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Overview of the Cohen-Coquand-Huber-Mortberg
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CCHM cubical sets as finitely supported
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De Morgan sets

Recall:

The category Dms of De Morgan sets is the full
subcategory of Set™ consisting of those IM-sets I such
that every x € T possesses a finite support.

M = finitary endomorphisms of the free De Morgan algebra I on
countably many generators J C 1

Every d € I can be put in disjunctive normal form as a finite join of
finite meets of finite subsets of J U {1-i | i € J}.

Elements of M are finite substitutions (d1/i1) o - -+ o (d,/iy) for
some distinct i1,...,i, € J and some dy,...,d, € 1.

An M-set T is in Dms if for each x € T', there is some I Cg, J
withi & I = (dli) -x = x (any d € ).
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The interval I in Dms

I = countably infinitely generated free De Morgan
algebra (generators J C T).
M acts on I via function application.

I € Dms, because each d € I is supported by the finite set of
directions occurring in its normal form.
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The interval I in Dms

I = countably infinitely generated free De Morgan
algebra (generators J C T).
M acts on I via function application.

Since each endomorphism m € IM preserves the De Morgan algebra
structure of T we get morphisms in Dms

0,1:1-1 vA: I XT—1T 1-(L):I-1
making I an internal De Morgan algebra in the topos Dms.
0,1 give source and target of I-paths
1- (L) gives I-path reversal

v, A give a “connection” structure, e.g. used to prove that singleton types
w.r.t. I-paths are contractible
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The interval I in Dms

I = countably infinitely generated free De Morgan
algebra (generators J C T).
M acts on I via function application.

Since each endomorphism m € IM preserves the De Morgan algebra
structure of T we get morphisms in Dms

0,1:1-1 vA:IXT—1T 1-(L):I-1

making I an internal De Morgan algebra in the topos Dms.

In the internal logic of the topos Dms, I does not look much like
the classical interval [0,1], e.g. it is not totally ordered,

but it is (logically) connected (2! & 2).
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Paths

Given I' € Dms, the object of I-paths in I is just the
exponential TT.

General exponentials T'® of (finitely supported) M-sets
have a somewhat complicated description (compared
with G-sets).

But when A =1, there is a simple characterisation of It
in terms of the nominal sets notions of

name abstraction
and

freshness
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Freshness

Given I' € Dms
we say direction i € J is fresh for x € T

and write

if (0/i) -x=x

in which case (d/i) -x = x for any d € 1.
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Path objects in Dms

Given I' € Dms, equivalence relation ~ on J X I":
(i,x) ~ (i’,x") holds iff

(Fj€I)j#(i,xi,x) N (i) -x= (Gli)-x
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Path objects in Dms

Given I' € Dms, equivalence relation ~ on J X I":
(i,x) ~ (i’,x") holds iff

(Fj€I)j#(i,xi,x) N (i) -x= (Gli)-x
Path object PT € Dms is (J X I')/~
~-equiv class of (i,x) written | (i — x)

M-action: m - (i > x) = (j>m - (jli) - x)
for some/any j # (m, i, x)
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Path objects in Dms

Path object PT € Dms is (J X I')/~

~-equiv class of (i,x) written

M-action: m - (i > x) = (j>m - (jli) - x)

(i—x)

for some/any j # (m, i, x)

Theorem. PT = It

Application @ : PT X I - T satisfies (i »x) @d = (dli) - x.

Currying of v € Dms(A X I,T) is cury € Dms(A,PT) where

curyy = (i—y(y,i)) for some/any i withi#y
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Operations on paths

Source/target: |9y, 01 € Dms(PI,T)
do(i—x) = (0/i)-x  91(i—-x) = (/i) -x

Degenerate paths: |1 € Dms(T,PT)
tx = (i —> x) for some/any i # x

Reversal: |rev: Dms(PT,PT)
rev(i—x) = (i~ ((1-9)/i) - x)

Connection: |cnx : Dms(P I, P(PT))
cnx(i—»x) = (j— (k- ((jak)li) - x)) (some/any j, k# (i,x))

dop P o1p

k
L(Tp) cnx p J’

]

dop ——1(9p)—— dop
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CwF of M-sets, Set™

Recall:
Objects I € Set™ are sets equipped with an IM-action

Morphisms ¢ € Set™ (A, T) are functions preserving
the IM-action

Families A € Set™(T) are families of sets
(Ax € Set | x € T') equipped with a
dependently-typed M-action

Elements « € Set"™ (I - A) are dependent functions
« € []ier A x preserving the IM-action

m- (ax) = a(m-x)
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Dms as a CwF

Same as the CwF for Set™ except that for a De Morgan
set I' € Dms the families in Dms(I') are all the
families A = (Ax | x €T) € Set " (T') with a
(dependent) finite support property:
for every x € T and a € A x there is a finite
subset I Cgn J that supports x in T and such
that foralli € J, if i &€ I then

(0/i)-a=ac Ax = A((0/i) - x)
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Dependently-typed paths

For each family A € Dms(T), dependently-typed
choice gives:

(LrerAx)' = Y fer! [Taer A(f d)

fstk\\ A
1"]I
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Dependently-typed paths

For each family A € Dms(T), dependently-typed
choice gives:

P(r.A) = Y perr]laen A(p@d)

P f& fst

Pr
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Dependently-typed paths

For each family A € Dms(T), dependently-typed
choice gives:

P(.A) = PT

o A

P A € Dms(PT) is the family of dependently-typed paths over
paths in T.

For each p € PT, (P A)(p) consists of ~-equiv. classes (i — a)
wherei € Jand a € A(p @1)

(i,a) ~ (i',a") = (Fj #p,i,ai,a") (jli)-a= (jli')-a’ € A(p @j)
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Dependently-typed paths

For each family A € Dms(T), dependently-typed
choice gives:

1

P(.A) =~ PL.PA

ﬂ’fst\« ;/fst
Pr

P A € Dms(PT) is the family of dependently-typed paths over
paths in T.

From this we get families path, € Dms(I'.A.(A o fst))
path,((x,a0),a1) = {p € (PA)(1x) | dop = ap N d1p = al}J
Do these give identification types in the CwF Dms?
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Dependently-typed paths

For each family A € Dms(T), dependently-typed
choice gives:

R

P(T.A) =~ PL.PA
Tfk »/fst
PT

P A € Dms(PT) is the family of dependently-typed paths over
paths in T.

From this we get families path, € Dms(I.A.(A o fst))
path, ((x,a0),a1) = {p € (P A)(tx) | dop = ag N d1p = a1} |
Do these give identification types in the CwF Dms?

Not quite. ..
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Coquand’s axioms for propositional identification types
A:Waa :AFa=da:U

A:Wa:Alrefl:a=a
A:UWa,a :A,p:a=a + contr: (a,refl) = (d,p)
A:U,B:A~WU,a,a’ : A+ subst: (a=a’) - Ba— Ba’
A:U,B:A—-WU,a:A,B;Bat-scomp : substreflb = b
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Coquand’s axioms for propositional identification types
A:Waa :AFa=da:U

A:Wa:Alrefl:a=a
A:UWa,a :A,p:a=a + contr: (a,refl) = (d,p)
A:U,B:A~WU,a,a’ : A+ subst: (a=a’) - Ba— Ba’

Lumsdaine [unpublished]: given
subst without scomp, can always
find a new subst’ with a scomp’

11.12/29



Coquand’s axioms for propositional identification types
A:Wa,a :AFa=a :U

A:Wa:Alrefl:a=a
A:UWa,a :A,p:a=a + contr: (a,refl) = (d,p)
A:U,B:A~WU,a,a’ : A+ subst: (a=a’) - Ba— Ba’

Canuse t € Dms(I,PT) and cnx : Dms(P T, P(PT)) to get
refl and contr for [-paths in Dms.

To also get subst, we restrict attention to families equipped with a
suitable Kan-style fibration structure. ..

(Maybe there are other ways to get subst?)
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Motivation: the univalence axiom [HoTT]

Overview of the Cohen-Coquand-Huber-Mortberg
presheaf model of univalent type theory [CCHM,OP]

Toposes of IM-sets

CCHM cubical sets as finitely supported
M-sets [Pit]

Path objects

Cofibrant propositions and fibrant families
A univalent universe [CCHM]
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Topos structure of Set™

Recall:

Subobjects of T € Set™ correspond to subsets of
UT &€ Set that are closed under the IM-action.

Subobject classifier:

O={pCM| (Vm,m')m € ¢ = m' om € ¢}
meog={m €M | om € g}

11.14/29



Recall that in any topos,
each object T' has a partial map classifier,
viz.a mono 7 : I' = I' with the universal property that
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Recall that in any topos,
each object T' has a partial map classifier,
viz.a mono 7 : I' = I' with the universal property that

for any partial morphism -+ —'~ T

|

A

there is a unique morphism § : A — I' making the
following square a pullback:

H

Ui

- =

=

R O
I _
A é
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Topos structure of Set™

Partial map classifier for I € Set™ is

I'={(¢,f) € Lypeal?|
(VYmm'Ymep=>m'-(fm) = f(m' om)}

with IM-action

m- (@, f) = (m-@,Am’ — f(m'om))
andg: T — I' given by

nx = (M,Am - m - x)
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Topos structure of Dms

Limits are created by the forgetful functor

U : Dms — Set™” — Set.
Exponential of T, A € Dms is coreflection (A")¢ of
exponential in Set™M™,

Subobjects of I' € Dms correspond to subsets of
UT € Set that are closed under the IM-action.

Subobject classifier is (€))fs.
Partial map classifier of T € Dms is ().
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Cofibrant propositions

In Dms, the subobject [F — Q)¢ of
cofibrant propositions consists of those ¢ € (¢
satisfying
(VmeM)mecoV m&e
(Vs e Mg)(Vm € M) som Ep = meE @

where Mg C M consists of those s € IM satisfying
(Vi € dom(s)) s(i) €& {0,1} (“strict” substitution)

E.g. the top element M € Q)¢ is in IF.

We say that a subobject A — I’ in Dms is cofibrant if
its classifier I' — Q)¢ factors through F — Q.
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Cofibrant propositions

In Dms, the subobject [F — Q)¢ of
cofibrant propositions consists of those ¢ € (¢
satisfying
(VmeM)mecoV m&e
(Vs e Mg)(YVm € M) som Ep = meE @

where Mg C M consists of those s € IM satisfying
(Vi € dom(s)) s(i) €& {0,1} (“strict” substitution)

<

Every m € M factors as m = s o f where s is strict and f is a face
substitution: Mg = {f € M | (Vi € dom(f)) f(i) € {0,1}}

Lemma. ¢ € [ iff there are finitely many face substitutions
f1,++, fu such that

meE @ < Viz,..n Nicdom(,) M) = fi (i)
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Cofibrant partial elements

Given T € Dms and A € Dms(T), we can consider the partial
map classifier for fst: T.A — I' in Dms/T restricted to partial maps
whose domains of definition are cofibrant subobjects.
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Cofibrant partial elements

Given T € Dms and A € Dms(T), we can consider the partial
map classifier for fst: T.A — I' in Dms/T restricted to partial maps
whose domains of definition are cofibrant subobjects. Explicitly:

OA € Dms(TI)

OAx = {(¢, ) € Lper [Tnep A(m - x) |
(Vm,m') m € ¢ = m’ - (am) = a(m’ om)}¢

m-(p,0u) = (m-@,Am’ - a(m’ om)
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Cofibrant partial elements

Given T € Dms and A € Dms(T), we can consider the partial
map classifier for fst: T.A — I' in Dms/T restricted to partial maps
whose domains of definition are cofibrant subobjects. Explicitly:

OA € Dms(TI)

OAx= {(a) € Lper TTnep Alm ) |
(Vi m') m € @ = m' - (am) = x(m’ om)}g

m-(p,0u) = (m-@,Am’ - a(m’ om)

Every a € Ax gives IM,Am - m-a) € JAx.

We say a cofibrant partial element (¢, a) € O Ax
extends to a total element a € Ax

and write | (g, &) " a
if (VmEp)am=m-a & A(m-x)
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CCHM fibrations

Given T € Dms

a fibration structure for a family A € Dms(T) is a
function comp , mapping every
—p € PI (path inT)
— (¢, ) € (P A) p (cofibrant partial path over p)
— ap € A(dop) extending (¢, do7T)
to comp , (p, @, 7T, a9) € A(d1p) extending (¢, 917T).
Furthermore, comp , must respect the IM-action.

(A remarkably simple definition — honestly! In particular it implies a Kan-style

path-lifting property.)
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CCHM fibrations

There is a family

FibA € Dms(PT)

whose elements

are fibration structures for A € Dms(T).
Theorem. [CCHM] There are (re-indexing stable)

functions

Fib(A) - Fib(path,,)

Fib(A) - Fib(B) — Fib(Z A B)
Fib(A) — Fib(B) — Fib(I1 A B)
Fib(A) — Fib(B) — Fib(W A B)

etc.

Proof. [OP] Clearer to work in the internal language of Dms, since doing
shows that one just needs some simple properties of I and [F
“connection algebra” (a, v),

0#£1, 2l >~
(Viel)(i=0)€eF A (i=1)€F,

(Yp,q€F) pVqeF.
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CCHM fibrations

There is a family |[FibA € Dms(PT) | whose elements
are fibration structures for A € Dms(T).

Theorem. [CCHM] There are (re-indexing stable)
functions

Fib(A) - Fib(path,,)

Fib(A) - Fib(B) - Fib(Z A B)

Fib(A) — Fib(B) — Fib(II A B)

Fib(A) — Fib(B) — Fib(W A B)
etc.

Get a new CwF F over Dms with

97(1—') = ZAGDms(l") Dms(ﬂ’ | Fle) and

F(I+ (A comp,)) = Dms(I' - A) with identification types,
X-, II-, W-types,. .. But what about universes?
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Motivation: the univalence axiom [HoTT]

Overview of the Cohen-Coquand-Huber-Mortberg
presheaf model of univalent type theory [CCHM,OP]
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CCHM cubical sets as finitely supported
M-sets [Pit]

Path objects

Cofibrant propositions and fibrant families
A univalent universe [CCHM]
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Small sets

Let set € Set be a fixed Grothendieck universe.

IN € set
x €y ecset = xc set
x,y € set = {x,y} € set
x€eset = {y|y Cx} € set
x Eset A fEset’ = Uye, fy € set

(More generally, can assume there is a countable sequence
sety € set; € sety; € - -+ € Set of Grothendieck universes.)
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Small sets

Let set € Set be a fixed Grothendieck universe.

Say that x € Set is small if x € set
(and large otherwise).

We assume that the set J is small;
and hence so are [ and M.
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Hofmann-Streicher universe in Dms

S € Dms

consists of functions A € set™ that come

equipped with a dependently-typed IM-action
mm' € M,a € Am+— m'-a € A(m' om)

m/l. (m/.a)
id-a

(m”om') -a & A(m”om’om)
a€E Am
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Hofmann-Streicher universe in Dms

8 € Dms | consists of functions A € set™ that come
equipped with a dependently-typed IM-action

mm' € M,a € Am+— m'-a € A(m' om)
Actionof m € M on A € 8 is
m-A=Am' - A(m’ om)

Furthermore, we require 8 to be finitely supported

w.r.t. this action and that each a € A m is finitely
supported, i.e. there is some I Cg, J supporting A,
containing dir(m) and satisfying that for all i & I

a = (0/i)-a € A((0/i) o m)
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Hofmann-Streicher universe in Dms

8 € Dms | consists of functions A € set™ that come
equipped with a dependently-typed IM-action

mm' € M,a € Am+— m'-a € A(m' om)
Actionof m € M on A € 8 is
m-A=Am' - A(m’ om)

Furthermore, we require 8 to be finitely supported

w.r.t. this action and that each a € A m is finitely
supported, i.e. there is some I Cg, J supporting A,
containing dir(m) and satisfying that for all i & I

a = (0/i)-a € A((0/i) o m)
= A(mo (0/i)) = ((0/i) -A)m = Am
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Hofmann-Streicher universe in Dms

There is a family | &6 € Dms(8) | mapping each A € 8§
to

EA=Aid

which weakly classifies small families in Dms:
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Hofmann-Streicher universe in Dms

There is a family
to

& € Dms(8)

mapping each A € 8§

E8A=Aid
which weakly classifies small families in Dms:

Theorem. For all T € Dms, if a family A € Dms(T)
satisfies (Vx € T') Ax € set, then there is a morphism
"A7 € Dms(T,8) with A = &A™
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Composition structure

There is an operation |Comp : Dms(I') — Dms(T)

which has the property that for each family
A € Dms(I') there is a bijection

Dms(PT F FibA) = Dms(I' - Comp A)

naturally in T and A.
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Composition structure

There is an operation |Comp : Dms(I') — Dms(T)
which has the property that for each family
A € Dms(I') there is a bijection

Dms(PT F FibA) = Dms(I' - Comp A)

naturally in T and A.

Sattler [unpublished]: Comp can be constructed from
Fib just using the fact that I is an atomic object. ..
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“Copaths”

The interval I € Dms is atomic in Lawvere's sense,
i.e. (_)! has a right adjoint (_)"": Dms — Dms

A
I — AV
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“Copaths”

The interval I € Dms is atomic in Lawvere's sense,
i.e. (_)! has a right adjoint (_)"": Dms — Dms

Explicit description of IV

underlying set consists of those functions f : IM — J — T satisfying
i#m' = m' - (fmi)=f(m om)i
for which there is some I Cgy, J supporting f w.r.t. the action
(m-f)m'i=f(m' om)i
and satisfying

i'#I,m = fmi= f((i'li)om)i
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“Copaths”

The interval I € Dms is atomic in Lawvere's sense,
i.e. (_)! has a right adjoint (_)"": Dms — Dms

> transpose of ¥ € Dms(P A,T) is ¥ € Dms(A, TV where
Yyymi=y(i-m-y) (yveAmeM,icd)

» counit of the adjunction P — (_)1/]I at T, is
er € Dms(P(TV),T) where

er{i—f) =fidi (i€9,fer’h
(and the unit is yr € Dms(T, (P T)VT) where
frxmi= (i—>m-x) (xeI,meM,icJ))
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There is a dependently-typed version of (_)1”1: given

any family A € Dms(T), there is | AV € Dms(T'")
and an isomorphism

(I‘.A)M ) l"llH.Al/]I

fstlk #/fSt

rl/H

(For each f € TVI the set AVI f consists of dependent functions
g € [ Tnem [ Ticg A(f mi) satisfying. . . [definition omitted].)

11.27/29



There is a dependently-typed version of (_)Y!: given
any family A € Dms(T), there is | AV € Dms(T'")

Comp A € Dms(T) is defined to be the re-indexing
(FibA)lll[ o 111"

of (FibA)Y! € Dms((P )" along the counit

nr € Dms (T, (P T)YY) of the adjunction P — (_)VI.
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There is a dependently-typed version of (_)Y!: given

any family A € Dms(T), there is | AV € Dms(T'")

Comp A € Dms(T) is defined to be the re-indexing
(FibA)lll[ o 111"

of (FibA)Y! € Dms((P )" along the counit

nr € Dms (T, (P T)YY) of the adjunction P — (_)VI.

So we have a pullback square in Dms:

I.CompA —— (PT)VIL(FibA)T (PT.FibA)VI

_
fstl/ l fst l £/l
Uiy

T (:P 1-)1/1[ _ (:P 1-)1/1[

IR

Hence, sections of T.Comp A correspond to sections of PTI.FibA

fst l fst i

r Pr
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There is a dependently-typed version of (_)Y!: given
any family A € Dms(T), there is | AV € Dms(T'")

Comp A € Dms(T) is defined to be the re-indexing
(FibA)lll[ o 111"

of (FibA)Y! € Dms((P )" along the counit

nr € Dms (T, (P T)YY) of the adjunction P — (_)VI.

So we have a pullback square in Dms:

I.CompA —— (PT)VL(FibA)VT (PI.FibA)VI

_
fstl/ l fst l £/l
Uiy

r (:P 1-)1/1[ — (:P 1-)1/11

IR

Hence, elements of Dms(I - Comp A) correspond to elements of
Dms(PT - FibA), i.e. fibration structures for A.
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CweF of fibrations

Now we can (re)define F to be the CwF over Dms with
- 9-'(1“) = ZAEDms(l") Dms(F - Comp A)
-FITF (Aa)) =Dms(T'H A)

Theorem. [CCHM] F is a model of UTT. ]
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CweF of fibrations

Now we can (re)define F to be the CwF over Dms with
- g:(r) = ZAEDms(l") Dms(F - COIIIPA)
-FITF (Aa)) =Dms(T'H A)

Theorem. [CCHM] F is a model of UTT.

The univalent universe in F has underlying De Morgan set

U = 8.Comp EL. There's a family in F(U) that weakly classifies
small families in F and this is univalent (and W is itself a fibration
over 1).

(Proof, via “glueing”, uses closure of F under I-indexed V, and a construction
that allows one to strictify some isomorphisms into equalities in the ambient set
theory.)
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| spent 4 hrs and still didn't manage to give you a
convincingly detailed proof that the CCHM model is
univalent :-(

A proof entirely in a language of type theory would
be better — to do that it seems one needs a
modality to express global nature of the universe
construction.

Can the nominal/IM-sets approach usefully be
applied to (a constructive version of) the simplicial
model of UTT?

Do non-truncated models of UTT have to be this
com pIicated? (and can we avoid Kan-filling in some way?)
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