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Abstract
This paper introduces a new recursion principle for inductive data
modulo 𝛼-equivalence of bound names. It makes use of Odersky-
style local names when recursing over bound names. It is formu-
lated in an extension of Gödel’s System T with names that can be
tested for equality, explicitly swapped in expressions and restricted
to a lexical scope. The new recursion principle is motivated by
the nominal sets notion of “𝛼-structural recursion”, whose use of
names and associated freshness side-conditions in recursive defi-
nitions formalizes common practice with binders. The new Nom-
inal System T presented here provides a calculus of total func-
tions that is shown to adequately represent 𝛼-structural recursion
while avoiding the need to verify freshness side-conditions in defi-
nitions and computations. Adequacy is proved via a normalization-
by-evaluation argument that makes use of a new semantics of local
names in Gabbay-Pitts nominal sets.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Syntax; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features—Re-
cursion; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Lambda calculus and related systems

General Terms Languages, Theory, Verification

Keywords binders, alpha-equivalence, recursion, types

1. Introduction
When developing mathematical semantics for programming lan-
guages, it is commonplace to ignore concrete syntax and work at
the level of abstract syntax trees. Indeed, if the language involves
binding constructs (as most do), one usually raises the level of
abstraction even further by implicitly quotienting abstract syntax
trees by an appropriate notion of 𝛼-equivalence. Working modulo
𝛼-equivalence affects how one defines functions by structural re-
cursion and proves properties of them by structural induction—the
fundamental tools of programming language semantics. For ex-
ample, the parameters of a recursively defined function can have
their bound names changed as necessary, but one is obliged to
prove that the value of the defined function is independent of such
changes. Such proofs of well-definedness up to 𝛼-equivalence are
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often omitted as obvious. This paper presents a calculus of (to-
tal, higher-order) functions with structural recursion modulo 𝛼-
equivalence for which such proofs of well-definedness really are
obvious, indeed are entirely automatic, being subsumed by a com-
pletely conventional and decidable type system. This is achieved
without giving up on the practically convenient “nominal” treat-
ment of binding in which bound names are first-class citizens that
can be tested for equality, passed to functions as arguments and re-
turned as results. We call the calculus presented in this paper Nomi-
nal System T since it takes Gödel’s System T for primitive recursive
functions of higher type [13] (formulated as a typed 𝜆-calculus, fol-
lowing Tait [34]) and generalizes from numbers to inductive data
modulo 𝛼-equivalence of bound names. To bring out the ideas un-
derlying our approach without too much syntactic clutter, we use
the familiar and simple example of such data, the terms of the un-
typed 𝜆-calculus [2]

Λ ≜ {𝑡 ::= 𝑎 ∣ 𝑡 𝑡 ∣ 𝜆𝑎. 𝑡} (1)

where 𝑎 ranges over an infinite set 𝔸 of variables and where terms
are identified up to the usual notion of 𝛼-equivalence (≡𝛼) for 𝜆-
bound variables.

When making a structurally recursive definition of a function
𝑓 : Λ→𝑋 in terms of functions 𝑓1 : 𝔸→𝑋 , 𝑓2 : Λ→Λ→𝑋 →
𝑋 →𝑋 and 𝑓3 : 𝔸→Λ→𝑋 →𝑋 , one can take advantage of the
identification of terms up to ≡𝛼 by restricting the applicability of
the recursion equation for 𝜆-binders:

𝑓 𝑎 = 𝑓1 𝑎
𝑓(𝑡 𝑡′) = 𝑓2 𝑡 𝑡′ (𝑓 𝑡) (𝑓 𝑡′)

𝑎 /∈ 𝑎 ⇒ 𝑓(𝜆𝑎. 𝑡) = 𝑓3 𝑎 𝑡 (𝑓 𝑡).

⎫⎬
⎭ (2)

Thus in the third clause we restrict the recursion equation to ap-
ply only for bound variables 𝑎 that avoid some finite set 𝑎 of
variables—typically the ones that are involved in the definition
of the functions 𝑓1, 𝑓2, 𝑓3. For example, the function 𝑓(−) =
(−)[𝑡′/𝑎′] : Λ → Λ for capture-avoiding substitution of 𝑡′ ∈ Λ
for 𝑎′ ∈ 𝔸 is given by taking 𝑓1 𝑎 ≜ if 𝑎 = 𝑎′ then 𝑡′ else 𝑎,
𝑓2 𝑡 𝑡′ 𝑥𝑥′ ≜ 𝑥𝑥′, 𝑓3 𝑎 𝑡 𝑥 ≜ 𝜆𝑎. 𝑥 and 𝑎 to be the finite set con-
sisting of 𝑎′ and the free variables of 𝑡′.

Of course, for (2) to specify a well-defined function on 𝛼-
equivalence classes, the function 𝑓3 in general has to satisfy a con-
dition ensuring independence of the definiens in the third clause
from choice of the bound variable 𝑎 used to represent the 𝜆-
abstraction 𝜆𝑎. 𝑡 in the definiendum. What kind of condition should
we impose on 𝑓3 to ensure this? The notion of 𝛼-structural re-
cursion gives an answer to this question in terms of the nominal
sets [11, 25]. We briefly recall what is involved; see Pitts [26] for
the full story.

The main idea is to take account of name-permutations, which
means for the example we are using, finite permutations 𝜋 of the
set 𝔸. A nominal set is a set 𝑋 equipped with an action of such
permutations (written 𝜋, 𝑥 
→ 𝜋 ⋅ 𝑥) for which every 𝑥 ∈ 𝑋 is
finitely supported. This means that given 𝑥, there is a finite subset



𝑎 ⊆ 𝔸 such that for any 𝑎, 𝑎′ ∈ 𝔸− 𝑎, the permutation (𝑎 𝑎′) that
swaps 𝑎 and 𝑎′ leaves 𝑥 invariant: (𝑎 𝑎′) ⋅ 𝑥 = 𝑥. Complementary
to finite support is the notion of freshness: we say “𝑎 is fresh for 𝑥”
and write 𝑎 # 𝑥 if 𝑥 is supported by some finite set not containing
𝑎. For example, permutations act on elements of 𝔸 by application
and this makes 𝔸 into a nominal set with the relation of freshness
being “not equal”. More generally, Λ equipped with the obvious
permutation action is a nominal set and freshness is the “not a
free variable of” relation. The fun begins at higher types. Given
nominal sets 𝑋 and 𝑌 , the nominal set 𝑋 �fs 𝑌 consists not of
all functions 𝑓 from 𝑋 to 𝑌 , but just the ones that are finitely
supported with respect to the usual permutation action on functions;
that 𝑓 is supported by finite 𝑎 ⊆ 𝔸 amounts to requiring for any
𝑎, 𝑎′ ∈ 𝔸− 𝑎 and 𝑥 ∈ 𝑋 that 𝑓((𝑎 𝑎′) ⋅𝑥) = (𝑎 𝑎′) ⋅ (𝑓 𝑥). Using
these concepts Pitts [26, Remark 4.4] proves:

𝛼-Structural Recursion Principle for Λ. Given finitely sup-
ported functions 𝑓1 ∈ 𝔸�fs 𝑋 , 𝑓2 ∈ Λ�fs Λ�fs 𝑋 �fs 𝑋 �fs 𝑋
and 𝑓3 ∈ 𝔸 �fs Λ �fs 𝑋 �fs 𝑋 , supported by 𝑎 ⊆ 𝔸 say, suppose
𝑓3 satisfies the following “freshness condition for binders”: 1

∀𝑎 ∈ 𝔸− 𝑎.∀𝑡 ∈ Λ.∀𝑥 ∈ 𝑋. 𝑎 # 𝑓3 𝑎 𝑡 𝑥. (FCB)

Then there is a unique function 𝑓 ∈ Λ�fs 𝑋 satisfying the scheme
(2), necessarily also finitely supported by 𝑎.

For the example of capture-avoiding substitution mentioned
above, (FCB) holds because 𝑓3 𝑎 𝑡 𝑥 = 𝜆𝑎. 𝑥 and 𝑎 # 𝜆𝑎. 𝑥 since
for any 𝜆-term 𝑥 ∈ Λ, 𝑎 is not free in 𝜆𝑎. 𝑥.

The Nominal package of Urban and Berghofer [35] for the Is-
abelle proof assistant implements 𝛼-structural recursion (and more)
within Isabelle/HOL. Growing experience with Nominal Isabelle
suggests that, despite the need to prove lemmas about freshness,
this is a convenient formalization within higher-order logic of struc-
tural recursion in the presence of binders. However, those freshness
side-conditions mean that 𝛼-structural recursion is not a convenient
basis for a calculus, as opposed to a logic, of “recursive functions
modulo 𝛼”. We will show how to modify it so that given 𝑓1, 𝑓2, 𝑓3,
there is always a well-defined 𝑓 with good computational proper-
ties without the need to prove (FCB).

FreshML [31, 33] achieves this within the context of an impure
functional programming language; freshness conditions get auto-
matically satisfied by dynamically allocating fresh names at run-
time. Stateful operational semantics do not give rise to equational
calculi with good logical properties. Indeed, even such an appar-
ently simple computational effect as dynamic allocation of names
is known to interact in complicated ways with higher-order func-
tions [27]; for example, function expressions can fail to behave ex-
tensionally [28, Example 1.2]. Instead of trying to tame dynamic
allocation in this context [30], here we propose to avoid it alto-
gether by using (a typed version of) the pure functional theory of
local names of Odersky [21]. We give this a denotational seman-
tics using nominal sets, which in turn suggests adding an explicit
name-swapping operation to Odersky’s calculus. Odersky’s theory
of local names may seem too simple: compared with the 𝜈-calculus
of Pitts and Stark [27] there is no scope extrusion of local names
from function arguments and no sharing of local names between
components of a tuple. Nevertheless, with the addition of name-
swapping it allows us to formulate a new calculus of higher order
recursive functions over Λ that we prove adequately represents 𝛼-
structural recursion.

Contributions of this paper. We give a new (and simple) seman-
tics for Odersky-style local names based upon the notion of a name-
restriction operator in the Gabbay and Pitts [11] model of names

1 (FCB) is equivalent to the apparently weaker condition that there is some
𝑎 /∈ 𝑎 satisfying ∀𝑡 ∈ Λ.∀𝑥 ∈ 𝑋. 𝑎 # 𝑓3 𝑎 𝑡 𝑥.

and binding (Definition 1). This model suggests an extension of
Gödel’s system T with local names that can be tested for equality
and explicitly swapped in expressions. The resulting Nominal Sys-
tem T contains a ground type Trm whose terms represent 𝜆-terms
modulo 𝛼-equivalence of bound names; it also contains a recursion
combinator that makes use of local names when recursing over data
representing 𝜆-abstractions (see (𝛿L) in Fig. 3). We consider gen-
eralizations to other data with binders besides 𝜆-terms in Sect. 7;
the generalization relies upon the new observation for nominal sets
that concretion of atom-abstractions can be made a total function
in the presence of name-restriction (Theorem 22).

We identify a notion of 𝜂-long 𝛽-normal form for the well-typed
expressions of Nominal System T and prove that every well-typed
expression is convertible to such a normal form, unique up to a sim-
ple structural congruence (Theorem 10). The proof of this is via a
version of the “normalization by evaluation” technique encompass-
ing structural congruence of normal forms (Definition 15). Armed
with this normalization property, we show that functions defined
by the 𝛼-Structural Recursion Principle for Λ described above, can
be faithfully represented in Nominal System T (Theorem 21). In
this way we achieve the aim of producing an expressive calculus
of higher-order recursive total functions that avoids the need for
freshness conditions when defining and computing. Indeed, Nom-
inal System T has a completely conventional type system and all
freshness conditions associated with 𝛼-equivalence are elevated to
the meta-level.

2. Syntax and Semantics
The types and expressions of Nominal System T are given in Fig 1.
The part below the dotted lines is what is being added to Gödel’s
System T. There are two new ground types: Atm classifies names
of object-level variables, and Trm classifies terms of the object-
language, which we take to be the untyped 𝜆-calculus. Expressions
may involve two different kinds of identifier: variables 𝑥 ∈ 𝕍,
standing for unknown expressions, and atomic names 𝑎 ∈ 𝔸, stand-
ing for unknown object-level variables. Both kinds of identifier may
be bound: the binding forms are function abstraction 𝜆𝑥. (−), name
restriction 𝜈𝑎. (−) and object-level 𝜆-abstraction L𝑎. (−). As dis-
cussed in the Introduction, following the usual informal practice ex-
pressions are implicitly identified up to 𝛼-equivalence of these
bound identifiers.

To simplify the presentation of the syntax we use “Church-
style” explicitly-typed variables.2 Thus we assume the countably
infinite set 𝕍 is partitioned into disjoint, countably infinite subsets
𝕍(𝑇 ) as 𝑇 ranges over types; the elements of 𝕍(𝑇 ) are the vari-
ables of type 𝑇 . Figure 2 gives the inductive definition of the set
Exp(𝑇 ) of well-typed expressions for each type 𝑇 ∈ Typ. As be-
fore, the typing rules below the dotted line are what is being added
to Gödel’s System T. There should be no surprises for the reader in
the new rules: name restriction and name-swapping do not change
the type of the expression acted upon; we have made name-equality
take a polymorphic boolean type in order not to introduce a sepa-
rate ground type for booleans; and the arguments for Trm-recursion,
trec, have types as discussed in the Introduction.

The intended model of Nominal System T is in terms of nom-
inal sets [11, 25], the definition of which was recalled in the In-
troduction. In other words, expressions denote mathematical ob-
jects that are finitely supported with respect to the action of permu-
tations of atomic names. Finite permutations can be decomposed
into compositions of transpositions; and name-swapping expres-
sions (𝑒1 𝑒2)∗ 𝑒 denote the action of such transpositions. What do
expressions of the form 𝜈𝑎. 𝑒 denote? To answer this question we

2 “Curry-style”, with variables assigned types by environments, is possible
and would be desirable for dependently-typed extensions of the system.



𝑇 ∈ Typ ::= 𝑇 -> 𝑇 function type
∣ 𝐺 ground type

𝐺 ::= Nat type of numbers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∣ Atm type of names
∣ Trm type of object-level 𝜆-terms

modulo 𝛼-equivalence

𝑒 ∈ Exp ::= 𝑥 variable (𝑥 ∈ 𝕍)
∣ 0 zero
∣ S 𝑒 successor
∣ nrec 𝑒 𝑒 𝑒 Nat recursion
∣ 𝜆𝑥. 𝑒 function abstraction
∣ 𝑒 𝑒 function application

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∣ 𝑎 atomic name (𝑎 ∈ 𝔸)
∣ 𝜈𝑎. 𝑒 name restriction
∣ (𝑒 = 𝑒)𝑇 name equality
∣ (𝑒 𝑒)∗ 𝑒 name swapping
∣ V 𝑒 object-level variable
∣ A 𝑒 𝑒 application term
∣ L𝑎. 𝑒 𝜆-abstraction term
∣ trec 𝑒 𝑒 𝑒 𝑒 Trm recursion

Some defined expressions (where 𝑎 ∈ 𝔸 and 𝑥, 𝑥′ ∈ 𝕍(𝑇 )):

new ≜ 𝜈𝑎. 𝑎
true𝑇 ≜ 𝜆𝑥. 𝜆𝑥′. 𝑥

false𝑇 ≜ 𝜆𝑥. 𝜆𝑥′. 𝑥′

L(𝑒, 𝑒′) ≜ L𝑎. (𝑎 𝑒)∗ 𝑒′ where 𝑎 is not free in 𝑒 or 𝑒′

Figure 1. Types 𝑇 and expressions 𝑒

𝑥 ∈ 𝕍(𝑇 )

𝑥 ∈ Exp(𝑇 ) 0 ∈ Exp(Nat)

𝑒 ∈ Exp(Nat)

S 𝑒 ∈ Exp(Nat)

𝑒1 ∈ Exp(𝑇 ) 𝑒2 ∈ Exp(Nat -> 𝑇 -> 𝑇 ) 𝑒 ∈ Exp(Nat)

nrec 𝑒1 𝑒2 𝑒 ∈ Exp(𝑇 )

𝑥 ∈ 𝕍(𝑇 ) 𝑒 ∈ Exp(𝑇 ′)

𝜆𝑥. 𝑒 ∈ Exp(𝑇 -> 𝑇 ′)

𝑒 ∈ Exp(𝑇 ′
-> 𝑇 )

𝑒′ ∈ Exp(𝑇 ′)

𝑒 𝑒′ ∈ Exp(𝑇 )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑎 ∈ 𝔸

𝑎 ∈ Exp(Atm)

𝑎 ∈ 𝔸 𝑒 ∈ Exp(𝑇 )

𝜈𝑎. 𝑒 ∈ Exp(𝑇 )

𝑒1, 𝑒2 ∈ Exp(Atm)
𝑇 ∈ Typ

(𝑒1 = 𝑒2)𝑇 ∈ Exp(𝑇 -> 𝑇 -> 𝑇 )

𝑒1, 𝑒2 ∈ Exp(Atm)
𝑒 ∈ Exp(𝑇 )

(𝑒1 𝑒2)∗ 𝑒 ∈ Exp(𝑇 )

𝑒 ∈ Exp(Atm)

V 𝑒 ∈ Exp(Trm)

𝑒, 𝑒′ ∈ Exp(Trm)

A 𝑒 𝑒′ ∈ Exp(Trm)

𝑎 ∈ 𝔸

𝑒 ∈ Exp(Trm)

L𝑎. 𝑒 ∈ Exp(Trm)

𝑒1 ∈ Exp(Atm -> 𝑇 ) 𝑒2 ∈ Exp(Trm -> Trm -> 𝑇 -> 𝑇 -> 𝑇 )
𝑒3 ∈ Exp(Atm -> Trm -> 𝑇 -> 𝑇 ) 𝑒 ∈ Exp(Trm)

trec 𝑒1 𝑒2 𝑒3 𝑒 ∈ Exp(𝑇 )

Figure 2. Well-typed expressions 𝑒 ∈ Exp(𝑇 ) [𝑇 ∈ Typ]

consider nominal sets 𝑅 equipped with the following extra struc-
ture.

Definition 1 (name-restriction operations). A name-restriction
operation on a nominal set 𝑅 is function 𝔸 × 𝑅 → 𝑅, written
(𝑎, 𝑟) 
→ (𝜈𝑎)𝑟, that satisfies (3)–(6). △

𝜋 ⋅ (𝜈𝑎)𝑟 = (𝜈 𝜋(𝑎))(𝜋 ⋅ 𝑟) (3)
𝑎 # (𝜈𝑎)𝑟 (4)

𝑎 # 𝑟 ⇒ (𝜈𝑎)𝑟 = 𝑟 (5)

(𝜈𝑎)(𝜈𝑎′)𝑟 = (𝜈𝑎′)(𝜈𝑎)𝑟. (6)

Property (3) says the function preserves the action of permutations
𝜋. In general this property is called equivariance (and implies that
the function is supported by the empty set of atoms).

In the presence of (3), property (4) is the nominal sets way of
modelling the 𝛼-equivalence that we have built in to the syntax of
the term-former 𝜈𝑎. (−). For if 𝑎′ # (𝑎, 𝑟), then by a standard
argument, equivariance implies 𝑎′ # (𝜈𝑎)𝑟. Hence neither 𝑎′,
nor 𝑎 by (4), are in the support of (𝜈𝑎)𝑟. Therefore (𝜈𝑎)𝑟 =
(𝑎 𝑎′) ⋅ (𝜈𝑎)𝑟 = (𝜈𝑎′)((𝑎 𝑎′) ⋅ 𝑟), by equivariance again. Thus
(𝜈𝑎)𝑟 is invariant under renaming 𝑎 with a fresh atomic name 𝑎′.

The other two properties (5) and (6) correspond to basic “struc-
tural” properties of a notion of name restriction. Structural con-
gruence for name-restriction first arose in connection with the re-
duction semantics of the 𝜋-calculus [18], where it involves “scope
extrusion” properties in addition to (4)–(6). More recently, Gacek
et al. [12, Sect. 2.3] call property (5) strengthening and (6) ex-
change and use these structural properties in connection with lo-
cally scoped eigenvariables and generic judgements in inductive
proofs.

We can get a name-restriction operation for a nominal set of
𝜆-terms by adjoining a constant New to the grammar in (1)

Λ[New ] ≜ {𝑡 ::= 𝑎 ∣ 𝑡 𝑡 ∣ 𝜆𝑎. 𝑡 ∣ New} (7)

and defining (𝜈𝑎)𝑡 to be 𝑡[New/𝑎]. The ground type Trm stands for
this nominal-set-with-restriction-operation, Λ[New ]. The ground
type Atm stands for a substructure of this, namely 𝔸[New ] ≜
𝔸 ∪ {New}; and the ground type Nat stands for the usual set of
natural numbers ℕ = {0, 1, 2, . . .} with trivial permutation action
(𝜋 ⋅ 𝑘 = 𝑘) and trivial name-restriction operation ((𝜈𝑎)𝑘 = 𝑘).
For higher types we make use of the following new result about
nominal sets.

Theorem 2 (name-restriction on functions). Suppose that 𝑋 and
𝑅 are nominal sets and that 𝑅 is equipped with a name-restriction
operation 𝜈𝑅. Then there is a name-restriction operation 𝜈 on the
nominal set 𝑋 �fs 𝑅 of finitely supported functions satisfying

𝑎 # 𝑥 ⇒ ((𝜈𝑎)𝑓)𝑥 = (𝜈𝑅𝑎)(𝑓 𝑥) (8)

for all 𝑎 ∈ 𝔸, 𝑥 ∈ 𝑋 and 𝑓 ∈ 𝑋 �fs 𝑅.

Proof. Given 𝑎 ∈ 𝔸 and 𝑓 ∈ 𝑋�fs𝑅, we define (𝜈𝑎)𝑓 ∈ 𝑋�fs𝑅
by mapping each 𝑥 ∈ 𝑋 to

((𝜈𝑎)𝑓)𝑥 ≜ (𝜈𝑅𝑎′)(((𝑎 𝑎′) ⋅ 𝑓) 𝑥) where 𝑎′ # (𝑎, 𝑓, 𝑥). (9)

It is not hard to see that the right-hand side is independent of the
choice of 𝑎′; that the resulting function (𝜈𝑎)𝑓 is finitely supported
(by 𝑎 − {𝑎}, if 𝑎 supports 𝑓 ); and that (𝑎, 𝑓) 
→ (𝜈𝑎)𝑓 satisfies
(3)–(6) and (8).

In view of this theorem, if we interpret the ground types Nat,
Atm and Trm as ℕ, 𝔸[New ] and Λ[New ] respectively, and interpret
function types using exponentiation (−) �fs (−) in 𝒩om , then
every type of Nominal System T denotes a nominal set equipped
with a restriction operation. These restriction operations are used



(𝜆𝑥. 𝑒) 𝑒′ ≈ 𝑒[𝑒′/𝑥] (𝛽)
𝑒 ≈ 𝜆𝑥.(𝑒 𝑥) if 𝑥 # 𝑒 (𝜂)

when 𝑓 ≜ nrec 𝑒1 𝑒2:
𝑓 0 ≈ 𝑒1 (𝛿0)

𝑓 (S 𝑒) ≈ 𝑒2 𝑒 (𝑓 𝑒) (𝛿S)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝜈𝑎. 𝑒 ≈ 𝑒 if 𝑎 # 𝑒 (𝜈#)
𝜈𝑎. 𝜈𝑎′. 𝑒 ≈ 𝜈𝑎′. 𝜈𝑎. 𝑒 (𝜈𝜈)

when 𝑛, 𝑛′ ∈ 𝔸 ∪ {new}:
(𝑛 = 𝑛′)𝑇 ≈ true𝑇 if 𝑛 = 𝑛′ (=𝑡)
(𝑛 = 𝑛′)𝑇 ≈ false𝑇 if 𝑛 ∕= 𝑛′ (=𝑓)

when K = 0, S, V, A:
𝜈𝑎.K �⃗� ≈ K 𝜈𝑎. �⃗� (𝜈K)

(𝑒1 𝑒2)∗ (K �⃗�) ≈ K ((𝑒1 𝑒2)∗ �⃗�) (𝜋K)

𝜈𝑎.L𝑎′. 𝑒 ≈ L𝑎′. 𝜈𝑎. 𝑒 if 𝑎 ∕= 𝑎′ (𝜈L)
(𝑒1 𝑒2)∗ L𝑎. 𝑒 ≈ L𝑎. (𝑒1 𝑒2)∗ 𝑒 if 𝑎 # (𝑒1, 𝑒2) (𝜋L)

𝜈𝑎. 𝜆𝑥. 𝑒 ≈ 𝜆𝑥. 𝜈𝑎. 𝑒 (𝜈𝜆)
(𝑒1 𝑒2)∗𝜆𝑥. 𝑒 ≈ 𝜆𝑥.(𝑒1 𝑒2)∗ (𝑒[(𝑒1 𝑒2)∗𝑥 / 𝑥])

if 𝑥 # (𝑒1, 𝑒2) (𝜋𝜆)
(𝑒1 𝑒2)∗ 𝑎 ≈ (𝑒1 = 𝑎)Atm 𝑒2 ((𝑒2 = 𝑎)Atm 𝑒1 𝑎) (𝜋𝑎)

(𝑒1 𝑒2)∗ new ≈ new (𝜋new)

when 𝑓 ≜ trec 𝑒1 𝑒2 𝑒3:
𝑓 (V 𝑒) ≈ 𝑒1 𝑒 (𝛿V)

𝑓 (A 𝑒 𝑒′) ≈ 𝑒2 𝑒 𝑒′ (𝑓 𝑒) (𝑓 𝑒′) (𝛿A)
𝑓 (L𝑎. 𝑒) ≈ 𝜈𝑎. 𝑒3 𝑎 𝑒 (𝑓 𝑒) if 𝑎 # (𝑒1, 𝑒2, 𝑒3) (𝛿L)

≈ is the congruence generated by these conversions

Figure 3. Conversion ≈ ⊆ Exp(𝑇 )× Exp(𝑇 ) [𝑇 ∈ Typ]

to interpret name-restriction expressions 𝜈𝑎. 𝑒 of each type. Finally,
Nat-recursion expressions nrec 𝑒1 𝑒2 𝑒 and Trm-recursion expres-
sions trec 𝑒1 𝑒2 𝑒3 𝑒 are interpreted using primitive recursion for
numbers and 𝛼-structural recursion [26] for 𝜆-terms (extended with
a constant New ) respectively. We leave the formal details of this
denotational semantics of Nominal System T to the full version of
this paper and pass on to computational issues.

3. Conversion
Figure 3 gives the notion of expression equality that we use
for Nominal System T: conversion, 𝑒 ≈ 𝑒′[𝑇 ∈ Typ, 𝑒, 𝑒′ ∈
Exp(𝑇 )]. Rather than giving a notion of rewriting between ex-
pressions and proving canonicity (interesting though that might
be), we prefer to go directly to a notion of equality and prove de-
cidability via a normalization function (given in Sect. 5). For one
thing, our conversion relation contains reductions, expansions and
a “structural” conversion (𝜈𝜈) that has no preferred orientation;
so considering conversion rather than reduction seems to make
more sense. Figure 3 uses the notation 𝑒[𝑒′/𝑥] for the capture-
avoiding substitution of 𝑒′ for all free occurrences of 𝑥 in 𝑒. It
also uses the notation 𝑥 # 𝑒 (respectively, 𝑎 # 𝑒) to indicate
that 𝑥 is not a free variable (respectively, 𝑎 is not a free atomic
name) of 𝑒. (This coincides with the freshness relation when we
regard Exp(𝑇 ) as a nominal set in Sect. 5.) Finally, the figure
also uses some notation in connection with sequences of expres-
sions: if �⃗� = 𝑒1..𝑒𝑛, then 𝜈𝑎.⃗𝑒 ≜ (𝜈𝑎. 𝑒1)..(𝜈𝑎. 𝑒𝑛) and
(𝑒 𝑒′)∗ �⃗� ≜ ((𝑒 𝑒′)∗ 𝑒1)..((𝑒 𝑒′)∗ 𝑒𝑛). The conversions be-
low the dotted line in Fig. 3 are what is being added to Gödel’s
System T. Although we omit the proof in this extended abstract, it
is not hard to show:

Theorem 3 (soundness). Conversion is sound for equality in the
nominal sets model sketched in the previous section.

After the fact, and rather pleasingly, the conversions in Fig. 3 for
𝜈𝑎. (−) turn out to agree with the functional theory of local names
given by Odersky [21]; conversion (𝜈𝜆) corresponds to his 𝜈𝜆

reduction, and (𝜈K) to his 𝜈𝑝 reduction. The structural conversions
(𝜈#) and (𝜈𝜈) are not explicit in Odersky’s system, but are valid
up to contextual equivalence. However, Nominal System T takes a
rather more “logical” view of name-equality: in Odersky’s system
𝜈𝑎. 𝑎 is not a value (canonical form) and 𝜈𝑎. 𝑎== 𝜈𝑎. 𝑎 is a stuck
expression that does not reduce; whereas here 𝜈𝑎. 𝑎 is a normal
form (denoting the constant New in our nominal sets model) and
(𝜈𝑎. 𝑎 = 𝜈𝑎. 𝑎)𝑇 is convertible to true𝑇 by the conversion (=𝑡).
Note that in general 𝜈𝑎.(𝑒 = 𝑒′)𝑇 ∕≈ ((𝜈𝑎. 𝑒) = (𝜈𝑎. 𝑒′))𝑇 ; for
example, if 𝑎 ∕= 𝑎′, then using (=𝑓) and (𝜈#) we have

𝜈𝑎.𝜈𝑎′.(𝑎 = 𝑎′)𝑇 ≈ 𝜈𝑎.𝜈𝑎′. false𝑇 ≈ false𝑇 (10)

whereas, using (𝜈#) and (=𝑡), we have

((𝜈𝑎.𝜈𝑎′. 𝑎) = (𝜈𝑎.𝜈𝑎′. 𝑎′))𝑇 ≈ (new = new)𝑇 ≈ true𝑇 (11)

and it is a corollary of Theorem 3 that true𝑇 ∕≈ false𝑇 . Note also
that although

(𝜈𝑎.𝑒)𝑒′ ≈ 𝜈𝑎. (𝑒 𝑒′) if 𝑎 # 𝑒′ (12)

is provable from the conversions (𝛽), (𝜂) and (𝜈𝜆) in Fig. 3, in
general 𝑒 (𝜈𝑎. 𝑒′) ∕≈ 𝜈𝑎. (𝑒 𝑒′). Evidently Odersky’s is a different
notion of “local name” from the more common one (in Scheme,
ML, Haskell, . . . ) based on dynamic allocation of globally fresh
names. It has better logical properties (for example, it does not
disturb function extensionality) and is in a sense more general than
dynamic allocation, because the latter can be encoded in it via a
continuation monad; cf. Shinwell and Pitts [32].

The conversions in Fig. 3 for (𝑒1 𝑒2)∗ (−) correspond to the
defining properties, at each type, of the permutation action in the
nominal sets model. In particular, the rather complicated looking
conversion (𝜋𝜆) just reflects the usual definition of the action of
permutations on functions (see Pitts [26, Sect. 3.2], for example).

The last three conversions in Figure 3, (𝛿V)–(𝛿L), give the
new “recursion modulo 𝛼” scheme which in Sect. 6 is shown to
adequately represent the 𝛼-structural recursion of Pitts [26]. We
give some examples of its use.

Example 4 (substitution, non-capturing and capturing). Con-
sider sub ≜ 𝜆𝑥. 𝜆𝑦.𝜆𝑧. trec 𝑒1 𝑒2 𝑒3 𝑧

∈ Exp(Atm -> Trm -> Trm -> Trm), where
𝑒1 ≜ 𝜆𝑥′. (𝑥 = 𝑥′)Trm 𝑦 (V𝑥′),
𝑒2 ≜ 𝜆𝑦. 𝜆𝑦′. 𝜆𝑧. 𝜆𝑧′. A 𝑧 𝑧′,
𝑒3 ≜ 𝜆𝑥. 𝜆𝑦. 𝜆𝑧.L(𝑥, 𝑧)

and where L(𝑥, 𝑧) ≜ L𝑎. (𝑎 𝑥)∗ 𝑧 is an instance of the def-
inition given at the bottom of Fig. 1. It is a non-binding bi-
nary operation for object-level 𝜆-abstraction (the analogue of the
atom-abstraction operation 𝑒, 𝑒′ 
→ <𝑒>𝑒′ in FreshML [33]). If
𝑒, 𝑒′ ∈ Exp(Trm), then we claim that sub 𝑎′ 𝑒′ 𝑒 represents the
capture-avoiding substitution of (the 𝜆-term represented by) 𝑒′ for
V 𝑎′ in (the 𝜆-term represented by) 𝑒. For example, L𝑎. V 𝑎′ repre-
sents the 𝜆-term 𝜆𝑎. 𝑎′; so, assuming 𝑎 and 𝑎′ are distinct atomic
names, sub 𝑎′ (V 𝑎) (L𝑎. V 𝑎′) should represent (𝜆𝑎. 𝑎′)[𝑎/𝑎′], that
is, 𝜆𝑎′′. 𝑎 where 𝑎′′ ∕= 𝑎. Indeed, one can use the conversion equa-



tions in Fig. 3 to calculate that

sub 𝑎′ (V 𝑎) (L𝑎.V 𝑎′)

= sub 𝑎′ (V 𝑎) (L𝑎′′. V 𝑎′) where 𝑎′′ ∕= 𝑎, 𝑎′

≈ trec 𝑒1[𝑎
′/𝑥, V 𝑎/𝑦] 𝑒2 𝑒3 (L𝑎

′′. V 𝑎′)

≈ 𝜈𝑎′′. 𝑒3 𝑎′′ (V 𝑎′) (trec 𝑒1[𝑎
′/𝑥, V 𝑎/𝑦] 𝑒2 𝑒3 (V 𝑎′))

≈ 𝜈𝑎′′. L(𝑎′′, V 𝑎)

≜ 𝜈𝑎′′. L𝑎′′′.(𝑎′′′ 𝑎′′
)∗ (V 𝑎) where 𝑎′′′ ∕= 𝑎, 𝑎′, 𝑎′′

≈ 𝜈𝑎′′. L𝑎′′′.V 𝑎

≈ L𝑎′′′. V 𝑎

bearing in mind that we identify expressions up to 𝛼-equivalence
of bound atomic names. Doing so has the consequence that the
object-level capture-avoidance property of sub is delegated to the
properties of meta-level 𝛼-equivalence. This is an idea familiar
from higher-order abstract syntax [23], except that here we are
“baking in” to the meta-language just object-level 𝛼-equivalence
rather than object-level 𝛼𝛽𝜂-equivalence (in order to keep hold of
a very simple yet expressive recursion principle). The claim that
sub correctly represents capture-avoiding substitution is substan-
tiated in Sect. 6. It is worth noting that we can also represent the
kind of capturing substitution that may occur when a 𝜆-term con-
text has its hole filled. Holes are represented by variables 𝑥; and
hole-filling by substitution of expressions for variables, 𝑒[𝑒′/𝑥].
For example the context 𝜆𝑎.[−] can be represented by the open
expression L(𝑎, 𝑥) = L𝑎′. (𝑎′ 𝑎)∗ 𝑥. Filling the hole in 𝜆𝑎.[−]
with 𝑎 gives 𝜆𝑎. 𝑎; and correspondingly, the substituted expression
L(𝑎, 𝑥)[V 𝑎 / 𝑥] is indeed convertible to L𝑎. V 𝑎 (cf. Lemma 19(ii)).

Example 5 (length of a 𝜆-term). Consider the function ∣−∣ :
Λ → ℕ satisfying ∣𝑎∣ = 1, ∣𝑡 𝑡′∣ = ∣𝑡∣+ ∣𝑡′∣ and ∣𝜆𝑎. 𝑡∣ = ∣𝑡∣+ 1.
What could be simpler? And yet formal recursion schemes for 𝜆-
terms have found it tricky: see Gordon and Melham [14, Sect. 3.3]
and Norrish [20, Sect. 3]. We can represent this function in Nominal
System T more or less directly by
len ≜ 𝜆𝑥.trec 𝑒1 𝑒2 𝑒3 𝑥 ∈ Exp(Trm -> Nat), where

𝑒1 ≜ 𝜆𝑥.S 0
𝑒2 ≜ 𝜆𝑥, 𝑥′, 𝑦, 𝑦′. plus 𝑦 𝑦′

𝑒3 ≜ 𝜆𝑥, 𝑦, 𝑧. S 𝑧

and where plus ≜ 𝜆𝑥, 𝑦. nrec 𝑥 (𝜆𝑥′, 𝑦′. S 𝑦′) 𝑦 is the usual
primitive recursive definition of addition. For example ∣𝜆𝑎. 𝑎∣ = 2
and

len (L𝑎. V 𝑎) ≈ trec 𝑒1 𝑒2 𝑒3 (L𝑎. V 𝑎)

≈ 𝜈𝑎. 𝑒3 𝑎 (V 𝑎) (trec 𝑒1 𝑒2 𝑒3 (V 𝑎))

≈ 𝜈𝑎. S(𝑒1 𝑎)

≈ 𝜈𝑎. S(S 0)

≈ S(S 0)

where the last step is the “strengthening” conversion (𝜈#).

Example 6 (computing with bound variables). The nominal
treatment of binders allows us to compute with bound names. What
if we try to do something with them that would break object-
level 𝛼-equivalence?—such as trying to compute a list of bound
variables in a 𝜆-term:

bv (V 𝑒) ≈ nil

bv (A 𝑒 𝑒′) ≈ append (bv 𝑒) (bv 𝑒′)

bv (L𝑎. 𝑒) ≈ 𝜈𝑎.cons 𝑎 (bv 𝑒)

where we encode lists of atomic names as certain expressions of
type Trm and nil , cons and append are suitable encodings of
nil, cons and append operations for such lists. Clearly we can get

the above conversions by defining bv ≜ 𝜆𝑥. trec 𝑒1 𝑒2 𝑒3 𝑥
for suitable choices of expression 𝑒1, 𝑒2 and 𝑒3. However, all
that bv computes is a list of new’s whose length is the number
of occurrences of bound variables in the 𝜆-term. For example
bv (L𝑎.L𝑎′. V 𝑎) ≈ cons new (cons new nil ). Compare this with
the Fresh Objective Caml function listBvars of Shinwell and
Pitts [31, p. 15].

Remark 7 (new versus 𝜈𝑎. (−)). Can the binder 𝜈𝑎. (−) be elimi-
nated in favour of a constant new? In the 𝜈-calculus [27], new com-
putes a dynamically allocated fresh name and the corresponding
local name binder 𝜈𝑥. 𝑒 can be defined as (𝜆𝑥. 𝑒) new. This does
not work for Nominal System T; for example, 𝜈𝑎. (𝑎 = new)𝑇 ≈
false𝑇 whereas (𝜆𝑥. (𝑥 = new)𝑇 ) new ≈ true𝑇 . On the other
hand in the nominal sets model that was sketched in Section 2,
name-restriction for the types of Nominal System T is ultimately
defined in terms of a constant New . So it may be possible, if incon-
venient, to reformulate the system with a constant new rather than
a binder 𝜈𝑎. (−).

Remark 8 (incompleteness). We remarked above (Theorem 3)
that conversion is a sound axiomatization of properties of equality
in the nominal sets model of Nominal System T. It is not a com-
plete axiomatization for the usual recursion-theoretic reasons. In
fact the definition of conversion was chosen to be as weak as possi-
ble subject to the criteria that it be decidable, have relatively simple
normal forms (see Sect. 4) and adequately represent 𝛼-structural
recursion when restricted to closed expressions (see Sect. 6). Even
if we restrict to the “finite” part of the system, there are non-
convertible expressions that are identified in the model. For exam-
ple, 𝜆𝑥.(𝑎 𝑎)∗ 𝑥 denotes the identity function in the model, but is
not convertible to 𝜆𝑥. 𝑥. It would certainly be interesting to investi-
gate stronger, but still sound and decidable, notions of conversion.

4. Normal Forms
Figure 4 gives a notion of 𝜂-long 𝛽-normal form for Nominal
System T. We call elements 𝑛 of the subset Nf (𝑇 ) ⊆ Exp(𝑇 )
normal forms of type 𝑇 ; and elements 𝑢 of the subset Neu(𝑇 ) ⊆
Exp(𝑇 ) neutral forms of type 𝑇 . Note that in the figure, 𝐺 ∈
{Nat, Atm, Trm} is a ground type; so, as usual for simply typed
𝜆-calculus, only neutral forms of ground type are normal forms.
In addition, note that name-restriction 𝜈𝑎. (−) only occurs in the
normal form new (recall that new is 𝜈𝑎. 𝑎 by definition) and applied
to neutral forms of ground type; similarly, name-swapping is only
applied to neutral forms of ground type.

If 𝑢 ∈ Neu(𝐺) and 𝑎 does not occur free in 𝑢, then 𝑢 and
𝜈𝑎. 𝑢 are different elements of Nf (𝐺) even though 𝑢 ≈ 𝜈𝑎. 𝑢 by
(𝜈#). Similarly, 𝜈𝑎.𝜈𝑎′. 𝑢 and 𝜈𝑎′.𝜈𝑎. 𝑢 are different elements of
Nf (𝐺) (so long as 𝑎 ∕= 𝑎′) even though 𝜈𝑎.𝜈𝑎′. 𝑢 ≈ 𝜈𝑎′.𝜈𝑎. 𝑢
by (𝜈𝜈). However, these are essentially the only instances where
conversion between normal forms does not coincide with syntactic
identity (modulo 𝛼-equivalence, of course). More precisely, it is a
consequence of the Normalization Theorem below that conversion
restricted to normal forms coincides with the following simple
notion of structural congruence.

Definition 9 (structural congruence). The relations of structural
congruence

𝑛 ≡ 𝑛′ [𝑇 ∈ Typ, 𝑛, 𝑛′ ∈ Nf (𝑇 )]

𝑢 ≡ 𝑢′ [𝑇 ∈ Typ, 𝑢, 𝑢′ ∈ Neu(𝑇 )]

comprise the congruence on normal and neutral forms generated by

𝜈𝑎. 𝑢 ≡ 𝑢 if 𝑎 # 𝑢 (13)

𝜈𝑎.𝜈𝑎′. 𝑢 ≡ 𝜈𝑎′.𝜈𝑎. 𝑢 (14)

for all 𝑢 ∈ Neu(𝐺) and 𝐺 ∈ {Nat, Atm, Trm}. △



0 ∈ Nf (Nat)

𝑛 ∈ Nf (Nat)

S𝑛 ∈ Nf (Nat)

𝑥 ∈ 𝕍(𝑇 ) 𝑛 ∈ Nf (𝑇 ′)

𝜆𝑥. 𝑛 ∈ Nf (𝑇 -> 𝑇 ′)

𝑢 ∈ Neu(𝐺)

𝑢 ∈ Nf (𝐺)

𝑥 ∈ 𝕍(𝑇 )

𝑥 ∈ Neu(𝑇 )

𝑛1 ∈ Nf (𝑇 )
𝑛2 ∈ Nf (Nat -> 𝑇 -> 𝑇 )

𝑢 ∈ Neu(Nat)

nrec𝑛1 𝑛2 𝑢 ∈ Neu(𝑇 )

𝑢 ∈ Neu(𝑇 -> 𝑇 ′)
𝑛 ∈ Nf (𝑇 )

𝑢𝑛 ∈ Neu(𝑇 ′)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑎 ∈ 𝔸

𝑎 ∈ Nf (Atm) new ∈ Nf (Atm)

𝑛 ∈ Nf (Atm)

V𝑛 ∈ Nf (Trm)

𝑛, 𝑛′ ∈ Nf (Trm)

A𝑛𝑛′ ∈ Nf (Trm)

𝑎 ∈ 𝔸 𝑛 ∈ Nf (Trm)

L𝑎. 𝑛 ∈ Nf (Trm)

𝑢 ∈ Neu(Atm) 𝑛 ∈ Nf (Atm)

(𝑢 = 𝑛)𝑇 , (𝑛 = 𝑢)𝑇 ∈ Neu(𝑇 -> 𝑇 -> 𝑇 )

𝑎 ∈ 𝔸 𝑢 ∈ Neu(𝐺)

𝜈𝑎. 𝑢 ∈ Neu(𝐺)

𝑛, 𝑛′ ∈ Nf (Atm) 𝑢 ∈ Neu(𝐺)

(𝑛 𝑛′
)∗𝑢 ∈ Neu(𝐺)

𝑛1 ∈ Nf (Atm -> 𝑇 ) 𝑛2 ∈ Nf (Trm -> Trm -> 𝑇 -> 𝑇 -> 𝑇 )
𝑛3 ∈ Nf (Atm -> Trm -> 𝑇 -> 𝑇 ) 𝑢 ∈ Neu(Trm)

trec𝑛1 𝑛2 𝑛3 𝑢 ∈ Neu(𝑇 )

(N.B. 𝐺 ranges over the ground types Nat, Atm and Trm.)

Figure 4. Normal forms 𝑛 and neutral forms 𝑢

Properties (13) and (14) correspond to the second two defining
properties, (5) and (6) respectively, of the semantic notion of name-
restriction that we introduced in the previous section. (We noted
there that the first two defining properties (3) and (4) correspond to
𝛼-equivalence.)

Theorem 10 (normalization theorem). Each typeable expression
is convertible to a normal form, which is unique up to structural
congruence. More precisely, for each 𝑇 ∈ Typ there is a function
nf𝑇 : Exp(𝑇 )→ Nf (𝑇 ) satisfying:

∀𝑒 ∈ Exp(𝑇 ). 𝑒 ≈ nf𝑇 𝑒 (15)
∀𝑒 ∈ Exp(𝑇 ).∀𝑛 ∈ Nf (𝑇 ). 𝑒 ≈ 𝑛 ⇒ nf𝑇 𝑒 ≡ 𝑛 (16)

and hence also

∀𝑒, 𝑒′ ∈ Exp(𝑇 ). 𝑒 ≈ 𝑒′ ⇒ nf𝑇 𝑒 ≡ nf𝑇 𝑒′. (17)

The proof of the theorem is sketched in the next section. It is
a corollary of the proof that the normalization functions nf𝑇 are
computable. Since structural congruence ≡ is evidently a decidable
relation, it follows that conversion is decidable too.

5. Normalization by Evaluation
We prove Theorem 10 using a version of “normalization by evalu-
ation” (NbE). Since its introduction by Berger and Schwichtenberg
[4], NbE has been applied to a number of applied 𝜆-calculi, both
typed and untyped, including ones encompassing Gödel’s System T
[3, 8]. In each case the terms of the calculus are evaluated in a suit-
able model that characteristically mixes syntax (variables, at least)
with semantics (extensional functions, usually). “Suitable model”
means one for which a reification function (an “inverse of evalua-

↓𝑇 : �𝑇 � → Nf (𝑇 ):

↓𝐺 𝑛 ≜ 𝑛

↓𝑇->𝑇 ′ 𝑓 ≜ 𝜆𝑥. ↓𝑇 ′ (𝑓(↑𝑇 𝑥))

where 𝑥 ∈ 𝕍(𝑇 ) and 𝑥 # 𝑓

↑𝑇 : Neu(𝑇 )→ �𝑇 �:

↑𝐺 𝑢 ≜ 𝑢

↑𝑇->𝑇 ′ 𝑢 ≜ 𝜆𝑑 ∈ �𝑇 �. ↑𝑇 ′(𝑢 (↓𝑇 𝑑))

Figure 5. Reification ↓𝑇 and reflection ↑𝑇

tion”) can be defined from the model back to the terms; composing
reification with evaluation yields the normalization function. The
reification function usually involves the need to find syntactic vari-
ables that are “fresh with respect to semantic objects”. As explained
by Pitts [26, Sect. 6], the theory of nominal sets provides a conve-
nient way of making sense of this kind of freshness and it is the way
we adopt here. However, this use of nominal sets in NbE is orthog-
onal to the use we made of them in Section 2 to provide a standard
model of Nominal System T; and it should also be stressed that
there are other ways of dealing with the kind of freshness required
by reification, or indeed of avoiding it in some circumstances: see
Abel et al. [1, Sect. 1].

The model in which we evaluate the expressions of Nominal
System T uses nominal sets based on permutations not just of
atomic names 𝑎 ∈ 𝔸, but also of variables 𝑥 ∈ 𝕍(𝑇 ) (for each
type 𝑇 ∈ Typ). In other words we use the “many-atom-sorted”
version of nominal sets described by Pitts [26, Sect. 3] with finite
permutations of 𝔸 ∪ 𝕍 that map atomic names to atomic names
and variables to variables, preserving their types. Letting such
permutations act on expressions in the obvious way, each Exp(𝑇 )
is a nominal set with the support of 𝑒 ∈ Exp(𝑇 ) being the finite
set of free atomic names and free variables of 𝑒. Thus 𝑎 # 𝑒
(respectively 𝑥 # 𝑒) holds if and only if 𝑎 (respectively 𝑥) does not
occur free in 𝑒. The permutation action 𝜋, 𝑒 
→ 𝜋 ⋅ 𝑒 preserves the
property of being normal or neutral, so that Nf (𝑇 ) and Neu(𝑇 )
are nominal subsets of Exp(𝑇 ). Using the nominal sets Nf (𝐺)
of normal forms at ground types 𝐺 and taking finitely supported
functions (𝑋 �fs 𝑌 ) at higher types we get:

Definition 11 (interpretation of types). For each type 𝑇 ∈ Typ
we define a nominal set �𝑇 � as follows:

�𝐺� ≜ Nf (𝐺) (𝐺 = Nat, Atm, Trm)

�𝑇 -> 𝑇 ′� ≜ �𝑇 � �fs �𝑇 ′�. △
Figure 5 defines equivariant functions of reification ↓𝑇 : �𝑇 �→

Nf (𝑇 ) and reflection ↑𝑇 : Neu(𝑇 )→ �𝑇 � simultaneously by re-
cursion on the structure of types 𝑇 ∈ Typ. As mentioned above,
we take advantage of the nominal sets notion of freshness (#)
in the clause for ↓𝑇->𝑇 ′ : since 𝑓 is finitely supported we can al-
ways find an 𝑥 ∈ 𝕍(𝑇 ) satisfying 𝑥 # 𝑓 and the normal form
𝜆𝑥. ↓𝑇 ′(𝑓(↑𝑇 𝑥)) is independent of which one we use. Apart from
this use of nominal sets, the definitions of �𝑇 �, ↓𝑇 and ↑𝑇 are quite
standard, that is, they do not depend upon the new features that we
have added to the simply typed 𝜆-calculus. It is when we come to
the definition of evaluation, �𝑒�𝜌, whose properties are specified in
Fig. 6, that these new features have to be taken into account. The
figure makes use of some auxiliary functions, defined in Fig. 7,
which in turn make use of ↓𝑇 and ↑𝑇 . (This was why we gave the
definition of reification and reflection before defining evaluation.)
Evaluation takes place in the presence of environments of the fol-
lowing kind.



�𝑥�𝜌 = 𝜌(𝑥)

�𝜆𝑥. 𝑒�𝜌 = 𝜆𝑑 ∈ �𝑇 �. �𝑒�(𝜌[𝑥 �→𝑑])

�𝑒 𝑒′�𝜌 = �𝑒�𝜌 (�𝑒′�𝜌)

�K �⃗��𝜌 = K(��⃗��𝜌) for K = 0, S, V, A

�L𝑎. 𝑒�𝜌 = L𝑎. (�𝑒�𝜌) if 𝑎 # 𝜌

�𝑎�𝜌 = 𝑎

�𝜈𝑎. 𝑒�𝜌 = (𝜈𝑎)(�𝑒�𝜌) if 𝑎 # 𝜌

�(𝑒 = 𝑒′)𝑇 �𝜌 = eq𝑇 (�𝑒�𝜌, �𝑒�𝜌)

�(𝑒1 𝑒2)∗ 𝑒�𝜌 = (�𝑒1�𝜌 �𝑒2�𝜌)⊙ �𝑒�𝜌

�nrec 𝑒1 𝑒2 𝑒�𝜌 = nrec𝑇 (�𝑒1�𝜌, �𝑒2�𝜌, �𝑒�𝜌)

�trec 𝑒1 𝑒2 𝑒3 𝑒�𝜌 = trec𝑇 (�𝑒1�𝜌, �𝑒2�𝜌, �𝑒3�𝜌, �𝑒�𝜌)

Figure 6. Evaluation �𝑒�𝜌 ∈ �𝑇 � [𝑒 ∈ Exp(𝑇 ), 𝜌 ∈ Env ]

Definition 12 (environments). The nominal set Env ≜ (𝑇 ∈
Typ) �fs 𝕍(𝑇 ) �fs �𝑇 � of environments consists of all finitely
supported functions mapping, for each type 𝑇 ∈ Typ, variables
𝑥 ∈ 𝕍(𝑇 ) to elements 𝜌(𝑥) ∈ �𝑇 �. The initial environment
𝜌0 ∈ Env is given by:

𝜌0 𝑥 ≜ ↑𝑇 𝑥 [𝑇 ∈ Typ, 𝑥 ∈ 𝕍(𝑇 )] (18)

(relying upon the fact that 𝕍(𝑇 ) ⊆ Neu(𝑇 )). If 𝜌 ∈ Env , 𝑥 ∈
𝕍(𝑇 ) and 𝑑 ∈ �𝑇 �, then 𝜌[𝑥 �→𝑑] denotes the updated environment
mapping 𝑥 to 𝑑 and otherwise acting like 𝜌. △

The fact that environments are finitely supported objects is used
in Fig. 6 in the clauses for 𝜆-abstraction terms L𝑎. 𝑒 and name-
restriction expressions 𝜈𝑎. 𝑒. Indeed, Fig. 6 constitutes a definition
of �𝑒�𝜌 by 𝛼-structural recursion [26] over expressions 𝑒, for all
environments 𝜌 simultaneously; and this requires the following
“freshness conditions on binders” to be verified:

𝑥 # 𝜆𝑑 ∈ �𝑇 �. �𝑒�(𝜌[𝑥 �→𝑑]) (19)
𝑎 # L𝑎. (�𝑒�𝜌) (20)

𝑎 # (𝜈𝑎)(�𝑒�𝜌). (21)

The first follows from standard properties of the environmental
semantics of 𝜆-abstraction: see the discussion following equation
(101) in Pitts [26]; property (20) is trivial, since 𝑎 is never free
in L𝑎. 𝑛 for any 𝑛 ∈ Nf (Trm); and property (21) can be proved
by induction on the type of 𝑒. Further applications of 𝛼-structural
recursion are needed in the definitions of (𝜈𝑎)(−), (𝑛1 𝑛2)⊙−
and trec(𝑓1, 𝑓2, 𝑓3,−) in Fig. 7.

The following lemma shows that for normal forms, reification
provides a left inverse for evaluation in the initial environment (18),
modulo structural congruence; it is proved by induction on the
(height of the) derivations of 𝑛 ∈ Nf (𝑇 ) and 𝑢 ∈ Neu(𝑇 ) from
the rules in Fig. 4.

Lemma 13. (i) ∀𝑛 ∈ Nf (𝑇 ). ↓𝑇 (�𝑛�𝜌0) ≡ 𝑛.
(ii) ∀𝑢 ∈ Neu(𝑇 ). �𝑢�𝜌0 = ↑𝑇𝑢.

Definition 14 (normalization function). For each 𝑇 ∈ Typ we
define nf𝑇 : Exp(𝑇 )→ Nf (𝑇 ) to map 𝑒 ∈ Exp(𝑇 ) to

nf𝑇 𝑒 ≜ ↓𝑇 (�𝑒�𝜌0)

where 𝜌0 ∈ Env is the initial environment given in (18). △
To prove that nf𝑇 has the desired properties (15) and (16) we

continue to follow the standard pattern of a NbE proof and in-
troduce a suitable logical relation between semantics and syntax.
However, the presence of structural congruence ≡ in Theorem 10

(𝜈𝑎)𝑑 ∈ �𝑇 � [𝑇 ∈ Typ, 𝑎 ∈ 𝔸, 𝑑 ∈ �𝑇 �]:

(𝜈𝑎)(K �⃗�) ≜ K (𝜈𝑎)�⃗� where K = 0, S, V, A

(𝜈𝑎)(L𝑎′. 𝑛) ≜ L𝑎′. (𝜈𝑎)𝑛 if 𝑎 ∕= 𝑎′

(𝜈𝑎)𝑎′ ≜
{
new if 𝑎 = 𝑎′

𝑎′ if 𝑎 ∕= 𝑎′

(𝜈𝑎)new ≜ new

(𝜈𝑎)𝑢 ≜ 𝜈𝑎. 𝑢

((𝜈𝑎)𝑓) 𝑑 ≜ (𝜈𝑎′)(((𝑎 𝑎′) ⋅ 𝑓) 𝑑) where 𝑎′ # (𝑎, 𝑓, 𝑑)

eq𝑇 (𝑛, 𝑛′) ∈ �𝑇 -> 𝑇 -> 𝑇 � [𝑇 ∈ Typ, 𝑛, 𝑛′ ∈ �Atm�]:

eq𝑇 (𝑛, 𝑛′) ≜
{

𝜆𝑑, 𝑑′ ∈ �𝑇 �. 𝑑 if 𝑛 = 𝑛′ ∈ 𝔸 ∪ {new}
𝜆𝑑, 𝑑′ ∈ �𝑇 �. 𝑑′ if 𝑛 ∕= 𝑛′ ∈ 𝔸 ∪ {new}

eq𝑇 (𝑢, 𝑛) ≜ ↑𝑇->𝑇->𝑇 (𝑢 = 𝑛)𝑇

eq𝑇 (𝑛, 𝑢) ≜ ↑𝑇->𝑇->𝑇 (𝑛 = 𝑢)𝑇

(𝑛1 𝑛2)⊙ 𝑑 ∈ �𝑇 � [𝑇 ∈ Typ, 𝑛1, 𝑛2 ∈ �Atm�, 𝑑 ∈ �𝑇 �]:

(𝑛1 𝑛2)⊙ (K �⃗�) ≜ K (𝑛1 𝑛2)⊙ �⃗� where K = 0, S, V, A

(𝑛1 𝑛2)⊙ L𝑎. 𝑛 ≜ L𝑎. (𝑛1 𝑛2)⊙𝑛 if 𝑎 # (𝑛1, 𝑛2)

(𝑛1 𝑛2)⊙ 𝑎 ≜ eq(𝑛1, 𝑎)Atm 𝑛2 (eq(𝑛2, 𝑎)Atm 𝑛1 𝑎)

(𝑛1 𝑛2)⊙ new ≜ new

(𝑛1 𝑛2)⊙𝑢 ≜ (𝑛1 𝑛2)∗𝑢

(𝑛1 𝑛2)⊙ 𝑓 ≜ 𝜆𝑑 ∈ �𝑇 �. (𝑛1 𝑛2)⊙ (𝑓((𝑛1 𝑛2)⊙ 𝑑))

nrec𝑇 (𝑑, 𝑓, 𝑛) ∈ �𝑇 � [𝑇 ∈ Typ, 𝑑 ∈ �𝑇 �, 𝑓 ∈ �Nat -> 𝑇 ->
𝑇 �, 𝑛 ∈ �Nat�]
is defined by primitive recursion and a direct definition on neutral
forms:

nrec𝑇 (𝑑, 𝑓, 0) = 𝑑

nrec𝑇 (𝑑, 𝑓, S𝑛) = 𝑓 𝑛 (nrec𝑇 (𝑑, 𝑓, 𝑛))

nrec𝑇 (𝑑, 𝑓, 𝑢) = ↑𝑇 (nrec(↓𝑇 𝑑)(↓Nat->𝑇->𝑇 𝑓)𝑢)

trec𝑇 (𝑓1, 𝑓2, 𝑓3, 𝑛) ∈ �𝑇 � [𝑇 ∈ Typ, 𝑓1 ∈ �Atm -> 𝑇 �, 𝑓2 ∈
�Trm->Trm->𝑇 ->𝑇 ->𝑇 �, 𝑓3 ∈ �Atm->Trm->𝑇 ->𝑇 �, 𝑛 ∈ �Trm�]
is defined by 𝛼-structural recursion and a direct definition on neu-
tral forms:

trec𝑇 (𝑓, V𝑛) = 𝑓1 𝑛

trec𝑇 (𝑓 , A𝑛𝑛′) = 𝑓2 𝑛𝑛′ (trec𝑇 (𝑓, 𝑛)) (trec𝑇 (𝑓, 𝑛′))

trec𝑇 (𝑓, L𝑎. 𝑛)) = (𝜈𝑎)(𝑓3 𝑎 𝑛 (trec𝑇 (𝑓, 𝑛))) if 𝑎 # (𝑓)

trec𝑇 (𝑓, 𝑢) = ↑𝑇 (trec(↓Atm->Trm 𝑓1)(↓Trm->Trm->𝑇->𝑇->𝑇 𝑓2)
(↓Atm->Trm->𝑇->𝑇 𝑓3)𝑢)

Figure 7. Auxiliary functions used in Fig. 6



complicates matters. We could have dealt with it by quotienting
out in the model and using Nf (𝐺)/≡ at ground types and finitely
supported functions over those nominal sets at higher types. How-
ever, with an eye to formalizations of the proof of normalization
in system such as Coq [coq.inria.fr] or Agda [wiki.portal.
chalmers.se/agda], we prefer the more intensional model we
have given. As a result we use the following ternary logical rela-
tion, rather than a binary one.

Definition 15 (logical relation). The nominal subsets ℛ𝑇 ⊆
�𝑇 � × �𝑇 � × Exp(𝑇 ) are defined by recursion on the structure
of 𝑇 ∈ Typ:

(𝑛1, 𝑛2, 𝑒) ∈ ℛ𝐺 ⇔ 𝑛1 ≡ 𝑛2 ≈ 𝑒

(𝑓1, 𝑓2, 𝑒) ∈ ℛ𝑇 ′->𝑇 ⇔
∀(𝑑1, 𝑑2, 𝑒

′) ∈ ℛ𝑇 ′ . (𝑓1 𝑑1, 𝑓2 𝑑2, 𝑒 𝑒′) ∈ ℛ𝑇 .

△
Lemma 16. (i) ∀(𝑑1, 𝑑2, 𝑒) ∈ ℛ𝑇 . ↓𝑇 𝑑1 ≡ ↓𝑇 𝑑2 ≈ 𝑒.
(ii) ∀𝑢1, 𝑢2 ∈ Neu(𝑇 ), 𝑒 ∈ Exp(𝑇 ). 𝑢1 ≡ 𝑢2 ≈ 𝑒 ⇒

(↑𝑇 𝑢1, ↑𝑇 𝑢2, 𝑒) ∈ ℛ𝑇 .

Proof. Both properties are proved simultaneously by induction on
the structure of 𝑇 , using the easily verified fact that if (𝑑1, 𝑑2, 𝑒) ∈
ℛ𝑇 and 𝑒 ≈ 𝑒′, then (𝑑1, 𝑑2, 𝑒

′) ∈ ℛ𝑇 .

Although we do not give the details in this extended abstract,
one can prove the following properties of ℛ.

∙ “Fundamental property” for the logical relation: ℛ is respected
by all the syntactical constructions of Nominal System T.

∙ (�𝑒�𝜌0, �𝑒
′�𝜌0, 𝑒

′) ∈ ℛ𝑇 holds for each pair of convertible
expressions 𝑒 and 𝑒′ in Fig. 3 (𝑇 being the type of 𝑒 and 𝑒′).

∙ {(𝑑1, 𝑑2) ∣ (𝑑1, 𝑑2, 𝑒) ∈ ℛ𝑇 } is a partial equivalence relation
on �𝑇 � (for each 𝑒 ∈ Exp(𝑇 )).

From these properties it follows that:

∀𝑒, 𝑒′ ∈ Exp(𝑇 ). 𝑒 ≈ 𝑒′ ⇒ (�𝑒�𝜌0, �𝑒
′�𝜌0, 𝑒

′) ∈ ℛ𝑇 . (22)

This allows us to complete the proof of the normalization theorem:

Proof of Theorem 10. If 𝑒 ∈ Exp(𝑇 ), then by (22) and reflexivity
of ≈, we have (�𝑒�𝜌0, �𝑒�𝜌0, 𝑒) ∈ ℛ𝑇 ; and hence by Lemma 16(i),
nf𝑇 𝑒 ≜ ↓𝑇 (�𝑒�𝜌0) ≈ 𝑒, which is property (15). If 𝑒 ≈ 𝑛 ∈
Nf (𝑇 ), then by (22) again we have (�𝑒�𝜌0, �𝑛�𝜌0, 𝑛) ∈ ℛ𝑇

and hence by Lemmas 13(i) and 16(i), nf𝑇 𝑒 ≜ ↓𝑇 (�𝑒�𝜌0) ≡
↓𝑇 (�𝑛�𝜌0) ≡ 𝑛, which is property (16).

It should be evident from the definitions in Figs 5–7 that nf𝑇
is computable. A prototype implementation using Fresh Objective
Caml [31] is available from the author’s web pages. The facili-
ties that language provides for computing with binders allows the
implementation to stick quite closely to the definitions in the fig-
ures, except that the dependently typed family �𝑇 � [𝑇 ∈ Typ]
has to be implemented by a single, reflexive data type. A language
with dependent types, such as Agda [wiki.portal.chalmers.
se/agda] or Coq [coq.inria.fr], would allow an even closer
fit—were those languages to have the “nominal” features of Fresh
Objective Caml, or better, of Nominal System T itself. As it is,
for Agda or Coq implementations, the definitions in the figures
would have to be adapted to deal with our informal treatment of 𝛼-
conversion in the syntax of Nominal System T, for example by us-
ing well-scoped de Bruijn indexes. It would be nice to have “nom-
inal” versions of these dependently typed systems that provide the
kind of facilities for computing with name-abstraction and name-
restriction that we are considering here and which would make pos-
sible a more or less direct encoding of the definitions in Figs 5–7.

6. Representational Adequacy
In this section we will show that functions defined by the 𝛼-
structural recursion principle for Λ described in the Introduction
can be faithfully represented in Nominal System T. To do so, we
restrict attention to closed expressions, by which we mean ones
with no free variables.

Definition 17 (closed expressions and normal forms). For each
𝑇 ∈ Typ, let Cexp(𝑇 ) denote the subset of Exp(𝑇 ) consisting
of well-typed expressions of type 𝑇 that have no free variables;
and let Cnf (𝑇 ) denote the subset of normal forms with no free
variables. △

Closed expressions may still have free atomic names, the lat-
ter being normal forms representing object-level free variables. For
example, if 𝑎 ∕= 𝑎′ are distinct atomic names, then L𝑎. V 𝑎′ ∈
Cnf (Trm) is a closed normal form representing the open 𝜆-term
𝜆𝑎. 𝑎′ ∈ Λ. More generally, every open 𝜆-term is faithfully repre-
sented in Cnf (Trm). To see this, note that it follows from the rules
of formation in Fig. 4 and Definition 9 that neutral forms always
contain at least one free variable; and hence:

∙ Cnf (Trm) is in bijection with the set Λ[New ] defined in (7),
that is, the 𝜆-terms (modulo 𝛼-equivalence, of course) over a
constant New ; Cnf (𝔸) is in bijection with 𝔸 ∪ {New}; and
Cnf (Nat) is in bijection with ℕ.

∙ Structural congruence at ground types (Nat, Atm, Trm) is the
identity relation.

So we get a simple form of “representational adequacy” [22] result
for the object language Λ (defined in (1)) within Nominal System
T: the map ┌−┐ : Λ→ Cnf (Trm) satisfying

┌𝑎┐ = V 𝑎
┌𝑡 𝑡′┐ = A ┌𝑡┐ ┌𝑡′┐

┌𝜆𝑎. 𝑡┐ = L𝑎. ┌𝑡┐

⎫⎬
⎭ (23)

(well-defined by 𝛼-structural recursion for Λ!) gives a bijection be-
tween Λ and the subset of Cnf (Trm) of closed normal forms not in-
volving new (and hence not involving any use of name-restriction).
The fact that the representation (23) is so trivial is good; the “cod-
ing gap” between object- and meta-language is very small—we just
have to take care with the extra normal form new when manipulat-
ing the object-language from within Nominal System T.

Turning next to the representation in Nominal System T of
functions on Λ, first note that normalization preserves the property
of being closed. For it is easy to see from the form of its definition
that the normalization function is equivariant; that is, if we permute
the atomic names and variables of an expression, the atomic names
and variables of its normal form are correspondingly permuted:

nf𝑇 (𝜋 ⋅ 𝑒) = 𝜋 ⋅ (nf𝑇 𝑒). (24)

So like all equivariant functions, nf𝑇 : Exp(𝑇 )→ Nf (𝑇 ) has the
property that the support of nf𝑇 𝑒 is contained in the support of 𝑒.
Thus we have:

Lemma 18. For each well-typed expression 𝑒 ∈ Exp(𝑇 ), the
free variables and free atomic names of its normal form nf𝑇 𝑒 are
contained in those of 𝑒. In particular nf𝑇 restricts to an equivariant
function nf𝑇 : Cexp(𝑇 )→Cnf (𝑇 ).

Lemma 19. (i) If 𝐺 is a ground type, 𝑒 ∈ Cexp(𝐺) and 𝑎, 𝑎′ ∈
𝔸, then (𝑎 𝑎′)∗ 𝑒 ≈ (𝑎 𝑎′) ⋅ 𝑒, the result of swapping 𝑎 and 𝑎′

in 𝑒.
(ii) If 𝑒 ∈ Cexp(Trm) and 𝑎 ∈ 𝔸, then L𝑎. 𝑒 ≈ L(𝑎, 𝑒), as defined

at the bottom of Fig. 1.

Definition 20 (representable functions). Given 𝑇 ∈ Typ, let
𝑋 denote the quotient nominal set Cexp(𝑇 )/≡ of closed normal



forms of type 𝑇 modulo structural congruence. (We write [𝑛] for
the equivalence class of 𝑛 ∈ Cnf (𝑇 ).) Suppose that the functions
𝑓1 ∈ 𝔸 �fs 𝑋 , 𝑓2 ∈ Λ �fs Λ �fs 𝑋 �fs 𝑋 �fs 𝑋 and 𝑓3 ∈
𝔸 �fs Λ �fs 𝑋 �fs 𝑋 are supported by the finite subset 𝑎 ⊆ 𝔸.
We say that (𝑓1, 𝑓2, 𝑓3) is representable by the closed expressions
𝑒1 ∈ Cexp(Atm -> 𝑇 ), 𝑒2 ∈ Cexp(Trm -> Trm -> 𝑇 -> 𝑇 -> 𝑇 )
and 𝑒3 ∈ Cexp(Atm -> Trm -> 𝑇 -> 𝑇 ) if the free atomic names of
(𝑒1, 𝑒2, 𝑒3) are in 𝑎 and

𝑓1 𝑎 = [nf𝑇 (𝑒1 𝑎)] (25)

𝑓2 𝑡 𝑡′ [𝑛] [𝑛′] = [nf𝑇 (𝑒2 ┌𝑡┐ ┌𝑡
′┐𝑛𝑛′)] (26)

𝑎 /∈ 𝑎 ⇒ 𝑓3 𝑎 𝑡 [𝑛] = [nf𝑇 (𝑒3 𝑎 ┌𝑡┐𝑛)] (27)

for all 𝑎 ∈ 𝔸, 𝑡, 𝑡′ ∈ Λ and 𝑛, 𝑛′ ∈ Cnf (Trm). (The right-hand
sides of these equations are in 𝑋 because of Lemma 18.) △

Recalling the “freshness condition on binders” (FCB) from the
Introduction, we have:

Theorem 21 (representation of 𝛼-structural recursion). Let
(𝑓1, 𝑓2, 𝑓3) be as in the above definition and suppose 𝑓3 satis-
fies (FCB). Let 𝑓 ∈ Λ �fs 𝑋 be the function defined from these
functions by 𝛼-structural recursion, that is, the unique function
satisfying (2). If (𝑓1, 𝑓2, 𝑓3) is representable by (𝑒1, 𝑒2, 𝑒3), then 𝑓
is represented by

𝑒 ≜ 𝜆𝑥. trec 𝑒1 𝑒2 𝑒3 𝑥 ∈ Cexp(Trm -> 𝑇 ) (28)

in the sense that for all 𝑡 ∈ Λ

𝑓 𝑡 = [nf𝑇 (𝑒 ┌𝑡┐)]. (29)

Proof. By the uniqueness part of 𝛼-structural recursion, to prove
(29) it suffices to show that 𝜆𝑡 ∈ Λ. [nf𝑇 (𝑒 ┌𝑡┐)] satisfies the
recursion scheme (2) that defines 𝑓 . For first clause in (2) we have
𝑒(V 𝑎) ≈ trec 𝑒1 𝑒2 𝑒3(V 𝑎) ≈ 𝑒1 𝑎 by (28), (𝛽) and (𝛿V); hence
by (23), (17) and (25),

[nf𝑇 (𝑒 ┌𝑎┐)] = [nf𝑇 (𝑒 (V 𝑎))] = [nf𝑇 (𝑒1 𝑎)] = 𝑓1(𝑎)

as required. The argument for the second clause in (2) is similar.
For the third clause, if 𝑎 /∈ 𝑎 then for any 𝑡 ∈ Λ

𝑎 # 𝑓3 𝑎 𝑡 [nf𝑇 (𝑒 ┌𝑡┐)] by (FCB)
= [nf𝑇 (𝑒3 𝑎 ┌𝑡┐ (nf𝑇 (𝑒 ┌𝑡┐)))] by (27)
= [nf𝑇 (𝑒3 𝑎 ┌𝑡┐(𝑒 ┌𝑡┐))] by (15) and (17).

Structurally congruent normal forms have equal sets of free atomic
names; and hence the support of an equivalence class [𝑛] ∈ 𝑋 is
the same as the support of any of its representatives 𝑛. Therefore
we have 𝑎 # nf𝑇 (𝑒3 𝑎 ┌𝑡┐(𝑒 ┌𝑡┐)) and so by (𝜈#)

nf𝑇 (𝑒3 𝑎 ┌𝑡┐(𝑒 ┌𝑡┐)) ≈ 𝜈𝑎.nf𝑇 (𝑒3 𝑎 ┌𝑡┐(𝑒 ┌𝑡┐)). (30)

Therefore

𝑒 (L𝑎. ┌𝑡┐)
≈ trec 𝑒1 𝑒2 𝑒3 (L𝑎. ┌𝑡┐) by (28) and (𝛽)

≈ 𝜈𝑎. 𝑒3 𝑎 ┌𝑡┐ (trec 𝑒1 𝑒2 𝑒3 ┌𝑡┐) by (𝛿L),
since 𝑎 # (𝑒1, 𝑒2, 𝑒3)

≈ 𝜈𝑎. 𝑒3 𝑎 ┌𝑡┐(𝑒 ┌𝑡┐) by (28) and (𝛽)

≈ 𝜈𝑎.nf𝑇 (𝑒3 𝑎 ┌𝑡┐(𝑒 ┌𝑡┐)) by (15)
≈ nf𝑇 (𝑒3 𝑎 ┌𝑡┐(𝑒 ┌𝑡┐)) by (30).

Hence by (16) and from above we have

[nf𝑇 (𝑒 (L𝑎. ┌𝑡┐))] = [nf𝑇 (𝑒3 𝑎 ┌𝑡┐(𝑒 ┌𝑡┐))] = 𝑓3 𝑎 𝑡 [nf𝑇 (𝑒 ┌𝑡┐)]
as required.

Example 2, continued. Let us use Theorem 21 to prove that
the expression sub defined in Example 4 does indeed represent
capture-avoiding substitution on 𝜆-terms, in the sense that

sub 𝑎′ ┌𝑡′┐ ┌𝑡┐ ≈ ┌𝑡[𝑡′/𝑎′]┐ (31)

holds for all 𝑎′ ∈ 𝔸 and 𝑡, 𝑡′ ∈ Λ. Fixing 𝑎′ and 𝑡′, in the theorem
take 𝑇 = Trm and the functions (𝑓1, 𝑓2, 𝑓3) to be

𝑓1 𝑎 ≜ if 𝑎 = 𝑎′ then [┌𝑡′┐] else [┌𝑎┐]
𝑓2 𝑡1 𝑡2 [𝑛1] [𝑛2] ≜ [A𝑛1 𝑛2]

𝑓3 𝑎 𝑡1 [𝑛1] ≜ [L𝑎. 𝑛1].

They are supported by the finite set 𝑎 consisting of 𝑎′ and the free
atomic names of 𝑡′; and 𝑓3 satisfies (FCB). Let 𝑓 by the function
defined from them by 𝛼-structural recursion. An easy proof by 𝛼-
structural induction [26] shows that for all 𝑡 ∈ Λ

𝑓 𝑡 = [┌𝑡[𝑡′/𝑎′]┐]. (32)

It is not hard to see that (𝑓1, 𝑓2, 𝑓3) is representable (in the sense
of Definition 20) by (𝑒1[𝑎

′/𝑥, ┌𝑡′┐/𝑦], 𝑒2, 𝑒3), where 𝑒1, 𝑒2 and 𝑒3
are as in Example 4 (using Lemma 19(ii) to verify (27) for this par-
ticular 𝑒3). So by definition of sub and by the theorem we have
𝑓 𝑡 = [nfTrm(sub 𝑎′ ┌𝑡′┐ ┌𝑡┐)]. Combining this with (32) yields
[┌𝑡[𝑡′/𝑎′]┐] = [nfTrm(sub 𝑎′ ┌𝑡′┐ ┌𝑡┐)]; and so by the Normaliza-
tion Theorem 10 we do indeed have (31).

Example 3, continued. The bijection ┌−┐ : ℕ ∼= Cnf (Nat)
between natural numbers 𝑘 and closed normal forms of type Nat
is given by

┌0┐ = 0
┌𝑘 + 1┐ = S ┌𝑘┐.

}
(33)

As in the previous example, one can apply Theorem 21 to the
definitions in Example 5 to show that

len ┌𝑡┐ ≈ ┌∣𝑡∣┐ (34)

holds for all 𝑡 ∈ Λ. Thus the expression len does indeed correctly
represent the length function ∣−∣ on 𝜆-terms.

7. Atom-Abstraction Types
Pitts [26] develops the 𝛼-structural recursion principle for a wide
class of languages involving binding operations, namely those that
can be specified via a nominal signature [36, Definition 2.1]. In
this paper so far, for sake of simplicity we have restricted attention
to a single such language, the untyped 𝜆-calculus, Λ. To extend
Theorem 21 to the full range of “nominal data types”, one first
needs to extend Nominal System T with syntax for product types
and atom-abstraction types. The latter correspond to the atom-
abstraction construction on nominal sets of Gabbay and Pitts [11,
Sect. 5]. This sends a nominal set 𝑋 to the quotient nominal
set [𝔸]𝑋 ≜ (𝔸 × 𝑋)/∼, where ∼ captures the essence of 𝛼-
equivalence: (𝑎, 𝑥) ∼ (𝑎′, 𝑥′) ⇔ (𝑎 𝑎′′) ⋅ 𝑥 = (𝑎′ 𝑎′′) ⋅ 𝑥′

for some (indeed, any) 𝑎′′ such that 𝑎′′ # (𝑎, 𝑥, 𝑎′, 𝑥′). We write
the equivalence class of (𝑎, 𝑥) in [𝔸]𝑋 as ⟨𝑎⟩𝑥.

Ever since the introduction of this construct it has been known
that the elements of [𝔸]𝑋 have a dual nature. On one hand they
are “abstractions-as-pairs”, with the identity of the atomic name 𝑎
in the pair (𝑎, 𝑥) anonymized via permutations when we pass to
the equivalence class ⟨𝑎⟩𝑥. On the other hand they also represent
“abstractions-as-partial-functions”, since [𝔸]𝑋 is isomorphic to the
nominal set of those partial functions 𝑓 from 𝔸 to 𝑋 whose domain
of definition is {𝑎 ∣ 𝑎 # 𝑓}. This bijection is mediated by the
partial operation of concretion; if 𝑎 # 𝑐 ∈ [𝔸]𝑋 , there is a unique
element 𝑐 @ 𝑎 ∈ 𝑋 satisfying 𝑐 = ⟨𝑎⟩(𝑐 @ 𝑎) and called the



∙ A new type-former [Atm]𝑇 for atom-abstraction types.
∙ New forms of expression 𝛼𝑎. 𝑒 and 𝑒 @ 𝑒′, where 𝛼𝑎. (−) is a

binder (like L𝑎. (−)) and the typing rules are:

𝑎 ∈ 𝔸

𝑒 ∈ Exp(𝑇 )

𝛼𝑎. 𝑒 ∈ Exp([Atm]𝑇 )

𝑒 ∈ Exp([Atm]𝑇 )
𝑒′ ∈ Exp(Atm)

𝑒 @ 𝑒′ ∈ Exp(𝑇 )

∙ New conversions:
(𝛼𝑎. 𝑒) @ 𝑒′ ≈ 𝜈𝑎. (𝑎 𝑒′)∗ 𝑒 if 𝑎 # 𝑒′ (𝛼𝛽)

𝑒 ≈ 𝛼𝑎. (𝑒 @ 𝑎) if 𝑎 # 𝑒 (𝛼𝜂)
𝜈𝑎. 𝛼𝑎′. 𝑒 ≈ 𝛼𝑎′. 𝜈𝑎. 𝑒 if 𝑎 ∕= 𝑎′ (𝜈𝛼)

(𝑒1 𝑒2)∗𝛼𝑎. 𝑒 ≈ 𝛼𝑎. (𝑒1 𝑒2)∗ 𝑒 if 𝑎 # (𝑒1, 𝑒2) (𝜋𝛼)

∙ New normal and neutral forms:
𝑎 ∈ 𝔸

𝑛 ∈ Nf (𝑇 )

𝛼𝑎. 𝑛 ∈ Nf ([Atm]𝑇 )

𝑢 ∈ Neu([Atm]𝑇 )
𝑛 ∈ Nf (Atm)

𝑢 @ 𝑛 ∈ Neu(𝑇 )

Figure 8. Extension with atom-abstraction

concretion of 𝑐 at 𝑎:

(⟨𝑎′⟩𝑥) @ 𝑎 ≜

⎧⎨
⎩

𝑥 if 𝑎 = 𝑎′

(𝑎′ 𝑎) ⋅ 𝑥 if 𝑎 ∕= 𝑎′ and 𝑎 # 𝑥

undefined otherwise.
(35)

The undefinedness in the third clause is forced by the necessity of
making the right-hand side independent of the choice of representa-
tive (𝑎′, 𝑥) for the equivalence class ⟨𝑎′⟩𝑥. The fact that concretion
is a partial operation creates the same problem as does the freshness
condition on binders (FCB) for 𝛼-structural recursion; calculating
with concretions involves proving freshness conditions (𝑎 # 𝑐).
We have seen that name-restriction operations (Definition 1) pro-
vide a simple solution for the “FCB problem”. They also provide
one for the “concretion problem”, as the following result shows.

Theorem 22 (atom-abstractions as total functions). If 𝑅 is a
nominal set equipped with a name-restriction operation 𝜈𝑅, then
there is a name-restriction operation 𝜈 on the nominal set [𝔸]𝑅 of
atom-abstractions satisfying

𝑎 ∕= 𝑎′ ⇒ (𝜈𝑎)(⟨𝑎′⟩𝑟) = ⟨𝑎′⟩((𝜈𝑅𝑎)𝑟) (36)

for all 𝑎, 𝑎′ ∈ 𝔸 and 𝑟 ∈ 𝑅. In this case there are equivariant
functions preserving name restriction

[𝔸]𝑅
𝑖↣ (𝔸 �fs 𝑅)

𝑝
↠ [𝔸]𝑅

whose composition is the identity on [𝔸]𝑅. Furthermore, the partial
operation of concretion extends to a total function (−) @ (−) :
[𝔸]𝑅 × 𝔸→ 𝑅 that corresponds to function application under the
inclusion 𝑖 : [𝔸]𝑅 ↣ (𝔸 �fs 𝑅).

The proof of this result, which we omit in this extended abstract,
shows that the extended concretion function (−) @ (−) : [𝔸]𝑅 ×
𝔸→ 𝑅 satisfies

(⟨𝑎′⟩𝑟) @ 𝑎 =

{
𝑟 if 𝑎 = 𝑎′

(𝜈𝑎′)((𝑎′ 𝑎) ⋅ 𝑟) if 𝑎 ∕= 𝑎′.
(37)

This suggests extending Nominal System T as in Fig. 8. The new
form of 𝛽-conversion for atom-abstraction, (𝛼𝛽), is particularly
pleasing, since it combines in one equation all the main players:
atom-abstraction 𝛼𝑎. (−), concretion (−)@𝑒, locally scoped names
𝜈𝑎. (−), and explicit swapping (𝑒1 𝑒2)∗ (−).

We leave to future work investigating whether Theorem 10
can be extended to encompass these features (plus appropriate
ones for product types 𝑇 × 𝑇 ′). To extend Theorem 21 to the
full generality of Pitts [26] one would then consider ground types
equipped with a nominal signature of constructors and a suitable
recursion combinator. For example, Trm would have constructors
V : Atm -> Trm, A : Trm × Trm -> Trm and L : [Atm]Trm -> Trm
(with L(𝛼𝑎. 𝑒) replacing the L𝑎. 𝑒 construct). This is probably best
done as part of an investigation of Martin-Löf’s constructive type
theory extended with atom-abstraction/concretion, locally scoped
atoms, atom-equality tests and explicit swapping.

8. Context
SNTT. The “simple nominal type theory” (SNTT) of Cheney [6]
is the work most closely related to the results presented in this pa-
per. The motivation behind both works is the same: to produce a
calculus combining simple type theory3 with some of the distinc-
tive features of the nominal sets model of names and binders, par-
ticularly atom-abstraction/concretion and the good recursive prop-
erties of the associated nominal data types. Moreover, both aim
to avoid the need for freshness side-conditions while defining and
computing in the calculus. Although SNTT achieves most of these
aims, it is at the expense of a non-trivial type system and a lack of
expressiveness. We consider each point in turn.

As far as the type system goes, SNTT uses bunched contexts
containing information about object-level freshness. So the aim
of avoiding freshness conditions is only partially met: terms are
only meaningful in context and concretion is still partial, its well-
definedness mediated by freshness conditions in the context. By
contrast, Nominal System T has a completely conventional type
system and all freshness conditions associated with 𝛼-equivalence
have been elevated to the meta-level (in much the same way as for
systems based on higher-order abstract syntax [23]).

As far as expressiveness goes, SNTT lacks name-restriction
𝜈𝑎. 𝑒 and name-swapping (𝑒1 𝑒2)∗ 𝑒. Cheney [6, Sect. 4] discusses
the limitations caused by lack of a 𝜈𝑎. (−) construct. (See also
Fig. 5 of that paper.) Name-restriction is an important feature of
the informal meta-theory of programming languages and logics,
one that demands a formalization—and of course we claim to be
providing a pleasant one here. The fact that explicit name-swapping
(and more generally name-permutation) is also very important for
meta-theory is gradually gaining currency. One might think that
name-swapping only occurs in the dynamics of nominal meta-
languages and not in the semantic specifications written in those
meta-language. However, note that with explicit name-swapping
we can use a meta-level binder like L𝑎. (−) to express the binary
operation L(−,−) taking an expression 𝑒 that computes an object-
level variable and an expression 𝑒′ that computes a piece of object-
level syntax and combining them to compute an object-level binder:
L(𝑒, 𝑒′) = L𝑎. (𝑎 𝑒)∗ 𝑒′ (where 𝑎 is any atomic name not free in
either 𝑒 or 𝑒′). Example 4 provided an example of this operation in
use. If we extend Nominal System T as in Sect. 7, we can define
the general form of this non-binding operation for atom-abstraction
which is a characteristic feature of FreshML [33]4:

<𝑒>𝑒′ ≜ 𝛼𝑎. (𝑎 𝑒)∗ 𝑒′ where 𝑎 # (𝑒, 𝑒′). (38)

For example, using this we can form the expression

𝜆𝑓. 𝛼𝑎. 𝜆𝑥. 𝑓(<𝑎>𝑥) @ 𝑎 (39)

of type ([Atm]𝑇 ->[Atm]𝑇 ′)->[Atm](𝑇 ->𝑇 ′) whose denotation
in the nominal sets model is the “shocking” [16, Sect. 2.5] isomor-

3 initially, and dependent type theory in the long run
4 Be warned, Cheney [6] uses the notation ⟨𝑎⟩(−) for the binding operation
that is denoted here by 𝛼𝑎. (−).



phism
[𝔸]𝑅 �fs [𝔸]𝑅

′ ∼= [𝔸](𝑅 �fs 𝑅′) (40)
noted by Gabbay [10, Corollary 9.6.9]. This is not expressible in
SNTT: see Cheney [6, Fig. 5].

Nevertheless, SNTT is a very interesting system whose meta-
theory is even simpler than the one presented here. It would be
interesting to investigate translating it into Nominal System T (ex-
tended as in Sect. 7); perhaps the translation of its bunched contexts
might provide useful conditions in a conditional-equational calcu-
lus more expressive than the simple equational notion of conversion
we have given here.

Westbrook et al. [37] use some of the ideas behind SNTT to
design an extension of the calculus of inductive constructions, the
type theory underlying Coq. This is certainly the right direction
in which to go. However, we believe that the use of Odersky-
style locally-scoped names will play just as important role for
expressivity in “nominal” versions of dependently typed systems
as it does here for the simply typed Nominal System T.

Focusing on binding and computation. It has become very com-
mon to use typed 𝜆-calculus as a uniform method of representing
syntax involving binding [23]. The pros and cons of this method
compared with “nominal” techniques have been vigorously de-
bated [5, 7]. In comparing systems that employ them, one should
bear in mind the purpose for which they are designed: is it rep-
resentation plus proof (classical or constructive), or representation
plus computation (functional or logical), or both? Here the primary
focus is on functional computation with representations and the
analyses of Poswolsky and Schürmann [29] and Licata et al. [16]
are pertinent: most previous uses of typed 𝜆-calculus representa-
tions identify “functions-as-data” with “functions-as-computation”
(Miller [17] is an early exception) and this leads to complications
such as modalities [24] when trying to develop recursion and in-
duction for higher-order abstract syntax. These authors advocate
separating the two notions of function, leading to forms of lo-
cally scoped symbols in [15, 16, 29, 37] similar to the notion of
atom-abstraction (𝛼-binding) considered in the extended system
of Sect. 7. This should not be confused with the notion of name-
restriction (𝜈-binding).5 For one thing the latter does not change
the type of expressions, whereas the former does. The nominal sets
model makes the difference between the two notions clear. Inciden-
tally, Theorem 22 provides an interesting semantical insight: in the
presence of name-restriction, it seems that it is consistent to regard
types of “functions-as-data” as subtypes of types of “functions-as-
computation”.

Harper has coined the term “pronominal” for the use of locally
scoped symbols as “pronouns referring to a designated binding
site”, contrasting it with the nominal approach to symbols as nouns
with independent existence. Leaving aside the important fact that,
unlike in [16, 29], here we have a boolean-valued equality test on
names, is Nominal System T nominal or pronominal? The answer
is not so clear. We are used to the idea of free variables in 𝜆-
calculus being implicitly 𝜆-bound; in other words their “designated
binding site” is an implicit top-level. In Nominal System T we can
definitely think of free atomic names as having an implicit top-level
designated binding site as well; but they are 𝜈-bound rather than
𝜆-bound. What makes this possible is the fact that in our system,
like Odersky’s, 𝜈-binding commutes with 𝜆-abstraction and tupling
(see the (𝜈𝜆) and (𝜈K) conversions in Fig. 3).

A characteristic of using typed 𝜆-calculus to represent binding
is that one gets substitution and 𝛽-equality “for free” in addition to
renaming and 𝛼-equality. This is often seen [24] as a strength of
the approach, but I am not so sure. There are very many different

5 Unfortunately “𝜈” is used to indicate abstraction rather than restriction in
[29, 37].

forms of substitution; and many forms of name-binding that have
nothing to do with substitution whatsoever. The approach here is to
strive for the simplest possible system providing an expressive and
familiar form of recursion modulo renaming; one that makes it easy
for the user to deal with the many different kinds of object-language
substitution on a case-by-case basis. So compared with [15, 29],
here some things are not automatic. Similarly, Licata and Harper
[15] incorporate types classifying closed object-level expressions,
whereas I would prefer to let the user make inductive definitions
of such types in the yet-to-be-explored dependently-typed version
of Nominal System T. On the other hand the use of locally-scoped
symbols of any data type, rather than just at name types like Atm as
here, seems an interesting feature of [16, 17, 29].

Nominal versus presheaf representations. The nominal sets
model of names and binding has close connections with the use of
certain presheaf categories to model binding [9]. Indeed the cate-
gory 𝒩om of nominal sets and equivariant functions is a sheaf sub-
category of the presheaf category 𝒮et 𝕀 of functors to the category
of sets from the category 𝕀 of finite sets and injective functions. The
use of name-restriction operations on nominal sets (Definition 1)
brings the connection even closer. Let ℛes denote the category
whose objects are nominal sets 𝑅 equipped with a name-restriction
operation and whose morphisms 𝑓 : 𝑅 → 𝑅′ are equivariant func-
tions that preserve name-restriction (𝑓((𝜈𝑎)𝑟) = (𝜈𝑎)(𝑓 𝑟)). Sta-
ton [private communication] has observed the remarkable fact that
ℛes is equivalent to the presheaf category 𝒮et𝑝𝕀, where 𝑝𝕀 is the
category of finite sets and injective partial functions.

9. Conclusion
Apart from the technical contributions of this paper, the main mes-
sages I want to convey are that name-restriction is just as important
as name-abstraction when computing with binders; and that name-
restriction need not involve a computational effect. The second is
the same point as made by Odersky [21]. The new results about
nominal sets (Theorems 2 and 22) lead to a very simple semantics
for this form of local name. This in turn suggests combining the
characteristic feature of nominal sets—name-permutations—with
Odersky-style name-restriction. It might seem that the commuta-
tion of this form of local scoping with function abstraction and tu-
pling make it too simple to be useful—I certainly thought so for
many years and have vigorously pursued applications of the more
common, generative kind of local name. However, as we have seen,
the combination of this simple and “pure” form of locally scoped
name with name-swapping is very expressive. This paper has used
their combination to develop a new form of structural recursion
modulo 𝛼-equivalence for total functions which has all the expres-
sive convenience of 𝛼-structural recursion without the computa-
tionally inconvenient freshness conditions on binders. Continuing
with total functions, the next obvious step is to try to extend Nomi-
nal System T with dependent types. Historically speaking, Gödel’s
System T was a stepping-stone on the way to Martin Löf’s much
more expressive treatment of recursion and induction [19]. Gödel’s
System T is the simply typed kernel of Martin Löf’s constructive
type theory. It would be interesting to investigate whether the ap-
proach introduced here extends to a “nominal Martin-Löf type the-
ory” with Odersky-style local names and name-swapping. The mo-
tivation is the search for a logical framework [22] that admits fa-
miliar forms of “nominal” specification and formalizes the infor-
mal uses of recursion and induction “modulo 𝛼” that are common
in the practice of programming language semantics.
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[13] K. Gödel. Über eine bisher noch nicht benütze Erweiterung des finiten
Standpunktes. Dialectica, 12:280–287, 1958.

[14] A. D. Gordon and T. Melham. Five axioms of alpha-conversion. In
Theorem Proving in Higher Order Logics, 9th International Confer-
ence, volume 1125 of Lecture Notes in Computer Science, pages 173–
191. Springer-Verlag, 1996.

[15] D. R. Licata and R. Harper. A universe of binding and computation. In
Proceedings of the 14th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2009), pages 123–134. ACM Press,
2009.

[16] D. R. Licata, N. Zeilberger, and R. Harper. Focusing on binding
and computation. In Proceedings of the Twenty-Third Annual IEEE
Symposium on Logic in Computer Science, LICS 2008, 24-27 June
2008, Pittsburgh, PA, USA, pages 241–252. IEEE Computer Society,
2008.

[17] D. A. Miller. An extension to ML to handle bound variables in data
structures, in the proceedings of the logical frameworks bra workshop.
Technical Report MS-CIS-90-59, University of Pennsylvania, May
1990.

[18] R. Milner. Functions as processes. Mathematical Structures in Com-
puter Science, 2(02):119–141, June 1992.

[19] B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-
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