TYPES+PCC 2014

Nominal Sets and
Dependent Type Theory

Andrew Pitts

55 UNIVERSITY OF
&% CAMBRIDGE

Computer Laboratory

1/28

{

Type Theory
presheaf categories

Plan

} audience listens to talk

{

Plan

Tvoe Theor nominal sets:

yp y. audience listens to talk freshness

presheaf categories .
name abstraction

aim to explain the notions of
freshness and name-abstraction

from the theory of nominal sets
and discuss two (on-going) applications
involving dependent types:
1. Cubical sets model of Homotopy Type Theory.

2. A version of Type Theory with names, freshness and
name-abstraction.

Freshness

3/28

What is a fresh name?

Possible definition: name a is fresh if it is not ‘stale’:
a is not equal to any name in the current (finite) set of
used names (and we extend that set with a)

What is a fresh name?

Possible definition: name a is fresh if it is not ‘stale’:
a is not equal to any name in the current (finite) set of
used names (and we extend that set with a)

» need to be able to test names for equality — that is
the only attribute we assume names have (atomic
names)

What is a fresh name?

Possible definition: name a is fresh if it is not ‘stale’:

a is not equal to any name in the current (finite) set of
used names (and we extend that set with a)

» need to be able to test names for equality — that is
the only attribute we assume names have (atomic
names)

» freshness has a modal character — suggests using
Kripke-Beth-Joyal (possible worlds) semantics
with. . .

Presheaf semantics

n={0,1,..., n—1}
and injective functions

I = category of finite ordinals \

U € [I, Set]

5/28

Presheaf semantics

I = category of finite ordinals
n={0,1,...,.n—1}
and injective functions

U € [, Set]

[I, Set] = (covariant) presheaf category:
set-valued functors X & natural transformations.
X n = set of objects (of some type)
possibly involving n distinct names

5/28

Presheaf semantics

I = category of finite ordinals
n={0,1,...,.n—1}
and injective functions

generic decidable object
U = inclusion functor: _—~Uu € []Ir Set]

Un=1{0,1,...,n—1}

[I, Set] = (covariant) presheaf category:
set-valued functors X & natural transformations.
X n = set of objects (of some type)
possibly involving n distinct names

5/28

Generic decidable object

U is a ‘decidable’ object of the topos [I, Set|

diagonal subobject U — U X U has a boolean
complement # — U X U

Generic decidable object

U is a ‘decidable’ object of the topos [I, Set|

a=yb A #(a,b) = false
true = a=yb V #(a,b)

Generic infinite decidable object

U is a ‘decidable’ object of the topos [I, Set|

a=yb A #(a,b) = false
true = a=yb V #(a,b)
but it does not satisfy ‘finite inexhaustibility’

No<i<j<n (@i, a;) = Vpu No<i<a 7 (b, ai)

which we need to model freshness.

Generic infinite decidable object

U is a ‘decidable’ object of the topos [I, Set|
a=yb A #(a,b) = false
true = a=yb V #(a,b)

but it does not satisfy ‘finite inexhaustibility’

/\0§i<j§n #(ai, a]-) = Viu No<i<n #(b, a;)

FACT: we get this form of infinity (in a geometrically
generic way) if we cut down to the Schanuel topos:

Sch C [I, Set] is the full subcategory consisting of
functors I — Set that preserve pullbacks

Generic infinite decidable object

U is a ‘decidable’ object of the topos [I, Set|

a=yb A #(a,b) = false
true = a=yb V #(a,b)
but it does not satisfy ‘finite inexhaustibility’

No<i<j<n 7 (@i, a;) = Vi No<i<a 7 (b, ai)

FACT: we get this form of infinity (in a geometrically
generic way) if we cut doxf/n to the Schanuel topos.

I What is the history of this notion? (Kuratowski?) |

From Sch to Nom

The category of nominal sets is ‘merely’ an
equivalent presentation of the category Sch:
An analogy:

Nom named bound variables

Y

Sch de Bruijn indexes (levels)

Step 1: fix a countably infinite set (of atomic names) and

modify Sch up to equivalence by replacing I by the equivalent
category whose objects are finite subsets I € Pg, A and whose
morphisms are injective functions.

From Sch to Nom

The category of nominal sets is ‘merely’ an
equivalent presentation of the category Sch:

Step 2: make the dependence of each X €~Sch on ‘possible worlds’
A € Pg, A implicit by taking the colimit X of the directed system
of sets and (injective) functions

ACBEP;A — (XA — XB)

Each set X carries an action of A-permutations

o
- — — >

(cf. homogeneity property (Fraissé limit)

A
D
B

B>

f

From Sch to Nom

The category of nominal sets is ‘merely’ an
equivalent presentation of the category Sch:

Step 2: make the dependence of each X €~Sch on ‘possible worlds’
A € Pg, A implicit by taking the colimit X of the directed system
of sets and (injective) functions

ACBEP;A — (XA — XB)

Each set X carries an action of A-permutations with finite support
property, and every such arises this way up to iso.

Finite support property

Suppose Perm A (= group of all (finite) permutations of A)
acts on a set X and that x € X

A set of names A C A supports x if permutations 7t
that fix every a € A also fix x (i.e. 7w+ x = x).

X is a nominal set if every x € X has a finite support.

Nom = category of nominal sets and functions that preserve the
permutation action (f(7r-x) = - (fx)).

FACT: Nom and Sch are equivalent categories.)

Within Nom, objects are ‘set-like’ and the modal character of
freshness becomes implicit. . .

Finite support property

Suppose Perm A (= group of all (finite) permutations of A)
acts on a set X and that x € X

A set of names A C A supports x if permutations 7t
that fix every a € A also fix x (i.e. 7w+ x = x).

X is a nominal set if every x € X has a finite support.

Freshness, nominally, is a binary relation

a#x £ g & A for some finite A supporting x.

| ‘name a is fresh for x’ |

Finite support property

Suppose Perm A (= group of all (finite) permutations of A)
acts on a set X and that x € X

A set of names A C A supports x if permutations 7t
that fix every a € A also fix x (i.e. 7w+ x = x).

X is a nominal set if every x € X has a finite support.

Freshness, nominally, is a binary relation

a#tx = ag¢ A for some finite A supporting x.

satisfying | Vx.3a. a # x| (not Skolemizable!)

Name abstraction

9/28

Name abstraction

Each X € Nom yields a nominal set

[A]X

of

name-abstractions (a)x are ~-equivalence classes of

pairs (a,x) € A X X, where

(a,x) ~ (a',x') < Ib# (a,x,a’,x)

(ba)-x=(ba') -x

4

\

generalizes a-equivalence

from sets of syntax to

|the permutation that swaps a and bl

arbitrary nominal sets

10/28

Name abstraction
Each X € Nom yields a nominal set |[A]X | of

name-abstractions (a)x are ~-equivalence classes of
pairs (a,x) € A X X, where

(a,x) ~ (a',x') < Tb# (a,x,a’,x)
(ba)-x=(ba') -x

Action of name permutations on [A]X is well-defined by
T {ayx = (rwa)(r-x)

and for this action, A — {a} supports {(a)x if A supports x.

10/28

If you want to know more about
nominal sets. ..

Nomine Nominal Sets
— Names and Symmetry in
a Computer Science

Cambridge Tracts in Theoretical
Computer Science, Vol. 57
(CUP, 2013)

11/28

Nom and dependent types

Families of nominal sets
Family over X € Nom is specified by:

» family of sets (E, | x € X)
» dependently type permutation action

Hn’EPermA HxGX(Ex - En’-x)

with dependent version of finite support property:
for all x € X, e € E, there is a finite set
A of names supporting x in X and such
that any 7t fixing each a € A satisfies
mw-e—=¢e € E;., = E,.

Families of nominal sets

Family over X € Nom is specified by. . .

Get a category with families (cwf) [Dybjer] modelling
extensional MLTT. ..

This cwf is relatively unexplored, so far.
But what's it good for? Two possible applications:

1. higher-dimensional type theory

2. meta-programming/proving with name-binding
structures

Bezem-Coquand-Huber cubical sets
model of HOoTT

(just the connection with the nominal
sets notion of name abstraction)

14/28

One can view cubical sets as nominal sets X equipped
with some extra structure, whose names a,b,c... € A
we think of as names of cartesian directions

One can view cubical sets as nominal sets X equipped
with some extra structure, whose names a,b,c... € A
we think of as names of cartesian directions

—->0

x€eX ->b
supported by

{a,b,c}

One can view cubical sets as nominal sets X equipped
with some extra structure, namely face maps

x € X — (ila)x € X,
C
A
(0/a) (0/b)x |
(1/a) (0/b) (0/c)x s

fori =0,1

(Va)x

. .b

15/28

One can view cubical sets as nominal sets X equipped
with some extra structure,

di : [A]X — X .
(a)yx — (ila)x (i€2)
satisfying

(binding: a# (1/[1).’?(? — follows from the type of di)
degeneracy: a#x = (ila)x = x
independence: a # b = (ila)(jlb)x = (j/b)(ila)x

= category of nominal sets equipped with face maps +
functions preserving name-permutation action and face maps.
Theorem (Staton). Cub is equivalent to the presheaf
category [C, Set] originally used by Bezem, Coquand &
Huber.

C is [equivalent to] the category whose objects are finite ordinals
and whose morphisms are given by:

C(mn)={f€Settm+2,n+2)| fO=0AN f1=1A
Vij>1fi=fj>1= i=j}

Name abstractions (a)x as paths (proofs of identity)
from (0/a)x to (1/a)x:

degenerate path

reflx = (a)x [A]X <a>x

for some/any

\re
a#x / l (do,d1>

XWX X X ((0/a)x, (1/a)x)

Can these be the formation and introduction for an (intensional)
identity type Idx for cubical set X7

Name abstractions (a)x as paths (proofs of identity)
from (0/a)x to (1/a)x:

[A]X (a)x

y J/(do,dﬁ

XWX X X ((0/a)x, (1/a)x)
Can these be the formation and introduction for an (intensional)
identity type Idx for cubical set X7

Bezen-Coquand-Huber: yes (albeit with propositional eliminator), if
we take the ‘fibrant’ families to be given by cubical sets satisfying a
uniform Kan filling condition

Name abstractions (a)x as paths (proofs of identity)
from (0/a)x to (1/a)x:

[A]X (a)x

y J/(do,dﬁ l
((0/a)x, (1/a)x)

Can these be the formation and introduction for an (intensional)
identity type Idx for cubical set X7

Bezen-Coquand-Huber: yes (albeit with propositional eliminator), if
we take the ‘fibrant’ families to be given by cubical sets satisfying a
uniform Kan filling condition and one also gets a

Voevodsky (univalent) universe.

17/28

Name abstractions (a)x as paths (proofs of identity)
from (0/a)x to (1/a)x:

[A]X (a)x

y J/(do,dﬁ

XWX X X ((0/a)x, (1/a)x)
Can these be the formation and introduction for an (intensional)
identity type Idx for cubical set X7

Bezen-Coquand-Huber: yes (albeit with propositional eliminator), if
we take the ‘fibrant’ families to be given by cubical sets satisfying a
uniform Kan filling condition and one also gets a

Voevodsky (univalent) universe.

Why use Kan-Cub rather than Kan-[C, Set]?
Variations on Kan filling? ‘Nominal’ simplicial sets?

Type Theory with names,
freshness and name-abstraction
(joint work with Justus Matthiesen)

18/28

Families of nominal sets

Family over X € Nom is specified by. . .

Get a category with families (cwf) [Dybjer] modelling
extensional MLTT, plus

nominal logic's Curry- dependent
freshness quantifier Howard name-abstraction

WNa. ¢(a,Xx) +—— [a € A]E,

19/28

Families of nominal sets

Family over X € Nom is specified by. . .

Get a category with families (cwf) [Dybjer] modelling
extensional MLTT, plus

nominal logic's Curry- dependent
freshness quantifier Howard name-abstraction

WNa. ¢(a,Xx) +—— [a € A]E,

= Ja #¥. p(a,X)
=Va#X ¢(a,X)
‘some/any fresh a'

19/28

Original motivation for Gabbay & AMP to introduce
nominal sets and name abstraction:

[A](_) can be combined with X and + to
give functors Nom — Nom that have initial
algebras coinciding with sets of abstract syntax
trees modulo a-equivalence.

E.g. the initial algebra for A + (_ X _) + [A](_) is
isomorphic to the usual set of untyped A-terms.

Original motivation for Gabbay & AMP to introduce
nominal sets and name abstraction. ..
Initial-algebra universal property = recursion /induction

principles for syntax involving name-binding operations
[see JACM 53(2006)459-506].

» Exploited in impure functional programming language
FreshML [Shinwell, Gabbay & AMP] — recursion only.

» Pure total (recursive) functions and proof (by induction): how
to solve the analogy:

Coq Agda ?
OCaml Haskell FreshML

Requirements for ‘FreshAgda’

» User-declared sorts of names (possibly with
parameters) + user-defined inductive types, with

name-abstraction types used to indicate binding
constructs. E.g.

names Var : Set

data Term: Set where
V:Var -> Term
A:Term -> Term -> Term
L: ([Var]Term) -> Term

data Fresh(X:Set)(x:X) : Var -> Set where
fr: [a: Var] (Fresh X x a)

21/28

Requirements for ‘FreshAgda’

» User-declared sorts of names (possibly with
parameters) + user-defined inductive types, with
name-abstraction tvpes used to indicate binding
constructs. E.o- set of A-terms mod oc|

names Vafr : Set

data Term: Set where
V:Var -> Term
A:Term -> Term -> Term
L: ([Var]Term) -> Term

data Fresh(X:Set)(x:X) : Var -> Set where
fr: [a: Var] (Freshfx X a)

set of proofs that a is fresh for x:X

21/28

Requirements for ‘FreshAgda’

» User-declared sorts of names (possibly with
parameters) + user-defined inductive types, with
name-abstraction types used to indicate binding
constructs.

» Extend (dependent) pattern-matching with
name-abstraction patterns. E.g.

/ : Term -> Var -> Term -> Term

t/x)(V y) if x == y then t else V y
(t/x) (A t1 t2) A ((e/x)t1) ((t/x)t2)
(t/x) (L <x>t1) L <x>((t/>f)t1)

[

capture-avoiding substitution of t for x in t1

21/28

Requirements for ‘FreshAgda’

» User-declared sorts of names (possibly with
parameters) + user-defined inductive types, with
name-abstraction types used to indicate binding
constructs.

» Extend (dependent) pattern-matching with
name-abstraction patterns.

/ : Term -> Var -> Term -> Term

t/x)(V y) if x == y then t else V y
(t/x) (A t1 t2) A ((e/x)t1) ((t/x)t2)
(t/x) (L <x>t1) L <x>((t/x)t1)

» Automatically respect a-equivalence:

FreshML uses impure generativity to ensure this.
How to do it while maintaining Curry-Howard?

21/28

Fact: name abstraction functor

[A](_) : Nom — Nom

is right adjoint to ‘separated product’ functor

where

(L) * A : Nom — Nom

X*A = {(x,a)|a#x}

C X X A.

so [A]X is a kind of (affine) function space
(with a right adjoint!)

[A](_) : Nom — Nom
is right adjoint to ‘separated product’ functor
(L) * A : Nom — Nom
Counit of the adjunction is ‘concretion’ of an abstraction
@: ([A]IX)*xA —> X

defined by computation rule:

({(a)x) @b = (ba)-x,ifb# (a)x

22/28

Locally fresh names

For example, here are some isomorphisms, described in
an informal pseudocode:

i:[Al(X+Y) &2 [A]X+[A]Y
i(z) = fresh a in case z @ a of
inl(x) — (a)x
| inr(y) - (a)y

23/28

Locally fresh names

For example, here are some isomorphisms, described in
an informal pseudocode:

i [Al(X+Y) & [AIX +[A]Y
i(z) = fresh a in case z @ a of
inl(x) — (a)x
| inr(y) - (a)y
given f € Nom(X % A,Y)
satisfying a #x = a# f(x,a),
we get f € Nom(X,Y) well-defined by:
f(x) = f(x,a) for some/any a #ix.
Notation: ‘fresh ain f(x,a) ‘é f(x)

23/28

Locally fresh names

For example, here are some isomorphisms, described in
an informal pseudocode:

i:[Al(X+Y) &£ [A]X+[A]Y
i(z) = fresh a in case z @ a of
inl(x) — (a)x
| inr(y) - (a)y
j: ([AlX = [A]lY) = [Al(X-Y)
j(f) = fresh ain
(a)(Ax. f({a)x) @a)

Can one turn the pseudocode into terms in a formal
‘nominal’ A-calculus?

23/28

Aim: extend (dependently typed) A-calculus with

names a

name swapping swap a4,b in t

name abstraction {(a)t and concretion t @ a
locally fresh names fresh a in t

name equality if # = a then t; else tp

Aim: extend (dependently typed) A-calculus with

names a

name swapping swap a,b in t

name abstraction {(a)t and concretion t @ a
locally fresh names fresh a in t

name equality if £ = a then t; else fp

Prior art:

> Stark-Schépp [CSL 2004] — bunched contexts (+), extensional &
undecidable (-)
> Westbrook-Stump-Austin [LFMTP 2009] CNIC — semantics/expressivity?

> Cheney [LMCS 2012] DNTT - bunched contexts (4), no local fresh
names (-)

> Crole-Nebel [MFPS 2013] — simple types (-), definitional freshness (+)

Aim: extend (dependently typed) A-calculus with

names a

name swapping swap a,b in t

name abstraction (a)t and concretion t @ a
locally fresh names fresh a in t

name equality if £ = a then t; else fp

Prior art:

> Stark-Schépp [CSL 2004] — bunched contexts (+), extensional &
undecidable (-)

> Westbrook-Stump-Austin [LFMTP 2009] CNIC — semantics/expressivity?

> Cheney [LMCS 2012] DNTT — bunched contexts (+), no local fresh
names (-)

> Crole-Nebel [MFPS 2013] — simple types (-), definitional freshness (+)

We cherry pick, aiming for user-friendliness.

Aim: extend (dependently typed) A-calculus with

names a

name swapping swap a4,b in t

name abstraction (a)t and concretion t @ a
locally fresh names fresh a in t

name equality if # = a then t; else tp

Difficulty: concretion and locally fresh names are
partially defined — have to check freshness conditions.

e.g. for fresh a in f(x, a)
to be well-defined, we need

‘a#x = a#f(x,a)

24/28

Definitional freshness

In a nominal set of (higher-order) functions, proving
a # f can be tricky (undecidable). Common proof
pattern:

Given a, f, ..., pick a fresh name b and prove
(a b) - f = f. (For functions, equivalent to

proving Vx. (a b) - f(x) = f((a b) -x).)

Definitional freshness

In a nominal set of (higher-order) functions, proving
a # f can be tricky (undecidable). Common proof
pattern:

Given a, f, ..., pick a fresh name b and prove

(ab)-f = f.
Since by choice of b we have b # f, we also get

a=(ab)-b#(ab)-f=f QED.

Definitional freshness

In a nominal set of (higher-order) functions, proving
a # f can be tricky (undecidable). Common proof
pattern:

F'a#T FEt:T
I#(b: A)\- (swapa,bint) =t:T

Fl—a#t'T \\

N

definitional definitional
freshness equality

bunched contexts, generated by
I — T(x:T)
I — T#(a:A)

25/28

Definitional freshness

In a nominal set of (higher-order) functions, proving
a # f can be tricky (undecidable). Common proof
pattern:

F'a#T FEt:T
I#(b: A) & (swapa,bint) =t:T
I'a#t:T

Freshness info in bunched contexts gets used via:
[(x:T)["ok abel’
[(x:T)I"F (swap a,binx) =x:T

Definitional freshness

In a nominal set of (higher-order) functions, proving
a # f can be tricky (undecidable). Common proof
pattern:

F'Ea#T FEt:T
l"#(b:A)ht(swap a,bint)=1t:T
[Tha#t:T

|

definitional freshness for types:
r=r acT
I#(b: A)F (swapa,binT) =T
I'a#T

25/28

r+
TFAm

TFT=T

(ATm-FORM)

a€doml

pr—))
Tga)FT Ta)Fas™
TF oot oon) I
L@l F T
LT (st
TET I :
Tha»” U a4 € domI”
T (SWAP-FRESH-VAR)
TG F (ad)sx=2:T
acdomal The:T Thep:

A type theory

I ag¢dom

T ?)
e

g
SESORAT SRS DT (wecomrdl)
T (ifa=athen ey else es) =e1: T

Tha#(e:Atm) The:T The:
I (ife=athene elseer) =e;: T

T
(e-comr-2)

Ta)Fa#(e:T) TEa)l -
TEa)l Fvae=e:T
Cpa)be:T I@a)ra#(e:T) a#d

) (ocat-mvrao)

e TF (2 a)>) 07 =va, (2 @) ne:va (ad) x T A=)
Thdseipaon) The:(@a)>T
Theed: aa)«T (RRAED

Tre=afa)>(e0a): fra)>T

26/28

v

v

v

v

Decidability of typing & definitional equality
judgements (normal forms and algorithmic version
of the type system).

Inductively defined types involving [a : A](_)
(e.g. propositional freshness & nominal logic).
Dependently typed pattern-matching with
name-abstraction patterns.

Implementation.

1. Nom vs Sch, Cub vs [C, Set]|: names are
convenient! (because unlike indexes, they survive
weakening).

2. Possibility of a ‘nominal’ treatment of dimensions in
higher-dimensional type theory & category theory
seems intriguing: e.g. what are co-groupoids when
oo = finitely inexhaustible?

3. Nominal sets notion of implicit dependence does not
sit easily with explicit functional dependence in type
theory. (Permutations are mathematically pleasant,
but not computationally pleasant?)

	Freshness
	Name abstraction
	Nom and dependent types

