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This talk is about the first “S” in “SOS”

“[Previous approaches to operational semantics] do
not in general have any great claim to being
syntax-directed in the sense of defining the semantics
of compound phrases in terms of the semantics of
their components.”

GD Plotkin, A Approach to Operational Semantics, page 21 (Aarhus, 1981).

Key tool for SOS: structural recursion/induction for
abstract syntax trees (ASTs).

Except that in practice ASTs are not abstract
enough. . .
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Abstract syntax / α
Many (most?) languages involve binders.

“We identify expressions up to α-equivalence”. . .

(and then forget about it!)

I find common informal practices using notationless
α-equivalence classes to be unsatisfactory when it
comes to structurally recursive definitions and proofs
by structural induction.

E.g. . .
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Capture-avoiding substitution
for λ-terms t ::= a | t t | λa t

(a := t)a′ , t if a′ = a, else , a′

(a := t)(t1 t2) , ((a := t)t1)((a := t)t2)

(a := t)λa′ t′ , λa′(a := t)t′ if a′ /∈ fv(t, a)

Is this a definition of (a := t)t′ by recursion on the
structure of the AST t′?

No, because of the condition on the last clause;
but it would be stupid to have to say what to do in
case a′ ∈ fv(t, a).
Why is it “obvious” that the above well-defines a
total function on α-equivalence classes of ASTs?
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Why bother?

“I’m an expert and could patch things up to full
formality if pressed (but have more important and
interesting things to do).”

Might be true for familiar old λ-calculus, but look at
the mess in early versions of LTSs for π-calculus.
What about large-scale SOS definitions? (E.g.
Definition of SML mixes ASTs with ASTs/α.)
What about non-experts? What about machines?
We really need a light-weight theory of structural
recursion/induction for syntax/α that doesn’t stray
too far from common, nominal practices.
There is one!
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Existing approaches to syntax/α
n De Bruijnery. An implementation technique that’s
inconvenient/error-prone for reasoning by humans.

n HOAS. Pushes the problem with structural
recursion/induction up a meta-level without solving
it.

n FM-sets (Gabbay-AMP). Uses Fraenkel-Mostowski
permutation model of set theory with atoms.

This talk: a simplified explanation of the FM-sets
approach, tailored to SOS.
(Similar in spirit, but not in detail, to Gordon & Melham’s Five Axioms of
Alpha-Conversion.)
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Atoms, permutations and actions

n A , fixed, countably infinite set, whose elements will
be called atoms.

n G , group of all finite permutations of A.
n An action of G on a set X is a function

G×X → X written (π, x) 7→ π · x
satisfying ι · x = x and π · (π′ · x) = (ππ′) · x

n G-set , set X + action of G on X .
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Finite support and freshness

Definition. A finite set A of atoms supports an
element x ∈ X of a G-set X if

(∀a, a′ ∈ A−A) (a a′) · x = x

A nominal set is a G-set all of whose elements have
a finite support.

Lemma. If x ∈ X has a finite support, then it has a
smallest one, written supp(x)

Notation. If a /∈ supp(x), we write a # x and say
“a is fresh for x.”
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Languages are nominal sets
For example, the set of ASTs of λ-terms
Λ , {t ::= a | t t | λa t} with G-action:

π · a , π(a)

π · (λa t) , λπ(a) (π · t)
π · (t t′) , (π · t)(π · t′)

For this action, it is not hard to see that t is
supported by any set of atoms containing all those
occurring in t and hence

a # t iff a does not occur in the tree t.
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Nominal powersets
If X is a G-set, we get a G-action on its subsets by
defining for each π ∈ G and S ⊆ X:

π · S , {π · x | x ∈ S}

Even if X is nominal, not every subset of it is
necessarily finitely supported; e.g. S ⊆ A is finitely
supported iff either S or A− S is finite.

The set Pfs(X) of finitely supported subsets of a
nominal set X is, by construction, a nominal set.

N.B. supp(S) = ∅ iff S is an equivariant subset, i.e.

(∀π ∈ G)(∀x ∈ X) x ∈ S ⇒ π · x ∈ S
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Nominal function sets
We get a G-action on the functions from a G-set X
to a G-set Y by defining for each π ∈ G,
f : X → Y and x ∈ X:

(π · f)(x) , π · (f(π−1 · x))

As for subsets, even if X and Y are nominal, not
every function from X to Y is necessarily finitely
supported.

The set X→fsY of finitely supported functions from
a nominal set X to a nominal set Y is, by
construction, a nominal set.

N.B. supp(f) = ∅ iff f is an equivariant function, i.e.

(∀π ∈ G)(∀x ∈ X) π · (f x) = f(π · x)
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Swapping and freshness are equivariant
For any nominal set X , the ternary function
A× A×X → X given by (a, a′, x) 7→ (a a′) · x is
equivariant:

π · ((a a′) · x) = (π(a)π(a′)) · (π · x)

(because π(a a′)π−1 = (π(a)π(a′)) in G).

Also, the freshness relation is equivariant:

a # x ⇒ π(a) # π · x

The second fact follows from the first because of
the general logical properties of finitely supported
sets and functions. . .



SOS2004, - p. 13

First-order logic
First-order logic for nominal sets is just like for
ordinary sets. For example:

n Negation: if Jφ(x)K = S ∈ Pfs(X), then

J¬φ(x)K = X − S
(RHS is in Pfs(X) because it is supported by any
finite set of atoms supporting S.)

n For all: if Jφ(x, y)K = S ∈ Pfs(X × Y ), then

J∀x. φ(x, y)K = {y ∈ Y | ∀x ∈ X. (x, y) ∈ S}
(RHS is in Pfs(Y ), because it is supported by any
finite set of atoms supporting S.)
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Higher-order logic
Higher-order logic for nominal sets is as for ordinary
sets, except that we have to restrict to finitely
supported sets and functions when forming
powersets and exponentials.
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Higher-order logic
Higher-order logic for nominal sets is as for ordinary
sets, except that we have to restrict to finitely
supported sets and functions when forming
powersets and exponentials.

For example
Tarski Fixpoint Theorem. For any monotone and
finitely supported function Φ from Pfs(X) to itself,
the usual least (pre)fixed point

µ(Φ) ,
⋂
{S ∈ Pfs(X) | Φ(S) ⊆ S}

is again finitely supported, hence in Pfs(X).
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Rule-based inductive definitions
Theorem. If X is a nominal set and R ⊆ X is
inductively defined by a set of rules, then R ∈ Pfs(X)
if the rule-set is finitely supported, i.e. if there is a
finite set of atoms A such that for any a, a′ ∈ A−A

if
h1 ∈ R · · · hn ∈ R

c ∈ R is in the rule-set,

then so is
(a a′) · h1 ∈ R · · · (a a′) · hn ∈ R

(a a′) · c ∈ R .

(In which case supp(R) ⊆ A. In particular R is
equivariant if the rule-set is.)
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α-Equivalence, structurally

a =α a

t1 =α t
′
1 t2 =α t

′
2

t1 t2 =α t
′
1 t
′
2

(a a′′) · t =α (a′ a′′) · t′
λa t =α λa

′ t′
a′′ # (a, t, a′, t′)

This set of rules is equivariant, because swapping
and freshness are. So by the theorem =α is
equivariant:

t =α t
′ ⇒ π · t =α π · t′

Can use this for an easy proof that =α is an
equivalence relation. . .
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t =α t
′ & t′ =α t

′′⇒ t =α t
′′

Use rule induction—show that

H , {(t, t′) | (∀t′′) t′ =α t
′′ ⇒ t =α t

′′}
is closed under the rules defining =α. Only closure
under the rule for λ-abstractions is non-trivial.

Have to prove (1) implies (λa t, λa′ t′) ∈ H ,
where

(1) ((a a′′) · t, (a′ a′′) · t′) ∈ H & a′′ # (a, t, a′, t′)
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(2) (a′ a2) · t′ =α (a1 a2) · t1 & a2 # (a′, t′, a1, t1)

=α and (hence) H are equivariant, so choose a
fresh a3 and consider (a′′ a3)·(1) and (a2 a3)·(2).
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Now apply =α-rule for λ-abstractions to (2).
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t =α t
′ & t′ =α t
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′′

Use rule induction—show that

H , {(t, t′) | (∀t′′) t′ =α t
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is closed under the rules defining =α. Only closure
under the rule for λ-abstractions is non-trivial.

Have to prove (1) & (2) implies λa t =α λa1 t1,
where
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(2) (a a3) · t =α (a1 a3) · t1 & a3 # (a, t, a1, t1)

Done!
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“Some/any” proof pattern

(a a′′) · t =α (a′ a′′) · t′
λa t =α λa

′ t′
a′′ # (a, t, a′, t′)

proof check proof search
(∃a′′ ∈ A) (∀a′′ ∈ A)

a′′ # (a, t, a′, t′) & a′′ # (a, t, a′, t′)⇒
(a a′′) · t =α (a′ a′′) · t′ (a a′′) · t =α (a′ a′′) · t′

⇓ ⇑
λa t =α λa

′ t′ λa t =α λa
′ t′
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“Some/any” theorem

Theorem. For any S ∈ Pfs(A), if A ∈ Pfin(A)
supports S then the following are equivalent:
1. (∀a ∈ A) a /∈ A ⇒ a ∈ S
2. A− S is finite
3. (∃a ∈ A) a /∈ A & a ∈ S
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supports S then the following are equivalent:
1. (∀a ∈ A) a /∈ A ⇒ a ∈ S
2. A− S is finite
3. (∃a ∈ A) a /∈ A & a ∈ S

Proof of 1 ⇒ 2:
1 says A−A ⊆ S, so A− S ⊆ A is finite.
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Theorem. For any S ∈ Pfs(A), if A ∈ Pfin(A)
supports S then the following are equivalent:
1. (∀a ∈ A) a /∈ A ⇒ a ∈ S
2. A− S is finite
3. (∃a ∈ A) a /∈ A & a ∈ S

Proof of 2 ⇒ 3:
If 2, then A ∪ (A− S) is a finite subset of the infinite
set A, so there is some a in its complement, i.e. in
(A−A) ∩ S.
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“Some/any” theorem

Theorem. For any S ∈ Pfs(A), if A ∈ Pfin(A)
supports S then the following are equivalent:
1. (∀a ∈ A) a /∈ A ⇒ a ∈ S
2. A− S is finite
3. (∃a ∈ A) a /∈ A & a ∈ S

Proof of 3 ⇒ 1:
Suppose a ∈ A−A and a ∈ S. For any other
a′ ∈ A−A, we have (a a′) · S = S (since A supports
S), so a′ = (a a′)(a) ∈ (a a′) · S = S.
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“Some/any” theorem

Theorem. For any S ∈ Pfs(A), if A ∈ Pfin(A)
supports S then the following are equivalent:
1. (∀a ∈ A) a /∈ A ⇒ a ∈ S
2. A− S is finite
3. (∃a ∈ A) a /∈ A & a ∈ S

Freshness quantifier: if φ(a) is a property of atoms
s.t. {a ∈ A | φ(a)} is finitely supported, write

Naφ(a) (and say “for some/any fresh a, φ(a)”)

if
{
S , {a ∈ A | φ(a)}
A , supp(S)

satisfy 1/2/3.
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Languages/α are nominal sets

For example for λ-terms, Λ , {t ::= a | t t | λa t}:
Set of equivalence classes Λ/=α with G-action

π · [t]α , [π · t]α
is a nominal set: [t]α is supported by supp(t), and in
fact one can prove

supp([t]α) = {free variables of t}
so that

a # [t]α ⇔ a not free in t
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α-Structural recursion
Theorem. Given a nominal set X and
f ∈ A→fsX

g ∈ X ×X→fsX

h ∈ A×X→fsX s.t. ( Na)(∀x ∈ X) a # h(a, x),
there is a unique k ∈ (Λ/=α)→fsX s.t.

(∀a ∈ A) k[a]α = f(a)

(∀t1, t2 ∈ Λ) k[t1 t2]α = g(k[t1]α, k[t2]α)

( Na)(∀t ∈ Λ) k[λa t] = h(a, k[t]α)

(and supp(k) = supp(f, g, h)).



SOS2004, - p. 21

α-Structural recursion
Theorem. Given a nominal set X and
f ∈ A→fsX

g ∈ X ×X→fsX

h ∈ A×X→fsX s.t. ( Na)(∀x ∈ X) a # h(a, x),
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(and supp(k) = supp(f, g, h)).
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Capture-avoiding substitution

(a := t)a′ , if a′ = a then t else a′

(a := t)(t1 t2) , ((a := t)t1)((a := t)t2)

(a := t)λa′ t′ , λa′(a := t)t′ if a′ /∈ fv(t, a)

(a := t)[a′]α , f(a′)

(a := t)[t1t2]α , g((a := t)[t1]α, (a := t)[t2]α)

(a := t)[λa′ t′]α , h(a′, (a := t)[t′]α) if a′ # ([t]α, a)

is a definition by α-structural recursion of a total
function (a := t)(−) : (Λ/=α)→ (Λ/=α) using:

f(a′) , if a′ = a then [t]α else [a′]α

g([t1]α, [t2]α) , [t1 t2]α

h(a′, [t′]α) , [λa′ t′]α

Check:
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(a := t)[a′]α , f(a′)

(a := t)[t1t2]α , g((a := t)[t1]α, (a := t)[t2]α)

(a := t)[λa′ t′]α , h(a′, (a := t)[t′]α) if a′ # ([t]α, a)

is a definition by α-structural recursion of a total
function (a := t)(−) : (Λ/=α)→ (Λ/=α) using:

f(a′) , if a′ = a then [t]α else [a′]α

g([t1]α, [t2]α) , [t1 t2]α

h(a′, [t′]α) , [λa′ t′]α

Check: ( Na′)(∀t′) a′ # h(a′, [t′]α) ?
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Capture-avoiding substitution

(a := t)[a′]α , f(a′)

(a := t)[t1t2]α , g((a := t)[t1]α, (a := t)[t2]α)

(a := t)[λa′ t′]α , h(a′, (a := t)[t′]α) if a′ # ([t]α, a)

is a definition by α-structural recursion of a total
function (a := t)(−) : (Λ/=α)→ (Λ/=α) using:

f(a′) , if a′ = a then [t]α else [a′]α

g([t1]α, [t2]α) , [t1 t2]α

h(a′, [t′]α) , [λa′ t′]α

Check: (∀a′)(∀t′) a′ # [λa′ t′]α 3
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α-Structural induction
Theorem. For any S ∈ Pfs(Λ/=α)

(∀t ∈ Λ)[t]α ∈ S

holds iff

(∀a ∈ A)[a]α ∈ S
(∀t1, t2 ∈ Λ)[t1]α ∈ S & [t2]α ∈ S ⇒ [t1 t2]α ∈ S

( Na)(∀t ∈ Λ)[t]α ∈ S ⇒ [λa t]α ∈ S



SOS2004, - p. 24

Why bother?

“I’m an expert and could patch things up to full
formality if pressed (but have more important &
interesting things to do).”
Might be true for familiar old λ-calculus, but look at
the mess in early versions of LTSs for π-calculus.
What about large-scale SOS definitions? (E.g.
Definition of SML mixes ASTs with ASTs/α.)
What about non-experts? What about machines?
We really need a light-weight theory of structural
recursion/induction for syntax/α that doesn’t stray
too far from common, nominal practices.
Have we provided one?
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Assessment of
α-structural recursion/induction

n Only standard foundations.
n Usual notion of α-equivalence on ASTs is made
easier through use of permutations rather than
non-bijective renaming.

n Crucial finite support property is automatically
carried along by our constructions in SOS (if we
avoid choice principles)—no real work needed.

n The “some/any” property formalises common
practice around the use of fresh names.

n Used λ-calculus as an example here, but can treat
a wide class of languages with statically scoped
binders over multiple flavours of name.
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easier through use of permutations rather than
non-bijective renaming.

n Crucial finite support property is automatically
carried along by our constructions in SOS (if we
avoid choice principles)—no real work needed.

n The “some/any” property formalises common
practice around the use of fresh names.

n Used λ-calculus as an example here, but can treat
a wide class of languages with statically scoped
binders over multiple flavours of name.
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Assessment of
α-structural recursion/induction

For non-experts?
Is the use of permutations simple enough to become
part of standard practice?
(It’s now part of mine!)
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Assessment of
α-structural recursion/induction

For machines?
Computational consequences of the nominal sets
model of syntax:
n for functional programming: FreshML &
Fresh O’Caml (MR Shinwell, AMP, MJ Gabbay)

n for logic programming: nominal unification
(C Urban, AMP, MJ Gabbay); α-prolog (J Cheney,
C Urban)

n for proof assistants: so far there is no “Fresh-HOL”
or “Fresh-Coq” because. . .
(legacy code, use of Hilbert ε-operator, nominal dependent type theory)
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Thanks
James Cheney (Cornell), Jamie Gabbay (INRIA),
Mark Shinwell & Christian Urban (Cambridge).

Further info
www.cl.cam.ac.uk/users/amp12/freshml/

SOS!
We need better tools for SOS.

I’d like to hear what you want from
a tool for machine-assisted proof
specific to the domain of SOS.
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