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Plan

◮ Motivation: the univalence axiom [HoTT]

◮ Overview of the Cohen-Coquand-Huber-Mörtberg
presheaf model of univalent type theory [CCHM,OP]

◮ Toposes of M-sets

◮ CCHM cubical sets as finitely supported
M-sets [Pit]

◮ Path objects

◮ Cofibrant propositions and fibrant families

◮ A univalent universe [CCHM]
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De Morgan sets

Recall:
The category Dms of De Morgan sets is the full
subcategory of SetM consisting of those M-sets Γ such
that every x ∈ Γ possesses a finite support.

M = finitary endomorphisms of the free De Morgan algebra I on
countably many generators I ⊆ I

Every d ∈ I can be put in disjunctive normal form as a finite join of
finite meets of finite subsets of I∪ {1 - i | i ∈ I}.

Elements of M are finite substitutions (d1/i1) ◦ · · · ◦ (dn/in) for
some distinct i1, . . . , in ∈ I and some d1, . . . , dn ∈ I.

An M-set Γ is in Dms if for each x ∈ Γ, there is some I ⊆fin I

with i /∈ I ⇒ (d/i) · x = x (any d ∈ I).
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The interval I in Dms
I ≡ countably infinitely generated free De Morgan
algebra (generators I ⊆ I).
M acts on I via function application.

I ∈ Dms, because each d ∈ I is supported by the finite set of
directions occurring in its normal form.
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The interval I in Dms
I ≡ countably infinitely generated free De Morgan
algebra (generators I ⊆ I).
M acts on I via function application.

Since each endomorphism m ∈ M preserves the De Morgan algebra
structure of I we get morphisms in Dms

0, 1 : 1 � I v, v: I × I � I 1 - (_) : I � I

making I an internal De Morgan algebra in the topos Dms.

0, 1 give source and target of I-paths

1 - (_) gives I-path reversal

v, vgive a “connection” structure, e.g. used to prove that singleton types
w.r.t. I-paths are contractible
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The interval I in Dms
I ≡ countably infinitely generated free De Morgan
algebra (generators I ⊆ I).
M acts on I via function application.

Since each endomorphism m ∈ M preserves the De Morgan algebra
structure of I we get morphisms in Dms

0, 1 : 1 � I v, v: I × I � I 1 - (_) : I � I

making I an internal De Morgan algebra in the topos Dms.

In the internal logic of the topos Dms, I does not look much like
the classical interval [0, 1], e.g. it is not totally ordered,

but it is (logically) connected (2I ∼= 2).
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Paths

Given Γ ∈ Dms, the object of I-paths in Γ is just the
exponential Γ

I.

General exponentials Γ
∆ of (finitely supported) M-sets

have a somewhat complicated description (compared
with G-sets).

But when ∆ = I, there is a simple characterisation of Γ
I

in terms of the nominal sets notions of

name abstraction

and

freshness

. . .
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Freshness

Given Γ ∈ Dms

we say direction i ∈ I is fresh for x ∈ Γ

and write i # x
if (0/i) · x = x

in which case (d/i) · x = x for any d ∈ I.
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Path objects in Dms

Given Γ ∈ Dms, equivalence relation ∼ on I× Γ:
(i, x) ∼ (i′, x′) holds iff

(∃j ∈ I) j # (i, x, i′, x′) ∧ (j/i) · x = (j/i′) · x′
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Path objects in Dms

Given Γ ∈ Dms, equivalence relation ∼ on I× Γ:
(i, x) ∼ (i′, x′) holds iff

(∃j ∈ I) j # (i, x, i′, x′) ∧ (j/i) · x = (j/i′) · x′

Path object P Γ ∈ Dms is (I× Γ)/∼

∼-equiv class of (i, x) written 〈i � x〉

M-action: m · 〈i � x〉 ≡ 〈j � m · (j/i) · x〉
for some/any j # (m, i, x)
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Path objects in Dms

Path object P Γ ∈ Dms is (I× Γ)/∼

∼-equiv class of (i, x) written 〈i � x〉

M-action: m · 〈i � x〉 ≡ 〈j � m · (j/i) · x〉
for some/any j # (m, i, x)

Theorem. P Γ ∼= Γ
I

Application @ : P Γ × I � Γ satisfies 〈i � x〉 @ d = (d/i) · x.

Currying of γ ∈ Dms(∆ × I, Γ) is cur γ ∈ Dms(∆,P Γ) where

cur γ y ≡ 〈i � γ(y, i)〉 for some/any i with i # y
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Operations on paths

Source/target: ∂0, ∂1 ∈ Dms(P Γ, Γ)

∂0〈i � x〉 = (0/i) · x ∂1〈i � x〉 = (1/i) · x

Degenerate paths: ι ∈ Dms(Γ,P Γ)

ι x ≡ 〈i � x〉 for some/any i # x

Reversal: rev : Dms(P Γ,P Γ)

rev〈i � x〉 = 〈i � ((1 - i)/i) · x〉

Connection: cnx : Dms(P Γ,P(P Γ))

cnx〈i � x〉 = 〈j � 〈k � ((j vk)/i) · x〉〉 (some/any j, k # (i, x))

k

j

∂0 p p

ι(∂0p)

∂1 p

pcnx p

∂0 p ι(∂0 p) ∂0 p
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CwF of M-sets, SetM

Recall:

Objects Γ ∈ SetM are sets equipped with an M-action

Morphisms γ ∈ SetM(∆, Γ) are functions preserving
the M-action

Families A ∈ SetM(Γ) are families of sets
(A x ∈ Set | x ∈ Γ) equipped with a
dependently-typed M-action

Elements α ∈ SetM(Γ ⊢ A) are dependent functions
α ∈ ∏x∈Γ A x preserving the M-action

m · (α x) = α(m · x)
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Dms as a CwF

Same as the CwF for SetM except that for a De Morgan
set Γ ∈ Dms the families in Dms(Γ) are all the
families A = (A x | x ∈ Γ) ∈ SetM(Γ) with a
(dependent) finite support property:

for every x ∈ Γ and a ∈ A x there is a finite
subset I ⊆fin I that supports x in Γ and such
that for all i ∈ I, if i /∈ I then

(0/i) · a = a ∈ A x = A((0/i) · x)
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Dependently-typed paths

For each family A ∈ Dms(Γ), dependently-typed
choice gives:

(∑x∈Γ A x)I ∼=

fstI

∑ f∈ΓI ∏d∈I A( f d)

fst

Γ
I
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Dependently-typed paths

For each family A ∈ Dms(Γ), dependently-typed
choice gives:

P(Γ.A) ∼=

P fst

∑p∈P Γ ∏d∈I A(p @ d)

fst

P Γ
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Dependently-typed paths

For each family A ∈ Dms(Γ), dependently-typed
choice gives:

P(Γ.A) ∼=

P fst

P Γ.P A

fst

P Γ

P A ∈ Dms(P Γ) is the family of dependently-typed paths over
paths in Γ.

For each p ∈ P Γ, (P A)(p) consists of ∼-equiv. classes 〈i � a〉
where i ∈ I and a ∈ A(p @ i)

(i, a) ∼ (i′, a′) ≡ (∃j # p, i, a, i′, a′) (j/i) · a = (j/i′) · a′ ∈ A(p @ j)
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Dependently-typed paths

For each family A ∈ Dms(Γ), dependently-typed
choice gives:

P(Γ.A) ∼=

P fst

P Γ.P A

fst

P Γ

P A ∈ Dms(P Γ) is the family of dependently-typed paths over
paths in Γ.

From this we get families pathA ∈ Dms(Γ.A.(A ◦ fst))

pathA((x, a0), a1) ≡ {p ∈ (P A)(ι x) | ∂0p = a0 ∧ ∂1p = a1}

Do these give identification types in the CwF Dms?
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Dependently-typed paths

For each family A ∈ Dms(Γ), dependently-typed
choice gives:

P(Γ.A) ∼=

P fst

P Γ.P A

fst

P Γ

P A ∈ Dms(P Γ) is the family of dependently-typed paths over
paths in Γ.

From this we get families pathA ∈ Dms(Γ.A.(A ◦ fst))

pathA((x, a0), a1) ≡ {p ∈ (P A)(ι x) | ∂0p = a0 ∧ ∂1p = a1}

Do these give identification types in the CwF Dms?

Not quite. . .
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Coquand’s axioms for propositional identification types
A : U, a, a′ : A ⊢ a = a′ : U

A : U, a : A ⊢ refl : a = a

A : U, a, a′ : A, p : a = a′ ⊢ contr : (a, refl) = (a′, p)

A : U, B : A � U, a, a′ : A ⊢ subst : (a = a′) � B a � B a′

A : U, B : A � U, a : A, B; B a ⊢ scomp : subst refl b = b
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Coquand’s axioms for propositional identification types
A : U, a, a′ : A ⊢ a = a′ : U

A : U, a : A ⊢ refl : a = a

A : U, a, a′ : A, p : a = a′ ⊢ contr : (a, refl) = (a′, p)

A : U, B : A � U, a, a′ : A ⊢ subst : (a = a′) � B a � B a′

A : U, B : A � U, a : A, B; B a ⊢ scomp : subst refl b = b

Lumsdaine [unpublished]: given
subst without scomp, can always
find a new subst′ with a scomp′

II.12/29



Coquand’s axioms for propositional identification types
A : U, a, a′ : A ⊢ a = a′ : U

A : U, a : A ⊢ refl : a = a

A : U, a, a′ : A, p : a = a′ ⊢ contr : (a, refl) = (a′, p)

A : U, B : A � U, a, a′ : A ⊢ subst : (a = a′) � B a � B a′

A : U, B : A � U, a : A, B; B a ⊢ scomp : subst refl b = b

Can use ι ∈ Dms(Γ,P Γ) and cnx : Dms(P Γ,P(P Γ)) to get
refl and contr for I-paths in Dms.

To also get subst, we restrict attention to families equipped with a
suitable Kan-style fibration structure. . .

(Maybe there are other ways to get subst?)
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Plan

◮ Motivation: the univalence axiom [HoTT]

◮ Overview of the Cohen-Coquand-Huber-Mörtberg
presheaf model of univalent type theory [CCHM,OP]

◮ Toposes of M-sets

◮ CCHM cubical sets as finitely supported
M-sets [Pit]

◮ Path objects

◮ Cofibrant propositions and fibrant families

◮ A univalent universe [CCHM]
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Topos structure of SetM

Recall:

Subobjects of Γ ∈ SetM correspond to subsets of
U Γ ∈ Set that are closed under the M-action.

Subobject classifier:

Ω ≡ {ϕ ⊆ M | (∀m, m′) m ∈ ϕ ⇒ m′
◦ m ∈ ϕ}

m ·ϕ ≡ {m′ ∈ M | m′
◦ m ∈ ϕ}
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Recall that in any topos,
each object Γ has a partial map classifier,
viz. a mono η : Γ ֌ Γ̃ with the universal property that

II.15/29



Recall that in any topos,
each object Γ has a partial map classifier,
viz. a mono η : Γ ֌ Γ̃ with the universal property that

for any partial morphism ·
γ

Γ

∆

there is a unique morphism δ : ∆ → Γ̃ making the
following square a pullback:

·
γ

Γ

η

∆
δ

Γ̃
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Topos structure of SetM

Partial map classifier for Γ ∈ SetM is

Γ̃ ≡ {(ϕ, f) ∈ ∑ϕ∈Ω Γ
ϕ |

(∀m, m′) m ∈ ϕ ⇒ m′ · ( f m) = f(m′ ◦ m)}

with M-action

m · (ϕ, f) ≡ (m ·ϕ , λm′
� f(m′

◦ m))

and η : Γ ֌ Γ̃ given by

η x ≡ (M, λm � m · x)
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Topos structure of Dms

Limits are created by the forgetful functor
U : Dms ֒→ SetM

op

→ Set.

Exponential of Γ, ∆ ∈ Dms is coreflection (∆
Γ)fs of

exponential in SetM
op

.

Subobjects of Γ ∈ Dms correspond to subsets of
U Γ ∈ Set that are closed under the M-action.

Subobject classifier is (Ω)fs.

Partial map classifier of Γ ∈ Dms is (Γ̃)fs.
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Cofibrant propositions

In Dms, the subobject F ֌ Ωfs of
cofibrant propositions consists of those ϕ ∈ Ωfs

satisfying

(∀m ∈ M) m ∈ ϕ ∨ m /∈ ϕ
(∀s ∈ Ms)(∀m ∈ M) s ◦ m ∈ ϕ ⇒ m ∈ ϕ

where Ms ⊆ M consists of those s ∈ M satisfying
(∀i ∈ dom(s)) s(i) /∈ {0, 1} (“strict” substitution)

E.g. the top element M ∈ Ωfs is in F.

We say that a subobject ∆ ֌ Γ in Dms is cofibrant if
its classifier Γ � Ωfs factors through F ֌ Ωfs.
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Cofibrant propositions

In Dms, the subobject F ֌ Ωfs of
cofibrant propositions consists of those ϕ ∈ Ωfs

satisfying

(∀m ∈ M) m ∈ ϕ ∨ m /∈ ϕ
(∀s ∈ Ms)(∀m ∈ M) s ◦ m ∈ ϕ ⇒ m ∈ ϕ

where Ms ⊆ M consists of those s ∈ M satisfying
(∀i ∈ dom(s)) s(i) /∈ {0, 1} (“strict” substitution)

Every m ∈ M factors as m = s ◦ f where s is strict and f is a face
substitution: Mf ≡ { f ∈ M | (∀i ∈ dom( f)) f(i) ∈ {0, 1}}

Lemma. ϕ ∈ F iff there are finitely many face substitutions
f1, . . . , fn such that

m ∈ ϕ ⇔
∨

k=1,...,n
∧

i∈dom( fk)
m(i) = fk(i)
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Cofibrant partial elements

Given Γ ∈ Dms and A ∈ Dms(Γ), we can consider the partial
map classifier for fst : Γ.A � Γ in Dms/Γ restricted to partial maps
whose domains of definition are cofibrant subobjects.
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Cofibrant partial elements

Given Γ ∈ Dms and A ∈ Dms(Γ), we can consider the partial
map classifier for fst : Γ.A � Γ in Dms/Γ restricted to partial maps
whose domains of definition are cofibrant subobjects. Explicitly:

� A ∈ Dms(Γ)

� A x ≡ {(ϕ, α) ∈ ∑ϕ∈F ∏m∈ϕ A(m · x) |
(∀m, m′) m ∈ ϕ ⇒ m′ · (α m) = α(m′ ◦ m)}fs

m · (ϕ, α) ≡ (m ·ϕ, λm′
� α(m′ ◦ m)
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Cofibrant partial elements

Given Γ ∈ Dms and A ∈ Dms(Γ), we can consider the partial
map classifier for fst : Γ.A � Γ in Dms/Γ restricted to partial maps
whose domains of definition are cofibrant subobjects. Explicitly:

� A ∈ Dms(Γ)

� A x ≡ {(ϕ, α) ∈ ∑ϕ∈F ∏m∈ϕ A(m · x) |
(∀m, m′) m ∈ ϕ ⇒ m′ · (α m) = α(m′ ◦ m)}fs

m · (ϕ, α) ≡ (m ·ϕ, λm′
� α(m′ ◦ m)

Every a ∈ A x gives (M, λm � m · a) ∈ � A x.

We say a cofibrant partial element (ϕ, α) ∈ � A x
extends to a total element a ∈ A x

and write (ϕ, α) ր a

if (∀m ∈ ϕ) α m = m · a ∈ A(m · x)
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CCHM fibrations

Given Γ ∈ Dms

a fibration structure for a family A ∈ Dms(Γ) is a
function compA mapping every

– p ∈ P Γ (path in Γ)
– (ϕ, π) ∈ �(P A) p (cofibrant partial path over p)
– a0 ∈ A(∂0 p) extending (ϕ, ∂0π)

to compA(p,ϕ, π, a0) ∈ A(∂1 p) extending (ϕ, ∂1π).
Furthermore, compA must respect the M-action.

(A remarkably simple definition – honestly! In particular it implies a Kan-style

path-lifting property.)
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CCHM fibrations
There is a family FibA ∈ Dms(P Γ) whose elements

are fibration structures for A ∈ Dms(Γ).

Theorem. [CCHM] There are (re-indexing stable)
functions

Fib(A) � Fib(pathA)
Fib(A) � Fib(B) � Fib(Σ A B)
Fib(A) � Fib(B) � Fib(Π A B)
Fib(A) � Fib(B) � Fib(W A B)

etc.
Proof. [OP] Clearer to work in the internal language of Dms, since doing
shows that one just needs some simple properties of I and F

0 6= 1, 2I ∼= 2, “connection algebra” ( v, v),
(∀i ∈ I) (i = 0) ∈ F ∧ (i = 1) ∈ F, (∀p, q ∈ F) p ∨ q ∈ F.
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CCHM fibrations
There is a family FibA ∈ Dms(P Γ) whose elements

are fibration structures for A ∈ Dms(Γ).

Theorem. [CCHM] There are (re-indexing stable)
functions

Fib(A) � Fib(pathA)
Fib(A) � Fib(B) � Fib(Σ A B)
Fib(A) � Fib(B) � Fib(Π A B)
Fib(A) � Fib(B) � Fib(W A B)

etc.

Get a new CwF F over Dms with
F(Γ) ≡ ∑A∈Dms(Γ) Dms(P Γ ⊢ FibA) and

F(Γ ⊢ (A, compA)) ≡ Dms(Γ ⊢ A) with identification types,
Σ-, Π-, W-types,. . . But what about universes?
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Plan

◮ Motivation: the univalence axiom [HoTT]

◮ Overview of the Cohen-Coquand-Huber-Mörtberg
presheaf model of univalent type theory [CCHM,OP]

◮ Toposes of M-sets

◮ CCHM cubical sets as finitely supported
M-sets [Pit]

◮ Path objects

◮ Cofibrant propositions and fibrant families

◮ A univalent universe [CCHM]
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Small sets

Let set ∈ Set be a fixed Grothendieck universe.

N ∈ set

x ∈ y ∈ set ⇒ x ∈ set

x, y ∈ set ⇒ {x, y} ∈ set

x ∈ set ⇒ {y | y ⊆ x} ∈ set

x ∈ set ∧ f ∈ setx ⇒
⋃

y∈x f y ∈ set

(More generally, can assume there is a countable sequence
set0 ∈ set1 ∈ set2 ∈ · · · ∈ Set of Grothendieck universes.)
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Small sets

Let set ∈ Set be a fixed Grothendieck universe.

Say that x ∈ Set is small if x ∈ set
(and large otherwise).

We assume that the set I is small;
and hence so are I and M.
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Hofmann-Streicher universe in Dms

S ∈ Dms consists of functions A ∈ setM that come
equipped with a dependently-typed M-action

m, m′ ∈ M, a ∈ A m 7→ m′ · a ∈ A(m′
◦ m)

m′′ · (m′ · a) = (m′′
◦ m′) · a ∈ A(m′′

◦ m′
◦ m)

id · a = a ∈ A m
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Hofmann-Streicher universe in Dms

S ∈ Dms consists of functions A ∈ setM that come
equipped with a dependently-typed M-action

m, m′ ∈ M, a ∈ A m 7→ m′ · a ∈ A(m′
◦ m)

Action of m ∈ M on A ∈ S is

m · A ≡ λm′
� A(m′

◦ m)

Furthermore, we require S to be finitely supported
w.r.t. this action and that each a ∈ A m is finitely
supported, i.e. there is some I ⊆fin I supporting A,
containing dir(m) and satisfying that for all i /∈ I

a = (0/i) · a ∈ A((0/i) ◦ m)
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Hofmann-Streicher universe in Dms

S ∈ Dms consists of functions A ∈ setM that come
equipped with a dependently-typed M-action

m, m′ ∈ M, a ∈ A m 7→ m′ · a ∈ A(m′
◦ m)

Action of m ∈ M on A ∈ S is

m · A ≡ λm′
� A(m′

◦ m)

Furthermore, we require S to be finitely supported
w.r.t. this action and that each a ∈ A m is finitely
supported, i.e. there is some I ⊆fin I supporting A,
containing dir(m) and satisfying that for all i /∈ I

a = (0/i) · a ∈ A((0/i) ◦ m)
= A(m ◦ (0/i)) = ((0/i) · A)m = A m
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Hofmann-Streicher universe in Dms

There is a family Eℓ ∈ Dms(S) mapping each A ∈ S

to
Eℓ A ≡ A id

which weakly classifies small families in Dms:
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Hofmann-Streicher universe in Dms

There is a family Eℓ ∈ Dms(S) mapping each A ∈ S

to
Eℓ A ≡ A id

which weakly classifies small families in Dms:

Theorem. For all Γ ∈ Dms, if a family A ∈ Dms(Γ)
satisfies (∀x ∈ Γ) A x ∈ set, then there is a morphism
pAq ∈ Dms(Γ,S) with A = Eℓ ◦pAq.
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Composition structure

There is an operation Comp : Dms(Γ) � Dms(Γ)
which has the property that for each family
A ∈ Dms(Γ) there is a bijection

Dms(P Γ ⊢ FibA) ∼= Dms(Γ ⊢ Comp A)

naturally in Γ and A.
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Composition structure

There is an operation Comp : Dms(Γ) � Dms(Γ)
which has the property that for each family
A ∈ Dms(Γ) there is a bijection

Dms(P Γ ⊢ FibA) ∼= Dms(Γ ⊢ Comp A)

naturally in Γ and A.

Sattler [unpublished]: Comp can be constructed from
Fib just using the fact that I is an atomic object. . .
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“Copaths”

The interval I ∈ Dms is atomic in Lawvere’s sense,
i.e. (_)I has a right adjoint (_)1/I : Dms → Dms

Γ
I → ∆

Γ → ∆
1/I
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“Copaths”

The interval I ∈ Dms is atomic in Lawvere’s sense,
i.e. (_)I has a right adjoint (_)1/I : Dms → Dms

Explicit description of Γ
1/I:

underlying set consists of those functions f : M � I � Γ satisfying

i # m′ ⇒ m′ · ( f m i) = f (m′
◦ m) i

for which there is some I ⊆fin I supporting f w.r.t. the action

(m · f)m′ i ≡ f (m′
◦ m) i

and satisfying

i′ # I, m ⇒ f m i = f ((i′/i) ◦ m) i′
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“Copaths”

The interval I ∈ Dms is atomic in Lawvere’s sense,
i.e. (_)I has a right adjoint (_)1/I : Dms → Dms

◮ transpose of γ ∈ Dms(P∆, Γ) is γ ∈ Dms(∆, Γ
1/I) where

γ y m i ≡ γ〈i � m · y〉 (y ∈ ∆, m ∈ M, i ∈ I)

◮ counit of the adjunction P ⊣ (_)1/I at Γ, is
εΓ ∈ Dms(P(Γ

1/I), Γ) where

εΓ〈i � f〉 ≡ f id i (i ∈ I, f ∈ Γ
1/I)

(and the unit is ηΓ ∈ Dms(Γ, (P Γ)1/I) where

ηΓ x m i ≡ 〈i � m · x〉 (x ∈ Γ, m ∈ M, i ∈ I))
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There is a dependently-typed version of (_)1/I: given

any family A ∈ Dms(Γ), there is A1/I ∈ Dms(Γ
1/I)

and an isomorphism

(Γ.A)1/I ∼=

fst1/I

Γ
1/I.A1/I

fst

Γ
1/I

(For each f ∈ Γ
1/I, the set A1/I f consists of dependent functions

g ∈ ∏m∈M ∏i∈I A( f m i) satisfying. . . [definition omitted].)
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There is a dependently-typed version of (_)1/I: given

any family A ∈ Dms(Γ), there is A1/I ∈ Dms(Γ
1/I)

Comp A ∈ Dms(Γ) is defined to be the re-indexing
(FibA)1/I ◦ ηΓ

of (FibA)1/I ∈ Dms((P Γ)1/I) along the counit
ηΓ ∈ Dms(Γ, (P Γ)1/I) of the adjunction P ⊣ (_)1/I.
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There is a dependently-typed version of (_)1/I: given

any family A ∈ Dms(Γ), there is A1/I ∈ Dms(Γ
1/I)

Comp A ∈ Dms(Γ) is defined to be the re-indexing
(FibA)1/I ◦ ηΓ

of (FibA)1/I ∈ Dms((P Γ)1/I) along the counit
ηΓ ∈ Dms(Γ, (P Γ)1/I) of the adjunction P ⊣ (_)1/I.

So we have a pullback square in Dms:

Γ. Comp A

fst

(P Γ)1/I.(FibA)1/I

fst

∼= (P Γ.FibA)1/I

fst1/I

Γ
ηΓ

(P Γ)1/I = (P Γ)1/I

Hence, sections of Γ. Comp A

fst

Γ

correspond to sections of P Γ.FibA

fst

P Γ
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There is a dependently-typed version of (_)1/I: given

any family A ∈ Dms(Γ), there is A1/I ∈ Dms(Γ
1/I)

Comp A ∈ Dms(Γ) is defined to be the re-indexing
(FibA)1/I ◦ ηΓ

of (FibA)1/I ∈ Dms((P Γ)1/I) along the counit
ηΓ ∈ Dms(Γ, (P Γ)1/I) of the adjunction P ⊣ (_)1/I.

So we have a pullback square in Dms:

Γ. Comp A

fst

(P Γ)1/I.(FibA)1/I

fst

∼= (P Γ.FibA)1/I

fst1/I

Γ
ηΓ

(P Γ)1/I = (P Γ)1/I

Hence, elements of Dms(Γ ⊢ Comp A) correspond to elements of
Dms(P Γ ⊢ FibA), i.e. fibration structures for A.
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CwF of fibrations

Now we can (re)define F to be the CwF over Dms with
– F(Γ) ≡ ∑A∈Dms(Γ) Dms(Γ ⊢ Comp A)
– F(Γ ⊢ (A, α)) ≡ Dms(Γ ⊢ A)

Theorem. [CCHM] F is a model of UTT.
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CwF of fibrations

Now we can (re)define F to be the CwF over Dms with
– F(Γ) ≡ ∑A∈Dms(Γ) Dms(Γ ⊢ Comp A)
– F(Γ ⊢ (A, α)) ≡ Dms(Γ ⊢ A)

Theorem. [CCHM] F is a model of UTT.

The univalent universe in F has underlying De Morgan set
U ≡ S. CompEℓ. There’s a family in F(U) that weakly classifies
small families in F and this is univalent (and U is itself a fibration
over 1).

(Proof, via “glueing”, uses closure of F under I-indexed ∀, and a construction
that allows one to strictify some isomorphisms into equalities in the ambient set
theory.)

II.28/29



In conclusion

◮ I spent 4 hrs and still didn’t manage to give you a
convincingly detailed proof that the CCHM model is
univalent :-(

◮ A proof entirely in a language of type theory would
be better – to do that it seems one needs a
modality to express global nature of the universe
construction.

◮ Can the nominal/M-sets approach usefully be
applied to (a constructive version of) the simplicial
model of UTT?

◮ Do non-truncated models of UTT have to be this
complicated? (and can we avoid Kan-filling in some way?)
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