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Initial algebra of an
endofunctor F : C → C

F (`F )

]F �

`F

For various choices of C and F

`F is used in the semantics of various kinds of
inductive (or dually, coinductive) structures

and associated (co)recursion schemes

For example. . .
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W-types

Each “container” (A ∈ Set, B ∈ Set
A)

determines a polynomial endofunctor FA,B : Set → Set

FA,B(X ) =
∑

a∈A X
B a

= {(a, f ) | a ∈ A ∧ f ∈ XB a}
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W-types

Each “container” (A ∈ Set, B ∈ Set
A)

determines a polynomial endofunctor FA,B : Set → Set

FA,B(X ) =
∑

a∈A X
B a

= {(a, f ) | a ∈ A ∧ f ∈ XB a}

`FA,B is the set WA,B of well-founded algebraic terms
generated from a signature of operation symbols supa
(a ∈ A), each with (possibly infinitary) arity B a:

t ∈ WA,B ::= supa f where f ∈ (WA,B)
B a

Given h : (
∑

a∈A X
B a) → X , then ĥ : WA,B → X is uniquely

determined by the recursion equation

ĥ(supa f ) = h(a, _b. ĥ(f b))
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Classical construction of `F

Assume C has colimits of shape (U, <) for any ordinal U ,
and hence in particular an initial object 0.

Iterate F : C → C transfinitely, starting at 0

0
i0
−→ F0

i1
−→ F 2

0
i2
−→ · · · → F U

0
iU
−→ F U+

0 → · · ·

FU0 =





0 if U = 0

F (F V
0) if U = V+ is a successor ordinal

colimV<_ F
V
0 if U = _ is a limit ordinal

iU =




unique, by initiality of 0 if U = 0

F (iV ) if U = V+

use univ. prop. of colimV<_ if U = _
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iU
−→ F U+

0 → · · ·

Theorem [Adamek, 1974] If F preserves colimits of shape (^, <) for
some limit ordinal ^ (that is, i^ is an isomorphism), then it has
initial algebra

`F = F^0 = colimU<^ F
U
0

(with algebra structure given by F (F^0) = F^
+ (i^)

−1
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unique, by initiality of 0 if U = 0

F (iV ) if U = V+

use univ. prop. of colimV<_ if U = _

Law of Excluded Middle (LEM)
∀p. p ∨ ¬p

is needed for the usual theory of
ordinal numbers
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Classical construction of `F

Assume C has colimits of shape (U, <) for any ordinal U ,
and hence in particular an initial object 0.

Iterate F : C → C transfinitely, starting at 0

0
i0
−→ F0

i1
−→ F 2

0
i2
−→ · · · → F U

0
iU
−→ F U+

0 → · · ·

Theorem [Adamek, 1974] If F preserves colimits of shape (^, <) for
some limit ordinal ^ (that is, i^ is an isomorphism), then it has
initial algebra

`F = F^0 = colimU<^ F
U
0

(with algebra structure given by F (F^0) = F^
+ (i^)

−1

�
F^0 )

Without some form of choice principle
there won’t be many such F
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C = Set (ZFC sets) case of the theorem:

F : Set → Set has an initial algebra if it preserves ^ colimits for
some limit ordinal ^.

Fact: for a polynomial endofunctor FA,B(X ) =
∑

a∈A X
B a,

if we take ^ big enough so that
any B a-indexed family of ordinals <^

has an upper bound <^

then FA,B : Set → Set preserves ^ colimits.
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C = Set (ZFC sets) case of the theorem:

F : Set → Set has an initial algebra if it preserves ^ colimits for
some limit ordinal ^.

Fact: for a polynomial endofunctor FA,B(X ) =
∑

a∈A X
B a,

if we take ^ big enough so that
any B a-indexed family of ordinals <^

has an upper bound <^

then FA,B : Set → Set preserves ^ colimits.

Axiom of Choice (AC) can be used to prove this fact

Colimits in Set are given by quotients: colimU<^ DU = (
∑

U<^ DU ) /∼

To get from a function f ∈ (colimU<^ F
U
A,B

0)B a

to an element of colimU<^ ((F
U
A,B

0)B a) when B a is infinite,

we can use AC to pick a representative in the ∼-equivalence class f (b) for each
b ∈ B a ; and then. . .
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Constructive Logic – why bother?

◮ philosophy

◮ computational content
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Elementary Toposes

Simple definition

topos = category with finite limits, exponentials and a generic
monomorphism

7/19



Elementary Toposes

Simple definition

topos = category with finite limits, exponentials and a generic
monomorphism

but rich in properties, because there is a Lawvere-style
category↔theory correspondence between them and theories in

intuitionistic higher-order logic with extensionality

or be�er still (if we restrict a�ention to toposes with a natural
number object and universes)

extensional Martin-Löf Type Theory with an impredicative
universe of propositions
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Constructive Logic – why bother?

◮ philosophy

◮ computational content
◮ utility: internal languages of many varieties of

category have a constructive nature

For example: use of internal type theory of a topos to describe the
construction of the Coquand-Cohen-Huber-Mörtberg model of
univalent foundations within a presheaf topos of cubical sets.

[I. Orton-AMP, Axioms for Modelling Cubical Type Theory in a Topos, LMCS
14(2018)]

[D. R. Licata, I. Orton, AMP and B. Spi�ers, Internal Universes in Models of

Homotopy Type Theory, FSCD 2018]
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Constructive Logic – why bother?

◮ philosophy

◮ computational content

◮ utility: internal languages of many varieties of
category have a constructive nature

Is there a version of Adamek’s theorem that works in
any topos with NNO and universes?
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Constructive Adamek - step 1

Avoid zero/successor/limit case distinction in
F 00 = 0

FU
+
0 = F (FU0)

F_0 = colimU<_ FU

by using an “inflationary” iteration instead

`UF = colimV<U F (`VF )
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Avoid zero/successor/limit case distinction in
F 00 = 0

FU
+
0 = F (FU0)

F_0 = colimU<_ FU

by using an “inflationary” iteration instead

`UF = colimV<U F (`VF )

and replace use of ordinals by the elements of any

Definition. A size is a set ^ equipped with a binary
relation < which is transitive, directed

∃U ∈ ^ ∧ ∀U, U′ ∈ ^.∃V ∈ ^. U < V ∧ U′
< V

and well-founded

∀S ⊆ ^.(∀U.(∀V < U. V ∈ S) ⇒ U ∈ S) ⇒ ∀U. U ∈ S

(sizes play the role of limit ordinals in the constructive theory)
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Avoid zero/successor/limit case distinction in
F 00 = 0

FU
+
0 = F (FU0)

F_0 = colimU<_ FU

by using an “inflationary” iteration instead

Lemma. Constructively, assuming C has small colimits,
given any endofunctor F : C → C and size (^, <), there
are objects `UF ∈ C for each U ∈ ^ satisfying

`UF = colimV<U F (`VF )

(just need transitivity and well-foundedness of <, but not directedness, to construct (`U F | U ∈ ^))
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Constructive Adamek - step 1

Avoid zero/successor/limit case distinction in
F 00 = 0

FU
+
0 = F (FU0)

F_0 = colimU<_ FU

by using an “inflationary” iteration instead

Lemma. Constructively, assuming C has small colimits,
given any endofunctor F : C → C and size (^, <), there
are objects `UF ∈ C for each U ∈ ^ satisfying

`UF = colimV<U F (`VF )

Theorem. Constructively, if C has small colimits and
F : C → C preserves colimits of size (^, <), then it has
initial algebra `F = colimU∈^ `UF .

(proof uses directedness of <, which implies in particular that for each U ∈ ^ there is U+ ∈ ^ with

U < U+)
9/19



Constructive Adamek - step 2
Theorem. Constructively, if C has small colimits and F : C → C

preserves colimits of some size ^, then it has initial algebra given by taking the
colimit of the ^-indexed inflationary iteration of F .

Are there (m)any such ^ and F ?
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C = Set (ZFC sets) case of the theorem:

F : Set → Set has an initial algebra if it preserves ^ colimits for
some limit ordinal ^.

Fact: for a polynomial endofunctor FA,B(X ) =
∑

a∈A X
B a,

if we take ^ big enough so that
any B a-indexed family of ordinals <^

has an upper bound <^

then FA,B : Set → Set preserves ^ colimits.

Suggests that for each signature Σ = (A,B)

we need to be able to find a size (^, <)
that has B a-indexed <-upper bounds, for all a ∈ A
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Recall that a size is a set ^ with a transitive, directed and well-founded binary relation <

Given a signature Σ = (A : Set,B : SetA), say that a size (^, <) is
Σ-filtered if

for all a ∈ A, every B a-indexed family (f b ∈ ^ | b ∈ B a)
has a <-upper bound in ^.

Theorem. For every Σ, there is a Σ-filtered size.

Proof uses W-types endowed with Paul Taylor’s “plump” order. . .
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Plump order
Recall thatWA,B = {supa f | a ∈ A ∧ f ∈ (WA,B)

B a } is the set of
well-founded algebraic terms generated from a signature (A ∈ Set,B ∈ Set

A)

of operation symbols supa of arity B a (for each a ∈ A)

The plump well-order (Paul Taylor, JSL 1996) < onWA,B

is mutually inductively defined with a pre-order ≤

∃b. t ≤ f b

t < supa f

∀b. f b < t

supa f ≤ t
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B a } is the set of
well-founded algebraic terms generated from a signature (A ∈ Set,B ∈ Set

A)

of operation symbols supa of arity B a (for each a ∈ A)

The plump well-order (Paul Taylor, JSL 1996) < onWA,B

is mutually inductively defined with a pre-order ≤

∃b. t ≤ f b

t < supa f

∀b. f b < t

supa f ≤ t

< is always transitive and well-founded

and we have f b < supa f (because ≤ is provably reflexive)

so in particular, if there are a0, a2 ∈ A with B a0 = ∅ and B a2 = 1 + 1,
then < is directed – in which case (WA,B , <) is a size.
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Recall that a size is a set ^ with a transitive, directed and well-founded binary relation <

Given a signature Σ = (A : Set,B : SetA), say that a size (^, <) is
Σ-filtered if

for all a ∈ A, every B a-indexed family (f b ∈ ^ | b ∈ B a)
has a <-upper bound in ^.

Theorem. For every Σ, there is a Σ-filtered size.

Proof uses W-types endowed with Paul Taylor’s “plump” order.

Given Σ = (A, B), we can take ^ = WA′,B′ with its plump order,
where

A′
, A ⊎ {0, 2}

B′a , B a

B′0 , ∅

B′2 , 1 + 1
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Constructive Adamek - step 2
Theorem. Constructively, if C has small colimits and F : C → C

preserves colimits of some size ^, then it has initial algebra given by taking the
colimit of the ^-indexed inflationary iteration of F .

Are there (m)any such ^ and F ?

Definition. A functor F : C → D between cocomplete categories is
sized if it preserves colimits of Σ-filtered sizes, for some signature Σ.
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Theorem. Constructively, if C has small colimits and F : C → C

preserves colimits of some size ^, then it has initial algebra given by taking the
colimit of the ^-indexed inflationary iteration of F .

Are there (m)any such ^ and F ?

Definition. A functor F : C → D between cocomplete categories is
sized if it preserves colimits of Σ-filtered sizes, for some signature Σ.

Some constructively valid closure properties for sized functors:

◮ constant functors

◮ quotients (coequalizers of pairs of natural transformations)

◮
∑

(I-indexed coproducts, for any I ∈ Set)

◮ What about
∏
? (I-indexed products for any I ∈ Set)
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WISC
Assuming AC, for all A ∈ Set

B

A
id

A

any surjection to A splits

16/19



WISC
Assuming AC, for all A ∈ Set

B

A
id

A

any surjection to A splits

WISC axiom [van den Berg, Moerdijk, Palmgren, Streicher]

weakens AC to merely assume that for each A there is a

Set of surjections (“Covers”)
{
Ci ci

A | i ∈ I
}

which is Weakly Initial B

Ci ci
A
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WISC

ZFC Set satisfies WISC

If any elementary topos E satisfies WISC, so do toposes
of (pre)sheaves and realizability toposes built from E

[B. van den Berg & I. Moerdijk, J. Math. Logic, 2014]

But there are toposes not satisfying WISC
[D.M. Roberts, Studia Logica, 2015]
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ZFC Set satisfies WISC

If any elementary topos E satisfies WISC, so do toposes
of (pre)sheaves and realizability toposes built from E

[B. van den Berg & I. Moerdijk, J. Math. Logic, 2014]

But there are toposes not satisfying WISC
[D.M. Roberts, Studia Logica, 2015]

Following a suggestion of Andrew Swan, we proved:

Theorem. In any elementary topos E with NNO and
universes Setn satisfying WISC, if I ∈ Setn and
(Fi : Setn → Setn | i ∈ I) are sized functors, then so is
their product

∏
i∈I Fi : Setn → Setn.
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Constructive Adamek - step 2
Theorem. Constructively, if C has small colimits and F : C → C

preserves colimits of some size ^, then it has initial algebra given by taking the
colimit of the ^-indexed inflationary iteration of F .

Definition. A functor F : C → D between cocomplete categories is
sized if it preserves colimits of Σ-filtered sizes, for some signature Σ.

Some constructively valid closure properties for sized functors:

◮ constant functors

◮ quotients (coequalizers of pairs of natural transformations)

◮
∑

(I-indexed coproducts, for any I ∈ Set)

◮
∏

(I-indexed products for any I ∈ Set) provided WISC holds

As a corollary we get that in any topos
with NNO and universes En satisfying WISC,

we can construct initial algebras for
Gylterud’s symmetric containers

FG,B(X ) , colimg∈G XB g

where G is a groupoid in En and B : G
op → En a functor

Examples include infinitary multisets and infinite unordered branching trees
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Conclusions/�estions

◮ Plumply ordered W-types + WISC seem a useful constructive
substitute for classical ordinal numbers, for some purposes.

For further applications of the method see
[M.P. Fiore, AMP & S.C. Steenkamp,
�otients, Inductive Types and �otient Inductive Types,
arXiv:2101.02994]
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Conclusions/�estions

◮ Plumply ordered W-types + WISC seem a useful constructive
substitute for classical ordinal numbers, for some purposes.

How much of the classical theory of accessible categories
survives this kind of constructivisation?

◮ The use of “inflationary” iteration (`UF = colimV<U F (`VF ))
was suggested to me by the way sized types are used in Agda.

Agda’s sized types (although currently logically inconsistent!)
are especially useful in connection with coinductively defined
record types. Can the techniques described here be usefully
applied to get constructive results about final coalgebras
(via aUF = limV<U F (aVF ))?

◮ Is the use of WISC really necessary? (cf. Agda’s sized types)

Thank you for your a�ention!
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