
LSFA 2014

Dependent Type Theory
with Abstractable Names

Andrew Pitts

Computer Laboratory

1/27

Aim

A version of Martin-Löf Type Theory
enriched with constructs for

freshness and name-abstraction

from the theory of nominal sets.

Motivation:

Machine-assisted construction of
humanly understandable formal proofs

about software (PL semantics).

2/27

Plan

A version of Martin-Löf Type Theory
enriched with constructs for

freshness and name-abstraction

from the theory of nominal sets.

◮ Nominal sets

◮ Motivation for a ‘nominal’ MLTT

◮ Prior art

◮ Definitional freshness

2/27

Freshness

3/27

What is a fresh name?

Possible definition: name a is fresh if it is not ‘stale’:

a is not equal to any name in the current (finite) set of
used names (and we extend that set with a)

4/27

What is a fresh name?

Possible definition: name a is fresh if it is not ‘stale’:

a is not equal to any name in the current (finite) set of
used names (and we extend that set with a)

◮ need to be able to test names for equality – that is
the only attribute we assume names have (atomic
names)

4/27

What is a fresh name?

Possible definition: name a is fresh if it is not ‘stale’:

a is not equal to any name in the current (finite) set of
used names (and we extend that set with a)

◮ need to be able to test names for equality – that is
the only attribute we assume names have (atomic
names)

◮ freshness has a modal character – suggests using
Kripke semantics, with ‘possible worlds’ as
follows. . .

4/27

U ∈ [I

I = category of finite ordinals
n = {0, 1, . . . , n− 1}
and injective functions

, Set]

5/27

U ∈ [I

I = category of finite ordinals
n = {0, 1, . . . , n− 1}
and injective functions

, Set]

[I, Set] = (covariant) presheaf category:
set-valued functors X & natural transformations.

X n = set of objects (of some type)
possibly involving n distinct names

5/27

U
generic decidable object
U = inclusion functor:

U n = {0, 1, . . . , n− 1}

∈ [I

I = category of finite ordinals
n = {0, 1, . . . , n− 1}
and injective functions

, Set]

[I, Set] = (covariant) presheaf category:
set-valued functors X & natural transformations.

X n = set of objects (of some type)
possibly involving n distinct names

5/27

Generic decidable object

U is a ‘decidable’ object of the presheaf topos [I, Set]

diagonal subobject U ֌ U×U has a boolean
complement 6= ֌ U×U

6/27

Generic decidable object

U is a ‘decidable’ object of the presheaf topos [I, Set]

a =U b ∧ a 6= b ⇒ false

true ⇒ a =U b ∨ a 6= b

6/27

Generic infinite decidable object

U is a ‘decidable’ object of the presheaf topos [I, Set]

a =U b ∧ a 6= b ⇒ false

true ⇒ a =U b ∨ a 6= b

but it does not satisfy ‘finite inexhaustibility’

∧
0≤i<j≤n ai 6= aj ⇒

∨
b:U

∧
0≤i≤n b 6= ai

which we need to model freshness.

6/27

Generic infinite decidable object

U is a ‘decidable’ object of the presheaf topos [I, Set]

a =U b ∧ a 6= b ⇒ false

true ⇒ a =U b ∨ a 6= b

but it does not satisfy ‘finite inexhaustibility’

∧
0≤i<j≤n ai 6= aj ⇒

∨
b:U

∧
0≤i≤n b 6= ai

FACT: we get this form of infinity (in a geometrically
generic way) if we cut down to the Schanuel topos:

Sch ⊆ [I, Set] is the full subcategory consisting of
functors I→ Set that preserve pullbacks

6/27

From Sch to Nom

The category of nominal sets Nom is ‘merely’ an
equivalent presentation of the category Sch:

An analogy:

Nom

Sch
∼

named bound variables

de Bruijn indexes (levels)

Step 1: fix a countably infinite set A (of atomic names) and
modify Sch up to equivalence by replacing I by the equivalent
category whose objects are finite subsets I ∈ Pfin A and whose
morphisms are injective functions.

7/27

From Sch to Nom

The category of nominal sets Nom is ‘merely’ an
equivalent presentation of the category Sch:

Step 2: make the dependence of each X ∈ Sch on ‘possible
worlds’ A ∈ Pfin A implicit by taking the colimit X̃ of the directed
system of sets and (injective) functions

A ⊆ B ∈ Pfin A 7→ (X A→ X B)

Each set X̃ carries an action of A-permutations

(cf. homogeneity property (Fraïssé limit)

A
∼=

A

A
f

B
)

7/27

From Sch to Nom

The category of nominal sets Nom is ‘merely’ an
equivalent presentation of the category Sch:

Step 2: make the dependence of each X ∈ Sch on ‘possible
worlds’ A ∈ Pfin A implicit by taking the colimit X̃ of the directed
system of sets and (injective) functions

A ⊆ B ∈ Pfin A 7→ (X A→ X B)

Each set X̃ carries an action of A-permutations with finite support
property, and every such arises this way up to iso.

7/27

Finite support property

Suppose Perm A (= group of all (finite) permutations of A)

acts on a set X and that x ∈ X.

8/27

Finite support property

Suppose Perm A (= group of all (finite) permutations of A)

acts on a set X and that x ∈ X.

A set of names A ⊆ A supports x if permutations π
that fix every a ∈ A also fix x (i.e. π · x = x).

X is a nominal set if every x ∈ X has a finite support.

8/27

Finite support property

Suppose Perm A (= group of all (finite) permutations of A)

acts on a set X and that x ∈ X.

A set of names A ⊆ A supports x if permutations π
that fix every a ∈ A also fix x (i.e. π · x = x).

X is a nominal set if every x ∈ X has a finite support.

Nom = category of nominal sets and functions that preserve the

permutation action (f(π · x) = π · (f x)).

FACT: Nom and Sch are equivalent categories.

Within Nom, objects are ‘set-like’ and the modal character of

freshness becomes implicit. . .

8/27

Finite support property

Suppose Perm A (= group of all (finite) permutations of A)

acts on a set X and that x ∈ X.

A set of names A ⊆ A supports x if permutations π
that fix every a ∈ A also fix x (i.e. π · x = x).

X is a nominal set if every x ∈ X has a finite support.

Freshness, nominally, is a binary relation

a # x , a /∈ A for some finite A supporting x.

‘name a is fresh for x’

8/27

Finite support property

Suppose Perm A (= group of all (finite) permutations of A)

acts on a set X and that x ∈ X.

A set of names A ⊆ A supports x if permutations π
that fix every a ∈ A also fix x (i.e. π · x = x).

X is a nominal set if every x ∈ X has a finite support.

Freshness, nominally, is a binary relation

a # x , a /∈ A for some finite A supporting x.

satisfying ∀x.∃a. a # x (not Skolemizable!)

8/27

Name abstraction

9/27

Name abstraction

Each X ∈ Nom yields a nominal set [A]X of

name-abstractions 〈a〉x are ∼-equivalence classes of
pairs (a, x) ∈ A× X, where

(a, x) ∼ (a′, x′) ⇔ ∃ b # (a, x, a′ , x′)
(b a) · x = (b a′) · x′

the permutation that swaps a and b
generalizes α-equivalence

from sets of syntax to
arbitrary nominal sets

10/27

Name abstraction

Each X ∈ Nom yields a nominal set [A]X of

name-abstractions 〈a〉x are ∼-equivalence classes of
pairs (a, x) ∈ A× X, where

(a, x) ∼ (a′, x′) ⇔ ∃ b # (a, x, a′ , x′)
(b a) · x = (b a′) · x′

Action of name permutations on [A]X is well-defined by

π · 〈a〉x = 〈π a〉(π · x)

and for this action, A−{a} supports 〈a〉x if A supports x.

10/27

Fact: name abstraction functor

[A](_) : Nom→ Nom

is right adjoint to ‘separated product’ functor

(_) ∗A : Nom→ Nom

where X ∗A , {(x, a) | a # x} ⊆ X×A.

11/27

Fact: name abstraction functor

[A](_) : Nom→ Nom

is right adjoint to ‘separated product’ functor

so [A]X is a kind of (affine) function space
(with a right adjoint!)

(_) ∗A : Nom→ Nom

Co-unit of the adjunction is ‘concretion’ of an
abstraction

_ @ _ : ([A]X) ∗A→ X

defined by computation rule:

(〈a〉x) @ b = (b a) · x, if b # 〈a〉x

11/27

If you want to know more
about nominal sets. . .

Nominal Sets

Names and Symmetry in

Computer Science

Cambridge Tracts in Theoretical
Computer Science, Vol. 57
(CUP, 2013)

12/27

Nom and dependent types

13/27

Families of nominal sets

A family over X ∈ Nom is specified by:

◮ X-indexed family of sets (Ex | x ∈ X)
◮ dependently type permutation action

∏π∈Perm A ∏x∈X(Ex � Eπ·x)

with dependent version of finite support property:

for all x ∈ X, e ∈ Ex there is a finite set
A of names supporting x in X and such
that any π fixing each a ∈ A satisfies
π · e = e∈ ∈

Eπ·x = Ex

14/27

Families of nominal sets

A family over X ∈ Nom is specified by. . .

Get a category with families (CwF) [Dybjer] modelling
extensional MLTT. . .

This CwF is relatively unexplored, so far [Schöpp’s PhD,
mainly]. What’s it good for?

I’m interested in two applications:

◮ meta-programming/proving with name-binding
structures [this talk]

◮ higher-dimensional type theory (HoTT)
[not this talk]

14/27

Type Theory with names,
freshness and name-abstraction

(joint work with Justus Matthiesen)

15/27

Original motivation for Gabbay & AMP to introduce
nominal sets and name abstraction:

[A](_) can be combined with × and + to
give functors Nom→ Nom that have initial
algebras coinciding with sets of abstract syntax
trees modulo α-equivalence.

E.g. the initial algebra for A + (_× _) + [A](_) is
isomorphic to the usual set of untyped λ-terms.

16/27

Original motivation for Gabbay & AMP to introduce
nominal sets and name abstraction. . .

Initial-algebra universal property⇒ recursion/induction
principles for syntax involving name-binding operations
[see JACM 53(2006)459-506].

◮ Exploited in impure functional programming language
FreshML [Shinwell, Gabbay & AMP] – recursion only.

◮ Pure total (recursive) functions and proof (by induction): how
to solve the analogy:

Coq

OCaml
∼

Agda

Haskell
∼

?

FreshML

16/27

Requirements for ‘FreshAgda’

◮ User-declared sorts of names (possibly with
parameters) + user-defined inductive types, with
name-abstraction types used to indicate binding
constructs. E.g.

names Var : Set

data Term : Set where

V : Var -> Term

A : Term -> Term -> Term

L : ([Var]Term) -> Term

data Fresh(X : Set)(x : X) : Var -> Set where

fr : [a : Var](Fresh X x a)

17/27

Requirements for ‘FreshAgda’

◮ User-declared sorts of names (possibly with
parameters) + user-defined inductive types, with
name-abstraction types used to indicate binding
constructs. E.g.

names Var : Set

data Term : Set where

V : Var -> Term

A : Term -> Term -> Term

L : ([Var]Term) -> Term

data Fresh(X : Set)(x : X) : Var -> Set where

fr : [a : Var](Fresh X x a)

set of λ-terms mod α

set of proofs that a is fresh for x:X

17/27

Families of nominal sets

A family over X ∈ Nom is specified by. . .

Get a category with families (CwF) [Dybjer] modelling
extensional MLTT, plus

nominal logic’s Curry- dependent

freshness quantifier Howard name-abstraction

Na. ϕ(a,~x) ←→ [a ∈ A]Ea

18/27

Families of nominal sets

A family over X ∈ Nom is specified by. . .

Get a category with families (CwF) [Dybjer] modelling
extensional MLTT, plus

nominal logic’s Curry- dependent

freshness quantifier Howard name-abstraction

Na. ϕ(a,~x) ←→ [a ∈ A]Ea

= ∃a #~x. ϕ(a,~x)
= ∀a #~x. ϕ(a,~x)
‘some/any fresh a’

18/27

Requirements for ‘FreshAgda’

◮ User-declared sorts of names (possibly with
parameters) + user-defined inductive types, with
name-abstraction types used to indicate binding
constructs. E.g.

names Var : Set

data Term : Set where

V : Var -> Term

A : Term -> Term -> Term

L : ([Var]Term) -> Term

data Fresh(X : Set)(x : X) : Var -> Set where

fr : [a : Var](Fresh X x a)

Do inductive definitions with
constructor arities like this make sense?

19/27

Requirements for ‘FreshAgda’

◮ User-declared sorts of names (possibly with
parameters) + user-defined inductive types, with
name-abstraction types used to indicate binding
constructs.

◮ Extend (dependent) pattern-matching with
name-abstraction patterns. E.g.

/ : Term -> Var -> Term -> Term

(t/x)(V y) = if x == y then t else V y

(t/x)(A t1 t2) = A ((t/x)t1) ((t/x)t2)

(t/x)(L <x>t1) = L <x>((t/x)t1)

capture-avoiding substitution of t for x in t1

19/27

Requirements for ‘FreshAgda’

◮ User-declared sorts of names (possibly with
parameters) + user-defined inductive types, with
name-abstraction types used to indicate binding
constructs.

◮ Extend (dependent) pattern-matching with
name-abstraction patterns

/ : Term -> Var -> Term -> Term

(t/x)(V y) = if x == y then t else V y

(t/x)(A t1 t2) = A ((t/x)t1) ((t/x)t2)

(t/x)(L <x>t1) = L <x>((t/x)t1)

that automatically respect α-equivalence:

FreshML uses impure generativity to ensure this.
How to do it while maintaining Curry-Howard?

19/27

Locally fresh names

For example, here are some isomorphisms, described in
an informal pseudocode:

i : [A](X + Y) ∼= [A]X + [A]Y
i(z) = fresh a in case z @ a of

inl(x) � 〈a〉x
| inr(y) � 〈a〉y

20/27

Locally fresh names

For example, here are some isomorphisms, described in
an informal pseudocode:

i : [A](X + Y) ∼= [A]X + [A]Y
i(z) = fresh a in case z @ a of

inl(x) � 〈a〉x
| inr(y) � 〈a〉y

given f ∈ Nom(X ∗A, Y)
satisfying a # x ⇒ a # f(x, a),

we get f̂ ∈ Nom(X, Y) well-defined by:

f̂(x) = f(x, a) for some/any a # x.

Notation: fresh a in f(x, a) , f̂(x)

20/27

Locally fresh names

For example, here are some isomorphisms, described in
an informal pseudocode:

i : [A](X + Y) ∼= [A]X + [A]Y
i(z) = fresh a in case z @ a of

inl(x) � 〈a〉x
| inr(y) � 〈a〉y

j : ([A]X � [A]Y) ∼= [A](X � Y)
j(f) = fresh a in

〈a〉(λx. f(〈a〉x) @ a)

Can one turn the pseudocode into terms in a formal
‘nominal’ λ-calculus?

20/27

Aim

A version of Martin-Löf Type Theory
enriched with constructs for

freshness and name-abstraction

from the theory of nominal sets.

Motivation:

Machine-assisted construction of
humanly understandable formal proofs

about software (PL semantics).

21/27

Aim

More specifically: extend (dependently typed) λ-calculus
with

names a
name swapping swap a, b in t
name abstraction 〈a〉t and concretion t @ a
locally fresh names fresh a in t
name equality if t = a then t1 else t2

22/27

Prior art

◮ Stark-Schöpp [CSL 2004]
bunched contexts (+), extensional & undecidable (−)

◮ Westbrook-Stump-Austin [LFMTP 2009] CNIC
semantics/expressivity?

◮ Cheney [LMCS 2012] DNTT
bunched contexts (+), no local fresh names (−)

◮ Fairweather-Fernández-Szasz-Tasistro [2012]
based on nominal terms (+), explicit substitutions (−), first-order (±)

◮ Crole-Nebel [MFPS 2013]
simple types (−), definitional freshness (+)

23/27

Prior art

◮ Stark-Schöpp [CSL 2004]
bunched contexts (+), extensional & undecidable (−)

◮ Westbrook-Stump-Austin [LFMTP 2009] CNIC
semantics/expressivity?

◮ Cheney [LMCS 2012] DNTT
bunched contexts (+), no local fresh names (−)

◮ Fairweather-Fernández-Szasz-Tasistro [2012]
based on nominal terms (+), explicit substitutions (−), first-order (±)

◮ Crole-Nebel [MFPS 2013]
simple types (−), definitional freshness (+)

We cherry pick, aiming for user-friendliness.
23/27

Aim

More specifically: extend (dependently typed) λ-calculus
with

names a
name swapping swap a, b in t
name abstraction 〈a〉t and concretion t @ a
locally fresh names fresh a in t
name equality if t = a then t1 else t2

Difficulty: concretion and locally fresh names are
partially defined – have to check freshness conditions.

e.g. for fresh a in f(x, a)
to be well-defined, we need

a # x ⇒ a # f(x, a)

24/27

Definitional freshness

In a nominal set of (higher-order) functions, proving
a # f can be tricky (undecidable). Common proof
pattern:

Given a, f , . . ., pick a fresh name b and prove
(a b) · f = f . (For functions, equivalent to
proving ∀x. (a b) · f(x) = f((a b) · x).)

25/27

Definitional freshness

In a nominal set of (higher-order) functions, proving
a # f can be tricky (undecidable). Common proof
pattern:

Given a, f , . . ., pick a fresh name b and prove
(a b) · f = f .
Since by choice of b we have b # f , we also get
a = (a b) · b # (a b) · f = f , QED.

25/27

Definitional freshness

Γ ⊢ a # T Γ ⊢ t : T
Γ#(b : A) ⊢ (swap a, b in t) = t : T

Γ ⊢ a # t : T

bunched contexts, generated by
Γ 7→ Γ(x : T)
Γ 7→ Γ#(a : A)

definitional
equality

definitional
freshness

25/27

Definitional freshness

Γ ⊢ a # T Γ ⊢ t : T
Γ#(b : A) ⊢ (swap a, b in t) = t : T

Γ ⊢ a # t : T

Freshness info in bunched contexts gets used via:

Γ(x : T)Γ
′ ok a, b ∈ Γ

′

Γ(x : T)Γ
′ ⊢ (swap a, b in x) = x : T

25/27

Definitional freshness

Γ ⊢ a # T Γ ⊢ t : T
Γ#(b : A) ⊢ (swap a, b in t) = t : T

Γ ⊢ a # t : T

definitional freshness for types:
Γ ⊢ T a ∈ Γ

Γ#(b : A) ⊢ (swap a, b in T) = T

Γ ⊢ a # T

25/27

A type theory

26/27

A type theory

OMITTED

26/27

To do

◮ Decidability of typing & definitional equality
judgements: normal forms and algorithmic version
of the type system and hence. . .

◮ . . . an implementation.

◮ Dependently typed pattern-matching with
name-abstraction patterns.

◮ Inductively defined types involving [a : A](_)
(e.g. propositional freshness & nominal logic).
Maybe definitional freshness is too weak
(cf. experience with FreshML2000)?

27/27

	Freshness
	Name abstraction
	Nom and dependent types

