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Aim

A version of Martin-Lof Type Theory
enriched with constructs for
freshness and name-abstraction

from the theory of nominal sets.

Motivation:

Machine-assisted construction of
humanly understandable formal proofs
about software (PL semantics).



Plan

A version of Martin-Lof Type Theory
enriched with constructs for
freshness and name-abstraction

v

v

v

v

from the theory of nominal sets.

Nominal sets

Motivation for a ‘nominal’ MLTT
Prior art

Definitional freshness



Freshness
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What is a fresh name?

Possible definition: name a is fresh if it is not ‘stale’:
a is not equal to any name in the current (finite) set of
used names (and we extend that set with a)




What is a fresh name?
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used names (and we extend that set with a)

» need to be able to test names for equality — that is
the only attribute we assume names have (atomic
names)



What is a fresh name?

Possible definition: name a is fresh if it is not ‘stale’:

a is not equal to any name in the current (finite) set of
used names (and we extend that set with a)

» need to be able to test names for equality — that is
the only attribute we assume names have (atomic
names)

» freshness has a modal character — suggests using
Kripke semantics, with ‘possible worlds’ as
follows. . .



I = category of finite ordinals
n={0,1,...,n—1}
and injective functions

U € [I, Set]
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I = category of finite ordinals
n={0,1,...,.n—1}
and injective functions

U € [, Set]

[I, Set] = (covariant) presheaf category:
set-valued functors X & natural transformations.
X n = set of objects (of some type)
possibly involving n distinct names
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I = category of finite ordinals
n={0,1,...,.n—1}
and injective functions

generic decidable object
U = inclusion functor: |— U € [H/ Set]

Un=1{0,1,...,n—1}

[I, Set] = (covariant) presheaf category:
set-valued functors X & natural transformations.
X n = set of objects (of some type)
possibly involving n distinct names
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Generic decidable object

U is a ‘decidable’ object of the presheaf topos [I, Set|

diagonal subobject U — U X U has a boolean
complement # — U X U



Generic decidable object

U is a ‘decidable’ object of the presheaf topos [I, Set|

a=yb N a#b = false
true = a=yb V a#b



Generic infinite decidable object

U is a ‘decidable’ object of the presheaf topos [I, Set|

a=yb N a#b = false
true = a=yb V a#b

but it does not satisfy ‘finite inexhaustibility’

/\0§i<j§n a; 7 aj = Vpu /\ogign b # a;

which we need to model freshness.



Generic infinite decidable object

U is a ‘decidable’ object of the presheaf topos [I, Set|

a=yb N a#b = false
true = a=yb V a#b

but it does not satisfy ‘finite inexhaustibility’

No<ic<j<n @i 7 4j = Vpu No<i<n b 7 ai
FACT: we get this form of infinity (in a geometrically
generic way) if we cut down to the Schanuel topos:

Sch C [I, Set] is the full subcategory consisting of
functors I — Set that preserve pullbacks




From Sch to Nom

The category of nominal sets is ‘merely’ an
equivalent presentation of the category Sch:
An analogy:

Nom named bound variables

Y

Sch de Bruijn indexes (levels)

Step 1: fix a countably infinite set (of atomic names) and
modify Sch up to equivalence by replacing I by the equivalent
category whose objects are finite subsets I € Pg, A and whose
morphisms are injective functions.



From Sch to Nom

The category of nominal sets is ‘merely’ an
equivalent presentation of the category Sch:

Step 2: make the dependence of each X € Sch on ‘possible
worlds’ A € Pg, A implicit by taking the colimit X of the directed
system of sets and (injective) functions

ACBEP;A — (XA — XB)

Each set X carries an action of A-permutations

o
- — — >

(cf. homogeneity property (Fraissé limit)

A
D
B

B>
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From Sch to Nom

The category of nominal sets is ‘merely’ an
equivalent presentation of the category Sch:

Step 2: make the dependence of each X € Sch on ‘possible
worlds’ A € Pg, A implicit by taking the colimit X of the directed
system of sets and (injective) functions

ACBEP;A — (XA — XB)

Each set X carries an action of A-permutations with finite support
property, and every such arises this way up to iso.



Finite support property

Suppose Perm A (= group of all (finite) permutations of A)
acts on a set X and that x € X.
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Finite support property

Suppose Perm A (= group of all (finite) permutations of A)
acts on a set X and that x € X.

A set of names A C A supports x if permutations 7t
that fix every a € A also fix x (i.e. 7w+ x = x).

X is a nominal set if every x € X has a finite support.




Finite support property

Suppose Perm A (= group of all (finite) permutations of A)
acts on a set X and that x € X.

A set of names A C A supports x if permutations 7t
that fix every a € A also fix x (i.e. 7w+ x = x).

X is a nominal set if every x € X has a finite support.

Nom = category of nominal sets and functions that preserve the
permutation action (f(7r-x) = - (fx)).

FACT: Nom and Sch are equivalent categories. )

Within Nom, objects are ‘set-like’ and the modal character of
freshness becomes implicit. . .



Finite support property

Suppose Perm A (= group of all (finite) permutations of A)
acts on a set X and that x € X.

A set of names A C A supports x if permutations 7t
that fix every a € A also fix x (i.e. 7w+ x = x).

X is a nominal set if every x € X has a finite support.

Freshness, nominally, is a binary relation

a#x £ g & A for some finite A supporting x.

| ‘name a is fresh for x’ |




Finite support property

Suppose Perm A (= group of all (finite) permutations of A)
acts on a set X and that x € X.

A set of names A C A supports x if permutations 7t
that fix every a € A also fix x (i.e. 7w+ x = x).

X is a nominal set if every x € X has a finite support.

Freshness, nominally, is a binary relation

a#tx = ag¢ A for some finite A supporting x.

satisfying | Vx.3a. a # x| (not Skolemizable!)




Name abstraction
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Name abstraction

Each X € Nom yields a nominal set

[A]X

of

name-abstractions (a)x are ~-equivalence classes of

pairs (a,x) € A X X, where

(a,x) ~ (a',x') < Ib# (a,x,a’,x)

(ba)-x=(ba') -x

4

\

generalizes a-equivalence

from sets of syntax to

|the permutation that swaps a and bl

arbitrary nominal sets
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Name abstraction
Each X € Nom yields a nominal set |[A]X | of

name-abstractions (a)x are ~-equivalence classes of
pairs (a,x) € A X X, where

(a,x) ~ (a',x') < Tb# (a,x,a’,x)
(ba)-x=(ba') -x

Action of name permutations on [A]X is well-defined by
T {ayx = (rwa)(r-x)

and for this action, A — {a} supports {(a)x if A supports x.
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Fact: name abstraction functor

[A](_) : Nom — Nom

is right adjoint to ‘separated product’ functor

where

(L) * A : Nom — Nom

X*A = {(x,a)|a#x}

C X X A.



so [A]X is a kind of (affine) function space
(with a right adjoint!)

[A](_) : Nom — Nom
is right adjoint to ‘separated product’ functor
(L) * A : Nom — Nom

Co-unit of the adjunction is ‘concretion’ of an
abstraction

_@_:([A]lX)*xA — X

defined by computation rule:

({(a)x) @b = (b a)-x, ifb# (a)x
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If you want to know more
about nominal sets...

Nomine Nominal Sets
— Names and Symmetry in
a Computer Science

Cambridge Tracts in Theoretical
Computer Science, Vol. 57
(CUP, 2013)
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Nom and dependent types



Families of nominal sets
A family over X € Nom is specified by:

» X-indexed family of sets (E, | x € X)
» dependently type permutation action

Hn’EPermA HxGX(Ex - Eﬂ"x)

with dependent version of finite support property:

for all x € X, e € E, there is a finite set
A of names supporting x in X and such
that any 7t fixing each a € A satisfies
Tee = e
m m
Er, = E;
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Families of nominal sets

A family over X € Nom is specified by. . .

Get a category with families (CwF) [Dybjer] modelling
extensional MLTT. ..

This CwF is relatively unexplored, so far [Schopp's PhD,
mainly]. What's it good for?

I'm interested in two applications:

» meta-programming/proving with name-binding
structures [this talk]

» higher-dimensional type theory (HoTT)
[not this talk]



Type Theory with names,
freshness and name-abstraction
(joint work with Justus Matthiesen)
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Original motivation for Gabbay & AMP to introduce
nominal sets and name abstraction:

[A](_) can be combined with X and + to
give functors Nom — Nom that have initial
algebras coinciding with sets of abstract syntax
trees modulo a-equivalence.

E.g. the initial algebra for A + (_ X _) + [A](_) is
isomorphic to the usual set of untyped A-terms.




Original motivation for Gabbay & AMP to introduce
nominal sets and name abstraction. ..
Initial-algebra universal property = recursion /induction

principles for syntax involving name-binding operations
[see JACM 53(2006)459-506].

» Exploited in impure functional programming language
FreshML [Shinwell, Gabbay & AMP] — recursion only.

» Pure total (recursive) functions and proof (by induction): how
to solve the analogy:

Coq Agda ?
OCaml Haskell FreshML




Requirements for ‘FreshAgda’

» User-declared sorts of names (possibly with
parameters) + user-defined inductive types, with

name-abstraction types used to indicate binding
constructs. E.g.

names Var : Set

data Term: Set where
V:Var -> Term
A:Term -> Term -> Term
L: ([Var]Term) -> Term

data Fresh(X:Set)(x:X) : Var -> Set where
fr: [a: Var] (Fresh X x a)
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Requirements for ‘FreshAgda’

» User-declared sorts of names (possibly with
parameters) + user-defined inductive types, with
name-abstraction tvpes used to indicate binding
constructs. E.o- set of A-terms mod oc|

names Vafr : Set

data Term: Set where
V:Var -> Term
A:Term -> Term -> Term
L: ([Var]Term) -> Term

data Fresh(X:Set)(x:X) : Var -> Set where
fr: [a: Var] (Freshfx X a)

set of proofs that a is fresh for x:X
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Families of nominal sets

A family over X € Nom is specified by. . .

Get a category with families (CwF) [Dybjer] modelling
extensional MLTT, plus

nominal logic's Curry- dependent
freshness quantifier Howard name-abstraction

WNa. ¢(a,Xx) +—— [a € A]E,
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Families of nominal sets

A family over X € Nom is specified by. . .

Get a category with families (CwF) [Dybjer] modelling
extensional MLTT, plus

nominal logic's Curry- dependent
freshness quantifier Howard name-abstraction

WNa. ¢(a,Xx) +—— [a € A]E,

= Ja #¥. p(a,X)
=Va#X ¢(a,X)
‘some/any fresh a'

18/27



Requirements for ‘FreshAgda’

» User-declared sorts of names (possibly with
parameters) + user-defined inductive types, with

name-abstraction types used to indicate binding
constructs. E.g.

names

data

V:
A:
L:

data

fr:

)

Var : Set

Term : Set where

Var -> Term

Term -> Term -> Term
([Var]Term) -> Term

Fresh(X:Set) (x:X) : Var -> Set where
[a: Var] (Fresh X x a)

k Do inductive definitions with

constructor arities like this make sense?
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Requirements for ‘FreshAgda’

» User-declared sorts of names (possibly with
parameters) + user-defined inductive types, with
name-abstraction types used to indicate binding
constructs.

» Extend (dependent) pattern-matching with
name-abstraction patterns. E.g.

_/_ : Term -> Var -> Term -> Term

t/x)(V y) if x == y then t else V y
(t/x) (A t1 t2) A ((e/x)t1) ((t/x )t2)
(t/x) (L <x>t1) IL <x>((t/}f<)t1)

[

capture-avoiding substitution of t for x in t1
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Requirements for ‘FreshAgda’

» User-declared sorts of names (possibly with
parameters) + user-defined inductive types, with
name-abstraction types used to indicate binding
constructs.

» Extend (dependent) pattern-matching with
name-abstraction patterns

_/_ : Term -> Var -> Term -> Term

t/x)(V y) if x == y then t else V y
(t/x) (A t1 t2) A ((e/x)t1) ((t/x )t2)
(t/x) (L <x>t1) L <x>((t/x)t1)

that automatically respect a-equivalence:

FreshML uses impure generativity to ensure this.
How to do it while maintaining Curry-Howard?
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Locally fresh names

For example, here are some isomorphisms, described in
an informal pseudocode:

i:[Al(X+Y) &2 [A]X+[A]Y
i(z) = fresh a in case z @ a of
inl(x) — (a)x
| inr(y) - (a)y
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Locally fresh names

For example, here are some isomorphisms, described in
an informal pseudocode:

i [Al(X+Y) & [AIX +[A]Y
i(z) = fresh a in case z @ a of
inl(x) — (a)x
| inr(y) - (a)y
given f € Nom(X % A,Y)
satisfying a #x = a# f(x,a),
we get f € Nom(X,Y) well-defined by:
f(x) = f(x,a) for some/any a #ix.
Notation: ‘fresh ain f(x,a) ‘é f(x)
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Locally fresh names

For example, here are some isomorphisms, described in
an informal pseudocode:

i:[Al(X+Y) &£ [A]X+[A]Y
i(z) = fresh a in case z @ a of
inl(x) — (a)x
| inr(y) - (a)y
j: ([AlX = [A]lY) = [Al(X-Y)
j(f) = fresh ain
(a)(Ax. f({a)x) @a)

Can one turn the pseudocode into terms in a formal
‘nominal’ A-calculus?
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Aim

A version of Martin-Lof Type Theory
enriched with constructs for
freshness and name-abstraction

from the theory of nominal sets.

Motivation:

Machine-assisted construction of
humanly understandable formal proofs
about software (PL semantics).
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Aim
More specifically: extend (dependently typed) A-calculus
with
names a
name swapping swap a,b in t
name abstraction (a)t and concretion t @ a

locally fresh names fresh a in t
name equality if £ = a then t; else fp



Prior art

Stark-Schopp [CSL 2004]

bunched contexts (4), extensional & undecidable (—)

Westbrook-Stump-Austin [LFMTP 2009] CNIC
semantics/expressivity?
Cheney [LMCS 2012] DNTT

bunched contexts (4), no local fresh names (—)

Fairweather-Fernandez-Szasz-Tasistro [2012]

based on nominal terms (4), explicit substitutions (—), first-order (%)

Crole-Nebel [MFPS 2013]

simple types (—), definitional freshness (+)



Prior art

» Stark-Schépp [CSL 2004]

bunched contexts (4), extensional & undecidable (—)

» Westbrook-Stump-Austin [LFMTP 2009] CNIC

semantics/expressivity?

» Cheney [LMCS 2012] DNTT

bunched contexts (+), no local fresh names (—)

» Fairweather-Fernandez-Szasz-Tasistro [2012]

based on nominal terms (4), explicit substitutions (—), first-order (%)

» Crole-Nebel [MFPS 2013]

simple types (—), definitional freshness (+)

We cherry pick, aiming for user-friendliness.




Aim
More specifically: extend (dependently typed) A-calculus
with
names a
name swapping swap a,b in t
name abstraction (a)t and concretion t @ a

locally fresh names fresh a in t
name equality if £ = a then t; else fp

Difficulty: concretion and locally fresh names are
partially defined — have to check freshness conditions.

e.g. for fresh a in f(x, a)
to be well-defined, we need

‘a#x = a#f(x,a)
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Definitional freshness

In a nominal set of (higher-order) functions, proving
a # f can be tricky (undecidable). Common proof
pattern:

Given a, f, ..., pick a fresh name b and prove
(a b) - f = f. (For functions, equivalent to

proving Vx. (a b) - f(x) = f((a b) -x).)



Definitional freshness

In a nominal set of (higher-order) functions, proving
a # f can be tricky (undecidable). Common proof
pattern:

Given a, f, ..., pick a fresh name b and prove

(ab)-f = f.
Since by choice of b we have b # f, we also get

a=(ab)-b#(ab)-f=f QED.



Definitional freshness

F'Fa#T FEt:T
I#(b: A)\- (swapa,bint) =t:T

l"I—a#t*T \

T — I(x:T) definitional definit;enal
I — T#(a:A) freshness equality

kbunched contexts, generated by‘ \\ \\
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Definitional freshness

F'a#T FEt:T
I#(b: A) & (swapa,bint) =t:T
I'a#t:T

Freshness info in bunched contexts gets used via:
[(x:T)["ok abel’
[(x:T)I"F (swap a,binx) =x:T
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Definitional freshness

F'Ea#T FEt:T
T#(b: A) )7t (swap a,bint) =¢:T
[THa#t:T

|

definitional freshness for types:
r=T acT
T#(b: A) & (swap a,binT) =T
I'Fa#T
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A type theory
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A type theory
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Decidability of typing & definitional equality
judgements: normal forms and algorithmic version
of the type system and hence. ..

... an implementation.

Dependently typed pattern-matching with
name-abstraction patterns.

Inductively defined types involving [a : A](_)
(e.g. propositional freshness & nominal logic).
Maybe definitional freshness is too weak

(cf. experience with FreshML2000)7



	Freshness
	Name abstraction
	Nom and dependent types

