. ∂p
∂x (�r,η) = 0. By the definition of

Muchnik sequence, β contains ∂p
∂x and the assumption that C is the minimal extended

sign diagram for β w.r.t.�r yields that there is a column of C corresponding to η. Thus,

η = ζi. But, then C(∂p
∂x ) must be �0, and so ∂p

∂x (�r) ∈ R[x] must be identically 0. But,

if ∂p
∂x (�r) is identically 0, then p(�r) ∈ R[x] must be a constant function, and since it

obtains 0 by assumption ε− = ε+ = 0, it must be identically 0 as well. But, then the

sign conditions for p should have already been handled by Case I. Since this did not

happen, this means the row corresponding to d!α �=�0. But, this is a contradiction. So,

if ε− = ε+ = 0, then we return ⊥.

[Case II.c.ii: ¬(ε− = ε+ = 0)] First, assume ε− and ε+ have opposite non-zero

signs. By the Intermediate Value Theorem, which holds over every real closed field,

there must be some η ∈ ]ζ−,ζ+[ s.t. p(�r,η) = 0. There is no guarantee that η coincides

with ζi. By assumption that C is the extended sign diagram for β w.r.t.�r, it follows that

no other row of C+ will change its behavior in the interval ]ζ−,ζ+[. Thus, we replace

the column C(ζi) with three copies of itself and extend them to account for p in C+ by

setting their final row entries to be ε−, 0, and ε+, respectively.

Finally, assume that either exactly one of ε−, ε+ is 0 or ε− = ε+ �= 0. The work we

must do for both of these cases will be identical, as both cases yield that p(�r) must have

no root in ]ζ−,ζ+[. For suppose there were such a root η ∈ ]ζ−,ζ+[ s.t. p(�r,η) = 0.

It will follow that ∂p
∂x (�r) must have a root in ]ζ−,ζ+[ which we have seen leads to a

contradiction by the argument in Case II.c.i. First, suppose that exactly one of the ε−,
ε+ is 0. Without loss of generality, say ε− = 0. Then, we have ζ− < η < ζ+ s.t. both

ζ− and η are roots of p(�r). But then by Rolle’s Theorem, it follows that ∂p
∂x (�r) has a

root in ]ζ−,η[ as desired. On the other hand, suppose ε− = ε+ = s with s ∈ {−1,1}.

Then, for p(�r) to have a root in ]ζ−,ζ+[, ∂p
∂x (�r) would have to change sign in ]ζ−,ζ+[,

and hence by the Intermediate Value Theorem, it follows that ∂p
∂x (�r) would have a root

in ]ζ−,ζ+[. So, in both cases, the assumption that p(�r) has a root in ]ζ−,ζ+[ leads to a

contradiction. Thus, the sign of p(�r) on ]ζ−,ζ+[ does not change, and is then equal to

the sign at the endpoint which is not a root of p(�r). So, we set C+(p,ζi) to the sign ε−
or ε+ which is non-zero. As we have met our final requirements, this completes our

proof.
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2.3 Gröbner Bases

In this section, we will present an overview of Gröbner basis theory. In the process,

we fix notation which will then be assumed and used freely throughout the rest of this

dissertation. Though our exposition is original, we have benefited greatly from the

careful presentations in [CLO07] and [Has07]. Unlike these books, we emphasise the

rewriting perspective of Gröbner bases, as it is perhaps the most intuitive one for our

intended audience.

2.3.1 An Intuitive Sketch

Gröbner bases are a fundamental tool for solving algorithmic problems in classical

algebraic geometry. In what follows, let I = I({b1, . . . ,bk}) be an ideal of Q[�x] and

let p ∈Q[�x]. Some important problems Gröbner bases will allow us to solve include:

• Ideal membership: Is p ∈ I?

• Canonicalisation in quotient rings: What is a canonical choice of representative

for the equivalence class of p in the quotient ring Q[�x]/I?

• Complex satisfiability: Does the equational system induced by I, (∧k
i=1bi = 0),

have a solution over Cn? Equivalently, is VC(I) = /0? Also, equivalently: does

ACF0 |= ∃�x(∧k
i=1bi = 0)?

• Ideal equality: Given another ideal J = I({c1, . . . ,c j}), is I = J ?

• Dimension of ideal: If VC(I) �= /0, then is |VC(I)|< ω? Equivalently, is I zero-

dimensional?

• Complex triangulation: If |VC(I)|< ω, then what are its members, presented as

a triangulated system of equations?

What then is a Gröbner basis? Given an ideal such as I = I({b1, . . . ,bk}), recall

that {b1, . . . ,bk} is called a basis for I. Hilbert’s Basis Theorem (Theorem 2.1.5)

guarantees that all ideals over Q[�x] are finitely generated in this way. A Gröbner

basis for I is a special type of basis {g1, . . . ,g j} for I (e.g., I = I({b1, . . . ,bk}) =
I({g1, . . . ,g j})) whose polynomials gi have a syntactic structure which will allow us

to solve all of the above problems systematically.

Intuitively, Gröbner basis theory is built on the following observations:
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• A special type of well-founded, total ordering ≺ may be placed upon the mono-

mials of Q[�x] so that every polynomial in Q[�x] has a leading monomial (often

called a leading term or head term) w.r.t. ≺. To gain intuition, let us imagine

that we have fixed such an order ≺. Given a polynomial p = cm+q ∈Q[�x], we

will write p = cm+q to mean that cm is the leading monomial of p w.r.t. ≺.

• Recall that as an ideal is a algebraic generalisation of nullity – e.g., ideals are

the kernels of ring homomorphisms Q[�x] �→Q[�x]/I – we can interpret p ∈ I as

meaning that from the perspective of the quotient ring Q[�x]/I, p = 0.

• Thus, if p = cm+ q ∈ I, we may associate with p an equation cm+ q = 0 and

thus also a rewrite rule:

m → (
1
c
)(−q).

• It is easy to see that this view of a basis {b1, . . . ,bk} of I as providing a Noethe-

rian system of rewrite rules (R) has the following property:

p R−→ q =⇒ (p−q) ∈ I.

Stated another way,

p R−→ q =⇒ [p] = [q],

where [p] is the equivalence class of p in Q[�x]/I. Equivalently, given the ring

homomorphism induced by I as h : Q[�x]→Q[�x]/I,

p R−→ q =⇒ h(p) = h(q).

Thus, given any p ∈Q[�x], we will have a sufficient condition for ideal member-

ship:

p R−→ 0 =⇒ p ∈ I.

• But, this condition need not be necessary. The rewrite system R may have the

property that some p is not reduced to 0 even though p ∈ I. The obstruction

is that R is not guaranteed to be confluent. A Gröbner basis for I w.r.t. ≺ is a

basis s.t. the induced rewrite system is confluent, and thus all of the sufficient

conditions above become necessary as well.

Let us now make the above intuitive sketch precise.
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2.3.2 Foundations of Gröbner Basis Theory

We use Q[�x] to denote the polynomial ring Q[x1, . . . ,xn]. A function α ∈ Nn is called

an exponent vector. Given a sequence of indeterminates x1, . . . ,xn and an exponent

vector α ∈ Nn, a power-product is a formal product of the form xα(1)
1 . . .xα(n)

n . When

no ambiguity can arise, we will write xα(1)
1 . . .xα(n)

n as�xα. An element c�xα with c ∈Q
and�xα a power-product is called a monomial. We say a monomial is monic if c = 1. A

polynomial is a finite sum of monomials of the form

∑
α∈E

cα�xα with E ⊂ Nn and cα ∈Q\{0}.

An important property to note is that as formal objects, such polynomials have mono-

mial summands with equal power-products combined by summing their coefficients.

This representation is called sparse sum-of-monomials normal form and will be from

now on assumed.

We use M to denote the set of all power-products in Q[�x]. We use p, q and r to

denote polynomials, m to denote power-products and monic monomials, c to denote

coefficients, and cm to denote monomials. All such symbols may be subscripted.

We say a power-product �xα contains xk if α(k) > 0. Given two power-products

m1 = xi1
1 . . .xin

n and m2 = x j1
1 . . .x jn

n , m1m2 denotes the power-product xi1+ j1
1 . . .xin+ jn

n . If

ik ≥ jk for k ∈ {1, . . . ,n}, then m1
m2

denotes the power-product xi1− j1
1 . . .xin− jn

n . The least

common multiple lcm(m1,m2) of m1 and m2 is xmax(i1, j1)
1 . . .xmax(in, jn)

n .

An ordering relation ≺ on the set M is admissible if m1 ≺ m2 implies that m1m ≺
m2m, for all m1, m2 and m in M. A monomial order is a total order on M which is

admissible and a well ordering.

Let us make the above definitions concrete by presenting two common monomial

orders.

Example 2.3.1 (Lexicographic order). The lexicographic order ≺lex is defined as

xi1
1 . . .xin

n ≺lex x j1
1 . . .x jn

n

⇐⇒

∃0 ≤ k < n s.t. i1 = j1 ∧ . . . ∧ ik = jk ∧ ik+1 < jk+1.

Example 2.3.2 (Degree-reverse lexicographic order). The degree reverse lexicographic

order ≺dlex is defined as

M1 = xi1
1 . . .xin

n ≺dlex x j1
1 . . .x jn

n = M2
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⇐⇒

deg(M1)< deg(M2)

∨

[deg(M1) = deg(M2) ∧ (∃1 < k ≤ n+1 s.t. in = jn ∧ . . . ∧ ik = jk ∧ ik−1 > jk−1)] .

Given a monomial order ≺, we can lift it to an order on polynomials. Given two

polynomials p1 and p2, we say p1 ≺ p2 if there exists a power-product m s.t.

• m is contained in p2 and not contained in p1, and

• ∀ m� s.t. m ≺ m� we have m� contained in p1 iff m� contained in p2.

From now on, we often assume a monomial order ≺ has been chosen. When we

write a polynomial p as

cm+q,

we mean that cm is the head monomial of p w.r.t. the background monomial order, and

m is not contained in q.

Definition 2.3.3 (Monic polynomial). A polynomial cm+q is monic if c = 1.

Definition 2.3.4 (S-polynomial). Given two monic polynomials p1 and p2 of the form

m1+q1 and m2+q2, let τ1,2 be the lcm(m1,m2), then we use spol(p1, p2) to denote the

polynomial

(
τ1,2

m1
)q1 − (

τ1,2

m2
)q2.

Observation 2.3.5. Given a set of polynomials S, it is easy to see that if {p1, p2} ⊆
I(S), then spol(p1, p2) ∈ I(S).

Given a monomial order ≺, a key idea underlying Gröbner bases is to use a poly-

nomial cm+q as a rewrite rule m → (1
c )(−q).

To simplify the presentation that follows, we will assume all polynomials used as

rewrite rules are monic. This is no restriction, as any set of polynomials can be made

monic (by dividing through by the head rational coefficient of the head monomial)

without altering the ideal it generates. The monic polynomial p = m+ q induces a

reduction relation �→p on polynomials as follows.
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Definition 2.3.6 (Reduction relation of monic polynomial). The reduction relation �→p

induced by a monic polynomial

p = m+q

is defined as

q1 + c1m1m �→p q1 − c1m1q

for arbitrary monomials c1m1 and polynomials q1 not containing m1m.

Similarly, a set of monic polynomials induces a reduction relation by suitably com-

bining the reduction relation of its members.

Definition 2.3.7 (Reduction relation of set of monic polynomials). Given a set of

monic polynomials G = {p1, . . . , pk}, the reduction relation �→G induced by G is de-

fined as

�→G =
k�

i=1
�→pi .

Observation 2.3.8 (Reduction relation is Noetherian). Observe that given a monomial

order ≺, the reduction relation induced by a set of monic polynomials G= {p1, . . . , pk}
is Noetherian.

The fact that our reduction relations are Noetherian allows us to introduce the no-

tion of a residue of a polynomial w.r.t. a set of monic polynomials.

Definition 2.3.9. Given a set of monic polynomials G= {p1, . . . , pk} and a polynomial

p, a residue of p w.r.t. G is defined as a polynomial q s.t.

p �→G q1 �→G q2 �→G · · · �→G q but ¬∃r(q �→G r).

We will write

p G−→ q

to mean that q is a residue of p w.r.t. G.

Observation 2.3.10 (Residue is in ideal). Observe that if p G−→ q, then (p−q) ∈ I(G).

In particular, if p G−→ 0, then p ∈ I(G). Moreover, if p ∈ I(G) and p G−→ q, then q ∈
I(G).

Observation 2.3.11 (Equivalence of residue uniqueness and confluence). Observe that

all polynomial residues w.r.t. G are uniquely defined if and only if �→G is confluent.
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Input: �F = {p1, . . . , pk}⊂Q[�x],≺�
Output: G s.t. G is a Gröbner basis of F w.r.t. ≺
G := F

repeat
G� := G

for each pair �pi, p j� ∈ (G� ×G�) with pi �= p j do
Let q be s.t. spol(pi, p j)

G�
−→ q

if q �= 0 then
G := G∪{q}

end if
end for

until G = G�

Figure 2.1: Buchberger’s Algorithm

At last, we may define the concept of a Gröbner basis. We restrict ourselves to

monic bases as every Gröbner basis for an ideal I ⊂Q[�x] may be trivially made monic,

and this restriction simplifies our exposition in subsequent chapters.

Definition 2.3.12 (Gröbner basis). A finite set of monic polynomials G is a Gröbner

basis of the ideal I(F) iff

I(G) = I(F) and �→G is confluent.

2.3.3 Classical Basis Construction Algorithms

The first algorithm for Gröbner basis construction was given by Buchberger in his PhD

thesis [Buc65]. It has since been optimised in many ways. Before touching on these

optimisations, it is useful to examine Buchberger’s original algorithm which can be

found in Figure 2.1.

From our modern perspective, Buchberger’s Algorithm is essentially a critical pair

completion algorithm. Again, for the sake of discussion, let us imagine we have fixed

a monomial order ≺. Given an input basis F , Buchberger’s Algorithm converts F into

a Gröbner basis G for the same ideal I(F) = I(G) by adding additional polynomials

into the basis which “patch” obstructions of the confluence of the reduction relation

�→F . S-polynomials are precisely these “patches,” also known as “critical pairs.” Let

us gain intuition about S-polynomials with the following simple example.
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Example 2.3.13 (S-polynomial intuition). Let

p1 = x1x2 − x4 and p2 = x2x3 − x5.

Then, �→{p1,p2} is not confluent. To see this, consider the following reductions of

x1x2x3:

x1x2x3 �→p1 x3x4 and x1x2x3 �→p2 x1x5.

The obstruction of confluence is the fact that under �→F, x3x4 and x1x5 do not have a

common reduct. The S-polynomial spol(p1, p2) will “patch” this obstruction. Let us

recall its definition:

spol(p1, p2) = (
lcm(x1x2,x2x3)

x1x2
)x4 − (

lcm(x1x2,x2x3)

x2x3
)x5

= (
x1x2x3

x1x2
)x4 − (

x1x2x3

x2x3
)x5

= x3x4 − x1x5.

By totality of ≺, either x3x4 ≺ x1x5 or x1x5 ≺ x3x4. Let’s assume x1x5 ≺ x3x4, and let

G = {p1, p2,spol(p1, p2)}. Then, the S-polynomial spol(p1, p2) = x3x4 − x1x5 con-

tributes the reduction relation �→spol(p1,p2) to �→G, where �→spol(p1,p2) is defined as

q1 − c1m1x3x4 �→spol(p1,p2) q1 − c1m1x1x5

for arbitrary monomials c1m1 and polynomials q1. In particular, we have then “patched”

the obstruction of confluence we noted above by giving x3x4 the reduct x1x5.

Of course, the above example is trivial in the sense that the obstruction to con-

fluence was “patched” immediately by the computed S-polynomial, by inducing a

reduction from x3x4 directly to x1x5. In general, this need not be the case. The im-

portant point, which allows Gröbner bases to be computed through the introduction of

S-polynomials, is that each S-polynomial will in a precise sense draw the reduction

relation closer to being confluent. Let us solidify these intuitions by sketching a proof

of the correctness of Buchberger’s Algorithm.

In the course of proving the correctness of Buchberger’s algorithm, we will first fix

some additional notation and then state a number of preliminary results without proof.

Proofs of these theorems may be found in Chapters 6-7 of [CLO07].

Definition 2.3.14 (Head monomial). If p = c1m1 +q, then HM(p) = c1m1.

Definition 2.3.15 (Set of head monomials). Let G = {p1, . . . , pk}. Then,

HM(G) = {HM(p1), . . . ,HM(pk)}.
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Definition 2.3.16 (Head monomial ideal). Let G = {p1, . . . , pk}. Then,

I(HM(G)) = I({HM(p1), . . . ,HM(pk)}).

Recall that a ring is Noetherian (as is our ring of polynomials Q[�x]) if and only if

it satisfies the Ascending Chain Condition. This condition will play a key role in the

termination of Buchberger’s Algorithm, and thus we state it here for convenience.

Theorem 2.3.17 (Ascending Chain Condition). Let

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

be an ascending chain of ideals in Q[�x]. Then, there exists an n ∈ N+ s.t.

In = In+1 = In+2 = · · · .

The following theorem is an important result along the way to the correctness of

Buchberger’s Algorithm.

Theorem 2.3.18 (Buchberger’s S-polynomial Criterion). Let I be a polynomial ideal.

Then G = {p1, . . . , pk} is a Gröbner basis for I iff

I(G) = I and ∀1 ≤ i < j ≤ k
�

spol(pi, p j)
G−→ 0

�
.

Let us now examine the correctness of Buchberger’s Algorithm.

Theorem 2.3.19 (Correctness of Buchberger’s Algorithm). Given a set of monic poly-

nomials F = {p1, . . . , pk} and a monomial order ≺, a run of Buchberger’s Algorithm

upon F and ≺ is guaranteed to terminate and produce a Gröbner basis for I(F).

Proof. Let us first observe that in each iteration of the loop, the set G generates the

same ideal as the input set F . This is certainly true before the loop begins, as G

is initialised to F . Then, whenever G is enlarged, it is enlarged by inserting the

residue q of an S-polynomial spol(pi, p j) with pi, p j ∈ G. By Observation 2.3.5,

pi, p j ∈ I(G) =⇒ spol(pi, p j) ∈ I(G). Then, by Observation 2.3.10, it follows that

the residue q is contained in I(G) as well. Thus, the loop maintains the invariant

I(F) = I(G). Observe that the algorithm only terminates when every S-polynomial

between non-equal members of G has residue 0. By Theorem 2.3.18, it then fol-

lows that if the algorithm terminates, G is indeed a Gröbner basis for I(F). So, it

will suffice to prove termination. Consider a pass of the loop. If the termination

condition is not met (that is, G� �= G), then there must exist some collection of m
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pairs P = {�pi1 , p j1�, . . . ,�pim , p jm�} ⊂ (G� × G�) s.t. the S-polynomial of each pair

spol(pia , p ja) gives rise to a non-zero residue qa w.r.t. G� (i.e., spol(pia , p ja)
G�
−→ qa �= 0)

so that G = G� ∪{q1, . . . ,qm}. So, G� ⊂ G and thus I(HM(G�))⊆ I(HM(G)). In fact,

since G �= G�, a stronger property — that I(HM(G)) is strictly larger than I(HM(G�))

— will hold: I(HM(G�))⊂ I(HM(G)). Let us see why this is so. Consider qa which

has been adjoined to G� in the process of forming G. The fact that qa could not be fur-

ther reduced by the reduction relation �→G� induced by G� means that HM(qa) is not the

head monomial of any polynomial in G�. But, since qa ∈G, it then follows that HM(qa)

is the head monomial of a polynomial in G. Furthermore, since HM(qa) is non-zero,

we know that no monomial in HM(G�) divides HM(qa). As a monomial m is a member

of a monomial ideal I({m1, . . . ,mk}) iff m is divisible by some mi, it then follows that

no monomial in I(HM(G�)) divides HM(qa). Thus, HM(qa) �∈ I(HM(G�)). And so,

I(HM(G�))⊂ I(HM(G)). So, now we have that if the loop does not terminate, then G

has been enlarged so that the ideals I(HM(G)) from successive iterations of the loop

form an ascending chain of ideals in Q[�x]. But, by Theorem 2.3.17, this ascending

chain of ideals will stabilise after finitely many iterations. Thus, after finitely many

iterations, I(HM(G)) = I(HM(G�)) will hold. But then there could be no non-zero

residues of S-polynomials between members of G�, and thus G = G� and termination

is proved.

It will also be useful later to have the notion of a reduced Gröbner basis. Recall

again our convention that all Gröbner bases consist of monic polynomials.

Definition 2.3.20 (Reduced Gröbner basis). A Gröbner basis G is reduced iff

∀p ∈ G no monomial of p lies in I(HM(G\{p})).

2.3.4 Superfluous S-polynomial Criteria

After understanding why Buchberger’s Algorithm is correct as we have above, it is

natural to begin considering ways in which its processing may be made more efficient.

The algorithm as presented is extremely naive, and in practical implementations, one

wishes to avoid as much unnecessary processing as possible.

One of the first and most important sources of efficiency in Gröbner basis con-

struction algorithms has been the recognition of so-called “superfluous S-polynomial

criteria.” The impetus for these criteria are the following two points:
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• In an execution of Buchberger’s Algorithm, if an S-polynomial spol(pi, p j) re-

duces to zero w.r.t. the current basis G�, then spol(pi, p j) does not contribute a

residue to the Gröbner basis G being constructed.

• When computing Gröbner bases in practice, huge computational resources are

often expended upon precisely these “reductions to zero.”

Thus, in the context of Buchberger’s Algorithm, it is advantageous to develop com-

putationally efficient sufficient conditions for recognising when a given S-polynomial

would in fact reduce to zero w.r.t. the current basis being constructed. In these cases,

one can then avoid performing any reductions of such superfluous S-polynomials, as

they will not contribute any residues to the Gröbner basis.

The first such criteria recognised were put forth by Buchberger in his paper [Buc79].

For instance, the criterion we will refer to as Buchberger-1 in this dissertation is the

following:

Criterion 1. If p1 =m1+q1 and p2 =m2+q2 and lcm(m1,m2)=m1m2, then spol(p1, p2)

is superfluous.

Since Buchberger’s original paper on superfluous S-polynomial criteria, a number

of others have been developed, including those of Gebauer and Möller ([GM88]) and

those which are implicit in the linear algebra techniques underlying Faugère’s algo-

rithms F4 [Fau99] and F5 [Fau02].

A key contribution of our dissertation consists of an exploration of novel algo-

rithms — that is, algorithms which exhibit behavior very different than Buchberger’s

Algorithm or F4 or F5 — for computing Gröbner bases. These novel algorithms have

been motivated by efficiency considerations for certain classes of practical problems

encountered during program verification (cf. Chapter 5).

A principle difficulty in exploiting superfluous S-polynomial criteria in the con-

text of these non-standard approaches to computing Gröbner bases, however, is that

these criteria are usually proved correct w.r.t. a fixed Gröbner basis construction algo-

rithm. For instance, Buchberger-1 above was in [Buc79] proved correct w.r.t. Buch-

berger’s Algorithm. For more involved criteria such as Buchberger-2 as analysed in the

next chapter, proving their correctness (“admissibility”) in the context of non-standard

Gröbner basis construction algorithms is a serious challenge.

In Chapter 3, we will develop an abstract theory of Gröbner basis construction

algorithms in which many different approaches to computing Gröbner basis may be
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analysed in a uniform setting. A key aspect of this work will be developing techniques

with which the admissibility of these superfluous S-polynomial criteria can be analysed

and proven abstractly so that they can soundly be incorporated into a multitude of

different Gröbner basis construction algorithms.

The practical fruits of this theoretical work will be examined in Chapter 5, where

two particularly interesting approaches to computing Gröbner bases are presented,

proved correct, implemented and experimentally evaluated.

2.3.5 Complex Satisfiability and Weak Nullstellensatz

As our interest in Gröbner bases is chiefy motivated by a desire for improved algo-

rithms for deciding the satisfiability of systems of polynomial equations and dise-

quations over the complex numbers, it is useful to examine how Gröbner bases can

contribute to this goal.

In particular, it will turn out that an algorithmic test for ideal membership is suffi-

cient for deciding complex satisfiability. As we have seen, given an ideal I({p1, . . . , pk})
and a polynomial q, we can decide whether or not q ∈ I({p1, . . . , pk}) simply by form-

ing a Gröbner basis G for I({p1, . . . , pk}) and checking if q G−→ 0. The result which

connects ideal membership to complex satisfiability is known as Hilbert’s Weak Null-

stellensatz [CLO07] (stated below over C for concreteness).

Theorem 2.3.21 (Hilbert’s Weak Nullstellensatz (over C)). Let I = I({p1, . . . , pk})⊆
Q[�x]. Then,

VC(I) = /0 ⇐⇒ I =Q[�x].

That is, the system of polynomial equations

p1(�x) = 0,
...

pk(�x) = 0

has a solution in Cn iff I({p1, . . . , pk}) �=Q[�x].

From our perspective, it is more telling to restate this result in a form that references

ideal membership explicitly. This is done using the following observation.

Observation 2.3.22. Given a polynomial ideal I over Q[�x],

I =Q[�x] ⇐⇒ 1 ∈ I.
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Thus, we obtain the following restatement of Hilbert’s Weak Nullstellensatz con-

necting complex satisfiability and ideal membership:

Theorem 2.3.23 (Hilbert’s Weak Nullstellensatz - revised). Let I = I({p1, . . . , pk})⊆
Q[�x]. Then,

�
�C,+,−,∗,0,1� |= ¬∃�x(

k�

i=1
pi = 0)

�
⇐⇒ 1 ∈ I.

So, we have now reduced the problem of satisfiability for a system of polynomial

equations to ideal membership. We will need one last simple ingredient so as to extend

our machinery to handle systems of both polynomial equations and disequations.

Observation 2.3.24.

�C,+,−,∗,0,1� |= ∀x(x �= 0 ⇐⇒ ∃y(x∗ y+1 = 0)) .

Thus, a polynomial disequation in a system of polynomial equations and disequa-

tions may be converted to an equivalent equality by introducing a slack variable and

replacing the disequation as above.

We now see explicitly how to decide the satisfiability of a system of polynomial

equations and disequations over the complex numbers using a combination of Gröbner

bases and Hilbert’s Weak Nullstellensatz.

Theorem 2.3.25 (Gröbner solution to complex satisfiability). Let S be the system of

polynomial equations and disequations

p1(�x) = 0,
...

pa(�x) = 0,

pa+1(�x) �= 0,
...

pk(�x) �= 0.

Then, the satisfiability of S over the complex numbers can be decided by the fol-

lowing algorithm.

1. Convert S into an equivalent system of polynomial equations S� using Observa-

tion 2.3.24. The polynomials in S� will now be in the ring Q[�x,y1, . . . ,yk−a]. Let

P be the set of polynomials in S�.
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2. Fix a monomial order ≺ and compute a Gröbner basis G for I(P) w.r.t. ≺.

3. By Theorem 2.3.23, it will suffice to check whether or not 1∈ I(P) by computing

the residue of 1 w.r.t. G. Then, S is unsatisfiable over the complex numbers iff

1 G−→ 0.



Chapter 3

Abstract Gröbner Bases and

Superfluous S-polynomials

3.1 Introduction

In this chapter, we present an abstract theory of Gröbner basis procedures and use it

to analyse superfluous S-polynomial criteria in a strategy-independent manner. Under

this theory, different algorithms for computing Gröbner bases will formally correspond

to different strategies for orchestrating a small set of inference rules. The technique of

proof orders will be used to derive a generalisation of S-polynomial superfluousness

in terms of transfinite induction along an ordinal parameterised by a monomial order.

This generalisation expresses S-polynomial superfluousness in a new, more abstract

way which is independent of the Gröbner basis construction algorithm used: It states

that an S-polynomial is superfluous if, in its absence, a certain class of formal proofs

can still be transformed into smaller “equivalent” proofs with respect to a well-founded

ordering upon these proofs. This statement is made precise with Observation 3.4.1.

We will then use this generalisation to prove that three superfluous S-polynomial cri-

teria are admissible with respect to any Gröbner basis construction algorithm corre-

sponding to a correct strategy in our system. These superfluous S-polynomial criteria

are important for efficient Gröbner basis construction and will be further exploited in

Chapter 5 as the basis of term-indexing techniques for a new class of Gröbner basis

construction algorithms targeted to the needs of SMT solvers.

51
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3.1.1 Related Work

There is a rich history of work on connections between Gröbner bases, critical-pair

completion, and automated theorem proving. Already in 1984 [Buc84], the view of

Gröbner basis construction as critical-pair completion was recognised by Buchberger

and used to fruitfully extend Gröbner basis methods to new domains. Following this,

Buchberger made connections between Gröbner bases, completion and resolution the-

orem proving explicit in 1987 [Buc87].

The work most relevant to this chapter, however, concerns abstract frameworks for

analysing both completion and Gröbner basis procedures. In the case of completion,

for instance, such a framework allows one to view different completion algorithms

as being particular strategies for sequencing a small set of inference rules. In doing

so, one is able use uniform methods for proving results about a multitude of different

completion procedures simultaneously. There are a number of frameworks upon which

we build.

The first is the Bachmair-Dershowitz theory of Abstract Completion [BD94]. The

second is the Bachmair-Ganzinger framework developed for presenting Buchberger’s

algorithm as a constraint-based completion procedure [BG94]. In the end, we found it

necessary to derive our own framework, based upon [BD94], for analysing the Gröbner

basis algorithms presented in this thesis. We call this framework Abstract Gröbner

Bases. It is essentially [BD94] with its term machinery instantiated upon Q[�x] and re-

stricted to ground equations. Equivalently, it can be seen as a simplification of [BG94]

in which the hierarchical constraint system used explicitly for coefficient normalisa-

tion is eliminated in lieu of standard polynomial representation machinery common in

modern Gröbner basis theory.

Once the framework of Abstract Gröbner Bases is presented, we will use it to inves-

tigate the admissibility of superfluous S-polynomial criteria in a strategy-independent

manner. These critera, as explained in Chapter 5, are crucial to term indexing tech-

niques used in new Gröbner basis algorithms we present which are based upon satura-

tion and simplification loops used in high-performance superposition theorem proving.

In principle, the results we prove about superfluous S-polynomial criteria could be suit-

ably translated and the proofs carried out using the other two frameworks mentioned

above, though the resulting arguments would surely be much more technically unman-

ageable than those presented here.
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Orient
S∪{cm+q},G

S,G∪{m+(1
c )q}

Superpose S,G∪{p1, p2}
S∪{spol(p1, p2)},G∪{p1, p2}

Delete S∪{0}, G
S,G

Simplify-S
S∪{c1m1m2 +q1},G∪{m2 +q2}
S∪{q1 − c1m1q2},G∪{m2 +q2}

Simplify-H
S,G∪{m1m2 +q1, m2 +q2}

S∪{q1 −m1q2},G∪{m2 +q2}
if m1 �= 1

Simplify-T
S,G∪{m+ c1m1m2 +q1, m2 +q2}
S,G∪{m− c1m1q2 +q1, m2 +q2}

Figure 3.1: Abstract GB Inference Rules

3.1.2 Our Contribution

The results of this chapter were obtained jointly with Dr. Leonardo de Moura, with both

of us contributing equally. The results of this chapter were published as [PdM09a].

3.2 Theory of Abstract Gröbner Bases

We freely utilise notation and concepts introduced in Section 2.3. Let us now present

the framework of Abstract Gröbner Bases. We express the system as a collection of

inference rules.

The inference rules (cf. Figure 3.1) work on pairs of sets of polynomials (S,G).

In all rules, the coefficients c and c1 are assumed to be non-zero. We use (S1,G1) �
(S2,G2) to indicate that (S1,G1) can be transformed to (S2,G2) by applying one of the

inference rules in Figure 3.1.

Theorem 3.2.1. (S1,G1) � (S2,G2) =⇒ I(S1 ∪G1)) = I(S2 ∪G2)).

Proof. Easy by observing (i) every rule that extends (S1,G1) does so by adding poly-

nomials already in I(S1 ∪G1), (ii) reducing a polynomial p using q when p and q
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are in (S1,G1) does not change I(S1 ∪G1), and (iii) a polynomial p is removed from

(S1 ∪G1) only when p = 0.

Definition 3.2.2 (Procedure). A Gröbner basis procedure G is a program that accepts

a set of polynomials {p1, . . . , pk}, a monomial order ≺, and uses the rules in Figure

3.1 to generate a (finite or infinite) sequence (S1 = {p1, . . . , pk}, G1 = /0) � (S2,G2) �
(S3,G3) � . . . . This sequence is called a run of G.

Given a set of monic polynomials G, the set of S-polynomials SP(G) is defined as

the set

{spol(p1, p2) | p1, p2 ∈ G}.

Definition 3.2.3 (Correct Procedure). A Gröbner basis procedure G is said to be cor-

rect iff it produces only finite runs (S1, G1 = /0) � . . . � (Sn = /0, Gn), and

SP(Gn)⊆ (S1 ∪S2 ∪ . . .∪Sn−1) .

Theorem 3.2.4. Let G be a correct Gröbner basis procedure, then for any run (S1, G1 =

/0) � . . . � (Sn = /0, Gn), Gn is a Gröbner basis for I(S1).

The proof of Theorem 3.2.4, which follows from Theorem 3.3.5 below, uses a

technique called proof orders. We will study this in detail in the next section.

Definition 3.2.5 (Eager S-simplification). Given a Gröbner basis procedure G, we say

G implements eager S-simplification iff G only applies Orient to p∈ Si when Simplify-S

cannot be applied to p.

Observation 3.2.6. Given a Gröbner basis procedure G using eager S-simplification,

then for any run (S1,G1) � (S2,G2) � . . ., for all j ≥ 1, there is no m1+q1 and m2+q2

in G j such that m1 = m2 and q1 �= q2. Moreover, in this case, the condition m1 �= 1 in

the rule Simplify-H is only restricting self simplifications.

Definition 3.2.7 (Fairness). A Gröbner basis procedure G is said to be fair iff for any

run (S1,G1) � (S2,G2) � . . .

SP(
�

i≥1

�

j≥i
G j)⊆

�

i≥1
Si.

Theorem 3.2.8. If a Gröbner basis procedure G implements eager S-simplification, is

fair, and Superpose is applied at most once for any pair of polynomials in
�

i≥1 Gi,

then G is correct.



3.3. Proof Orders 55

Proof. We just need to show that every run of G is finite. This follows from Dickson’s

lemma, and the fact that any infinite run will contain an infinite number of Superpose

steps.

Example 3.2.9. Let F be the set of polynomials:

{x2y−1, xy2 − y}.

Then, using the inference rules in Figure 3.1, we can generate the run in Figure 3.2.

A reduced Gröbner basis for F is contained in the final state ( /0, {y−1, x−1}).

As an exercise in gaining familiarity with the inference rules, we illustrate how

they can be used to simulate Buchberger’s algorithm in Figure 3.3.

3.3 Proof Orders

In this section, we use the technique of proof orders prove Theorem 3.2.4 and some

important related results. By paying close attention to how S-polynomials are actually

used in the proof of a key lemma, Lemma 3.3.3, we will be able to derive a “strategy-

independent” generalisation of S-polynomial superfluousness. This generalisation will

be made precise and applied to a number of superfluous S-polynomial criteria in the

next section.

In the following, we assume that

(F = S1,G1 = /0) � . . . � (Sn = /0,Gn)

is an arbitrary run of a correct Gröbner basis procedure G. We use S∗ to denote the set

S1 ∪ . . .∪Sn and G∗ to denote the set G1 ∪ . . .∪Gn.

An equational step in (S∗,G∗) is a tuple �s, p,cm, t�, where s, p and t are polyno-

mials, cm is a monomial, p ∈ S∗ ∪G∗, and t = s− cmp. We use

s
�p,cm�←−−−−→ t

to denote the equational step �s, p,cm, t�.

Observation 3.3.1. Let �s, p,cm, t� be an equational step, then for any monomial c�m�

in p, s or t contains the power-product m�m.

A right rewrite step in (S∗,G∗) is a tuple �s, p,m, t�, where s, p and t are polynomi-

als, m is a monic monomial, and p ∈ G∗ s.t. if s is of the form csmmp +qs and p is of
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{x2y−1, xy2 − y}, /0
� Orient: x2y−1

{xy2 − y}, {x2y−1}
� Orient: xy2 − y

/0, {x2y−1, xy2 − y}
� Superpose: spol(x2y−1, xy2 − y) = xy− y

{xy− y}, {x2y−1, xy2 − y}
� Orient: xy− y

/0, {x2y−1, xy2 − y, xy− y}
� Simplify-H: xy− y over x2y−1

{xy−1}, {xy2 − y, xy− y}
� Simplify-S: xy− y over xy−1

{y−1}, {xy2 − y, xy− y}
� Orient: y−1

/0, {xy2 − y, xy− y, y−1}
� Simplify-H: y−1 over xy2 − y

{xy− y}, {xy− y, y−1}
� Simplify-S: xy− y over xy− y

{0}, {xy− y, y−1}
� Delete

/0, {xy− y, y−1}
� Simplify-H: y−1 over xy− y

{x− y}, {y−1}
� Simplify-S: y−1 over x− y

{x−1}, {y−1}
� Orient: x−1

/0, {y−1, x−1}
� Superpose: spol(y−1,x−1) = x− y

{x− y}, {y−1, x−1}
� Simplify-S: y−1 over x− y

{x−1}, {y−1, x−1}
� Simplify-S: x−1 over x−1

{0}, {y−1, x−1}
� Delete:

/0, {y−1, x−1}

Figure 3.2: A run for {x2y−1, xy2 − y} w.r.t. DegLex with x ≺ y



3.3. Proof Orders 57

Input: �S = {p1, . . . , pk}⊂Q[�x],≺�
Output: G s.t. G is a GBasis of S w.r.t. ≺
Apply Orient to every member of S

Apply Superpose between every p, p� ∈ G (p �= p�)

while S �= /0 do
Choose spol(p, p�) ∈ S

Apply Simplify-S to spol(p, p�) ∈ S as long as possible

Call the resulting simplified polynomial (in S) q

if q �= 0 then
Apply Orient to q

Apply Superpose between every p, p� ∈ G (p �= p�)

for which Superpose has not been previously

applied

else
Apply Delete to q

end if
end while

Figure 3.3: Rule-based Simulation of Buchberger’s Algorithm
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the form mp+qp, then t = s−csmp = qs−csmqp. Intuitively, p is a polynomial being

used as a rewrite rule, and m specifies that the monomial csmmp of s will be “rewritten”

to −csmqp. We use

s
�p,m�−−−→ t

to denote the right rewrite step �s, p,m, t�.
Similarly, a left rewrite step in (S∗,G∗) is a tuple �t, p,m,s�, where s, p, t and m are

defined as in the right rewrite step case. We use

t
�p,m�←−−− s

to denote the left rewrite step �t, p,m,s�. A rewrite step is a left or right rewrite step.

For every rewrite step, we say s is the source and t is the target. Note that t ≺ s.

A proof step is an equational step or a rewrite step. We use s �F t to denote that

s ∈ I(F) iff t ∈ I(F). Observe that I(F) = I(S∗ ∪G∗), hence for all proof steps

p ∈ I(F), and s �F t.

A proof Pr for p �F q in (S∗,G∗) is a sequence of proof steps

�s1, p1,c1m1, t1� . . .�sk, pk,ckmk, tk�

such that, s1 = p, tk = q, ti = si+1 for i ∈ {1, . . . ,k− 1}. We use lhs(Pr) to denote s1

and rhs(Pr) to denote tk.

For example, let F be the set {xy− y,x2y− 1}. Hence, for any run, xy− y ∈ S0.

Now, assume x2y−1 ∈ G∗. Then,

y
�xy−y,−x�←−−−−−−→ y+ x2y− xy

�xy−y,−1�←−−−−−−→ x2y
�x2y−1,1�−−−−−−→ 1

is a proof for y �F 1.

A rewrite proof Pr is a proof containing k rewrite steps such that pi is in Gn for

i ∈ {1, . . . ,k}, and there is a j ∈ {0, . . . ,k}, where the first j steps are right rewrite

steps, and the others are left rewrite steps.

For example, assume Gn contains the polynomials {x+ 1, y+ z, w2 − 1}. Then,

the following proof is a rewriting proof for xy+2 �F w2z+2.

xy+2
�x+1,y�−−−−→−y+2

�y+z,1�
−−−−→ z+2

�w2−1,z�←−−−−− w2z+2

We say two proofs Pr1 and Pr2 in (S∗,G∗) are equivalent if lhs(Pr1) = lhs(Pr2) and

rhs(Pr1) = rhs(Pr2).

The cost of a proof step is a pair where the first component is a multi-set of poly-

nomials and the other a polynomial, and is defined as:
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1. For s
�p,cm�←−−−−→ t, the cost is ({s, t},0).

2. For s
�p,m�−−−→ t and t

�p,m�←−−− s, the cost is ({s}, p).

Two different cost pairs are compared using the lexicographic product order � of

(≺M,≺), where ≺M is the multi-set extension of the order ≺ on polynomials. Proof

steps are compared by comparing their costs. The overall cost of a proof Pr is the

multi-set of the costs of all its proof steps, and two different multi-sets of costs are

compared using the multi-set extension �M of �. Finally, proofs are compared by

comparing their costs, and we use Pr� � Pr to denote that proof Pr� is smaller than

proof Pr.

Lemma 3.3.2. The order � is well-founded.

Proof. This is an immediate consequence of the following facts: the order ≺ is well-

founded, the multi-set extension of a well-founded order is well-founded, and the lex-

icographic product order of well-founded orders is well-founded.

Lemma 3.3.3. Let Pr be a proof in (S∗,G∗) that is not a rewrite proof. Then, there

exists a proof Pr� in (S∗,G∗) such that Pr� is equivalent to Pr and Pr� � Pr.

Proof. If Pr is not a rewrite proof, then there are three possible reasons:

1. Pr contains an equational step.

2. Pr contains a rewrite step �si, pi,mi,si+1�, and pi is not in Gn.

3. Pr contains a peak of the form

t1
�p1,m1�←−−−− s

�p2,m2�−−−−→ t2

for p1 and p2 in Gn.

In the following, we consider each of these three cases separately.

1. Assume Pr contains an equational step

s
�p,cm�←−−−−→ t

By definition of equational step, t = s− (cm)p. First, assume p ∈ S∗, then since

Sn = /0, p is removed from some S j<n using Orient, Delete or Simplify-S. The

case where p ∈ G∗ is similar to the case where p is removed from some S j<n

using Orient.
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(a) Assume Orient was used to remove p. Let p be of the form cpmp + qp,

then p� = ( 1
cp
)p is in G j+1. By Observation 3.3.1, s or t must contain the

power-product mpm. First, let us assume that s contains csmpm and t does

not. Then, cs = cpc because t does not contain the power-product mpm, and

by simple algebraic manipulation:

t = s− (cm)p = s− (
cs

cp
m)p = s− (csm)((

1
cp

)p)

= s− (csm)p�.

Let Pr� be the proof that is obtained by replacing the equational step with:

s
�p�,m�−−−→ t

Similarly, if t contains the power-product mpm and s does not, we replace

the the equational step with the rewrite step:

s
�p�,m�←−−− t

Finally, if both of them contain the power-product mpm, let ct be the coeffi-

cient of mpm in t. Then, by the definition of equational step, ct = cs − cpc.

Let s� be the polynomial s− (csm)p�. By algebraic manipulation, we have:

s� = s− (csm)p� = s− ((cpc+ ct)m)p�

= s− (cm)(cp p�)− (ctm)p�

= s− (cm)p− (ctm)p�

= t − (ctm)p�.

In this case, let Pr� be the proof that is obtained by replacing the equational

step with:

s
�p�,m�−−−→ s�

�p�,m�←−−− t

In all three cases, the rewrite steps are smaller than the equational step,

because {s} ≺M {s, t} and {t} ≺M {s, t}. This shows that the new proof

Pr� � Pr.

Before we consider the next case, note that the case where p ∈ G∗ can be

handled as above. The only difference is that p� = p when p ∈ G∗.

(b) Assume that Delete was used to remove p, then p = 0 and s = t, and the

equational step can be removed from the proof. Therefore, Pr� � Pr.
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(c) Assume p is of the form cpmpmr + qp and Simplify-S was applied to p

using a polynomial r ∈ G j of the form mr + qr. Let p� be −cpmpqr + qp,

then p� is in S j+1. By Observation 3.3.1, s or t must contain the power-

product mpmrm. Let us assume both of them contain mpmrm, and cs and

ct are the coefficients of mpmrm in s and t respectively. Recall that ct

must be cs − cpc. Now, let s� be the polynomial s− (csmpm)r and t � be the

polynomial t − (ctmpm)r. Note that s� ≺ s and t � ≺ t. By simple algebraic

manipulation we can show that t � = s� − (cm)p�. Now, let Pr� be the proof

that is obtained by replacing the equational step with:

s
�r,mpm�
−−−−→ s�

�p�,cm�←−−−−→ t �
�r,mpm�
←−−−− t

All three new proof steps are smaller than the original equational step be-

cause {s} ≺M {s, t}, {t} ≺M {s, t}, and {s�, t �} ≺M {s, t}. This shows that

the new proof Pr� � Pr. If s does not contain the power-product mpmrm,

then the first rewrite step is not needed. Similarly, if t does not contain the

power-product mpmrm the last rewrite step is not needed.

2. Assume Pr contains a rewrite step �s, p,m, t�, and p is not in Gn. Without loss of

generality, assume it is a right rewrite step

s
�p,m�−−−→ t

Since p is not in Gn, it was removed from some G j<n using Simplify-H or Simplify-

T and a polynomial r ∈ G j of the form mr +qr.

(a) Assume Simplify-H was applied to p using r, and p is of the form mpmr +

qp. Note that mp �= 1 because of the side condition of Simplify-H, therefore

r ≺ p. Let p� be the polynomial −mpqr + qp, then p� is in S j+1. Since

�s, p,m, t� is a right rewrite step, s must contain the monomial csmpmrm.

By the definition of right rewrite rule, t = s− (csm)p. Now, let s� be the

polynomial s− (csmpm)r. Thus, by algebraic manipulation, we can show

that t = s� − (csm)p�. Let Pr� be the proof that is obtained by replacing the

rewrite step with:

s
�r,mpm�
−−−−→ s�

�p�,csm�←−−−−−→ t

The new equational step is smaller than the original step because s� ≺ s and

t ≺ s, and consequently {s�, t}≺M {s}. The cost of the original rewrite step
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is ({s}, p). The cost of the new rewrite step is ({s},r), and is smaller than

({s}, p) because r ≺ p.

(b) Assume Simplify-T was applied to p using r, and p is of the form m�
p +

cpmpmr +qp. Let p� be the polynomial m�
p−cpmpqr +qp, and thus p� is in

G j+1. Then, this case can be handled similarly to case 1c for Simplify-S.

3. Assume Pr contains a peak of the form

t1
�p1,m�

1�←−−−− s
�p2,m�

2�−−−−→ t2

for p1 and p2 in Gn. Assume p1 and p2 are of the form m1 + q1 and m2 + q2

respectively. Now, we consider two cases: m�
1m1 �= m�

2m2 and m�
1m1 = m�

2m2.

(a) Assume m�
1m1 �= m�

2m2, then s must be of the form qs+c1m�
1m1+c2m�

2m2.

Moreover, we must have

t1 = qs − c1m�
1q1 + c2m�

2m2,

t2 = qs + c1m�
1m1 − c2m�

2q2.

Let s� be the polynomial qs − c1m�
1q1 − c2m�

2q2. Let Pr� be the proof that is

obtained by replacing the peak with:

t1
�p2,c2m�

2�←−−−−−→ s�
�p1,c1m�

1�←−−−−−→ t2

The polynomials t1, t2 and s� are smaller than s, hence {t1,s�} ≺M {s},

and {s�, t2} ≺M {s}. Therefore both equational steps are smaller than the

rewrite steps in the peak.

(b) Assume m�
1m1 =m�

2m2, then s must be of the form qs+cmτ1,2 where τ1,2 =

lcm(m1,m2). Then, we must have

t1 = qs − cm(
τ1,2

m1
)q1

t2 = qs − cm(
τ1,2

m2
)q2

Moreover, spol(p1, p2) =
τ1,2
m1

q1 −
τ1,2
m2

q2 must be in S∗. Let Pr� be the proof

that is obtained by replacing the peak with:

t1
�spol(p1,p2),−cm�←−−−−−−−−−−−→ t2

Since {t1, t2} ≺M {s}, the new equational step is smaller than the rewrite

steps in the peak.
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Lemma 3.3.4. Every proof Pr in (S∗,G∗) is equivalent to a rewrite proof.

Proof. By well-founded induction on the well-founded order �. Let Pr be a proof in

(S∗,G∗). If Pr is itself a rewrite proof, then we are done. Otherwise, by Lemma 3.3.3,

there is a proof Pr� such that Pr� � Pr. By induction, Pr�, and thus also Pr, is equivalent

to a rewrite proof.

Given a polynomial q of the form c1m1 + c2m2 + . . .+ ckmk, we use

s ←�p,q�←−−−→→ t

to denote a multi-equational step, that is, the sequence of equational steps:

s
�p,c1m1�←−−−−−→ s1

�p,c2m2�←−−−−−→ s2 . . .sk−1
�p,ckmk�←−−−−−→ t

It is easy to see that t = s− pq.

Theorem 3.3.5. Given a set of polynomials F = {p1, . . . , pk}, an arbitrary run

(F = S1,G1 = /0) � . . . � (Sn = /0,Gn)

of a correct Gröbner basis procedure G, and a polynomial p, the following holds: If

p ∈ I(F), then there exists a rewrite proof for p �F 0 using �→Gn. Moreover, Gn is

confluent.

Proof. If p ∈ I(F), then we must have p = p1q1 + . . .+ pkqk for some q1, . . . , qk ∈
Q[�x]. Let Pr be the following proof in (S∗,G∗) for p �F 0

p ←�p1,q1�←−−−−→→ . . .←�pk,qk�←−−−−→→ 0

By Lemma 3.3.4, Pr is equivalent to a rewrite proof.

Now, we show that Gn is confluent. Suppose not. Let �→Gn be the reduction relation

induced by Gn. Since Gn is not confluent, there are polynomials s, t1 and t2 such that

s �→Gn . . . �→Gn t1
s �→Gn . . . �→Gn t2

where t1 and t2 cannot be reduced by Gn. The reductions above induce a proof Pr in

(S∗,G∗) for t1 �F t2. Actually, this proof only uses polynomials in Gn, but it has a

peak at s. By Lemma 3.3.4, there is an equivalent rewrite proof Pr�, contradicting the

assumption that t1 and t2 cannot be reduced by Gn.
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3.4 Criteria for Discarding S-polynomials

Buchberger introduced two criteria for discarding superfluous S-polynomials [Buc79].

We discussed the motivation and importance of such criteria in Section 2.3.4. We now

examine how these classical criteria can be accommodated in the general setting of Ab-

stract Gröbner Bases. Inspecting the proof of Lemma 3.3.3, we see that S-polynomials

are only used in case 3b, where a non-rewrite proof Pr contains a peak. This obser-

vation suggests a methodology for proving the strategy-independent admissibility of

criteria for discarding redundant S-polynomials.

Observation 3.4.1. An S-polynomial spol(p1, p2) can be discarded if it is not needed

to obtain a smaller proof Pr� in case 3b of Lemma 3.3.3.

In the following, we assume p1, p2 and pk are polynomials in G∗ of the form

m1 + q1, m2 + q2 and mk + qk respectively. The two criteria we will consider are as

follows:

Criterion 1. If lcm(m1,m2) = m1m2, then spol(p1, p2) is superfluous.

Criterion 2. If there exists some pk ∈ G∗ s.t. lcm(m1,m2) is a multiple of mk and

spol(p1, pk) and spol(p2, pk) are in S∗, then spol(p1, p2) is superfluous.

Observation 3.4.2. If lcm(m1,m2) = mmk, then

lcm(m1,m2) = (mk1)lcm(m1,mk)

lcm(m1,m2) = (mk2)lcm(m2,mk)

for some mk1 and mk2 . Actually,

mk1 =
lcm(m1,m2)

lcm(m1,mk)
,

mk2 =
lcm(m1,m2)

lcm(m2,mk)
.

Note that mk1 and mk2 are well defined monomials because lcm(m1,m2)= lcm(m1,m2,mk).

We first adjust our notion of a correct procedure to take into account the fact that the

Superpose rule may be enhanced to carry a side-condition, ϕ, barring its application.
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Definition 3.4.3 (Conditionally Correct Procedure). A Gröbner basis procedure G is

said to be conditionally ϕ-correct iff it produces only finite runs (S1, G1 = /0) � . . . �
(Sn = /0, Gn), and

SPϕ(Gn)⊆ (S1 ∪S2 ∪ . . .∪Sn−1) ,

where

SPϕ(Gn) = {spol(p1, p2) | p1, p2 ∈ Gn ∧ ¬ϕ(p1, p2)}.

Theorem 3.4.4. Let ϕ1,ϕ2 be the natural side-conditions barring applications of Su-

perpose corresponding to Criteria 1 and 2 respectively. Let G be a Gröbner basis

procedure that is conditionally (ϕ1 ∨ϕ2)-correct. Then, Lemma 3.3.3 still holds for

G.

Proof. Inspecting the proof of Lemma 3.3.3, it is easy to see that case 3b is the only

one affected by the restricted Superpose rule. That is, Pr has a peak of the form:

t1
�p1,m�

1�←−−−− s
�p2,m�

2�−−−−→ t2

for p1 and p2 in Gn, p1 and p2 are of the form m1 + q1 and m2 + q2 respectively, and

m�
1m1 = m�

2m2. Then, s must be of the form qs + cmτ1,2, where τ1,2 = lcm(m1,m2).

Moreover, we must have:

t1 = qs − cm
τ1,2

m1
q1,

t2 = qs − cm
τ1,2

m2
q2.

Now, assume spol(p1, p2) is not in S∗ because one of the criteria above was used.

1. Assume spol(p1, p2) is not in S∗ because of Criterion 1. Then, τ1,2 = m1m2,

and consequently

s = qs + cmm1m2,

t1 = qs − cmm2q1,

t2 = qs − cmm1q2.

Now, let s� be the polynomial qs+(cm)q1q2, and Pr� be the proof that is obtained

by replacing the peak with:

t1 ←
�p2,−cmq1�←−−−−−−−→→ s� ←�p1,cmq2�←−−−−−−→→ t2

Since, t1, t2, s� and every intermediate polynomial in the multi-equational steps

above is smaller than s, the new equational steps in Pr� are smaller than the two

rewrite rules in the peak in Pr. Therefore, Pr� � Pr.
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2. Assume spol(p1, p2) is not in S∗ because of Criterion 2. Then, there is a pk

of the form mk + qk in G∗ such that spol(p1, pk) and spol(p2, pk) are in S∗, and

τ1,2 = m�mk for some m�. Let τ1,k = lcm(m1,mk) and τ2,k = lcm(m2,mk). Then,

by Observation 3.4.2, we have τ1,2 = mk1τ1,k and τ1,2 = mk2τ2,k.

t1 = qs − cm
τ1,2

m1
q1

= qs − cm
mk1τ1,k

m1
q1

= qs − cmmk1

τ1,k

m1
q1.

Similarly, t2 = qs − cmmk2
τ2,k
m2

q2. Recall that,

spol(p1, pk) = (
τ1,k

m1
)q1 − (

τ1,k

mk
)qk,

spol(p2, pk) = (
τ2,k

m2
)q2 − (

τ2,k

mk
)qk.

Now, let s� be the polynomial qs−cm τ1,2
mk

qk. By algebraic manipulation, we have:

t1 + cmmk1spol(p1, pk) = qs − cmmk1

τ1,k

mk
qk

= qs − cm
mk1τ1,k

mk
qk

= qs − cm
τ1,2

mk
qk

= s�

= qs − cm
mk2τ2,k

mk
qk

= qs − cmmk2

τ2,k

mk
qk

= t2 + cmmk2spol(p2, pk).

Note that in the equations above, all “fractions” of the form mi
m j

are actual mono-

mials because in all cases m j divides mi. For instance, τ1,k
mk

is a monomial because

mk always divides lcm(m1,mk) = τ1,k. Now, let Pr� be the proof that is obtained

by replacing the peak in Pr with

t1
�spol(p1,pk),−cmmk1�←−−−−−−−−−−−−−→ s�

�spol(p2,pk),cmmk2�←−−−−−−−−−−−−→ t2

Since t1, t2 and s� are smaller than s, we have Pr� � Pr.



3.4. Criteria for Discarding S-polynomials 67

Definition 3.4.5 (Eager SH-simplification). We say a Gröbner basis procedure G im-

plements eager SH-simplification iff G only applies Orient to p ∈ Si when Simplify-S

cannot be applied to p, and G only attempts1 to apply Superpose to p1, p2 ∈ Gi when

Simplify-H cannot be applied to p1, p2.

Criterion 3. Assume p1 and p2 are polynomials in G∗ of the form m1 + q1, m2 + q2

respectively. If m1 divides m2 or m2 divides m1, then spol(p1, p2) is superfluous.

Observation 3.4.6. As a helpful referee of the paper version of this chapter pointed

out, it is perhaps unlikely that Criterion 3 will be very effective in practice when it

is combined with the Gebauer-Möller criteria [CKR04]. Nevertheless, in the absence

of Gebauer-Möller (we have not examined the admissibility of Gebauer-Möller w.r.t.

Abstract GBs), we have found Criterion 3 to be a very useful component of the term

indexing routines used in the implementation of a new class of Gröbner basis algo-

rithms we present in Chapter 5. Moreover, we find it to be an interesting example

of the usefulness of Observation 3.4.1 as the basis of a methodology for proving the

strategy-independent correctness of superfluous S-polynomial criteria.

Theorem 3.4.7. Let ϕ be the natural side-condition for Superpose corresponding to

Criterion 3. Let G be a conditionally ϕ-correct Gröbner basis procedure using eager

SH-simplification. Let G have the property that it attempts to apply Superpose to every

p1, p2 ∈ Gn. Then, Lemma 3.3.3 still holds.

Proof. As in the proof of Theorem 3.4.4, we only need to consider case 3b. That is,

Pr has a peak of the form:

t1
�p1,m�

1�←−−−− s
�p2,m�

2�−−−−→ t2

for p1 and p2 in Gn, and p1 and p2 are of the form m1 +q1 and m2 +q2. Now, assume

spol(p1, p2) is not in S∗ because of Criterion 3, then m1 divides m2 or m2 divides m1.

Since G uses eager SH-simplification, by Observation 3.2.6, m1 �= m2. Therefore, m1

properly divides m2 or m2 properly divides m1. Without loss of generality, assume m1

properly divides m2, then p2 cannot be in Gn because rule Simplify-H would simplify it

using p1.

1By “attempts to apply” we mean that Superpose is either applied as usual, or it is tried but is
ultimately skipped because of an active side-condition ϕ barring its application.
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3.5 Conclusion

In conclusion, we have presented an abstract theory of Gröbner basis procedures and

used it to prove the strategy-independent admissibility of three superfluous S-polynomial

criteria. To accomplish this, we introduced a generalisation of the notion of S-polynomial

superfluousness in terms of proof orders. From this generalisation, we derived a

methodology for analysing the strategy-independent admissibility of S-polynomial cri-

teria and used it successfully on the three criteria considered.



Chapter 4

Locally Minimal Nullstellensatz Proofs

4.1 Introduction

Recall that Hilbert’s Weak Nullstellensatz (Theorem 2.3.21) guarantees the existence

of ideal membership identities certifying the unsatisfiability of systems of polynomial

equations whose corresponding affine varieties over Cn are empty. In particular, if a

system of polynomial equations

k�

i=1
(pi = 0) (pi ∈Q[�x])

is unsatisfiable over Cn, then 1 ∈ I({p1, . . . , pk}) and thus ∃ q1, . . . ,qk ∈Q[�x] s.t.

1 =
k

∑
i=1

qi pi.

Such an ideal membership identity can be considered a proof of the complex unsatis-

fiability of the corresponding polynomial system. This proof shows us that

ACF0 |=
��

∃�x
k�

i=1
pi = 0

�
⇐⇒ 0 = 1

�

and, informally, it might be written as follows:

Assume
�k

i=1(pi = 0). Then, it must be the case that
�
∑k

i=1 qi pi
�
= 0. But,

by simple ring-theoretic reasoning (i.e., polynomial simplification) we see
that

�
∑k

i=1 qi pi
�
= 1. Thus, our assumption implies 0 = 1 and so it cannot

be the case that
�k

i=1(pi = 0).

Given p1, . . . , pk as above, this type of unsatisfiability proof may be succinctly

represented simply by recording the polynomials q1, . . . ,qk. This tuple �q1, . . . ,qk�,

69
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called a tuple of cofactors of 1 w.r.t. p1, . . . , pk, can be seen as a proof object, i.e., a

compact representation of a proof certifying the unsatisfiability of
�k

i=1(pi = 0).

Unsatisfiability proofs as above (and hence their corresponding proof objects) may,

however, contain redundant information: a proper subset of the equational assumptions

{(pi = 0) | 1≤ i≤ k} used in these proofs may be sufficient to derive the unsatisfiability

of the original polynomial system. One trivial way this can happen, for instance, is

if some qi is 0. Then, the corresponding pi plays no essential role in the fact that
�
∑k

i=1 qi pi
�
= 1, and it may be useful to know that the smaller system of equations

p1 = 0 ∧ . . .∧ pi−1 = 0 ∧ pi+1 = 0 ∧ . . . ∧ pk = 0

is actually unsatisfiable as well. Similar phenomena may happen in algebraically non-

trivial ways, even when some qi is not explicitly zero.

For using Nullstellensatz techniques in SMT-based decision methods, a minimal

proof is often desired, one in which all assumptions (i.e., all pi) play a vital role. With

this in mind, we introduce a notion of locally minimal Nullstellensatz proofs and give

ideal-theoretic methods for their construction.

4.1.1 Motivation

Modern SMT solvers have application in the verification of software and hardware

artifacts and are seeing increasing use in areas as diverse as planning and formalised

mathematics. At a high-level, an SMT solver consists of an orchestrated combination

of a DPLL based SAT solver and a number of satellite “theory” solvers (T -solvers)

which implement decision methods for decidable elementary theories such as linear

integer and real arithmetic, bit-vector arithmetic, and the theory of uninterpreted func-

tions with equality. The effectiveness of an SMT decision loop depends crucially

upon the ability of its T -solvers to identify “small” inconsistent components of for-

mulas [dMRS04, NO07]. Thus when one develops a new T -solver, the investigation of

techniques for finding such “small” inconsistent subformulas is an important concern.

The work described in this chapter can be seen as a contribution to the develop-

ment of effective T -solvers for nonlinear polynomial arithmetic over both the real and

complex numbers. In particular, we consider the problem of finding “small” proof

objects certifying the unsatisfiability of systems of polynomial equations over any al-

gebraically closed field. We consider this problem within the context of Gröbner basis

calculations.
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We start by defining algebraic notions of proof minimality and redundancy. Then,

we examine how Gröbner basis procedures can be augmented to produce proof objects

certifying their membership judgments. Given these certificates, we introduce two

proof minimisation transformations — cofactor-subsumption and basis-subsumption

— for removing redundancy from extracted proof objects. Finally, we illustrate how

a restricted form of cofactor subsumption can be efficiently implemented and used to

reduce proof redundancy.

4.1.2 Our Contribution

The results of this chapter were obtained jointly with Dr. Leonardo de Moura. The

goal of developing algebraic machinery for the minimisation of Nullstellensatz proofs

was proposed by Dr. de Moura. We then proved the theorems together and both con-

tributed equally to the work that follows. The results of this chapter were published as

[dMP09].

4.2 Algebraic Notions of Proof Minimality

Let B = {p1, . . . , pk}⊂Q[�x]. If p ∈ I(B) as witnessed by the fact that
�
∑k

i=1 qi pi
�
= p,

then we will call �q1, . . . ,qk� an ideal membership certificate (certificate for short)

showing that p∈ I(B). If C = �q1, . . . ,qk� is a certificate for the fact that 1∈ I(B), then

we will call C a Nullstellensatz proof (proof for short) showing that 1 ∈ I(B). When

convenient, we may also call C a proof for the unsatisfiability of B. What we mean in

this case is that C bears witness to the fact that the equational system
�k

i=1(pi = 0) is

unsatisfiable over Cn.

4.2.1 Algebraic Notions of Redundancy

Definition 4.2.1 (Basis redundancy). We say B is p-non-redundant iff

p ∈ I(B) ∧ ∀B� ⊂ B (p /∈ I(B)).

Similarly, we say B is p-redundant iff

p ∈ I(B) ∧ ∃B� ⊂ B (p ∈ I(B)).

Definition 4.2.2 (Membership set). We define

Mem(p, p1, . . . pk)⊆ (Q[�x])k
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to be the collection of ideal membership certificates showing p ∈ I({p1, . . . , pk}) as

follows:

Mem(p, p1, . . . , pk) =

�
�q1, . . . ,qk� |

k

∑
i=1

piqi = p

�
·

We may write Mem(p,B) in place of Mem(p, p1, . . . pk). Given α ∈ Mem(p,B), coor-

dinate α(i) is known as the ith cofactor (of p w.r.t. B) in α.

Definition 4.2.3 (Proof set). We define Pr(p1, . . . pk) to be the collection of Nullstellen-

satz proofs of the unsatisfiability of {p1, . . . , pk}12 over Cn. That is,

Pr(p1, . . . pk) = Mem(1, p1, . . . pk).

We may write Pr(B) in place of Pr(p1, . . . pk).

Given a certificate α ∈ Mem(p,B), let us call those members of B whose corre-

sponding cofactors in α are non-zero the hypotheses used in α.

Definition 4.2.4 (Basis of hypotheses). Given an ideal membership certificate α ∈
Mem(p,B), we define Hyp(B,α) to be the collection of B-hypotheses used in α as

follows:

Hyp(B,α) = {pi ∈ B | α(i) �= 0} .

Then, there is a succinct account of what it means for a certificate to be non-redundant.

Definition 4.2.5 (Non-redundant certificates). We say a certificate α ∈ Mem(p,B) is

non-redundant iff Hyp(B,α) is p-non-redundant.

Observe that α ∈ Mem(p,B) is non-redundant iff

¬∃α� ∈ Mem(p,B) s.t. Hyp(B,α�)⊂ Hyp(B,α).

Restricted to proofs, this means α ∈ Pr(B) is non-redundant iff

¬∃α� ∈ Pr(B) s.t. Hyp(B,α�)⊂ Hyp(B,α).

Thus if α ∈ Pr(B) is a non-redundant proof, then no strict subset of the hypotheses

used in the proof is sufficient to show the unsatisfiability of B. However, this is an
1The interested reader may note the connection between Pr(p1, . . . , pk) and the first syzygy

module of �p1, . . . , pk�. In particular, Syz(p1, . . . , pk) = Mem(0, p1, . . . , pk) while Pr(p1, . . . , pk) =
Mem(1, p1, . . . , pk).

2Recall our convention that by Nullstellensatz proof for the “unsatisfiability of {p1, . . . , pk},” we
mean for the unsatisfiability of the associated equational system

�k
i=1(pi = 0).
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essentially local notion, dependent on the context of the current proof. In particular,

the non-redundancy of a proof α does not in general mean that there is no smaller

subset B� ⊂ B s.t. |B�|< |Hyp(B,α)| that is itself unsatisfiable. This can be seen with

the following simple example.

Example 4.2.6. Let the system Γ of polynomial equations be defined as follows:

Γ = {x2y2 −1 = 0, x2y = 0, xy = 0, x+1 = 0, y+1 = 0}.

Let B = {x2y2−1,x2y,xy,x+1,y+1} be the basis of polynomials corresponding to Γ.

Observe that Pr(B) �= /0. Among others, it contains the following two proofs:

α = �−1,y,0,0,0� for 1 = (−1)(x2y2 −1)+ y(x2y), and

β = �0,0,1,−y,1� for 1 = xy+−y(x+1)+ y+1.

Then, we have, Hyp(B,α) = {x2y2 − 1,x2y}, Hyp(B,β) = {xy,x+ 1,y+ 1}. Ob-

serve that both Hyp(B,α) and Hyp(B,β) are non-redundant and |Hyp(B,α)|< |Hyp(B,β)| .

Thus, non-redundancy of a proof does not mean it is a proof that uses the globally

least number of hypotheses, but rather that it is in some sense locally minimal: If

one begins with a non-redundant proof and drops any used hypotheses, then no proof

of unsatisfiability for the resulting system will exist. This is made precise with the

following lemma whose proof is immediate.

Lemma 4.2.7. Let α ∈ Pr(B) be a non-redundant proof. Then, every B� ⊂ Hyp(B,α)
is satisfiable over Cn.

4.3 Extracting Certificates from GB Procedures

Before investigating how certificates may be minimised, we need to make clear how a

Gröbner basis procedure can be used to construct them. We will do this by showing

how one can extend the Abstract Gröbner Bases calculus in Figure 3.1 so that the rules

allow simple certificate extraction. We first present a naive approach and then give a

refinement of it which helps facilitate structure sharing in an implementation.

Let us fix a bit of notation. If α,β ∈ (Q[�x])k, and p in Q[�x], then α+β will denote

�α(1)+β(1), . . . ,α(k)+β(k)�, and pα will denote �pα(1), . . . , pα(k)�. As in the pre-

vious chapter, in the context of polynomials p1 = m1 + q1 and p2 = m2 + q2, we will

use τ1,2 to denote lcm(m1,m2).
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Definition 4.3.1 (Certified polynomial). A certified polynomial (w.r.t. B) is a pair

(p,α) s.t. α ∈ Mem(p,B).

Figure 4.1 contains the rules of Figure 3.1 lifted to certified polynomials.

We use 1 j to denote �q1, . . . ,qk� ∈ (Q[�x])k, where q j = 1, and qi = 0 for all j �= i.

Definition 4.3.2 (Certified Procedure). A certified Gröbner basis procedure G is a

program that accepts a set of polynomials {p1, . . . , pk}, a monomial order ≺, and uses

the rules of Figure 4.1 to generate a (finite or infinite) sequence

(S1 = {(p1,11), . . . ,(pk,1k)}, G1 = /0) � (S2,G2) � (S3,G3) � . . .

Note that if (1,α) ∈ Si for some i, then α is a proof for the complex unsatisfiability of
�k

i=1(pi = 0).

In the linear case, zero variables can be used to represent certified polynomials

without having to introduce any extra machinery like we have with the “lifted” infer-

ence rules. This has been investigated within the context of both simplex and Gaussian

elimination [AB98, RS04]. The idea is to represent the certified polynomial (p,α) as

p−α(1)z1− . . .−α(k)zk, where the zi’s are new fresh variables. Then, the coefficients

of the variables zi are used to track the the certificate coordinates α(i) as one takes lin-

ear combinations of the polynomials. The new polynomial is still linear because α(i) is

always a constant for the linear case. From the Gröbner basis perspective, an approach

based on zero variables is attractive because a regular Gröbner basis procedure, i.e.,

one using the rules in Figure 3.1, could be used to obtain certificates. To do so, how-

ever, one need make the zero variables zi smaller than the variables {x1, . . . ,xn}. This

is so that the zi are not eliminated during Gröbner basis construction. This approach

cannot be directly applied to the nonlinear case, because it would require us to make

any monomial containing a zero variable zi smaller than a monomial not containing

any zero variable. There is no monomial order with such property, because it violates

admissibility. For example, it would require z2x1 ≺ x1. Thus, an approach like ours

seems necessary when certificate extraction is needed over nonlinear systems.

4.3.1 Structured Certificates

The overhead in a certified Gröbner basis procedure is substantial, since the certificates

α can grow in size very quickly. Moreover, it wasteful to compute a certificate for a

polynomial that is deleted using the Delete rule. We address this issue with structured
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Orient
S∪{(cm+q,α)},G

S,G∪{(m+(1
c )q,(

1
c )α)}

Superpose

S,G∪{(
p1� �� �

m1 +q1,α1),(

p2� �� �
m2 +q2,α2)}

S∪{(spol(p1, p2),(
τ1,2
m1

)α1 − (
τ1,2
m2

)α2)},G∪{(p1,α1),(p2,α2)}

Delete
S∪{(0,α)}, G

S,G

Simplify-S
S∪{(c1m1m2 +q1, α1)},G∪{(m2 +q2, α2)}

S∪{(q1 − c1m1q2, α1 − c1m1α2},G∪{(m2 +q2, α2)}

Simplify-H
S,G∪{(m1m2 +q1,α1), (m2 +q2,α2)}

S∪{(q1 −m1q2,α1 −m1α2)},G∪{(m2 +q2,α2)}
if m1 �= 1

Simplify-T
S,G∪{(m+ c1m1m2 +q1,α1), (m2 +q2,α2)}

S,G∪{(m− c1m1q2 +q1,α1 − c1m1α2), (m2 +q2,α2)}

Figure 4.1: Lifted inference rules.



76 Chapter 4. Locally Minimal Nullstellensatz Proofs

certificates. Structured certificates are represented using the constructors A (assump-

tion), S (superpose), R (simplify), D (divide).

Definition 4.3.3 (Structured Certificates). The set of polynomial structured certificates,

C, is defined as the least set s.t.

Assert: p ∈Q[�x] =⇒ A(p) ∈ C,

Superpose: ϕ1,ϕ2 ∈ C =⇒ S(ϕ1,ϕ2) ∈ C,

Simplify: ϕ1,ϕ2 ∈ C ∧ m ∈M=⇒ R(ϕ1,ϕ2,m) ∈ C,

Divide: ϕ ∈ C =⇒ D(ϕ) ∈ C.

Figure 4.2 contains the lifted rules using structured certificates. The initial state

(S1,G1) for a procedure using structured certificates is:

({(p1, A(p1)), . . . , (pk, A(pk))}, /0).

The set of hypotheses hyp(ϕ) of a structured certificate ϕ is defined as:

hyp(A(p)) = p,

hyp(S(ϕ1,ϕ2)) = hyp(ϕ1)∪hyp(ϕ2),

hyp(R(ϕ1,ϕ2,m)) = hyp(ϕ1)∪hyp(ϕ2),

hyp(D(ϕ)) = hyp(ϕ).

Definition 4.3.4 (Polynomial of a Certificate). Given a structured certificate ϕ ∈ C, the

polynomial of ϕ, pol(ϕ), is defined as follows:

1. pol(A(p)) = p.

2. pol(S(ϕ1,ϕ2)) = spol(pol(ϕ1),pol(ϕ2)).

3. pol(R(ϕ1,ϕ2,m)) =






q1 − c1m1q2

if pol(ϕ1) contains m

where

pol(ϕ1) = c1m1m2 +q1,

m = m1m2,

pol(ϕ2) = m2 +q2

pol(ϕ1) otherwise.
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Orient
S∪{(cm+q,ϕ)},G

S,G∪{(m+(1
c )q,D(ϕ))}

Superpose
S,G∪{(p1,ϕ1),(p2,ϕ2)}

S∪{(spol(p1, p2),S(ϕ1,ϕ2)},G∪{(p1,ϕ1),(p2,ϕ2)}

Delete
S∪{(0,ϕ)}, G

S,G

Simplify-S
S∪{(c1m1m2 +q1, ϕ1)},G∪{(m2 +q2, ϕ2)}

S∪{(q1 − c1m1q2, R(ϕ1,ϕ2,m1m2))},G∪{(m2 +q2, ϕ2)}

Simplify-H
S,G∪{(m1m2 +q1,ϕ1), (m2 +q2,ϕ2)}

S∪{(q1 −m1q2,R(ϕ1,ϕ2,m1m2))},G∪{(m2 +q2,ϕ2)}
if m1 �= 1

Simplify-T
S,G∪{(m+ c1m1m2 +q1,ϕ1), (m2 +q2,ϕ2)}

S,G∪{(m− c1m1q2 +q1,R(ϕ1,ϕ2,m1m2)), (m2 +q2,ϕ2)}

Figure 4.2: Lifted inference rules with structured certificates.
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4. pol(D(ϕ)) = m+(1
c )q, if pol(ϕ) = cm+q.

Observation 4.3.5. If a structurally certified polynomial (p,ϕ) appears during a run

of a structually certifying Gröbner basis procedure, then p = pol(ϕ).

Definition 4.3.6 (Flat Certificates). Given a structured certificate ϕ∈ C, where hyp(ϕ)⊆
B = {p1, . . . , pk}, the flat certificate with respect to B, flat(ϕ), is defined as follows:

1. flat(A(pi)) = 1i.

2. flat(S(ϕ1,ϕ2)) = (
τ1,2
m1

)(flat(ϕ1))− (
τ1,2
m2

)(flat(ϕ2)),

where pol(ϕ1) = m1 +q1, pol(ϕ2) = m2 +q2, and τ1,2 = lcm(m1,m2).

3. flat(R(ϕ1,ϕ2,m)) =






flat(ϕ1)− c1m1(flat(ϕ2))

if pol(ϕ1) contains m,

where

pol(ϕ1) = c1m1m2 +q1,

m = m1m2,

pol(ϕ2) = m2 +q2

flat(ϕ1) otherwise.

4. flat(D(ϕ)) = 1
c (flat(ϕ)), where pol(ϕ) = cm+q.

Theorem 4.3.7. Given B = {p1, . . . , pk}, and a certificate ϕ ∈ C where hyp(ϕ) ⊆ B,

then flat(ϕ) ∈ Mem(pol(ϕ),B).

4.4 Redundancy

We now wish to address the following fundamental problem: Given a certificate α ∈
Mem(p,B), can α be feasibly transformed into a non-redundant certificate? With fea-

sibility in mind, we look only for transformations which arise by a combination of

(i) dropping used hypotheses and (ii) modifying non-zero cofactors. In particular, all

transformations α �→ α� are s.t. Hyp(B,α�)⊂ Hyp(B,α).
In devising techniques to eliminate redundancy, we will need to refer to individual

hypotheses contributing to the redundancy.

Definition 4.4.1. Given a certificate α ∈ Mem(p,B) and a j s.t. 1 ≤ j ≤ k, we say α is

j-redundant iff

α( j) �= 0 ∧ Mem(p,Hyp(B,α)\{p j}) �= /0.
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4.4.1 Redundancy in the General Case

We now turn to proof redundancy in the context of the general nonlinear case. The

following concepts form the basis for our proof minimisation transformations.

Definition 4.4.2. Given a certificate α ∈ Mem(p,B) and a j s.t. 1 ≤ j ≤ k. Let Hj be

the set Hyp(B,α)\{p j}. We say α is

• j-cofactor-subsumed ⇐⇒ α( j) ∈ I(Hj),

• j-basis-subsumed ⇐⇒ p j ∈ I(Hj),

• j-�-subsumed ⇐⇒ α( j)p j ∈ I(Hj).

First, we focus on cofactor-subsumption. Note that j-cofactor-subsumption is an

algebraic generalisation – using the intuition that ideals are an algebraic generalisation

of zeroness – of the fact that if a cofactor coordinate α( j) of a certificate is explicitly 0,

then its corresponding hypothesis p j does not contribute to the certificate in an essential

way. Let α ∈ Mem(p,B) and β ∈ Mem(α( j),B) �= /0 with Hyp(B,β) ⊆ Hyp(B,α) \
{p j}. Then, we define the certificate transformer � j,β(α) for j-cofactor-subsumption

(w.r.t. B = {p1, . . . , pk}) as

� j,β(α) = α+(−α( j))1 j + p jβ.

Theorem 4.4.3. Let α∈Mem(p,B) be a j-cofactor-subsumed certificate with Hyp(B,α)=
H, and β∈Mem(α( j),B) �= /0 with Hyp(B,β)⊆H \{p j}. Then, � j,β(α)∈Mem(p,B),

and Hyp(B,� j,β(α))⊆ H \{p j}.

The proof of Theorem 4.4.3 is verified by the following identity.
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Proof.

p =
k

∑
i=1

α(i)pi =

�
j−1

∑
i=1

α(i)pi

�
+α( j)p j +

�
k

∑
i= j+1

α(i)pi

�

=

�
j−1

∑
i=1

α(i)pi

�
+ p j

��
j−1

∑
i=1

β(i)pi

�
+

�
k

∑
i= j+1

β(i)pi

��

+

�
k

∑
i= j+1

α(i)pi

�

=

�
j−1

∑
i=1

α(i)pi

�
+

�
j−1

∑
i=1

p jβ(i)pi

�
+

�
k

∑
i= j+1

p jβ(i)pi

�

+

�
k

∑
i= j+1

α(i)pi

�

=

�
j−1

∑
i=1

α(i)pi + p jβ(i)pi

�
+

�
k

∑
i= j+1

α(i)pi + p jβ(i)pi

�

=

�
j−1

∑
i=1

(α(i)+ p jβ(i))pi

�
+

�
k

∑
i= j+1

(α(i)+ p jβ(i))pi

�

=
k

∑
i=1

�
� j(α)(i)

�
pi

where
�
� j(α)(i) =

�
� j,β(α)

�
(i)

�
.

Similarly, we define the certificate transformer � j,β(α) for j-basis-subsumption

(w.r.t. B = {p1, . . . , pk}) as

� j,β(α) = α+(−α( j))1 j +α( j)β.

The correctness of this transformer is verified by an algebraic computation analogous

to the proof of Theorem 4.4.3. Note that, in this case, β ∈ Mem(p j,B) �= /0.

So, we now have certificate transformers for eliminating the forms of redundancy

elucidated by the concepts of j-cofactor and j-basis subsumption. If you recall, how-

ever, we also introduced a third related concept, that of j-�-subsumption. It turns out

that j-�-subsumption is a more difficult one, and we have not made much progress on

it. One useful observation is that if our I(B) is a prime ideal, then j-�-subsumption is

actually not needed. This is because in this context a given certificate α ∈ Mem(p,B)

will be j-�-subsumed iff it is either j-cofactor-subsumed or j-basis-subsumed. But,

other than the setting of prime ideals, investigating methods for certificate minimisa-

tion along j-�-subsumed certificates remains as future work.
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4.4.2 Restricted Cofactor-Subsumption and Basis-Subsumption

We use j-subsumption to denote j-cofactor-subsumption and j-basis-subsumption. We

now address the following issue: How can j-subsumption be applied effectively in

practice? In general, it is too expensive to check whether a certificate α can be j-

subsumed or not, because it requires us to answer ideal membership subqueries. That

is, given a certificate α, to check whether α can be j-subsumed, we need to compute

a Gröbner basis for Hyp(B,α) \ {p j}. We overcome this difficulty by approximating

the ideal membership subqueries. The idea is to answer these queries using a set of

rewrite rules that is not necessarily confluent.

Definition 4.4.4 ( j-ϕ-Independent Polynomial). Given a certificate ϕ, a certified poly-

nomial (r,ϕ�) is j-ϕ-independent iff hyp(ϕ�)⊆ hyp(ϕ)\{p j}.

Let (S1,G1) � . . . � (Sm,Gm) be a run produced by a certified Gröbner basis pro-

cedure G, (p,ϕ) be some certified polynomial in ∪m
i=1(Si ∪Gi), and Θ j,ϕ be the set

of j-ϕ-independent polynomials in ∪m
i=1Gi. Now, suppose we want to check whether

α = flat(ϕ) is j-cofactor-subsumed or not. Then, we can simply check whether α( j)

rewrites to 0 using an arbitrary subset of Θ j,ϕ. For example, in our prototype, we do

not track all polynomials produced in a run. Thus, whenever a certified polynomial

(c,ϕ) (with c �= 0) is included in Sm, we use just the j-ϕ-independent polynomials in

Gm (instead of ∪m
i=1Gi) to check whether flat(ϕ) can be j-cofactor-subsumed or not.

Example 4.4.5. Let S be a set of polynomials {p1, p2, p3, p4}, where:

p1 = x1 − x2,

p2 = x1x2
3 − x1x2

4 +1,

p3 = x5x4 − x3,

p4 = x5x3 − x4

The system {p1 = 0, p2 = 0, p3 = 0, p4 = 0} is unsatisfiable over C5. Let G be a

correct structurally certifying Gröbner basis procedure that produces the run (S1 =

S,G1 = /0) � . . . � (Sm,Gm), where Sm contains the certified polynomial (1,ϕ), where:

ϕ = R(S(p3, p4),R(A(p1),R(A(p1),A(p2),x2
3),x

2
4),x2).

The flat certificate flat(ϕ) associated with ϕ is:

flat(ϕ) = �(−x2
3 + x2

4), 1, x2x3, −x2x4�.
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Assume also that some Gi in the run contains the certified polynomial (r,ϕ�) = (x3 −
x4, S(A(p3),A(p4))). Note that (r,ϕ�) is 1-ϕ-independent, and −x2

3 + x2
4 �→r 0. Thus,

flat(ϕ) can be 1-cofactor-subsumed.

4.5 Conclusion

The effectiveness of an SMT solver depends crucially upon the ability of its T -solvers

to identify “small” inconsistent sets of formulas. Hence, to address this need in the

context of T -solvers for nonlinear arithmetic, we defined algebraic notions of proof

minimality and redundancy for complex unsatisfiability proofs based upon Hilbert’s

weak Nullstellensatz, and introduced two useful certificate transformations aimed at

the local minimisation of such proofs: cofactor-subsumption and basis-subsumption.

We also described how ideal membership certificates can be extracted in the framework

of Abstract Gröbner Bases. In the next chapter, we will examine in detail a new class

of Gröbner basis algorithms tailored to the needs of SMT solvers. These algorithms

will be proven correct using Abstract Gröbner Bases and now form the foundation of

the nonlinear reasoning techniques present in the Z3 SMT solver [MB08]. Under the

hood, these algorithms will make use of the structural certificate machinery we have

presented in this chapter.



Chapter 5

Gröbner Basis Algorithms for L3

Nonlinear Systems

5.1 Introduction

In this chapter, we present novel Gröbner basis algorithms based on saturation loops

used by modern superposition theorem provers. By combining

• top-level Gröbner basis construction strategies based on the OTTER [McC03]

and DISCOUNT [ADF95] saturation loops, and

• term indexing techniques making use of superfluous S-polynomial criteria in

Gröbner basis theory,

we are able to compute Gröbner bases for large, largely linear nonlinear systems of

polynomial equations which are beyond the reach of previously available methods.

These types of systems are typical of those arising from the use of SMT solvers in

reasoning about industrial-strength software artifacts with nonlinear arithmetical com-

ponents. Proving the correctness of these new Gröbner basis procedures is nontrivial,

and to do so we utilise the theory of Abstract Gröbner Bases introduced in Chapter 3.

We illustrate the practical value of the algorithms through an experimental implemen-

tation within the Z3 SMT solver [MB08].

5.1.1 Motivation

In attempting to integrate Gröbner basis calculations within Z3, we observed that the

known Gröbner basis procedures used for solving difficult algebro-geometric problems

83
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and available in modern computer algebra systems, such as Buchberger’s Algorithm

[Buc65] and its enhancements F4 and F5 [Fau99, Fau02], were not able to cope with

the flavour of large systems of polynomial constraints generated by the SMT solver.

These types of nonlinear systems, usually derived from industrial software verifica-

tion conditions, often contain massive (> 1,000, even at times > 10,000) numbers of

polynomial equations, but have a proportionally small (usually < 5%) nonlinear com-

ponent. We call these types of systems ‘large, largely linear’ or ‘L3’ nonlinear systems.

This chapter is focused on the development of novel Gröbner basis calculation algo-

rithms which allow us to compute with these L3 systems.

Tasked with the problem of constructing new Gröbner basis calculation algorithms

tailored to the needs of SMT solvers, a very pleasing solution presented itself: We were

able to exploit years of work undertaken within the automated theorem proving com-

munity and adapt saturation loops and fast term indexing techniques used by modern

superposition theorem provers to the context of Gröbner basis calculation.

These loops1, one derived from McCune’s OTTER, the other from Avenhaus et al’s

DISCOUNT, combined with sophisticated term indexing, have enabled modern high-

performance theorem provers to reason effectively in the context of massive clause

sets [RV03]. By adapting these developments to a Gröbner basis setting, we are able

to leverage work done in one community to aid another. Indeed, these new algorithms

allow us to compute Gröbner bases for systems much larger than those amenable to

previously available Gröbner basis algorithms, provided that these systems contain

a relatively small nonlinear component. While mapping these saturation loops to a

Gröbner basis setting is straight-forward, both proving their correctness and deriving

appropriate term indexing techniques is not. To prove correctness of the top-level

algorithms and justify the term indexing techniques described, we make extensive use

of the theory of Abstract Gröbner Bases (cf. Chapter 3).

5.1.2 Related Work and Novelty

The idea of using sophisticated simplification and term indexing techniques during

Gröbner basis construction has been explored by many, though the latter usually under

a different name: as Gröbner basis procedures deal solely with polynomials, the phrase

1For a presentation of the OTTER and DISCOUNT loops in the automated theorem proving lit-
erature, we suggest (in addition to the original references by McCune [McC03] and Avenhaus et al
[ADF95]) the reference [RV03]. As our focus is upon describing and evaluating our Gröbner basis al-
gorithms, we will spend a relatively short amount of time discussing how they are related to the original
OTTER and DISCOUNT saturation loops.
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“term indexing” is usually eschewed in Gröbner basis research in favor of “polynomial

representation” [Car10]. For example, the (very different) techniques underlying both

Faugère’s F4 [Fau99] and the Cory-Rossin-Salvy “sandpiles” method [CRS02] may be

seen as combining sophisticated simplification and term indexing [Car10].

Given that two core ideas explored in this work – using sophisticated simplification

and term indexing techniques during Gröbner basis construction – have been explored

by many, we find it prudent to make clear which aspects of this work are novel.

Our main contribution is the particular instantiation of these ideas. This instan-

tiation has been motivated by the types of problems encountered when using the Z3

SMT solver to verify programs with nonlinear arithmetical components and is particu-

larly interesting from the perspective of automated theorem proving. While a number

of prior works have put forth theoretical frameworks for building specialised Gröbner

basis procedures, we are aware of none which actually apply them and present the

details of such a specialisation from algorithm description and correctness to imple-

mentation and empirical evaluation. By focusing on specific saturation loops which

have been successful in automated theorem proving and mapping them to a Gröbner

basis setting, and by undertaking this work in the context of a high-performance SMT

solver, we provide a foundation upon which other SMT solver researchers may build.

Similarly, we feel this work gives a tangible basis for researchers in automated theo-

rem proving to consider how other techniques in their repertoire may be imported to a

Gröbner basis setting.

5.1.3 Our Contribution

The theoretical results of this chapter were obtained jointly with Dr. Leonardo de

Moura. The goal of adapting high-performance theorem proving saturation and sim-

plification loops to a Gröbner basis setting was proposed by Dr. de Moura. This goal

in fact motivated much of the work presented in Chapters 3-5. Dr. de Moura and

I both contributed equally to the theoretical work presented. The high-performance

implementation of these procedures into a special version of the Z3 SMT solver was

completed by Dr. de Moura. The experimental evaluation of these implemented ver-

sions of these new procedures in comparison with other Gröbner basis packages was

completed by Dr. Paul B. Jackson using a random problem generator written by Dr. de

Moura. The results of this chapter were published as [PdMJ10].
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5.2 Algorithms: OTTER-GB and DISCOUNT-GB

We now describe two new algorithms for computing Gröbner bases. These algorithms

are aimed at solving L3 systems which are beyond the reach of previously available

methods. Descriptions of the two algorithms, using the calculus of Abstract Gröbner

Bases presented in Chapter 3, appear in Figures 5.1 and 5.2.

There are two main procedural ingredients to these algorithms: (i) top-level loops

adapted from the OTTER [McC03] and DISCOUNT [ADF95] saturation algorithms,

and (ii) term indexing techniques derived from both the theorem proving literature

[SRV01] and “superfluous S-polynomial criteria” which are important in Gröbner basis

theory. The term indexing techniques are designed for facilitating fast applications of

the inference rules Superpose, Simplify-S, Simplify-T, and Simplify-H. In Section 5.2.3,

we will show that these algorithms correspond formally to correct strategies in the

sense of of Abstract GBs. Thus, by Theorem 3.2.4, they will be guaranteed to be

terminating, functionally correct Gröbner basis construction algorithms.

5.2.1 Understanding the Algorithms

To help understand these algorithms, it is instructive to examine some differences be-

tween them and Buchberger’s Algorithm. Before doing so, let us first reflect on how

OTTER-GB and DISCOUNT-GB differ from each other.

It is easy to see, by induction, the key difference between the two algorithms:

OTTER-GB maintains the invariant that G and S are always maximally simplified w.r.t.

G, whereas DISCOUNT-GB maintains only the invariant that G is maximally simpli-

fied w.r.t. itself. These differences (with G and S corresponding to the active and

passive sets, respectively) mirrors the key difference between the OTTER and DIS-

COUNT superposition saturation loops [RV03]. Note that Buchberger’s Algorithm

maintains neither of these invariants (we will discuss this more shortly). Observe also

that both OTTER-GB and DISCOUNT-GB implement eager SH-simplification (cf.

Definition 3.4.5).

Note that these invariants for our Gröbner basis algorithms lead to nontrivial dy-

namics in the way polynomials are moved between G and S. For instance, whenever

the rule Simplify-T is applied to simplify a member of G by another member of G, then

the resulting simplified polynomial must be moved to S to await further processing.

Thankfully, the theory of Abstract Gröbner Bases provides us with a simple method

for proving the correctness and termination of the resulting algorithms which allows



5.2. Algorithms: OTTER-GB and DISCOUNT-GB 87

Input: �S = {p1, . . . , pk}⊂Q[�x],G = /0,≺�
Output: G s.t. G is a GBasis of S w.r.t. ≺
while S �= /0 do

Invariant: G and S are maximally simplified w.r.t. G

Choose p ∈ S

Apply Orient to p

Let q be the resulting oriented polynomial (in G)

Use q to simplify G as long as possible

using Simplify-H and Simplify-T

Use G to simplify S as long as possible

using Simplify-S

Let Sold := S

Apply Superpose to all pairs �r,q� (r ∈ G,r �= q)

for which Superpose has not been previously

applied

Let Snew := S \ Sold

Use G to simplify members of S in Snew

as long as possible using Simplify-S

Apply Delete if possible

if ((G∪S) ∩ (Q\{0}) �= /0) then
Set G := {1}
Set S := /0

end if
end while

Figure 5.1: GB algorithm based on OTTER saturation loop
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Input: �S = {p1, . . . , pk}⊂Q[�x],G = /0,≺�
Output: G s.t. G is a GBasis of S w.r.t. ≺
while S �= /0 do

Invariant: G is maximally simplified w.r.t. G

Choose p ∈ S

Use G to simplify p as long as possible

using Simplify-S

Let s be the resulting simplified polynomial (in S)

if s �= 0 then
Apply Orient to s

Let q be the resulting oriented polynomial (in G)

Use q to simplify G as long as possible

using Simplify-H and Simplify-T

Apply Superpose to all pairs �r,q� (r ∈ G,r �= q)

for which Superpose has not been previously

applied

Apply Delete if possible

if ((G∪S) ∩ (Q\{0}) �= /0) then
Set G := {1}
Set S := /0

end if
else

Apply Delete to s

end if
end while

Figure 5.2: GB algorithm based on DISCOUNT saturation loop
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us to abstract away from these dynamics. This will be seen in Section 5.2.3.

If one contrasts these algorithms with Buchberger’s Algorithm, we see a funda-

mental difference: In Buchberger’s Algorithm, once a reduced S-polynomial is placed

in G, it is never removed nor modified2. For L3 systems, this is ineffective. The reason

is simple: With such a large number of input polynomials, G grows far too quickly

when it is not continually simplified w.r.t. itself, causing the number of S-polynomials

which must be considered, as well as the total number of possible polynomial reduction

paths when one is using members of G to simplify other polynomials, to grow in each

(non-terminating) iteration. Thus, both OTTER-GB and DISCOUNT-GB maintain the

invariant that G is maximally simplified w.r.t. itself. This has the effect of keeping G

“lean,” continually purging G of redundant information. OTTER-GB maintains also

the additional invariant that S is always maximally simplified w.r.t. G.

Returning to Buchberger’s Algorithm, we see that only one form of simplification is

done in Buchberger’s Algorithm. This is the simplification of computed S-polynomials

by members of the growing Gröbner basis. In Abstract GBs, we can characterise

this type of simplification as that which arises when using members of G to simplify

members of S. Only one rule lets us do this: Simplify-S. Borrowing the terminology

from automated theorem proving (ATP), we call this forward simplificaton.

Both of our algorithms also perform another form of simplification: They use mem-

bers of G to simplify other members of G. This is done through two rules, Simplify-H

and Simplify-T. Note that the Simplify-H rule can be used to simplify a member of G

by another member of G with the resulting simplified polynomial being allowed to

stay in G. With Simplify-T, one uses a member of G to simplify another member of

G, but the resulting simplified polynomial must be placed in S. Borrowing again ATP

terminology, we call this backward simplification.

We can now state succinctly the key difference between Buchberger’s Algorithm

and those presented here: Buchberger’s Algorithm only performs forward simplifica-

tion. Both OTTER-GB and DISCOUNT-GB perform forward and backward simplifi-

cation, but do so in different ways.

Finally, let us say a very short bit about another Gröbner basis algorithm, Faugére’s

F4, which we shall empirically compare with our algorithms on some L3 systems in

Section 5.3. While also only performing forward simplification, Faugére’s F4 differs

2Though one might, after the algorithm has finished and computed a Gröbner basis, proceed to
minimise the computed Gröbner basis to a reduced Gröbner basis. Note, though, that during the initial
Gröbner basis construction, once a polynomial is placed in G, it is then never modified. That is, this
minimisation is done post facto w.r.t. Buchberger’s Algorithm.
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from Buchberger’s Algorithm in that it (using deep insights from linear algebra) sim-

plifies many S-polynomials simultaneously. This gives it much better performance

than Buchberger’s Algorithm on many classes of highly nonlinear problems, provided

they have a relatively small total number of input polynomials. But, as backward sim-

plification is never used, it does not cope much better than Buchberger’s Algorithm

when it comes to L3 systems. The situation is similar with the algorithm F5, as we

will see.

In a primitive sense, one phenomenon related to the way in which F4 processes S-

polynomials happens in the algorithms we present. In both OTTER-GB and DISCOUNT-

GB, once a chosen polynomial is used to compute a set of S-polynomials against the

other members of G, any of the deduced S-polynomials (in S) may become an imme-

diate target for simplification, and the simplification steps of multiple S-polynomials

may be interleaved. Crucially, the theory of Abstract GBs allows us to not care, at the

level of correctness and termination proofs, about the order in which such reductions

are performed. It would be very interesting to try and import some of the linear alge-

bra underlying F4 into algorithms which still fit the abstract description of OTTER-GB

and DISCOUNT-GB.

5.2.2 Term Indexing

As with terms in high-performance automated theorem proving [SRV01], it is impera-

tive to have efficient methods for computing sets of polynomials which match a given

polynomial w.r.t. the Abstract GB inference rules. These techniques need to answer

queries of the form “which polynomials in the set of polynomials X can be used to

perform an inference using rule R with polynomial p?”.

It is fair to say that without such indexing methods, our new procedures would

likely not perform better than those which were previously available. The reason is

simple: In L3 systems, the size of the set of all retained polynomials (in Abstract GBs,

this is the set Si∪Gi for any state (Si,Gi)) can be so large that answering questions like

“Given a polynomial p ∈ Si, which polynomials in Gi are candidates for reducing p

via Simplify-S?” naively without some nontrivial form of filtering can lead to disaster.

Both the mixture of forward and backward simplification present in our OTTER-GB

and DISCOUNT-GB loops and the term indexing presented below are crucial to the

performance improvements our algorithms have over previously available GB algo-

rithms when it comes to L3 nonlinear systems.
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There are many choices one can make when constructing term indexing schemes.

Below, we present only the choices which are now used in the actual implementa-

tion of the OTTER-GB and DISCOUNT-GB algorithms in the SMT solver Z3. These

are the indexing methods used in the experimental evaluation we present (comparing

OTTER-GB and DISCOUNT-GB to state-of-the-art Gröbner basis algorithms avail-

able in mainstream computer algebra systems) in Section 5.3. Moreover, we present

them at a high level of abstraction, just describing the key ideas underlying them.

There is much room here for an exploration of alternative indexing techniques, a

discussion of trade-offs between different indexing choices, and so on. We do not go

into that level of detail, nor have we done any systematic comparison of our current

indexing schemes with other alternatives. This would be a very interesting undertaking

which we hope to do some day. Instead, we simply developed basic techniques which

allowed us to solve the problems we were aiming to solve, and we now recapitulate

these concrete choices so that others may have the chance to build upon them.

5.2.2.1 Indexing for Superpose

For the application of Superpose, the indexing technique is based on superfluous S-

polynomial criteria, in particular those we examined in Section 3.4. Recall that such

a criterion is a computationally efficient sufficient condition for recognising when a

given S-polynomial would reduce to zero w.r.t. the Gröbner basis being constructed,

and thus signifies that the S-polynomial in question can be ignored. Such a criteria

is in a sense a subsumption check, as an S-polynomial reducing to zero implies that

all reductions it induces are present in the rewrite system induced by the portion of

the Gröbner basis already constructed. Hence it would not contribute to obtaining a

confluent rewriting system and need not be considered.

What is the goal of indexing for Superpose applications? Consider the query

“which polynomials in the set of polynomials X can be used to perform a Superpose

inference with polynomial p?” Imagine that Answer(X , p) is our computed answer to

that query. Naively, one might make Answer(X , p) = X . But, many of the polynomials

in X may, when Superpose’d with p, lead to superfluous S-polynomials. For Super-

pose, we want our answers to be computed so that Answer(X , p) contains very few

polynomials q s.t. spol(p,q) is superfluous, and we want these answers to be computed

efficiently. Thus, we want to have our term indexing techniques to some degree to take

into account the superfluous S-polynomial criteria so that they ensure, as much as is

feasible, that Superpose will only be applied when the generated S-polynomial would
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not be superfluous.

There is, however, a difficulty in using such criteria in non-standard Gröbner basis

loops: classical criteria, such as Buchberger 1 and 2 (what we in this thesis call Crite-
ria 1 and 2), were originally proved correct only w.r.t. a fixed basis construction strat-

egy, e.g., using an inductive cut-point argument w.r.t. the classical Buchberger’s Algo-

rithm [Buc79]. Given that our algorithms exhibit much different behaviour than Buch-

berger’s Algorithm, it becomes nontrivial to establish the admissibility of the classical

superfluous S-polynomial criteria w.r.t. algorithms like OTTER-GB and DISCOUNT-

GB. Thankfully, we have solved this problem in Chapter 3 for the superfluous S-

polynomial criteria we consider, by proving these criteria admissible in the context of

Abstract GBs.

In our implementation, we currently make use of Criteria 1 and 3 in Chapter 3.

We have not yet found an effective way to apply the second criteria we proved correct

w.r.t. Abstract GBs, Criterion 2, in the context of term indexing.

It follows from Criterion 3 that polynomials with linear leading monomials need

not participate in Superpose inferences, given that both algorithms presented imple-

ment eager SH-simplification. Thus, for the application of Superpose, we index poly-

nomials by their leading monomials so that given a polynomial p, we may quickly

return lists of other polynomials whose leading monomials are (i) not relatively prime

to p, and (ii) nonlinear. The index is essentially tracking the occurrences of variables

in leading monomials of polynomials in G which have the potential to mate with p to

contribute non-superfluous S-polynomials.

5.2.2.2 Indexing for Forward Simplification

When indexing for forward simplification, the polynomials used to do the simplifica-

tion are the ones indexed. (This will be contrasted with indexing for backward sim-

plification, where the targets of simplification are the ones indexed.) This means that

the index for forward simplification should answer a query of the form “which poly-

nomials in G can be used to forward simplify a polynomial p (in S)?”. Moreover, it is

only the head monomials of each polynomial in G which need to be indexed. For the

application of forward simplification (Simplify-S), the indexing technique is based on

the following observation.

Observation 5.2.1. For an oriented polynomial p2 = m2 + q2 ∈ G to be used to sim-

plify an unoriented p1 = c1m1m2+q∈ S using Simplify-S, it follows that (i) totaldeg(m2)
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≤ totaldeg(m1m2), and (ii) every variable in m2 must appear in m1m2.

While the above observation may seem a triviality, in practice it implies that to

find an oriented polynomial which may Simplify-S a target monomial, we may place

oriented polynomials in an index which facilitates (i) only considering polynomials

whose leading monomial’s total degree does not surpass that of the target, and (ii) in

doing so only one variable of each leading monomial need be indexed.

Of course, there are many choices one can make when constructing such an index.

We use a very simple data structure.

To build the forward simplification index

fw index : Var×Nat→ 2Q[�x]

we process each p ∈ G as follows:

Let v be some3 variable in the leading monomial of p
Let n be the power of v in this monomial in p
Add p to fw index[v][n]

Now, to find polynomials which can rewrite a monomial m, we may perform a

restricted search (letting LM(q) denotes the leading monomial of q w.r.t. a background

term ordering ≺):

for each variable v in m do
Let deg = totaldeg(m)
for n in [1 . . .deg] do

for each q ∈ fw index[v][n] do
if (LM(q)|m) then

Record that q can be used to forward simplify monomial m
end if

end for
end for

end for

In practice for L3 systems, most polynomials have low degree. So, we add a thresh-

old in our index, and do not distinguish in the index between exponents with values

greater than the threshold.

5.2.2.3 Indexing for Backward Simplification

When indexing for backward simplification, the goal is to quickly find the targets for

simplification. (Contrast this with forward simplification above, where the goal was to
3In practice, we choose the smallest variable w.r.t. ≺, but this is not an essential choice.
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quickly find the polynomials which could be used to perform simplification upon given

targets.) This means that the index for backward simplification should answer a query

of the form “which polynomials in G can be simplified by the polynomial cm1 +q?”.

The index used for backward simplification (Simplify-H and Simplify-T) is the most

expensive of the three, as it requires we index every monomial in every polynomial in

G.

We can refine the above index query to the following more explicit one, which

is what we really need to be able to answer efficiently for backward simplification:

“Given a polynomial m1 + q, what are the polynomials in G that contain monomials

of the form cm1m2?” (In fact, the query can be refined even further when one prop-

erly implements structure sharing, so that identical monomials appearing in multiple

polynomials in G actually correspond to the same “monomial object” in memory. In

this case, one needs to answer: “Given a polynomial in m1 + q, what are the pointers

to monomials of the form cm1m2.” Though structure sharing methods are used under-

the-hood in de Moura’s Z3 implementation of OTTER-GB and DISCOUNT-GB, we

do not in this thesis present the ideas underlying the index at this low, but practically

useful, level of abstraction.

As with forward simplification, the index used for backward simplification will

map a pair (v,n) consisting of a variable and a degree (natural number) to a set of

polynomials:

bw index: Var × Nat �→ 2Q[�x].

This bw index will map a pair (v,n) to a set of polynomials X = bw index(v,n) s.t. X

contains precisely the polynomials in G which contain a monomial m s.t. m contains v

and the total multivariate degree of m, deg(m), is at least n.

The main idea underlying how we query this index is based on the following simple

observation: For the polynomial m1 +q to simplify a monomial m in a polynomial in

G, every variable in m1 must appear in m, and deg(m1) ≤ deg(m) must hold. The

question then arises: Which variable v appearing in m1 should be used in constructing

the query bw index(v,deg(m1))? When looking for targets of m1 + q, we can do the

following:

• Choose a variable v in m1 that minimises

| bw index(v, deg(m1)) |

w.r.t. all other variables in m1. That is, v is selected so that there is no other
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variable v� in m1 s.t.

| bw index(v�, deg(m1)) | < | bw index(v, deg(m1)) |.

This choosing of a variable v which minimises the number of candidate targets

returned by the index can be done cheaply by keeping a counter, num occs(v,n),

which keeps track of how many polynomials appear in the set bw index(v,n) for each

v appearing in any monomial in any polynomial in G, and for each n ranging from 1 to

the maximal total multivariate degree among all monomials appearing in polynomials

in G. We do precisely this. This counter is updated for each variable appearing in each

monomial of a polynomial p whenever p is added to G (i.e., each time the Abstract GB

rule Orient is invoked).

Finally, it is worth mentioning why our indexing techniques can be so much simpler

than those considered in automated theorem proving (e.g., those based on substitution

trees [Gra95]), yet still effective (cf. Section 5.3). This is because our terms are

always shallow and ground. Importantly, we never have to deal with unification, nor

with terms which are anything except monomials or polynomials in sparse sum-of-

monomials normal form.

5.2.3 Algorithm Correctness

Let us now use the theory of Abstract GBs to prove the correctness of OTTER-GB and

DISCOUNT-GB.

Theorem 5.2.2. OTTER-GB and DISCOUNT-GB are terminating, functionally correct

GB algorithms.

Proof. By admissibility of the superfluous S-polynomial criteria, term indexing may

be ignored. By the definition of polynomial ideal, if (G∪ S)∩ (Q \ {0}) �= /0 then

I(G∪ S) = Q[�x]. Hence {1} is a Gröbner basis for I(G∪ S) w.r.t. any ≺ and the

setting of G to {1} (and subsequent termination of the loop through the setting of

S to /0) leads to correct behaviour. By Theorem 3.2.8, correctness is guaranteed if

the procedures are fair, implement eager S-simplification, and Superpose is applied

at most once between any two polynomials. The latter two properties are obvious.

To observe fairness, we show SP(
�

i≥1
�

j≥i G j) ⊆
�

i≥1 Si. Suppose not. Then, there

must be some persistent pair p1, p2 ∈
�

i≥1
�

j≥i G j s.t. spol(p1, p2) �∈
�

i≥1 Si. WLOG,

assume p1 ∈
�

j≥k1 G j and p2 ∈
�

j≥k2 G j s.t. (k2 > k1) and let k1,k2 be the least indices
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with this property. Then Simplify-H and Simplify-T must not have been used to simplify

p1, p2 beyond states k1,k2 resp., as this would violate persistence. Consider the pass

of either loop in which the Orient step corresponding to state k2 occurs. Since p1 is

also persistent in G beyond state k2, it follows that in such a pass Superpose must have

been applied between p1 and p2, or Superpose must have been skipped because it had

been previously applied to p1, p2. In either case we have spol(p1, p2) ∈
�

i≥1 Si.

5.3 Experimental Results

To evaluate our implementation, we created sets of random benchmarks with 4 kinds

of polynomials: (a) identity polynomials of form x− y, (b) difference polynomials of

form x− y+ k where k is an integer constant, (c) general linear polynomials, and (d)

general polynomials. We experimented with two distributions of these kinds, a mostly-

lin distribution with 40%, 50%, 5%, 5% of the four kinds, which reflects distributions

of L3 problems we see in practice, and a non-lin distribution with 100% of kind (d).

Our results are summarised in Table 5.1. Each row but the last shows the results

for 10 benchmarks with #Polys polynomials in #Vars variables. The last row shows

results with 4 hard algebro-geometric benchmark problems which have been used to

demonstrate the value of the F4 algorithm. The discount and otter columns are for our

two implementations, and the other three are for Gröbner basis algorithms available

in Maple 13: the m-fgb column is for a compiled implementation of the F4 algorithm

written by J.C. Faugère, the m-f4 column is for a Maple re-implementation of F4,

and the m-buchb column for the traditional Maple implementation of Buchberger’s

Algorithm. Each of the entries in a column has 3 components: the number in the #i

sub-column is the number of problems where the computed Gröbner basis is {1}, i.e.

the set of polynomial equations is inconsistent, the 2nd number in the avtm sub-column

is the average run-time in seconds for those problems on which tests halted in under 10

seconds, and the number in parentheses is the number of tests which halted in under

10 seconds. If the runs of all problems were over 10 seconds, the 2nd and 3rd numbers

are replaced by TO for time-out.

As expected, as the ratio of polynomials to variables increases, we get more con-

strained systems and more definitely inconsistent problems. With the mostly-linear

problems, as problem size increases, we see our procedures perform significantly bet-

ter than those in Maple. One reason for this is that algorithms based on the principles

of Buchberger’s Algorithm, which includes F4, classically have a quadratic prepro-
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cessing step of computing all initial pairs of non-identical polynomials of the input

basis, whereas our algorithms do not require this for correctness.

We see with the general non-linear random problems the Maple algorithms are

usually better, and, with the hard algebro-geometric problems, the Maple algorithms

are far superior.

5.4 Future Work

We see one immediate way in which these algorithms may be improved. This involves

the mapping of Criterion 2 in Chapter 3 into an appropriate modification of our term

indexing routines for Superpose. While this would likely not drastically affect per-

formance on L3 systems, it seems plausible that this would be a boon in practice for

computing with large systems of polynomials which have a higher nonlinear compo-

nent than those currently amenable to our methods.

5.5 Conclusion

We have leveraged work within the automated theorem proving community to aid the

extension of core computer algebra techniques to a challenging new type of problem.

In particular, we have designed, implemented, and evaluated new Gröbner basis con-

struction algorithms based on a combination of the OTTER and DISCOUNT satura-

tion loops and term indexing techniques derived from both high-performance theorem

proving and superfluous S-polynomial criteria in Gröbner basis theory. These pro-

cedures have been observed to significantly outperform previously available Gröbner

basis algorithms for large, largely linear (L3) nonlinear systems. While proving these

new algorithms correct was nontrivial, it became easy given the theory of Abstract

Gröbner Bases. We see this work as an exciting cross-pollination between core tech-

niques of the theorem proving and computer algebra communities, and look forward

to furthering this natural symbiosis.



Chapter 6

Combined Decision Techniques for

Fragments of RCF

6.1 Introduction

In this chapter, we begin investigating a practically-minded approach to deciding classes

of high-dimensional (many-variable) sentences in the ∃ fragment of RCF. One aspect

of our pragmatic focus will be an interest in developing sound but incomplete proof

procedures which are effective for (and, in fact, can be tailored to) classes of problems

arising in practical verification applications. We will work to build up a heterogeneous

arsenal of ∃ RCF proof procedures, each with their own strengths and weaknesses,

which may be easily combined with each other. The goal is to ease the building of spe-

cialised ∃RCF proof procedures which heuristically combine different techniques in a

way which allows the combined procedure to outperform the individual methods when

they are used in isolation, at least w.r.t. some specific problem classes of interest. This

will culminate in a principled framework for building and applying such combined

proof procedures realised in our tool RAHD in Chapter 8.

In addition, we will be especially interested in manners in which scalable sound

but incomplete procedures can be used to enhance the practical efficacy of sound and

complete methods such as cylindrical algebraic decomposition (CAD) by, for instance,

recognising when certain expensive computations can be avoided. This goal will be

realised in Chapter 7 when we present the framework of Abstract Partial CAD. All

of the techniques we describe have been implemented in our tool RAHD which will

be presented in Chapter 8. In what follows, we shall freely quote text written in the

99
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introduction (Chapter 1) when we believe it will help the reader.

§

In attempting to make real algebraic decision methods scale to high-dimensional

settings, we are faced with what seems to be a rather insurmountable obstacle: the full

first-order theory of RCF has infeasible complexity, and there are currently no known

complete methods for the ∃ fragment of RCF which seem to fare better in practice than

full RCF quantifier elimination. As if this were not enough, the complexities of known

RCF and ∃ RCF decision methods are dependent primarily upon the dimension of their

input formulas. In this regard, scaling RCF decision methods to high-dimensional

settings seems utterly hopeless. Let us recall the following results from Chapter 1:

Theorem 6.1.1 (Davenport-Heinz). There are families of n-dimensional RCF formulas

of length O(n) whose only quantifier-free equivalences must contain polynomials of

degree 22Ω(n)
and of length 22Ω(n)

.

Theorem 6.1.2 (Grigor’ev-Vorobjov). The ∃ fragment of RCF can be solved in time

singly exponential in dimension.

Even the apparent good news found in this final result — that the ∃ fragment of

RCF has an exponential speed-up over the full first-order theory — is misleading in

a practical sense. Analysis by Hong [Hon91] suggests that known singly-exponential

algorithms for ∃ RCF will perform much worse1 than even full first-order quantifier

elimination algorithms such as cylindrical algebraic decomposition for all but astro-

nomically large input formulas. Yet, there is no denying the fact that applying a full

quantifier elimination algorithm to decide the unsatisfiability (i.e., falsity over R) of a

formula such as

∃x1, . . . ,x100(x1 ∗ x1 + . . .+ x100 ∗ x100 < 0)

is an obvious misappropriation of computational (and temporal) resources. While an

example such as this may seem contrived, consider the fact that when an RCF deci-

sion method is used in the context of formal verification efforts, it is often fed huge
1There is a very recent development showing promise in the other direction: Galen Huntington’s

beautiful 2008 Berkeley PhD thesis, “Towards an efficient decision procedure for the existential theory
of the reals,” has shown that Canny’s singly exponential decision method for ∃ RCF, a procedure not
considered by Hong in his analysis (Hong’s analysis was in 1991, and Canny’s method was first fully
published in 1993 [Can93]), can in fact be implemented and made to solve a number of very small
(bivariate, quadratic) examples. While a practical implementation of Canny’s method is still a long
way off, this work leaves one with a compelling optimism towards the possibility that, in contrast to
Hong’s conclusions in 1991, practically useful singly exponential decision procedures for ∃ RCF may
eventually be realised.
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collections of machine-generated formulas which may very well be (un)satisfiable for

extremely simple reasons. In addition, problems arising from a particular application

domain often share similar structure which traditional general methods will fail to ex-

ploit. We have observed these phenomena first-hand with many of the applications

users have made of our RAHD tool. Thus, it seems advantageous to investigate al-

gorithmic proof methods which attempt to make “easy decisions” quickly. And when

such easy decisions fail, it will be desirable if the computations undertaken in attempt-

ing them could contribute to lessening the workload required of more heavy-weight

analysis procedures which may be subsequently applied. Finally, if one knows in ad-

vance that a large collection of “similar” problems will be encountered, it would be

desirable to provide mechanisms for specialising the approach of the proof procedure

to exploit structural aspects of the formula class whenever possible. These concerns

give rise to a particular combined approach to developing practical proof procedures

for ∃ RCF. Let us discuss this in a bit more depth.

6.1.1 Our Approach

At the highest level, we would like proof procedures for ∃ RCF which

• scale to problems of realistic size (especially in many variables),

• are customisable for classes of problems with similar structure.

In working to accomplish this, we are faced with a rather wonderful difficulty:

there are many different approaches to making RCF decisions, each with their own

strengths and weaknesses. These include

• quantifier elimination by Muchnik sign matrices [Sch04, MO02],

• quantifier elimination by Cohen-Hörmander sign matrices [MH05],

• quantifier elimination by partial cylindrical algebraic decomposition [Bro04],

• quantifier elimination by virtual term substitution [Wei97],

• Positivstellensatz witness search by the Tiwari method [Tiw05a],

• Positivstellensatz witness search by semidefinite programming [Har07],

• interval constraint propagation and related methods [GB06, FHR+07, Neu90,

Rat06],
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• connected component sampling by Basu-Pollock-Roy PSPACE methods [BPR06],

• techniques based on complex triangulation for zero-dimensional systems [CMXY09],

• Nelson-Oppen-like “distributivity-free” combinations of separate decision pro-

cedures for the additive and multiplicative fragments [AF06],

• and many others.

We wish to take advantage of this vast variety of powerful (semi-)decision methods.

Our general programme then has been to do roughly as follows:

1. Study deeply, implement, and experiment with a number of different approaches

to making ∃ RCF decisions.

2. Develop new variants of these decision methods by devising methods to effec-

tively combine them in compelling ways. Such combinations are compelling,

for instance, if with them it possible to decide sentences outside of the practical

reach of the individual decision methods when they are used in isolation.

3. Build a tool which incorporates the most compelling decision methods we have

investigated thus far and provides a framework for developing, investigating and

applying new combinational methods.

This programme has resulted both in a number of novel combined decision meth-

ods and in a principled approach (based upon a proof strategy language) for facilitating

the arbitrary combination of a heterogeneous collection of RCF decision techniques in

a working tool.

6.1.2 Our Contribution

The main contribution of this chapter is to show how a heterogeneous collection of real

algebraic proof procedures may be compellingly combined in novel ways. These novel

combinations will be most interestingly illustrated in the context of our framework of

Abstract Partial Cylindrical Algebraic Decomposition (AP-CAD), which gives rise to

a family of combined ∃ RCF proof procedures, each parameterised by a particular

proof strategy (e.g., a sound but possibly incomplete ∃ RCF (semi-)decision method)

for short-circuiting expensive computations during the construction of CAD cell trees.
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We will present the framework of AP-CAD in Chapter 7. The purpose of the

present chapter is to present a large collection of ∃ RCF proof procedures which can

be combined in compelling ways. All of the methods given in this chapter have been

implemented in our RAHD tool, and a proof strategy language is provided in RAHD
allowing users to synthesise their own combinations of the methods we present. By the

end of this chapter and the next one on AP-CAD, we will have presented the mathe-

matics behind the most challenging atomic proof procedures available in RAHD. This

will free us up to focus mostly on a user-oriented tool description and experimental

evaluation in Chapter 8.

6.2 Simple Exact Interval Constraint Propagation

Interval constraint propagation (ICP) is a powerful technique for reasoning about non-

linear algebraic constraints. As a decision method for deciding the satisfiability of

polynomial constraints over the real numbers, it is unsound: ICP may fail to recognise

the unsatisfiability of a polynomial constraint system and return a non-empty interval

box for each variable when in fact no point satisfying the constraint system exists.

Nevertheless, as a reasoning mechanism which can contribute to real algebraic

decisions, both on its own and in the context of other procedures, it is versatile and

powerful. Moreover, if an ICP analysis deduces that a constraint system is unsatisfi-

able, then there is a soundness criterion which guarantees that this is indeed the case.

This criterion guarantees in fact a stronger property: if a constraint system is satisfi-

able, then the intervals computed for each variable by ICP are guaranteed to contain a

solution. One must simply take care to only use ICP in a sound way.

6.2.1 Related work

ICP methods have been used heavily in the context of nonlinear real arithmetic. For ex-

ample, the SMT solver iSAT [FHR+07] insightfully exploits an intimate relationship

between ICP methods and DPLL-based SAT solving to interleave ICP and proposi-

tional reasoning to decide difficult classes of ∃ RCF sentences with complex boolean

structure. From a different perspective, Ratschan has developed powerful methods for

using ICP in the context of quantifier elimination for so-called robust formulas which

often arise in physically-oriented hybrid systems [Rat06]. There are many other exam-

ples of applications of ICP to nonlinear constraint solving. It is an immensely rich and
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very active research area filled with sophisticated techniques far beyond the scope of

this thesis.

6.2.2 Intuition and Difficulties

In its simplest form, one begins an ICP analysis by assigning every variable v in an al-

gebraic constraint system ϕ a compact interval with rational endpoints Bv ⊂R, and then

proceeds to apply interval contractors or narrowing operators which use the atomic

constraints to refine the interval boxes until a fixed point is reached. Such contraction

is often applied in the context of a branch-and-prune loop, in which non-empty inter-

vals are split into a finite covering and ICP is applied recursively upon the subintervals

[HMK97] [BG06]. Two very attractive aspects of ICP are

• by over-approximating interval boxes during contraction steps, fast machine

floating-point arithmetic may be used, and

• interval contractors have been developed which allow one to reason about alge-

braic constraints involving transcendental and other special functions.

One shortcoming of ICP methods is that sign determinations are often inconclusive.

Particular difficulty is encountered when terms are expanded sums of squares. For

example, given the constraint

x1 ≥ x2
2 −2x2 +1,

classical ICP methods will fail to deduce (x1 ≥ 0). This is because ICP methods do

not in general fully take into account correlations between the values of expressions,

even at times correlations between the same variable symbol. Things get very diffi-

cult when expressions bound within the same interval appear multiple times in compli-

cated expressions; this gives rise to the deep “dependency problem” in interval analysis

[Krä06]. In addition, computed interval boxes are often highly dependent upon the rep-

resentation of a polynomial: using Horner versus sum-of-monomials normal form can

make a significant difference in the accuracy of computed boxes [CG02]. Similarly,

contraction upon a constraint whose polynomials are fully factored into irreducibles

may result in radically different boxes than contraction upon the same constraint with

the polynomial in a different form. That is to say, ICP techniques must often be aug-

mented with other reasoning mechanisms to be effective in practice.
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One way we attempt to alleviate these shortcomings in our tool RAHD is by com-

bining ICP techniques with many other RCF inference mechanisms. For instance, one

simple mechanism in RAHD will recognise if a polynomial is in fact a sum of square

monomials, and in that case will derive an additional constraint stating that the poly-

nomial is non-negative. Such derived facts can then help the ICP procedure constrain

terms within tighter intervals down the line. When reading this section, it is good to

keep in mind that the ICP techniques presented will be later combined with many other

RCF techniques in this way.

Let us now proceed to present an exact ICP calculus for generalised intervals with

rational and infinite endpoints and open and closed boundaries. This ICP calculus uses

a standard underlying arithmetic of generalised intervals equivalent to that presented

by Hickey, Ju, and van Enden in [HJVE01], with a restriction of the interval endpoint

values to Q∪ {-∞,+∞}. We will discuss popular ICP techniques which can be used

with this generalised interval arithmetic when specialised types of problems arise (e.g.,

for those in which every variable has been bound within a compact interval). These

techniques are powerful and well-known. In addition, we will present a simple interval

contraction calculus designed to work for arbitrary ∃ RCF formulas in which variables,

for instance, may have no explicit bounds given. Once we have described this ICP

calculus, we will then proceed to exploit it in the context of other real algebraic (semi-

)decision procedures in the sections that follow.

6.2.3 An ICP Calculus for Generalised Intervals

We will present an ICP calculus for reasoning about real polynomial constraints with

respect to generalised intervals with open or closed boundary types and rational or

infinite endpoints. This is due to the fact that ∃ RCF sentences we wish to reason

about will not be required to provide explicit compact interval bounds upon all of their

variables.

As reasoning about generalised interval arithmetic operations is rather technically

involved, requiring numerous case-splits depending upon

• the signs and finiteness of endpoints, and

• the open, closed, left-open-right-closed or left-closed-right-open boundary types

of the intervals involved, we have formally verified most of the interval machinery

below within the ACL2 theorem prover [KMM00]. This formal verification has been
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done not only with respect to this interval calculus itself, but with respect to the actual

implementation of it within our tool RAHD. When we state a result which has been

formally verified in this way, we will reference the name the theorem has been given

within our accompanying ACL2 proof script. Instructions on how to obtain and replay

this proof script may be found in Appendix A.

We begin by defining arithmetic operations upon E = Q∪ {-∞,+∞}, which is the

set of interval endpoints we will consider. These operations will be defined so that

some particular applications of them may result in an ⊥, an error. It will be clear that

in the context of the exposed ICP operations upon intervals, such errors will never

arise.

η(-∞) = +∞.

η(+∞) = -∞.

e1 +E e2 =






e1 + e2 if e1,e2 ∈Q,

e2 if e1 ∈Q ∧ e2 ∈ {-∞,+∞},

e1 if e2 ∈Q ∧ e1 ∈ {-∞,+∞},

e1 if e1,e2 ∈ {-∞,+∞}∧ e1 = e2,

⊥ otherwise.

Observe that subtraction between non-identical infinities is allowed and defined in

a rather counterintuitive fashion below. That this strange arithmetic is only used in a

correct way will be clear from the definition of subtraction between intervals, given

shortly.

e1 −E e2 =






e1 − e2 if e1,e2 ∈Q,

η(e2) if e1 ∈Q ∧ e2 ∈ {-∞,+∞},

e1 if e1 ∈ {-∞,+∞} ∧ e2 ∈Q,

-∞ if e1 = -∞ ∧ e2 = +∞,

+∞ if e1 = +∞ ∧ e2 = -∞,

⊥ otherwise.
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e1 ∗E e2 =






e1 ∗ e2 if e1,e2 ∈Q,

⊥ if e1 ∈ {-∞,+∞} ∧ e2 = 0,

⊥ if e2 ∈ {-∞,+∞} ∧ e1 = 0,

e1 if e1 ∈ {-∞,+∞} ∧ e2 ∈Q ∧ e2 > 0,

η(e1) if e1 ∈ {-∞,+∞} ∧ e2 ∈Q ∧ e2 < 0,

e2 if e2 ∈ {-∞,+∞} ∧ e1 ∈Q ∧ e1 > 0,

η(e2) if e2 ∈ {-∞,+∞} ∧ e1 ∈Q ∧ e1 < 0,

+∞ if e1,e2 ∈ {-∞,+∞} ∧ e1 = e2,

-∞ if e1,e2 ∈ {-∞,+∞} ∧ e1 �= e2.

We will also need some basic (in)equality relations upon E .

e1 ≤E e2 =






true if e1,e2 ∈Q ∧ e1 ≤ e2,

true if e1 = -∞,

true if e2 = +∞,

false otherwise.

(e1 <E e2) = (e1 �= e2 ∧ e1 ≤E e2).

(e1 >E e2) = (e2 <E e1).

(e1 ≥E e2) = (e2 ≤E e1).

(e1 =E e2) = (e1 ≤E e2 ∧ e1 ≥E e2) = (e1 = e2).

With arithmetic and simple relations upon interval endpoints now defined, let us

first define our intervals as formal objects and then build an arithmetic upon them.

Definition 6.2.1 (Formal Interval). Formally, an interval will be a 4-tuple

�bl, l,r,br� ∈ {‘[’, ‘]’}×E×E×{‘[’, ‘]’}.

We will write IF to denote the collection of formal intervals.



108 Chapter 6. Combined Decision Techniques for Fragments of RCF

A formal interval corresponds to a connected component of the real line, through the

notion of an interval realiser.

Definition 6.2.2 (Interval Realiser). Given a formal interval i = �bl, l,r,br� ∈ IF , the

realisation of i, R(i), is defined as follows:

R(i) =






{x ∈ R | l ≤ x ≤ r} if l,r ∈Q ∧ bl = ‘[’ ∧ br = ‘]’,

{x ∈ R | l < x ≤ r} if l,r ∈Q ∧ bl = ‘]’ ∧ br = ‘]’,

{x ∈ R | l < x < r} if l,r ∈Q ∧ bl = ‘]’ ∧ br = ‘[’,

{x ∈ R | l ≤ x < r} if l,r ∈Q ∧ bl = ‘[’ ∧ br = ‘[’,

{x ∈ R | x < r} if l = -∞ ∧ r ∈Q ∧ br = ‘[’,

{x ∈ R | x ≤ r} if l = -∞ ∧ r ∈Q ∧ br = ‘]’,

{x ∈ R | l < x} if r = +∞ ∧ l ∈Q ∧ bl = ‘]’,

{x ∈ R | l ≤ x} if r = +∞ ∧ l ∈Q ∧ bl = ‘[’,

R if l = -∞ ∧ r = +∞,

/0 otherwise.

Note that for convenience, we allow -∞ and +∞ to be endpoints of closed boundary

types, with the exact same semantics as if their corresponding boundary types were

open. For example,

R(�‘[’, -∞,+∞, ‘]’�) =R(�‘]’, -∞,+∞, ‘[’�) = R.

A crucial use of our interval calculus will be to determine the emptiness of intervals.

That is, given an interval i ∈ IF , we will want a simple check for deciding if R(i) = /0.

If an interval for a term in a constraint system is determined to be empty in the context

of ICP, then this will result in a judgment of unsatisfiability for the constraint system

considered. We will use Θ(i) as the emptiness predicate for formal intervals.

Θ(�bl, l,r,br�)=






true if (bl = ‘[’ ∧ br = ‘]’) ∧ ((l > r) ∨ (l = +∞) ∨ (r = -∞)) ,

true if ¬(bl = ‘[’ ∧ br = ‘]’) ∧ ((l ≥ r) ∨ (l = +∞) ∨ (r = -∞)),

false otherwise.

The following lemma relates realisability and formal emptiness.
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Lemma 6.2.3 (Correctness of interval emptiness).

∀i ∈ IF (R(i) = /0 ⇐⇒ Θ(i) = true) .

Proof. ACL2 proof script theorem name: I-EMPTY-CORRECT.

Let us now build a simple arithmetic upon formal intervals. Correctness of these

operations will be expressed in terms of interval realisation. For example, the correct-

ness criterion for interval addition (+IF ) will be as follows:

∀x,y ∈ R ∀i1, i2 ∈ IF (x ∈R(i1) ∧ y ∈R(i2) =⇒ x+ y ∈R(i1 +IF i2)) .

We use ∆ to denote a canonical empty formal interval such as �‘[’,1,0, ‘]’�. We

shall also want some simple selector functions to aid in computing the boundary types

of intervals resulting from interval arithmetic operations.

Ξl(b) =





‘[’ if b = true,

‘]’ otherwise.

Ξr(b) =





‘]’ if b = true,

‘[’ otherwise.

In the arithmetical definitions that follow, let

i1 = �b1,l, l1,r1,b1,r� and i2 = �b2,l, l2,r2,b2,r�.

First, we define interval addition.

i1 +IF i2 =






∆ if Θ(i1) ∨ Θ(i2),

�bl, l1 +E l2,r1 +E r2,br� where bl = Ξl(b1,l = ‘[’ ∧ b2,l = ‘[’)

and br = Ξr(b1,r = ‘]’ ∧ b2,r = ‘]’).

Lemma 6.2.4 (Correctness of interval addition).

∀x,y ∈ R ∀i1, i2 ∈ IF (x ∈R(i1) ∧ y ∈R(i2) =⇒ x+ y ∈R(i1 +IF i2)) .

Proof. ACL2 proof script theorem name: I-+-CORRECT.
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Next, subtraction. Observe how this definition makes sense of the strange subtrac-

tion between opposite infinities in E which we defined via (−E) above.

i1 −IF i2 =






∆ if Θ(i1) ∨ Θ(i2),

�bl, l,r,br� where bl = Ξl(b1,l = ‘[’ ∧ b2,r = ‘]’)

and br = Ξr(b1,r = ‘]’ ∧ b2,l = ‘[’),

and l =





l1 −E r2 if (l1 −E r2) ∈Q,

-∞ if (l1 −E r2) ∈ {-∞,+∞}

and r =





r1 −E l2 if (r1 −E l2) ∈Q,

+∞ if (r1 −E l2) ∈ {-∞,+∞}.

Lemma 6.2.5 (Correctness of interval subtraction).

∀x,y ∈ R ∀i1, i2 ∈ IF (x ∈R(i1) ∧ y ∈R(i2) =⇒ x− y ∈R(i1 −IF i2)) .

Proof. ACL2 proof script theorem name: I---CORRECT.

Finally, we come to interval multiplication. This is the most challenging of the

arithmetical operations we consider, and we will proceed by first defining a number of

auxiliary operations which contribute to it. Before we do so, however, let us discuss

intuitively what this operation must accomplish.

As with the previous interval arithmetic operations, there are two parts to the com-

putation of the product of generalised intervals:

1. the computation of interval endpoints, which will take values in E , and

2. the determination of interval boundary types, which will result in an interval

which is either

• closed (�‘[’,−,−, ‘]’�),

• open (�‘]’,−,−, ‘[’�),

• left-open-right-closed (�‘]’,−,−, ‘]’�), or

• left-closed-right-open (�‘[’,−,−, ‘[’�).

For interval products, the computation of the interval endpoint values in E is straight-

forward when each endpoint is rational: Given i1 = �b1,l, l1,r1,b1,r� and i2 = �b2,l, l2,r2,b2,r�
with l1,r1, l2,r2 ∈Q, the product i1 ∗IF i2 should be of the form
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�bl,min(l1 ∗ l2, l1 ∗ r2,r1 ∗ l2,r1 ∗ r2),max(l1 ∗ l2, l1 ∗ r2,r1 ∗ l2,r1 ∗ r2),br�.

Extending this to the case of arbitrary endpoints in E requires some care, as (0 ∗E
±∞) is undefined and must be avoided. Following [HJVE01], we will introduce a

classification of interval types below to handle this. Once the computation of the re-

sulting interval endpoint values is complete, we will then present the machinery for

determining the resulting boundary types bl and br.

Definition 6.2.6 (Interval classification). Given a non-empty formal interval i= �bl, l,r,br�
(i.e., R(i) �= /0), the interval classification of i,

C(i) : IF → {M,Z,P,N},

will be determined by the signs of the numbers contained in the closure of the realisa-

tion of i, R(�‘[’, l,r, ‘]’�). The four possible values of C(i) will stand for Mixed, Zero,

Positive and Negative.

C(i) =






M if (l <E 0 <E r),

Z if (l =E 0 =E r),

P if (0 ≤E l ≤E r) ∧ (r >E 0),

N if (l ≤E r ≤E 0) ∧ (l <E 0).

Given this classification, we can determine the left and right endpoint values of the

product of two non-empty generalised intervals

i1 = �b1,l, l1,r1,b1,r� and i2 = �b2,l, l2,r2,b2,r�

using the following two functions.
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V∏
l (i1, i2) =






l1 ∗E l2 if C(i1) = P ∧ C(i2) = P,

r1 ∗E l2 if C(i1) = P ∧ C(i2) = M,

r1 ∗E l2 if C(i1) = P ∧ C(i2) = N,

l1 ∗E r2 if C(i1) = M ∧ C(i2) = P,

min(l1 ∗E r2,r1 ∗E l2) if C(i1) = M ∧ C(i2) = M,

r1 ∗E l2 if C(i1) = M ∧ C(i2) = N,

l1 ∗E r2 if C(i1) = N ∧ C(i2) = P,

l1 ∗E r2 if C(i1) = N ∧ C(i2) = M,

r1 ∗E r2 if C(i1) = N ∧ C(i2) = N,

0 if C(i1) = Z ∨ C(i2) = Z.

V∏
r (i1, i2) =






r1 ∗E r2 if C(i1) = P ∧ C(i2) = P,

r1 ∗E r2 if C(i1) = P ∧ C(i2) = M,

l1 ∗E r2 if C(i1) = P ∧ C(i2) = N,

r1 ∗E r2 if C(i1) = M ∧ C(i2) = P,

max(l1 ∗E l2,r1 ∗E r2) if C(i1) = M ∧ C(i2) = M,

l1 ∗E l2 if C(i1) = M ∧ C(i2) = N,

r1 ∗E l2 if C(i1) = N ∧ C(i2) = P,

l1 ∗E l2 if C(i1) = N ∧ C(i2) = M,

l1 ∗E l2 if C(i1) = N ∧ C(i2) = N,

0 if C(i1) = Z ∨ C(i2) = Z.

Lemma 6.2.7 (Correctness of product endpoint values).

∀x,y∈R ∀i1, i2 ∈ IF

�
x ∈R(i1) ∧ y ∈R(i2) =⇒ x∗ y ∈R(�‘[’,V∏

l (i1, i2),V∏
r (i1, i2), ‘]’�)

�
.

Proof. This follows directly from Theorem 6 of [HJVE01].

We now turn our attention to determining the boundary types of products of non-

empty generalised intervals. In doing so, we will make use of the following boolean

function

Ω : E×E×{true, false}×{true, false}→ {true, false}
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which will be used to determine whether the product boundary types bl and br should

be closed (true) or open (false).

Ω(vl,vr,α,γ) = (α∧ γ) ∨ (α∧ (vl = 0)) ∨ (γ∧ (vr = 0)).

It will be convenient to define the inverses of Ξl and Ξr.

ϒl(b) =





true if b = ‘[’,

false otherwise.

ϒr(b) =





true if b = ‘]’,

false otherwise.

Now, using the interval classification as above, we will define the following two

functions for determining the left and right boundary types of a product of non-empty

generalised intervals

i1 = �b1,l, l1,r1,b1,r� and i2 = �b2,l, l2,r2,b2,r�.
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CL∏
l (i1, i2) =






Ω(l1, l2,ϒl(b1,l),ϒl(b2,l)) if C(i1) = P ∧ C(i2) = P,

Ω(r1, l2,ϒr(b1,r),ϒl(b2,l)) if C(i1) = P ∧ C(i2) = M,

Ω(r1, l2,ϒr(b1,r),ϒl(b2,l)) if C(i1) = P ∧ C(i2) = N,

Ω(l1,r2,ϒl(b1,l),ϒr(b2,r)) if C(i1) = M ∧ C(i2) = P,

Ω(l1,r2,ϒl(b1,l),ϒr(b2,r)) if C(i1) = M ∧ C(i2) = M

∧ (l1 ∗E r2 <E r1 ∗E l2),

Ω(l1,r2,ϒl(b1,l),ϒr(b2,r)) if C(i1) = M ∧ C(i2) = M

∨ Ω(r1, l2,ϒr(b1,r),ϒl(b2,l)) ∧ (l1 ∗E r2 =E r1 ∗E l2),

Ω(r1, l2,ϒr(b1,r),ϒl(b2,l)) if C(i1) = M ∧ C(i2) = M

∧ (l1 ∗E r2 >E r1 ∗E l2),

Ω(r1, l2,ϒr(b1,r),ϒl(b2,l)) if C(i1) = M ∧ C(i2) = N,

Ω(l1,r2,ϒl(b1,l),ϒr(b2,r)) if C(i1) = N ∧ C(i2) = P,

Ω(l1,r2,ϒl(b1,l),ϒr(b2,r)) if C(i1) = N ∧ C(i2) = M,

Ω(r1,r2,ϒr(b1,r),ϒr(b2,r)) if C(i1) = N ∧ C(i2) = N,

true if C(i1) = Z ∨ C(i2) = Z.
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CL∏
r (i1, i2) =






Ω(r1,r2,ϒr(b1,r),ϒr(b2,r)) if C(i1) = P ∧ C(i2) = P,

Ω(r1,r2,ϒr(b1,r),ϒr(b2,r)) if C(i1) = P ∧ C(i2) = M,

Ω(l1,r2,ϒl(b1,l),ϒr(b2,r)) if C(i1) = P ∧ C(i2) = N,

Ω(r1,r2,ϒr(b1,r),ϒr(b2,r)) if C(i1) = M ∧ C(i2) = P,

Ω(r1,r2,ϒr(b1,r),ϒr(b2,r)) if C(i1) = M ∧ C(i2) = M

∧ (l1 ∗E l2 <E r1 ∗E r2),

Ω(r1,r2,ϒr(b1,r),ϒr(b2,r)) if C(i1) = M ∧ C(i2) = M

∨ Ω(l1, l2,ϒl(b1,l),ϒl(b2,l)) ∧ (l1 ∗E l2 =E r1 ∗E r2),

Ω(l1, l2,ϒl(b1,l),ϒl(b2,l)) if C(i1) = M ∧ C(i2) = M

∧ (l1 ∗E l2 >E r1 ∗E r2),

Ω(l1, l2,ϒl(b1,l),ϒl(b2,l)) if C(i1) = M ∧ C(i2) = N,

Ω(r1, l2,ϒr(b1,r),ϒl(b2,l)) if C(i1) = N ∧ C(i2) = P,

Ω(l1, l2,ϒl(b1,l),ϒl(b2,l)) if C(i1) = N ∧ C(i2) = M,

Ω(l1, l2,ϒl(b1,l),ϒl(b2,l)) if C(i1) = N ∧ C(i2) = N,

true if C(i1) = Z ∨ C(i2) = Z.

At last, we are ready to define interval multiplication.

i1∗IF i2 =





∆ if Θ(i1) ∨ Θ(i2),

�Ξl(CL∏
l (i1, i2)),V

∏
l (i1, i2),V∏

r (i1, i2),Ξr(CL∏
r (i1, i2))� otherwise.

Lemma 6.2.8 (Correctness of interval multiplication).

∀x,y ∈ R ∀i1, i2 ∈ IF (x ∈R(i1) ∧ y ∈R(i2) =⇒ x∗ y ∈R(i1 ∗IF i2)) .

Proof. This follows directly from Theorem 14 of [HJVE01].

Finally, when using the above interval arithmetic in the context of ICP, the set-

theoretic intersection of two intervals will play an important role. As with interval

multiplication, we define two functions which will be used to determine the closure

status of the left and right boundary types of interval intersections.
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CL∩
l (i1, i2) =






ϒl(b1,l) if l1 >E l2,

ϒl(b2,l) if l1 <E l2,

ϒl(b1,l)∧ϒl(b2,1) otherwise.

CL∩
r (i1, i2) =






ϒr(b1,r) if r1 <E r2,

ϒr(b2,r) if r1 >E r2,

ϒr(b1,r)∧ϒr(b2,r) otherwise.

Then, interval intersection is defined as follows.

i1∩IF i2 =






∆ if Θ(i1)∨Θ(i2),

∆ if (¬(l1 ≤E l2 ∧ l2 ≤E r1) ∧ ¬(l2 ≤E l1 ∧ l1 ≤E r2)) ,

�Ξl(CL∩
l (i1, i2)),

max(l1, l2),

min(r1,r2), otherwise.

Ξr(CL∩
r (i1, i2))�

Lemma 6.2.9 (Correctness of interval intersection).

∀x ∈ R ∀i1, i2 ∈ IF (x ∈R(i1) ∧ x ∈R(i2) ⇐⇒ x ∈R(i1 ∩IF i2)) .

Proof. ACL2 proof script theorem name: I-INTERSECT-CORRECT.

6.2.3.1 Simple Generalised Interval Contraction

Armed with the above machinery for performing arithmetic upon generalised intervals,

we now turn our focus to how such arithmetic can be applied in the context of making

real algebraic decisions. The general approach we follow is known as interval con-

straint propagation (ICP). ICP combines real solution space analysis techniques based

upon interval arithmetic (often referred to as interval analysis) with search-space ex-

ploration techniques adopted from constraint programming. From a very high level,

given a conjunctive ∃ RCF formula ϕ, ICP proceeds as follows:
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1. A collection of terms t1, . . . , tk (usually the variables appearing in ϕ) are asso-

ciated with intervals I1, . . . , Ik (usually compact) and the interval containment

assumptions ti ∈ Ii are asserted.

2. The conjuncts of ϕ and the interval containment assumptions ti ∈ Ii are used

by interval contractors (also known as narrowing operators) to refine the inter-

vals Ii known to contain each ti. This application of interval contractors to the

conjuncts of ϕ may include the derivation of additional facts which help tighten

intervals, e.g., if ϕ contains a zero-dimensional polynomial system, then the vari-

ables appearing in these equations may be solved for during narrowing, and so

on.

ICP can be naturally seen as a search problem: Given ϕ as above, one is searching

the space of interval contexts for a “minimal” — up to a specified threshold — associa-

tion of terms (usually variables) of ϕ with containing intervals. Since the development

of the influential Newton system [HMK97], much work on ICP has centered around

a constraint processing loop known as branch-and-prune. This loop performs global

search by dividing the search space into subregions and examining them recursively.

The branch-and-prune process is parameterised by two key pieces: a consistency

criterion (“does the current region contain a point satisfying the input problem?”) and

a method for sub-problem generation (“how should the current region be divided into a

finite covering of subregions?”). Typically, the consistency criterion is designed to be a

feasibly computable check guaranteeing only a relaxed version of actual consistency: it

may fail to recognise when a region does not contain a solution, but it should recognise

common classes of inconsistencies very quickly. Common consistency criteria are

hull-consistency and its further relaxation box-consistency [HMK97].

At a high level, when presented with these two parameters as well as a region of

the search space S for a conjunctive formula ϕ and an interval width threshold w, a

branch-and-prune loop operates as follows:

1. Threshold: If the “width” of the region S is smaller than w, then S is returned as

a candidate region containing a solution.

Otherwise, we continue below.

2. Pruning: The consistency criterion (say, C) is applied to see if S is C-consistent

with the formula ϕ. If S is determined to be C-inconsistent with ϕ, then S is

dropped as a candidate region containing a solution ( /0 is returned).
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3. Branching: If S has been determined to be C-consistent with ϕ, then the method

for sub-problem generation is applied to generate a covering of S by finitely

many (pairwise disjoint) subregions. The overall loop is then called recursively

upon each subregion, and the union of the results is returned.

There are many approaches to branch-and-prune based ICP, and a plethora of deep

mathematical techniques have been developed for exploiting interval arithmetic in the

context of pruning. Many of these approaches, such as those based upon the Interval

Newton Method, work only for systems of equations [Neu90]. Others, such as those

found in the tool RSolver, work only for so-called “robust” quantified systems of

inequalities in which every variable has been a priori associated with a containing

compact interval [Rat06].

In a way, the situation for ICP methods is quite similar to the situation for RCF
decision methods as a whole: There are myriad ICP techniques which have been pro-

posed and work only for specific restricted classes of input problems. This is espe-

cially true for equational systems. Because interval methods have found much use

in natural science applications where obtaining approximate solutions to systems of

nonlinear equations is often sufficient, a vast array of deep interval techniques have

been developed each of which only work for restricted classes of systems of equations

[BS95, SCX03, SAG03, SVJ00].

In the same spirit as our work in combining different RCF decision methods, some

ICP researchers have proposed a hybrid approach in which heuristic combinations of

different ICP techniques are used based upon the structure of the input problem. For

instance, the system RealPaver uses chiefly constraint satisfaction techniques [Gra01]

but will combine them with variants of the Interval Newton Method when a square

system of equations can be extracted [GB06].

It is beyond the scope of this dissertation to present even a glimpse of these many

different approaches to ICP. We will give below, however, one very simple pruning

mechanism for general ∃ RCF formulas which we use in our tool RAHD but have not

seen before in the literature.

One difficulty with ICP for general ∃ RCF problems is that variables appearing

in them are not required to be bound within compact intervals. This contrasts with

much work in ICP motivated by physical science applications where such bounding

is required for the pruning techniques used2. In typical physical science applications,
2Even in the few tools which do accept variables not bounded within a compact interval, this use is

usually discouraged (and users are encouraged to remedy the situation by enhancing such input problems
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such bounding requirements are usually sensible and do not hinder a scientist’s prac-

tical modeling ability. But, when using ICP in the context of proving mathematical

assertions about the real numbers which may be completely removed from physical

applications, the situation is of course rather different.

For general ∃ RCF problems, we need to reason about variables, or more generally

polynomials, which have been bound within any generalised real interval (]-∞,+∞[ by

default). This reasoning will make use of the notions of interval context and extension.

Definition 6.2.10 (Interval context). Given a collection of polynomials S= {q1, . . . ,qm}⊂
Q[�x], an interval context for S,

IC : S → IF

is a mapping of members of S into the set IF of generalised formal intervals.

Definition 6.2.11 (Interval context refinement). If IC1 is an interval context for S1 and

IC2 is an interval context for S2, then IC2 is an interval context refinement of IC1 iff

S1 ⊆ S2 ∧ ∀p ∈ S1 (R(IC1(p))⊇R(IC2(p))) .

Definition 6.2.12 (Interval extension). An interval function F : Ik
F → IF is an interval

extension of a real function f : Rk → R iff

∀I1, . . . , Ik ∈ IF ∀r1, . . . ,rk ∈R
�

k�

i=1
ri ∈R(Ii) =⇒ f (r1, . . . ,rk) ∈R(F(I1, . . . , Ik))

�
.

There are a few things to note about interval extensions. First, there are often

many possible interval extensions for a given real function. Trivially, an F : Ik
F → IF

which returns the formal generalised interval �‘]’, -∞,+∞, ‘[’� for all inputs is an inter-

val extension of every f : Rk →R. Of course, interval extensions which compute tight

containing intervals are desired, but for many operations (especially interval extensions

of transcendental functions) one must make tradeoffs between the tightness of the ex-

tensions and the hardness of their computation. Second, the correctness lemmata we

proved about our interval arithmetic operations in the previous section actually show

these operations to be interval extensions of their real counterparts. That is, +IF is an

interval extension of real +, −IF an interval extension of real −, and ∗IF an interval

extension of real ∗.
with more constraints derived from physical considerations). The RealPaver manual, for instance,
instructs: “Should we use infinities [as interval endpoints] or not? Yes, but only if no more information
is known about the variables. For instance, given a variable that represents a distance between two points
on Earth, the domain [0,5e4] is preferred to R since 5e4 is an upper bound of Earth’s circumference.”
[GB06]
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Given interval extensions for basic arithmetic operations, we now turn to obtain-

ing interval extensions for polynomials. That is, viewing a polynomial p ∈ Q[�x] as a

function from Rn → R, we seek an interval extension P : In
F → IF for p. There are

many ways to go about this. For instance, the Newton system provides three possi-

ble interval extensions for polynomials: the natural interval extension, the distributed

interval extension, and the Taylor interval extension [HMK97]. Typically, in a branch-

and-prune setting, the effectiveness of the consistency criteria applied during pruning

depends greatly upon the interval extension used.

We will make use only of the so-called natural interval extension. This extension

is by far the simplest and most intuitive.

Definition 6.2.13 (Natural interval extension). Let p ∈ Q[�x] and let IC be an interval

context for S⊂Q[�x] s.t. {x1, . . . ,xn}⊂ S. Then, the natural interval extension of p w.r.t.

IC is obtained by forming a new expression P from p and evaluating it as follows:

1. all rational constants q in p are replaced by the formal interval �‘[’,q,q, ‘]’�,

2. all variables xi in p are replaced by their containing intervals given by the context

IC(xi),

3. all arithmetic operations on R are replaced by their corresponding interval oper-

ations (e.g., + �→+IF , − �→ −IF , ∗ �→ ∗IF ).

Of course, the actual value of this interval extension will be dependent upon the order

of evaluation of the arithmetic interval expressions within P. As we will further refine

this interval extension below (and say more about polynomial representations), let us

gloss over this aspect for now.

Observe how the natural interval extension only takes into account the intervals

variables have been associated with in an interval context. This is the definition usually

found in the interval analysis literature, where having nontrivial bounding information

on variables is customary. When working with generalised intervals and arbitrary ∃
RCF formulas, however, we have found it useful to extend the natural interval ex-

tension to take into account all information which is available in an interval context,

including information known about terms which are not variables. This gives rise to

what we call the term natural interval extension. When computing this extension, it is

useful to have a generalisation of interval contexts in which the domain of the context

is all polynomials in Q[�x].
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Definition 6.2.14 (Total interval context). Let IC : S → IF be an interval context for

S ⊂Q[�x]. Then, the total interval context of IC,

T (IC) : Q[�x]→ IF

is obtained from IC as follows:

T (IC)(p) =





IC(p) if p ∈ S,

�‘]’, -∞,+∞, ‘[’� otherwise.

Thus far, we have treated polynomials abstractly without recourse to their actual

machine representation. We believe this is an important choice for this exposition, as

otherwise many definitions become needlessly complicated, and it is easy to see how

to instantiate the above abstract machinery to specific polynomial representations. For

computing the term natural interval extension, however, we will work recursively over

the term structure of polynomials, and will thus need to make some representation as-

sumptions. In the definition below, let us abuse notation and assume that polynomials

in Q[�x] have been presented in a particular fully parenthesised form with each arith-

metic operation (+,−,∗) binary. It will be clear how to adapt the definition to other

polynomial representations.

Definition 6.2.15 (Term natural interval extension).

N (p,IC) =






�‘[’, p, p, ‘]’� if p ∈Q,

T (IC)(p) if p ∈ {x1, . . . ,xn},

T (IC)(p) ∩IF (N (p1,IC)+IF N (p2,IC)) if p = (p1 + p2),

T (IC)(p) ∩IF (N (p1,IC)−IF N (p2,IC)) if p = (p1 − p2),

T (IC)(p) ∩IF (N (p1,IC)∗IF N (p2,IC)) if p = (p1 ∗ p2).

Finally, we are able to present the collection of generalised interval contraction

rules we use in Figure 6.1. These rules use the conjuncts in an ∃ RCF formula to

refine an interval context. Given an ∃ RCF formula ϕ, we will write IC1 �ϕ IC2 to

mean that the interval context IC1 has been refined to the interval context IC2 using

one of these rules applied to IC1 and a conjunct of ϕ. We use the notation IC(p) := I

to mean the interval context refinement of IC which is obtained by changing IC(p) to

I and leaving all other data of IC the same.

Recall the structure of a branch-and-prune loop as previously presented. We make

use of these rules within such a loop, but bound their use in pruning by a maximum
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G-1
N (IC, p) = �b1,p, lp,rp,b2,p� N (IC,q) = �b1,q, lq,rq,b2,q� (p > q)

IC(p) :=
�
�b1,p, lp,rp,b2,p� ∩IF �‘]’, lq,+∞, ‘[’�

�

G-2
N (IC, p) = �b1,p, lp,rp,b2,p� N (IC,q) = �b1,q, lq,rq,b2,q� (p > q)

IC(q) :=
�
�b1,q, lq,rq,b2,q� ∩IF �‘]’, -∞,rp, ‘[’�

�

GE-1
N (IC, p) = �b1,p, lp,rp,b2,p� N (IC,q) = �b1,q, lq,rq,b2,q� (p ≥ q)

IC(p) :=
�
�b1,p, lp,rp,b2,p� ∩IF �b1,q, lq,+∞, ‘[’�

�

GE-2
N (IC, p) = �b1,p, lp,rp,b2,p� N (IC,q) = �b1,q, lq,rq,b2,q� (p ≥ q)

IC(q) :=
�
�b1,q, lq,rq,b2,q� ∩IF �‘]’, -∞,rp,b2,p�

�

E-1
N (IC, p) = �b1,p, lp,rp,b2,p� N (IC,q) = �b1,q, lq,rq,b2,q� (p = q)

IC(p) :=
�
�b1,p, lp,rp,b2,p� ∩IF �b1,q, lq,rq,b2,q�

�

E-2
N (IC, p) = �b1,p, lp,rp,b2,p� N (IC,q) = �b1,q, lq,rq,b2,q� (p = q)

IC(q) :=
�
�b1,p, lp,rp,b2,p� ∩IF �b1,q, lq,rq,b2,q�

�

Figure 6.1: Generalised Interval Contraction Rules

number of rule applications per consistency check. We have found them to be most

useful in the context of bounded fixed-point interval context computation, with our

input problems expressed in the form of primitive (“three address code”) constraints

[FHR+07]. We also make use of more classical interval narrowing operators for the

basic arithmetic operations, such as those of Cleary [Cle87]. We will discuss the use

of this ICP procedure in more detail when we present our tool RAHD in Chapter 8 .

6.3 Tiwari Positivstellensatz Method and Extensions

The Tiwari Positivstellensatz method [Tiw05a] is in reality a family of proof proce-

dures for ∃ RCF. In practice, the method is aimed at proving ∀ RCF sentences by

refuting their ∃ duals. The method is refutationally complete relative to an oracle

for controlling the introduction of a particular class of new definitions and selecting

a monomial order. These introduced definitions use slack variables to give names to

terms which could appear in a type of certificate for the unsatisfiability of an ∃ RCF
formula known as a Positivstellensatz witness. Given that this oracle task is com-
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putable, a variant of the Tiwari procedure exists which is in principle guaranteed to

prove that any unsatisfiable ∃ RCF formula is indeed unsatisfiable, though it may fail

to recognise the satisfiability of satisfiable formulas3. In practice, we make use only

of a terminating and refutationally incomplete variant of this method, where a proof

search bound is employed (and can be user-specified), only a restricted class of new

definitions are introduced, and ICP methods are used for recognising when a witness

for unsatisfiability has been found. This gives rise to a particularly effective procedure

which quickly recognises the unsatisfiability of many “simple” types of unsatisfiable ∃
RCF formulas, and usually gives up quickly on problems which are beyond its reach.

6.3.1 Overview

The Tiwari method is based upon a fundamental result in real algebraic geometry

known as the Positivstellensatz4. As with Hilbert’s Weak Nullstellensatz over Cn,

the Weak Positivstellensatz guarantees that a system unsatisfiable over Rn gives rise

to a simple type of algebraic proof object certifying this unsatisfiability. Unlike the

complex case, the Positivstellensatz must deal not only with equations but also with

inequalities. This makes Positivstellensatz certificates more intricate than the ideal

membership identities we are used to with Hilbert’s Weak Nullstellensatz.

Theorem 6.3.1 (1). [Q[�x] variant of Krivine-Stengle Weak Positivstellensatz]

The conjunctive ∃ RCF sentence

ϕ = ∃�x(
k0�

i=1
pi = 0)∧ (

k1�

i=1
qi ≥ 0)∧ (

k2�

i=1
si �= 0) with pi,qi,si ∈Q[�x], k0,k1,k2 ≥ 1

3In fact, as predicted by Tiwari in [Tiw05a], effective bounds have been obtained on the size of
Positivstellensatz witnesses, proving the existence of a variant of the Tiwari method which is a decision
procedure (i.e., complete for both unsatisfiable and satisfiable input problems). Of course, this type
of completeness proof (“run the refutationally-complete proof procedure until it has exhausted every
possible Positivstellensatz witness up to the known bound; if it has found no proof of unsatisfiability,
the system must be satisfiable”) does not lend itself to efficient proof search. These bounds are so
astronomical that we only make use of the Tiwari method as a procedure for proving unsatisfiability.

4As noted by Marshall [Mar08], while the Positivstellensatz has for some time been credited solely to
Stengle [Ste73], it has recently been realised that many of the core ideas were present already in Krivine
[Kri64] and subsequently rediscovered by Stengle independently. It is interesting to note that they
arrived at their Positivstellensatzen in rather different ways: Krivine used RCF quantifier elimination
while Stengle used Lang’s Homomorphism Theorem.
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is false over R iff

∃P ∈ Ideal(p1, . . . , pk0)

∃Q ∈Cone(q1, . . . ,qk1)

∃S ∈ Monoid(s1, . . . ,sk2)

s.t. P+Q+S2 = 0

where

Ideal(a1, . . . ,ah) =

�
h

∑
i=1

aibi | bi ∈Q[�x]

�
,

Cone(a1, . . . ,ah) =

�
r+

h

∑
i=1

tiui | r, ti ∈ ∑(Q[�x])2, ui ∈ Monoid(a1, . . . ,ah)

�
,

Monoid(a1, . . . ,ah) =

�
h

∏
i=1

(ai)
j | j ∈ N

�
,

∑(Q[�x])2 =

�
v

∑
i=1

(pi)
2 | pi ∈Q[�x] ∧ v ∈ N

�
.

This theorem guarantees us that the unsatisfiability of an (in)equational real poly-

nomial system can always be proven using a very special argumentative form, with the

proof taking the shape of an algebraic identity. The computational interest in this the-

orem is twofold: First, as shown by Parrilo [Par03], the search for such proofs can be

reduced to a sequence of convex optimisation problems. (Tiwari’s method uses a differ-

ent mechanism, based on Gröbner bases, to search for such proofs.) Second, because

they ultimately take the form of algebraic identities, the unsatisfiability proofs guaran-

teed to exist by this (Weak) Positivstellensatz have a simple easily verifiable structure.

Harrison has made use of this in his powerful REAL SOS tactic in HOL-Light [Har07],

as the proofs can be found by external optimisation tools, and then the resulting proof

objects may be verified foundationally within HOL-Light without having to place any

trust in the external optimisation tool. To gain familiarity with the Positivstellensatz,

let us give a small example presented by Harrison in that REAL SOS paper:

Example 6.3.2. Consider proving the universal half of the quadratic root criterion

∀a ∀b ∀c ∀x
�
ax2 +bx+ c = 0 =⇒ b2 −4ac ≥ 0

�

by showing the inconsistency of the formula

∃a ∃b ∃c ∃x
�
ax2 +bx+ c = 0 ∧ 4ac−b2 > 0

�
.
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Then, the following identity can be seen as a proof of the falsity of this ∃ sentence

guaranteed to exist by the Positivstellensatz:

(4ac−b2)+(2ax+b)2 +(−4a)(ax2 +bx+ c) = 0.

With this identity in hand, it is trivial to see that the falsity of the ∃ sentence

follows by simple inequality reasoning: 4ac− b2 is assumed positive, (2ax+ b)2 is

non-negative since it is a square, and (−4a)(ax2 + bx+ c) is assumed to be 0 since

ax2 +bx+ c is assumed to be 0. But, then their sum should be positive, yet their sum

is trivially seen to be 0 by polynomial arithmetic alone. Thus, the original ∃ statement

cannot be true over R.

When we are dealing purely with equational systems over Rn, the Positivstellensatz

above reduces to the so-called Real Nullstellensatz5, which, as with the complex case

of Hilbert’s Weak Nullstellensatz, involves only ideal membership identities.

Theorem 6.3.3 (Real Nullstellensatz). Let S be the system of polynomial equations

p1 = 0,
...

pk = 0,

with pi ∈ Q[�x]. Then S is unsatisfiable over Rn iff there exists a polynomial P ∈
I({p1, . . . , pk}) which is a sum of a sum of squares of polynomials in Q[�x] and the

rational constant 1 as follows:

∃P ∈ I({p1, . . . , pk}) s.t. P =

��
m

∑
i=1

s2
i

�
+1

�
for s1, . . . ,sm ∈Q[�x].

Equivalently, S is unsatisfiable over Rn iff there exists sequences of polynomials q1, . . . ,qk,

s1, . . . ,sm ∈Q[�x] s.t.
�

k

∑
i=1

pi(�x)qi(�x)

�
=

��
m

∑
i=1

s2
i

�
+1

�
.

The basic idea of the Tiwari procedure is to combine ideal saturation (derivation

of S-polynomials), the introduction of new definitions (fresh variables which “name”

special polynomials), and change of basis transformations to “push down” a special
5De Moura and myself (and an anonymous referee) have obtained some simple preliminary results

on the structure of Real Nullstellensatz witnesses [PdM09b]. However, we have decided this work to be
outside of the scope of this thesis.
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class of Positivstellensatz witnesses so that they appear within a Gröbner basis. Given

a conjunctive ∃ RCF sentence

ϕ = ∃�x(
k0�

i=1
pi = 0)∧ (

k1�

i=1
qi > 0)∧ (

k2�

i=1
si ≥ 0) with pi,qi,si ∈Q[�x],

this happens in four steps, though steps 2-4 may be interleaved:

1. Two classes of slack variables (wi),(vi) are introduced to represent inequalities

equationally by replacing qi > 0 with qi − vi = 0, si ≥ 0 by si −wi = 0, and

recording side conditions vi > 0 and wi ≥ 0.

2. Given a term ordering, a Gröbner basis for the resulting system of equations is

computed.

3. Members of the basis are checked for strict non-nullity by taking into account

the slack variable side conditions.

4. If no non-null witness was found, new definitions are introduced and a new term

ordering chosen so as to make a special type of Positivstellensatz witness smaller

under some well-founded ordering. The process then repeats. In practice, we

only perform the search upto a fixed number of iterations which may be user-

specified.

In our particular variant, the non-nullity checking in step 3 is done by ICP (taking

into account the slack variable side conditions) and occurs during the computation of

the Gröbner basis at user specified intervals (after n new S-polynomials have been

derived). This has the advantage that in practice, a full Gröbner basis often need not

be computed before a witness is found.

This tight integration between Positivstellensatz search and ICP has another partic-

ularly nice byproduct: Consider IC as an interval context for an equational variant of ϕ
as obtained using slack variables in step 1 above. Then, a run of the Tiwari procedure

can also tighten known intervals IC(t) for polynomials t not involving slack variables.

This is because during Gröbner basis normal form computation w.r.t. a Gröbner basis

G, we have that t1 �→G t2 �→G . . . �→G tk implies that containing intervals for t1, t2, . . . , tk
can always be soundly narrowed to

�k
i=1R(IC(ti)). This holds for all polynomials

ti ∈ Q[�x,�w,�v] and can thus be used for ti ∈ Q[�x]. Thus, even if the Tiwari procedure

fails in finding a witness to the unsatisfiability of ϕ, its integration with ICP may still

contribute information about the solution space of ϕ which is then useful to other proof

procedures which will take into account the interval context IC.
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6.3.2 Tiwari Positivstellensatz Calculus

6.3.2.1 Preliminaries

Similar to the calculus presented for Abstract Gröbner Bases in Chapter 3, the Tiwari

rules will operate on objects which we call states. Each state S will either be the single

value ⊥ or will be a tuple containing four components — the sets of variables (xi),

(vi), (wi), and a set of basis polynomials in Q[�x,�v,�w] as follows:

S = �X ,V,W,P� where X = (xi), V = (vi), W = (wi), P ⊂Q[�x,�v,�w].

In the initial state of a run of the Tiwari procedure, (xi) will be the variables appear-

ing in ϕ, (vi) the slack variables assumed to be strictly positive, (wi) the slack variables

assumed to be non-negative, and P will be the polynomials in an equational represen-

tation of ϕ w.r.t. these slack variables. (Throughout a Tiwari procedure run, these sign

assumptions will continue to hold on our sets of variables (vi) and (wi), as we will

make precise below). If a run of the procedure computes the state ⊥, then this run will

constitute a proof of the unsatisfiability over R of an ∃ RCF formula corresponding to

the initial state. Let us formalise this.

Definition 6.3.4 (State formula). Given a state S = �X ,V,W,P� with V = (vi)
k1
i=1, W =

(wi)
k2
i=1 and P = (pi)

k0
i=1, we associate with it an ∃ RCF formula, the state formula of

S, F(S), as follows:

F(S) =





(0 = 1) if S =⊥,

∃�x∃�v∃�w(
�k0

i=1 pi = 0)∧ (
�k1

i=1 vi > 0)∧ (
�k2

i=1 wi ≥ 0) otherwise.

We call the subformula (
�k1

i=1 vi > 0)∧ (
�k2

i=1 wi ≥ 0) the sign assumptions of S. We

will also use FQF(S) to mean the quantifier-free matrix of the state formula of S.

Now, we can conveniently discuss the satisfiability of a state by examining the truth of

its corresponding state formula.

Definition 6.3.5 (State satisfiability). Let S be a state. Then we say S is satisfiable iff

�R,+,∗,−,0,1,<� |= F(S).

If a state is unsatisfiable, then it will be possible to use the Tiwari calculus to con-

struct a witness to this unsatisfiability. A key property of the calculus is that it will

allow us to construct witnesses of a special easily recognisable form. These witnesses
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are essentially Positivstellensatz witnesses (e.g., a proper Positivstellensatz witness

may be extracted from them), but they differ syntactically from a classical Positivstel-

lensatz witness in that they are able to take into account the sign assumptions of the

state. We call such a witness a state witness.

A beautiful property of a state witness is that it can be recognised by simple lo-

cal reasoning which examines only the sign of each monomial. This is a property not

enjoyed by general Positivstellensatz (or even Real Nullstellensatz) witnesses. In the

general case, simply reasoning about the sign of each monomial is insufficient as mul-

tiple monomials may need to be combined into a perfect square term. For instance,

to recognise p = x2 − 2x+ 2 as a Real Nullstellensatz witness, one does not simply

examine the sign of each monomial in isolation, but rather realises that the monomial

−2x is actually a part of the perfect square (x−1)2 and thus p = (x−1)2+1. Contrast

this with the polynomial q = x2y4 + 2z2 + 1. In this case, one may recognise that q is

a Real Nullstellensatz witness simply by examining the sign of each monomial. State

witnesses will be like q in this respect, but they will be more general in that the sign

assumptions of the state containing them may play an essential role.

Definition 6.3.6 (State witness). Let S be a state s.t. S = �X ,V,W,P� with V = (vi)
k1
i=1

and W = (wi)
k2
i=1. Then, p = (∑u

i=1 cimi) ∈ Q[�x,�v,�w] (p �= 0) is a state witness for the

unsatisfiability of S iff

W(p) ∈ {{StrictNeg},{StrictPos},{Neg,StrictNeg},{Pos,StrictPos}}

where

W(p) =
u�

i=1
{W0(cimi)}

and

W0(cimi) =






StrictPos if ci > 0 ∧ W1(mi) = {StrictPos},

Pos if ci > 0 ∧ W1(mi) ∈ {{Pos},{Pos,StrictPos}},

Neg if ci < 0 ∧ W1(mi) ∈ {{Pos},{Pos,StrictPos}},

StrictNeg if ci < 0 ∧ W1(mi) = {StrictPos},

Unknown otherwise

with W1 defined below assuming (mi = ∏t
j=1 zd( j)

j ) s.t. each z j ∈ (X ∪V ∪W ) as

W1(mi) =W1(
t

∏
j=1

zd( j)
j ) =

t�

j=1

�
W2(z

d( j)
j )

�
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and

W2(z
d( j)
j ) =






StrictPos if z j ∈V,

Pos if z j ∈W ∨ d( j) is even,

Unknown otherwise.

Given any state S= �X ,V,W,P�, we externally maintain sets of variables Vnew, Wnew

and Xnew which are vi’s (resp. wi’s, xi’s) which do not yet appear in V (resp. W , X).

When S is understood by the current context, we will simply write vi ∈ Vnew to mean

some “fresh” vi which does not appear in V . These variables will be used to extend V ,

W and X with new variables used to “name” specially selected terms in polynomials

appearing in P. For any state, S = �X ,V,W,P�, we will say “the sign assumptions of

S” or “the state sign assumptions” to mean the collection of assumptions stating that

every variable in V is strictly positive and every variable in W is non-negative.

A system equivalent to Tiwari’s original (oracle-relative) refutationally complete

calculus [Tiw05a] is presented in Figure 6.2. We have simplified the presentation

slightly by assuming the Gröbner basis rule results in a basis consisting of monic poly-

nomials w.r.t. ≺. The conditions on the Extend rules are rather notationally heavy

and are not all straight-forward. Some, such as the Extend-2 and Extend-3 rules, are

difficult to apply effectively in practice.

We will clarify the details so that the reader has a basic understanding of the gen-

erality and power of the original Tiwari method. Then, we will present an incomplete

variant of it (using ICP) which corresponds to the procedure we have actually imple-

mented and use in practice. Before examining the calculus in detail, however, let us

follow closely an elucidating description given by Tiwari in [Tiw05a] which yields a

good intuitive picture of what the inference rules will accomplish.

6.3.2.2 Further Intuition

Given an unsatisfiable state Si = �Xi,Vi,Wi,Pi�, the calculus is designed to make it

possible to apply a sequence of inference rules to obtain a run Si � Si+1 � . . . � Si+k

s.t. a state witness for the unsatisfiability of state Si+k appears in GB≺(Pi+k) for some

monomial order ≺. To see why this is so, we will reason in a manner similar to how we

did in Chapter 3: We will place a well-ordering � upon state witnesses, and show that

if the minimal witness in I(Pi) is not in GB≺(Pi), then we can apply an inference rule

which will result in a state Si+1 s.t. either Si+1 = ⊥ or the minimal witness in I(Pi+1)

is smaller w.r.t. � than the minimal witness in I(Pi). The well-foundedness of � then
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guarantees that a witness can in principle be eventually found.

Consider an unsatisfiable state Si = �Xi,Vi,Wi,Pi� in which no witness appears.

The sets of variables Vi and Wi contribute to the knowledge we have about the signs of

monomials occuring in polynomials in Pi. As in the definition of state witness, let us

label a monomial Pos if we know it is non-negative, StrictPos if we know it is strictly

positive, and Unknown if we know no constraints on its range. For instance, given the

polynomial x2
1 −2x1w1 +w2

1 + v1, we know that

• x2
1 and w2

1 are both non-negative and label them Pos,

• v1 is strictly positive and label it StrictPos,

• but we know no constraints on the range of −2x1w1 and label it Unknown.

We would like to obtain a witness in GB≺(Pi+k); a witness will contain no Unknown

monomials. There are two ways we can eliminate Unknown monomials. First, we

can recognise them to be cross-product terms in perfect square polynomials. For ex-

ample, −2x1w1 can be recognised to be a part of the perfect square (x1 −w1)2. The

rule Extend-2 is designed to make such inferences possible by prescribing a method

for systematically giving names to the bases of such perfect squares (e.g., (x1 −w1))

as they are needed. Second, the Unknown monomials can simply be eliminated by

cancellation. For example, since ideals are closed under addition, if the polynomials

v2
1−w1w2+1 and w2

3+w1w2+w3−1 are in I(Pi) then they sum to give w3
3+v2

1+w3

which is a state witness present in I(Pi). The difficulty however is that Gröbner ba-

sis computation need not perform such a cancellation. In this example, w1w2 will not

be eliminated since neither of the leading terms of either polynomial divide it. The

rule Extend-1 works to fix this by giving a name to such monomials so that there is

freedom to move them around within a monomial order (otherwise admissibility might

preclude any monomial order from making them the head of any polynomial in which

they appear) and they can then become exposed for possible cancellations.

6.3.2.3 The TIwari Calculus

We shall now go through each rule in turn, introducing the needed notation as it is

encountered. We say nothing about the GB rule except to clarify that “≺ MO” means

“≺ is a monomial order.”
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GB X ,V,W,P
X ,V,W,GB≺(P)

if ≺ MO over Q[�x,�v,�w]

Extend-1A X ,V,W,P = P� ∪{m+q}
X ,V,W ∪{wi},P∪{wi −m}

if m ∈ ([W ∪V ]\ [V ]), wi ∈Wnew

Extend-1B X ,V,W,P = P� ∪{m+q}
X ,V ∪{vi},W,P∪{vi −m}

if m ∈ [V ], vi ∈Vnew

Extend-2 X ,V,W,P
X ∪{xi},V,W,P∪{xi −m0 −αm1}

if �m0,m1� occurs in P, α ∈Q,

xi ∈ Xnew

Extend-3
X ,V,W,P = P� ∪{m0 +q}

X ∪{xi},V,W,P∪{xi −m1}
if m2

1m2 = m0m3, m2 ∈ [W ∪V ]0,1,

xi ∈ Xnew, |m1|> 1

Detect X ,V,W,P = P� ∪{m+q}
X ,V,W,P∪{m,q}

if m+q is strictly non-null w.r.t.

V > 0,W ≥ 0

Witness X ,V,W,P� ∪{m}
⊥

if m ∈ [V ]

Figure 6.2: Refutationally complete Tiwari Calculus
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First, Extend-1A. Given a set of variables A, [A] is used to denote the multiplicative

monoid generated by A. Then, this rule is used to introduce a fresh name for a mono-

mial m which is recognised to be non-negative for a simple reason: m is the product of

elements of (W ∪V ). We then give m a new name using a fresh variable wi ∈Wnew. We

make the further requirement that m ∈ ([W ∪V ]\ [V ]) because if m ∈ [V ], then the sign

assumption corresponding to m can be strengthened, since m ∈ [V ] means m is strictly

positive w.r.t. the current state sign assumptions. The next rule will handle this case.

Second, Extend-1B. This rule is the analogue of the previous one for the case when

the monomial m ∈ [V ]. In this case, m is strictly positive w.r.t. the current state sign

assumptions, and so we name m by a fresh variable vi ∈Vnew.

Third, Extend-2. This rule introduces a new name for a binomial of the form m0 +

αm1 in the hopes that a polynomial of the form (m0 + αm1 + q)2 will appear in a

Positivstellensatz witness. Let us explain the terminology of the side conditions. We

use [V ]0,1 to denote the collection of members of [V ] in which variables in power-

products appear with degree at most 1. We say that a power-product m occurs directly

in P if there is a polynomial in P which contains a monomial with power-product m. We

say a power-product m occurs in P with factor m0 ∈ [V ]0,1 if there exists m1 ∈ [V ] s.t.

m1|mm0 and m1 occurs directly in P. Then, we say a pair of power-products �m0,m1�
occurs in P if

• m0m1 occurs in P with factor m2, and

• either m2
0m2 occurs in P with factor 1 or m3

0m2
u occurs in P with factor 1 for some

u ∈ (W ∪V ), and

• either m2
1m2 occurs in P with factor 1 or m3

1m2
u occurs in P with factor 1 for some

u ∈ (W ∪V ).

In the application of this rule, α is a symbol denoting a rational in Q and must be (even-

tually) instantiated. A value for α might not be known at the time of the application of

this rule, however, so in the original presentation of the Tiwari method [Tiw05a], it is

proposed that one do the following: Apply the rule and delay the determination of α
until later by

• extending the field one works over in all inference rules from Q to Q(α) (or,

more generally, from Q(α1, . . . ,αk) to Q(α1, . . . ,αk+1)),

• determining a rational value for α by computing the zero of some nontrivial

linear expression over Q(α) which, through use of the simplification inherent
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in Gröbner basis computation (rule GB), will eventually appear as a coefficient

of a monomial occuring directly in P. After instantiating α with this value,

the monomial whose coefficient was used to derive this value for α will then

be eliminated from the polynomial in which it appears (as its coefficient will

evaluate to 0).

We see immediately one difficulty in orchestrating the Tiwari method in its refutation-

ally complete form: There are many choices one can make in completing an application

of rule Extend-2, as after simplification, α may appear in many different nontrivial lin-

ear expressions (each a coefficient for some monomial occuring directly in P), and

these different expressions may of course have different zeroes. Interested readers

should consult the original reference to learn more about this, paying particular atten-

tion to the second example on page 11 and the use of the rule Extend-2 in the proof

of Theorem 3 on page 12. In our implementation presented shortly (as well as the

variant implemented and made available by Tiwari [Tiw05b]), this rule is not used at

the expense of refutational completeness.

Fourth, Extend-3. As with the previous rule, this rule is used to capture cross-

product terms which appear in perfect square polynomials in a Real Nullstellensatz

witness. We use |m0| to denote the total degree of the power-product m0. The differ-

ence between this rule and Extend-2 is that we need not find m1 nor a value for α when

|m0| > 1. As with Extend-2, we do not know of implementations which actually use

this rule.

6.3.3 A Practical Variant with ICP and External Saturation

We now present the variant of the Tiwari method we use in practice. To be precise,

this variant is not actually an instance of the Tiwari method (e.g., some strategy for

sequencing the rules of the calculus given in Figure 6.2), but is rather a closely related

method — also presented as an abstract calculus — with two key differences from the

original:

1. ICP is used throughout for recognising polynomials which should be named by

fresh variables in V and W as well as for detecting unsatisfiability.

2. A rule (ST or “Saturate and Tighten”) is provided to allow external saturation

procedures to contribute information they have deduced from a state and make

it available to the ICP engine in the hopes of enhancing interval contraction.
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While it is easy to imagine that utilising ICP in this way may be advantageous,

perhaps something should be said to motivate the integration of external saturation

methods. We will cover a number of such saturation techniques in the next section, but

let us now pick one small piece of such a method and argue why its integration in the

manner presented in Figure 6.3 might make sense.

Example 6.3.7. Imagine applying the Tiwari method to the formula

ax2 +bx+ c = 0 ∧ b2 −4ac < 0

which leads to the initial state

S = �{a,b,c,x},{v1}, /0,{ax2 +bx+ c,−b2 +4ac− v1}�

which after application of the GB rule with ≺ = Lex(a � b � c � x � v1) yields the

equisatisfiable state

S� = �{a,b,c,x},{v1}, /0,{[ac−1/4b2−1/4v,ax2+bx+c,b2x2+4bcx+4c2+x2v]}�.

This simple state, unsatisfiable over R5, poses a difficulty for the method, as one

needs to use a combination of the Extend-2 and Extend-3 rules to obtain a state witness

of unsatisfiability. If instead, one had an external method for discriminant saturation

(cf. Section 6.4.1.1) which applied the rule

p ∈Q[�x] deg(p,x) = 2 p = 0
discriminant(p,xi)≥ 0

then b2−4ac≥ 0 would be deduced directly from ax2+bx+c= 0. This fact, combined

with the state formula F(S�), would be enough for ICP to obtain the unsatisfiability.

Of course, the above example is trivial in the sense that discriminant saturation is

all that was needed to obtain the proof of unsatisfiability. But, we have found the flex-

ibility of allowing external saturation procedures to contribute facts in this way to be

invaluable. Such deduced information often allows the ICP procedure to substantially

tighten intervals, and our implemented variant is designed to recognise a state to be un-

satisfiable whenever its interval context contains an association between a polynomial

and an empty interval. We will see in Chapter 8 how this is all done in the context

of our tool RAHD. The core idea is that such saturation procedures are simply given

as functional parameters to our implemented variant of the Tiwari method. Thus, one

is able to use one’s own strategic judgment as to the nature and extent of the external

saturation which should be performed during Tiwari-style proof search.
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Init-1A IC,X ,V,W =W � ∪{wi},P
(IC(wi) :=N (IC,wi) ∩IF �‘[’,0,+∞, ‘[’�),X ,V,W,P

Init-1B IC,X ,V =V � ∪{vi},W,P
(IC(vi) :=N (IC,vi) ∩IF �‘]’,0,+∞, ‘[’�),X ,V,W,P

GB IC,X ,V,W,P
IC,X ,V,W,GB≺(P)

if ≺ MO over Q[�x,�v,�w]

Ext-A IC,X ,V,W,P = P� ∪{m+q}
IC,X ,V,W ∪{wi},P∪{wi −m}

if m ∈ ([W ∪V ]\ [V ]),

wi ∈Wnew

Ext-B IC,X ,V,W,P = P� ∪{m+q}
IC,X ,V ∪{vi},W,P∪{vi −m}

if m ∈ [V ], vi ∈Vnew

Ext-ICP-A IC,X ,V,W,P = P� ∪{q1 +q2}
IC,X ,V,W ∪{wi},P∪{wi −q1}

if N (IC,q1)∩IF

�‘]’, -∞,0, ‘[’�= ∆,
wi ∈Wnew

Ext-ICP-B IC,X ,V,W,P = P� ∪{q1 +q2}
IC,X ,V ∪{vi},W,P∪{vi −q1}

if N (IC,q1)∩IF

�‘]’, -∞,0, ‘]’�= ∆,
vi ∈Vnew

ST IC,X ,V,W,P
IC�,X ,V,W,P

if A =S(FQF(�X ,V,W,P�)),
IC �ICP(A) IC�

Tighten IC,X ,V,W,P
IC�,X ,V,W,P

if IC �ICP(FQF (�X ,V,W,P�))

IC�

Unsat IC,X ,V,W,P
⊥

if ∃p ∈Q[�x,�v,�w] s.t.

N (IC, p) = ∆

Figure 6.3: ICP-based Variant of the Tiwari Calculus with External Saturation
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Let us say a few things about the calculus given in Figure 6.3. Observe that the

states now have one additional component: an interval context, usually written IC, as

developed in Section 6.2. It is trivial to adapt the relevant state formula and satisfiabil-

ity definitions developed previously to this new setting.

As noted, interval contexts partake in deductions in this calculus in a number of

ways. First, once variables with implicit sign assumptions (vi,wi) are introduced to

name monomials using the Ext-A and Ext-B rules, the Init-1A and Init-1B rules can then

be used to update the interval context with this implicit sign information.

Second, the rules Ext-ICP-A and Ext-ICP-B are used to give names to arbitrary

terms appearing in polynomials in the state polynomial system. This is done when ICP

upon the state formula has recognised a term appearing in a polynomial to be either

non-negative or strictly positive. This is particularly nice using ICP, as to find such

terms, one simply looks through the interval context of the state, flagging each poly-

nomial whose associated interval has an empty intersection with either �‘]’, -∞,0, ‘[’�
or �‘]’, -∞,0, ‘]’�.

Third, we have the rule ST. Let us clarify the notation. We write IC �ICP(S) IC�

to mean that the interval context IC� was obtained from the interval context IC by

some application of the ICP rules in Figure 6.1 with atomic formulas in the state

formula of S serving as the polynomial constraint hypotheses. Thus, it follows that

IC� will be an interval context refinement of IC (cf Definition 6.2.11). The rule ST

(“Saturate and Tighten”) is used to allow an external saturation or deduction procedure

to derive information from a state which is then used to enhance interval contraction

upon the state’s interval context. In this rule, G is such a saturation procedure which

maps a quantifier-free conjunctive formula F1 over Q[�x,�v,�w] to another formula F2 s.t.

RCF |= F1 =⇒ F2. In particular, G(FQF(�X ,V,W,P�)) is the result of applying such

a saturation procedure to the quantifier-free matrix of the state formula.

Fourth, we have the rule Tighten. This rule simply allows one to invoke the ICP

procedure at any time so as to further contract known intervals based upon the state

formula. This is equivalent to ST with G an identity function.

Finally, we have the rule Unsat. This rule allows one to determine the current state

to be unsatisfiable when its interval context associates any polynomial with an empty

interval.

Given the soundness of our ICP method and the allowed external saturation proce-

dures, the following lemma is immediate.
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Lemma 6.3.8 (Soundness of Extended Tiwari Method). Let

ϕ = ∃�x(
k0�

i=1
pi = 0)∧ (

k1�

i=1
qi > 0)∧ (

k2�

i=1
si ≥ 0) with pi,qi,si ∈Q[�x],

with

S = �IC /0,X ,V,W,P�

s.t. �X ,V,W,P� is the initial state associated with ϕ in the original Tiwari method (cf

Section 6.3.2.1) and IC /0 is the empty interval context. Then,

S � ⊥ =⇒ RCF |= ¬ϕ,

where S � S� means S� is obtainable from S using the rules in Figure 6.3.

We will see how this method may be applied in the context of our tool RAHD in

Chapter 8. Carrying on with the current chapter, we will now proceed to build up some

simplification and saturation machinery, which will yield some concrete choices for the

functional parameter G in rule ST. Once this is done, we will examine how this hier-

archy of combined procedures can be utilised within CAD-based decision methods by

introducing the framework of Abstract Partial Cylindrical Algebraic Decomposition.

6.4 Saturation and Simplification

We now turn to the development of some proof procedures for both formula satura-

tion and simplification. These procedures will generally accept as input a conjunctive

quantifier-free RCF formula and will generate as output an equisatisfiable RCF for-

mula in which “more useful” information has been made explicit. The idea is that with

such information readily visible, techniques such as ICP and extended Tiwari methods

may have an easier time recognising the satisfiability status of the original formula.

Of course, there exists a strong tension between increasing the amount of explicit

information in a formula (so as to ease both machine and human understanding, aid

further deductions, and so on), and the resulting formula size and complexity. Indeed,

with an overly enthusiastic trigger finger, one can often saturate a formula with so much

information that it becomes a sea of uninteresting data with key facts buried beneath the

waves. Similarly, with over eager simplification, one might remove formally redundant

(“subsumed”) facts, even though their presence could make the operation of other proof

procedures more effective. Resolving these tensions is in a sense the very heart of

automated theorem proving.
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Intuitively, one associates saturation with techniques which add derived facts to

a formula, in contrast to simplification which should under some metric make a for-

mula’s salient features more succinctly represented. But, this distinction is often hard

to justify, even though there is an obvious tension between the two. On the one hand,

we have saturation adding information, while on the other, simplification attempts to

reduce the noise. However, both have a common goal: To make the essential fea-

tures of the facts clear. When a balance is struck through their careful combination,

saturation and simplification can lead to inference mechanisms of remarkable power.

§

There is an important departure in this section from much of the prequel: When

we reach the saturation rules built around multivariate polynomial factorisation, it will

be essential to consider computer representational aspects of formulas, especially of

terms. This is because multivariate factorisation will be a function between represen-

tations of the same abstract polynomial. That is to say, the explicit computer represen-

tation of a term, and hence of a formula, will matter. We have tried hard to be careful

about the distinction between computer representation of terms and their abstract coun-

terparts when it is essential to the task at hand, and have made pains to sweep it under

the rug when it is not.

6.4.1 Saturation

Let us now present some saturation procedures which we have found useful. We will

give each method in terms of inference rules which can be applied to atoms of a for-

mula to generate derived facts.

6.4.1.1 Discriminants

The discriminant of a univariate polynomial p is a derived polynomial ∆(p) expressing

fundamental properties of p’s roots [GKW03]. For instance, p ∈ Q[x] has repeated

complex roots if and only if ∆(p) = 0. Moreover, if p is quadratic, then whether or

not p has real roots can be decided from properties of ∆(p) alone. We will see how

discriminants can be used to derive nontrivial facts not just from multivariate quadratic

equations, but also from multivariate quadratic inequalities.

There is a natural description of the discriminant ∆(p) in terms of roots. For con-

creteness, we state it in the context of Q[x].
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Definition 6.4.1 (Discriminant in terms of roots). Let p ∈ Q[x] s.t. p = ∑k
i=0 cixi with

ci ∈Q. Then, the discriminant of p is

∆(p) = c2k−2
k ∏

i< j
(ηi −η j)

2,

where η1, . . . ,ηk are the roots of p in some splitting field (counted with multiplicity).

This definition is nice as it makes the fundamental properties of the discriminant

clear, but it is difficult to make use of algorithmically as one first needs to have a

factorisation of p to compute it. Moreover, if one wishes to apply this definition to

a multivariate polynomial which is seen as univariate with parameters (e.g., p ∈ A[x]
with A a polynomial ring), then one is faced with the following difficulty: Galois

theory shows us that beyond the quartic, one in general has no way to describe the

individual roots of p exactly in terms of radicals. Thus, roots of p (to substitute for the

ηi) need not be expressible as terms formed over A in the language of ordered rings,

and so it is difficult to see how ∆(p) should even be a term which could appear in an

RCF formula.

There is good news, however: A syntactic definition of the discriminant exists

which, though it obfuscates the participation of the roots of p, expresses ∆(p) purely

in terms of p’s coefficients. It is straight-forward to compute and makes clear that

even in the multivariate/parametric case, ∆(p) is always expressible in the language of

ordered rings. This definition involves the concept of a polynomial resultant.

Definition 6.4.2 (Discriminant in terms of resultant). Let p ∈ A[x] s.t. p = ∑k
i=0 cixi

with ci ∈ A[x]. Then,

∆(p) = (−1)
k(k−1)

2

�
R(p, ∂p

∂x )

ck

�
,

where R(p,q) is the resultant of p and q (w.r.t. x).

For convenience, we recall the definition of polynomial resultant, though we say

nothing here about its remarkable properties.

Definition 6.4.3 (Resultant). Let p,q ∈ A[x] s.t. p = ∑k1
i=0 cixi and q = ∑k2

i=0 dixi with
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ci,di ∈ A. Then, the resultant of p and q (w.r.t. x)

R(p,q) =

����������������������

ck1 ck1−1 ck1−2 . . . c1 c0 0 . . . 0

0 ck1 ck1−1 . . . c0
. . . ...

... . . . . . . . . . . . . . . . 0

0 . . . 0 ck1 ck1−1 . . . c1 c0

dk2 dk2−1 dk2−2 . . . d1 d0 0 . . . 0

0 dk2 dk2−1 . . . d0
. . . ...

... . . . . . . . . . . . . . . . 0

0 . . . 0 dk2 dk2−1 . . . d1 d0

����������������������

is the determinant of the (k1 + k2)× (k1 + k2) Sylvester matrix of p and q (w.r.t. x)

Thus, given a multivariate polynomial p ∈ Q[x1, . . . ,xn], we can compute the dis-

criminant of p w.r.t. any xi, resulting in a polynomial in Q[x1, . . . ,xi−1,xi+1, . . . ,xn].

Let us write ∆(p,xi) for this. Now we turn to how discriminants can be used as the

basis of a saturation technique.

Consider ϕ a conjunctive ∃ RCF formula containing an atom of the form (p = 0)

with p ∈Q[�x]. Let us assume p is quadratic in x1,x2 and x3. Then, with a quick appeal

to the quadratic formula, we see the following must be true:

∆(p,x1)≥ 0 ∧ ∆(p,x2)≥ 0 ∧ ∆(p,x3)≥ 0.

This gives rise to the first discriminant saturation rule:

ax2
i +bxi + c = 0 a,b,c ∈Q[x1, . . . ,xi−1,xi+1, . . . ,xn]

QDS-EQ
b2 −4ac ≥ 0

Though this may result in an inequality atom of the form (b2 −4ac ≥ 0) with b2 −4ac

of higher multivariate total degree than the original equational assumption, the effects

of this degree increase can be vastly outweighed by the gains one makes by having

eliminated a variable.

Now, consider ϕ containing the conjunct (p ≤ 0). Then, less trivially, it will turn

out that the following must be true:

(c1 > 0 =⇒ ∆(p,x1)≥ 0)∧ (c2 > 0 =⇒ ∆(p,x2)≥ 0)∧ (c3 > 0 =⇒ ∆(p,x3)≥ 0),

where ci ∈Q[x1, . . . ,xi−1,xi+1, . . . ,xn] is the constant coefficient of p when p is seen as

a univariate polynomial in Q[x1, . . . ,xi−1,xi+1, . . . ,xn][xi].



6.4. Saturation and Simplification 141

This gives rise to the following saturation rule for conjunctive ∃ RCF formulas:

ax2
i +bxi + c ≤ 0 c > 0 a,b,c ∈Q[x1, . . . ,xi−1,xi+1, . . . ,xn]

QDS-LEQ
b2 −4ac ≥ 0

Lemma 6.4.4 (Correctness of QDS-LEQ). The correctness of rule QDS-LEQ is proved

by verifying the following formula:

∀a,b,c ∈ R ∃x ∈ R
�
ax2 +bx+ c ≤ 0 ∧ c > 0 =⇒ b2 −4ac ≥ 0

�
.

Proof. Assume ∃x(ax2 +bx+ c ≤ 0) and observe this is equivalent to ¬∀x(ax2 +bx+

c> 0). That is, p(x)= ax2+bx+c cannot be positive definite. But, by the Intermediate

Value Theorem, p(x) is positive definite iff the constant p(0) = c is positive and p(x)

has no real roots. Expressing this in terms of c and the discriminant of p(x), we have

the equivalence:

∃x(ax2 +bx+ c ≤ 0) ⇐⇒ ¬(c > 0 ∧ b2 −4ac < 0).

Thus, if ∃x(ax2 +bx+ c ≤ 0) and c > 0, then we must have that b2 −4ac ≥ 0.

This simple saturation rule has been for us at times very useful. For instance, it can

often be used to recognise an unsatisfiable atom in a formula whose recognition one

would expect to require multivariate factorisation or sums of squares decompositions.

Let us make a small example.

Example 6.4.5. Consider the atom

4x2 −8xy+4y2 +1 ≤ 0

which we will examine as univariate in x, e.g.,

(4)x2 − (8y)x+(4y2 +1)≤ 0.

So, in the application of the rule, we have that

a = 4

b = 8y

c = 4y2 +1

Since c is a trivial sum of squares with a positive constant, it will be automatically

recognised to be strictly positive. Thus, we can apply the rule as follows (as b2−4ac =

(8y)2 −4(4(4y2 +1)) = 64y2 −64y2 −16 =−16):

(4)x2 − (8y)x+(4y2 +1)≤ 0 4y2 +1 > 0 4,8y,4y2 +1 ∈Q[y]
QDS-LEQ −16 ≥ 0
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yielding immediately the proof of unsatisfiability by ground evaluation. And so we

proved the multivariate atom 4x2 −8xy+4y2 +1 ≤ 0 to be unsatisfiable without ever

having to realise that 4x2 −8xy+4y2 +1 = (2x−2y)2 +1.

And in the cases when these rules do not yield immediate proofs of unsatisfiability,

they often derive restrictions on the variables which are useful for ICP, Tiwari and other

methods.

There is an obvious dual to QDS-LEQ which we state now.

ax2
i +bxi + c ≥ 0 c < 0 a,b,c ∈Q[x1, . . . ,xi−1,xi+1, . . . ,xn]

QDS-GEQ
b2 −4ac ≥ 0

These ideas can in principle be extended to the quartic case as well. For instance,

one could use the Descartes-Euler solution to compute the cubic resolvent and then

exploit the fact that a quartic has no real roots if and only if all roots of the cubic

resolvent are real with one positive and two negative, which can be determined by

analysing two discriminants. But, the resulting RCF statements expressing real root

existence in this way would quickly become astronomically large. We therefore do

not make use of discriminant saturation explicitly beyond the quadratic, but we do

employ degree reduction methods (covered shortly) to derive equivalent lower-degree

RCF formulas from higher-degree ones when possible. Thus, quadratic discriminant

saturation can be unexpectadly useful for formulas which on the surface seem to be

beyond its reach.

6.4.1.2 Real Radical Ideal Approximations

Over C, the correspondence between ideals and varieties is elucidated by Hilbert’s

Strong Nullstellensatz.

Theorem 6.4.6 (2). [Hilbert’s Strong Nullstellensatz]

I(VC(I({p1, . . . , pk}))) =
�

I({p1, . . . , pk})

=
�

p ∈Q[�x] | ∃i ∈ N s.t. pi ∈ I({p1, . . . , pk})
�
.

That is, given pi,q ∈ Q[�x] the decision problem for universal Horn formulas over

C can be reduced to an ideal membership check for radical ideals as follows:

�C,+,−,∗,0,1� |=
�

k�

i=1
pi = 0

�
=⇒ q = 0

⇐⇒

q ∈
�

I({p1, . . . , pk})
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which can then be effectively solved using Gröbner bases. Modulo ideal membership

checking, the important step here is the construction, from a set of generators for an

ideal I over Q[�x], to a set of generators for the radical ideal containing I. This is a

classically studied problem in algebraic geometry and most modern computer algebra

systems provide efficient algorithms for complex ideal radicalization [Lap06].

Over R, however, things are not so simple. The algebraic structure analogous to

a radical ideal for real algebraic varieties, the so-called real radical ideal, has to take

into account the order structure of R by incorporating polynomial summands that are

sums of squares. That is, letting I= I({p1, . . . , pk}),

I(VR(I)) =
R√
I=

�
p ∈ R[�x] | p2i + s ∈ I | s ∈ ∑(R[�x])2, i ∈ N

�
.

This has the analogous property over R that the classical radical ideal does over C.

Note of course that I⊆ R√I as for any p ∈ I, we have p2 ∈ I.

Known methods for transforming an ideal into its real radical are computation-

ally infeasible for non-trivial problems, so we seek a method that approximates real

radicalisation to obtain some practically useful membership decisions in an efficient

way. This gives rise to the following saturation machinery whose correctness over R
is immediate. �k

i=1 pi = 0 (x2m −q) ∈ I({p1, . . . , pk}) 2m
√q ∈Q

RRI-GE x = 2m
√q ∨ x =− 2m

√q

�k
i=1 pi = 0 (x2m+1 −q) ∈ I({p1, . . . , pk}) 2m+1

√q ∈Q
RRI-GO x = 2m+1

√q

�k
i=1 pi = 0 (x2m1 − y2m2) ∈ I({p1, . . . , pk}) m2|m1

RRI-VE
xm1/m2 = y ∨ −xm1/m2 = y

�k
i=1 pi = 0 (x2m1+1 − y2m2+1) ∈ I({p1, . . . , pk}) 2m2 +1|2m1 +1

RRI-VO
x2m1+1/2m2+1 = y

Note (i) we usually restrict their use in practice to x and y being indeterminates,

and (ii) the target terms (e.g., q in RRI-GE) need not be guessed, as if the antecedent

holds, one can obtain q by reducing x2m modulo GB≺({p1, . . . , pk}). This reduction

process can be done incrementally for heuristically selected terms in a formula, with

m ranging from 1 to some degree bound computed as a function of the generators

of GB≺({p1, . . . , pk}). Observe that these rules really are saturating with equations

corresponding to members of the real radical ideal containing {p1, . . . , pk}, as they
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would not hold over the complexes due to the existence of non-trivial roots of unity.

For instance, over C it is false that

x4 −16 = 0 =⇒ (x = 2∨ x =−2)

due to the existence of the non-trivial quartic roots of unity e±
πi
2 . But, using rule RRI-

GE we can derive over R that this fact does indeed hold, which corresponds to the fact

that

x2 −4 ∈ R
�
I({x4 −16}),

since x2 −4 = (x−2)(x+2).

6.4.1.3 Parametric Root Bounds

Let p(x) ∈ A[x] s.t. p(x) = ∑k
i=0 cixi with ci ∈ A. Let η ∈ R s.t. p(η) = 0. Then, a

classical result of Cauchy tells us a bound on the absolute value of η in terms of the

coefficients ci. Precisely,

|η|≤ 1+
1
|ck|

k−1

∑
i=0

|ci|.

This bound is straight-forward to calculate, but is difficult to apply as a saturation

rule when A �= Q. This is because absolute value is not primitive operation in the

language of ordered rings and thus its effect on non-constant polynomials must be

cumbersomely encoded (resulting in derived formulas which are usually not naturally

expressed as conjunctions). It is, however, useful for atomic equations over Q[x] so

that the computed bound is a rational number.

p(x) = 0 p(x) ∈Q[x] x ≥ 0
RRB-GEQ

x ≤ 1+ 1
|ck| ∑k−1

i=0 |ci|

p(x) = 0 p(x) ∈Q[x] x < 0
RRB-LEQ

−x ≤ 1+ 1
|ck| ∑k−1

i=0 |ci|

p(x) = 0 p(x) ∈Q[x]
RRB-Q

x ≥ (−1)
�

1+ 1
|ck| ∑k−1

i=0 |ci|
�

∧ x ≤
�

1+ 1
|ck| ∑k−1

i=0 |ci|
�

Since the time of Cauchy, many other root bounds have been established. For

our uses, the method of Kennedy in 1939 is especially nice as it yields parametric

upper and lower bounds for real roots which are polynomials in the coefficient ring,
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avoiding absolute values altogether [Ken39]. This leads to very simple saturation rules

which can be applied parametrically when the polynomials of interest are multivariate.

Let us present the Kennedy bounds for cubic, quartic and degree six polynomials fol-

lowed by saturation rules based upon them. We do not know of any extension of the

method Kennedy used to obtain these bounds to polynomials of degree higher than six.

For higher degree polynomials which are actually univariate, i.e., in Q[x], the Cauchy

bounds mentioned previously may of course be applied.

First, the cubic. Let p(x) = x3 + a2x2 + a1x+ a0 s.t. p(x) = 0 and a2 �= 0. Then,

Kennedy shows the following:

a2 < 0 =⇒ x3 ≥
a2

1
4a2

−a0

a2 > 0 =⇒ x3 ≤
a2

1
4a2

−a0

Next, the quartic. Let p(x) = x4 + a3x3 + a2x2 + a1x+ a0 s.t. p(x) = 0 and a3 �= 0.

Then,

a3 < 0 =⇒ x3 ≥ 1
4a3

(a2
2 +a2

1 −4a0)

a3 > 0 =⇒ x3 ≤ 1
4a3

(a2
2 +a2

1 −4a0)

Finally, the sixth degree. Let p(x) = x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x+ a0 s.t.

p(x) = 0 and a5 �= 0. Then,

(a5 < 0∧a4 > 0) =⇒ x3 ≥ 1
4a5

�
a2

3 +
a2

2
a4

+a2
1 −4a0

�

(a5 > 0∧a4 > 0) =⇒ x3 ≤ 1
4a5

�
a2

3 +
a2

2
a4

+a2
1 −4a0

�

Let us adapt these bounds to appropriate saturation rules. Note how each degree’s

pair of implications collapses into a single rule.
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x3 +a2x2 +a1x+a0 = 0 a2 �= 0
RRB-K3

4a2x3 ≤ a2
1 −4a2a0

x4 +a3x3 +a2x2 +a1x+a0 = 0 a3 �= 0
RRB-K4

4a3x3 ≤ (a2
2 +a2

1 −4a0)

x6 +a5x5 +a4x4 +a3x3 +a2x2 +a1x+a0 = 0 a4 > 0 a5 �= 0
RRB-K6

4a4a5x3 ≤ a2
2 +a4

�
a2

3 +a2
1 −4a0

�

6.4.1.4 Orientations

This class of saturation rules has a simple purpose: To provide multiple orientations

of the same atom. For instance, when an atom contains a polynomial with multiple

linear monomials (e.g., monomials consisting of a product of a rational number and a

single indeterminate), it will often be convenient to have variations of the atom with

each having a different single indeterminate on the left-hand side. This is especially

useful for our ICP calculus (cf. Figure 6.1), where contraction strength is sensitive

to the orientations of the constraint hypotheses. In the calculus, providing multiple

orientations of the same atom can at worst do nothing to the interval context and at

best decrease the size of intervals known to contain terms, increasing knowledge of the

solution space and moving one closer to obtaining an empty interval (unsatisfiability)

judgment.

To ease the expression of these rules, we will use the sum-of-monomials represen-

tation of polynomials introduced in Section 2.3. Recall that in this notation, E ⊂ Nn

and cα ∈Q. Let us use Lk(α) to mean that α is an exponent vector s.t.�xα = xk, i.e.,

Lk(α) ⇐⇒ α(k) = 1 ∧ ∀1 ≤ i ≤ n(i �= k =⇒ α(k) = 0) .
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∑β∈E cβ�xβ = 0 Lk(α) cα �= 0
ORI-EQ

xk = (− 1
cα
)∑β∈E\{α} cβ�xβ

∑β∈E cβ�xβ ≥ 0 Lk(α) cα > 0
ORI-GEQ-G

xk ≥ (− 1
cα
)∑β∈E\{α} cβ�xβ

∑β∈E cβ�xβ ≥ 0 Lk(α) cα < 0
ORI-GEQ-L

xk ≤ (− 1
cα
)∑β∈E\{α} cβ�xβ

∑β∈E cβ�xβ > 0 Lk(α) cα > 0
ORI-G-G

xk > (− 1
cα
)∑β∈E\{α} cβ�xβ

∑β∈E cβ�xβ > 0 Lk(α) cα < 0
ORI-G-L

xk < (− 1
cα
)∑β∈E\{α} cβ�xβ

There are obvious dual ≤,< inequality rules ORI-LEQ-G, ORI-LEQ-L, ORI-L-L,

ORI-L-G one can define (though of course the above rules are sufficient for ≤,< by

simply multiplying the original atom through by −1).

6.4.1.5 Factorisations

As discussed previously, when faced with a multivariate atom, it is often useful to

have multiple representations of the polynomials appearing in it. Factorisations of

polynomials can be especially illuminating when it comes to understanding the effect

an atom will have on the solution space of a formula in which it appears.

Chiefly, multiple representations of the same polynomial can enhance the effectiv-

ity of ICP by allowing one to further tighten intervals. This can help one attack the

so-called dependency problem of ICP, which often leads to vast over-estimations of

containing intervals [Krä06]. Outside of ICP, factorisations have much inferential util-

ity, e.g., fully-factored representations often allow one to easily infer nontrivial sign

constraints on a polynomial using only light-weight reasoning similar to that we used

for recognising state witnesses in the original Tiwari method. Moreover, knowing fac-

torisations and other representations of the same polynomial can enhance the power of

simplification methods we will encounter shortly.

To exploit factorisations in this way, we must deal with computer representation of

our terms. This is so that we can distinguish between two different representations of
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the same abstract polynomial. Then, for instance, when given the term

(+ (* X (* X (* X X)))

(+ (* -2 (* K (* X (* X X))))

(+ (* (* K K) (* X X))

(+ (* 6 (* W (* X (* X X))))

(+ (* -6 (* W (* K (* X X))))

(+ (* 9 (* (* W W) (* X X)))

(+ (* -4 (* Z (* X (* X X))))

(+ (* 4 (* Z (* K (* X X))))

(+ (* -12 (* Z (* W (* X X))))

(* 4 (* (* Z Z) (* X X))))))))))))

it can be factored it into the nicer representation

(* (EXPT (- K (+ (- X (* 2 Z)) (* 3 W))) 2) (EXPT X 2))

which is then easily recognised to be non-negative simply by analysing the power ar-

guments of the exponentation operations. We will discuss more of these practical rep-

resentation concerns in the sequel. For now, it is enough to realise that the factorisation

procedure is a function between computer representations of the same polynomial.

Efficient algorithms for multivariate polynomial factorisation and the closely re-

lated problem of multivariate GCD are difficult and profound pillars of computer al-

gebra. Modern approaches, such as those based on Hensel Lifting [Kal85] and ideas

related to EZGCD [MY73], benefit much from hybrid implementations in which the

core algorithms have been substantially enhanced by a multititude of ad hoc heuristics

and special tricks. Factorisation and GCD algorithms found in mainstream computer

algebra packages, for instance, consist generally of complex ad hoc combinations of

core modern algorithms and such heuristics, with the exact brew of techniques used in

closed commercial systems usually (most unfortunately) a closely guarded secret.

Thus, unlike most techniques discussed in this thesis, we have decided not to imple-

ment multivariate factorisation ourselves. Instead, we have integrated our tool RAHD
with the open-source computer algebra system Maxima [LR08], and use its function-

ality for multivariate factorisation (and GCD, square-free decompositions and more).

As both tools are written in Common Lisp, their integration is seamless. Maxima, a

direct descendent of the immeasurably impactful MACSYMA system, is powerful and

robust, has a large active community of users, and most importantly, consists of open,

well-documented source code.
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Of course, no trust need be lost when delegating factorisation to an external pro-

cedure, as one simply verifies by multiplication that the factorisation is correct before

believing it.

In the rule below, we will use P and Q to mean computer representations of the poly-

nomials p and q (in Q[�x]). Two computer terms will correspond to the same abstract

polynomial if and only if their expansions into a computer representation of sum-of-

monomials normal form are identical. Let us clarify this fact by a brief representation

digression.

In RAHD, we primarily use two different internal representations of polynomials:

1. A “human readable” representation in which terms are given as Lisp S-expressions

over Lisp rational numbers, variable symbols, and the binary arithmetic opera-

tions (+, -, *, EXPT).

2. An “algebraic” representation corresponding to sum-of-monomials normal form.

In this representation, polynomials are given as a set of monomials, each of

which is a pair of a rational number and a power product, with a power-product

being a set of variable power pairs, and a variable power pair being a pair of a

variable symbol and a natural number greater than 1. When a monomial order

is used to arrange the members, each of these sets can be implemented as a

list with the nice property that two lists shall be identical if and only if they

correspond to the same set, and thus, the same polynomial. Hence, given a

monomial order, each polynomial will have a unique computer representation in

this sum of monomials form.

We call the first representation “extended EXPT,” as an exponentiation operator is

not officially a part of the language of ordered rings. Of course, we only use EXPT

when its power argument is a fixed natural number, so everything expressible in this

notation is expressible in the language of ordered rings directly. It’s just that having

EXPT around makes reasoning about the signs of factorisations easier.

We call the second representation “algebraic,” as this is the representation used, for

instance, by the Gröbner basis construction algorithms. In what follows, we assume

we have fixed some monomial order so that this each abstract polynomial has a unique

algebraic computer representation.

Let TE be the set of computer terms in extended EXPT representation and let TA be

the set of computer terms in algebraic representation. Then,

Expand : TE → TA
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will be the obvious surjection translating an extended EXPT term into its computer

sum-of-monomials normal form, and

Poly : TA →Q[�x]

will be the obvious bijection associating a computer sum-of-monomials normal form

with its abstract counterpart. Then,

Factor : TE → TE

will be s.t.

∀P ∈ TE Expand(Factor(P)) = Expand(P).

We will not place any more constraints upon the factorisation algorithm than this.

This is for pragmatic reasons: Multivariate factorisation is such a difficult problem

that, as we stated earlier, most high-powered implementations combine complete al-

gorithms with a multitude of heuristics and tricks for special cases. Usually, these

implementations (including that of Maxima) allow the user to give an argument ex-

pressing roughly how hard the system should try to obtain a full factorisation. When

the system deems this bound has been exceeded, it may return a term which, though

correct in the sense of corresponding to the same abstract polynomial as the original,

is only partially factored. Even these partial factorisations can often be very useful and

we want to allow them.

Finally, to minimise cognitive dissonance, we will present the atoms in the satura-

tion rules based upon factorisation using their computer representation. A computer

atom will be an S-expression of the form

( R P Q)

where the relation symbol R is drawn from

{<,<=,=,>=,>}.

Then, the simple factorisation rule is as follows.

( R P Q) R ∈ {<, <=, =, >=, >}
FactorAtom

( R Factor(P) Factor(Q))

It is convenient to have a rule which combines the zeroing of an atom’s right-hand

side, factors the resulting left-hand side, and then attempts to deduce sign information
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about the left-hand polynomial. The FACTOR-SIGN rule is designed for this. It will

use a function called DeduceSign of the form

DeduceSign : TE → {<,<=,=,>=,>}+{NIL}

s.t.

∀P∈TE [(DeduceSign(P) = R �= NIL) =⇒ (∀�r ∈ Rn [Poly(Expand(P))(�r) ⊙ R 0])] ,

where ⊙ R is the mathematical equality or inequality relation corresponding to R .

For example,

DeduceSign((* (EXPT (- K (+ (- X (* 2 Z)) (* 3 W))) 2) (EXPT X 2)))

will be >=. We include the Common Lisp source code of DeduceSign in the resource

given in Appendix A as the reasoning involved is as tedious as it is pedestrian.

Finally, the FACTOR-SIGN rule.

( R P Q) S = Factor((- P Q)) D = DeduceSign(S) �= NIL
FACTOR-SIGN ( D (- P Q) 0)

There are many other uses for multivariate factorisations. We will return to them

shortly when we examine term and formula simplification.

6.4.2 Simplification

We now turn to mechanisms for formula simplification. Formula simplification is an

area of both monumental depth and breadth; a true cornerstone of mathematics as a

whole, and a central focus of computer algebra and automated reasoning. Indeed, the

entire enterprise of mechanical theorem proving can be seen as an exercise in formula

simplification. But then, so can the evaluation of any partial recursive function.

In this section, we do not even attempt to give a global contextual view of formula

simplification and its tremendous generality. Instead, we simply present a small cata-

logue of simplification techniques which we have found useful during ∃ RCF decision

making. Our goal is to make clear the mathematics behind the methods we actually

use. We will discuss their application in the sequel.

§
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When it comes to formula simplification in the context of RCF quantifier elimina-

tion, the 2000 PhD thesis by Andreas Dolzmann [Dol00], Algorithmic Strategies for

Applicable Real Quantifier Elimination, is a remarkable achievement.

His thesis is focused upon formula simplification during the execution of a quan-

tifier elimination method known as virtual term substitution [Wei97]. However, it is

a tour de force of simplification, and much of what he says is applicable in our more

general setting of combined RCF decision methods. We make use of a number of the

simplification mechanisms he presents, e.g., those based on square-free parts, parity

decompositions and degree shifts.

Before giving an account of these and other simplification methods, let us be so

bold as to quote part of his introduction (p16, Section 2.2). His main point is that there

are many conflicting metrics under which one can measure formula complexity, and

thus, many incompatible metrics under which one can measure simplification progress.

[Begin Quotation — Dolzmann PhD : p16, Section 2.2]
The Notion of Simple Formulas
It is not obvious which formulas should be considered simple. We sum-
marise some simplification goals:

• Few atomic formulas Currently, this is our main goal. Quantifier
elimination output is in general too large to be understood by a hu-
man. However, it is often small enough for applications where it is
processed automatically, typically by repeatedly fixing the values of
some variables and then eveluating by resimplification. Small for-
mulas then minimize memory consumption and evaluation time.

• Comprehensible boolean structure When using quantifier elimina-
tion as a tool for solving mathematical problems it is essential that
the output is comprehensible. Examples for comprehensible boolean
structures are comparatively flat formulas or case distinctions.

• Few different atomic formulas This is convenient for quantifier
elimination by [virtual term substitution]. In addition, it supports
many simplification strategies.

• Simple terms We consider it unintuitive when information that can
be encoded logically is actually encoded algebraically. For instance,
we would prefer the disjunction a = 0∨b = 0 to the product ab = 0.

• Small satisfaction sets of the contained atomic formulas. This leads
to a formula that is less redundant. If we know e.g. that a �= 0 for
some reason, we can [perhaps] replace a �= 0 by [for instance] a < 0,
which has a smaller satisfaction set.

• Convenient relations For [virtual term substitution], weak orders
are more convenient than strong ones. On the other hand, equations
and disequations can be considered simpler than orders.
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• Convenient boolean operations We consider conjunction and dis-
junction to be simpler than implication, replication, and equivalence.

Some of the simplification goals given above contradict one another. [...]
[End Quotation]

In our general setting of combining a heterogeneous collection of ∃ RCF proof

procedures, we have to deal with many of these same simplification conflicts. From

a high level, our answer is to provide as many different simplification mechanisms as

possible, with many of them pairwise disagreeing on what makes one formula sim-

pler than another, and to then allow the user to strategically combine them as he sees

fit. Many of these simplification methods are further parameterised by simplification

seed data which can be user-specified, e.g., Gröbner basis simplification methods are

parameterised by a monomial order, which itself is parameterised by a variable order.

In what follows, we often assume the RHS of atoms have been zeroed by subtrac-

tion of the RHS from both sides. Similarly, it is often convenient to assume atoms with

polynomials in Q[�x] have been converted into equivalent atoms with polynomials in

Z[�x]. We will present simplification rules in a deductive form, in a similar format to

the saturation rules given previously. Note though that these simplification rules are

about replacing one subformula with another “simpler” one, not about adding to some

pool of known facts as with saturation.

6.4.2.1 Evaluation, Arithmetic Simplification and Directed Rewriting

These simplification rules perform three simple tasks:

1. The evaluation of ground6 atoms,

2. The arithmetic simplification of terms, both in a light-weight form and in a

heavy-weight form which canonicalises terms into sum-of-monomials normal

form respecting a monomial order,

3. The use of orientations and a monomial ordering to derive a set of terminating

rewrite rules from polynomial equations which contain linear monomials, fol-

lowed by their application.
6Note that in this dissertation, an atom is called ground iff its terms contain only arithmetical combi-

nations of rational numbers. This is a bit contentious, as since our formulas are all implicitly existentially
quantified, every “variable” can really be taken to be a Skolem constant, and thus every term in our for-
mulas can be seen to be ground in the sense usually used in mathematical logic. Nevertheless, given our
restriction to ∃ RCF, our usage is intuitive and convenient.
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In practice, task 3 often leads to atoms which can be simplified via tasks 1 and 2.

Rewrite rules derived in task 3 always lead to the elimination of a variable, which can

be very useful before applying proof methods whose complexity is heavily dependent

upon formula dimension, e.g., cylindrical algebraic decomposition. Both, tasks 1 and

2 can lead to variable elimination as well, e.g., if a variable only appears in a term in

which it is multiplied by zero.

Ground evaluation is handled by the following rule, where Ground(P) holds iff x

is a ground term, EvalAtom(( R P 0)) evaluates a ground atom using exact rational

arithmetic.

( R P 0) Ground(P)
SIMP-GEVAL EvalAtom(( R P 0))

Now, when a term is presented as part of an atom, it can easily be that the term

is not in sum-of-monomials normal form. This is especially true when problems of

a geometrical or physical nature are presented by hand, and also occurs often after

derived term manipulations have been applied to intermediate formulas, e.g., after the

application of rewrite rules.

Many proof procedures or components thereof, such as cylindrical algebraic de-

composition or Gröbner basis computation (including the Tiwari procedure), will first

canonicalise polynomials into sum-of-monomials normal form before they begin their

processing. This normalisation causes many types of arithmetical simplifications to

take place. But, in doing so, the size of terms can grow tremendously and important

information about the underlying polynomials can easily become hidden.

Therefore, it is prudent to have arithmetic simplification machinery which does not

perform this normalisation. Instead, this machinery should apply minimal transforma-

tions which attempt to eliminate trivial arithmetical components of terms while still

respecting as much as possible the original structure of the term presentation. We call

this light-weight arithmetical simplification. To perform it, we need to work recur-

sively over the tree structure of a computer term representation. Then, light-weight

arithmetical simplification is achieved by the following simple rewrite rules (with P

matching any term) together with a rule for evaluating ground subterms:

• (- P P) �→ 0,

• (+ P (- 0 P)) �→ 0,
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• (+ (- 0 P) P) �→ 0,

• (* P 0) �→ 0,

• (* 0 P) �→ 0,

• (+ P 0) �→ P,

• (+ 0 P) �→ P,

• (- P 0) �→ P,

• (* P 1) �→ P,

• (* 1 P) �→ P,

• (* (- 0 P) (- 0 P)) �→ (* P P),

• (EXPT P 0) �→ 1,

• (EXPT P 1) �→ P.

While working recursively over a term, we also want to evaluate any ground subterms.

This is done by the following conditional rule with EvalTerm(P) evaluating a ground

term:

Ground(P) =⇒ P �→ EvalTerm(P).

Then, letting LightSimp be a function which traverses the term structure and applies

the above rules until a fixed point is reached, we encapsulate this light-weight simpli-

fication into the following rule.

( R P Q) R ∈ {<, <=, =, >=, >}
SIMP-ARITH-LW

( R LightSimp(P) LightSimp(Q))

When light-weight simplification is insufficient, heavy-weight simplification may

be used. This involves the function Expand : TE → TA introduced in Section 6.4.1.5
which maps a term in extended EXPT notation into its computer sum-of-monomial

normal form, which is itself governed by an active monomial ordering (left implicit).

In the process, the RHS is zeroed.
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( R P Q) R ∈ {<, <=, =, >=, >}
SIMP-ARITH-HW

( R Expand((- P Q)) 0)

Finally, we turn to a simple mechanism for directed rewriting. This extracts a

rewrite rule from an equation (= P Q) if the canonicalised polynomial Expand((- P Q))

of the equation contains a monomial in a single indeterminate X s.t. X does not appear

in any other monomial in Expand((- P Q)). An active monomial order is used so that

if multiple such monomials exist in the canonicalised polynomial of the equation (each

in a different indeterminate), only the largest one is used as the source of a rewrite rule.

This has the nice effect that one can apply this process to all equations in a formula,

and the resulting system of rewrite rules will be guaranteed to be terminating. More-

over, one can iterate this process by deriving the terminating system of rewrite rules,

applying them as to obtain a formula in one less indeterminate, and then attempting

the whole process again upon the result.

We wrap this up as the following rule, where ExtractR(S) extracts a rewrite rule

from S as above and ApplyR(R,U) applies the rewrite rule R to the term U. As before,

we let R ∈ {<, <=, =, >=, >}.

(= P Q) ( R W V) R = ExtractR(Expand((- P Q))) R �= NIL
SIMP-LRW

( R ApplyR(R, W) ApplyR(R, V))

6.4.2.2 Square-free Parts and Parity Decompositions

Let p ∈ Z[�x]. Then, p is square-free if p has no divisor of multiplicity greater than 1.

The square-free decomposition7.

�p1, . . . , pk� s.t.
k

∏
i=1

pi
i = p

with each pi square-free and each pair of non-identical polynomials relatively prime

(i.e., pi �= p j =⇒ (pi, p j) = 1). The product ∏k
i=1 pi is called the square-free part of

7The definition of a square-free decomposition can be confusing when one first encounters it, as one
might naively expect the product part of the definition to be of the form “ �p1, . . . , pk� s.t. ∏k

i=1 pdi
i ” for

some indexed family of degrees di instead of “ ∏k
i=1 pi

i .” But, once one realises this is not a typo, then
it is not hard to see how a square-free factorisation can always be put into this canonical form. A nice
reference for square-free decompositions and their algorithmic foundation is [Yun76].
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p. Given a square-free decomposition of p as above, the parity decomposition of p is

defined as a pair of the form

�
k

∏
i=1,i odd

pi,
k

∏
i=2,i even

pi�.

A simplification mechanism due to Dolzmann utilises the following equivalences [Dol00].

Observation 6.4.7. Let p ∈ Z[�x], P be the square-free part of p and �po, pe� the parity

decomposition of p.

• p = 0 ⇐⇒ P = 0 ⇐⇒ (po = 0 ∨ pe = 0),

• p �= 0 ⇐⇒ P �= 0 ⇐⇒ (po �= 0 ∧ pe �= 0),

• p > 0 ⇐⇒ po p2
e > 0 ⇐⇒ (po > 0 ∧ pe �= 0),

• p ≥ 0 ⇐⇒ po p2
e ≥ 0 ⇐⇒ (po ≥ 0 ∨ pe = 0),

• p < 0 ⇐⇒ po p2
e < 0 ⇐⇒ (po < 0 ∧ pe �= 0),

• p ≤ 0 ⇐⇒ po p2
e ≤ 0 ⇐⇒ (po ≤ 0 ∨ pe = 0).

These equivalences give rise to the following simplification rules.
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p = 0 ParityDecomp(p) = �po, pe�
SIMP-PAR-EQ

(po = 0 ∨ pe = 0)

p �= 0 ParityDecomp(p) = �po, pe�
SIMP-PAR-NEQ

(po �= 0 ∧ pe �= 0)

p > 0 ParityDecomp(p) = �po, pe�
SIMP-PAR-G

(po > 0 ∧ pe �= 0)

p ≥ 0 ParityDecomp(p) = �po, pe�
SIMP-PAR-GEQ

(po ≥ 0 ∨ pe = 0)

p < 0 ParityDecomp(p) = �po, pe�
SIMP-PAR-L

(po < 0 ∧ pe �= 0)

p ≤ 0 ParityDecomp(p) = �po, pe�
SIMP-PAR-LEQ

(po ≤ 0 ∨ pe = 0)

6.4.2.3 PD, PSD and Trivial Sums of Squares

These simplification rules allow us to simplify an atom when we know its constituent

polynomial is either positive definite (PD), positive semidefinite (PSD), negative def-

inite (ND) or negative semidefinite (NSD). In some cases, we will be able to use the

rules given above using square-free or parity decompositions to enhance this simplifi-

cation.

Recall that a polynomial p is PSD iff it is strictly non-negative (i.e., only takes on

non-negative values when given any real numbers for its variables), PD if it is strictly

positive, NSD iff it is strictly non-positive, and ND iff it is strictly negative.

The ∃ RCF decision problem is simply reducible to the problem of deciding whether

or not a multivariate polynomial in Z[�x] is PD [PdM09b]. That is to say, it is very dif-

ficult, and any exhaustive check of this nature is not what one would want to have

as part of a fast simplification loop. But, there is one simple class of polynomials

for which deciding negative/positive (semi-)definiteness is simple: the trivial sums of



6.4. Saturation and Simplification 159

squares. We have essentially seen this class of polynomials before during our def-

inition of state witnesses in the original Tiwari method. That is, a polynomial p is

a trivial sum of squares (TSOS) if when p is expressed in sparse sum-of-monomials

normal form, every variable appearing in a monomial in p has even power and every

coefficient is non-negative. A polynomial p is a strict TSOS if p is TSOS and p has a

positive constant monomial.

With this in mind, let us recount simplification machinery again due to Dolzmann

[Dol00]. It begins by the following simple observations.

Observation 6.4.8. Let �po, pe� be the parity decomposition of p ∈ Z[�x]. Then, p is

PSD if po is TSOS. Furthermore, p is PD if both po and pe are strict TSOS. (These

implications do not follow in the other direction.)

Observation 6.4.9. Let p ∈ Z[�x] be PD. Then, we have the following equivalences:

1. p = 0 ⇐⇒ p < 0 ⇐⇒ p ≤ 0 ⇐⇒ false,

2. p �= 0 ⇐⇒ p > 0 ⇐⇒ p ≥ 0 ⇐⇒ true.

Observation 6.4.10. Let p ∈ Z[�x] be PSD. Then, we have the following equivalences:

1. p < 0 ⇐⇒ false,

2. p ≥ 0 ⇐⇒ true,

3. p > 0 ⇐⇒ p �= 0,

4. p ≤ 0 ⇐⇒ p = 0.

Note that by rules SIMP-PAR-EQ and SIMP-PAR-NEQ, the final two equivalences

can be further extended as follows (with �po, pe� the parity decomposition of p):

p > 0 ⇐⇒ p �= 0 ⇐⇒ (po �= 0 ∧ pe �= 0),

p ≤ 0 ⇐⇒ p = 0 ⇐⇒ (po = 0 ∨ pe = 0).

By observing the following closure properties of (strict) TSOS polynomials, we

will be able to further exploit the above equivalences.

Observation 6.4.11. Let p1, . . . , pk ∈ Z[�x] each be TSOS. Then,

• ∏ pi is TSOS,
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• ∏ pi is strict TSOS iff all pi are strict TSOS,

• ∑ pi is TSOS,

• ∑ pi is strict TSOS if at least one pi is strict TSOS.

We also have the more general observations on sums and products of PSD and PD

polynomials:

Observation 6.4.12. Let p1, . . . , pk ∈ Z[�x] each be PSD. Then,

• ∏ pi is PSD,

• ∏ pi is PD iff all pi are PD,

• ∑ pi is PSD,

• ∑ pi is PD if at least one pi is PD.

These observations are convenient, as they allow us to deduce a product or sum of poly-

nomials to be PD, PSD (or ND, NSD) if we know the relevant facts about its factors.

This is useful when polynomial terms are presented in a non-normalised form, e.g.,

with the product of polynomials written explicitly. Instead of immediately performing

polynomial multiplication and normalising the product into a sum-of-monomials nor-

mal form (as would be done if we were to form a Gröbner basis or begin computing

a cylindrical algebraic decomposition with the polynomials), we can first examine the

factors and attempt to deduce sign information from them, carrying this information to

the normalised product if we are successful.

Finally, the Dolzmann method makes additional use of the fact that TSOS polyno-

mials can often be usefully split.

Observation 6.4.13. When p was PSD, Observation 6.4.10 showed that (p < 0) and

(p ≥ 0) could both be decided, but (p > 0) and (p ≤ 0) were only reduced to (p �= 0)

and (p = 0) (resp.). In these cases, we can use the following two equivalences to split

the constraint involving a TSOS polynomial p = ∑si as follows:

�
∑si ≤ 0

�
⇐⇒

�
∑si = 0

�
⇐⇒

��
si = 0

�
,

�
∑si > 0

�
⇐⇒

�
∑si �= 0

�
⇐⇒

��
si �= 0

�
.
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These observations give rise to the following simplification rules. We use PSD(p)

(resp. PD(p)) to mean that we have proven p to be PSD (resp. PD). This may be

because p is TSOS (resp. strict TSOS), but this fact could also have been deduced

by other means. Of course, if PD(p) is known, then PSD(p) is known. We use

T SOS(p,∑si) to mean that we have recognised p to be a trivial sum of squares with

each si a trivial square s.t. p = ∑si.

p = 0 PD(p)
SIMP-PD-EQ false

p ≤ 0 PD(p)
SIMP-PD-LEQ false

p < 0 PSD(p)
SIMP-PSD-L false

p �= 0 PD(p)
SIMP-PD-NEQ true

p ≥ 0 PSD(p)
SIMP-PSD-GEQ true

p > 0 PD(p)
SIMP-PD-G true

p > 0 PSD(p)
SIMP-PSD-G p �= 0

p ≤ 0 PSD(p)
SIMP-PSD-LEQ p = 0

p = 0 T SOS(p,∑si)
SIMP-TSOS-SEQ �

si = 0

p �= 0 T SOS(p,∑si)
SIMP-TSOS-SNEQ �

si �= 0
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6.4.2.4 Gröbner Bases

There are many ways Gröbner bases can be used during formula simplification8. In

what follows, let

ϕ = ∃�x(
k0�

i=1
pi = 0)∧ (

k1�

i=1
qi > 0)∧ (

k2�

i=1
si ≥ 0) with pi,qi,si ∈Q[�x],

with E = {p1, . . . , pk0} the polynomials extracted from the equational fragment of ϕ.

First, if the equational fragment of a conjunctive formula is unsatisfiable over the

complex numbers, then the entire formula is of course unsatisfiable over the real num-

bers. Thus, checking the triviality of the ideal I(E) has the potential to detect the

unsatisfiability of ϕ.

Second, a Gröbner basis for I(E) can be used to inject the polynomials qi, si ap-

pearing in inequalities into their respective residue classes in the quotient ring Q[�x]/I(E).
This process can make nontrivial equalities between different polynomials visible,

which can then make it easier for subsequently applied techniques to decide the satis-

fiability of ϕ.

Third, the process outlined above can be further extended by splitting a non-strict

inequality into its requisite equational and strict inequality components, and examining

the resulting subcases. This strengthens the equational fragment (and hence Gröbner

reduction) of one subcase, and increases the number of strict inequality atoms in the

other. This can be exploited in the context of full-dimensional cylindrical algebraic

decomposition (FD-CAD). We will examine this in detail in the next section, but let us

say a bit about it for now. The key points are as follows.

• CAD can be made much more efficient if the semialgebraic set defined by the

formula being analysed is known to be an open set under the Euclidean topol-

ogy on Rn. If this is known, then a restricted variant, FD-CAD, may be used,

which avoids much expensive processing (chiefly, irrational algebraic number

computations).

• This openness can be guaranteed if the relation symbols in the formula being

analysed are only strict inequalities. That is, FD-CAD can be applied to a for-

mula consisting purely of a boolean combination (in our case, conjunction) of

strict polynomial inequalities.
8Note that for these simplification techniques based on Gröbner bases, we have opted not to present

them in the form of simple inference rules as we have with most others. This is because these rules rely
on examining an entire conjunctive formula, not just a single atom within it. We will see in the next
chapter how these techniques can be applied in the context of our tool RAHD.
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• By decomposing non-strict inequalities into their requisite strict inequality and

equational cases, one of the two cases of our formula is now closer to being

topologically open and thus suitable for FD-CAD, while the other case now has

a richer equational structure inducing a potentially larger ideal, which can be

exploited by Gröbner basis calculations resulting in more substantial term re-

ductions9.

Let us illustrate this with an example.

Example 6.4.14. Let ϕ = ((p1 ≤ 0)∧ψ) s.t. (WLOG) ψ consists only of conjoined

strict inequalities and equations. Let ϕ be split into ϕ1 = ((p1 < 0)∧ψ) and ϕ2 =

((p1 = 0)∧ψ), which will both be checked for satisfiability. Observe that the ideal

generated by the equations in ϕ2, I(E2), is a (possibly non-strict) superset of the

corresponding ideals of ϕ and ϕ1. Now, fix a monomial ordering ≺ and reduce all

polynomials appearing in the strict inequalities in ϕ2 with respect to GB≺(I(E2)) to

obtain an equisatisfiable formula ϕ�
2. Observe that the strict inequalities in ϕ�

2 have

now been potentially enriched with information contained in the equations of ϕ2. We

can now use the above observation on unsatisfiable subsets of conjoined constraints

and examine the satisfiability of only the strict-inequational fragment of ϕ�
2. As this

fragment is open, we may now use FD-CAD to decide its satisfiability, and an answer

of “UNSAT” would imply the unsatisfiability of the equational branch of ϕ, ϕ2.

All of these observations can be further enhanced by saturating the ideal I(E)
by both its (complex) radicalisation and approximations of its real radicalisation (cf.

Section 6.4.1.2).

Finally, there is much that can be done with both elimination ideals and in the

special case of zero-dimensional systems. We refer the reader to [Stu02, Dol00] for

more on these uses of Gröbner bases during RCF decisions.

6.4.2.5 Degree Shifts

The multivariate total degree of polynomials appearing in an ∃ RCF formula is a key

parameter of the asymptotic complexity of most proof methods. Chiefly, if a formula

can be made linear, then of course much simpler more efficient proof methods may be

used, e.g., the simplex algorithm [Nas00]. Moreover, if a formula can be made to be

9Observe that super-ideals correspond to sub-varieties, and thus increasing an ideal takes one closer
to the empty variety, which is the geometric object corresponding to an unsatisfiable formula.
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at most quadratic, powerful techniques based upon quadratic virtual term substitution

can be used, which often scale to much higher dimensions than procedures based upon

cylindrical algebraic decomposition, for instance [Wei97].

Naturally, one way to reduce the total degree of a formula is to eliminate variables

which occur in high degree. When that is no longer possible, the following “degree

shift” machinery due to Dolzmann [Dol00] can be very useful. A key property of this

degree shift is that it allows one to reduce the degree of a variable while not affecting

the degrees of any other variables. It can be done for all variables in a formula in turn.

Observation 6.4.15. Let ϕ = ∃xψ(x,�y) with ψ quantifier-free in negation normal form

(i.e., all ¬ symbols have been pushed inwards). Let xd1 , . . . ,xdk be the occurrences of

x in the monomials of ψ. Suppose that d = gcd(d1, . . . ,dk) �= 0. Let ψ� be the formula

obtained from ψ by replacing xdi by xci , where ci is the cofactor of d and di, i.e.,

di = cid. Then,

∃x ψ(x,�y) ⇐⇒





∃w ψ�(w,�y) if d is odd,

∃w (w ≥ 0∧ψ�(w,�y)) if d is even.

This equivalence is easily seen by using w = xd and x = d
√

w for the (⇒) and (⇐)

directions, resp.

Example 6.4.16. Let ϕ = ∃x(y1x2 + y2 < 0). Then, d = 2, and so we have

ϕ ⇐⇒ ∃w(w ≥ 0 ∧ y1w+ y2 < 0),

which can be verified by setting w = x2 (⇒) and x = 2
√

w (⇐), the latter which must

exist by the condition w ≥ 0.

6.5 Conclusion

In this chapter, we have presented a large heterogeneous collection of ∃ RCF proof

procedures. In the process, we have paid special attention to how these procedures

may be easily combined with each other so as to increase their collective efficacy.

At times, this has required us to generalise known procedures and allow other proof

procedures to be given to them as functional parameters. Each of these methods have

been implemented in our tool RAHD which we will see in Chapter 8. This will

allow us to begin synthesising and experimenting with specific combinations. With

this arsenal in hand, we will in the next chapter present the framework of Abstract
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Partial CAD. This framework will allow us to use fast, sound but incomplete proof

procedures built from the components in this chapter, for instance, as parameters for

strategically augmenting complete CAD-based decision methods.





Chapter 7

Abstract Partial Cylindrical Algebraic

Decomposition

7.1 Introduction

In this chapter, we present the framework of Abstract Partial Cylindrical Algebraic

Decomposition (AP-CAD). This is an extension we have developed of the well-known

RCF quantifier elimination procedure partial cylindrical algebraic decomposition (P-

CAD). In this extension, arbitrary (sound but possibly incomplete) ∃ RCF proof pro-

cedures — such as those we have developed in this thesis up to now — can be given

as parameters and used to “short-circuit” certain expensive computations during CAD

construction. These ∃ RCF proof procedures may be used to reduce the expense of the

stack construction (“lifting”) phase of CAD. We will explain this terminology shortly,

and will be greatly aided by the fact that restricting ourselves to purely ∃ formulas

makes CAD much simpler to describe.

Let us spend a moment more on motivation. We are interested in developing feasi-

ble proof procedures for ∃ RCF which can be used for large problems arising in prac-

tical verification efforts, specifically those in many variables (“high-dimensional”). Of

the complete methods, CAD is the decision method which usually performs best in

practice, even though its practical reach is limited to problems in relatively low num-

bers of variables1. Given an RCF formula ϕ, CAD has time complexity doubly expo-

nential in the number of variables of ϕ, and polynomial in the number of polynomials

1For example, we have never succeeded in using pure P-CAD on a nonlinear problem in more than
10 variables. Often, we have observed standard P-CAD implementations such as QEPCAD-B run out
of resources on relatively small problems in 5 or 6 variables. QEPCAD-B is a state-of-the-art, careful
implementation with many optimisations. The problem is one of inherent complexity of the algorithm.

167
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in ϕ, the multivariate total degree of the polynomials in ϕ, the bit width of the coef-

ficients of ϕ, and the number of atoms of ϕ. Clearly, high-dimensionality is the most

difficult practical hurdle.

Thus, our programme in the previous chapter has been as follows:

1. To investigate a battery of fast, sound but incomplete ∃ RCF proof methods,

each with their own strengths and weaknesses, paying close attention to how

these different methods may be compellingly combined. We are especially in-

terested in proof procedures, such as those based on ICP, which scale well to

high-dimensional settings.

2. To develop many of these combinations (e.g., Extended Tiwari with ICP, Ex-

tended Tiwari with external saturation, ICP with pre-processing based upon

degree-shifts, and so on), and to do so in such a way that the exact nature of

these combinations can be tailored as needed. For instance, ICP methods of

varying strength can be used as the ICP engine in our extended Tiwari calculus.

Similarly, the exact saturation methods used during the extended Tiwari method

can be instantiated as appropriate for a given application. Formally, this gener-

ality is obtained by making key aspects of the combinations parameters.

Finally, we will in this chapter present the most general of our combined methods, AP-

CAD. This method is especially interesting as, unlike the rest, it is complete. Thus,

we will build a framework so that fast, sound but incomplete methods can be used to

improve the processing of this complete method. We will see in the next chapter a

simple proof strategy language used in our tool RAHD for combining ∃ RCF proof

procedures. Formally, the proof procedure parameters used to enhance and tailor AP-

CAD as needed will be realised as RAHD proof strategies.

7.2 CAD Preliminaries

For a detailed overview of CAD, including proofs of the foundational theorems, we

refer the reader to [ACM84] and [BPR06]. In what follows, we will present only

the background on CAD required to understand AP-CAD for purely ∃ formulas. Our

exposition is original and we believe these restrictions on our presentation help make

CAD rather more approachable for those interested only in RCF satisfiability.

§
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CAD is a quantifier elimination algorithm for the full first-order theory of RCF.

From the outside, it is performing the same task as the Muchnik procedure given in

Chapter 2, though with a far superior (still hyper-exponential, but elementary) time

complexity. Unlike the Muchnik method, CAD is fundamentally geometrical in nature

and has an intuitive geometric explanation.

Recall that a semi-algebraic set is any subset of Rn definable by a quantifier-free

formula in the language of ordered rings. Then, an algebraic decomposition of Rn

is a decomposition of Rn into finitely many connected components such that each

component is semi-algebraic. A cylindrical algebraic decomposition is a special type

of algebraic decomposition in which the connected components are in a sense “well-

behaved” with respect to projections onto lower dimensions.

Before delving into the technical details of this good behaviour, let us first discuss

its practical ramifications. From now on, when we say “the polynomials of (an ∃ RCF
formula) ϕ,” we mean the collection of polynomials obtained by zeroing the RHS of

every atom in ϕ through subtracting the RHS from both sides. We assume each such

∃ RCF formula is in prenex normal form, so that it is a boolean combination of sign

conditions, i.e., of atoms of the form

(p⊙0) with p ∈ Z[�x], ⊙ ∈ {<,≤,=,≥,>}.

The key point is that if we have in hand a CAD of Rn derived from an ∃ RCF
formula ϕ, we can decide the truth of ϕ from the CAD directly. The reason is amaz-

ingly simple: The polynomials of ϕ will induce a CAD — a decomposition of Rn into

finitely many semi-algebraic connected components or cells c1, . . . ,cm ⊆Rn, s.t. every

polynomial in ϕ has constant sign on each ci. This is referred to as the sign invariance

of a cell decomposition. Given p a polynomial of ϕ and a ci a cell, we have

∀�r ∈ ci(p(�r) = 0) ∨ ∀�r ∈ ci(p(�r)> 0) ∨ ∀�r ∈ ci(p(�r)< 0).

Given this decomposition, it is clear there are only finitely many combinations of sign

conditions the polynomials of ϕ may take on over Rn. Thus, to decide ϕ, we simply

substitute a sample point from each ci into the quantifier-free matrix of our formula

QF(ϕ) and see if it ever evaluates to true. It will evaluate to true on at least one

sample point if and only if ϕ is true over Rn.

Now, a few questions come to mind after this intuitive description. First, given

ϕ, how does one construct such a CAD? Second, how does one extract these sample

points from a description of the cells? Third, given a sample point from each cell, how
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does one perform the substitution and formula evaluation when sample points involve

irrational algebraic numbers?

We will explain the process of computing CADs for ∃ RCF formulas. In doing so,

we will see that the answer to the second question is given by this CAD construction.

When we construct a CAD, what we actually do is construct an implicit description of

the CAD given by a collection (structured as a tree) of sample points, one for each cell.

By sign invariance, one sample point from a cell will be as good as any other. In fact,

this will be done by induction so that a sample point in Ri+1 will be obtained from a

sample point in Ri by simply appending an additional real number to the vector of real

numbers which is the lower-dimensional sample point. This process will result in the

construction of a tree of cells, with a collection of sample points for each dimension

1 . . .n, and a sample point in Ri giving rise to a collection of sample points in Ri+1,

each one obtained by appending a different real number to the vector of real numbers

which is the sample point in Ri.

The answer to the final question above, regarding the substitution of irrational alge-

braic numbers, is that one must be careful and use special algorithms for computation

with algebraic numbers. This is often a bottleneck of CAD computations. For our

purposes below, we will avoid this complication first by working at a higher level of

abstraction in which we give ourselves the freedom to speak of manipulating real alge-

braic numbers by substituting them into ∃ RCF formulas and evaluating the grounded

atoms. This will only be done when this level of abstraction is appropriate for the

presentation of our general framework. Later, when we are more concrete and describ-

ing our implementation, we will present the “full-dimensional” case of AP-CAD. This

full-dimensionality will mean that we can always extract a rational sample point from

each of our cells, as can be done for ∃ RCF formulas only involving ∧,∨ combinations

of polynomial strict inequalities, for instance. The AP-CAD implementation in our

RAHD tool is this full-dimensional case.

7.3 CAD Definitions

A CAD of Ri will be a special type of decomposition of Ri into finitely many connected

components. Let us fix some notation.

Definition 7.3.1 (Region). A region of Ri is a connected component of Ri.

Definition 7.3.2 (Cell). A cell is a region of a CAD.
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A CAD consists of a collection of cells. We will build the definition of a CAD by

induction on dimension.

Our base case is R1 = R. A CAD of R is a decomposition of R into finitely many

cells ci ⊆ R s.t. each ci is of the form

• {α} for an algebraic real number α, or

• ]α1,α2[ for algebraic real numbers α1,α2, or

• ]-∞,α[ or ]α,+∞[ for an algebraic real number α.

Equivalently, a CAD of R1 is an algebraic decomposition of R into finitely many cells,

with each cell either a singleton pointset or an open interval. Given a finite collection

of univariate polynomials P = {p1, . . . , pk} ∈ Z[x], the CAD induced by P is simply

the collection of roots of the polynomials pi and the open intervals induced by these

roots (in exactly the same manner we saw within the definition of an ordered row of

signs, cf. Definition 2.2.3).

Example 7.3.3. Let P = {x−1,x2 −2}. Then, the CAD induced by P is as follows:

c1 = ]-∞,−
√

2[,

c2 = {−
√

2},

c3 = ]−
√

2,1[,

c4 = {1},

c5 = ]1,
√

2[,

c6 = {
√

2},

c7 = ]
√

2,+∞[.

An important observation about a CAD of R1 is that there is a natural ordering between

the cells. That is, in the above example it makes sense to say

c1 < c2 < c3 < c4 < c5 < c6 < c7.

This ordering property of cells will be fundamental to the definition of CAD in higher

dimensions. It is at the heart of the “good behaviour” we mentioned which makes

an algebraic decomposition a cylindrical one. This ordering property will allow us to

obtain a CAD for Ri+1 from a CAD for Ri. Let us see how.

Observe that for CADs of R1, there are essentially two types of cells — singleton

pointsets and open intervals. This dichotomy will continue in higher dimensions with

the distinction between sections and sectors.
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In what follows, let A be a region of Ri.

Definition 7.3.4 (Cylinder). We call A×R the cylinder over A and denote it by Z(A).

Definition 7.3.5 (Stack). Let f1, . . . , fk ∈ C(A,R). That is, f j is a continuous function

from A to R. Furthermore, suppose that the images of the f j are ordered over A in the

following sense:

∀α ∈A
�

f j(α)< f j+1(α)
�
.

Then, f1, . . . , fk induce a stack S over A, where S is a decomposition of the cylinder

Z(A) into 2k+1 regions of the following form:

• r1 = {�α,x� | α ∈A,x < f1(α)},
r3 = {�α,x� | α ∈A, f1(α)< x < f2(α)},
...

r2k−1 = {�α,x� | α ∈A, fk−1(α)< x < fk(α)},
r2k+1 = {�α,x� | α ∈A, fk(α)< x},

• r2 = {�α,x� | α ∈A,x = f1(α)},
...

r2k = {�α,x� | α ∈A,x = fk(α)}.

We call regions of the odd index form sectors and regions of the even index form

sections.

Observation 7.3.6. Observe that a sector in a stack over A is always of the same

dimension as the cylinder Z(A). Thus, if r j is a sector in a stack over A ⊆ Ri with

A homeomorphic to Ri, then r j is homeomorphic to Ri+1. We call r j in this case a

full-dimensional cell.

Observation 7.3.7. Observe that a rational point may always be found inside of a

full-dimensional cell.

Observation 7.3.8. Observe how the notion of a stack preserves a natural ordering

between the regions it induces, as we had for cells in a CAD of R1:

r1 < r2 < .. . < r2k+1.

Finally, we may give the inductive step of the CAD definition. The idea is that a CAD

of Ri+1 will be obtained from a CAD of Ri by constructing a stack over every cell in

the lower-dimensional CAD and unioning the stacks to obtain a set of cells in Ri+1.
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Definition 7.3.9 (CAD in Ri+1). An algebraic decomposition Ci+1 of Ri+1 is a CAD

iff Ci+1 is a union of stacks

Ci+1 =
2k+1�

j=1
w j,

s.t. the stack w j is constructed over cell c j in a CAD Ci = {c1, . . . ,c2k+1} of Ri.

With the inductive definition of a CAD given, let us now turn to a fundamental

property of the CADs we will construct. This property — a formalisation of the sign

invariance mentioned in the introduction — will allow us to use CADs to make ∃ RCF
decisions.

Definition 7.3.10 (P-invariance). Let P = {p1, . . . , pk} ⊂ Z[x1, . . . ,xn] and A be a re-

gion of Rn. Then, we say A is P-invariant iff every member of P has constant sign on

A. That is given any pi ∈ P,

∀�r ∈A(pi(�r) = 0) ∨ ∀�r ∈A(pi(�r)> 0) ∨ ∀�r ∈A(pi(�r)< 0).

Given a set of regions {A1, . . . ,Am}, we say the set is P-invariant iff every region A j

is P-invariant.

Definition 7.3.11 (P-invariant CAD). Let P = {p1, . . . , pk}⊂ Z[x1, . . . ,xn]. Then, C =

{c1, . . . ,cm} is a P-invariant CAD iff C is a CAD of Rn and C is P-invariant.

Observation 7.3.12. Observe that if P ⊂ Z[x1, . . . ,xn] is the collection of polynomials

in an ∃ RCF formula ϕ, and C = {c1, . . . ,cm} is a P-invariant CAD of Rn, then we can

decide the truth of ϕ over Rn by selecting a sample point from each cell ci and seeing

if the quantifier-free matrix our formula, QF(ϕ), evaluated at the sample point of ci is

true. QF(ϕ) will be true on at least one sample point iff ϕ is true over Rn. This is a

direct consequence of the following facts: (i) C covers all of Rn, and (ii) each cell ci

is P-invariant. (Again, the one difficulty is evaluating QF(ϕ) at an irrational algebraic

sample point. To understand the intuitive idea of this overall decision process, however,

let us postpone our worries and for now simply accept that these algebraic number

computations can be accomplished algorithmically. Then, the use of CADs to decide

∃ RCF sentences is incredibly clear.)

7.4 CAD Construction and Evaluation for ∃ RCF

CAD construction for deciding ∃ RCF sentences will take place in three steps: pro-

jection, base and lifting (often called “extension” or “stack construction”). To utilise



174 Chapter 7. Abstract Partial Cylindrical Algebraic Decomposition

a constructed CAD to decide an ∃ RCF sentence, a fourth step, formula evaluation,

will be executed. Let us sketch these out and then fill in the relevant details. In what

follows, assume that ϕ is an ∃ RCF formula and P = {p1, . . . , pk}⊂Z[x1, . . . ,xn] is the

collection of polynomials of ϕ. We will use the convention that variable xi+1 will be

projected away before variable xi.

Projection The projection phase will begin with P and iteratively apply a projection

operator Pro j of the form

Pro j : 2Z[x1,...,xi+1] → 2Z[x1,...,xi]

until a set of univariate polynomials is obtained over Z[x1]. This process will

consist of levels, one for each dimension, and at each level i we will have what

is called a level-i projection set2, Pi. This looks as follows:

Pn = P = {p1, . . . , pk}⊂ Z[x1, . . . ,xn],

Pn−1 = Pro j(Pn)⊂ Z[x1, . . . ,xn−1],

Pn−2 = Pro j(Pn−1)⊂ Z[x1, . . . ,xn−2],
...

P2 = Pro j(P3)⊂ Z[x1,x2],

P1 = Pro j(P2)⊂ Z[x1].

These level-i projection sets will have a very special property: Namely, it will

hold that if we have a Pi-invariant CAD of Ri, then we can use this CAD to

construct a Pi+1-invariant CAD of Ri+1. Thus, to start the motor running, we

must construct a P1-invariant CAD of R1. This is done in the base phase.

Base The base phase will consist of computing a P1-invariant CAD of R1. As P1 is

univariate, this should be a simple process.

Recall our previous discussion regarding sample points: Namely, when we “con-

struct a CAD” inside of a computer, what we actually do is construct an implicit

description of the CAD given by a tree of sample points, one for each cell in

the CAD. By the sign invariance property of CAD cells w.r.t. the polynomials

inducing the CAD, one sample point from each cell will be enough to decide our

formulas. So, our task in the base phase reduces to computing a sample point
2An interested reader familiar with CAD may notice that we speak only of projection sets, not

projection factor sets. This is for simplicity of our exposition. All of the relevant machinery pertaining
to projection sets will of course work directly with projection factor sets.
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for each cell in a one-dimensional CAD. This can be done by univariate real

root isolation using Sturm sequences or Bernstein bases, for instance. However,

there is one obvious caveat: irrational algebraic numbers.

Recall the distinction between sections and sectors: In a CAD of R1, a section

is a singleton pointset corresponding to a root of a polynomial, and a sector is an

open interval either between consecutive roots or going off from a root to -∞ or

+∞. Clearly, a rational number may always be found inside of a sector. But, of

course, a root of a univariate polynomial may be irrational, and so a section in a

CAD of R1 may consist of a single irrational algebraic number.

The question then arises in the context of this base phase: How does one rep-

resent the sample point for such a section (e.g., the irrational algebraic number

which is the only point of the section) inside of a computer? In one word: care-

fully. Precisely because such a sample point is algebraic, it can be represented

by (i) its minimal polynomial (i.e., the irreducible monic polynomial of which it

is a root), and (ii) an open interval with rational endpoints containing the sample

point and no other roots of its minimal polynomial. This data uniquely identifies

the sample point and provides for it a finite description representable inside of a

machine. This description can then be computed with in place of the numbers

themselves, e.g., [Rio03].

When we give a concrete presentation of AP-CAD shortly, we will do this for the

so-called “full-dimensional” case. This will only require we select sample points

from sectors, and these will always be rational numbers. So, we will not need to

describe the algebraic number computation methods used for handling sample

points taken over sections. By a theorem of McCallum, this will be sufficient for

deciding the satisfiability of ∧,∨ combinations of polynomial strict inequalities.

Nevertheless, if one “forgets” this complication, the spirit of ∃ CAD, even in its

general case, is easily understood. This can be achieved by allowing ourselves

the freedom to speak of substituting and evaluating formulas upon arbitrary real

algebraic numbers. Let us allow this pedagogically useful expository device for

the remainder of this intuitive discussion.

Our mission of the base phase is then to construct a representation of a P1-

invariant CAD of R1 by giving a sequence of sample points in each cell in the

CAD. Let us suppose we have done this (à la Example 7.3.3) and our sequence

of sample points is s1 < s2 < .. . < s2m+1. Now, we can turn to lifting.
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Lifting The lifting phase will take an implicit description of a P1-invariant CAD of

R1 and progressively transform it into a Pn-invariant CAD of Rn. This is done

inductively, by a succession of steps which each take an implicit description of a

Pi-invariant CAD of Ri and “lift” it to an implicit description of a Pi+1-invariant

CAD of Ri+1. Each of these inductive steps will happen by constructing a stack

over every cell in the CAD of Ri and extracting sample points from each region

in the stack. Amazingly, with the freedom we have given ourselves to speak of

algebraic reals, all we need to accomplish lifting is a combination of substitution

and univariate real root isolation (i.e., CAD construction over R1, which we

already know how to do).

Let C = {c1, . . . ,cm} be the Pi-invariant CAD for Ri which we will lift to a Pi+1-

invariant CAD of Ri+1. Let S = {s1, . . . ,sm} be our set of sample points, one

from each cell in C. Then, for each cell c j, we will use the sample point s j ∈ c j

to construct a set of sample points in Ri+1 corresponding to a stack over c j:

1. As s j ∈ Ri, we have that s j = �r1, . . . ,ri� for some real numbers r1, . . . ,ri.

2. The real number components of s j will then give us values to substitute in

for the variables x1, . . . ,xi in the level-(i+1) projection set Pi+1. By doing

this substitution, we will obtain a univariate family of polynomials.

3. Let Pi+1[s j] denote Pi[x1 �→ r1,x2 �→ r2, . . . ,xi �→ ri]. Then Pi+1[s j]⊂Z[xi+1]

is a univariate family of polynomials.

4. Using the same process as we did in the base phase, compute a Pi+1[s j]-

invariant CAD of R1. Let this CAD be represented by a sequence of sample

points t1 < t2 < .. . < t2v+1 ∈ R.

5. Then, the stack over c j will be represented by the set of 2v+1 sample points

obtained by appending each t j to the lower-dimensional sample point s j.

That is, our stack over c j will be represented by the following sequence of

sample points z1, . . . ,z2v+1 in Ri+1:

z1 = �r1, . . . ,ri, t1�,
z2 = �r1, . . . ,ri, t2�,
...

z2v+1 = �r1, . . . ,ri, t2v+1�.

In the above construction, we call the cell c j (or the sample point representing it,
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s j) the parent of the stack {z1, . . . ,z2v+1}. Given a sample point zv in the stack,

we also call c j (or s j) the parent of zv. We use the word child then in the obvious

way. Parenthood will be transitive.

Then, the process of lifting gives rise to a tree: Each cell c j in the lower-

dimensional CAD of Ri will be parent to a sequence of higher-dimensional

children which are points in Ri+1, i.e., the sample points drawn from the stack

constructed over c j.

Evaluation Finally, we have the evaluation phase. Given a suitably sign invariant

CAD induced by an ∃ RCF sentence ϕ with polynomials P = {p1, . . . , pk} ⊂
Z[x1, . . . ,xn], this phase will allow us to use the CAD to decide the truth of ϕ.

This is done by substituting each sample point in the CAD into the quantifier-

free matrix of the sentence, and seeing if the sentence ever evaluates to true. It

will evaluate to true at some sample point in the CAD iff ϕ is true over the real

numbers.

More precisely, let C = {c1, . . . ,cm} be a P-invariant CAD of Rn represented by

sample points S = {s1, . . . ,sm}⊂ Rn. Then,

�R,+,∗,−,0,1,<� |= ϕ ⇐⇒
�

�r∈S
QF(ϕ)[�r],

where QF(ϕ)[�r] is the quantifier-free matrix of ϕ evaluated at point�r.

From the above discussion (and again abstracting away from complications re-

garding irrational algebraic numbers), we can extract a simple algorithm for deciding

∃ RCF formulas. At a high level of abstraction, the CAD construction portion of this

algorithm can be sketched visually by the following diagrams, the first one illustrating

the base phase and the second one illustrating the inductive step of CAD construction.

P ⊂ Z[x1]
CADR1✲ B ⊂ 2R

Pi+1 ⊂ Z[x1, . . . ,xi+1]
Pro jZ[x1,...,xi+1]�→Z[x1,...,xi]✲ Pi ⊂ Z[x1, . . . ,xi]

Ci+1 ⊂ 2R
i+1

CADRi+1

❄
✛ Li f tRi �→Ri+1

Ci ⊂ 2R
i

CADRi

❄
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Then, given an ∃ RCF formula ϕ with polynomials P = {p1, . . . , pk} ⊂ Z[x1, . . . ,xn],

we can decide the truth of ϕ as follows:

1. Construct a P-invariant CAD C of Rn represented by sample points S= {s1, . . . ,sm}.

2. Evaluate the ground formula
�

�r∈S
QF(ϕ)[�r]

and return the result.

7.5 Partial CAD

As it stands, the CAD construction algorithm will build a P-invariant CAD induced

by the polynomials P of an ∃ RCF formula ϕ without paying any attention to the

logical content of the formula itself. Besides contributing these polynomials inducing

the CAD, the formula does not play a part in the decision process until the evaluation

phase of the CAD-based decision algorithm. This evaluation does not happen until

after the full P-invariant CAD has been constructed.

But, when performing lifting, i.e., constructing a stack of regions of Ri+1 over a

lower-dimensional cell c j ⊂Ri, we may be easily able to see — simply by substitution

and evaluation — that the formula QF(ϕ) could never be satisfied over c j.

For instance, let

QF(ϕ) =
�
(x4

4 + x3x3
2 +3x1 > 2x4

1) ∧ (x2
1 > x2 + x3)

�
.

Then, if c j is a cell in a P3-invariant CAD of R3 represented by the sample point

s j = �0,1,5�, then we can see QF(ϕ) will never be satisfied over a cell in a stack

which is a child of c j. Thus, we need not perform lifting over c j. We can simply throw

the cell away and avoid the expensive process of lifting over it entirely.

This is the idea behind partial CAD when applied to ∃ RCF formulas: Before

performing lifting over a cell in a CAD of Ri, check to see if there are any atoms in

your formula which happen to only involve the variables x1, . . . ,xi. If this is the case,

then perform partial evaluation of your formula by evaluating those atoms upon your

sample point in Ri, and then use simple propositional reasoning to see if this allows

you to deduce the truth of your formula.
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This can also allow us to find a satisfying assignment for the variables in QF(ϕ)
without constructing a whole CAD. For instance, let

QF(ϕ) =
�
(x4

4 + x3x3
2 +3x1 > 2x4

1) ∨ (x2
1 < x2)

�
.

Then, if c j is a cell in a P2-invariant CAD of R2 represented by the sample point

s j = �−1,2�, then we can see immediately by substitution that QF(ϕ) is satisfiable

over R4. As a vector of real numbers witnessing this satisfiability, we may return

�−1,2,r3,r4� where r3,r4 ∈ R are arbitrary reals.

The beautifully simple and powerful idea of partial CAD, due to Collins and Hong

[CH91], is the dominant paradigm of modern CAD-based decision methods. It has

been implemented as the basis of CAD-based quantifier elimination in both the QEPCAD-

B and Redlog programs, and one often sees in the literature practitioners taking it for

granted (saying “CAD was applied to decide this formula” when really, the fact that

partial CAD was applied was absolutely crucial in making the computation terminate

in a reasonable amount of time).

7.6 Abstract Partial CAD

The ideas we have developed thus far in this thesis give us a perspective from which

we can view partial CAD in a new light. From a high level of abstraction, we can see

partial CAD to be normal CAD augmented with three pieces of algorithmic data:

1. A strategy for selecting lower-dimensional cells to use for evaluating lower-

dimensional atoms in our input formula,

2. An algorithm which when given a cell c j will construct a formula F(c j) which,

if it both has a truth value and is decided, can be used to tell (i) if the cell c j

can be thrown away (i.e., F(c j) is decided to be false), or (ii) if a satisfying

assignment for our formula can be extracted already from a lower-dimensional

cell (i.e., F(c j) is decided to be true),

3. A proof procedure which will be used to decide the formulas F(c j) generated by

the algorithm above.

In fact, in their original paper on partial CAD, Collins and Hong make the point that

different cell selection strategies could be used and even implement and experiment
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with a number of them3. For partial CAD restricted to ∃ RCF, these three pieces of

algorithmic data described above would be:

1. Select cells ci ∈C in some specified enumeration order (specified by s):

cs(1),cs(2),cs(3), . . . .

2. Given a cell c j represented by a sample point s j = �r1, . . . ,ri� ∈ Ri, the formula

F(c j) will be constructed from our original ∃ RCF formula ϕ by the following

process:

(a) Remove the ∃ quantifiers for x1, . . . ,xi from ϕ to obtain a new formula ϕ�.

(b) Augment ϕ� by instantiating x1 with r1, x2 with r2, and so on to obtain a

new formula ϕ��.

(c) Evaluate all atoms in ϕ which are ground to obtain a new formula ϕ���.

(d) Replace all unique non-ground atoms with fresh propositional variables to

obtain a new formula F(c j). If the same non-ground atom appears more

than once, each occurrence can be given the same propositional variable.

3. Use a decision procedure for propositional logic to decide the status of F(c j).

Then, if F(c j) is false (i.e., unsatisfiable), the cell c j can be abandoned and we need

not lift over it. If F(c j) is true (i.e., tautologous), then we can extract a witness to the

truth of ϕ from the sample point s j. Otherwise, we lift over c j.

These three pieces of data used in the way prescribed give us the widely-used

partial CAD of Collins and Hong. But, from this point of view, we see that there are

many other choices we could make for these data. Key to this enterprise is that we

will be able to pass ∃ RCF proof procedures as parameters to our AP-CAD procedure.

These procedures will be presented in a proof strategy language we will introduce in

the next chapter in the context of our tool RAHD. Because we have built an arsenal

of combined (and combinable) RCF procedures, we will be able to create non-trivial

proof strategies and use them to tailor instances of AP-CAD to our needs.

With generality comes freedom. In the context of a decision problem with in-

herently infeasible time complexity such as ∃ RCF, the freedom to tailor a decision

procedure to one’s needs can mean the difference between obtaining a solution in a

reasonable amount of time or simply running out of resources (time, space, patience).
3For Collins and Hong, a cell selection strategy selects single cells in some specified order. In

Abstract Partial CAD, cell selection strategies will select sets of cells in some specified order and ∃
RCF proof procedures will be applied to see if every cell in a selected set of cells may be eliminated.
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7.6.1 Stages, Theatres and Lifting

Let us now give a formal description of AP-CAD. The framework of AP-CAD will be

even more general than the motivating sketch we gave with partial CAD above. This

extra generality will be rooted in the fact that a cell selection strategy will actually

select a subset of the cells in the Pi-invariant CAD of Ri. The fundamental notion will

be that of an stage4. In what follows, let L∃OR be the fragment of the language of

ordered rings consisting of purely ∃ sentences in prenex normal form.

While working through the definitions below, it may help the reader to see a con-

crete instantiation of Abstract Partial CAD. This can be found in the experimental

evaluation section of the next chapter, Section 8.6.2.

Definition 7.6.1 (Stage). A stage will be given by three pieces of algorithmic data. A

stage will not formally depend upon the dimension i of the space Ri decomposed by the

CAD Ci. But, for concreteness, we will describe a stage by how it acts in the context of

such a fixed (but arbitrary) Ri. That is to say, a stage should be dimensionally agnostic:

it must satisfy the requirements below for each i ∈ N+.

These data are as follows:

1. A cell selection strategy for selecting subsets of Ci for analysis (we call such a

subset a “selection of cells”),

2. A formula construction strategy for constructing an ∃ RCF formula whose truth

value will correspond to the relevance of a selection of cells (we call such a

formula a “cell selection relevance formula”),

3. An ∃ RCF proof procedure used to (attempt to) decide the truth or falsity of a

cell selection relevance formula.

Let us make these precise. It is important to notice that a cell selection strategy

will actually be a strategy for the selection of a set of sample points, with each unique

sample point drawn from a unique cell. As with CAD generally, this can be seen

as a representation of a selection of the corresponding cells. We still call this a cell

selection strategy as “sample point selection strategy” reads in a misleading manner.

A cell selection function — the workhorse of a cell selection strategy — will take the

set of sample points (from which it will select a subset) as an argument. It will also

take a second argument, an integer indicating the “step” of the selection. Given a set
4The intended connotation is of a stage in a theatre.
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of sample points, the covering width function will indicate how many steps of sample

point selection should be executed. This need not result in an exhaustive covering of

the set of sample points. For instance, a simple cell selection strategy might, when

given the set of sample points {s1, . . . ,sm}, return {s1} for step 1, {s2} for step 2 and

so on, with the covering width being m. An equally allowable cell selection strategy

would be the same cell selection function with a covering width of 1, resulting in a

selection only of {s1}.

In the context of CAD construction, sample points will be removed from the set of

sample points when they (i.e., their corresponding cells) are deemed to be irrelevant to

the ∃ RCF formula inducing the CAD. This removal might then result in a set of sam-

ple points for which the cell selection function behaves differently than it did initially.

This motivates the convergence axiom for covering width functions, so that these dy-

namics do not result in a non-terminating CAD-based decision algorithm employing

the stage machinery.

Let us abbreviate the set of all finite sets of i-dimensional real vectors (i.e., the set

of all possible sets of i-dimensional sample points) as

Ri = {s ⊂ Ri | |s|< ω}.

1. A cell selection strategy will consist of two components:

(a) A covering width function

w : Ri → N,

(b) A cell selection function (which selects a set of sample points correspond-

ing to a set of cells)

S : Ri ×N→ Ri

obeying for all sets of sample points Si ∈ Ri and all j ∈ {1, . . . ,w(Si)} the

containment axiom:

S(Si, j)⊂ Si.

The pair �S,w� will give us an enumeration of a set of subsets of a given set of

sample points. We will see how this is used shortly.

2. A formula construction strategy will be a function

F : L∃OR ×Ri → L∃OR
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obeying certain relevance judgment axioms. To describe these axioms, we need

the context of a fixed (but arbitrary) ∃ RCF formula and an associated Pi-invariant

CAD of Ri.

Let ϕ be an ∃ RCF formula with polynomials P ⊂Z[x1, . . . ,xn] and let Pn, . . . ,P1

be a sequence of level-(n, . . . ,1) projection sets rooted in P (recall Pn = P).

Let Ci = {c1, . . . ,cm} be a Pi-invariant CAD of Ri with Si a set of sample points

drawn from a subset of the cells in Ci. If we are given a set of sample points

{sa1 , . . .sav} ⊆ Si, then �({sa1 , . . .sav}) will denote the set of cells from which

the sample points sa j are drawn.

Then, for each set of sample points Si and each j ∈ {1, . . . ,w(Si)} the following

relevance judgment axioms must hold:

RCF |= ¬F(ϕ,S(Si, j)) =⇒ N (ϕ,S(Si, j)),

and

RCF |= F(ϕ,S(Si, j)) =⇒ RCF |= ϕ,

where

(a) N (ϕ,{sa1 , . . .sav}) means that no child (at any ancestral depth, i.e., in a

Pi+1-invariant CAD of Ri+1, in a Pi+2-invariant CAD of Ri+2, . . . , in a Pn-

invariant CAD of Rn) of any cell in the set ∆({sa1 , . . . ,sav}) will satisfy

QF(ϕ).

3. An ∃ RCF proof procedure will be a function

P : L∃OR → {true, false,unknown}∪
�

j∈N+

R j

obeying the soundness axioms:

P(ψ) = true =⇒ RCF |= ψ

P(ψ) = false =⇒ RCF |= ¬ψ

P(ψ) ∈ R j =⇒ RCF |= QF(ψ)[P(ψ)]
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for arbitrary ψ ∈ L∃OR and with QF(ψ)[P(ψ)] in the final axiom being the sub-

stitution of the j-vector P(ψ) (or an arbitrary extension of it to the dimension of

the polynomials appearing in ψ) into ψ, resulting in a ground formula. In this

case, we call P(ψ) (or its appropriate extension) a witness to the truth of ψ.

We will write A= ��S,w�,F,P� is a stage to mean that S is a cell selection function

with w its covering width function, F is a formula construction strategy, and P is an ∃
RCF proof procedure.

We will want to have the freedom to give our AP-CAD algorithm a sequence of

stages, one for each dimension 1, . . . ,n. The intuition is as follows:

Stages are introduced so that one can present a strategy to an underlying CAD de-

cision algorithm which will prescribe a method for the algorithm to recognise when

it can short-circuit certain expensive computations. In particular, stages will be used

to either abandon cells and no longer have to lift over them, or to abandon CAD con-

struction altogether if a cell is found whose sample point (or its trivial n-dimensional

extension) satisfies our input formula.

If we can abandon a cell at a low-dimension, for instance at the base phase or when

beginning to lift over cells of R2, then this can potentially give us hyper-exponential

savings later: The number of i+ 1-dimensional cells can be exponentially more than

the number of i-dimensional cells. Abandoning a cell at dimension 1 could result in an

enormous reduction in the number of cells at dimension 5, for instance.

Thus, it makes sense to arrange stages A1,A2, . . .An so that stage A1 works hardest

to make relevance judgments about cells. For if A1 causes us to throw away cell

c j ⊂ R1, then this could lead to huge savings later. Then, stage A2 might still work

hard but a bit less hard, and so on.

This collection of stages gives rise to the notion of an n-theatre. In what follows,

let Θ be the set of all stages.

Definition 7.6.2 (Theatre). An n-theatre T will be a function

T : {1, . . . ,n}→ Θ.

Stage i in a theatre will be used to make judgments about cells in a Pi-invariant

(partial) CAD of Ri (i.e., at level i). With the notion of an n-theatre in hand, let us

describe an augmented CAD-based decision method we will use for deciding ∃ RCF
sentences in the framework of AP-CAD. This will only use the stages in a theatre
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during the lifting phase. Again, we will speak freely of manipulating real algebraic

numbers.

Algorithm 7.6.3 (AP-CAD with Theatrical Lifting). Suppose we are given an ∃ RCF

sentence ϕ with polynomials P ⊂ Z[x1, . . . ,xn], together with an n-theatre T.

1. Projection Compute a sequence of level-i projection sets as follows:

Pn = P,

Pn−1 = Pro j(P)⊂ Z[x1, . . . ,xn],

Pn−2 = Pro j(Pn−1)⊂ Z[x1, . . . ,xn−1],
...

P2 = Pro j(P3)⊂ Z[x1,x2],

P1 = Pro j(P2)⊂ Z[x1].

2. Base Use univariate real root isolation to obtain a P1-invariant CAD of R1,

C1 = {c1, . . . ,c2m+1} represented by sample points S1 = {s1, . . . ,s2m+1}. Set the

current dimension i := 1.

3. Lifting Let T(i) = Ai = ��Si,wi�,Fi,Pi� be the stage for dimension i, and Si the

set of sample points for the Pi-invariant (partial) CAD of Ri over which we need

to lift.

(a) Let U := wi(Si) and let j := 1.

(b) While j ≤U do

i. Let {sa1 , . . . ,sav} := Si(Si, j).

ii. Let χ := Pi(Fi({sa1 , . . . ,sav})).

iii. If χ = true, then return true.

iv. If χ = �x1, . . . ,xw� ∈ Rw for some w ≤ n, then

A. Fix an n-dimensional extension of χ, e.g.,

�r = �x1, . . . ,xw,0, . . . ,0� ∈ Rn.

B. Evaluate QF(ψ)[�r] and set R ∈ {true, false} to this result.

C. If R = true, then return�r as a witness to the truth of ϕ.

D. If R = false, then return true
5.

5This is perhaps the one counter-intuitive part of the algorithm. Note, however, that this is actually
correct: By the combination of the second relevance judgment axiom for Fi and the soundness axioms
for Pi, the fact that RCF |= Fi(Si(Si, j)) means that ϕ is true. It’s just that the witness Pi computed for
the truth of Fi(Si(Si, j)) might fail to be a witness for ϕ. In this case, we simply know ϕ is true without
knowing a witness for it.
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v. If χ = false, then set S�i := Si \{sa1 , . . . ,sav}, else set S�i := Si.

vi. If S�i = /0 then return false.

vii. If S�i = Si then set j := j+1.

viii. If S�i ⊂ Si then

A. Set Si := S�i.

B. Set U := wi(Si).

C. Set j := 1.

(c) Now that the above while loop has finished (without recognising ϕ to be

true or false), Si = {t1, . . . , tu} contains sample points corresponding to the

cells we have not deemed to be irrelevant. We need to lift over them in

order to construct a partial CAD of Ri+1. We will do this by the following

process:

i. Let Si+1 := /0.

ii. For j from 1 to u do

A. Substitute the components of t j in for the variables x1, . . . ,xi in

Pi+1 to obtain a univariate family Pi+1[t j]⊂ Z[xi+1].

B. Use univariate real root isolation to compute a Pi+1[t j]-invariant

CAD of R1, represented by sample points Kj.

C. Set Si+1 := Si+1 ∪Kj.

(d) Increase the current dimension by setting i := i+1.

(e) If i = n then lifting is done and we may proceed to the evaluation phase.

(f) If i < n then we loop and begin the lifting process again, but now with the

set of sample points Si+1.

4. Evaluation At this point, we have computed Sn ⊂Rn which is a set of n-dimensional

sample points sufficient for deciding our formula ϕ. We do so by evaluating the

ground formula
�

�r∈Sn

QF(ϕ)[�r]

and returning the result.

Theorem 7.6.4 (Correctness of AP-CAD with Theatrical Lifting). Let us prove the

correctness of Algorithm 7.6.3. This will be straight-forward given the correctness of

the classical CAD-based decision algorithm outlined previously, which we accept as

given.
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Proof. There are two essential differences between this AP-CAD algorithm and the

classical one. These both take place during lifting. In Algorithm 7.6.3, we may

• discard a collection of cells if they are deemed to be irrelevant, and

• quit CAD construction altogether and return either true or a witness to the truth

of our input formula ϕ, or return false in the case that all cells have been dis-

carded.

If {sa1 , . . . ,sav} ⊂ Ri is a set of sample points for a Pi-invariant partial CAD of

Ri, we will say that {sa1 , . . . ,sav} respects the truth of ϕ to mean that there is some

n-dimensional child of a sample point in {sa1 , . . . ,sav} satisfying QF(ϕ) iff ϕ is true.

We will proceed by induction, assuming that the algorithm has constructed a set

of sample points {sa1 , . . . ,sav} for a Pi-invariant partial CAD of Ri which respects the

truth of ϕ. The base case is verified by noting that the base phase of the algorithm

constructs a full set of sample points for a P1-invariant CAD of R1 which trivially

respects the truth of ϕ.

Let us first observe that if we discard a collection of cells because they have been

deemed to be irrelevant, then we have not affected the soundness of the decision algo-

rithm.

Cells of a Pi-invariant partial CAD of Ri will only be deemed to be irrelevant when

an stage Ai indicates this is the case. The key line in the algorithm is 3(b)v, where χ =

Pi(Fi(ϕ,{sa1 , . . . ,sav})). For this discarding to have occurred, we must have χ = false.

By the second soundness axiom for Pi, this means

RCF |= ¬Fi(ϕ,{sa1 , . . . ,sav}).

By the first relevance judgment axiom for Fi, this means that N (ϕ,{sa1 , . . . ,sav}) must

hold. Recall that N (ϕ,{sa1 , . . .sav}) means that no child (at any ancestral depth, i.e., in

a Pi+1-invariant CAD of Ri+1, in a Pi+2-invariant CAD of Ri+2, . . . , in a Pn-invariant

CAD of Rn) of any cell in the set ∆({sa1 , . . . ,sav}) of cells corresponding to the sample

points {sa1 , . . . ,sav} will satisfy QF(ϕ). Thus, by our induction hypothesis, removing

the cells from our analysis does not affect the soundness of the decision algorithm.

In particular, if we have removed all cells, this means that no ancestor of the cells at

our current dimension can satisfy QF(ϕ). By our induction hypothesis this means that

there exists no n-dimensional real vector satisfying QF(ϕ), and thus ϕ is false as the

algorithm will report via line 3(b)vi.
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Let us now turn to the second difference: Algorithm 7.6.3 may quit CAD con-

struction altogether and return either true or a witness satisfying QF(ϕ).
In the latter case, a witness is only returned if the algorithm verified, by evaluation,

that the witness satisfies QF(ϕ). That this does not affect soundness is apparent.

Let us examine the remaining case, when the algorithm returns simply true during

lifting. The first place this occurs is on line 3(b)iii. This happens when Pi(Fi(ϕ,{sa1 , . . . ,sav}))
is equal to true. By the first soundness axiom for Pi, this means

RCF |= Fi(ϕ,{sa1 , . . . ,sav}).

By the second relevance judgment axiom for Fi, it then follows that ϕ is in fact true
over RCF and so the soundness of the algorithm is not affected.

Finally, let us consider the second scenario in which this could occur, line 3(b)ivD.

In this case, Pi(Fi(ϕ,{sa1 , . . . ,sav})) ∈ R j for some j ∈ N. By the third soundness

axiom for Pi, this means that

RCF |= QF(Fi(ϕ,{sa1 , . . . ,sav}))[Pi(Fi(ϕ,{sa1 , . . . ,sav}))].

But this implies that

RCF |= Fi(ϕ,{sa1 , . . . ,sav})).

So, as in the last case, by the second relevance judgment axiom for Fi, this means that

ϕ is in fact true.

Finally, a word on termination of the while loop (cf. line 3b): Consider a pass of

the loop. If any sample points in Si are discarded, then |Si| is reduced. If no sample

points in Si are discarded, then U remains constant and j is incremented by 1. Thus,

the lexicographic product measure µ = �|Si|,U − j+1� is always decreased along the

ordinal ω2. If ever |Si| is reduced to 0, then line 3(b)vi guarantees termination. Com-

bining this with the fact that the loop termination condition is ( j > U), it follows by

the well-foundedness of ω2 that the loop must terminate.

Thus, by the correctness of the classical CAD-based decision algorithm, it follows

by induction that Algorithm 7.6.3 is sound and terminating.

7.6.2 Concrete Full-Dimensional AP-CAD

With the framework of Abstract Partial CAD presented, let us now describe in more

detail some specifics behind our actual implementation. We will see how it can be used

in practice in the context of our tool RAHD in the next chapter. Moreover, a reader
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may find it helpful to see a concrete instance of the AP-CAD framework. This can be

found in the experimental evaluation section of the next chapter, Section 8.6.2.

As stated previously, our current implementation in RAHD is for the “full-dimensional”

variant of AP-CAD. This is the AP-CAD analogue of the “full-dimensional” variant

of (partial) CAD, which was introduced by McCallum in [McC93]. The version of

full-dimensional (partial) CAD given originally by McCallum varies from standard

CAD in that one only selects sample points and lifts over sectors. What is useful about

this is that these sectors will always be full-dimensional, and will thus be guaranteed

to contain a rational point. In fact, they will contain infinitely many of them. Thus

by restricting oneself to full-dimensional CAD, one can avoid altogether having to do

computations with irrational algebraic numbers.

McCallum introduced full-dimensional CAD (what he called “CADMD” or “CAD,

Maximal Dimension”) as a more efficient method for deciding the satisfiability of sys-

tems of polynomial strict inequalities. The key theorem in his paper, Theorem 3.1,

proves the correctness of this restricted variant of CAD for strict polynomial systems.

Intuitively, this is believable as a set of solutions in Rn for a system of strict inequalities

over Z[x1, . . . ,xn] will of course always be an open set in the Euclidean topology on

Rn. Then, the restriction to sectors seems plausible, as it would be puzzling if the rigid

nature of a section sample point was needed. The proof, though, is nontrivial (invoking

a theorem of Baire on nowhere-dense sets). We will use this result freely.

McCallum’s theorem tells us the following:

• If ϕ is an ∧,∨ combination of polynomial strict inequalities, then we can decide

ϕ using a variant of partial CAD in which we only lift over sectors.

• In particular, this means we can select our sample points so that they always are

vectors of rational numbers.

• Thus, we can decide ϕ without having to perform any irrational algebraic number

computations.

This is very nice as in practice, the immense expense of irrational algebraic number

operations are often the bottleneck of CAD computations.

Since the work of McCallum, a number of other researchers have contributed to

full-dimensional CAD. Brown has given an enhancement of McCallum’s projection

operator which, though incorrect for standard CAD, is correct when used in full-

dimensional CAD [Bro01]. This Brown-McCallum projection operator is advanta-

geous over classical projection operators as it in practice usually computes much smaller
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level-i projection sets than other operators for standard CAD. In addition, Strzebonski

has also given related projection-oriented enhancements to full-dimensional CAD and

has implemented them within the Mathematica kernel [Str00].

These changes to CAD construction when one restricts to full-dimensional CAD

can be carried over directly to AP-CAD. By a combination of McCallum’s theorem

and Theorem 7.6.4, it is straight-forward to observe that Algorithm 7.6.3 is correct

for ∧,∨ systems of polynomial strict inequalities when the enhancements described

above are used: Namely, one restricts the algorithm to lift only over sectors and to

always select rational sample points within the sectors. Moreover, Brown’s correct-

ness theorem for Brown-McCallum projection in the context of full-dimensional CAD

means that we may also make use of Brown-McCallum projection for full-dimensional

AP-CAD.

Since we no longer need to worry about issues with irrational algebraic numbers,

the presentation of Algorithm 7.6.3 is almost fully concrete. The only remaining

pieces are to provide a description of

• the method of real root isolation used to construct full-dimensional CADs of R1,

• the projection operator, Pro j.

In RAHD, we provide two methods for performing univariate real root isolation:

one based on Sturm sequences and Cauchy root bounds which we have implemented,

and another based on Bernstein bases which we have incorporated through its imple-

mentation in the SARAG library in Maxima [Car06]. Users are given a choice as

to which method they prefer for a given problem. Sturm sequences have pathological

numerical and complexity-theoretic properties and thus Bernstein bases are almost uni-

laterally preferred in the literature. However, let us say in passing that with judicious

use of pre-processing (factorisation, square-free parts), caching and structure-sharing,

we have found Sturm sequences to work comparably well on many classes of prob-

lems.

Finally, let us present the Brown-McCallum projection operator that we use cur-

rently in RAHD. Compared to other projection operators, it is exceptionally simple.

Conveniently, we have already included all of the algebraic operators needed for it in

previous chapters of our thesis. There are only three involved in Brown-McCallum

projection: leading coefficients, discriminants and resultants.
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Definition 7.6.5 (Brown-McCallum projection). Let P = {p1, . . . , pk}⊂ Z[x1, . . . ,xn].

For the algebraic operations below, we will view P as being a set of univariate polyno-

mials in Z[x1, . . . ,xn−1][xn]. Then, the Brown-McCallum projection operator

Pro jBM : 2Z[x1,...,xn] → 2Z[x1,...,xn−1]

is given by

Pro jBM(P) = LC(P)∪Res(P)∪Discr(P),

where LC(P) is the set of all leading coefficients of members of P, Res(P) is the set of

all resultants taken between non-identical members of P and Discr(P) is the set of all

discriminants of members of P.

7.7 Future Work

The framework we have built thus far allows strategic algorithmic data to be used dur-

ing the lifting phase of a CAD-based decision algorithm. It would be very interesting

to also work out similar machinery to be used during the projection phase. This could

perhaps be further specialised to allow for different types of parameters to be given

depending upon the actual projection operator used. We have one global idea in this

direction which seems general and potentially useful:

If a polynomial p in the level-(i+ 1) projection set Pi+1 can be recognised by an

∃ RCF procedure to be positive or negative definite, then we know that when we

are constructing a stack over any cell in ci ⊂ Ri with sample point si, the univariate

instantiation p[si] will never contribute a root to the CAD of R1 which we use to isolate

the i+ 1th components of the the extensions of si to Ri+1, i.e., p will not contribute

anything to the sample points of the stack. This could be the basis for a technique which

uses ∃ RCF proof procedure parameters to discard or ignore polynomials in projection

sets. Modern methods for using semidefinite programming to perform sums of squares

decompositions of polynomials might be especially useful in this respect [Par03]. As

future work, we plan to flesh this idea out and extend the AP-CAD framework to allow

for strategic control during projection.

7.8 Conclusion

With the results of this chapter, we now have in hand a general framework for using

first-class functional parameters, chiefly a theatre, to allow strategic control over the
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processing of a CAD-based decision algorithm. This is to us very satisfying as it

provides a unifying framework for combining fast, sound but possibly incomplete ∃
RCF proof procedures and using them to enhance a complete decision method without

threatening its completeness.

In the next chapter, we will see how this framework can be practically applied in

the context of our proof tool RAHD.



Chapter 8

Real Algebra in High Dimensions

(RAHD) Proof Procedure

8.1 Introduction

In this chapter, we give a user-oriented description of our ∃ RCF proof tool RAHD
(Real Algebra in High Dimensions). The mathematics underlying the system has been

given in previous chapters. We encourage readers to refer to Chapter 6 for information

on non-CAD based techniques, Chapter 7 for Abstract Partial CAD and Chapter 2
for Gröbner bases and general background on RCF, ACF0 and quantifier elimination.

RAHD is a large system and we will not attempt to describe it fully in this chapter.

Instead, we will describe it enough so that users may easily get started experimenting

with it1. Even still, our description of the system is quite involved. We imagine many

readers might want to skip directly to the illustration of some actual RAHD experi-

ments (cf. Section 8.6), referring to the rest of this chapter as necessary.

8.2 RAHD Overview

RAHD is a proof tool for orchestrating and applying a heterogeneous collection of

RCF proof procedures to decide the satisfiability of nonlinear arithmetical formulas

over the real numbers. RAHD can be used both interactively and automatically. Its

interactive mode is designed both to facilitate a practitioner’s analysis of ∃ RCF for-

mulas and to provide a platform in which customised ∃ RCF proof procedures may be

1RAHD also has an in-program help system available from its interactive toplevel. User may engage
the help system by issuing the command help at any RAHD prompt.

193
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built and applied. This specification of custom proof procedures is done using a simple

proof strategy language.

8.2.1 Preliminaries

Let us give some notational and system-oriented preliminaries. Knowledge of these

will then be freely assumed.

• RAHD accepts as input an implicitly ∃-closed boolean combination of rational

function equations and inequalities called a goal. A case is a conjunction of

polynomial equations and inequalities. A goalset is a collection of cases whose

disjunction is equisatisfiable with the goal. Every case in a goalset is initially

open. If a case is proved to be unsatisfiable, it is closed. If a case is proved to be

satisfiable, it is satisfied. If every case in the goalset is closed, then the original

formula is proved to be unsatisfiable. If any case is satisfied, then the original

formula is proved to be satisfiable.

• Atomic RAHD proof methods are embodied in case manipulation functions

(CMFs). CMFs perform SAT-preserving transformations upon cases. The out-

put of a CMF upon a case may be a subgoal which is a goal equisatisfiable with

the case. A large collection of native CMFs have been implemented in RAHD
including those for interval constraint propagation, full-dimensional AP-CAD,

the variant of the Tiwari method described in Section 6.3, and many others.

• RAHD has a proof strategy language for definining heuristic combinations of

CMFs. The strategy language makes it possible to define strategies which apply

different proof methods depending upon structural properties of the problem be-

ing analysed. Once defined, proof strategies can be used as fully-automatic proof

procedures and made accessible both from the interactive toplevel and automatic

command-line system interfaces (see below).

• RAHD proof strategies are “first-class” objects in the sense that CMFs may take

proof strategies as parameters. This is how AP-CAD is implemented as a CMF,

for instance.

• RAHD has basic machinery for building verified systems of forward-chaining

rules (called “verified rulesets”). This allows one to build up “lemma libraries”
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and apply them to problems. Rules and rulesets can be defined and verified.

Ruleset application is a CMF which takes a ruleset name as a parameter.

• RAHD provides a number of pre-defined proof strategies. These are all writ-

ten in the proof strategy language and may be modified by end-users without

touching the RAHD source code or rebuilding the system.

• RAHD has both interactive toplevel and command-line interfaces. The interac-

tive mode has proof-tree exploration machinery similar to general-purpose proof

assistants. This mode has been designed to aid the development of new proof

strategies which can then be installed and used from the command-line inter-

face, e.g., in the context of automatic formal verification tool-chains.

• RAHD has a plugin infrastructure allowing the easy integration of external tools.

In its simplest form, a plugin connects RAHD to an external tool by encapsulat-

ing each proof procedure present in the external tool as a CMF. Once a plugin

has been installed, the CMFs it publishes may then be used in proof strategies.

8.2.2 A Few Quick Examples

Before diving into too many details, let us gain intuition through a few quick examples

showing typical uses of the system. In Figure 8.1, we show RAHD being invoked

as a command-line tool, as it might be used within a formal verification tool-chain.

From this interface, all defined proof strategies are available to be brought to bear

on problem instances. Note that the command-line option “-i” invokes the RAHD
interactive toplevel. We will spend much of the chapter discussing how this toplevel

can be used to build new proof strategies. The remaining screen-shots all take place

within the interactive toplevel. In Figure 8.2, we show RAHD finding a satisfying

witness to a formula over R10. In Figure 8.3, we show RAHD proving a formula to

be unsatisfiable over R5. In Figure 8.4, we show the help system being invoked to

explain the basics of the check command which was used in the previous two figures.

8.3 Interactive Toplevel

The RAHD interactive toplevel (just “toplevel” for short) provides a shell-like envi-

ronment for analysing ∃ RCF formulas and developing and applying proof strategies

to decide their status.
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Figure 8.1: Invoking RAHD on the command line. Note that the “-i” parameter will load

RAHD’s interactive toplevel.
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Figure 8.2: Using RAHD to find a satisfying witness to a formula over R10
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Figure 8.3: Using RAHD to prove a formula unsatisfiable over R5
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Figure 8.4: Engaging the help system to learn about the command check
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When working in the toplevel, RAHD maintains data known as the proof context.

This includes all logical information RAHD knows about goals and their goalsets.

The RAHD system state is a larger collection of data which includes the proof con-

text. Data in the system state which is not part of the proof context includes things

like cached algebraic computations (e.g., cached Gröbner bases and their reductions,

cached factorisations, cached AP-CAD level-i projection sets), and other low-level in-

formation. It is intended that users be insulated from these extra-logical things and

think of the proof context as being RAHD’s entire logical world.

Given a formula to analyse, i.e., a toplevel goal, one typically works in the follow-

ing way:

1. Variables in the formula are declared.

2. The formula in question is installed as the toplevel goal (called goal 0) and is

made the “active goal.”

3. A goalset is built for the toplevel goal, resulting in a number of open cases.

4. Through the definition and execution of proof strategies, CMFs are applied —

some of which may generate subgoals — and users then navigate between the

goals (swapping subgoals in as the “active goal”), working on their cases until

the system has reached a judgment about the toplevel goal.

8.3.1 Goals and Subgoals

In a given proof context, there is always one toplevel goal. This goal — named goal

0 — is the formula which the system is being used to decide. There may also be

subgoals. A subgoal is a goal, but only one goal — goal 0 — is the toplevel goal.

Every goal has an associated goalset which is a collection of cases, and each case

is a conjunction of atoms. The disjunction over the members of the goalset is logically

equivalent to the associated goal.

Let G be named goal X with goalset {c1, . . . ,ck}. The name goal X will carry

information as to the placement of G within the proof tree of the toplevel goal. In this

way, X can be seen as an address. We will make this precise below.

CMFs map cases to equisatisfiable boolean combinations of atoms. CMFs may

destructively update cases and may also spawn new goals. Goals spawned through the

CMF execution are called subgoals. When a CMF F maps a case ci to a new formula
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F(ci) which is purely conjunctive, then the case ci will be simply replaced with F(ci)

in the goalset of goal X. When F(ci) is not purely conjunctive, then F(ci) will be

turned into a subgoal of goal X. This subgoal will be named goal X.i and will be

equisatisfiable with case ci of goal X. (Internally, the implementation of a case also

carries around some meta-data, including a history of the CMFs which have modified

it, and a pointer to its immediate subgoal, if one exists. We will discuss this more

below.)

8.3.2 Toplevel Prompt

When the interactive toplevel is invoked, the user is greeted with a prompt. While

working in this toplevel, the prompt conveys key information about the active goal.

This information includes the name of the active goal (if subgoals exists), as well as

the judgment status of the active goal. The judgment status of the active goal is shown

by the final letter of the prompt, if one exists. The following example prompts make

the four possibilities clear:

RAHD!> — indicating no judgment has been made about the active goal,

RAHD!m> — indicating active goal has been judged to be satisfiable and an explicit

model has been constructed,

RAHD!s> — indicating the active goal has been judged to be satisfiable but no explicit

model has been constructed,

RAHD!u> — indicating the active goal has been judged to be unsatisfiable.

When more than one goal exists, the name of the active goal is also presented in the

prompt. For instance, if our active goal is goal 0.1.2 and no judgment has been

reached about our active goal, then the prompt will be of the following form:

RAHD:0.1.2!>

Logically, this prompt means that the active goal is equisatisfiable with case 2 of goal

0.1, where goal 0.1 is equisatisfiable with case 1 of the top-level goal, goal 0. If

we prove goal 0.1.2 to be unsatisfiable, then this will close case 2 of goal 0.1. If

we prove goal 0.1.2 to be satisfiable, then this will prove our top-level goal, goal

0, to be satisfiable.
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8.3.3 Toplevel Commands

We will briefly summarise the commands available at the RAHD toplevel. For more

detailed information on any command, invoke the in-program help system. For exam-

ple, to learn more about the assert command, issue the command help assert at

the RAHD toplevel. Invoking help with no arguments will give a list of all available

help topics.

assert — Add assertions to the current assertion context. This is done until the asser-

tion context corresponds to the formula whose satisfiability should be checked.

All variables in assertions must have been previously declared.

build-gs — Build a goalset from the assertion context. This officially promotes the

current assertion context to be the toplevel goal and builds a goalset from it.

check — Checks the satisfiability of the toplevel goal using the default proof strategy.

The default strategy may be changed using the command default-strategy.

By default, “recursive subgoaling” will be used (see e below). To not use recur-

sive subgoaling, invoke check 1 instead.

cg — Change the active goal. This is only applicable when there is more than one

goal. Use the command goals to see a list of all goals. See the command cguc

for an often easier way to change to undecided subgoals. Note that cg does not

propagate judgment status between related goals: For instance, if one is working

on a subgoal of a goal and proves to subgoal unsatisfiable, cg’ing to the parent

goal will not carry the judgment status of the subgoal to the corresponding case

in the parent goal. To do this, one must use the command up. (This will likely

change in future releases.)

cguc — Change the active goal to the nth undecided (i.e., judgment “unknown”)

subgoal. When no n is given as a parameter, then the active goal is changed to

the first undecided subgoal in the ordering reflected by the goal names.

cmfs — List all available CMFs.

default-strategy — Display and/or re-assign the default proof strategy.

defrule — Define a forward-chaining rule.

defruleset — Define a ruleset consisting of forward-chaining rules.
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defstrat — Define a proof strategy.

e — Execute an explicitly given proof strategy using recursive subgoaling. This

means that if any CMFs applied by the strategy generate subgoals, then the strat-

egy will be applied recursively to the generated subgoals.

e1 — Execute an explicitly given proof strategy using one-step subgoaling, i.e., with-

out recursive subgoaling. This means that if any CMFs applied by the strategy

generate subgoals, then these subgoals will be left alone. It will then be up to the

user to cg to these subgoals and work on them.

goal — See information on the active goal.

goals — See a list of all goals.

goalset — See a complete list of the status and history of all cases in the active

goalset. This is almost always not what a user would want to do, as the output

can be astromonical. Instead, the command opens, which lists only the open

cases in the active goalset, is usually preferable (and its output can often be

made much smaller by first applying a few default proof strategies to reduce the

number of open cases).

help — Invoke the in-program help system.

lisp — Execute a raw Lisp form.

options — See a list of available prover options. These options can then be modified

using set and unset.

opens —See a list of all open cases for the active goal. This includes history informa-

tion in the form of a CMF trace showing, for each case, the list of CMFs which

have progressively modified it.

pc — Print a single case (given as an argument the ID number of the case).

proj-order — Compute an optimal CAD projection order for the variables in the

toplevel goal. This is computed by our implementation of the greedy algorithm

put forth by Seidl in his PhD dissertation [DSS04], using the Brown-McCallum

projection operator.

quit — Cleanly end the RAHD session.
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reset — Reset the current proof context.

rules — List all defined forward-chaining rules.

rulesets — List all defined forward-chaining rulesets.

set — Set a prover option flag.

set? — Inspect the value of a prover option flag.

show — View the toplevel goal in the original form in which it was installed.

status — View the current proof status. This will report the satisfiability status of

the toplevel goal, displaying a model if one has been computed. If the active

goal is a subgoal, this will also display information on the status of the active

goal (e.g., how many open cases remain in the active goal, how many open cases

remain in the active goal’s parent, if it exists).

strategies — List all defined proof strategies.

strategy — Display the definition of a particular proof strategy.

up — Navigate to the active goal’s parent, if it exists.

In the process, any decision reached as to the satisfiability of the active goal will

be percolated appropriately to the parent.

In particular, if the active goal is a subgoal and has been found unsatisfiable, the

parent’s case which generated the subgoal will be closed. If instead the active

goal is a subgoal which has been found satisfiable, this implies the satisfiability

of the entire parent goal, and this judgment will be inherited by the parent.

unset — Unset a prover option flag.

unwatch — Stop watching a particular case in the active goalset. (See watch below.)

vars — Declares variables for use in the proof context. Note that variable names are

case insensitive. Variables must be declared before they are used in assertions.

verbosity — Set current prover verbosity level to a rational number in the range

[0..10]. The default level is 0. The higher the level, the more information is

displayed during proof search.
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watch — Watch a case in the active goalset. This causes the watched case to be

printed before every RAHD command prompt. This is useful if one is working

on a particular case and wishes to observe the changes made to the case by CMF

and proof strategy execution.

8.4 Proof Strategies

Heuristic proof procedures are built in RAHD through the use of a simple proof strat-

egy language. This strategy language shares much in common with the tactics and

tacticals approach of LCF-style interactive proof assistants [Pau87] and the strategy

language of PVS [OSRSC99].

The utility of this strategy language is perhaps derived most from the following two

properties:

• Proof strategies allow one to conditionally execute different proof procedures

based upon structural features of the formula being analysed. This is done

through the use of measure-value conditionals.

• Proof strategies are first-class objects in the sense that they may be passed around

to each other as parameters. This is how Abstract Partial CAD (cf. Chapter 7)

is realised, for instance.

RAHD ships with a number of predefined proof strategies. If no strategy is defined

which is suitable for the class of problems a user is analysing, then one can work to

build and define an appropriate strategy. Once this strategy has been defined, it can then

be made accessible as an automatic (“push-button”) proof procedure. To summarise,

RAHD has been designed with the following work-flow in mind:

1. Given an ∃ RCF sentence ϕ to decide, one first attempts to decide ϕ through the

use of any of the built-in proof strategies.

2. If none of these strategies are able to solve the problem, then the user enters into

RAHD’s interactive toplevel, installs ϕ, and analyses the formula interactively.

3. During this analysis, which is done through the manual application of CMFs

and execution of strategies, one pays close attention to structural aspects of the

problem.
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4. Finally, if one is able to decide ϕ, one can package up the approach used into

a defined proof strategy. This strategy can then be made accessible on the

command-line and used as an automatic proof procedure.

The grammar of the strategy language is presented in Figure 8.4.1. There are

currently six primitive measures (cf. grammar class measure) on case formulas which

are used to build compound measure-value conditionals (cf. grammar classes value
and cond). These six measures are:

bw — Sum total bit-width of all rational coefficients of polynomials in case.

cid — ID number of the case w.r.t. its containing goalset. This is so that strategies

can be targeted to only be applied to specific cases by their ID when needed.

This is very useful when proving theorems in the interactive toplevel.

dim — Dimension (number of variables) of polynomials in case.

deg — Maximal total multivariate degree of polynomials in case.

gd — Depth of the goal to which the case belongs (i.e., a case in the goalset of goal

0 has depth 0, a case in the goalset of goal 0.2 has depth 1, and so on). This is

useful during the execution of strategies using recursive subgoaling.

nl — Number of conjuncts in case.

In Figure 8.4, we show two simple proof strategies. Note that the second example

strategy listed, stable-simp, will be used by strategies we define during experiments

in Section 8.6.

8.4.1 Understanding Strategy Execution

We will informally describe the semantics of strategy execution. We will not be faithful

in our description to many aspects of what is actually done in our implementation, as

this can be quite convoluted due to efficiency concerns. But, the description we give

below is essentially observationally equivalent to the actual mechanism of strategy

execution, and it is simple to understand.

To understand strategy execution, one must first understand the only primitive ac-

tion a strategy performs: the application of CMFs.

Let G be a goal with {c1, . . . ,ck} the cases in its goalset. Recall that at any given

time, a goal has some collection of open cases in its goalset. These are the cases
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defstrat s-rq-rl-end-no-bg-end

[interval-cp(max-contractions := 10);

bounded-gbrni(gb-bound := nlˆ2, icp-period := 10);

when (dim <= 5) apcad-fd(stage := div-conq-4);

split-ineqs;

simp-zrhs;

run stable-simp;

if (dim <= 4) qepcad(open? := 1)

[if (deg <= 12) redlog-vts

bounded-gbrni(gb-bound := nlˆ3, icp-period := 50)];

interval-cp(max-contractions := 20);

redlog-vts].

defstrat stable-simp

[repeat [demod-num; simp-gls; simp-arith]].

Figure 8.5: Two example proof strategies

for which we have no satisfiability judgment. Cases may either be marked open (un-

known), closed (unsatisfiable) or satisfied (satisfiable). Let O(G)⊆ {c1, . . . ,ck} be the

collection of open cases for G. Moreover, suppose that no case in {c1, . . .ck} has been

satisfied. When a CMF F is applied to G, F is mapped over O(G). (Once we see con-

ditional statements in strategies, we will learn that given cases in O(G) may be skipped

during the execution of the CMF F because they do not satisfy a specified condition.

For now, we ignore this.) For each ci ∈ O(G), the following occurs:

1. If F(ci) is purely conjunctive, then the case ci is replaced with its image under

F , i.e., ci := F(ci).

2. If F(ci) is a non-conjunctive formula, then F(ci) will be turned into a subgoal

of G. Recall that every goal has a name. For simplicity, let us say G’s name is

G. Then, F(ci) will be installed as a new goal named G.i, and its goalset will be

initialised with a collection of cases arising from a DNF normalisation of F(ci).

3. In both of the above cases, meta-data is recorded as to which CMF manipulated

the case ci, how variables were eliminated (if any were), and so on.
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At any time, one can view O(G) as being the “fringe” of a partial proof tree, with

CMFs extending the fringe by modifying cases and/or generating subgoals, and at

times finding cases to be unsatisfiable (closing a case) or satisfiable (satisfying a case).

When O(G) is empty and none of G’s cases have been satisfied, G has been proven

unsatisfiable. When any of G’s cases have been satisfied, G has been proven satisfiable.

Let us turn to general proof strategies.

Proof strategies provide a mechanism for conditionally applying CMFs to cases

based upon their structural properties. At the core of this conditional processing are

case measures. These are numerical values which are computed as a function of a

case. The primitive measures in RAHD are currently bw, cid, dim, deg, gd, nl (see

the beginning of this section for a description of their meaning). Measures may be

combined to form more numerical values, e.g., dimˆ2 + 2*nl. These polynomials

are called meaure-values. Finally, conditional statements may be formed based upon

boolean combinations of measure-value (in)equalities. These conditional statements

act as guards which are used to decide whether or not a CMF will be applied to a

particular case. These statements are called measure-value conditionals.

For example, if the strategy

[ when (cid = 15 \/ dim <= 12)

[apcad-fd(theatre := interval-theatre)] ]

is executed in the context of a goal G, then the CMF apcad-fd with the parameter

given will only be applied to cases which satisfy the guard. For this example, this

CMF would only be applied to a case if its ID number was 15 or it was in at most 12

variables.

A natural way to view the function RUN-STRATEGY is then as a function of two

parameters: A strategy and a guard. When one executes an explicitly given strategy S,

one begins the execution with a trivial guard, i.e., one starts by executing the function

RUN-STRATEGY(S, true). Let us sketch how, at a high-level, this function operates.

Note that at any time, RAHD has some collection of defined proof strategies. These

are strategies which have been given a name. If N is the name of a proof strategy, we

let L(N) be the strategy named N. We again work in the context of the goal G. An

intuitive account of RUN-STRATEGY is contained in Figure 8.4.1.

Finally, let us discuss what happens if a CMF applied during strategy execution

generates a subgoal. RAHD has two strategy execution modes. These are called “one-
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RUN-STRATEGY(S, guard) =

(S is the name of a CMF) �→
Apply CMF named S to all cases in O(G) which satisfy the guard guard.

(S is [run N]) �→
RUN-STRATEGY(L(N), guard).

(S is [if cond S1 S2]) �→
RUN-STRATEGY(S1, guard∧cond) then RUN-STRATEGY(S2, guard∧¬cond).

(S is [when cond S1]) �→
RUN-STRATEGY(S1, guard ∧ cond).

(S is [repeat S1]) �→
RUN-STRATEGY(S1, guard) is repeated until no cases in O(G) are modified by

its execution.

(S is [S1 ; S2]) �→
RUN-STRATEGY(S1, guard) then RUN-STRATEGY(S2, guard).

Figure 8.6: An Intuitive Account of the RUN-STRATEGY Function.
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step” and “recursive-subgoaling,” respectively. It is best to understand this difference

in the context of the top-level commands e1 and e. The command e1 executes an

explicitly given strategy using one-step subgoaling, while e performs recursive sub-

goaling.

Imagine entering the following command at the RAHD toplevel:

> e1 [run waterfall]

This command causes strategy execution to work as follows: If a subgoal is gen-

erated during the execution of the strategy named waterfall, then this subgoal (and

its parent case) will be ignored by any subsequent CMFs applied during this execution

of the waterfall strategy. It will then be up to the user to interactively navigate to

this subgoal and execute strategies upon it. However, consider instead the following

command:

> e [run waterfall]

If a subgoal is generated during this execution of the strategy named waterfall,

then the entire explicitly given proof strategy (i.e., [run waterfall]) will be ex-

ecuted upon this subgoal. This happens eagerly, i.e., before the executing strategy

moves on to other cases in the active goal’s goalset. If any satisfiability judgment is

reached about this subgoal, then that judgment will be carried up to the case from

which it was generated.

Note that unlike tactics and tacticals in the LCF paradigm, there is no notion of

strategies or CMFs failing and throwing exceptions. If a CMF does not make progress

on a case, the case is simply left as is. The same holds for the execution of strategies.

Let us carry on now to CMFs in more detail. We will then see in the experimental

section (cf. Section 8.6) many examples of proof strategies being applied. We encour-

age the reader to look ahead to that section to help make this exposition more concrete.

8.5 Case Manipulation Functions

The basic inferential mechanism is that of a case manipulation function or CMF. The

manner in which CMFs are used to modify the proof context has been explained in the

previous section. Let us describe the CMFs currently available in RAHD.
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strategy → action if cond strategy strategy when cond strategy
strategy ; strategy repeat strategy [ strategy ] .

action → cmf-name cmf-name ( cs-avl ) run strategy-name
run strategy-name ( cs-avl ) print-trace int .

cs-avl → cs-av cs-av , cs-avl .

cs-av → cs-arg := value cs-arg := strategy-name cs-arg := theatre-name .

cond → a-cond cond \/ cond cond /\ cond cond ==> cond ˜ cond
( cond ) true false .

a-cond → value = value value /= value value != value value > value
value >= value value < value value <= value .

value → measure rational int value + value value - value
value * value value ˆ int ( value ) .

measure → bw cid deg dim gd nl .

Figure 8.7: Grammar of RAHD proof strategy language

Tokens of class cmf-name, cs-arg, strategy-name and theatre-name are recognised

and labelled appropriately by the lexer, as a function of the current system environment

(e.g., only strategy names defined prior to parsing time will be recognised to be of class

strategy-name, and so on). All operations are left-associative except for implication.
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8.5.1 Internal CMFs

RAHD has a large number of internal CMFs. These are implemented natively within

the RAHD system in Common Lisp.

apcad-fd— Full-dimensional Abstract Partial CAD (cf. Chapter 7) using the Brown-

McCallum projection operator. Parameters:

stage — A defined APCAD stage name.

theatre — A defined APCAD theatre name.

proj-order-greedy? — A boolean determining if the Seidl greedy method

for determining projection orders should be used (default: false).

factor? — A boolean determining if all polynomials should first be factored

before beginning projection (default: true).

apply-ruleset — Apply a verified ruleset. Parameters:

name — Name of the verified ruleset.

bounded-gbrni — Search for real nullstellensatz witnesses using an extended Tiwari

method (cf. Section 6.3). Parameters:

gb-bound — A natural number determining an upper-bound on the number

of S-polynomials which should be derived before halting search (default:

100).

icp-period — A natural number determining the number of S-polynomials

which should be derived in between each execution of ICP upon the grow-

ing basis (default: 10).

union-case — A boolean determining whether or not the original case for-

mula should be unioned with the growing basis when ICP is called (default:

false).

summand-level — A natural number determining how many levels of sums

of the members of the growing basis should be added to the growing basis.

This is useful when a real nullstellensatz state witness (cf. Section 6.3.6) is

not present in the growing basis, but the witness can be obtained simply by

summing members of the growing basis. If summand-level is L and the
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growing basis is G = {p1, . . . , pk}, then the set of polynomials G∗ will be

unioned with G at each ICP period, where G∗ is defined as follows:

G1 =

�

∑
pi,p j∈G

pi + p j

�
,

G2 =

�

∑
pi,p j∈G1

pi + p j

�
,

...

GL =

�

∑
pi,p j∈GL−1

pi + p j

�
,

G∗ = G1 ∪ . . . ∪ GL.

saturate-by — The name of a proof strategy used for saturation during real

nullstellensatz search using an extended Tiwari method with ICP (cf. Sec-
tion 6.3.3)). Fresh conjuncts derived by this strategy are added to the grow-

ing basis. If this strategy creates subgoals (i.e., a CMF applied by the strat-

egy maps the case to a non-conjunctive equisatisfiable formula), then no

conjuncts will be added to the growing basis. Saturation occurs at each

ICP period (before the formula is sent to the ICP procedure for analysis).

canon-tms — Fully canonicalise all polynomials into sum-of-monomials normal

form.

demod-lin — Solve for variables appearing linearly in monomials in polynomial

equations in the case (cf. Section 6.4.1.4) and then perform the derived substi-

tutions. As covered in the referenced section, this is done in a manner which

respects the active variable ordering so that a terminating system of variable

substitutions is derived.

demod-num — Substitute value v for variable x if v is a rational number and the atom

(x = v) is present in the case.

factor-sign — Factor all polynomials appearing in the case and attempt to deduce

their sign. If any sign is deduced, the corresponding fact is added as a conjunct

to the case. See Section 6.4.1.5 for details.

fert-tsos — Recognise trivial sums of squares and perform simplifications found

in Section 6.4.2.3.
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full-gbrni — Perform an unbounded classical Tiwari real nullstellensatz search.

As this search is unbounded, it is not usually a good CMF to include in heavily

used proof strategies. Nevertheless, it is at times useful as an endgame procedure

during problem exploration in the interactive toplevel.

idm-zpb — Branch on the nullity of variables if they appear in a zero product. For ex-

ample, if there is an atom of the form x*y*z = 0 in the case, then this CMF will

map the case to a new formula which is the case conjoined with the disjunction:

(x = 0) OR (y = 0) OR (z = 0).

idm-zpb-gen — The analogue of idm-zpb above for arbitrary terms appearing in

zero products.

interval-split — Split a term at a specified rational value. If term t is split at

value v, then a new formula is derived which conjoins the following disjunction

with the case:

(t < v) OR (t = v) OR (t > v).

This causes a subgoal to be generated from the case whose goalset will contain

three cases. Parameters:

tm The term to split.

pt A rational number specifying the point at which the term tm should be split.

If no parameters are given, then heuristics are used to select the term and its

respective splitting point.

interval-cp — Perform interval constraint propagation (cf. Section 6.2). Parame-

ters:

max-contractions — A natural number specifying the maximum number of

contraction steps to execute before returning a computed interval context

for the terms appearing in the case.

quick-sat — Search for rational satisfying witnesses for the case. This is done by

first applying ICP to obtain bounds on each variable in the case, and then by

selecting a specified number of sample points inside the containing intervals.

When no non-trivial intervals were obtained for a variable, then heuristics are

used to select a range of sample points for that variable.
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rcr-ineqs — Use a Gröbner basis for the ideal I induced by the equational fragment

of a case to inject all polynomials appearing in case inequalities into the residue

class ring Q[�x]/I. This can be especially useful before invoking an open (full-

dimensional) variant of CAD. See Section 6.4.2.4 for details.

rcr-svars — Peform a bounded search for equalities between terms present in the

real radical of the ideal induced by the equational fragment of the case. See

Section 6.4.1.2 for details.

satur-lin — Derive (ideally, additional) orientations of arithmetical facts so that

each variable appearing only linearly in any given atom is made to be the LHS

of a derived atom. This is done to increase the contraction efficacy of ICP. See

Section 6.4.1.4 for details.

simp-arith — Simplify arithmetical atoms using the “light-weight” arithmetical

simplification described in Section 6.4.2.1.

simp-gls — Simplify ground atoms and terms using the ground rule described in

Section 6.4.2.1.

simp-real-null — Recognise simple real nullstellensatz witnesses, using essen-

tially a combination of state-witness recognition and ICP (cf. Section 6.3.2.1).

simp-zrhs — Zero the RHS of each atom in the case.

split-ineqs — Split atoms in non-strict inequalities into a disjunction of a strict

inequality and an equation. For instance, the case

(p >= 0) AND (q >= 0)

is mapped to the equivalent formula

((p > 0) OR (p = 0)) AND ((q > 0) OR (q = 0)).

This results in the generation of a subgoal. Parameters:

atom A natural number specifying a specific atom to split (with non-strict in-

equality atoms in a case being labeled from left to right starting at 0). For

example, if this parameter is given a value 0, then the first non-strict in-

equality atom in the case will be split, even though this atom might not be

the first atom in the case overall.
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max-splits A natural number specifying that maximum number of splits to

perform. At most the number of splits specified are then performed on the

case from left to right.

When no parameters are given, all non-strict inequalities appearing in the case

are split.

triv-ideals — Compute a Gröbner basis from the equational fragment of the case

and check to see if it is equivalent to {1}. This will recognise if the equational

fragment of the case in question is unsatisfiable over the complex numbers. By

default, the graded reverse lexicographic ordering (also called the degree reverse

lexicographic ordering) is used. This (and the ordering upon the variables in-

ducing the monomial order) can be changed by power users through altering

the *VARS-TABLE* and mo< Lisp parameters. See polyalg.lisp and its func-

tion set-active-term-ordering for how this can be done. See the interactive

toplevel command lisp for how one executes raw Lisp forms from within a

RAHD session.

univ-sturm-ineqs — Use Sturm sequences to recognise a certain class of unsatis-

fiable cases. This is done as follows, for each univariate polynomial appearing

in an atom (after the RHS of the atom has been made 0) in the case:

• The current interval context is checked to see if rational bounds on the

variable of the polynomial are known.

• If rational bounds are known, then a Sturm sequence is computed and used

to evaluate the number of roots of the polynomial within the range of the

variable.

• If the polynomial has no roots in the range of its variable, then a sample

point within the interval for the variable is selected and the polynomial is

evaluated upon this sample point.

• Since the polynomial has no roots in the range of its variable, the poly-

nomial only obtains one sign in the context of the case: the sign of the

polynomial at the selected sample point.

• Then, this sign (−1, 0 or +1) can be substitued for the polynomial itself,

and the corresponding ground atom can be evaluated. If it is unsatisfiable,

then the case is unsatisfiable.
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8.5.2 CMF plugins

RAHD has a plugins mechanism for connecting the system to external tools. A plugin

is a bit of Lisp code which acts as an interface between RAHD and proof procedures

present in the external tool. A plugin creates this connection at the level of a CMF: A

plugin may export any number of CMFs, with the intention that each CMF published

by a plugin utilise the external tool to do a specific type of real algebraic reasoning.

Once plugins have been installed and tested (see the bit about testing below), then they

are made available to be used in proof strategies in the same manner as the internal

CMFs.

By default, two plugins are installed: One connecting RAHD to the partial CAD

procedure QEPCAD-B [Bro04] — named qepcad — and another connecting RAHD
to the virtual term substitution procedure found in Reduce/Redlog [AD99] — named

redlog-vts.

The plugins system has a basic testing framework for verifying that one’s environ-

ment is working so that the tools linked together by the plugin are operating success-

fully. This testing framework uses sample ∃ RCF problems (ideally, a combination of

SAT and UNSAT problems) to test the plugin on a small number of instances. Users

writing plugins are encouraged to use this simple testing framework. This is especially

important if they wish others to be able to make use of their plugin.

Many of the default proof strategies make use of the QEPCAD-B and Reduce/Red-

log plugins. If these (or any other) loaded plugins do not pass their tests (i.e., if

RAHD’s running environment is not setup correctly to make use of the relevant ex-

ternal tools), then the CMF symbols exported by the plugin will be associated with the

CMF which is the identity function, i.e., a no-op. This way, proof strategies containing

plugin CMFs may always be executed, with applications of CMFs exported by broken

plugins simply doing nothing to the proof state. If a user has started an interactive

RAHD session with broken plugins and has in the mean time fixed their environment,

they may ask RAHD to recognise this using the toplevel command refresh-plugins.

The plugins system has been well-documented in both plugin.lisp in the main

RAHD source code and in qepcad.lisp and redlog.lisp under the ./plugins/

subdirectory. For this reason, we will say little else about it in our thesis.
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8.5.3 Verified Rulesets

RAHD has a simple forward-chaining mechanism allowing users to define, verify and

apply their own saturation rules. This is done through the machinery of verified rule-

sets. Let us secure some notation.

A rule is a Horn clause. A ruleset is a collection of rules. A verified rule is a rule

which has been proven to be sound. A verified ruleset is a collection of verified rules.

Rules are defined globally and a rule may be a member of many rulesets.

The full power of RAHD may be brought to bear on the verification of rules. A

rule gives rise to a rule goal which is a conjunction consisting of the hypotheses of the

rule and the negation of its conclusion. To verify a rule, its rule goal is installed as a

goal and must be proved unsatisfiable. Once a rule has been verified, it may be applied

using the apply-rule CMF. It is often convenient to combine multiple rules into a

ruleset and apply a verified ruleset to a case. RAHD provides the apply-ruleset

CMF to facilitate this.

Rules are applied in the context of a case. If a rule is applied to a case, a match-

ing algorithm is used to see if each of the hypotheses of the rule can be discharged

by explicit atoms in the case. This matching includes some simple generalisations

(e.g., if the hypothesis is (x ≥ y) and the case contains either (x > y) or (x = y) then

the matching will succeed). But, this simple matching — which includes polynomial

canonicalisation but not associative-commutative (“AC”) matching — is the only rea-

soning used currently for validating rule instantiations. When a valid instance of a rule

is found, the instantiated conclusion is added as a conjunct to the current case. We then

say the rule application succeeded. If it did not succeed, it failed.

Rules in a ruleset have an order given by the order they are listed in the definition

of the ruleset. Within a ruleset, rules can be made active or inactive. This status is

local to a particular ruleset: A given rule may be active in one ruleset and inactive in

another. When one applies a verified ruleset, only the active rules are applied. When

one is applying a verified ruleset to a case, each active rule is applied in the order given.

The success of a rule in a ruleset can influence the success of later rules in the ruleset:

If the application of rule Ri is successful, resulting in the current case being extended

with new conjuncts, then this extended case is what is used for the application of rule

Ri+1. For example, the pre-defined verified ruleset force-sign is as follows:

defrule force-sign-i

[[Y > 0] /\ [W > 0] /\ [X*Y > 0] /\ [X*Y + Z*W = 0]]
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==> [X*Z < 0].

defrule force-sign-ii

[[Y > 0] /\ [W > 0] /\ [X*Y < 0] /\ [X*Y + Z*W = 0]]

==> [X*Z < 0].

defrule force-sign-iii

[[X > 0] /\ [Y > 0] /\ [X*Y - Z < 0]] ==> [Z > 0].

defrule force-sign-iv

[[X > 0] /\ [X*Z + W < 0] /\ [Y - X*X = 0]]

==> [Y*Z + X*W < 0].

defruleset force-sign

{force-sign-i,

force-sign-ii,

force-sign-iii,

force-sign-iv}.

8.6 Experiments

In this section, we present some experimental results obtained with RAHD.

First, we present the development and experimental results of a strategy based on a

combination of Gröbner basis computation and full-dimensional partial CAD. This is a

concrete instance of the methodology we propose for RAHD use: the development of

custom automatic proof strategies — combining many ∃ RCF (semi-)decision meth-

ods — through the interactive solving of specific (previously out-of-reach) problem

instances, and the subsequent application of these custom proof procedures to other

problems (ideally, those with “similar structure”). An earlier and much less compre-

hensive version of this class of experimental results was published in [PJ09].

Finally, we turn to our proof method of Abstract Partial CAD (cf. Chapter 7). We

construct an AP-CAD theatre based on generalised interval arithmetic and illustrate

its use in detail upon an example ∃ RCF formula. We contrast the processing of this

AP-CAD decision algorithm with that of classical CAD and partial CAD algorithms,

observing how they differ during the lifting or stack construction phase. Then, we
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perform a similar lifting comparison analysis on four other ∃ RCF formulas.

8.6.1 A Strategy with Gröbner Bases and Full-dimensional CAD

This class of experiments begins with the following ∀ RCF formula which was sent to

us by John Harrison in 2008:

∀a ∀b ∀c ∀d

((0 ≤ a) ∧ (a ≤ 1) ∧ (0 ≤ b) ∧ (b ≤ 1) ∧

(0 ≤ c) ∧ (c ≤ 1) ∧ (0 ≤ d) ∧ (d ≤ 1))

⇒

(((1−a2b2)(1− cd)(ad −bc)(ad −bc) +

(2ab)(cd −ab)(1−ab)(c−d)(c−d) +

(a2b2 − c2d2)(1− cd)(a−b)(a−b)) ≥ 0)

Call the above formula ϕ. Harrison had attempted without success to prove ϕ using

the powerful REAL SOS tactic in the proof assistant HOL-Light which uses semidefinite

programming to search for Positivstellensatz witnesses [Har07]. We then tried, also in

vain, to prove it using four additional state-of-the-art methods:

• the partial CAD procedure QEPCAD-B [Bro04],

• the virtual term substitution procedure Reduce/Redlog rlqe [AD99],

• the partial CAD procedure Reduce/Redlog rlcad [AD99], and

• the branch-and-bound based interval analysis system Realpaver [GB06].

Motivated by the intuition that this formula might be “just out of reach” of CAD,

we focused upon ways we might transform ϕ into a form suitable for a CAD-based

decision.

8.6.1.1 A First Approach: Splitting, Simplification, and (FD-)CAD

As we know, the complexity of CAD is dependent most upon the number of variables

in the input formula. Thus, techniques which reduce the number of variables in the

formula have the potential to be very helpful. We will turn to these shorly. First, let us
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switch to proving ϕ by refuting ¬ϕ, so that we work within ∃ RCF. That is, to prove

ϕ we must refute ψ where

ψ =





∃a ∃b ∃c ∃d

((0 ≤ a) ∧ (a ≤ 1) ∧ (0 ≤ b) ∧ (b ≤ 1) ∧

(0 ≤ c) ∧ (c ≤ 1) ∧ (0 ≤ d) ∧ (d ≤ 1))

∧

(((1−a2b2)(1− cd)(ad −bc)(ad −bc) +

(2ab)(cd −ab)(1−ab)(c−d)(c−d) +

(a2b2 − c2d2)(1− cd)(a−b)(a−b)) < 0)





.

In examining ψ, we see no immediate way to eliminate any variables. There is,

however, one structural property of ψ which is interesting in relation to variable elimi-

nation: each variable is explicitly bounded within a compact interval given by intervals

with explicit rational endpoints. This bounding is done through the use of two atoms

for each variable, the first expressing a lower-bound and the latter an upper-bound, e.g.,

(0 ≤ a) ∧ (a ≤ 1).

Observe that if we split any of these bounding atoms — take (0 ≤ a), for instance —

into an equivalent disjunction of an equation and a strict inequality, then we may obtain

two sub-problems ψa,= and ψa,< s.t.

ϕ ⇐⇒ ¬ψ ⇐⇒ ¬(ψa,= ∨ ψa,<)

where

ψa,= =





∃a ∃b ∃c ∃d

((0 = a) ∧ (a ≤ 1) ∧ (0 ≤ b) ∧ (b ≤ 1) ∧

(0 ≤ c) ∧ (c ≤ 1) ∧ (0 ≤ d) ∧ (d ≤ 1))

∧

(((1−a2b2)(1− cd)(ad −bc)(ad −bc) +

(2ab)(cd −ab)(1−ab)(c−d)(c−d) +

(a2b2 − c2d2)(1− cd)(a−b)(a−b)) < 0)
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and

ψa,< =





∃a ∃b ∃c ∃d

((0 < a) ∧ (a ≤ 1) ∧ (0 ≤ b) ∧ (b ≤ 1) ∧

(0 ≤ c) ∧ (c ≤ 1) ∧ (0 ≤ d) ∧ (d ≤ 1))

∧

(((1−a2b2)(1− cd)(ad −bc)(ad −bc) +

(2ab)(cd −ab)(1−ab)(c−d)(c−d) +

(a2b2 − c2d2)(1− cd)(a−b)(a−b)) < 0)





.

Now, in the first sub-problem, a may be eliminated through the substitution of 0.

If we do this followed by trivial algebraic simplification, we obtain the formula ψ∗
a,=

(equivalent to ψa,=):

ψ∗
a,= =





∃b ∃c ∃d

((0 ≤ b) ∧ (b ≤ 1) ∧

(0 ≤ c) ∧ (c ≤ 1) ∧ (0 ≤ d) ∧ (d ≤ 1))

∧

(((1− cd)(bc)2 +

(0− c2d2)(1− cd)b2) < 0)





.

So, we now have

ϕ ⇐⇒ ¬ψ ⇐⇒ ¬(ψ∗
a,= ∨ ψa,<)

with ψ∗
a,= in only three variables and with significantly simpler polynomials than ϕ. In

fact, ψ∗
a,= is so much simpler that it can be easily refuted automatically using normal

partial CAD, e.g., through the use of QEPCAD-B. Therefore, we have reduced the

proof of ϕ to the refutation of ψa,<. How shall we refute ψa,<?

Given what we know about CAD (cf. Chapter 7), it is obvious that constructing a

CAD to decide ψa,< is no easier than constructing a CAD to decide ψ (or indeed ϕ).
The reason is simple: The polynomials inducing the CAD will be the same for all three

of these formulas.

Digging deeper into CAD, however, we can make some progress. Recall Mc-

Callum’s Theorem on full-dimensional cell decompositions (cf. Section 7.6.2). One

practical byproduct of this theorem is that CAD for ∃ RCF can be made substantially

more efficient if its input formula consists only of conjunctions of strict inequalities.

When this is the case, one has the following two advantages:
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• A much simpler projection operator can be used (e.g., the Brown-McCallum

operator (cf. Section 7.6.2)),

• Irrational algebraic number computations can be avoided during lifting as one

only has to select sample points from full-dimensional cells, i.e., sectors, and

these sample points may always be made to be rational numbers.

Both of these savings can lead to tremendous improvements in decision feasibility.

Thus, we see that ψa,< is in a precise sense closer to being able to take advantage of

McCallum’s Theorem than ψ, as the only difference between the two formulas is that

there is one less non-strict inequality atom in ψa,< than ψ.

Now, the next step is obvious, but it is perhaps surprising that it works in prac-

tice: We can simply iterate the reasoning outlined above and arrive at a sequence of

sub-problems s.t. each sub-problem is either in less variables or in less non-strict in-

equalities (both as compared to ψ). This will result in reducing ψ to nine sub-problems:

eight will be 3-dimensional, one will be 4-dimensional. Six of the eight 3-dimensional

problems will contain a non-strict inequality and will be decided using normal partial

CAD. Two of the eight 3-dimensional problems will contain only strict inequalities and

will be decided using full-dimensional partial CAD. Finally, the single 4-dimensional

problem will be decided by full-dimensional partial CAD since it will be a conjunction

of only strict inequalities.

To gain more familiarity with the system, let us walk through how this proof can be

carried out in RAHD. We will first show how to do this proof “manually” so that the

user controls each of these steps of splitting inequalities, substituting and simplifying,

and applying normal and full-dimensional partial CAD to the resulting sub-problems.

Once we show how it can be done manually, we will then show how one can obtain

essentially the same proof automatically through the use of a recursively executed

proof strategy.

We begin the RAHD images after a formula corresponding to ψ has been installed

as the toplevel goal and a goalset has been built for it. We use five figures to illustrate

the manual proof: Figures 8.8, 8.9, 8.10, 8.11, 8.12.

After examining the manual proof, especially the actions executed in Figure 8.12,

we see there is much repetition in the structure of the proof. Note that we used the

e1 command to execute the strategies in our manual proof. This command executes a

strategy only once and does not apply it recursively to any generated subgoals.

Since this proof is so highly structured, we can easily write a short proof strategy to
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Figure 8.8: Partial illustration of “manual” refutation of ψ (1 of 5) : Before this image

was taken, ψ was installed as the toplevel goal, i.e., goal 0. Then, we display the

open cases in the goalset of goal 0 by opens. There is a single case, case 0, i.e., ψ.
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Figure 8.9: Partial illustration of “manual” refutation of ψ (2 of 5) : The splitting of the

first non-strict inequality in goal 0 (by split-ineqs(atom := 0)), the display of its

updated status (UNKNOWN-WITH-SPAWNED-SUBGOAL, displayed by executing opens),

followed by the changing of the active goal to the generated subgoal goal 0.0 (by

cguc).
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Figure 8.10: Partial illustration of “manual” refutation of ψ (3 of 5) : The display of the

two open cases in the goalset for goal 0.0 (using opens). Observe how case 0 has

(= 0 A) and case 1 has (< 0 A).
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Figure 8.11: Partial illustration of “manual” refutation of ψ (4 of 5) : First, the sub-

stitution of 0 for A and subsequent simplification of case 0 of goal 0.0 is done by

[demod-lin; run stable-simp]. We display the resulting simplified case 0 by pc

0. Note that this is equivalent to our formula ψ∗
a,= discussed previously and is only

3-dimensional. Since it has been simplified, we are able to run normal partial CAD

directly upon case 0 and refute it. Then, we show that case 1 is the only open case

remaining in the goalset of goal 0.0 by opens.
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Figure 8.12: Partial illustration of “manual” refutation of ψ (5 of 5) : Finishing the proof.

Notice how much repetition there is. We will soon see how this may be automated with

the use of a proof strategy executed recursively upon subgoals.
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accomplish essentially the same proof through the recursive execution of the strategy

upon its generated subgoals. We show how to do this in Figure 8.6.1.1.

With this final recursive proof strategy, we have arrived at an elegant solution to the

problem of deciding ψ. But, what about related problems with similar structure? For

instance, what about problems of similar structure in 5 or more dimensions, or those

with more complex equational structure than ψ? Will this strategy work for them?

This line of questioning will lead us to develop a more intricate approach.

8.6.1.2 A Further Approach: Eager Splitting and Gröbner Bases

Our presented solution for ψ depended upon a few key properties of ψ:

• Every variable in ψ is bound within a compact interval with explicitly given

rational endpoints.

• So, splitting any non-strict inequality results in two branches, one in which a

variable can be eliminated, and the other in which we are closer to being able to

decide the formula using only full-dimensional partial CAD.

• ψ itself is only 4-dimensional, so that once a variable has been eliminated from

the equational branches of split inequalities, then the resulting formulas sent to

normal partial CAD are only in 3-dimensions.

When confronted with a problem of similar structure in higher dimensions, we can

easily run into the problem that even the equational branches in which a variable has

been eliminated are still out of reach of normal CAD. And if we consider formulas

in which some but not all of the variables are bound within explicitly given compact

intervals with rational endpoints, then variable elimination need not be so simple.

Motivated by wanting to extend this simple strategy which was succesful on ψ to

more classes of problems, let us recall a sketch of a proof strategy we gave in Section
6.4.2.4 during a discussion of uses of Gröbner bases during ∃ RCF decisions:

In what follows, let

ϕ = ∃�x(
k0�

i=1
pi = 0)∧ (

k1�

i=1
qi > 0)∧ (

k2�

i=1
si ≥ 0) with pi,qi,si ∈Q[�x],

with E = {p1, . . . , pk0} the polynomials extracted from the equational frag-
ment of ϕ.
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Figure 8.13: Proof strategy used to obtain automatic refutation of ψ by its execution us-

ing recursive subgoaling (via e). After obtaining the proof, we use the goals command

to see a list of all (sub)goals which were constructed: Indeed, this automatic proof has

the same structure as our manual one. Further, if we navigate down to each subgoal

and view the list of CMFs which manipulated each case, we will see that the constructed

proof is exactly the same as our manual one except for the fact that the automatic proof

performs eight calls of regular CAD (upon 3-dimensional formulas) instead of six. We

can make these proofs exactly the same with a slightly more complicated strategy.
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First, if the equational fragment of a conjunctive formula is unsatisfiable
over the complex numbers, then the entire formula is of course unsatisfi-
able over the real numbers. Thus, checking the triviality of the ideal I(E)
has the potential to detect the unsatisfiability of ϕ.

Second, a Gröbner basis for I(E) can be used to inject the polynomi-
als qi, si appearing in inequalities into their respective residue classes in
the quotient ring Q[�x]/I(E). This process can make nontrivial equalities
between different polynomials visible, which can then make it easier for
subsequently applied techniques to decide the satisfiability of ϕ.

Third, the process outlined above can be further extended by splitting a
non-strict inequality into its requisite equational and strict inequality com-
ponents, and examining the resulting subcases. This strengthens the equa-
tional fragment (and hence Gröbner reduction) of one subcase, and in-
creases the number of strict inequality atoms in the other. This can be
exploited in the context of full-dimensional cylindrical algebraic decom-
position [...]

Let us now elaborate upon this idea. Imagine we are given an ∃ RCF formula χ.

Then, we might consider the following high-level approach to deciding χ:

• First, apply simple and cheap techniques to see if χ can be recognised to be

(in)consistent very easily. If not, then continue.

• Assuming that χ does not contain too many non-strict inequalities so as to make

the next steps combinatorally infeasible, replace each non-strict inequality (x ≤
y) in χ with the disjunction (x = y ∨ x < y). Call the resulting formula χ∗. Then,

convert χ∗ to DNF. Call the resulting formula DNF(χ∗) with

DNF(χ∗) =
k�

i=1
Ci.

Let us consider the set S = {C1, . . . ,Ck}. We will work to refute χ by refuting

every member of S.

• For each Ci which contains equations, perform the “obvious” substitutions and

algebraic simplifications induced by the equations to obtain a new S�= {C�
1, . . . ,C

�
k}.

By “obvious” we do not yet mean reductions based on Gröbner bases, but instead

have in mind trivial substitutions and simplifications like those we saw with the

equational branches of split inequalities in ψ above.

• After the substitutions and simplifications, many of the conjunctions C�
i may be

trivially recognisable as inconsistent. For example, if χ was our ψ treated above,
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then some of the C�
i will have (0 = 1) as a conjunct. We should perform some

“simple reasoning,” similar to that we did before splitting any inequalities, to

filter out inconsistent conjunctions which are so easy to recognise. Let S�� be the

resulting set of C�
i’s which we simplified but did not easily refute.

• Then, for each C�
i in S��, we will do the following:

– Let Strict(C�
i) be the conjunctive formula containing all strict inequality

atoms of C�
i . Let E(C�

i) be the collection of equations of C�
i .

– If Strict(C�
i) =C�

i so that E = /0, then we may simply run full-dimensional

partial CAD on C�
i and if it terminates, then the result will be an (un)satisfiability

decision which is correct for C�
i . In particular, if we conclude any C�

i of this

form to be satisfiable, then χ itself is satisfiable and we are done.

– If Strict(C�
i) �= C�

i , then things become more involved. We would like to

be able to decide C�
i by full-dimensional partial CAD, but the problem of

course is that both Strict(C�
i) and

��
p∈E p = 0

�
may be satisfiable indepen-

dently, while their combination, C�
i , is unsatisfiable.

– So, we will try to “inject” as much of the equational fragment of C�
i as

we can into the strict inequality fragment, and then attempt to refute C�
i by

full-dimensional partial CAD.

– To do this, we will use Gröbner bases as follows:

∗ Choose a monomial order ≺,

∗ Compute a Gröbner basis induced by E as G = GB≺(E),

∗ Reduce every polynomial in Strict(C�
i) by G to obtain RedG(Strict(C�

i))

(this is the “injection” of aspects of the equational fragment into the

non-strict inequalities),

∗ Finally, use full-dimensional partial CAD to decide RedG(Strict(C�
i)).

If the answer is unsat, then we may conclude that C�
i itself is unsat-

isfiable. If the answer is sat, then we can not in general trust this (of

course, if the full-dimensional partial CAD procedure gives us a satis-

fying sample point for RedG(Strict(C�
i)), then we can check to see if

that sample point also satisfies C�
i , and if so we may conclude C�

i (and

hence χ) to be satisfiable.)

• If at this point χ has not been decided, then we will run normal CAD on any C�
i

whose (un)satisfiability has not been determined.
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It is easy to build a strategy of this sort in RAHD. A simple initial approach is

contained as the strategy named calculemus-0 in Figure 8.6.1.2. This strategy, which

we will soon refine, is referred to as calculemus-0 and is roughly the same2 strategy

that we used in our paper [PJ09]. This strategy follows our approach outlined above:

1. The CMF split-ineqs(max-splits := 12) splits up to twelve non-strict in-

equalities and generates a subgoal consisting of some collection of cases. (Note

that we will execute this strategy using “recursive subgoaling,” i.e., the strategy

will be called recursively upon any subgoals generated during its execution).

2. Many light-weight reasoning mechanisms are applied to simplify the formula

and eliminate inconsistent cases / recognise satisfying ones if they exist.

3. The CMF rcr-ineqs rewrites polynomials appearing in inequalities in each

case w.r.t. a Gröbner basis induced by the equations in the case. This “injects”

some of the equational structure of each case into the (possibly strict) inequality

fragment.

4. The CMF qepcad(open := 1) uses QEPCAD-B to perform full-dimensional

partial CAD only upon the strict inequality fragment of each case. In general,

only judgments of unsatisfiability are trusted here.

5. Finally, if any cases remain undecided, then normal partial CAD is performed

upon them.

Table 8.6.1.2 shows the performance of the calculemus-0 RAHD strategy (and

two of its refinements, which we will come to shortly) on the twenty-four example

problems3 considered in [PJ09] (cf. Appendix A) and compares this performance

to that of QEPCAD-B and two quantifier elimination procedures available in Re-

duce/Redlog:

• Rlqe, which is an enhanced implementation by Dolzmann and Sturm of Weispfen-

ning’s quadratic virtual term substitution (VTS) [Wei97] , and
2Though back then RAHD did not yet have its own strategy language. Instead, there was just a single

heuristic proof strategy hard-coded in the system. This hard-coded procedure was the one reported upon
in [PJ09].

3A reader who consults our earlier published paper [PJ09] may notice that the running times we
present for calculemus-0 in this chapter are significantly faster than those reported in the paper for
what is essentially the same proof strategy. This is because since that publication, we have radically
improved the integration of QEPCAD-B with RAHD, so that repeated applications of QEPCAD-B
within the same strategy execution are now much more efficient than they used to be.
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Table 8.1: The three RAHD calculemus proof strategies compared with QEPCAD-B

and Redlog on twenty-four problems.

dim deg div calc-0 calc-1 calc-2 qepcad-b redlog/rlqe redlog/rlcad

P0 5 4 N .91 1.59 1.7 416.45* 40.4 -

P1 6 4 N 1.69 3.08 3.42 -* - -

P2 5 4 N 1.34 2.41 2.62 -* - -

P3 5 4 N 1.52 2.56 2.75 -* - -

P4 5 4 N 1.14 2.02 2.16 -* - -

P5 14 2 N .25 .26 .27 -* 97.4 -

P6 11 5 N 147.4 .07 .06 -* <.01 <.01

P7 8 2 N .05 <.01 <.01 .08 <.01 <.01

P8 7 32 N 4.5 .1 <.01 8.38 <.01 -

P9 7 16 N 4.51 .15 <.01 .29 .01 6.7

P10 7 12 N 100.74 20.76 8.85 -* - -

P11 6 2 Y 1.6 .5 .53 .01 .01 .05

P12 5 3 N .78 .3 .36 .02 .01 .07

P13 4 10 N 3.83 3.95 4.02 -* - -

P14 2 2 N 4.55 1.67 .07 .01 - -

P15 4 3 Y .177 .2 .12 .01 <.01 <.01

P16 4 2 N 9.99 2.17 2.1 .02 <.01 <.01

P17 4 2 N .62 .59 .65 .28 .02 .61

P18 4 2 N 1.25 1.28 1.27 .01 <.01 <.01

P19 3 6 Y 3.34 1.72 2.08 .02 .01 .7

P20 3 4 N 1.18 .65 .65 .01 <.01 .3

P21 3 2 N .02 .03 <.01 .02 .01 .1

P22 2 4 N <.01 <.01 <.01 .01 <.01 <.01

P23 2 2 Y <.01 <.01 <.01 <.01 <.01 <.01

Explanation of columns:

High-level problem features: [dim] dimension, [deg] maximal total multivariate degree of

polynomials, [div] whether or not problem contains division operator.

Timing: (in seconds)

A mark of (-) in any of the timing columns means the system listed was unable to solve the

problem in 600 seconds. A mark of (*) in the QB column means that QEPCAD-B’s default

resource settings were raised in order to avoid reaching resource limits.

For problems involving division, the Redlog translation flag RLNZDEN was used both for

Rlqe and Rlcad runs as well as for generating the multiplicative translations of the problems

for QEPCAD-B.
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• Rlcad, which is an implementation by Seidl, Dolzmann and Sturm of Collins-

Hong’s partial CAD [DSS04].

Experiments were performed on a 2 x 2.4 GHz Quad-Core Intel Xeon PowerMac with

10GB of 1066 MHz DDR3 RAM.

The full listing of the problems considered in Table 8.6.1.2 — including trans-

lations of the problems into the input formats for each tool — may be obtained (cf.

Appendix A).

For now, let us only compare calculemus-0 with the QEPCAD-B and Redlog

procedures. With this restriction, the results of these experiments can be broadly sum-

marized as follows:

• The calculemus-0 strategy is able to solve a number of high-dimension, high-

degree problems that QEPCAD-B, Redlog/Rlqe, and Redlog/Rlcad are not. (To

our knowledge, no other system besides RAHD has been able to solve problems

P1, P2, P3, P4, P10 and P13). It is interesting that while the calculemus-0

strategy involves an exponential blow-up in its reliance on inequality splitting

followed by a DNF normalisation, for many problems the increase in complexity

caused by this blow-up is overshadowed by the decrease in complexity of the

CAD-related computations this process induces.

• Redlog/Rlqe is able to solve a number of high-dimension, high-degree problems

that QEPCAD-B and Redlog/Rlcad are not.

• Redlog/Rlqe is able to solve a number of problems significantly faster than the

calculemus-0 strategy, Redlog/Rlcad, and QEPCAD-B.

• For the problems QEPCAD-B is able to solve directly, using QEPCAD-B di-

rectly tends to be much faster than using the calculemus-0 strategy.

Indeed, these were the conclusions we reached at the end of our paper [PJ09].

There, we made the following observation and proposal for future work:

Since QEPCAD-B outperforms [the RAHD calculemus-0] strategy on
many low-dimension, low-degree problems, we should develop heuristics
that use structural features of a problem to evaluate a priori its suitability
for a direct handling by QEPCAD-B, causing [it] in those cases to bypass
both its inequality splitting [..] and all other CMFs in the [strategy].
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At the time of writing that statement, making such heuristic changes would have

been a substantial undertaking. Now, with RAHD’s strategy language, experimenting

with heuristic changes of this nature is easy.

Based upon interactive exporation of the twenty-four benchmark problems, we de-

veloped two simple extensions of the calculemus-0 strategy. We show these in Fig-
ure 8.6.1.2. Their performance is compared in Table 8.6.1.2.

Overall, the final refinement, calculemus-2, substantially improves upon the strat-

egy calculemus-0 on problems P6, P8, P10, P11, P12, P14, P16, P19 and P20, often

by many orders of magnitude. On problems P0, P1, P2, P3, P4, calculemus-2 is

slower than calculemus-0 by roughly a factor of two. Strategies calculemus-1 and

calculemus-2 are roughly equal for most problems, except for P1 and P19 where

calculemus-2 is slightly (∼= 10-20%) slower, and P10 and P14 where calculemus-2

is substantially (∼= 2-25x) faster. Note that the five problems for which calculemus-2

is significantly (1-2x) worse than calculemus-0 are “hard” in the sense that they are

not solved by all (indeed, usually by any) of QEPCAD-B, Redlog/Rlqe and Redlog/Rl-

cad.

This final strategy is able to solve a number of high-dimension, high-degree prob-

lems beyond the reaches of QEPCAD-B and the Redlog procedures, and is only con-

sistently worse in timing than QEPCAD-B and Redlog on small problems which could

already be solved by QEPCAD-B and Redlog almost instantly (≤ .02 seconds).

In Appendix B, we give detailed profiling data on the relevant RAHD executions

of these strategies. By examining this data, one can better understand the reasons un-

derlying the performance differences between them. Let us examine one of the more

interesting tables given there, the data for P10. We recapitulate its profiling table in

Figure 8.6.1.2 for convenience. Also, recall the qualitative content of the difference

between the three strategies on P10 in Figure 8.6.1.2: Namely, calculemus-2 per-

forms significantly better than calculemus-1 which performs significantly better than

calculemus-0.

First, we see that the size of the proof tree is not constant among the three strate-

gies. It contains 8,129 cases for calculemus-1 and calculemus-2, but 32,768 for

calculemus-0. This is because whenever calculemus-0 is run upon a goal, it uncon-

ditionally splits up to 12 non-strict inequalities in each case in the goal. If this splitting

succeeds, then this generates subgoals, and the strategy is recursively executed upon

them, which may lead to more splitting. Contrast this with the latter two strategies:

calculemus-1 guards inequality splitting with the measure-value conditional (gd =
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defstrat calculemus-0

[split-ineqs(max-splits := 12); simp-zrhs; run stable-simp; demod-lin;

run stable-simp; simp-real-null; fert-tsos; univ-sturm-ineqs;

satur-lin; triv-ideals; run stable-simp; rcr-ineqs; run stable-simp;

fert-tsos; run stable-simp; simp-zrhs; int-dom-zpb; rcr-ineqs;

qepcad(open? := 1); qepcad].

defstrat calculemus-1

[[when (gd = 0) [split-ineqs(max-splits := 12)]];

interval-cp(max-contractions := 10); simp-zrhs; run stable-simp;

demod-lin; run stable-simp; simp-real-null; fert-tsos; univ-sturm-ineqs;

satur-lin; interval-cp; triv-ideals; run stable-simp; interval-cp;

rcr-ineqs; run stable-simp; fert-tsos; run stable-simp; interval-cp;

simp-zrhs; interval-cp; int-dom-zpb; rcr-ineqs;

when (dim <= 7 /\ deg <= 30) [qepcad(open? := 1); qepcad]].

defstrat calculemus-2

[interval-cp(max-contractions := 10);

[when (dim <= 3 /\ deg <= 3) [qepcad]];

[when (gd = 0 /\ dim >= 2) [split-ineqs(max-splits := 12)]];

interval-cp(max-contractions := 20); simp-zrhs; run stable-simp;

demod-lin; run stable-simp; simp-real-null; fert-tsos; univ-sturm-ineqs;

satur-lin; interval-cp; triv-ideals; run stable-simp; interval-cp;

rcr-ineqs; run stable-simp; fert-tsos; run stable-simp; interval-cp;

simp-zrhs; interval-cp; int-dom-zpb; rcr-ineqs;

when (dim <= 7 /\ deg <= 30) [qepcad(open? := 1); qepcad]].

Figure 8.14: Experimental strategies calculemus-0, calculemus-1 and

calculemus-2.

0) and calculemus-2 by (gd = 0 /\ dim >= 2). In both, the requirement that (gd

= 0) (recall that gd is goal depth) precludes inequality splitting for cases in the goalset

of any non-toplevel goal. In addition, calculemus-2 first, before any inequality split-

ting takes place, tries to eliminate cases using both interval constraint propagation

(unguarded but with a low contraction bound) and guarded partial CAD.
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P10 calc-0 calc-1 calc-2

#(Proof-tree) 32768 8192 8192

TRIV-IDEALS 278 (45.847) 96 (0.936) 21 (0.101)

SATUR-LIN 485 (1.465) 344 (0.756) 25 (0.275)

FERT-TSOS 70 (0.355) 48 (0.200) 8 (0.041)

DEMOD-LIN 1101 (0.238) 444 (0.048) 33 (0.003)

SIMP-GLS 34351 (1.290) 3384 (0.185) 33 (0.000)

SIMP-ZRHS 32919 (0.370) 3133 (0.031) 33 (0.000)

SPLIT-INEQS (MAX-SPLITS:=12) 8194 (0.468) 2 (0.109) 2 (0.131)

QEPCAD (OPEN?:=1) 207 (21.081) 70 (10.881) -

RCR-INEQS 180 (7.601) 70 (0.225) -

INT-DOM-ZPB 0 (0.012) 0 (0.006) -

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 5120 (6.052) 5120 (6.092)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 3039 (2.126)

DEMOD-NUM 32766 (3.318) 3070 (0.170) 33 (0.003)

SIMP-ARITH 1954 (0.430) 482 (0.143) 33 (0.006)

SIMP-REAL-NULL 142 (0.031) 0 (0.032) 0 (0.002)

UNIV-STURM-INEQS 4 (0.035) 0 (0.016) 0 (0.001)

INTERVAL-CP - 178 (0.834) 4 (0.024)

100.850 21.049 9.343

Figure 8.15: Fine-grained comparison of the calculemus strategies on P10. Please see

Appendix B for how to read this table. The corresponding tables for the rest of the

problems may also be found in that appendix.
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Next, let us look at where each strategy spends most of its time. (See Section 8.5
for more detail on all of the CMFs referenced during this discussion.) For calculemus-0,

the most time is spent in the CMFs TRIV-IDEALS, QEPCAD(OPEN?:=1), and RCR-INEQS.

Recall that in these strategies, RCR-INEQS is used to rewrite the polynomials appearing

in inequalities in a case w.r.t. a Gröbner basis induced by the case equations. The strict

inequality fragments of the cases resulting from this rewriting are eventually examined

using a full-dimensional variant of partial CAD, QEPCAD(OPEN?:=1). By doing such

a large amount of inequality splitting, and doing so without help from techniques such

as interval constraint propagation which might quickly eliminate a huge collection of

the generated cases, calculemus-0 is forced to apply this combination of RCR-INEQS

and QEPCAD(OPEN?:=1) to 207 cases, which is many more than required by the other

strategies. Both of these, especially partial CAD, are expensive, as is TRIV-IDEALS

which also requires Gröbner basis construction. Let us now look at calculemus-1

and calculemus-2.

First, their guarded splitting causes them to have much fewer cases in their proof

trees. For calculemus-1, the most CMF time is spent with QEPCAD(OPEN?:=1) and

INTERVAL-CP(MAX-CONTRACTIONS:=10). Crucially, by using two forms of interval

constraint propagation preceded by saturation with linear orientations (SATUR-LIN),

calculemus-1 is able to eliminate roughly 65% of its open cases in less than 7 sec-

onds. The remaining cases are then solved by a number of methods. The vast ma-

jority of them are eliminated through arithmetical simplification, the recognition of

trivial sums of squares, and the recognition of trivial ideals. This takes in total less

than 2 seconds. Finally, the remaining 70 cases are eliminated using a combina-

tion of RCR-INEQS and QEPCAD(OPEN?:=1). Note that 70 is much smaller than 207,

the number of cases which were eliminated in this way by calculemus-0. Indeed,

calculemus-0 spends roughly 29 seconds on this combination while calculemus-1

spends roughly 11 seconds.

Finally, let us look to calculemus-2. This strategy generates the same number

of cases as calculemus-1, but processes them differently. First, we see that the

most time in calculemus-2 is spent doing interval constraint propagation. Crucially,

calculemus-2 applies an additional instance of interval methods beyond that done

by calculemus-1. Both strategies use INTERVAL-CP(MAX-CONTRACTIONS:=10) to

eliminate 5,120 of their 8,192 cases. But, the additional interval method used by

calculemus-2, INTERVAL-CP(MAX-CONTRACTIONS:=20), is able to eliminate 3,039

more cases in roughly 2 seconds. These cases had to be eliminated by calculemus-1
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using other, and often more expensive, methods. The strategy calculemus-2 is then

able to make use of a battery of very cheap CMFs to eliminate its remaining cases,

without every needing to apply RCR-INEQS or QEPCAD(OPEN?:=1).

8.6.1.3 Experimental Conclusion

Let us conclude this class of experiments with a few observations. First, after per-

forming for the remaining problems an analysis similar to that we did for P10 above

(cf. Appendix B for the data), we see that there are many trade-offs when construct-

ing strategies. On the one hand, by enhancing the complexity of a strategy so that it

performs a more intricate application of CMFs with more nuanced and carefully tuned

guards, one can at times much improve the execution of the strategy, especially on

targeted classes of hard problems. On the other hand, increasing the complexity of a

strategy can make the entire strategy application process more expensive. As we have

seen with many problems such as P10 that we analysed above, this increase in com-

plexity of a strategy can have major payoffs. But, as we have also seen with problems

such as P1, this increase in complexity can make more nuanced variations of strate-

gies significantly slower than their simpler counterparts. Because of this, it seems very

important to have a tool like RAHD which gives the researcher an ability to easily

experiment with strategy variations.

More broadly, through this class of experiments we have given evidence that a

heterogenous collection of ∃ RCF proof procedures can be carefully combined in such

a way as to make previously out of reach problems soluble by automatic methods.

In particular, we have shown how proof methods based on Gröbner bases and full-

dimensional partial CAD may be compellingly combined. We have illustrated how one

does this using the methodology RAHD was designed to facilitate: Namely, one begins

with a difficult problem or class of similar of problems, uses RAHD interactively to

explore the problem structure and find a custom proof method which succeeds, and

then uses RAHD’s proof strategy language to construct an automatic proof procedure

utilising this strategy.

8.6.2 A Concrete Abstract Partial CAD Instantiation

For this experiment, we will build a concrete instance of our Abstract Partial CAD

framework and study its use in detail upon an example ∃ RCF formula. We will con-

trast the processing of this AP-CAD decision algorithm with that of classical CAD and
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partial CAD algorithms, observing how they differ during the lifting or stack construc-

tion phase. Finally, we will present the results of a similar comparison upon a number

of additional ∃ RCF formulas. Please see Chapter 7 for an account of AP-CAD, its

motivations, definitions, and the axioms an AP-CAD stage must obey.

To build an instance of AP-CAD, we need to construct an AP-CAD n-theatre. Such

a theatre will be a function from N to the collection of AP-CAD stages.

Let i∈N+ be arbitrary and let us abbreviate the set of all finite sets of i-dimensional

real vectors (i.e., the set of all possible sets of i-dimensional sample points) as

Ri = {s ⊂ Ri | |s|< ω}.

Recall that an AP-CAD stage is a triple

��S,w�,F,P�

where

�S,w� is a cell selection strategy consisting of

a cell selection function S : Ri ×N→ Ri,

a covering width function w : Ri → N,

F : L∃OR ×Ri → L∃OR is a formula construction function, and

P : L∃OR → {true, false,unknown}∪
�

j∈N+R j is an ∃ RCF proof procedure.

We will build an AP-CAD theatre based upon a “divide and conquer” strategy

for applying interval arithmetic to eliminate sample points during the lifting phase of

partial CAD construction. We will use the RAHD proof strategy language to construct

the ∃ RCF proof procedure P.

8.6.2.1 Defining the AP-CAD Theatre

In defining this theatre, it will be useful to allow our functions to work explicitly over

lists of sample points as opposed to sets of sample points. To do so, we use the maps

StoL : Ri → Lists(Ri)

and

LtoS : Lists(Ri)→ Ri.



242 Chapter 8. Real Algebra in High Dimensions (RAHD) Proof Procedure

StoL will map a set of sample points to a sorted representation of the set as a list, and

LtoS will map a list of sample points to its underlying set. We use the lexicographic

product order of the normal ordering < on R to order the sample points. If l is a list,

then |l| will be the length of the list. If l is a list and 0≤m≤ n≤ |l|, then subseq(l,m,n)

will be the subsequence of l of the form4 �l(m), . . . , l(n−1)�.
We build now a stage for our theatre.

cell selection function S(s,n) = LtoS(SLists(StoL(s),n)) where

SLists(l,n) =






l if n ≤ 1,

�SLists(l,k)� if n = 2k,

�SLists(l,k)� if n = 2k+1,

and

�l�=





subseq(l,0,k) if |l|= 2k,

subseq(l,0,k+1) if |l|= 2k+1,

and

�l�=





subseq(l,k, |l|) if |l|= 2k,

subseq(l,k+1, |l|) if |l|= 2k+1.

Let us explain these functions in words. The function �l� returns the first half of

the list l if |l| is even, and returns the first k+1 elements of l if |l|= 2k+1. The

function �l� returns the second half of the list l if |l| is even, and returns the final

k elements of l if |l|= 2k+1. In this way, we always have that the concatenation

of �l� and �l� is l itself. These two functions are used to “bisect” the list l by the

function SLists, regardless of whether or not |l| is even or odd.

The function SLists(l,n) computes subsequences of the list l in a “divide and

conquer” fashion, with the parameter n specifying which subsequence should be

computed. It is best understood as representing an enumeration of subsequences

of l which have been situated in a binary tree. To illustrate a concrete example,

let l = �a1, . . . ,a7�. Then, we have

SLists(l,1) = l = �a1, . . . ,a7�,
SLists(l,2) = ��a1, . . . ,a7��= �a1, . . . ,a4�,

4This perhaps strange way of indexing list subsequences is used so that our description matches our
actual implemention, as this is how Common Lisp does list subsequencing via the subseq function. For
example, subseq(�a,b,c�, 0, 2) = �a,b� and subseq(�a,b,c�, 0, 0) = nil, the empty list.
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SLists(l,3) = ��a1, . . . ,a7��= �a5, . . . ,a7�,
SLists(l,4) = ���a1, . . . ,a7���= ��a1, . . . ,a4��= �a1,a2�,
SLists(l,5) = ���a1, . . . ,a7���= ��a1, . . . ,a4��= �a3,a4�,
SLists(l,6) = ���a1, . . . ,a7���= ��a5, . . . ,a7��= �a5,a6�,
SLists(l,7) = ���a1, . . . ,a7���= ��a5, . . . ,a7��= �a7�.

The cell selection function S(s,n) then maps s to an underlying sorted list rep-

resentation StoL(s) and uses SLists to compute the nth subsequence of StoL(s)

with respect to the “divide and conquer” enumeration order given above.

covering width function We will use a constant covering width function w of the

form

w(s) = 3.

Given a collection of sample points s, this covering width will cause the AP-

CAD lifting algorithm (cf. Algorithm 7.6.3) to attempt to eliminate the cell se-

lections S(s,1) through S(s,3). (This is quite a “shallow” depth for a “divide and

conquer” strategy. Nevertheless, it will be useful for keeping our explicit exam-

ples small enough to discuss in detail and can be easily changed if one wishes to

experiment with variations of it.)

formula construction function Our formula construction function F : L∃OR ×Ri →
L∃OR will accept an ∃ RCF formula ϕ and a set of i-dimensional sample points

s and work as follows:

1. Let min j(s) be the minimal value ever appearing as coordinate j in a sample

point in s. To be precise,

min j(s) = min{π j(x) | x ∈ s},

where π j projects a sample point x ∈ Ri onto its jth coordinate.

2. Similarly, let max j(s) be s.t.

max j(s) = max{π j(x) | x ∈ s}.

3. Then,

F(ϕ,s) = ∃�x
��

i�

j=1
x j ≥ min j(s) ∧ x j ≤ max j(s)

�
∧ QF(ϕ)

�
.
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∃ RCF proof procedure

We use an ∃ RCF procedure — expressed as a RAHD proof strategy — which

performs simple formula simplification, saturation of linear bounds on variables,

followed by interval constraint propagation (cf. Section 8.5 for more informa-

tion on CMFs):

[ simp-zrhs; run stable-simp; satur-lin;

interval-cp(max-contractions := 30)].

RAHD’s execution of this proof strategy then gives rise to our AP-CAD stage’s

∃ RCF proof procedure P.

Lemma 8.6.1. ��S,w�,F,P� as defined above is an AP-CAD stage.

Proof. As RAHD guarantees that the execution of its proof strategies correspond to

proper AP-CAD ∃ RCF proof procedures, the only non-trivial property to verify is that

our formula construction function F satisfies the relevance judgment axioms. Let ϕ be

an L∃OR formula in x1, . . . ,xn and s ⊂ Ri a finite set of i-dimensional sample points

(1 ≤ i ≤ n).

We must verify that

RCF |= ¬F(ϕ,s) =⇒ N (ϕ,s),

and

RCF |= F(ϕ,s) =⇒ RCF |= ϕ,

where (restating the property a bit more concretely than its original axiomatisation in

Section 7.6.1):

1. N (ϕ,s) means that no child (at any ancestral depth, i.e., in a Pi+1-invariant CAD

of Ri+1, in a Pi+2-invariant CAD of Ri+2, . . . , in a Pn-invariant CAD of Rn) of

any sample point in s will satisfy QF(ϕ).

In the first case, we have that any child of any sample point in s will satisfy
�

i�

j=1
x j ≥ min j(s) ∧ x j ≤ max j(s)

�
,
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and so

RCF |= ¬F(ϕ,s) =⇒ N (ϕ,s)

obviously holds. In the second case,

RCF |= F(ϕ,s) =⇒ RCF |= ϕ

is immediate.

Finally, again to keep our detailed examples below from becoming too large, we

will turn this AP-CAD stage ��S,w�,F,P� into an AP-CAD theatre T in a trivial fash-

ion:

T(n) = ��S,w�,F,P�.

That is, the same stage ��S,w�,F,P� will be used at every dimension during AP-CAD

lifting.

8.6.2.2 Applying AP-CAD in Detail

Let us now apply our concrete AP-CAD theatre to some example L∃OR formulas and

examine its execution. Recall that the decision method proceeds in four steps: projec-

tion, base, lifting and evaluation. We examine each step in detail.

Let ϕ be as follows:

ϕ =





∃x1 ∃x2 ∃x3 ∃x4

(x1x4 + x2x4 + x3x2 < 0)

∧ (x2 > 0) ∧ (x3 > 0) ∧ (x4 > 0)

∧ (x3x4 − x2
4 + x2

3 +1 < 0)




.

As ϕ is an ∃ RCF sentence s.t. QF(ϕ) consists of a conjunction of strict polynomial

inequalities, it follows by McCallum’s Theorem (cf. Section 7.6.2) that we may decide

ϕ by only examining full-dimensional cells during partial CAD construction. This

allows us avoid irrational algebraic number computations, as full-dimensional cells

(i.e., sectors) always contain rational points. This also permits us to use the Brown-

McCallum projection operator (cf. Definition 7.6.5) to obtain our CAD projection

factor sets, which can lead to much smaller projection sets than those obtained with

projection operators valid for general ∃ RCF formulas.

We will now walk through using AP-CAD to decide ϕ. It will turn out that ϕ is in

fact true over RCF, and we will illustrate the process of constructing a witness to its
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truth. First, we will compute the projection (factor) sets for ϕ. Then, we will compute

the base phase for our level 1 projection set. Finally, we will show how four different

variants of CAD operate during the lifting phase. These variants are:

1. full-dimensional lifting without eliminating any full-dimensional cells,

2. full-dimensional lifting with standard partial CAD used to eliminate cells,

3. full-dimensional lifting with our AP-CAD stage used to eliminate cells,

4. full-dimensional lifting with a combination of standard partial CAD and our AP-

CAD stage used to eliminate cells.

With each progressive variant, the number of cells eliminated during lifting will change.

The final variant will be the best in the sense that it will allow us to eliminate the most

cells during partial CAD construction.

8.6.2.2.1 Projection Sets We first extract the polynomials of ϕ, which gives us

P4 ⊂ Z[x1,x2,x3,x4]:

P4 =





x2,x3,x4,x1x4 + x4x2 + x3x2,

x2
4 − x3x4 − x2

3 −1




 .

Then, we apply the Brown-McCallum projection operator BMPro j : Z[x1, . . . ,xi+1]→
Z[x1, . . . ,xi] to obtain P3 ⊂ Z[x1,x2,x3]:

BMPro j(P4) = P3 =





x2,x3,−x2

1x2
3 − x1x2

3x2 + x2
3x2

2 − x2
1 −2x1x2 − x2

2,

x2
3 +1,x1 + x2,5x2

3 +4




 .

We apply BMPro j again to obtain P2 ⊂ Z[x1,x2]:

BMPro j(P3) = P2 =
�
−x2

1 − x1x2 + x2
2,x1 +3x2,x1 +2x2,x1 + x2,x2

�
.

Finally, we apply BMPro j one last time to obtain P1 ⊂ Z[x1]:

BMPro j(P2) = P1 =
�

x1

�
.

It is worth stating that obtaining a level-1 projection factor set P1 s.t. |P1| = 1 is quite

unusual. Even for this small problem, the size of the respective projection sets can

change drastically depending upon the projection variable order used. Nevertheless,

the example arising through the use of this projection order is nice as it results in

constructions small enough so that a detailed description of the decision process can

be given quite compactly.
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8.6.2.2.2 Base Phase We now compute the base collection of sample points of R1

induced by our level 1 projection set P1 ⊂Z[x1]. As our P1 is rather uncharacteristically

a singleton, this is trivial in this particular example. But, let us state what one must do

in general for the full-dimensional base phase, so that our walk-through is applicable

when P1 is larger. We will then follow this same sample-point computation process

when constructing stacks over cells in the lifting phase. We will build our collection

of sample points in the following manner:

1. We process P1 into a new set CoPrime(P1)⊂ Z[x1] so that no two distinct poly-

nomials p,q ∈CoPrime(P1) share a root, while maintaining the invariant that

{r ∈ R | ∃p ∈ P1(p(r) = 0)}= {r ∈ R | ∃p ∈CoPrime(P1)(p(r) = 0)}.

This can be done using univariate GCD and division. Our P1 in this example

happens to already have this property, so we simply set CoPrime(P1) = P1.

2. We apply univariate real root isolation to the polynomials in CoPrime(P1) to

obtain a collection of pairwise disjoint compact real intervals I1, . . . , Ik ⊂ R s.t.

every real root of a polynomial p ∈CoPrime(P1) is contained in exactly one in-

terval Ii, and for each interval Ii, there exists only one p∈CoPrime(P1) s.t. Ii con-

tains a real root of p (here we exploit the fact that no distinct p,q ∈CoPrime(P1)

share a root). This gives us a bijection

i : {r ∈ R | ∃p ∈ P1(p(r) = 0)} → {I1, . . . , Ik}

s.t.

∀r ∈ R(∃p ∈ P1(p(r) = 0) =⇒ r ∈ i(r)) .

This {I1, . . . , Ik} is called an isolating set of intervals for the roots of P1.

3. Because of their pairwise disjointness, I1, . . . , Ik have a natural ordering deter-

mined, for instance, by comparing their lower-bound components. WLOG, as-

sume

I1 < I2 < .. . < Ik.

This gives a “sketch” of a CAD of R1, with each interval Ii giving an approxima-

tion to a 0-dimensional cell (a section) which consists only of a root of a poly-

nomial in P1. If we were performing normal CAD without exploiting McCal-

lum’s Theorem, we would have to exactly represent these 0-dimensional cells,

which may be irrational algebraic numbers, and construct stacks over them. The
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1-dimensional cells of the P1-induced CAD of R1 are those in between each

adjacent pair of 0-dimensional cells, before the 0-dimensional cell contained in

I1 and after the 0-dimensional cell contained in Ik. As our isolating intervals

are pairwise disjoint, they give us enough information, without any further re-

finement, to select sample points in the 1-dimensional cells. Thankfully, this

means that we do not have to exactly represent any of the 0-dimensional cells;

our approximations of them given by I1, . . . , Ik are good enough.

4. As we are only interested in full-dimensional cells, we only need sample points

in between adjacent Ii’s, before I1 and after Ik. Since every such region we will

be sampling is an open subset of R1, we can choose these sample points all to be

rational points.

5. In our example, we choose the following sample points to form S1, our base col-

lection of sample points of R1 with one point taken from each full-dimensional

cell of a P1-invariant CAD of R1:

S1 =
�
−1,1

�
.

8.6.2.2.3 Four Variants of Lifting With the projection and base phases completed,

we turn to the lifting phase of (partial) CAD construction. To illustrate the use of our

concrete AP-CAD stage, we will show how the following four distinct approaches to

lifting differ when applied to deciding ϕ:

1. full-dimensional lifting without eliminating any full-dimensional cells,

2. full-dimensional lifting with standard partial CAD used to eliminate cells,

3. full-dimensional lifting with our AP-CAD theatre used to eliminate cells,

4. full-dimensional lifting with a combination of standard partial CAD and our AP-

CAD theatre used to eliminate cells.

It will turn out that as we consider them in sequence, each subsequent lifting

method will exhibit quite different behaviour in terms of the number of cells elimi-

nated. In the end, full-dimensional lifting with a combination of standard partial CAD

and our AP-CAD theatre will allow us to decide ϕ in the most efficient manner.
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8.6.2.2.4 Lifting Variant I: All Full-dimensional Cells In this first variant of lifting,

we will construct the entire full-dimensional CAD. In general, it is structured as a

tree of sample points, each drawn from a full-dimensional cell. But, since we are

deciding a purely ∃ RCF formula, we can ignore the tree structure and arrange our

representation as a collection of sets of sample points, with one set of sample points

for each CAD level. (There is still an implicit tree structure, however, as a sample point

�r1,r2,r3� ∈R3 will be seen as a “child” of the sample point �r1,r2� ∈R2, for instance.)

Since our ϕ is 4-dimensional, and as we are only sampling rational points, we will

end up with four sets of sample points, S1 ⊂ Q1 (which we have already computed),

S2 ⊂Q2, S3 ⊂Q3 and S4 ⊂Q4. At times we will only describe salient features of these

additional sets of sample points, instead of presenting them explicitly, as they become

large. We construct them as follows:

(R1 �→R2): To lift from R1 to R2, we iterate over our base set of sample points S1 as

follows (recall |S1|= 2):

For each q ∈ S1,

1. Form the univariate family P2[x1 �→ q] by substituting5 q for x1 in P2,

2. Compute a “sketch” of a CAD of R1 induced by P2[x1 �→ q] (in the same

manner we construced a “sketch” of a CAD of R1 induced by P1 above

through univariate real root isolation and isolating intervals), and select ra-

tional sample points xi from each of its full-dimensional cells. For each

sample point xi ∈ Q selected, we then form a 2-dimensional sample point

through extending q by xi, obtaining �q,xi� ∈ Q2. Let S2,q be the set con-

sisting of these sample points of the form �q,xi�. (S2,q then represents a

full-dimensional stack over q.)

Finally, our set of 2-dimensional sample points S2 is the union of these S2,q as

follows:

S2 =
�

q∈S1

S2,q.

Given P2 and S1 as computed above during the projection and base phases of

deciding ϕ, S2 ⊂Q2 computed in this way will be s.t.

|S2|= 14.
5Note that as q may in general be in (Q \Z), we may have that P2[x1 �→ q] ⊂ (Q[x2] \Z[x2]). This

turns out to not cause any problems, and indeed can be avoided altogether without changing the real
affine variety induced by P2[x1 �→ q] by multiplying through the resulting univariate polynomials by the
denominators of their rational coefficients.
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(R2 �→ R3): We perform the next-dimensional analogue of the above procedure, this

time working over the 14 sample points (each 2-dimensional) in S2 and substi-

tuting them into P3. After performing the relevant root isolation and sampling

computations, this yields S3 ⊂Q3 s.t.

|S3|= 40.

(R3 �→ R4): Finally, we perform the next-dimensional analogue of the previous lift-

ings, this time working over the 40 sample points (each 3-dimensional) in S3

and substituting them into P4. After performing the relevant root isolation and

sampling computations, this yields S4 ⊂Q4 s.t.

|S4|= 200.

So, lifting over every full-dimensional cell in our ϕ example ultimately results in

having to compute 200 sample points in Q4, which will then be each substituted

into QF(ϕ) during the evaluation phase.

The coordinates of our sample points tend to become6 more computationally

unwieldy as we rise in dimension. For instance, here is one of these 200 sample

points we computed for S4.

�−1,−43/16,−119327/36200,23133930249499/9896442880000�.

Here is one witness to ϕ contained in S4, thus proving ϕ to be true over RCF:

�−1,7/8,501/410,3917/410�.

Let us see how incorporating the methods of partial CAD during lifting can

improve the situation by reducing the number of cells we must lift over.

8.6.2.2.5 Lifting Variant II: Classical Partiality In this variant of lifting, we will

proceed in the manner of classical partial CAD (restricted to full-dimensional cells).

This follows the basic algorithm described in Section 7.6. We recall the idea.

Beginning with our sample points S1 ⊂ Q1 computed in the base phase, the “par-

tiality” of this variant of lifting comes from the following process, which we follow for

each q ∈ S1: Before lifting over q, we will substitute q as a value for x1 into QF(ϕ) and
6We have some ideas for methods enabling us to select sample points with smaller bit-width than

those we often select from sectors now. Pursuing this remains as future work beyond this thesis.
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examine the truth of the resulting formula QF(ϕ)[x1 �→ q]. If QF(ϕ)[x1 �→ q] can by

ground evaluation and propositional reasoning (cf. Section 7.6) be seen to be unsatis-

fiable, then we will eliminate q and avoid lifting over it. Dually, if QF(ϕ)[x1 �→ q] can

be seen to be satisfiable by polynomial arithmetic and propositional reasoning, then we

can stop the CAD process altogether and judge ϕ to be true. If we happen to eliminate

all of our sample points, then we can judge ϕ to be false. This “partiality” is then

performed in the analogous manner when lifting to each successive dimension.

As discussed in Section 7.6, classical partial CAD requires a sample point selection

strategy. When partially lifting from Ri to Ri+1, this specifies an enumeration of Si, the

sample points for the relevant cells of Ri. We use a simple cell selection mechanism

below, given by ordering the members of Si by the lexicographic extension of the

normal < relation of R and then selecting the sample points from left to right.

(R1 �→ R2): Performing the partial CAD method as described above results in no

elimination of members of S1.

We then substitute these two points as values for x1 in P2, and perform the root

isolation and full-dimensional sample point selection computations. As before,

this results in a total of 14 sample points in Q2. We use the following points:





�1,−2�,�1,−7/8�,�1,−17/32�,�1,−5/12�,�1,−1/6�,

�1,3/4�,�1,43/16�,�−1,−43/16�,�−1,−3/4�,�−1,1/6�,

�−1,5/12�,�−1,17/32�,�−1,7/8�,�−1,2�





.

(R2 �→ R3): We perform the analogous partial lifting method for R2 �→ R3, this time

working over our 14 sample points in Q2 computed above. In doing so, 7 out

of the 14 sample points are eliminated. We are then left with only having to lift

over the following set of 7 rational points in Q2:

{�1,3/4�,�1,43/16�,�−1,1/6�,�−1,5/12�,�−1,17/32�,�−1,7/8�,�−1,2�} .

We then substitute these points, with each one giving values for x1 and x2, into

P3, and perform the root isolation and full-dimensional sample point selection

computations. This results in a total of only 20 sample points in Q3.

(R3 �→ R4): We perform the analogous partial lifting method for R3 �→ R4, this time

working over our 20 sample points in Q3 computed above. In doing so, 10 out
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of the 20 sample points are eliminated. We are then left with only having to lift

over 10 rational points in Q3.

We then substitute these points, with each one giving values for x1, x2 and x3, into

P4, and perform the root isolation and full-dimensional sample point selection

computations. This results in a total of only 50 sample points in Q4.

Clearly, tremendous gains were made by employing partiality during lifting. Let

us illustrate the differences between these first two lifting methods by comparing the

cardinalities of the collections of sample points they retained at each dimension:

Normal Partial

Q1 2 2

Q2 14 7

Q3 40 10

Q4 200 50

8.6.2.2.6 Lifting Variant III: AP-CAD with Interval Theatre We now consider a lift-

ing method which utilises our interval-based AP-CAD theatre defined previously. This

will follow the “AP-CAD with Theatrical Lifting” algorithm (Algorithm 7.6.3) intro-

duced in Chapter 7, but instantiated upon our concrete theatre T.

Recall that we defined T to be s.t.

∀n ∈ N+ (T(n) = ��S,w�,F,P�) .

Thus, when performing AP-CAD lifting with T, the same AP-CAD stage, ��S,w�,F,P�
which we built to use some simple interval-based methods, will be applied at every

dimension. The algorithm proceeds as follows:

R1 �→ R2: The covering width function w is applied to S1 to yield w(S1) = 3. This

gives an upper-bound on the number of cell selections we will compute. As with

the description of Algorithm 7.6.3, we use j to represent the “step” in the cell

selection processing. Initially, j is set to 1. Next, the cell selection function S is

applied to S1 with a step value of 1, yielding:

S(S1,1) = S1 = {−1,1}.

So, the entire set of base sample points has been selected.
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Next, the formula construction function F is executed upon ϕ and this selection

of sample points. It yields the following formula:

F(ϕ,{−1,1}) =





∃x1 ∃x2 ∃x3∃x4

(x1x4 + x2x4 + x3x2 < 0)

∧ (x2 > 0) ∧ (x3 > 0) ∧ (x4 > 0)

∧ (x3x4 − x2
4 + x2

3 +1 < 0)

∧ (x1 ≥−1) ∧ (x1 ≤ 1)





.

Finally, the ∃ RCF proof procedure P given by RAHD’s execution of the fol-

lowing proof strategy is executed upon F(ϕ,S1):

[ simp-zrhs; run stable-simp; satur-lin;

interval-cp(max-contractions := 30)].

This proof strategy is unable to reach a decision about F(ϕ,S1) and returns un-
known. This causes j to be incremented to 2, and the next step of the cell

selection process is executed:

S(S1,2) = {−1}.

Next, the formula construction function F is executed upon ϕ and this selection

of sample points. It yields the following formula:

F(ϕ,{−1}) =





∃x1 ∃x2 ∃x3∃x4

(x1x4 + x2x4 + x3x2 < 0)

∧ (x2 > 0) ∧ (x3 > 0) ∧ (x4 > 0)

∧ (x3x4 − x2
4 + x2

3 +1 < 0)

∧ (x1 ≥−1) ∧ (x1 ≤−1)





.

The ∃ RCF proof procedure P is executed upon F(ϕ,{−1}), again returning

unknown. This causes j to be incremented to 3, its current upper bound as

determined by the covering width function w, and so a final cell selection will be

executed upon S1:

S(S1,3) = {1}.
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Next, the formula construction function F is executed upon ϕ and this selection

of sample points. It yields the following formula:

F(ϕ,{1}) =





∃x1 ∃x2 ∃x3∃x4

(x1x4 + x2x4 + x3x2 < 0)

∧ (x2 > 0) ∧ (x3 > 0) ∧ (x4 > 0)

∧ (x3x4 − x2
4 + x2

3 +1 < 0)

∧ (x1 ≥ 1) ∧ (x1 ≤ 1)





.

The ∃ RCF proof procedure P is executed upon F(ϕ,{1}), and this time it is

able to prove the constructed formula to be false. Thus, the sample point 1 can

be eliminated from S1 and we need not lift over it.

It is worth pausing and understanding why classical partial CAD was unable to

eliminate 1 from S1, yet this AP-CAD method succeeds. By inspecting the for-

mula, we see that simple interval reasoning is enough to recognise the falsity of

F(ϕ,{1}), but classical partial CAD, performing only substitution, the evalua-

tion of ground atoms, and propositional reasoning, does not recognise this.

Now, we isolate the relevant sample points induced by the univariate family

P2[x1 �→ −1] and continue onto the next dimension.

(R2 �→ R3 �→ R4): It turns out that for the rest of the lifting process, our AP-CAD

theatre is unable to eliminate any cells. This results in having to retain 20 sample

points in Q3 and 100 sample points in Q4.

Thus, while this AP-CAD instance showed some promise in improving the effi-

ciency of this example during (R1 �→ R2) lifting, in the end it resulted in having to lift

over more cells than classical partial CAD did. Let us extend our previous table so that

we may compare the cardinalities of the sets of retained sample points for the three

variants of lifting seen thus far:

Normal Partial Intvl. AP-CAD

Q1 2 2 1

Q2 14 7 7

Q3 40 10 20

Q4 200 50 100

But, notice the following: We did not employ at all the method of classical partial

CAD during this AP-CAD lifting. That is, many of these cells the AP-CAD did not
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recognise to be eliminable may have been recognised to be eliminable by substitution,

the evaluation of ground atoms and propositional reasoning. Let us see what happens

when we combine these methods.

8.6.2.2.7 Lifting Variant IV: Classical Partial + AP-CAD In this final variant of

lifting, we will first try to eliminate cells by the reasoning of classical partial CAD,

and we will then apply our AP-CAD cell selection and elimination loop to the cells

which survived.

(R1 �→R2): We begin with two sample points S1 = {−1,1}. Partial CAD elimination

is unable to eliminate either of them. Our AP-CAD theatre is able to eliminate

one of them, 1, as we saw before. So, we lift over −1 w.r.t. P2 and compute 7

sample points in Q2

(R2 �→ R3): We begin with the 7 sample points in Q2 and apply partial CAD elimi-

nation. This results in 2 sample points being eliminated. Our AP-CAD theatre

is unable to eliminate any of them. We are then left with only having to lift over

5 points in Q2 w.r.t. P3. So, we lift over them and compute 14 sample points in

Q3.

(R3 �→R4): Finally, we begin with the 14 sample points in Q3 and apply partial CAD

elimination to them. This eliminates 7. We then lift over the remaining 7 points

w.r.t. P4 and compute 35 sample points in Q4.

Thus, the combination of the cell elimination method of classical partial CAD cou-

pled with our AP-CAD lifting led to the most efficient lifting variant, measured by

the number of cells retained at each dimension, for this example. We may now com-

plete our table comparing the cardinalities of the sets of sample points retained at each

dimension:

Normal Partial Intvl. AP-CAD Partial + Intvl. AP-CAD

Q1 2 2 1 1

Q2 14 7 7 5

Q3 40 10 20 7

Q4 200 50 100 35
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8.6.2.3 Experimental Conclusion

In this experiment, we built a concrete instance of our Abstract Partial CAD framework

making use of light-weight interval arithmetic reasoning and examined its efficacy. We

compared in substantial detail four variants of lifting on a particular ∃ RCF formula ϕ.

These four methods were:

1. full-dimensional lifting without eliminating any full-dimensional cells,

2. full-dimensional lifting with standard partial CAD used to eliminate cells,

3. full-dimensional lifting with our AP-CAD theatre used to eliminate cells,

4. full-dimensional lifting with a combination of standard partial CAD and our AP-

CAD theatre used to eliminate cells.

As lifting is usually the most expensive aspect of a CAD-based decision method,

we focused on a comparison between the number of cells one is forced to lift over by

each of these variants.

For our example formula ϕ, we found the final method combining classical partial

CAD and our AP-CAD instance to be the best, followed by classical partial CAD,

then our AP-CAD instance working alone, and finally the method of normal full-

dimensional CAD without any partiality. In all cases, the cost of the AP-CAD the-

atre/stage execution was miniscule, measuring no more than 0.01% of the total CPU

time, as the cell selection, formula construction and interval reasoning employed were

each of such a simple nature.

In general, we conclude that the final variant of lifting combining classical partial

CAD and our AP-CAD instance at worst performs as well as partial CAD and at best

performs substantially better. This conclusion is supported by experiments we have

done with other example ∃ RCF formulas. Below we summarise in table form our

findings on five examples (cf. Appendix A) , the first being ϕ we worked through

above:
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Normal Partial Intvl. AP-CAD Partial + Intvl. AP-CAD

P1 Q1 2 2 1 1

Q2 14 7 7 5

Q3 40 10 20 7

Q4 200 50 100 35

P2 Q1 16 8 0 0

Q2 140 0 - -

Q3 664 - - -

P3 Q1 4 2 2 2

Q2 20 5 10 5

Q3 60 3 30 3

Q4 120 6 60 6

P4 Q1 12 10 0 0

Q2 88 19 - -

Q3 264 19 - -

Q4 1320 95 - -

P5 Q1 8 3 4 3

Q2 64 8 32 8

Q3 512 8 56 8

Q4 2560 40 1280 40

Finally, we wish to state two closing experimental observations.

First, the AP-CAD instance we constructed and experimented with in this section

is but one of many (indeed, infinitely many) possible such instances. The fact that

even such a simple7 instance of the AP-CAD paradigm shows such promise is very

encouraging.

Second, though we have been working solely with full-dimensional variants of

CAD-based methods, AP-CAD may prove to be even more useful when it comes to

full-on CAD-based methods which require irrational algebraic number computations.

The reason is that through cell selection, formula construction and proof procedure

execution, one has the ability to eliminate a set of many sample points all at once using

AP-CAD, and in this way many irrational algebraic sample points may be eliminated

7It is worth observing that the combination of classical partial CAD and our AP-CAD instance could
actually be realised by a more intricate AP-CAD instance which performs the classical partial CAD
reasoning itself. In this way, AP-CAD can be seen as a true generalisation of classical partial CAD.
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with only rational number computations. To use our concrete AP-CAD instance as an

example in the context of standard CAD not restricted to full-dimensional lifting, one

has the potential to eliminate a set of sample points such as {−3,−
√

2,−1,
√

2,
√

2+

3
√

3,15} simply by constructing and refuting a formula that only references this set of

sample points using its minimal and maximal rational values, e.g., through a statement

of the form F ∧ (x1 ≥ −3 ∧ x1 ≤ 15) for some F . The ability to eliminate multiple

irrational algebraic sample points simply through reasoning about formulas involving

rational numbers seems very promising for the extension of these ideas to unrestricted

cell decompositions.

8.7 Conclusion

In this chapter, we have presented a user-oriented view of our RAHD (Real Algebra in

High Dimensions) proof tool for ∃ RCF. This tool can be seen as a practical realisation

of many of the decision method ideas put forth in our dissertation, and provides a

framework in which new ∃ RCF proof procedures may be easily built and deployed.

In the process, we presented two classes of detailed experiments. Let us give a high-

level summary.

First, we showed how one may use RAHD to build and apply a promising novel

class of proof strategies combining Gröbner bases and full-dimensional cell decompo-

sitions. This class of experiments was especially nice as the automatic proof strategy

we built was derived through the interactive deciding of a formula we were previ-

ously unable to decide with automatic methods. A refined variant of this proof strategy

then performed very well compared to other ∃ RCF decision methods and was able

to decide a number of problems which were to our knowledge previously beyond the

reaches of automatic methods.

Second, we built a concrete instance of our framework of Abstract Partial Cylindri-

cal Algebraic Decomposition introduced in Chapter 7. This instance utilised a simple

form of interval arithmetic based reasoning as a method for short-circuiting aspects of

the lifting phase of (full-dimensional) partial CAD construction. We compared the per-

formance of this method with a number of other approaches to lifting, and ultimately

came to the conclusion that classical partial CAD extended with this interval-based

AP-CAD instance is the lifting method of choice for a number of problems. As this

concrete instance is but one of infinitely many possible AP-CAD instances, we are

excited by the promise of this general framework. We find it conceptually and prac-
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tically edifying to be able to build and apply arbitrary sound but possibly incomplete

∃ RCF proof procedures in the context of a complete decision method, i.e., one based

on CAD, without sacrificing the completeness of the underlying method.





Chapter 9

Conclusion

9.1 Context and Enquiry

Let us now step back from our work and reflect upon it. We will strive to place it in a

larger context, expounding upon a broader vision to which it contributes.

9.1.1 What and Why?

The main goal underlying our dissertation may be stated simply: To improve our ability

to decide nonlinear arithmetical conjectures over the real and complex numbers. The

ubiquitous nature of these arithmetics, the natural manner in which they arise in nearly

all mathematical sciences, leaves no doubt that radically improved proof procedures

for them would be of remarkable utility. But, the inherent algorithmic complexity

of these decision problems makes progress towards practically useful general-purpose

decision engines necessarily tough going. It is safe to say that this will never change.

The story, however, need not end here. When we embrace this difficulty and recog-

nise that no single decision method for these arithmetics will ever be sufficient, then

we see there is much that can be done. There are so many different decision methods

for these theories, with such a range of underlying mathematical techniques, and these

methods very often disagree on which problems they find challenging. Through this

immense diversity — how one method’s insurmountable obstacle may be another’s

stroll through the garden — meaningful progress can be made.

By specialising known proof methods (and components of them) to exploit struc-

tural properties of problems of interest, and by providing mechanisms through which

difficult problems can be broken down into pieces, with each piece feasibly solvable

261
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by some available method, the decision feasibility boundary can be slowly expanded,

at least for many classes of practical problems. It is easy then to come to the conclu-

sion that developing ways in which nonlinear arithmetical decision methods may be

combined and specialised is a worthy pursuit. But, where does one go from here?

From our personal experience, we found that once we developed a few such com-

binations, even successful ones which allowed us to solve problems we could not solve

before, an unpleasant feeling began to take hold. Were we just building an ad hoc “bag

of tricks?” Were our decision method combinations just a “bunch of hacks?” What is

the science underlying these heuristic combinations? What knowledge can be gained

from them? To do good science, one must strive to find and understand the underlying

principles. One feels this as a need, like water, oxygen, time spent with nature. How

then can we undertake this work, to build these combined proof procedures which are

effective in large part because of their bags of tricks, without betraying our conscience?

Can we do this in a principled way? To us, our most pleasing contributions have been

attempted answers to these questions.

9.1.2 A Search for Underlying Principles

There are three main principled approaches we have given for specialising and com-

bining nonlinear proof procedures over the real and complex numbers.

Abstract Gröbner Bases In this theory, specialised Gröbner basis construction algo-

rithms became formal strategies for sequencing a small set of inference rules (cf.

Chapter 3). These formal strategies were much easier to reason about than the

actual algorithms to which they corresponded. With this framework, we were

able to prove the correctness of novel Gröbner basis algorithms effective on a

new class of problems arising in large-scale SMT-based program verification

(cf. Chapter 5). In addition, we were able to prove that certain classical Gröbner

basis optimisation methods, so-called “superfluous S-polynomial criteria,” could

be soundly exploited in the context of any correct formal strategy. This allowed

us to include these optimisations in our algorithms, which contributed greatly

to their practical success. The underlying principle of this work comes to light

through the use of an abstract framework for building and analysing our spe-

cialised decision methods. In contrast to the next piece of work we describe,

we consider this principled approach to be global, as the entire Gröbner basis

decision method was abstracted and made manipulable and analysable by the
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framework.

Abstract Partial CAD With this work, we realised that the ideas underlying the par-

tial CAD method of Collins and Hong could be generalised to work with ar-

bitrary sound but possibly incomplete ∃ RCF proof procedures (cf. Chapter
7). This generalisation allowed one to build custom decision methods in which

algorithmic data describing how one eliminates cells during CAD construction

could be given as parameters to a new higher-order CAD-based proof procedure.

This facilitates the injection of strategy into a key aspect of CAD construction.

The principle underlying this work is two-fold: First, it provides a general set-

ting in which a broad class of modifications to CAD lifting can all be seen to be

special cases of a single idea. Second, it provides a way in which custom “ad

hoc” sound but possibly incomplete combinations of proof procedures can be

exploited in the context of a complete procedure without sacrificing this com-

pleteness. In contrast to the work involving Abstract Gröbner Bases, we consider

the first principle underlying this work to be a local one. This is because only one

component of the partial CAD procedure was abstracted and made strategically

controllable. To realise this general idea and actually bring it to bear on prob-

lems, we had to have a method for building and deploying custom ∃ RCF proof

procedures as first-class objects. This is taken up with the next contribution we

describe.

RAHD Strategies Finally, we come to our ∃ RCF proof tool RAHD (cf. Chapter
8). With this work, we built a tool in which a large heterogeneous collection

of nonlinear arithmetical proof procedures could be effectively combined and

applied. Through tailoring these combinations, proof procedures specialised to

exploit structural properties of problems of interest could be synthesised. There

were a few key underlying principles allowing this to work: First, we had to

build a large collection of ∃ RCF proof procedures sharing a common interface,

with many of them allowing strategic control to be exerted over them through

the use of parameters (cf. Chapter 6). Second, we built a simple proof strategy

language for expressing conditional combinations of these proof procedures. In

doing so, radically different proof procedure combinations were placed on the

same footing as each simply being different RAHD proof strategies. Third, these

strategies were made first-class objects in the sense that they could be passed

around to each other as functional parameters. This allowed us to actually build
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the Abstract Partial CAD framework and experiment with it. Fourth, the system

was built with an intended methodology, roughly as follows: When faced with a

difficult problem none of the known proof strategies can solve, one uses interac-

tive methods to investigate the formula and try to synthesise an applicable proof

procedure. If one succeeds, then this proof procedure can be made available as

a push-button automatic method, so that the resulting technique fits cleanly into

formal verification tool-chains.

Overall, these ideas give firm foundations upon which specialised nonlinear arith-

metical proof procedures may be built and deployed in a principled way. Many of the

ideas have been already realised in our tool RAHD and in the SMT solver Z3, and are

showing much practical promise. These results culminate in a novel contribution to

our overall goal of improving our ability to decide nonlinear arithmetical conjectures

over the real and complex numbers.

9.2 Future Work

Proposals for future work have been woven throughout this thesis. Let us now end with

a slightly expanded summary of a few of the future directions we most hope to pursue.

Abstract Gröbner Bases

First, it would be very interesting to investigate the strategy-independent admissibility

of additional superfluous S-polynomial critera w.r.t. Abstract GBs. We were able to

prove the admissibility of three such criteria, but there are many widely used criteria

which we have not begun to analyse. One first place to start (suggested to us by James

Davenport [Dav09]) is to see if our proof of the strategy-independent admissibility of

Criterion 2 could be adapted to a proof of the strategy-independent admissibility of

the so-called “chained Buchberger-2” criterion [Buc79].

In similar spirit, we would also like to see if any of the linear algebraic tech-

niques utilised by Faugere’s F4 and F5 Gröbner basis construction algorithms could be

brought to bear on our algorithms, so that the combined methods could be even more

effective on classes of large, largely linear (“L3”) nonlinear systems [Fau99, Fau02].

If we are able to do this, then based upon the experiments in Section 5.3, it also seems

plausible that the effectivity of our algorithms could be extended to large systems with

a higher nonlinear component than the L3 ones currently amenable to our methods.
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Finally, it could also be very rewarding to build a tool, perhaps somewhat similar

to RAHD, in which new Gröbner basis algorithms could be synthesised through their

expression in a strategy language based upon the Abstract GB calculus.

Abstract Partial CAD

Recall that Abstract Partial CAD as developed in this thesis only allows one to exert

strategic control over the lifting phase of CAD. As described at the end of Chapter
8, it would be very interesting to work on extending the AP-CAD framework to in-

clude methods for exerting strategic control also over the projection phase of partial

CAD construction. We sketched one high-level idea for how we might go about this

based upon some recent advances in the algorithmic construction of sums of squares

decompositions. This would be both conceptually edifying and potentially very use-

ful in practice, as the size of projection (factor) sets can grow astronomically as one

approaches Z[x1] from above.

In Section 8.6.2, we built a concrete instance of AP-CAD and analysed in detail

its lifting performance on a collection of problems. This instance used an AP-CAD

theatre based on light-weight interval constraint propagation to recognise when cer-

tain partial CAD cells could be eliminated during lifting. These experiments suggest

that the AP-CAD approach may be of much practical use. Thus, we wish to develop

many more robust AP-CAD stages and theatres tailored to difficult ∃ RCF problem

classes. This will require much experimentation and tool support, and will likely drive

improvements to RAHD with new techniques for aiding the construction and analysis

of AP-CAD instances.

On the immediate horizon, we are especially interested in building and applying

AP-CAD instances which make use of quadratic virtual term substitution [Wei97]

and the use of semidefinite programming to find Positivstellensatz witnesses [Par03,

Har07]. We would also like to further extend our implementation to handle the case of

general (i.e., not just full-dimensional) cell decompositions. To do this, we will need to

build into RAHD native support for computing with irrational real algebraic numbers.

RAHD

Let us turn our focus now to RAHD itself. There are many ways the system can be

improved.

First, we would like to include more RCF (semi-)decision methods as primitive

proof procedures in the system. As with those we have built into RAHD so far, we
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expect that through the process of studying, implementing and experimenting with

these additional proof methods, we may find ways to further generalise and parame-

terise them so that they may be combined with other RAHD CMFs and proof strate-

gies in compelling ways. Looking forward, the first five such procedures we hope to

work on next are quadratic virtual term substitution1 [Wei97], Basu-Pollack-Roy con-

nected component sampling [BPR06], Positivstellensatzen search using semidefinite

programming [Har07], more advanced ICP-based methods [Rat06] and a new tech-

nique for computing CADs based on complex triangulation [CMXY09].

Next, the RAHD proof strategy language is currently extremely simple. It would

be very interesting to extend the language with more constructs, especially with some

form of parallelism enabling simultaneous proof strategy execution with back-tracking.

Throughout our experiments presented in Section 8.6, we found the need to add

much proof procedure tracing and profiling machinery to the system. This is how we

were able to auto-generate the tables found in Appendix B, for instance. In working

to refine proof strategies for problem corpora, we found having access to this sort of

profiling data extremely useful. But, there are many ways we can imagine improving

this type of support in the system with more fine-grained performance analyses. Prob-

ably, we will over time improve this aspect of the system through undertaking more

and more case studies which then push us to add additional tool support as it is needed.

Finally, we would like to apply RAHD to a much broader set of problem fam-

ilies. In the process, we hope to both develop more novel, practically useful proof

strategies and apply them in the context of many more serious proof efforts. This

will undoubtedly drive serious improvements to the tool. We also expect it to lead to

interesting theoretical developments, many of which may result in practically useful

fruit. Fortunately, at the time of this writing, we have been given a four-year EPSRC

grant to continue this work [JPP10], with our key foci being the application of RAHD
within (i) the formal verification of a class of mixed discrete-continuous dynamical

system known as hybrid systems, including the integration of RAHD with Paulson’s

MetiTarski [AP10] prover for RCF extended with special (trigonometric, exponential)

functions, (ii) the formal verification of hardware, software and bioware through the

integration of techniques derived from RAHD within SMT solvers, and (iii) formalised

mathematics.

1At the time of this writing, we have in fact implemented basic quadratic virtual term substitution
(VTS) already into the latest version of RAHD. But, as intermediate formulas produced during VTS
can be very large, we need to implement more of the simplification methods found in Dolzmann’s
dissertation [Dol00] before our VTS implementation in RAHD is ready for serious use.
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Towards this first application aim, we are planning to integrate RAHD as the non-

linear real arithmetical back-end of a number of hybrid systems verification tools in-

cluding SRI’s HybridSAL and CMU’s KeYmaera. Our initial focus has been the in-

tegration of RAHD as the RCF backend of Paulson’s MetiTarski, which has already

been completed. During this integration, we have constructed a small collection of

RAHD strategies tailored to MetiTarski problems, and the application of these strate-

gies within MetiTarski has allowed the system to prove theorems which were previ-

ously beyond its reach. There is much work to be done to obtain a robust integration

of the two tools.

Towards the second aim above focused on SMT solvers, we have ongoing collab-

oration with de Moura in which we are devising more nonlinear arithmetical methods

which can be effectively integrated within Z3. This extends our work on Abstract

GBs and combined RCF proof procedures in RAHD, and RAHD is being used to de-

velop the first prototype versions of these new SMT-aimed nonlinear arithmetic proof

techniques. In the process, we have also been working together on designing an ex-

plicit strategy language for Z3 and other SMT solvers, and de Moura is now building

the latest 2011 competition version of Z3 based upon these new strategy mechanisms

[dMP11].





Appendix A

Obtaining RAHD and Supporting

Documents

Our proof tool RAHD, its source code, the verification of the relevant portions of its

generalised interval arithmetic machinery, formulas used in our experiments and other

related documents may be obtained from our

Thesis Supporting Data URL

at

http://homepages.inf.ed.ac.uk/s0793114/phd-thesis/.
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Appendix B

Fine-Grained Data on Calculemus

Strategy Execution

In this appendix, we give more detailed data accounting for the performance differ-

ences between the three calculemus strategies reported on in Chapter 8. For a discus-

sion of this data, please refer to Section 8.6.1.2.

For each considered problem P, and each calculemus strategy S, we report:

• The total number of cases in the proof tree constructed by S in its solution of P,

• For each CMF F applied by S during its deciding of P, we give the number of

times S successfully applied F, and the total amount of time S spent attempting

to apply F. Note that when S attempts to apply F, this application may either

succeed (make progress on a case), or fail (not make progress on a case).

We report this data in a table. In each table, the CMF contribution column for

strategy S has entries of the form “N (T).” N is the number of times S applied

F successfully and T is the total amount of time spent attempting to apply F (in

seconds). If a given strategy does not even attempt to apply a CMF listed, then

the corresponding CMF contribution entry consists of a dash.

The final row of the table for P lists the total time each S took in solving P.

Note that the timing reported below will differ (quantitatively, not qualitatively)

from that reported in Figure 8.6.1.2. This is because recording this proof profiling

data has a small overhead. This profiling was not enabled during the experiments

reported on in the main text.
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Note also that in each table, the total time each strategy S took in solving problem

P may be a bit larger than the sum of the CMF execution times given for S. This is

because there are other computationally non-trivial aspects of RAHD execution be-

sides the application of CMFs. This includes various system book-keeping mechanics,

the maintenance of a number of caches, the evaluation of measure-values upon cases,

garbage collection in between CMF applications, and so on.

P0 calc-0 calc-1 calc-2

#(Proof-tree) 1024 1024 1024

QEPCAD (OPEN?:=1) 128 (0.754) 89 (0.619) 89 (0.621)

RCR-INEQS 0 (0.000) 0 (0.000) 0 (0.001)

INTERVAL-CP - 0 (0.151) 0 (0.151)

UNIV-STURM-INEQS 60 (0.006) 17 (0.004) 17 (0.004)

SIMP-REAL-NULL 0 (0.000) 0 (0.000) 0 (0.000)

SIMP-ARITH 210 (0.024) 107 (0.018) 107 (0.017)

DEMOD-NUM 1023 (0.056) 107 (0.005) 107 (0.004)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 0 (0.076)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 916 (0.664) 916 (0.702)

SPLIT-INEQS (MAX-SPLITS:=12) 1 (0.009) 1 (0.005) 1 (0.006)

SIMP-ZRHS 0 (0.001) 0 (0.000) 0 (0.000)

SIMP-GLS 1023 (0.022) 107 (0.003) 107 (0.003)

DEMOD-LIN 0 (0.001) 0 (0.001) 0 (0.002)

FERT-TSOS 23 (0.009) 2 (0.006) 2 (0.006)

SATUR-LIN 128 (0.042) 89 (0.033) 89 (0.034)

TRIV-IDEALS 0 (0.001) 0 (0.000) 0 (0.000)

INT-DOM-ZPB 0 (0.000) 0 (0.000) 0 (0.000)

0.963 1.627 1.729



273

P1 calc-0 calc-1 calc-2

#(Proof-tree) 3072 3072 3072

QEPCAD (OPEN?:=1) 378 (1.203) 194 (0.806) 194 (0.994)

RCR-INEQS 0 (0.000) 0 (0.000) 0 (0.001)

INTERVAL-CP - 112 (0.421) 0 (0.316)

UNIV-STURM-INEQS 156 (0.023) 83 (0.010) 13 (0.003)

SIMP-REAL-NULL 0 (0.000) 0 (0.000) 0 (0.000)

SIMP-ARITH 841 (0.085) 546 (0.045) 294 (0.045)

DEMOD-NUM 3072 (0.148) 486 (0.021) 207 (0.015)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 279 (0.308)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 2586 (1.569) 2586 (1.570)

SPLIT-INEQS (MAX-SPLITS:=12) 3 (0.023) 3 (0.035) 3 (0.017)

SIMP-ZRHS 0 (0.002) 0 (0.000) 0 (0.001)

SIMP-GLS 3072 (0.059) 486 (0.020) 207 (0.003)

DEMOD-LIN 0 (0.004) 0 (0.005) 0 (0.001)

FERT-TSOS 99 (0.029) 15 (0.016) 0 (0.016)

SATUR-LIN 378 (0.088) 306 (0.077) 194 (0.056)

TRIV-IDEALS 0 (0.000) 0 (0.000) 0 (0.000)

INT-DOM-ZPB 0 (0.000) 0 (0.000) 0 (0.000)

1.822 3.261 3.601
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P2 calc-0 calc-1 calc-2

#(Proof-tree) 768 768 768

QEPCAD (OPEN?:=1) 99 (0.823) 99 (0.894) 99 (0.820)

RCR-INEQS 0 (0.000) 0 (0.001) 0 (0.000)

INTERVAL-CP - 0 (0.326) 0 (0.333)

UNIV-STURM-INEQS 96 (0.017) 72 (0.019) 72 (0.014)

SIMP-REAL-NULL 0 (0.000) 0 (0.000) 0 (0.000)

SIMP-ARITH 165 (0.167) 143 (0.137) 143 (0.140)

DEMOD-NUM 768 (0.051) 171 (0.010) 171 (0.008)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 0 (0.189)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 597 (0.880) 597 (0.904)

SPLIT-INEQS (MAX-SPLITS:=12) 3 (0.003) 3 (0.002) 3 (0.002)

SIMP-ZRHS 0 (0.001) 0 (0.000) 0 (0.000)

SIMP-GLS 768 (0.061) 171 (0.003) 171 (0.009)

DEMOD-LIN 0 (0.005) 0 (0.006) 0 (0.005)

FERT-TSOS 0 (0.019) 0 (0.018) 0 (0.020)

SATUR-LIN 99 (0.054) 99 (0.057) 99 (0.058)

TRIV-IDEALS 0 (0.000) 0 (0.000) 0 (0.000)

INT-DOM-ZPB 0 (0.000) 0 (0.000) 0 (0.000)

1.292 2.475 2.626
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P3 calc-0 calc-1 calc-2

#(Proof-tree) 768 768 768

QEPCAD (OPEN?:=1) 99 (0.978) 99 (1.020) 99 (1.041)

RCR-INEQS 0 (0.000) 0 (0.000) 0 (0.000)

INTERVAL-CP - 0 (0.358) 0 (0.330)

UNIV-STURM-INEQS 96 (0.026) 72 (0.016) 72 (0.015)

SIMP-REAL-NULL 0 (0.000) 0 (0.001) 0 (0.000)

SIMP-ARITH 165 (0.166) 143 (0.149) 143 (0.140)

DEMOD-NUM 768 (0.051) 171 (0.008) 171 (0.009)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 0 (0.185)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 597 (0.896) 597 (0.885)

SPLIT-INEQS (MAX-SPLITS:=12) 3 (0.002) 3 (0.002) 3 (0.003)

SIMP-ZRHS 768 (0.076) 171 (0.016) 171 (0.018)

SIMP-GLS 768 (0.035) 171 (0.008) 171 (0.008)

DEMOD-LIN 0 (0.005) 0 (0.005) 0 (0.005)

FERT-TSOS 0 (0.037) 0 (0.016) 0 (0.017)

SATUR-LIN 99 (0.053) 99 (0.058) 99 (0.056)

TRIV-IDEALS 0 (0.000) 0 (0.000) 0 (0.000)

INT-DOM-ZPB 0 (0.001) 0 (0.000) 0 (0.000)

1.520 2.665 2.844
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P4 calc-0 calc-1 calc-2

#(Proof-tree) 768 768 768

QEPCAD (OPEN?:=1) 99 (0.724) 90 (0.686) 90 (0.688)

RCR-INEQS 0 (0.000) 0 (0.000) 0 (0.001)

INTERVAL-CP - 0 (0.205) 0 (0.213)

UNIV-STURM-INEQS 88 (0.010) 50 (0.009) 50 (0.009)

SIMP-REAL-NULL 0 (0.000) 0 (0.000) 0 (0.000)

SIMP-ARITH 194 (0.062) 139 (0.050) 139 (0.050)

DEMOD-NUM 768 (0.056) 140 (0.008) 140 (0.006)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 0 (0.157)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 628 (0.890) 628 (0.895)

SPLIT-INEQS (MAX-SPLITS:=12) 3 (0.010) 3 (0.003) 3 (0.002)

SIMP-ZRHS 0 (0.002) 0 (0.000) 0 (0.000)

SIMP-GLS 768 (0.032) 140 (0.004) 140 (0.005)

DEMOD-LIN 0 (0.003) 0 (0.002) 0 (0.002)

FERT-TSOS 8 (0.012) 0 (0.012) 0 (0.011)

SATUR-LIN 99 (0.037) 90 (0.041) 90 (0.036)

TRIV-IDEALS 0 (0.000) 0 (0.000) 0 (0.000)

INT-DOM-ZPB 0 (0.000) 0 (0.000) 0 (0.000)

1.035 2.013 2.188
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P5 calc-0 calc-1 calc-2

#(Proof-tree) 4 4 4

TRIV-IDEALS 4 (0.171) 4 (0.154) 4 (0.154)

SATUR-LIN 4 (0.023) 4 (0.033) 4 (0.037)

FERT-TSOS 0 (0.002) 0 (0.002) 0 (0.001)

DEMOD-LIN 0 (0.004) 0 (0.004) 0 (0.005)

SIMP-GLS 0 (0.000) 0 (0.000) 0 (0.000)

SIMP-ZRHS 4 (0.002) 4 (0.002) 4 (0.002)

SPLIT-INEQS (MAX-SPLITS:=12) 0 (0.000) 0 (0.000) 0 (0.000)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 0 (0.003) 0 (0.003)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 0 (0.005)

DEMOD-NUM 0 (0.000) 0 (0.002) 0 (0.001)

SIMP-ARITH 0 (0.002) 0 (0.002) 0 (0.002)

SIMP-REAL-NULL 0 (0.002) 0 (0.002) 0 (0.003)

UNIV-STURM-INEQS 0 (0.000) 0 (0.001) 0 (0.001)

INTERVAL-CP - 0 (0.007) 0 (0.007)

0.257 0.263 0.273
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P6 calc-0 calc-1 calc-2

#(Proof-tree) 8 8 1

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 8 (0.003) 1 (0.000)

SPLIT-INEQS (MAX-SPLITS:=12) 1 (0.000) 1 (0.000) -

QEPCAD (OPEN?:=1) 0 (0.039) - -

RCR-INEQS 6 (0.675) - -

SATUR-LIN 8 (0.008) - -

FERT-TSOS 0 (0.001) - -

DEMOD-LIN 8 (0.001) - -

SIMP-GLS 17 (0.001) - -

SIMP-ZRHS 14 (0.000) - -

DEMOD-NUM 12 (0.002) - -

SIMP-ARITH 12 (0.000) - -

SIMP-REAL-NULL 0 (0.000) - -

UNIV-STURM-INEQS 0 (0.000) - -

TRIV-IDEALS 0 (0.731) - -

INT-DOM-ZPB 0 (0.001) - -

QEPCAD 6 (146.511) - -

148.026 0.054 0.001

P7 calc-0 calc-1 calc-2

#(Proof-tree) 1 1 1

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 1 (0.000) 1 (0.000)

SPLIT-INEQS (MAX-SPLITS:=12) 0 (0.000) 0 (0.000) -

DEMOD-LIN 0 (0.000) - -

SIMP-GLS 0 (0.000) - -

SIMP-ZRHS 1 (0.000) - -

DEMOD-NUM 0 (0.000) - -

SIMP-ARITH 0 (0.001) - -

SIMP-REAL-NULL 1 (0.000) - -

0.040 0.001 0.000
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P8 calc-0 calc-1 calc-2

#(Proof-tree) 64 64 1

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 64 (0.089) 1 (0.001)

SPLIT-INEQS (MAX-SPLITS:=12) 1 (0.001) 1 (0.000) -

QEPCAD (OPEN?:=1) 24 (0.075) - -

RCR-INEQS 48 (1.503) - -

SATUR-LIN 64 (0.029) - -

FERT-TSOS 0 (0.008) - -

DEMOD-LIN 62 (0.011) - -

SIMP-GLS 52 (0.002) - -

SIMP-ZRHS 100 (0.003) - -

DEMOD-NUM 42 (0.005) - -

SIMP-ARITH 0 (0.017) - -

SIMP-REAL-NULL 0 (0.002) - -

UNIV-STURM-INEQS 0 (0.002) - -

TRIV-IDEALS 16 (2.570) - -

INT-DOM-ZPB 0 (0.002) - -

QEPCAD 24 (0.148) - -

4.396 0.142 0.048



280 Appendix B. Fine-Grained Data on Calculemus Strategy Execution

P9 calc-0 calc-1 calc-2

#(Proof-tree) 128 128 2

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 128 (0.089) 2 (0.001)

SPLIT-INEQS (MAX-SPLITS:=12) 2 (0.001) 2 (0.001) -

QEPCAD (OPEN?:=1) 56 (0.165) - -

RCR-INEQS 96 (1.288) - -

SATUR-LIN 128 (0.047) - -

FERT-TSOS 0 (0.013) - -

DEMOD-LIN 124 (0.020) - -

SIMP-GLS 200 (0.010) - -

SIMP-ZRHS 190 (0.003) - -

DEMOD-NUM 148 (0.004) - -

SIMP-ARITH 0 (0.060) - -

SIMP-REAL-NULL 0 (0.003) - -

UNIV-STURM-INEQS 0 (0.003) - -

TRIV-IDEALS 32 (2.545) - -

INT-DOM-ZPB 0 (0.002) - -

QEPCAD 24 (0.154) - -

4.343 0.145 0.048
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P10 calc-0 calc-1 calc-2

#(Proof-tree) 32768 8192 8192

TRIV-IDEALS 278 (45.847) 96 (0.936) 21 (0.101)

SATUR-LIN 485 (1.465) 344 (0.756) 25 (0.275)

FERT-TSOS 70 (0.355) 48 (0.200) 8 (0.041)

DEMOD-LIN 1101 (0.238) 444 (0.048) 33 (0.003)

SIMP-GLS 34351 (1.290) 3384 (0.185) 33 (0.000)

SIMP-ZRHS 32919 (0.370) 3133 (0.031) 33 (0.000)

SPLIT-INEQS (MAX-SPLITS:=12) 8194 (0.468) 2 (0.109) 2 (0.131)

QEPCAD (OPEN?:=1) 207 (21.081) 70 (10.881) -

RCR-INEQS 180 (7.601) 70 (0.225) -

INT-DOM-ZPB 0 (0.012) 0 (0.006) -

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 5120 (6.052) 5120 (6.092)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 3039 (2.126)

DEMOD-NUM 32766 (3.318) 3070 (0.170) 33 (0.003)

SIMP-ARITH 1954 (0.430) 482 (0.143) 33 (0.006)

SIMP-REAL-NULL 142 (0.031) 0 (0.032) 0 (0.002)

UNIV-STURM-INEQS 4 (0.035) 0 (0.016) 0 (0.001)

INTERVAL-CP - 178 (0.834) 4 (0.024)

100.850 21.049 9.343
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P11 calc-0 calc-1 calc-2

#(Proof-tree) 32 32 20

QEPCAD (OPEN?:=1) 32 (0.072) 6 (0.015) 6 (0.016)

RCR-INEQS 16 (0.002) 4 (0.001) 4 (0.000)

INTERVAL-CP - 2 (0.049) 2 (0.026)

UNIV-STURM-INEQS 0 (0.000) 0 (0.000) 0 (0.000)

SIMP-REAL-NULL 0 (0.000) 0 (0.000) 0 (0.000)

SIMP-ARITH 0 (0.002) 0 (0.000) 0 (0.000)

DEMOD-NUM 0 (0.001) 0 (0.000) 0 (0.000)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 0 (0.005)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 24 (0.012) 12 (0.008)

SPLIT-INEQS (MAX-SPLITS:=12) 16 (0.000) 16 (0.000) 4 (0.000)

SIMP-ZRHS 16 (0.000) 4 (0.000) 4 (0.000)

SIMP-GLS 0 (0.008) 0 (0.002) 0 (0.000)

DEMOD-LIN 16 (0.000) 4 (0.001) 4 (0.000)

FERT-TSOS 0 (0.004) 0 (0.001) 0 (0.001)

SATUR-LIN 32 (0.015) 8 (0.004) 8 (0.004)

TRIV-IDEALS 0 (1.476) 0 (0.374) 0 (0.365)

INT-DOM-ZPB 0 (0.000) 0 (0.000) 0 (0.000)

1.688 0.539 0.502
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P12 calc-0 calc-1 calc-2

#(Proof-tree) 16 16 16

QEPCAD 2 (0.001) 2 (0.002) 2 (0.002)

INT-DOM-ZPB 2 (0.001) 0 (0.000) 0 (0.000)

TRIV-IDEALS 0 (0.464) 0 (0.273) 0 (0.278)

SATUR-LIN 5 (0.001) 3 (0.000) 3 (0.001)

FERT-TSOS 1 (0.000) 0 (0.000) 0 (0.001)

DEMOD-LIN 12 (0.001) 3 (0.000) 3 (0.000)

SIMP-GLS 31 (0.000) 5 (0.003) 5 (0.000)

SIMP-ZRHS 16 (0.000) 3 (0.000) 3 (0.000)

SPLIT-INEQS (MAX-SPLITS:=12) 1 (0.000) 1 (0.000) 1 (0.000)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 13 (0.009) 13 (0.004)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 0 (0.001)

DEMOD-NUM 17 (0.001) 2 (0.000) 2 (0.000)

SIMP-ARITH 15 (0.000) 2 (0.000) 2 (0.000)

SIMP-REAL-NULL 0 (0.000) 0 (0.000) 0 (0.000)

UNIV-STURM-INEQS 0 (0.000) 0 (0.000) 0 (0.000)

INTERVAL-CP - 0 (0.017) 0 (0.002)

RCR-INEQS 0 (0.272) 0 (0.002) 0 (0.000)

QEPCAD (OPEN?:=1) 1 (0.004) 1 (0.003) 1 (0.007)

0.758 0.314 0.352
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P13 calc-0 calc-1 calc-2

#(Proof-tree) 256 256 256

QEPCAD (OPEN?:=1) 22 (3.781) 21 (3.714) 21 (3.769)

RCR-INEQS 0 (0.000) 0 (0.000) 0 (0.000)

INTERVAL-CP - 0 (0.039) 0 (0.036)

UNIV-STURM-INEQS 6 (0.003) 4 (0.002) 4 (0.002)

SIMP-REAL-NULL 0 (0.000) 0 (0.000) 0 (0.000)

SIMP-ARITH 64 (0.002) 32 (0.004) 32 (0.002)

DEMOD-NUM 255 (0.009) 32 (0.000) 32 (0.002)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 0 (0.021)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 223 (0.150) 223 (0.193)

SPLIT-INEQS (MAX-SPLITS:=12) 1 (0.002) 1 (0.001) 1 (0.001)

SIMP-ZRHS 0 (0.000) 0 (0.000) 0 (0.000)

SIMP-GLS 278 (0.007) 32 (0.001) 32 (0.002)

DEMOD-LIN 0 (0.001) 0 (0.001) 0 (0.000)

FERT-TSOS 14 (0.005) 8 (0.004) 8 (0.005)

SATUR-LIN 22 (0.014) 21 (0.011) 21 (0.012)

TRIV-IDEALS 0 (0.000) 0 (0.000) 0 (0.000)

INT-DOM-ZPB 0 (0.000) 0 (0.000) 0 (0.000)

3.841 3.990 4.111
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P14 calc-0 calc-1 calc-2

#(Proof-tree) 256 256 1

QEPCAD 13 (0.022) 8 (0.018) 1 (0.004)

INT-DOM-ZPB 0 (0.001) 0 (0.001) -

TRIV-IDEALS 25 (4.169) 5 (1.337) -

SATUR-LIN 50 (0.008) 16 (0.004) -

FERT-TSOS 0 (0.003) 0 (0.001) -

DEMOD-LIN 0 (0.003) 0 (0.001) -

SIMP-GLS 256 (0.004) 4 (0.001) -

SIMP-ZRHS 257 (0.007) 17 (0.001) -

SPLIT-INEQS (MAX-SPLITS:=12) 1 (0.001) 1 (0.001) -

DEMOD-NUM 248 (0.011) 5 (0.000) -

SIMP-ARITH 64 (0.004) 0 (0.002) -

SIMP-REAL-NULL 0 (0.001) 0 (0.000) -

UNIV-STURM-INEQS 30 (0.003) 0 (0.000) -

INTERVAL-CP - 0 (0.035) -

RCR-INEQS 22 (0.004) 10 (0.001) -

QEPCAD (OPEN?:=1) 5 (0.042) 3 (0.012) -

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 240 (0.093) 0 (0.001)

4.351 1.576 0.053
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P15 calc-0 calc-1 calc-2

#(Proof-tree) 8 8 8

QEPCAD 8 (0.008) 8 (0.007) 8 (0.007)

INT-DOM-ZPB 0 (0.000) 0 (0.000) 0 (0.000)

TRIV-IDEALS 0 (0.096) 0 (0.092) 0 (0.090)

SATUR-LIN 8 (0.001) 8 (0.002) 8 (0.001)

FERT-TSOS 0 (0.001) 0 (0.004) 0 (0.000)

DEMOD-LIN 0 (0.000) 0 (0.000) 0 (0.000)

SIMP-GLS 0 (0.001) 0 (0.000) 0 (0.000)

SIMP-ZRHS 8 (0.000) 8 (0.001) 8 (0.000)

SPLIT-INEQS (MAX-SPLITS:=12) 0 (0.000) 0 (0.000) 0 (0.000)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 0 (0.000) 0 (0.001)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 0 (0.001)

DEMOD-NUM 0 (0.000) 0 (0.000) 0 (0.000)

SIMP-ARITH 0 (0.000) 0 (0.000) 0 (0.001)

SIMP-REAL-NULL 0 (0.000) 0 (0.000) 0 (0.000)

UNIV-STURM-INEQS 0 (0.000) 0 (0.000) 0 (0.000)

INTERVAL-CP - 0 (0.005) 0 (0.007)

RCR-INEQS 0 (0.000) 0 (0.001) 0 (0.000)

QEPCAD (OPEN?:=1) 0 (0.007) 0 (0.004) 0 (0.008)

0.116 0.121 0.122
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P16 calc-0 calc-1 calc-2

#(Proof-tree) 131 128 128

QEPCAD 10 (0.352) 7 (0.098) 7 (0.097)

INT-DOM-ZPB 3 (0.002) 0 (0.000) 0 (0.000)

TRIV-IDEALS 4 (4.626) 0 (1.721) 0 (1.714)

SATUR-LIN 76 (0.017) 44 (0.008) 44 (0.008)

FERT-TSOS 3 (0.005) 1 (0.002) 1 (0.002)

DEMOD-LIN 64 (0.014) 36 (0.003) 36 (0.002)

SIMP-GLS 161 (0.002) 67 (0.007) 67 (0.001)

SIMP-ZRHS 130 (0.002) 64 (0.001) 64 (0.008)

SPLIT-INEQS (MAX-SPLITS:=12) 1 (0.000) 1 (0.000) 1 (0.000)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 64 (0.035) 64 (0.032)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 0 (0.017)

DEMOD-NUM 120 (0.003) 48 (0.000) 48 (0.001)

SIMP-ARITH 96 (0.009) 48 (0.003) 48 (0.004)

SIMP-REAL-NULL 1 (0.001) 1 (0.001) 1 (0.000)

UNIV-STURM-INEQS 0 (0.001) 0 (0.000) 0 (0.000)

INTERVAL-CP - 19 (0.069) 19 (0.088)

RCR-INEQS 54 (3.259) 19 (0.002) 19 (0.003)

QEPCAD (OPEN?:=1) 49 (0.121) 17 (0.075) 17 (0.047)

8.446 2.098 2.107
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P17 calc-0 calc-1 calc-2

#(Proof-tree) 6 6 6

QEPCAD 1 (0.180) 1 (0.131) 1 (0.131)

INT-DOM-ZPB 2 (0.000) 2 (0.000) 2 (0.000)

TRIV-IDEALS 0 (0.277) 0 (0.272) 0 (0.275)

SATUR-LIN 3 (0.001) 3 (0.001) 3 (0.004)

FERT-TSOS 0 (0.000) 0 (0.000) 0 (0.000)

DEMOD-LIN 0 (0.000) 0 (0.000) 0 (0.000)

SIMP-GLS 10 (0.001) 2 (0.001) 2 (0.000)

SIMP-ZRHS 4 (0.000) 3 (0.000) 3 (0.000)

SPLIT-INEQS (MAX-SPLITS:=12) 1 (0.000) 1 (0.000) 1 (0.000)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 5 (0.002) 5 (0.002)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 0 (0.001)

DEMOD-NUM 7 (0.000) 2 (0.000) 2 (0.001)

SIMP-ARITH 5 (0.000) 2 (0.000) 2 (0.001)

SIMP-REAL-NULL 1 (0.000) 0 (0.000) 0 (0.000)

UNIV-STURM-INEQS 0 (0.000) 0 (0.000) 0 (0.000)

INTERVAL-CP - 0 (0.002) 0 (0.017)

RCR-INEQS 3 (0.094) 3 (0.092) 3 (0.095)

QEPCAD (OPEN?:=1) 0 (0.002) 0 (0.002) 0 (0.002)

0.613 0.516 0.540
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P18 calc-0 calc-1 calc-2

#(Proof-tree) 16 16 16

QEPCAD 5 (0.062) 5 (0.017) 5 (0.012)

INT-DOM-ZPB 3 (0.000) 3 (0.000) 3 (0.000)

TRIV-IDEALS 0 (0.716) 0 (0.714) 0 (0.725)

SATUR-LIN 8 (0.002) 8 (0.002) 8 (0.002)

FERT-TSOS 7 (0.001) 3 (0.000) 3 (0.004)

DEMOD-LIN 8 (0.001) 6 (0.000) 6 (0.001)

SIMP-GLS 14 (0.000) 4 (0.000) 4 (0.001)

SIMP-ZRHS 0 (0.000) 0 (0.000) 0 (0.000)

SPLIT-INEQS (MAX-SPLITS:=12) 1 (0.000) 1 (0.000) 1 (0.000)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 7 (0.006) 7 (0.005)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 0 (0.013)

DEMOD-NUM 11 (0.001) 4 (0.000) 4 (0.001)

SIMP-ARITH 11 (0.002) 4 (0.001) 4 (0.000)

SIMP-REAL-NULL 0 (0.000) 0 (0.001) 0 (0.000)

UNIV-STURM-INEQS 0 (0.000) 0 (0.000) 0 (0.000)

INTERVAL-CP - 0 (0.014) 0 (0.012)

RCR-INEQS 7 (0.452) 7 (0.452) 7 (0.446)

QEPCAD (OPEN?:=1) 1 (0.013) 1 (0.009) 1 (0.012)

1.306 1.225 1.249
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P19 calc-0 calc-1 calc-2

#(Proof-tree) 256 256 256

QEPCAD (OPEN?:=1) 256 (1.531) 25 (0.095) 25 (0.101)

RCR-INEQS 0 (0.001) 0 (0.000) 0 (0.000)

INTERVAL-CP - 75 (0.499) 75 (0.498)

UNIV-STURM-INEQS 0 (0.034) 0 (0.015) 0 (0.016)

SIMP-REAL-NULL 0 (0.000) 0 (0.001) 0 (0.001)

SIMP-ARITH 256 (0.399) 100 (0.105) 100 (0.097)

DEMOD-NUM 0 (0.003) 0 (0.000) 0 (0.000)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 0 (0.225)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 156 (0.566) 156 (0.559)

SPLIT-INEQS (MAX-SPLITS:=12) 0 (0.001) 0 (0.000) 0 (0.000)

SIMP-ZRHS 256 (0.189) 100 (0.077) 100 (0.076)

SIMP-GLS 256 (0.009) 100 (0.003) 100 (0.004)

DEMOD-LIN 0 (0.036) 0 (0.015) 0 (0.015)

FERT-TSOS 0 (0.248) 0 (0.047) 0 (0.070)

SATUR-LIN 256 (0.513) 100 (0.187) 100 (0.185)

TRIV-IDEALS 0 (0.001) 0 (0.000) 0 (0.000)

INT-DOM-ZPB 0 (0.000) 0 (0.000) 0 (0.000)

3.063 1.694 2.027
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P20 calc-0 calc-1 calc-2

#(Proof-tree) 16 16 16

QEPCAD 6 (0.007) 5 (0.007) 5 (0.006)

INT-DOM-ZPB 0 (0.000) 0 (0.001) 0 (0.000)

TRIV-IDEALS 0 (0.984) 0 (0.446) 0 (1.127)

SATUR-LIN 11 (0.002) 7 (0.001) 7 (0.002)

FERT-TSOS 0 (0.000) 0 (0.000) 0 (0.000)

DEMOD-LIN 5 (0.001) 3 (0.001) 3 (0.000)

SIMP-GLS 19 (0.000) 7 (0.001) 7 (0.001)

SIMP-ZRHS 20 (0.000) 10 (0.000) 10 (0.000)

SPLIT-INEQS (MAX-SPLITS:=12) 1 (0.000) 1 (0.000) 1 (0.000)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 8 (0.005) 8 (0.005)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 0 (0.002)

DEMOD-NUM 15 (0.001) 6 (0.000) 6 (0.001)

SIMP-ARITH 12 (0.000) 6 (0.000) 6 (0.000)

SIMP-REAL-NULL 0 (0.000) 0 (0.000) 0 (0.000)

UNIV-STURM-INEQS 0 (0.000) 0 (0.000) 0 (0.000)

INTERVAL-CP - 2 (0.021) 2 (0.010)

RCR-INEQS 8 (0.091) 3 (0.255) 3 (0.402)

QEPCAD (OPEN?:=1) 3 (0.010) 0 (0.006) 0 (0.008)

1.148 0.750 1.619
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P21 calc-0 calc-1 calc-2

#(Proof-tree) 64 64 1

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 64 (0.024) 1 (0.000)

SPLIT-INEQS (MAX-SPLITS:=12) 1 (0.000) 1 (0.000) -

INT-DOM-ZPB 0 (0.000) - -

TRIV-IDEALS 0 (0.000) - -

UNIV-STURM-INEQS 12 (0.002) - -

SIMP-REAL-NULL 0 (0.000) - -

SIMP-ARITH 0 (0.000) - -

DEMOD-NUM 63 (0.001) - -

SIMP-ZRHS 64 (0.000) - -

SIMP-GLS 63 (0.001) - -

DEMOD-LIN 0 (0.001) - -

FERT-TSOS 0 (0.001) - -

SATUR-LIN 7 (0.002) - -

RCR-INEQS 0 (0.000) - -

QEPCAD (OPEN?:=1) 7 (0.010) - -

0.024 0.025 0.000
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P22 calc-0 calc-1 calc-2

#(Proof-tree) 2 2 2

QEPCAD (OPEN?:=1) 1 (0.001) 1 (0.001) 1 (0.001)

RCR-INEQS 0 (0.000) 0 (0.000) 0 (0.000)

INTERVAL-CP - 0 (0.001) 0 (0.001)

UNIV-STURM-INEQS 0 (0.000) 0 (0.000) 0 (0.000)

SIMP-REAL-NULL 0 (0.000) 0 (0.000) 0 (0.000)

SIMP-ARITH 0 (0.000) 0 (0.000) 0 (0.000)

DEMOD-NUM 0 (0.000) 0 (0.000) 0 (0.001)

INTERVAL-CP (MAX-CONTRACTIONS:=20) - - 0 (0.001)

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 0 (0.000) 0 (0.000)

SPLIT-INEQS (MAX-SPLITS:=12) 1 (0.000) 1 (0.000) 1 (0.000)

SIMP-ZRHS 2 (0.000) 2 (0.000) 2 (0.000)

SIMP-GLS 0 (0.000) 0 (0.000) 0 (0.000)

DEMOD-LIN 1 (0.000) 1 (0.000) 1 (0.000)

FERT-TSOS 1 (0.000) 1 (0.000) 1 (0.000)

SATUR-LIN 1 (0.001) 1 (0.000) 1 (0.000)

TRIV-IDEALS 0 (0.000) 0 (0.000) 0 (0.000)

INT-DOM-ZPB 0 (0.000) 0 (0.000) 0 (0.000)

0.002 0.003 0.005

P23 calc-0 calc-1 calc-2

#(Proof-tree) 8 8 8

QEPCAD - - 4 (0.003)

SIMP-GLS 8 (0.000) 4 (0.000) -

SIMP-ZRHS 8 (0.000) 4 (0.000) -

SPLIT-INEQS (MAX-SPLITS:=12) 0 (0.000) 0 (0.000) -

DEMOD-NUM 0 (0.000) 0 (0.000) -

INTERVAL-CP (MAX-CONTRACTIONS:=10) - 4 (0.000) 4 (0.001)

0.061 0.003 0.004
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Mathématique, 12:307–326, 1964.

[Lap06] Santiago Laplagne. An Algorithm for the Computation of the Radical of

an Ideal. In International Symposium on Symbolic and Algebraic Com-

putation, 2006.

[LR08] Jinhu Li and Jeffrey Scott Racine. Maxima: An Open Source Computer

Algebra System. Journal of Applied Econometrics, 23(4):515–523, 2008.

[Mah06] Assia Mahboubi. Contributions à la Certification des Calculs dans R
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Sophia Antipolis, 2006.

[Mar08] Murray Marshall. Positive Polynomials and Sums of Squares, volume

146 of Mathematical Surveys and Monographs. American Mathematical

Society, 2008.



Bibliography 301

[MB08] Leonardo De Moura and Nikolaj Björner. Z3: An efficient SMT solver.

In TACAS’08, 2008.

[McC93] Scott McCallum. Solving Polynomial Strict Inequalities using Cylindri-

cal Algebraic Decomposition. The Computer Journal, 36(5), 1993.

[McC03] William McCune. OTTER 3.3 Reference Manual, 2003.

[MH05] Sean McLaughlin and John Harrison. A Proof-Producing Decision Pro-

cedure for Real Arithmetic. In Robert Nieuwenhuis, editor, CADE-20:

20th International Conference on Automated Deduction, proceedings,

volume 3632 of Lecture Notes in Computer Science, pages 295–314,

Tallinn, Estonia, 2005. Springer-Verlag.

[MO02] Christian Michaux and Adem Ozturk. Quantifier Elimination Following

Muchnik. Universite de Mons-Hainaut Preprint Series (#10), April 2002.

[MY73] Joel Moses and David Y. Y. Yun. The EZ GCD algorithm. In Proceedings

of the ACM annual conference, ACM ’73, pages 159–166, New York,

NY, USA, 1973. ACM.

[Nas00] J.C. Nash. The (Dantzig) Simplex Method for Linear Programming.

Computing in Science Engineering, 2(1):29 –31, 2000.

[Neu90] Arnold Neumaier. Interval Methods for Systems of Equations. Cambridge

University Press, Cambridge [England] ; New York :, 1990.

[NO07] R. Nieuwenhuis and A. Oliveras. Fast Congruence Closure and Exten-

sions. Inf. Comput., 2005(4), 2007.

[OSRSC99] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS

Language Reference. Computer Science Laboratory, SRI International,

Menlo Park, CA, September 1999.

[Par03] Pablo A. Parrilo. Semidefinite Programming Relaxations for Semialge-

braic Problems. Math. Program., 96(2):293–320, 2003.

[Pau87] Lawrence C. Paulson. Logic and Computation: Interactive Proof with

Cambridge LCF. Cambridge University Press, New York, NY, USA,

1987.



302 Bibliography

[PdM09a] Grant Olney Passmore and Leonardo de Moura. Superfluous S-

polynomials in Strategy-Independent Gröbner Bases. Symbolic and Nu-

meric Algorithms for Scientific Computing, International Symposium on,

0:45–53, 2009.

[PdM09b] Grant Olney Passmore and Leonardo de Moura. Universality of Polyno-

mial Positivity and a Variant of Hilbert’s 17th Problem. In Proceedings

of Automated Deduction: Decidability, Complexity, Tractibility (work in

progress tract), 2009.

[PdMJ10] Grant Olney Passmore, Leonardo de Moura, and Paul B. Jackson.
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