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CoverDrop White Paper
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Philip McMahon1, Marjan Kalanaki1, Diana A. Vasile2, Sabina Bejasa-Dimmock1,

Luke Hoyland1, and Alastair R. Beresford2

1The Guardian
2University of Cambridge

The free press fulfills an important function in a democ-
racy. It can provide individuals with a mechanism
through which they can hold powerful people and orga-
nizations to account. In previous work, the University of
Cambridge developed CoverDrop: a set of extensions to
a typical news app which provided a secure and usable
method of establishing initial contact between journal-
ists and sources. Since publication, The Guardian and
the University of Cambridge have undertaken further
work on the design, highlighting additional challenges
and shortcomings which needed to be addressed before
deployment. This white paper presents an updated de-
sign of the CoverDrop system which addresses these
issues, and describes the version that The Guardian first
deployed in April 2025. You can find this paper and
more information at https://www.coverdrop.org.

1 Introduction

The Snowden leaks revealed that nation states de-
velop and operate extensive mass-surveillance infra-
structure [1]. These capacities have potential for abuse.
They could for example be deployed against news orga-
nizations and potential sources who are attempting to
expose wrongdoing within governments or other power-
ful organizations. As a consequence, significant care is
required to ensure that potential sources are not exposed.
However, many leading news organizations today suggest
that sources use initial methods of contact that are inse-
cure or are hard to use. Such methods can, for example,
fail to adequately protect either the confidentiality of
the communication itself, or have the potential to expose
the relationship between a source and a journalist to a
network observer capable of performing traffic analysis.
In prior work, we conducted two workshops with British
news organizations and surveyed source communication
options at major media outlets. We found a need for
a system that provides a secure and usable method of
initial contact between potential sources and journalists.

Our central insight towards a practical solution is
that news organizations already run a widely-available
platform from which they can offer a secure, usable
method of initial contact: the news app on a smartphone.
The confidentiality and integrity of message content can
be assured through widely-available cryptography on
these platforms; journalists can be authenticated directly
by the news organization; traffic analysis by a network
operator or state actor can be thwarted by requiring all
the installations of the news app to produce cover traffic,
thus hiding whether any given user is in contact with a
journalist or not; the system does not require users to
install specialist software or tools; and the news app can
provide a usable interface which is similar in style and
operation to a typical messaging app.

In previous work, we described CoverDrop, a set of
extensions to a typical news app which provides a secure
and usable method of initial contact between journalists
and sources [2]. This white paper presents a revised
version of CoverDrop that The Guardian deployed for
the first time in 2025. We describe the planned system,
implementation details (§2, §4–§6, §8–§10), the require-
ment analysis (§3) that motivates our design decisions,
and discuss the user interface (§7).

To make the document approachable for readers from
a variety of backgrounds, we highlight the main areas of
sections. GENERAL sections provide important overview
of the system and its environment. The cryptographic
details and anonymity guarantees are highlighted with

PROTOCOL . Since the usability of the system is critical,
several sections focus on UX . Software engineering
best-practices and specific deployment considerations
are marked with SWE .

Our implementation is available as an open-source
repository under an Apache 2.0 license: https://gith
ub.com/guardian/coverdrop. The revised CoverDrop
system has previously undergone an extensive audit
sponsored by the Open Technology Fund [3]. We are
very thankful to the academic experts who have reviewed

https://www.coverdrop.org
https://github.com/guardian/coverdrop
https://github.com/guardian/coverdrop
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previous versions of this white paper and whose valuable
feedback helped us to improve both the final system and
this document.

2 Overview
GENERAL In this section we introduce the high-level

goals, workings, and setting for CoverDrop.

2.1 Goals
The system should allow potential sources to send and
receive messages to and from journalists via the news app
installed on their own smartphone. The system should
support a low-throughput, medium latency, text-only
communication channel to permit initial contact. We
must protect not only the confidentiality and integrity
of message contents, but also hide the fact that any
potential source is communicating with a journalist; this
requirement must hold against adversaries who can view
all network communication on the public Internet as
well as compromise all third-party cloud infrastructure.
We want a system that is easy to find and easy to use
for both journalists and potential sources.

The system should not require a potential source to
install custom software or tools. CoverDrop should not
impose significant additional battery, network, memory,
or processing requirements on the smartphone. The
CoverDrop system needs to integrate into the existing
news organization infrastructure and workflows.

2.2 CoverDrop overview
This section provides a conceptual overview of the Cover-
Drop system. The deployed implementation deviates
from this high-level description somewhat, but this
overview aides the understanding of, and motivates, the
eventual design (§4).

CoverDrop consists of four major types of components:
the CoverDrop module in the news app, the CoverNode
server run “on-premises” (by which we mean that the
hardware is housed at a physical location entirely under
the control of the news organization), an API service run
by the organization in a cloud environment, and an app
the journalist can use to read and respond to messages.

The flow of messages in the CoverDrop system is
shown in Figures 1 and 2. Messages are generated by
potential sources using the CoverDrop module embedded
in the news app (§4.1). The CoverDrop module sends
these messages to the CoverNode (§4.2) which is oper-
ated by a news organization from a secure location such
as the organization’s main office. In order to prevent a
network observer from differentiating between normal
use of the news app from network communication caused

by the use of the CoverDrop module, all installations
of the news app send CoverDrop messages regularly. If
the CoverDrop module has no actual message to send
(the common case) then a cover message is sent which,
from the perspective of the network observer, is indis-
tinguishable from a real message. Any real message
is stored locally on the smartphone by the CoverDrop
module and sent as the next CoverDrop message, i.e.
replacing the dummy message which would otherwise
have been sent. Consequently a network observer cannot
determine whether any communication is taking place
and CoverDrop therefore provides the potential source
with plausible deniability.

The CoverNode and each journalist has their own
public-private key pair. These keys are published by
the news organization and available to the CoverDrop
module directly so the user does not need know about
them. When the CoverDrop module is used for the first
time, it generates a new, random public-private key pair
for the user.

All real CoverDrop messages sent by the CoverDrop
module to the CoverNode include the text written by
the potential source as well as their own public key.
The message is first encrypted using the public key of
the journalist who will ultimately receive the message,
then encrypted a second time using the public key of
the CoverNode. All dummy CoverDrop messages are
encrypted using the public key of the CoverNode. All
messages, real or dummy, are arranged to be the same,
fixed length. Encryption and length constraints ensure
that only the CoverNode can distinguish between real
and dummy messages. The CoverNode operates as a
mix node: it collects a number of incoming messages
together as a batch, decrypts them, places all real mes-
sages in the batch into a new random order and publishes
them together to the dead drop. All incoming dummy
messages are discarded. If there are insufficient real
messages to fill the dead drop (the common case) then
the CoverNode generates additional dummy messages so
that the published dead drop always has the same size.
If there are too many real messages to fit into the dead
drop, then the excessive messages are buffered and used
in the following rounds. The Journalist’s app regularly
downloads all the messages contained in the dead drop
and tries to decrypt all messages using the journalist’s
private key. Decryption will only succeed if a message
was intended for the journalist.

Every successfully decrypted message received by a
journalist reveals a user message and the public key of
the sending user. This public key allows the journalist to
identify whether the message starts a new conversation,
or if it belongs to an existing conversation. When reply-
ing, the journalist encrypts a message using the user’s
public key, and then a second time using the CoverNode’s
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Figure 1: The logical flow of messages from the user to journalists in the CoverDrop system. A The users’ news
reader apps regularly send messages to the CoverNode. B The CoverNode mixes the messages and publishes
the dead drops through the API service. C From there the journalists’ apps can download them and try to find
messages addressed to them by attempting to decrypt them. All communication between the components, i.e. all
arrows in this diagram, is assumed to be observable by the adversary.
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Figure 2: The logical flow of messages from the journalist to users in the CoverDrop system. E The journalists’
apps regularly sent messages to the CoverNode. F The CoverNode mixes the messages and publishes the dead
drops through the API service. G From there the users’ news reader apps can download them regularly; when a
user unlocks their session the phone tries to decrypt the cached dead drops to find messages addressed to them.
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public key. The reply is then sent to the CoverNode
which, analogously to the other direction, groups the
messages into a batch and periodically publishes them
to a user-facing dead drop endpoint.

The news app downloads a copy of recent dead drops
on every app start and caches it in local storage on the
smartphone. Having separate dead drops for each direc-
tion allows us to keep the downloads for the users small
as each epoch will only contain few replies from jour-
nalists. When the user accesses the CoverDrop module,
the module unlocks a private storage area that includes
the user’s public-private key pair. The CoverDrop mod-
ule can then use the private key and try to decrypt
all messages from the dead drop. If a message is suc-
cessfully decrypted, it must be for the user, and the
CoverDrop module therefore displays the response from
the journalist as part of the chat conversation.

2.3 Threat model
We assume a powerful adversary that wants to learn
whether a given person is likely to have been in contact
with a journalist. For example, the adversary could be
an organization that seeks to retaliate after someone
exposed wrongdoings. We assume the adversary can
monitor all public internet traffic to and from such an
individual. Furthermore, we assume that the adversary
can confiscate the mobile device of a suspected person—
however, they cannot do so without the user noticing. In
addition, the adversary can gain full access to all cloud-
hosted infrastructure. The adversary can also confiscate
on-premises hardware in a powered-off state, but not
physically access it while powered on. We assume that
the news organization is trusted by the source and that
the news organization does not betray this trust by
trying to deanonymize sources without their consent.
Similar to other apps, CoverDrop only provides limited
protection on smartphones that are fully compromised
by malware, e.g., Pegasus, which can record the screen
content and user actions.

3 Requirement analysis
GENERAL UX The original CoverDrop paper [2] de-

rived its requirement analysis from two workshops with
journalists and staff from major news organizations. We
use its results as a starting point for the new implementa-
tion and augment it by interviewing further stakeholders
at The Guardian.

3.1 Roles in the newsroom
We refer to “journalists” for any member of editorial staff
who is involved in the production of the copy for a story.

This category can then be further broken down into
reporters and editors. A reporter generally performs
more on-the-ground research into the story, while an
editor is responsible for shaping the story and usually
takes a more managerial role. We chose interview candi-
dates based on three archetypes: dedicated investigative
reporter, collaborative reporter, and investigative editor.

Dedicated investigative reporters spend the majority
of their time on long-term, high-impact stories. In con-
trast, other reporters often spend most of their time
writing up many different current events, whereas for
an investigative journalist much more time is given to
deeply examine individual topics. These reporters have
experience with using dedicated tooling and software in
a high-security context.

Collaborative reporters are assigned rolling news tasks
but also sometimes join an investigation due to their
expertise in a particular area. An example might be
a banking correspondent who normally reports on the
daily news from the finance sector but who has been
drafted into an investigation on investment fraud. This
archetype is useful to interview because they have expe-
rience in both the standard newsroom context, as well
as the high security context.

Investigative editors take on more managerial roles
including further consideration of the public interest,
monitoring the development of investigations and dis-
cussing progress. Editors almost always have a reporting
background. People in this role have broad overview
and experience in many aspects of the newsroom.

3.2 Journalist interviews

Early in the process of developing CoverDrop we ran a
series of interviews with editors and reporters at The
Guardian. Our interviews were conducted by Cover-
Drop team members and always included at least one
UX team member and a developer. The interviews were
semi-structured around a set of questions that ensured
coverage of all important areas while allowing the journal-
ist to add extra information as they saw fit. Importantly,
this allowed us to discover some unforeseen issues in
journalists’ existing workflows.

We interviewed five people in total over the span of
three months. The recruitment was carried out on the
basis of the existing relationships between the team
members and the journalists. The interviewers took
notes during the conversations and recorded them if the
interviewee agreed. Afterwards, the notes were discussed
with other team members and common themes were
collected in an online document.

Preferred communication channels. Each inter-
viewee had slightly different preferences regarding which
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channels they prefer when communicating with sources.
However, interviewees across the board highlighted in-
person meetings as the preferred way to build mutual
trust.

Signal was a clear favorite for digital communication.
This was mainly due to the disappearing messages fea-
ture and the level of trust the interviewed journalists
have in the Signal organization. Journalists often ask
sources to move to Signal from other channels such as
SecureDrop. In lower risk contexts WhatsApp was some-
times preferred in situations where sources were already
using that app, meaning there was no need to ask the
source to download another app. Other end-to-end en-
crypted (E2EE) messaging services that did not require
the exchange of phone numbers were generally not used
because of low public adoption.

For secure email, journalists we spoke to said that
they had had occasion to use end-to-end encrypted email
services such as ProtonMail. These were used principally
to permit asynchronous communication with sources, or
because one or other party did not want to share their
phone numbers. No journalist that we spoke to liked
PGP and they only used it to communicate with sources
in very rare circumstances. In particular manual key
management was seen as burdensome and difficult.

Several journalists also spoke of the usefulness of social
media direct messaging such as X/Twitter, BlueSky, and
LinkedIn. The ability to find people working in a certain
context also allowed them to reach out to potential new
sources.

SecureDrop was described as involving a large amount
of overhead in communicating across the newsroom. Due
to its technical complexity, reporters do not have direct
access to The Guardian’s SecureDrop instance. Instead
a small team of more technically adept editorial staff
access the server and facilitate the sharing of incom-
ing and outgoing SecureDrop communication across the
newsroom. Naturally, this introduces a large amount of
latency when responding to sources.

Fear of the cloud. All of our interview candidates
expressed reservations around tools that stored data in
ways that were not within the journalists’ control. Exam-
ples of online tools journalists are reticent to use include:
cloud storage (Google Drive, DropBox, etc.), collabora-
tive document services (Google Docs, Office365, etc.),
and voice transcription services (Otter.ai, etc.). In par-
ticular, many of these services have end-user agreements
and privacy policies that the journalists considered may
not provide sufficient assurances that data will be kept
private.

Source anonymity. Anonymity of sources is a topic
that came up with both reporters and editors. A jour-

nalist has responsibility to protect their sources, and
this may require that the source remains unidentifiable
by other parties. For sources that reach out to journal-
ists, while the initial contact may be anonymous, as an
investigation progresses it is unusual for the source to
remain completely anonymous to the journalist. This is
because the journalist will need to verify the claims that
the source is making. For example, if a source is making
claims about a company they work for, then the jour-
nalist may need to confirm that the source does actually
work for that company. There may be circumstances un-
der which the full identity of a source remains unknown.
But in all cases it is important that we clearly separate
between anonymity towards an external adversary and
anonymity towards the investigative reporter—both in
our system design and in communication with the user.

Document upload. Document upload was another
topic that came up during our interviews: sources fre-
quently have documents1 that they wish to share with
journalists. While CoverDrop does not allow upload of
documents, once the initial contact has been established,
the journalist can guide the source on how to use se-
cure document handover channels such as mailing hard
copies or using SecureDrop. The use of high-latency
channels for one-way document sharing is seen as more
acceptable than for messaging. As such, CoverDrop and
SecureDrop complement each other.

3.3 UX workshops

Based on our interviews with journalists, the UX re-
searchers built a model that captures the full process
and end-to-end user journeys that occur when journalists
work with a source. For this we held a series of workshops
where we developed the user journeys with stakehold-
ers. These were interleaved with the aforementioned
interviews so that insights from each process could be
integrated and challenged in the other one. The purpose
of the UX workshop and user journey was to understand
the scope and boundaries of CoverDrop so that we can
focus our development on the most impactful features.
A simplified user journey is illustrated in Figure 3 in
which we highlight the scope of CoverDrop.

Through these workshops, we concluded that the
CoverDrop project needs to be primarily concerned with
initial contact from sources, moderation of messages, con-
firming the validity of the information from the source,
and deciding if it is a story worth pursuing. The mod-
eration of messages includes filtering spam and abusive

1News organizations are required to have robust policies for
the circumstances under which such documents should or should
not be retained, and if retained, for how long. The details of these
are beyond the scope of this paper.



CoverDrop White Paper 8

Initial contact Moderation Verification

Receive and
store data

Story
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Story finalisation Finalise project Post project

Public Interest
evaluation

CoverDrop domain

Figure 3: A simplified user journey that shows the life-
cycle of an investigation.

messages, and then supporting the journalists in further
verification work with the source. Activities beyond this
point in the workflow, such as writing public interest
memos or receiving any data leaks, are outside the scope
of CoverDrop, and provide opportunity for other solu-
tions that can be either digital or non-digital in the
newsroom.

4 Architecture overview

GENERAL PROTOCOL This section discusses all involved
components including the back-end infrastructure, the
module within the news reader app, and the interac-
tions between these components. As such this section is
more technical than the conceptual overview (§2.2). The
back-end infrastructure consists of the CoverNode that
provides anonymity for incoming and outgoing messages
and various web services that publish dead drops and
key hierarchies. The existing news reader applications
(app) for Android and iOS are extended by a CoverDrop
module. These app modules are responsible for deniable
storage of the local state, sending of cover traffic, and
the user interface. Journalists use a Journalist Client
app on their devices to interact with sources. Figure 4
illustrates all components of the CoverDrop system and
the logical flow of data. Based on our threat model some
services are run by third-parties, such as the AWS Kine-
sis message streams and the CDN, while the sensitive
ones are deployed on-premises.

4.1 App module

We integrate the CoverDrop functionality in The
Guardian’s newsreader apps for iOS (§8.3) and Android
(§8.4) such that it is deployed through the iOS App Store
and Google Play to all the newspaper’s app users. Read-
ers can access CoverDrop from multiple entry points.
It is advertised through banners in the app, designated

call-outs in articles, and dedicated pages on the newspa-
per’s website which link to detailed instructions on how
to download the newsreader app and use CoverDrop.
In addition, CoverDrop can always be accessed via a
dedicated entry in the main menu of the newsreader app.
The app module is loosely coupled with the main app
allowing us to ignore the other aspects of the app for
the protocol discussion. The open-source code allows
customizing the branding so that it can be integrated in
other news reader apps as well.

Deniable storage (§8.6) is automatically created for
all users using a randomly selected passphrase when
they start the news application for the first time. On
every subsequent start of the app, the last-modified
timestamp of the file is updated. The contents are
always encrypted and padded to a fixed size. Hence,
the presence of the file and its observable metadata
do not leak information about the active usage of the
CoverDrop functionality. We note that, in general, our
deniable storage is not resistant against multi-snapshot
adversaries who can compare the content of the file at
two occasions. However, we rule this out in our threat
model (§2.3) as we assume that users notice when their
device has been captured. In that case they should follow
up with a full device reset.

4.2 CoverNode

The CoverNode, which runs on dedicated on-premises
hardware (§10.2), operates as a threshold mix node [4]
and provides anonymity for the users towards the jour-
nalists and network adversaries. For this it decrypts
the outer layer of the incoming messages and then adds
them to the mixing process. The CoverNode cannot
decrypt the inner layer containing the end-to-end en-
crypted message between the user and the journalist.
This mixing process then yields dead drops which are
signed and published via the API. Journalists later down-
load these dead drops to find new messages from users.
The opposite direction, from journalists to users, works
analogously. We operate multiple CoverNodes so that
in case of failures or maintenance, a fail-over can take
over. Section 10.1 covers more details.

As the CoverNodes are operated by the news organi-
zation, it requires that all users trust that organization
to operate honestly. This assumption is covered by our
threat model (§2.3). In future designs this trust require-
ment could be reduced by routing messages through
multiple CoverNodes operated by different news orga-
nizations. However, it remains out of scope for this
version.
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Figure 4: Overview of the full architecture including mobile devices and the back-end components. The web
services are either provided by third-parties (gray); written by us and running on third-party cloud infrastructure
(blue); or services running on on-premises hardware (green). The arrows in this chart indicate logical flow of
messages that include messages and cryptographic key information. The on-premises services do not allow any
incoming connection and instead use a pull-based approach.

A The CoverDrop module within the news app on the users’ devices sends cover and real messages to
the CDN which then B writes them to the Kinesis stream using the Appender microservice. The journalist
messages are routed via the API service and then written to the respective stream B’ . This allows to authenticate
the journalist clients. C The CoverNode mixes the incoming messages and publishes dead drops to the API
service. D The dead drops and the key hierarchies are persisted in a database. E User and journalist apps
download dead drop and key hierarchies through the CDN which caches the responses. F The CoverNode
interacts with the Identity Service to rotate its messaging and identity keys. G The Identity Service protects
special provisioning keys that sign key rotation requests including those published by the journalist clients. H All
long-term secrets, including the organization key, are kept on an air-gapped device which can create signed
requests to install new provisioning keys. I All services generate high-level log information that are collected
centrally for monitoring. Those emitted by on-premises services are carefully restricted to limit side-channels.
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4.3 Web services

Web services comprise all components that are run on
third-party cloud infrastructure. As such we assume
that they operate under an honest-but-curious model,
i.e. follow the protocol, but without any confidentiality
guarantees. The access to these web services is routed
through the regular CDN of the news organization. This
allows the app to rely on the organization’s already
trusted SSL certificates and makes it harder to block
access to the CoverDrop services without also disrupting
access to the other parts of the app. The CDN also
caches the published dead drops and key hierarchies to
provide reliable and fast responses.

Messages from users are written into a message queue
from a CDN endpoint via the Appender microservice.
Journalist messages are routed via the API to enforce
authentication. The CoverNode reads them from both
message queues using a polling loop. It then posts
the generated dead drops to an authenticated endpoint
provided by the API service. The API service verifies
the public signature of the proposed dead drops and
then adds them to its long-term storage which in turn
makes them available to the clients through the CDN.

4.4 Journalist Client

We deploy a dedicated Journalist Client app to the de-
vices of the participating journalists. It continuously
downloads dead drops for the journalist and decrypts
incoming messages. Replies by the journalist are en-
crypted and added to the respective message stream via
an authenticated API endpoint. The client also rotates
the messaging and identity keys for the journalist by
queueing such requests via the API from where they are
regularly pulled and processed by the Identity Service.

Similar to the user-facing CoverDrop module in the
apps, the Journalist Client encrypts all local storage
under a passphrase. Since journalists are expected to
have such software on their computers, we can avoid
the added complexity of plausibly deniable storage.
The storage contains the journalists long-lived iden-
tity keys Kjournalist,id, the short-term messaging keys
Kjournalist,msg, and the chat histories.

In a next iteration we want to add group communi-
cation between these journalist clients. This will enable
hand-over procedures (e.g., a source is being delegated to
an expert in that area) and collaborative spam filtering.
For this the clients will use a Local-First approach [5]
and synchronize via an end-to-end encrypted messaging
layer such as MLS [6].

5 Key management

PROTOCOL CoverDrop uses a dedicated key hierarchy to
certify participants, authenticate messages, and facilitate
key rotation. The full key hierarchy (see Figure 5) is
stored, updated, and published by the API web service in
a single document. We use Curve25519 keys throughout
our protocol for ECC signing and key agreement.

5.1 Key hierarchy

In our system the news organization maintains a long-
term organization key Korg which is generated on an
offline computer and stored in a secure location2. During
rare ceremonies this key is retrieved to sign two provi-
sioning keys Kcovernode and Kjournalist which have a
medium-term lifetime and are used as signing keys for
all CoverNode and journalists keys respectively. This
intermediate layer of provisioning keys allows the op-
erators to rotate child keys more easily and frequently
as well as onboard new journalists without accessing
the organization key. The CoverNode has one identity
key Kcovernode,id that is rotated every three months. It
signs messaging keys Kcovernode,msg of which multiple
can exist concurrently and that have a lifespan of two
weeks and are used to decrypt and encrypt incoming
messages. Similarly, each journalist has one identity
key Kjournalisti,id and a signed set of messaging keys
Kjournalistsi,msg with a lifespan of two weeks. Journal-
ists can rotate their identity keys by sending a message
of a challenge and their new public key, both signed with
their current key, to the Identity Service which holds the
Kjournalist provisioning key.

Organization key. Our top-level and most protected
key is the organization key Korg that acts as a trust
anchor for the rest of the key hierarchy. The organization
key is generated offline in a key generation ceremony
and an initial set of provisioning keys are generated and
signed. These secret keys are sealed in tamper-proof
bags, and serial numbers are recorded. These sealed
copies are then given to designated staff members and
stored in secure locations.

The organization key is rotated every year by repeating
the ceremony and publishing the new public keys. The
relatively short rotation period ensures that processes
are regularly practiced. By default, the currently valid
organization public keys are included in the apps when
they are distributed from the respective app stores. In
addition, The Guardian can include hashes of currently

2In practice, a news organization might split the secret key into
multiple shares under a threshold secret sharing scheme [7] and
store these in different safe places to avoid a single point of failure.
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Figure 5: Overview of the full key hierarchy that that is rooted in the organization key Korg. Green indicates
offline keys, yellow indicates keys kept on dedicated machines, and purple is used for keys on end-user devices.
The independent user key hierarchies are stored in the encrypted deniable storage that is unlocked using the
passphrase and (if supported) the non-extractable key Kuser,SE that is lives within the Secure Element.

valid organization keys in the printed newspaper to allow
for out-of-band verification.

Journalist and CoverNode provisioning keys.
The provisioning keys Kjournalist and Kcovernode are
used to sign journalist and CoverNode identity keys,
respectively, when they are rotated. Their use is closely
monitored as part of the key rotation service (§5.2). The
secret keys are used automatically by the key rotation
service for signing new identity keys. In addition they are
used by CoverDrop administrators for on-boarding new
journalists or for manual rotations in case of suspected
compromise.

CoverNode identity and messaging keys. The
CoverNode identity keys are used to prove the iden-
tity of the CoverNode service, to verify messaging keys,
and to sign the published dead drops. The CoverNode
messaging keys are used by both the users and jour-
nalists to encrypt messages to the CoverNode. With
the CoverNode key material, an adversary would be
able to deanonymize sources by decrypting the sent mes-
sages. Since we operate multiple CoverNodes for fail-over
purposes, each CoverNode runs with their own indepen-
dent identity and messaging keys that are signed by the
CoverNode provisioning key Kcovernode.

We plan to use Trusted Execution Environments
(TEEs), such as Intel SGX, as an additional defense-in-
depth to ensure that the key material is never exposed
in memory unencrypted.

Journalist identity and messaging keys. Identity
keys are used to prove the identity of a journalist and to
verify their messaging keys. Messaging keys are used by
journalists for encrypting messages. They are relatively

short-lived and are rotated frequently in order to mini-
mize the damage if a given key is compromised (§6.3).
The journalists’ keys are stored in a passphrase pro-
tected vault which is managed by the dedicated Journal-
ist Client app (§4.4) that automatically rotates identity
and messaging keys for the journalist. The encrypted
vault, which also stores existing messages, can be copied
to external storage for backup purposes.

5.2 Key rotation
Journalist and CoverNode identity keys are automati-
cally rotated using a key rotation service. Once a journal-
ist’s client decides to rotate a key it generates a new key
and sends it to the rotation service along with a times-
tamp, all signed by their latest identity key—analogously
for the CoverNodes. The rotation service verifies that
the signature is valid and then returns a signature for
the new public key using Kcovernode or Kjournalist re-
spectively. Our shared code contains static definitions
of the expected lifetimes of each of the keys and their
expected rotation periods so that all clients and services
follow the same behavior.

A monitoring service, inspired by Certificate Trans-
parency [8], regularly polls the public key hierarchy snap-
shot to monitor correct rotation of keys. In particular, it
sends a warning email to the development team if keys
approach the end of their validity time and appear to
have failed to rotate automatically. The administrators
can also remove keys suspected of being compromised.

6 Protocol details
PROTOCOL This chapter describes the messaging proto-

col between the clients and its cryptographic operations
in detail.
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6.1 Cryptographic primitives

For the CoverDrop protocol and its messages we use
four cryptographic primitives: a padding scheme for
strings and three hybrid encryption schemes. We use
the cross-platform cryptography library LibSodium for
encryption, signatures, and passphrase hashing. Lib-
Sodium is written in C and used by all our components
through language-specific bindings which ensures inter-
operability and allows us to use similar implementations.
LibSodium is an “opinionated” library which means that
it provides secure defaults, limits choice, and its API
primarily exposes high-level primitives. For signatures
we use the Ed25519 scheme.

PaddedCompressedString. We call our padding
scheme for the text messages PaddedCompressedString.
It takes a global target length (we use padtarget=512)
and the user message. The scheme first compresses the
user message, then adds a length prefix, and finally fills
up the array with 0x00 bytes until it reaches padtarget.
Natural language text compresses very well allowing the
user to send text messages with more than padtarget
characters. In our implementation we use GZip which
typically allows more than 800 characters to fit into a
single PaddedCompressedString. Other compression al-
gorithms such as brotli or zStd with custom dictionaries
might allow for even better compression ratios at the
cost of additional library dependencies.

AnonymousBox. The AnonymousBox encrypts a mes-
sage for a recipient using their public key. It maps
to LibSodium’s SealedBox which uses X25519 for key
agreement and XSalsa20-Poly1305 for authenticated en-
cryption of the payload.
AnonymousBox internally generates an ephemeral

public-private key pair for each message and then uses
ECDH for deriving the shared secret for encrypting the
payload. The ephemeral public key is sent together with
the ciphertext. Since a new ephemeral key is generated
for each execution, the nonce is implicitly derived from
the included public key. Since no long term key material
of the sender is included, messages are unlinkable and
the sender remains anonymous towards the recipient and
third-parties with access to the cipher text. The fresh
ephemeral key pair ensures CPA security. The total
overhead for AnonymousBox is 48 Bytes.

MultiAnonymousBox. The MultiAnonymousBox al-
lows encryption of a message for multiple recipients using
their public keys. For this it encrypts the message un-
der a fresh secret key k using XSalsa20-Poly1305. The
secret key k is then encrypted for each of the recipients
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Figure 6: Overview of the message types sent between
users, the CoverNode, and journalists. The cylindrical
storage symbols represent the dead drops.

under their public key using AnonymousBox3 which are
prepended to the final ciphertext. The fresh ephemeral
key pairs of the AnonymousBoxes ensure CPA security.
Since k is not reused, XSalsa20-Poly1305 can use a con-
stant nonce. The overhead for MultiAnonymousBox con-
sists of 16 Byte for the Poly1305 MAC and 80 B for each
recipient. As we always use it with two recipients (the
active CoverNode and its fail-over), the total overhead
is 176 Bytes.

TwoPartyBox. The TwoPartyBox encrypts a message
for a recipient using their recipient’s public key and the
sender’s private key. It maps to LibSodium’s CryptoBox
which uses X25519 for key agreement and XSalsa20-
Poly1305 for authenticated encryption of the payload.

Without the need for including an ephemeral public
key it is more space efficient than AnonymousBox. This
scheme also provides authenticity as the recipient can
only decrypt the message by knowing and using the
sender’s public key. The ciphertext is randomized us-
ing an included nonce to ensure CPA security. In our
TwoPartyBox we attach the nonce to the end of the
message resulting in a total overhead of 36 Bytes.

6.2 Messages formats

In the CoverDrop protocol messages are exchanged be-
tween users and journalists via the CoverNode. For this
purpose the inner messages between user and journalists
are wrapped into an outer message that is decrypted
inside the CoverNode. Figure 6 illustrates the logic
flow of messages and their types between the parties.
Figures 7 and 8 show the structure of all message types.

We call a message from the user to the journalist
UserToJournalistMessage (U2J). The message con-
tains the text padded with PaddedCompressedString
and the user’s public encryption key. This content is en-
crypted using AnonymousBox under the messaging key of

3The AnonymousBox comes with its own authentication tag that
is not strictly needed here. Removing it would save 16Byte per
recipient. We opted for composing proven primitives of LibSodium
instead of a more custom key agreement.



CoverDrop White Paper 13

U2J:

U2C:

C2J:

For CoverNode 1 For CoverNode 2

Figure 7: Format of the messages that are being exchanged from users to journalists via the CoverNodes. The
U2J uses an AnonymousBox to encrypt the contents to the journalists. The U2J message is wrapped in an
MultiAnonymousBox addressed to both CoverNodes before sent by the app. When exiting the CoverNode, the
U2J message is wrapped in a TwoPartyBox addressed to the respective journalist.

J2U:

J2C:

C2U:

For CoverNode 1 For CoverNode 2

Figure 8: Format of the messages that are being exchanged from journalists to users via the CoverNodes. The J2U
use an TwoPartyBox to encrypt the contents to the user. The J2U message is wrapped in an MultiAnonymousBox
addressed to both CoverNodes before being sent by the Journalist Client. The message C2U leaving the CoverNode
is identical to J2U.

the journalist. The resulting ciphertext and a recipient
tag is wrapped in a UserToCoverNodeMessage (U2C)
using MultiAnonymousBox with messaging keys of two
CoverNodes. It is then sent to the Kinesis stream from
which the active CoverNodes read the messages. Cover
messages are created using the same approach, but set
the recipient tag to an empty value and generate an
arbitrary U2J.

The CoverNode decrypts the incoming U2C and learns
the included recipient tag. If a recipient tag is associated
with a journalist, i.e. it is not a cover message, it adds
the message to the mixing process (§4.2). Once sched-
uled for sending, the outgoing message is wrapped in
a CoverNodeToJournalistMessage which is encrypted
as a TwoPartyBox using the public key under the re-
cipient tag. This extra layer is required, as otherwise
an adversary with network access could observe when a
message that they have sent leaves the CoverNode. Such
information would be helpful to them for performing
n-1 attacks and similar deanonymisation attempts.

For the opposite direction the journalist pad their
response using PaddedCompressedString and encrypt
it using a TwoPartyBox under their own private key
and the public key of the sender that they learned
from the received U2J message. The resulting mes-
sage is called JournalistToUserMessage (J2U). It is
wrapped in a JournalistToCoverNodeMessage (J2C)
using MultiAnonymousBox which is then sent to the
CoverNode using an authenticated end-point. The J2C
payload includes a flag to indicate cover messages. Sim-
ilar to the messages from users, the CoverNode will
unwrap the outer layer of the J2C messages, drop cover
messages, mix real J2U messages, and publish user-facing
dead drops. No extra layer of encryption is needed be-
tween the CoverNode and the users because the adver-
sary cannot send J2U messages via the authenticated
end-point. This allows to keep the size of the user-facing
dead drops small.
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6.3 Forward Security

The original CoverDrop protocol [2] used long-lived keys
for encrypting all messages. This is inadvisable in prac-
tice because later compromise of key material, e.g., a
device is stolen, would allow an adversary to decrypt
previously recorded messages. Instead, modern E2EE
messaging protocols support Forward Security (FS) [9]
which protects previous messages by using short-lived
secrets for the actual encryption.

Our protocol provides FS by rotating the messaging
keys. For this each journalist generates a new messaging
key pair Kjournalisti,msg every day, each valid for two
weeks. The public keys are signed with the respective
identity key Kjournalisti,id and published via the API,
from which clients always pick the most recent one. The
private keys are kept by the journalists and deleted
after their expiry date. Similarly, users can rotate their
messaging key pair Kuser by including a new one in a
messages signed by the current one.

While there are alternative approaches for achieving
Forward Security, we think they are not practical in
our setting. Most commonly, end-to-end encrypted mes-
saging protocols derive short-term session keys through
Diffie-Hellman key exchange. In our case this approach
is unfavourable as the high latency of our system means
that interactive key exchange could take up to multiple
days if one party is not actively using the CoverDrop
feature. In particular, users would have to unlock their
CoverDrop session regularly to allow the protocol to
make progress, as our threat model does not allow us
to store message state outside the encrypted deniable
storage. This is in addition to the high-latency mixing
by the CoverNode.

We also considered puncturable encryption schemes
such as the work by Green and Miers [10]. However,
we have not found a mature implementation that is
available for all targeted platforms. Also, an attacker can
perform a denial-of-service attack against the journalist
messaging key by sending many messages that in turn
result in many punctures. Ultimately, such a design
would also require support for key rotation as per our
chosen solution.

7 UX Design

UX A messaging app enhanced with security protec-
tions is only secure if it is usable. We explored differences
to other (secure) messaging apps that users might be
familiar with so that we can give the right directives for
correct usage and explain short-comings. In this section,
we discuss the main app design and how it is based on
the insights that we gained during our UX interviews
and workshops.

7.1 Entry points
Users can navigate to the CoverDrop feature through
banners in articles and the homepage, as well as a dedi-
cated item in the main menu. Both the app and website
already have similar banners that guide readers to exist-
ing solutions such as Signal and SecureDrop, and they
have been used successfully for many years. Since Cover-
Drop has no implementation for the web, banners on the
website explain how to install the app and navigate to
the CoverDrop feature. The always visible item in the
app’s main menu is important to allow users to easily
return to the CoverDrop functionality to check for re-
sponses without having to navigate back to the original
article.

7.2 Start screen and on-boarding
The start screen of CoverDrop explains its purpose and
allows users to browse further offline documentation
that comes bundled with the app (see Figure 9). Cover-
Drop exclusively uses a dark color scheme that The
Guardian also uses for their investigative content. The
stark contrast to the lighter colors in the rest of the app
emphasizes that CoverDrop is an independent part of
the app and does not share state or login information
with the main areas of the app. At the same time, the
contrasting color scheme carries the risk of making it
easier to spot CoverDrop screens for a nearby observer
via shoulder surfing, but we think that this risk is ac-
ceptable in order to give the user confidence that they
are in a different section of the app.

When starting a new session, the user is first given
a short introduction on how CoverDrop works. This is
done via a three-page tutorial (see Figure 10) that is
common in many apps. The copy has been carefully
chosen to manage the user’s expectations, e.g., responses
might take a few days or there might not be any, and
the user’s responsibilities, e.g., to memorize a passphrase
that is required for later access to the inbox and keeping
messages short and concise.

7.3 Creating a new session
The creation of a new session is the most critical step
because it requires the user to memorize a multi-word
passphrase. Therefore the first screen repeats the im-
portance and shows all word fields blinded. This forces
the user to interact with the “Reveal passphrase” button
that shows the individual words. Using a separate “Hide
passphrase” button the user can interactively learn all
words of the passphrase. Once they feel confident, they
are tested on the next page where they have to enter the
full passphrase through which they also gain familiarity
with the unlocking flow.
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Figure 9: Left: when opening CoverDrop the distinctive color change reminds the user that they are entering a
separate part of the app. Middle: when creating a new session, a clear warning explains that this will remove all
previous messages. Right: the app shows a warning when it detects an unsafe configuration.

Figure 10: When creating a new CoverDrop session, three tutorial screen introduce the user to its operation and
security guarantees.
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Figure 11: When creating a new CoverDrop session the user first memorizes a generated passphrase and then
confirms it by typing it on a new screen.

Figure 12: When sending the first message a form guides the user. The linked help screen explains what is
important in an initial message and provides examples. If the text is too long, an error is shown. A confirmation
screen repeats important information on how the system works.
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Figure 13: When returning to CoverDrop the inbox shows the currently active session. In the next screen we see
the state of the thread right after the first message has been sent. The user then revisits the screen 24 hours later
to find a response by the user. They then send a reply.

Figure 14: When entering the password we highlight words that are not in the word list and hence likely a result
of a mistake. If all words are valid, but the passphrase is wrong, a generic error message is shown that makes clear
that failing to unlock does not imply that CoverDrop has been used before.
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7.4 Message composer

Our conversations with staff working with existing anony-
mous source communication channels highlighted that
a common problem was a lack of useful information in
the initial message sent by the source. This can make it
difficult to ascertain if the source is worth speaking to,
or which subject matter expert in the news organization
should speak with them. Sources are often insufficiently
specific, e.g., “I know about a major corruption story”.
Or they can wrongly assume the recipient knows the
context of their claim, e.g., “Mr Smith was lying on the
news yesterday. It was 43 people”.

In order to help the source provide more helpful infor-
mation up front, for the very first message that gets sent,
we prompt the user to provide some context and provide
examples of good messages via extra help screens. These
have been described as helpful by reporters to quickly
triage large numbers of incoming messages. This should
help the journalist decide if the source is worth a follow-
up. The journalists also stressed the importance of being
able to take a conversational tone during interactions, in
order to develop a human relationship with their sources.

Because all messages have to be the same size, the text
entered by the user must be concise. Since we use an
compression algorithm, we cannot display a simple num-
ber indicating how many characters are left as some text
compresses better than other. Instead, we show an in-
teractive progress bar that incorporates the compression
step in its prediction (see Figure 12).

7.5 One active conversation at a time

Traditional instant messaging chat applications allow
a user to open as many chat sessions with other users
as they need. However, CoverDrop conversations are
expected to be scarce and short-lived, as well as in-
tended for a limited audience—one journalist or one
team. Hence, we decided that the CoverDrop imple-
mentation will only allow one active session at a time
(see Figure 13), with the others becoming invalidated
and read-only as soon as a new session is started or if
the user is handed over to a different point of contact.
This is shown clearly in the inbox by highlighting the
currently active conversation and displaying the inactive
conversations smaller and after a header that reads “pre-
vious conversations”. We believe that this helps the user
to understand who they are currently talking to and
disincentivizes them from contacting multiple persons in
parallel and thus causing extra coordination and dedupli-
cation work for the journalists . Even if a source would
have two independent topics they want to talk about,
it is preferred that this is moderated by one dedicated
point of contact.

7.6 Chat threads and message state

Once users have sent their initial message, the source will
access the message history through a chat thread user
interface (see Figure 13), similar to popular messaging
apps such as WhatsApp or Signal. This more familiar
interface also allows journalists to take a conversational
tone with sources, helping them to build trust with the
users. The design of the Private Sending Queue (§8.7)
allows us to highlight which messages are still pending
to be sent or have been sent already.

7.7 Wrong passphrases do not delete the
messaging vault

The original paper [2] suggested that incorrect
passphrases should delete the user’s vault, regardless
of whether there was a pre-existing used mailbox or the
generic empty one. However, this adds additional stress
to the unlocking procedure and might yield accidental
data loss. Most importantly, deleting the mailbox would
not add security in our threat model as an adversary
could abort the algorithm before the deletion takes place.

Instead we now show a generic warning when the user
enters a passphrase that fails to unlock CoverDrop (see
Figure 14). In particular, we make it clear in that mes-
sage that a failed attempt does not imply that CoverDrop
has been used before. We believe that this is important
in case a user is forced to try to unlock CoverDrop by
people who do not understand the security architecture
of our system. At the same time we can highlight words
that are not in the word list as potential spelling mistakes
(see Figure 14). This does not leak any information, as
the word list is considered public.

7.8 Disappearing messages

Disappearing messages are a common feature in main-
stream secure messaging apps. They provide privacy and
plausible deniability since the record of a conversation is
removed. We include disappearing messages as a privacy
feature in the implementation of CoverDrop as follows:
any messages that are sent from or received to the user’s
CoverDrop account have a limited availability window of
two weeks. After this time, the message is considered to
have expired and its contents are removed from the chat
history. Within the app implementation, this concept is
explained to users at multiple points.

8 Mobile apps
SWE PROTOCOL Users and potential sources access

CoverDrop through a dedicated section in the news-
reader apps for Android and iOS. We chose to develop
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CoverDrop only for mobile to benefit from stronger app
isolation, a more homogeneous platform, and access to
strong hardware security. However, it also means less
control over the platform.

8.1 Development approach

During the development process, all app code was de-
veloped in a repository independent of the main news
reader application. In particular, we created a sample
reference application to test the functionality and UI.
This allowed to minimize dependencies on the developer
team of the main news reader app and thus allow for
more agile development. On both platforms the main
CoverDrop logic is encapsulated in a core library that
provides a simple API to the main app. The API hides
the internal state from the integrating developers to min-
imize the risk of wrong use as it internally checks that
methods and data are accessed in the intended manner.

While the core library is managed separately, the UI
code is part of the main news reader app repository.
Changes to these files will require review by the main
app developers to ensure that it fits well with the other
UI. Direct integration allows us to re-use resources such
as fonts and color definitions in the CoverDrop UI code.
The core library remains in an external repository that
is included as a sub module. This allows the Cover-
Drop team to update the protocol without having to go
through the UI review process of the main application.

We internally evaluated the implementations for both
iOS and Android using the OWASP Mobile Application
Security Verification Standard (MASVS) [11]. The app
code including both the core and the UI modules has
been part of the third-party security audit [3].

8.2 Repository architecture

The persistent storage of the state of the CoverDrop
module is divided into a PublicDataRepository and
a PrivateDataRepository as summarized in Table 1.
This division enforces clear separation between the public
data and sensitive private data.

The PublicDataRepository caches the latest pub-
lished dead drops and published key hierarchy from the
API. It is updated on every app start, but not more
often than every 24 hours, and old entries are evicted
after 14 days. The app downloads of these end-points
in parallel to the existing download of the news articles
allowing us to make use of the already active network
connection and hence reduce our impact on battery life.
Since the PublicDataRepository is updated by every
user regardless of whether they used CoverDrop, its con-
tents leak no information to an adversary about active
CoverDrop usage.

PublicDataRepository

– Cached dead drops API responses
– Cached key hierarchy API responses
– Private Sending Queue

PrivateDataRepository

– User messaging key pair Kuser

– Current threads and messages
– sk for the Private Sending Queue

Table 1: All app state is stored in a
PublicDataRepository that is publicly readable
and a PrivateDataRepository that is stored in the
encrypted vault under the user’s passphrase.

The PrivateDataRepository stores all sensitive in-
formation tied to an active CoverDrop session4. The
stored data includes the user’s private messaging key
pair and all current conversations and message threads.
This PrivateDataRepository is stored inside the plau-
sibly deniable storage (§8.6) which is padded to a fixed
size and encrypted with a passphrase.

8.3 iOS

Following our development approach (§8.1), the iOS code
consists of a core and a UI module. The core module
also exposes hooks that integrate with the app’s lifecycle.
On iOS we use swift-sodium as a wrapper library around
LibSodium.

Our iOS implementation for the deniable storage uti-
lizes the SecureElement (SE) that is common in modern
iPhones. Apple first introduced the SE with the iPhone
5S (released 2013) and provides an API to developers on
iOS 13 (released 2019) and newer. For our target audi-
ence we estimated near perfect availability. We expand
on the implementation details of the deniable storage in
Section 8.6.

All local files, such as the data from the
PublicDataRepository and PrivateDataRepository,
are stored in the applicationSupportDirectory which
makes sure they are not visible to the user through the
Files app. We also set the isExcludedFromBackup flag
so that the files are excluded from any iCloud backup
and remain locally on the device.

4An active CoverDrop session begins once a user has created a
storage with a passphrase and includes all subsequent uses under
the same passphrase



CoverDrop White Paper 20

8.4 Android

We implemented the Android modules using Kotlin and
the core module enforces a clear separation with a mini-
mal API interface (§8.1). The code follows the current
best-practices from the Android developer guide and
adopts a reactive architecture using data repositories,
co-routines, and state flow. The reactive design further
incentivizes that all logic is encapsulated in the core
module and that the UI only displays the derived UI
state and emits events.

On Android, Secure Elements (SE) are less widely
supported than on iOS. Using the Google Play Console
we estimate the support for SEs to be around 50% by
filtering for devices with FEATURE_STRONGBOX_KEYSTORE
support. Due to a large number of devices without SEs,
CoverDrop on Android requires a fallback mode for key
stretching. We expand on the implementation details of
the deniable storage in Section 8.6.

Like most Android apps, The Guardian news reader
app integrates with third-party libraries to monitor
crashes and performance issues of the deployed applica-
tion. As such they could potentially leak whether a user
is using the CoverDrop feature, e.g., when the name of
an activity is included in a crash report. Therefore, we
require the integrating app to implement life-cycle call-
backs to stop those monitoring libraries when CoverDrop
is started. In addition, all CoverDrop files are stored in
directories that are excluded from device backups using
the respective XML directives.

CoverDrop employs best-effort checks to warn the user
when it detects potentially insecure circumstances. A
(dismissible) warning screen is shown if, for instance,
the smartphone is rooted, another window overlays
the CoverDrop activity, or the device has no screen
lock. In addition, all CoverDrop windows are marked as
FLAG_SECURE so that the OS prevents screenshots and
hides the activity preview when switching applications.

8.5 Message sending strategy

Mobile operating systems limit the control of mobile
apps to schedule background tasks. This allows plat-
forms to batch operations and block infrequently used
apps in order to save energy. We confirmed this on both
platforms and therefore implemented a custom message
sending strategy using a single event after the app was
exited. In addition, we added a fallback re-try mecha-
nism that runs the missed event when the app is started
the next time and the logs indicate that the background
worker has not been executed successfully.

In the original paper, we described a strategy where
the news reader app would send a message from an
outgoing queue every hour. This simple approach does

not work well in practice: it leads to at least one hour
delay for outgoing messages, it wastes resources when
the phone is not being used, and it cannot be reliably
implemented due to the aforementioned restrictions of
background processes.

In the new protocol, the news reader app schedules
sending multiple messages after a random delay when
the user leaves the app. This random delay is drawn
from an exponential distribution with a mean delay of a
few minutes (typically 10minutes). This does not leak
any additional information to the adversary, as they
can already observe the regular traffic of the news app
and thus expect that CoverDrop messages will be sent
when the user leaves the app. The random delay helps
to hide usage of the CoverDrop feature at the end of
the session as it introduces an additional unpredictable
pause between the last regular news story download
and sending the messages which are both traffic events
observable by the adversary. Also, this strategy avoids
sending messages when the user has not used the app
recently and thus limits the burden on inactive users.

8.6 Plausibly Deniable Storage

In the client apps, the CoverDrop library stores
all sensitive data, i.e. the content of the
PrivateDataRepository, in an encrypted container
that provides plausible deniability against single-
snapshot adversaries. This means that an adversary
that captures a smartphone and gains full access to the
storage cannot tell whether the user has been using the
CoverDrop functionality. We achieve this by padding
the content to a fixed length before encrypting and stor-
ing it. Also, on the first app start, the app creates a
fake instance of this storage by encrypting an empty
repository with a randomly chosen passphrase.

A typical approach would derive a key from the user
passphrase using, e.g., Argon2, and then use this with
an authenticated encryption scheme, e.g., AES-GCM, to
encrypt the padded content. However, this approach is
vulnerable to offline brute-force attacks, as an adversary
can copy the ciphertext and then independently try
passphrases on many machines in parallel. Instead in our
approach we make the key stretching routine dependent
on an unextractable secret that is stored inside the Secure
Element (SE). Hence, an adversary is limited by the
effective bandwidth of the SE. In turn, this allows us to
generate short passphrases for the user.

For the CoverDrop mobile apps we use the Sloth
scheme [12] that we have pursued as an independent
project and offers important improvements compared
to the approach presented in the CoverDrop paper. For
iOS we designed a new variant called RainbowSloth
that works with the limited API of the Secure Enclave
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on Apple devices. For Android, an optional ratchet
mechanism provides plausible deniability against multi-
snapshot adversaries. The implementations are available
as open-source libraries for both platforms.

We choose our parameters as follows to guarantee that
an exhaustive search of the password space requires an
adversary at least 100 years. We use the EFF word list
that consists of |w| = 7776words.

On all iPhones and Android devices with SE-support
we use Sloth with a targeted key derivation time
of tsloth = 1 s. By setting the passphrase length
to three words, we have a passphrase entropy of
log2(7 776

3) ≈ 38.77bits which translates into tsloth ×
238.77 ≈ 14 000 years for an exhaustive search.

For devices without SE-support we have to rely on Ar-
gon2 combined with a longer passphrase. Since Argon2 is
a memory-hard function, the adversary advantage is de-
fined by their available memory and the chosen memory
parameters. We assume that the adversary has access
to a cluster with 1000 TiB of RAM and enough CPUs to
compute a hash in 10 ms. We set the passphrase length
to five words (passphrase entropy: 64.62bits) and the
memory parameter to 256 MiB. In this setting the adver-
sary would need 256MiB

1 000TiB × 264.62 × 10ms ≈ 2 201 years
for an exhaustive search.

8.7 Private Sending Queue

In CoverDrop the messages written by the user are not
sent immediately. Instead, a sending event is scheduled
after each app exit regardless of whether CoverDrop was
used or not. A background worker then reads the user-
composed messages from a queue when the sending event
fires. In addition, we want to ensure that an adversary,
who captures a devices while there are messages in the
queue, is not able to gain any information about the
number of real and cover messages.

The PrivateSendingQueue provides these properties
and it also improves efficiency by ensuring that real mes-
sages are sent before any cover messages. Its persisted
data structure consists of a constant-size queue where
the elements are pairs of messages msgi and tags tagi.
Messages are U2C ciphertexts and the tags are 128 bit
long hints that allow the app to identify which messages
are real messages only when given access to a secret key
sk that is stored in the PrivateDataRepository. This
is illustrated in Figure 15. If there are no real messages,
e.g., when CoverDrop has not been used yet, all items
of the queue will be cover messages and all hints will
be randomly generated byte sequences. At all times,
the queue maintains the invariant that the tagi is equal
to hash(sk,msgi) if and only if the message is a real
message. Let hash be a keyed hash function, such as
HMAC, whose output is indistinguishable from random

✗

✗

new real messages
are added here

direction of pop()

new cover messages

Figure 15: Sample of a private sending queue containing
two real and two cover messages. Blue indicates secrets
and computations that are only possible with the secret
sk that is stored in the PrivateDataRepository.

so that the invariant can only be verified with sk.

When the user has written a new message and clicks
“Send” the message is first encrypted as a U2C message
as described in Section 6.2. Then the sk is used to find
the location of the first cover message in the queue, i.e.
the lowest index j where the tag does not match the
hash. We then replace msgj with the new message and
update tagj ← hash(sk, msgj). Compared to simply
enqueuing the message at the end of the queue, this
ensures that we send real messages in order and before
any cover messages. If the message queue is full, i.e.
there is no cover message that we can replace, the send
operation will fail. However, we believe that this is
unlikely for reasonable queue capacity. In our apps we
set the queue capacity to 8.

When the background worker is started by the send-
ing event, it removes the front-most message, sends it,
and enqueues a freshly generated cover message with a
random hint to maintain the size invariant. We note that
generating cover messages does not require access to any
private information. Hence, dequeueing a message and
filling the queue up with cover messages can be done
without accessing the PrivateDataRepository. In our
implementation we repeat this process twice for each
sending event and therefore always send the first two
messages. This makes sure that we include any clarifica-
tion or updates that the user might have sent right after
their initial message.

By storing the tagi information with the threads and
messages in the PrivateDataRepository, we can dis-
tinguish whether a recently composed message is still
pending or has already been sent. Note, as with the
plausibly-deniable encrypted storage, multi-snapshot ad-
versaries are excluded from our threat model.
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Figure 16: The Journalist Client login screens allows
choosing between different vaults.

9 Journalist Client

GENERAL SWE UX The Journalist Client provides
the user interface for journalists and manages their en-
crypted local state, the vault. It is implemented using
the Tauri framework which allows us to re-use a lot of
shared Rust code for API interactions, message handling,
and cryptographic operations. The front-end is built
using React.

9.1 User interface

When starting the Journalist Client, the journalist se-
lects an encrypted vault and enters their passphrase (see
Figure 16). By having separate vaults, journalists can
manage multiple identities on a single machine. The
main user interface (see Figure 17) is similar to mes-
saging apps that journalists are familiar with and have
mentioned in our UX workshops (§3.3). Each source
is represented by a separate thread and the identifier
is derived pseudo-randomly from their long-term pub-
lic key. Journalists can rename these as conversations
progress. The user interface includes typical features
such as highlighting unread messages, a preview of the
content, and the ability to mute conversations.

9.2 Encrypted vault

All state is stored in an encrypted vault using a long,
generated passphrase. It uses SQLCipher, an extension
of the SQLite database with encryption support, to
ensure robustness against crashes while writing. We
derive the encryption key from a five-word passphrase
using Argon2 with conservative parameters. Optionally,
the vault can be backed up by copying it to an external
storage medium or storing it in a folder that is already

Figure 17: The main user interface draws on familiar
UX patterns and expected chat behaviors.

backed up by the news organization’s IT team.

9.3 On-boarding and intervention

Journalists receive their original vault after an on-
boarding procedure during which a member of the admin
team will create a fresh vault on an air-gaped machine.
This process also generates the passphrase (to be written
down on paper) and a digital form for the Identity Ser-
vice that is signed by the offline journalist provisioning
key. The vault and form are copied onto a USB stick
and manually transferred to an internet-connected ma-
chine. The form is then presented to the Identity Service
via the API which counter-signs the initial identity key
and publishes it to the publicly available key hierarchy.
Now, the journalist is registered in the system and the
vault can be given to the journalist together with the
passphrase that is shared out-of-band.

The journalist provisioning procedure can also be used
for subsequent interventions. For example, it can sign
new identity keys. This might be required if the jour-
nalist’s machine has been declared compromised or if
the app has not been used for so long that the latest
identity key has expired. It also allows us to create
signed requests for changing the displayed journalist’s
name or description.

10 Backend services

GENERAL SWE PROTOCOL The backend comprises
the CoverNode (§10.1) and Identity Service that run
on hardened on-premise machines (§10.2) as well as the
CDN, API service, database, and Appender that run on
third-party cloud infrastructure (§10.3).
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10.1 CoverNode

The CoverNode is implemented as a Rust application
and runs on a hardened on-premises machine (§10.2).
As introduced in Section 4.2, it acts as a mix node to
guarantee anonymity of the sources towards journalists
and external adversaries.

During operations, the CoverNode decrypts the outer
layer of all incoming messages to learn the included
recipient tag and ciphertext. For most messages the
recipient tag will be an empty value which indicates
that it is a cover message and should be discarded. The
few messages with active recipient tags are added to an
internal queue. All messages (cover and real) increase
the counter for received messages c.

The mix node has two thresholds tmax and tmin. It
“fires” if the number of messages seen exceeds the maxi-
mum threshold c > tmax or if c > tmin and the duration
d passed since the previous dead drop was published.
The former condition ensures a maximum ratio of in-
coming messages to outgoing messages while the latter
condition ensures that latency is kept low if there are
only few messages. We present plausible parameters
ranges for production usage in Appendix B.

In both cases, a new batch of size b is created, signed,
and added as an output. If the number of real messages
in the queue exceeds b, some messages remain in the
queue for the next batch. If the number of real messages
in the queue is lower than b, the batch is filled up with
cover messages. Afterwards, the counter c and duration
d are reset. After the dead drop has been published, the
CoverNode also persists a Kinesis checkpoint to indicate
that all prior messages have been fully processed. We
expect that there will be many more cover messages
than real messages. Hence, we can choose b≪ tmax so
that the output dead drops are small.

The CoverNode requires constant access to its key
material for decrypting incoming messages and signing
outgoing dead drops, which increases the risk of the
keys being recovered through physical access. With
access to the key material, an adversary could read or
send arbitrary messages within the key validity dates.
However, the critical operations including decryption,
mixing, and signing, are well contained.

Therefore, we plan to run these critical operations
including the generation of key material inside a TEE,
such as Intel SGX, to ensure that the raw key material is
never exposed to the main memory. This provides impor-
tant defense-in-depth in case of compromised machines
and physical access. However, it also makes recovery of
failed instances harder which is why we added redun-
dancy in the form of a secondary fail-over CoverNode
instance to our architecture.

10.2 On-premises hardware

In our threat model we require that the CoverNode and
the Identity Service run on trusted infrastructure that is
wholly under the control of the news organization. This
ensures that no third party can access key material or
learn about the inner state of the CoverNode mixing
algorithm. Therefore we deploy these components on
our own (rather than cloud) machines that are stored
in secure rooms within the news organization’s office
properties. Such facilities already exist and are regularly
used for handling sensitive data during investigations.
They are secured with access control and CCTV.

The machines are passphrase protected and run a
hardened Linux operating system. All access is logged
and the login details are shared only between members
of the CoverDrop development team. Overall, our setup
is very similar to the existing SecureDrop deployment
in the same organization.

All on-premises machines are connected to a dedicated
internet line such that they do not share any network
infrastructure with the rest of the news organization.
In addition, a hardware firewall blocks all incoming
TCP/UDP connections. Instead, all on-premises services
are using a poll-based strategy where they connect to
external services, e.g., fetching entries from the Kinesis
streams.

10.3 Cloud services

The API is a public-facing web service which serves
public keys for the organization, journalists, and desks.
It also stores dead drops and journalist information in a
Postgres database. The journalist information includes
their id, their display name, a description, and a special
flag to mark the virtual desk accounts. Virtual desk
accounts are not tied to an individual journalist, but
shared among a small group of staff members working
on a specific topic. In the app’s recipient selection screen
they are listed separately, but otherwise messages are
encrypted and processed in the same way as messages
to regular journalist accounts. The API is versioned to
allow evolution of the backend endpoints and message
formats. The GET endpoints for public key and dead
drop retrieval are cached by the CDN for faster access.
On the first start and after each update, the API verifies
all keys following the chain of trust to avoid serving
out-dated, invalid, or unverified keys. However, this
is just a convenient verification for the system state
and all clients independently verify the keys locally as
well. Additionally, a regular scheduled task periodically
deletes dead drops older than 14 days from the database.

The API is deployed as an EC2 instance behind a load
balancer as the public entry point that accepts requests
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from clients. Traffic to the API is only allowed from this
entry point, which has a public DNS record associated
with it, and the API server configuration disallows all
outbound connections with the exception of the Postgres
database which lives in the same security group as the
API. The Postgres instance only allows connections from
resources existing in the same security group, i.e. the
EC2 instance for the API. We deploy our cloud-based
services using the AWS Cloud Development Kit (CDK)
framework. This allows us to provision cloud-based
resources using TypeScript code which is committed
to version control. All roles and resources live in a
dedicated, CoverDrop specific AWS account.

We serve the POST /user/messages endpoint as a
separate microservice, called Appender, which sits be-
hind the shared CDN domain and a load balancer.
The service first performs a basic sanity check to en-
sure that the base64-encoded payload is a serializable
MultiAnonymousBox and is of the expected length. All
valid looking payloads are then added to the user-to-
journalist Kinesis message queue. In case of errors, e.g.,
we are exceeding the maximum throughput rate, an er-
ror is returned to the client app which then keeps the
message in its outbound queue and retries later. Mes-
sages persist in the stream for 14 days, after which they
are automatically deleted. This retention policy has the
added benefit of persisting messages in case of a short
CoverNode outage. The POST /journalist/messages
endpoint is provided by the API to allow for authentica-
tion using the journalists’ identity keys. Otherwise, it
behaves analogously to the Appender service and writes
the messages to the journalist-to-user Kinesis stream.

11 Development Practices

SWE During development we follow relevant software
engineering best-practices. For this we rely on automated
continuous integration (CI) and integration tests across
the stack. We use Rust as a strongly-typed language
to minimize logic errors and avoid memory safety issues
when processing untrusted input.

11.1 Source code management

We require all code commits to be signed and imple-
mented mandatory code review for all code commits
to ensure the quality and reliability of our codebase.
By requiring multiple developers to review each code
change, we were able to catch errors and identify areas
for improvement before the code was merged into the
main branch. This helped us maintain a high standard
of code quality and reduce the risk of bugs and other
issues that could impact the functionality of our soft-

ware. It also ensured that everyone in the small team
is kept up-to-date on the full architecture as people are
implementing the individual components concurrently,
e.g., Android app module and API service.

In addition to manual code review, all commits are
ran through a CI pipeline based on GitHub Actions. Our
CI performs automated static checks for problems with
code styling, detects unaudited and known-vulnerable
libraries, and runs our full test suite (§11.3). These au-
tomated checks already helped us many times to quickly
identify regressions and vulnerabilities.

11.2 Using Rust types

We chose Rust to implement the main CoverDrop back-
end functionality due to its performance, productivity,
safety, and security features. For this all back-end ser-
vices use types and protocol functions from a shared
common crate. Rust’s focus on memory safety and strong
type system makes it an ideal choice for developing
secure systems. In particular, Rust’s ownership and bor-
rowing system allows for the creation of secure, low-level
abstractions without sacrificing performance. This helps
prevent common vulnerabilities, such as buffer overflows
and data races, which can compromise the security of a
system. In addition, Rust’s static typing and compiler
checks help prevent bugs and catch logic errors before
they can cause problems.

We use the Typestate Pattern [13] extensively to
ensure that only valid objects are reachable. An
example usage of this pattern is when a service in-
teracts with untrusted key material such as public
keys from the API. Before the keys can be used they
must be converted from the PublishedPublicKeys
type into VerifiedKeys. This can only be done
by combining the PublishedPublicKeys with a
AnchorOrganizationPublicKey which is compared
against the API’s provided OrganizationPublicKey to
confirm the client device is talking to the expected server,
and from there we verify the whole key hierarchy. As
there are no other accessible constructors or casting oper-
ations, we ensure that whenever a VerifiedKeys object
exists it has been properly verified.

In addition, we use PhantomData to tag cryptographic
material, such as keys, with their semantic context.
For example, the AnchorOrganizationPublicKey is
an alias for a SigningPublicKey tagged with a Role
type parameter of TrustedOrganization. Other ex-
amples of other Roles include JournalistIdentity
which are used to verify journalist messaging keys and
CoverNodeMessaging which are used to encrypt mes-
sages to the CoverNode. By enforcing type constraints
on all methods returning and accepting the keys, we can
make sure that we, for example, never encrypt an out-
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going J2U message with a key that is not a user public
key. Thus this enforces domain separation at compile
time at the type level using method type signatures.

11.3 Testing strategy

In order to be confident in our changes we require
a robust testing strategy. As is standard industry
practice, all smaller components are covered by unit
tests. This includes basic functional components such as
PaddedCompressedString and cryptographic primitives
such as AnonymousBox. These tests are implemented in
all used languages which include Rust (for the backend
services), Kotlin (for the Android module), and Swift
(for the iOS module).

To test the system as a whole we created a suite of in-
tegration tests which run against containerized versions
of the production infrastructure. Using this approach
we can execute simulations of complex real-world sce-
narios such as on-boarding a new journalist or sending
messages. For time-dependent features such as key ex-
piry we implemented a “time travel” mechanism. This
allowed the orchestrator to perform an action then move
forward in time and check that the API responses have
changed as expected. For instance, we use this to verify
the correct behavior of the key rotation service. The
same mechanism allows us to use a static set of keys
for the testing journalists accounts without having to
worry about these keys expiring. Thorough testing is
particularly critical in our case as we have configured our
clients to not report crashes and log information since
these could otherwise reveal active use of the CoverDrop
feature. Therefore, the automated tests and manual
testing with dedicated debug builds are our only source
to identify regressions and bugs.

In order to test the apps against up-to-date versions
of API responses we added the ability for the integration
tests to emit test vectors that can be copied across to
the mobile apps’ test modules. These test vectors allow
the app developers to implement the same tests as the
integration tests module without the added complexity of
managing local containers from the iOS and Android test
environment. This also ensures byte-level compatibility
between all three platforms. In addition, a script within
the repository exports constants from Rust, such as
the fixed message sizes and key lifetimes, to Kotlin and
Swift files so that the constants are always in-sync for
all components. At the time of writing the project
features 126 tests across all Rust components, 249 tests
for the Android app modules, and 142 tests in the iOS
workspace.

11.4 Rollout

The rollout of CoverDrop requires additional work out-
side the CoverDrop system.

In order for our readers to find the CoverDrop tool
within the live app we need to update our existing call-
outs. These are elements that sit within an article and
ask readers to contribute anything they might have to
add. The Guardian already has a mechanism for cus-
tomizing these call-outs, offering a range of options for
how a user might reach our journalists. For topics with
lower security needs, CoverDrop might not be the best
tool. As such, staff will have to be trained on when
CoverDrop should be included. When the call-out is
viewed on a non-app platform, such as the web, a mes-
sage should appear prompting the user to use the phone
app and find the same article in order to use CoverDrop.

A major part of the rollout will involve training staff
on how to maintain the CoverDrop system. Actions such
as on-boarding journalists will generally be done without
developer involvement, so documentation will be created.
Overall we expect that the amount of training required
and daily time invested by non-technical staff will be
lower than for similar platforms such as SecureDrop.
This is mainly because CoverDrop delivers messages
directly to journalists and does not require technical
experts to facilitate the message transport.

12 Limitations and future work

GENERAL This document describes a practical imple-
mentation of CoverDrop. As such, there are known
limitations and missing features.

As an open anonymity network, CoverDrop is vulner-
able to Sybil attacks where adversaries control multiple
clients simultaneously. This can be used to start denial-
of-service attacks against the CoverNode by sending
many real messages with bogus content. To mitigate
this, the news organization can rate-limit the ingress
end-point at the CDN per IP address. For this the CDN
should generally disallow access via other anonymity
networks such as Tor.

However, even a single client can cause harm by send-
ing abusive messages to journalists. We are currently
researching extensions to the CoverDrop protocol that
allow mitigating these risks. We think that an effective
solution will incorporate both traffic limiting measures,
e.g., using blinded tokens, and reactive blocking where
journalists can report specially-franked messages back
to the CoverNode.

The current implementation also misses functionality
that remains out of scope for the first version. For
instance, users can only initiate conversations with one
recipient. We plan to extend the Journalist Client with
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collaborative features using a Local-First architecture
which will enable multiple journalists to interact with
a source. Also, there is no functionality for sharing of
photographs, documents, and other files. For now, this
is intended to reduce the potential for abuse. However,
later versions could include hand-over mechanisms to
SecureDrop that allow linking the uploaded files with
existing conversations.

13 Conclusion
In this white paper we have presented a practical imple-
mentation of CoverDrop. It allows sources to securely
and anonymously reach out to journalists. CoverDrop
has been designed for allowing bi-directional, medium
latency, text-only communication between source and
journalists. As such it focuses on the establishing an
initial contact, verifying the source and their informa-
tion, and building trust. Importantly, CoverDrop was
designed together with investigative journalists to un-
derstand their needs for the system. Where possible,
CoverDrop does not require manual key management,
but automates key rotation.

The CoverDrop system provides strong security guar-
antees for potential sources that include confidentiality of
their messages, anonymity towards network adversaries,
and plausible deniability in case they have to hand over
their phone. For this the system relies on hardened on-
premises services, such as the CoverNode, and untrusted
web services running in a cloud environment for message
distribution. The mobile applications use the secure
hardware on modern phones to provide strong security
while keeping the system usable. The implementation
follows best-practices for secure software by using safe
languages like Rust, relying only on established cryp-
tographic libraries, incorporating extensive integration
tests, and open-sourcing the code for inspection.
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A Changes
The protocol and implementation presented in this paper
differs in important elements from the one that was
presented in the original CoverDrop paper in 2022:

• We derive further requirements from interviews and
UX workshops (§3).

• We introduce the Journalist Client (§4.4).

• We add a more complete key hierarchy and means
for key rotation (§5).

• We modify the message formats and introduce a
new wrapping message between CoverNode and
journalists (§6).

• We add support for Forward Security through rota-
tion of short-lived messaging keys (§6.3).

• We updated the UI (§7).

• We devise a new message sending strategy (§8.5)
and a private sending queue (§8.7).

• We use the Sloth scheme to provide Deniable Storage
for both Android and iOS (§8.6).

• We implement all components following best-
practices and considered real-world deployment chal-
lenges (§11).

B Metric estimates
In Table 2 we present a baseline scenario for usage num-
bers of CoverDrop. Importantly, the presented numbers
have been chosen independently of any existing news
reader apps and are only for illustrative purposes. How-
ever, we believe that even such reasonably estimated
number provider useful indications to the volume of
traffic under our choice of CoverDrop parameters.

We assume that the app is installed by 30million
users (about half the UK population) of which up to
5million are daily active users (DAUs). On average
each DAU opens the app twice per day which will mean

that they trigger up to two send events (§8.5) with two
messages each. All users (DAU and other) download
missed dead-drops when they open the app the next
time. We expect there will be 10 to 50 active journalists
sending on average up to 2 messages per hour.

In the direction user-to-journalist the CoverNode we
choose the thresholds tmax = 500 000 and tmin = 100 000
with d = 1hour and the output size b = 500. For the
direction journalist-to-user our parameters are tmax =
100 and tmin = 20 with d = 1hour and b = 20.

Under these assumptions, the system processes up
to 850 000 U2C messages per hour sent by the users to
the CoverNode resulting in an overall ingress of up to
650MiB/hour (or 185 KiB/s). As the content of the
downloaded information, i.e. public keys and dead-drops,
rarely changes, the CDN can handle the vast majority
of requests without reaching out to the AWS back-end
services. Overall, the download burden for individual
users is up to 500 KiB per day which is comparable to a
single news story with images.

http://cliffle.com/blog/rust-typestate/
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Metric User → Journalist Journalist → User

General parameters (IN)

Active senders 500 000− 5 000 000 5− 40

Messages per sender 0.17 msg/h 1− 2 msg/h
Total real messages 50− 100 msg/h 5− 15 msg/h
Message size 800 byte 600 byte

Sent messages from user from journalist

Expected sending rate 85 000− 850 000 msg/h 5− 80 msg/h
Expected ingress at CDN 64.85− 648.50 MiB/h 0.01− 0.05 MiB/h
Ratio real messages 0.01− 0.06% 19− 100%

CoverNode parameters (IN)

Parameter threshold tmin 100 000 msg 20 msg
Parameter threshold tmax 500 000 msg 50 msg
Parameter timeout d 1 h 1 h
Parameter output size b 500 msg 20 msg

CoverNode processing

Firing rate 1.00− 1.70 h−1 1.00− 1.60 h−1

Mean message delay 0.29− 0.50 h 0.31− 0.50 h
Expected output rate 500− 850 msg/h 20− 32 msg/h
Ratio real messages in output 10− 12% 25− 47%

Ingress at the receiving side to journalist to user

Published batches 1− 2 batches/h 1− 2 batches/h
Size of batch 0.38 MiB 0.01 MiB
Total ingress 0.38− 0.65 MiB/h 0.01− 0.02 MiB/h
Download burden per month 275− 467 MiB 8− 13 MiB

Table 2: This table shows the ranges of the CoverDrop configuration and estimates for our expected usage scenario.
These are then used to calculate estimates for number of messages and overall traffic.
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