
Technical Report
Number 997

Computer Laboratory

UCAM-CL-TR-997
ISSN 1476-2986

CHERI-SIMT report:
implementing capability

memory protection in GPGPUs

Matthew Naylor, Alexandre Joannou,
A. Theodore Markettos, Paul Metzger,
Simon W. Moore, Timothy M. Jones

March 2025

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

https://www.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 2025 Matthew Naylor, Alexandre Joannou, A. Theodore
Markettos, Paul Metzger, Simon W. Moore, Timothy M. Jones

This work was supported by the UK EPSRC under
the “CAPcelerate Project” (EP/V000381/1) and the
“Chrompartments Project” (EP/X015963/1), both part of
the Digital Security by Design (DSbD) Programme and the
DSbDtech initiative.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-997

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-997

Abstract

Governments are increasingly advising software manufacturers to employ memory-
safe languages and technologies to combat adversarial attacks on modern computing in-
frastructure. This introduces pressures across the entire computing industry, including
GPGPU vendors who provide implementations of unsafe C/C++-based languages, such
as CUDA and OpenCL, for programming the devices they produce. One of the memory-
safety technologies being recommended is Capability Hardware Enhanced RISC Instruc-
tions (CHERI). CHERI adds strong and efficient memory safety to underlying instruction-
set architectures allowing continued, but memory-safe, use of C/C++-based languages on
top. Another option being recommended is Rust, a memory-safe systems programming
language that can viably replace C/C++ in some cases.

In this report, we evaluate the feasibility of incorporating CHERI into GPGPU archi-
tectures by extending a prototype, open-source, synthesisable, SIMT core and CUDA-like
programming environment with support for CHERI. We present techniques to considerably
ameliorate the costs of CHERI in SIMT designs, reducing register-file storage overheads
from 103% to 7%, logic-area overheads by 44% to a cost comparable to one additional
multiplier per vector lane, and execution-time overheads to 1.6%. By comparison, an
experimental Rust port of the same GPGPU benchmark suite shows a 34% increase in
execution time due to software bounds checking. With the proposed techniques, CHERI
offers a viable path to strong and efficient GPGPU memory safety, while avoiding the need
to replace established programming practices.

3

Contents
1 Introduction 5

2 Background 6
2.1 Single Instruction, Multiple Threads (SIMT) 6
2.2 GPGPU Programming . 7
2.3 Value Regularity . 8
2.4 The SIMTIGHT GPGPU . 9
2.5 Capability Hardware Enhanced RISC Instructions (CHERI) 11

3 Design and Implementation 12
3.1 Register File . 13
3.2 Metadata Register File . 14
3.3 Pipeline . 15
3.4 Memory Subsystem . 17

4 Evaluation 18
4.1 Experimental Setup . 18
4.2 Threat Model . 20
4.3 Register-File Overhead . 20
4.4 Memory-Bandwidth Overhead . 22
4.5 Execution-Time Overhead . 22
4.6 Synthesis Results . 23
4.7 Software Bounds Checking . 23

5 Related Work 24
5.1 GPU Debugging Tools . 24
5.2 Safe Languages Targeting GPUs . 24
5.3 Hardware Support for GPU Memory Safety 25

6 Conclusion 26

Acknowledgements 26

References 26

Appendix A: Sample NOCL Benchmark 34

Appendix B: Reproducing the Results 35

4

1 Introduction
Recent studies report that memory-safety bugs account for around 70% of security vulnerabili-
ties in major software projects [12, 49, 71]. These bugs typically arise from mistakes involving
C/C++ pointers, such as out-of-bounds accesses (violating spatial memory safety) and use-
after-free errors (violating temporal memory safety). In response, government agencies around
the world are increasingly advising software manufacturers to employ memory-safe languages
and technologies, as set out in recent joint whitepapers [13, 14]. There are also calls to stan-
dardise principles and practices for software memory safety, allowing future systems to comply
with agreed criteria for preventing this whole class of vulnerabilities [63, 77].

While the above-mentioned studies focus on CPU codebases, GPGPU codebases are also com-
monly written in C/C++-based languages, such as CUDA and OpenCL, and have been found
to suffer from many of the same problems. For example, Erb et al. [23] report 13 cases of
buffer overflows in a set of 175 GPGPU applications taken from standard benchmark suites.
Separately, researchers have shown that buffer overflows on GPGPUs can lead to data corrup-
tion on the stack and heap, control-flow hijacking, code injection, and arbitrary code execu-
tion [21, 31, 48, 61]. A simple example of a buffer overflow in CUDA is shown in Figure 1.

One of the memory-safety technologies being mentioned both in the joint government whitepa-
pers and the memory-safety standardisation call is Capability Hardware Enhanced RISC In-
structions (CHERI) [75]. CHERI enhances existing instruction-set architectures by replacing
integer memory addresses with capabilities. Capabilities augment integer addresses with meta-
data including bounds and permissions, enforcing constrained access to bounded memory re-
gions. In addition to providing deterministic spatial memory safety using bounds, they also pro-
vide referential integrity (they cannot be forged, corrupted, or confused with non-capabilities),
which in turn supports temporal memory safety [26, 27] as well as efficient software compart-
mentalisation [3, 78], limiting what attackers can do if they gain access through other kinds of
vulnerabilities. A key attraction of CHERI is that pointers in historically unsafe C/C++ can
be automatically compiled down to capabilities while requiring only minor changes (if any) to
existing codebases.

Over the past decade, CHERI has been studied heavily in the context of CPUs [67, 76, 79] and
various challenges have been overcome to reduce hardware and performance costs to satisfac-
tory levels [37,73,80]. This has led to industrial implementations from Arm [5], Microsoft [3],
and Codasip [15]. However, CHERI has not yet been applied to GPGPUs, which bring new
challenges. Modern GPGPUs support hundreds of thousands of hardware threads leading to
huge register files that account for a significant proportion of overall silicon area and power
usage [28, 50]. CHERI increases both the pointer size and the architectural register size by
a factor of two, potentially doubling the already-large register-file cost, which would be pro-
hibitive. Indeed, prior work dismisses the use of CHERI on GPGPUs for precisely this rea-
son [41]. Additionally, CHERI introduces a range of new instructions to manipulate capabilities
and implementing these in every execution unit also incurs costs.

In this paper, we demonstrate techniques to considerably ameliorate the costs of CHERI in Sin-
gle Instruction, Multiple Thread (SIMT) GPGPUs. We observe a large amount of redundancy
in the metadata of capabilities between hardware threads, which can be readily exploited in
SIMT architectures to reduce onchip storage overheads. We also observe that several instruc-

5

__global__ void overread() {
int data = 0xda1a;
int secret = 0xc0de;
int *ptr = &data;
printf("%x\n", ptr[1]);

}

Figure 1: Simple example of a buffer overread in a CUDA GPGPU kernel. In practice, this function
prints the value of secret. Although ptr points to data, it is accessed out of bounds to obtain the
value of a different variable.

tions introduced by CHERI are rarely found in the hot code paths of GPGPU kernels, allowing
them to be implemented in a shared-function unit without impacting run-time performance.
Exploiting these observations, we develop an efficient implementation of CHERI on top of an
existing, prototype, open-source, synthesisable, SIMT GPGPU (SIMTIGHT) and CUDA-like
C++ programming environment (NOCL) [53]. Our main results are as follows:

• We reduce the register-file storage overheads of CHERI from 103% to 14% by exploiting
value regularity in capability metadata. With basic compiler support to limit the number
of registers used to hold capabilities, we forecast that this overhead could be reduced to
7% without impacting run-time performance. Estimating that the register file accounts
for less than half of the total onchip storage in a full GPGPU design, the overall storage
overhead of CHERI would fall below 3.5%.

• We reduce the logic-area overheads of CHERI by 44% per streaming multiprocessor
(SM) by moving non-critical logic into a shared-function unit. The absolute overhead
is comparable to (but slightly larger than) the cost of an additional multiplier per vector
lane.

• We find the run-time overhead of CHERI to be 1.6% on average across a range of GPGPU
benchmarks — lower than reported CHERI overheads for CPU workloads.

• All GPGPU benchmarks are simply recomplied to achieve full spatial memory safety and
referential integrity. No source code changes to the benchmarks are required.

With these optimisations, CHERI offers a viable path to strong and efficient GPGPU memory
safety for established C/C++-based languages such as CUDA and OpenCL. For comparison,
we develop and evaluate an experimental Rust port of NOCL for SIMTIGHT, which shows an
average 34% overhead for software bounds checking on the same GPGPU benchmarks. We
also compare qualitatively against existing approaches to GPGPU memory safety, covering
both hardware support and the use of memory-safe languages.

2 Background

2.1 Single Instruction, Multiple Threads (SIMT)
SIMT is a parallel execution model, popularised by NVIDIA and AMD GPGPUs, that com-
bines the flexibility of a multi-thread programming model with the efficiency of SIMD hard-

6

ware. The idea is to execute multiple hardware threads in lockstep with the aim of exploiting
regularity between them. Known collectively as a warp (or wavefront), these threads can ex-
hibit three main kinds of regularity [39]:

• Control-flow regularity, where threads in a warp follow the same path through the pro-
gram. This allows the costs of fetching and decoding instructions to be amortised over
multiple execution units.

• Memory-access regularity, where threads in a warp access neighbouring addresses in
memory. This allows a large number of narrow memory requests to be coalesced into a
small number of wide requests, which can be more efficiently handled by the memory
subsystem.

• Value regularity, where threads in a warp compute the same or similar intermediate val-
ues. This allows common data and computations to be shared between threads, reducing
onchip storage costs and energy consumption.

While SIMT processors rely on inter-thread regularity to achieve optimal performance, they
nevertheless permit general, independent, scalar computation in each thread. When threads
in a warp diverge and take different paths through the program they can no longer execute in
lockstep, leading to lower utilisation of the SIMD execution units. However, SIMT aims to
reconverge these threads at the earliest opportunity to restore regularity and performance.

In addition to executing multiple threads per warp in parallel, SIMT processors also execute
multiple warps concurrently, frequently context-switching between them (every cycle or every
few cycles) to mask memory and compute latencies. A SIMT processor that executes multiple
warps in this manner is typically referred to as streaming multiprocessor, or SM for short.
NVIDIA’s latest GA100 GPGPU supports 128 SMs, with up to 64 warps per SM and 32 threads
per warp, yielding over 250K hardware threads in total. Each of these hardware threads has
access to its own set of private registers. The GPGPU register file can therefore require many
megabytes of fast onchip storage, accounting for a major proportion of overall silicon area and
power usage [28, 50].

It can be convenient to reuse SIMD terminology when working with SIMT. Although SIMT
involves execution of scalar threads, it is possible to view each scalar value in a thread as an
element of a vector value in a warp. Similarly, it is possible to view the scalar execution unit
for each thread in a warp as a vector lane.

In modern GPGPUs, the number of execution units (or vector lanes) per SM typically equals the
number of threads per warp, but this is not strictly necessary. Early NVIDIA GPGPUs shared
8 execution units across 32 threads in a warp, serialising each instruction over 4 consecutive
cycles.

2.2 GPGPU Programming
CUDA and OpenCL are the most widely used languages for programming GPGPUs today.
These languages are both based on C/C++ and are broadly similar. In this report we focus on
CUDA, which is more actively maintained. The main idea of CUDA is to let the program-
mer define a function, known as a kernel, that will be simultaneously invoked by multiple

7

0 __global__ void histogram(int len, unsigned char* in, int* out) {
1 // Allocate bins in shared local memory (shared by threads in a block)
2 __shared__ int bins[256];
3

4 // Initialise bins
5 for (int i = threadIdx.x; i < 256; i += blockDim.x)
6 bins[i] = 0;
7

8 // Synchronisation barrier for threads in a block
9 __syncthreads();

10

11 // Accumulate bins
12 for (int i = threadIdx.x; i < len; i += blockDim.x)
13 atomicAdd(&bins[in[i]], 1);
14

15 __syncthreads();
16

17 // Write bins to global memory
18 for (int i = threadIdx.x; i < 256; i += blockDim.x)
19 out[i] = bins[i];
20 }

Figure 2: CUDA kernel to compute a 256-bin histogram. Given an len-element array in of bytes, the
kernel computes a 256-element array out such that out[b] contains the number of occurrences of the
byte b in the array in. This kernel uses a single thread block and is therefore capable of running on at
most one SM. It can be generalised to multiple thread blocks by arranging each thread block to compute
a histogram for a different portion of the input array, and then merging these histograms together.

CUDA threads in parallel. Each CUDA thread determines what it should do based on its thread
id within a 3D block (threadId.x, threadId.y, threadId.z) and its block id within a
3D grid (blockId.x, blockId.y, blockId.z). Thread blocks (of size blockDim.x ×
blockDim.y × blockDim.z) permit fast barrier synchronisation and efficient communica-
tion via shared local memory, but are limited to at most 1,024 or 2,048 threads. Meanwhile,
grids can be of any size (gridDim.x × gridDim.y × gridDim.z) but are limited to less-
efficient mechanisms for barrier synchronisation and communication. As an example, Figure 2
shows a simple CUDA kernel for computing 256-bin histograms. CUDA threads are mapped
onto hardware threads at run time, and kernels are executed on as many SMs as possible to
maximise use of GPGPU resources.

2.3 Value Regularity
Collange et al. first identified the prevalence of value regularity in SIMT workloads [19]. They
use the term uniform vector to refer to a variable that has the same value in every thread in a
warp, and affine vector to refer to a variable whose value is of the form base+t×stride for each
thread t in a warp with a fixed base and stride. A uniform vector is a special case of an affine
vector with a zero stride. The authors report that, on average over a range of CUDA benchmarks
running in simulation, 27% of vectors read from the register file, and 15% of vectors written,
are uniform. These numbers rise to 44% and 28% respectively for affine vectors.

The prevalence of value regularity in SIMT workloads can by understood by looking at the

8

Warp
Scheduling

Active
Thread

Selection

Instruction
Fetch

Operand
Fetch

Execute /
Suspend

Writeback /
Resume

Thread
State

Register
File

Warp ID

TCIM

PC

Mask
Instr Operands

Coalescing Unit

1 2 3 4 5 6

Result

Switching
Network

Scratch MemorySIMT Pipeline

Main Memory

SRAM
Banks

Result

New
PC

New
PC

Mem Reqs Mem Resps

Figure 3: Diagram of the SIMTIGHT streaming multiprocessor (SM) [53], including the pipeline,
tightly-coupled instruction memory (TCIM), coalescing unit, and scratchpad memory. Double boxes
represent components containing logic or storage that is replicated per vector lane, and double lines
represent per-lane wiring.

data-parallel programming frameworks in which they are implemented, such as CUDA and
OpenCL. In CUDA, each thread typically decides which part of the input to process based on
its thread index within a block, and its block index within a grid. Threads in the same warp
always reside in the same block, hence calculations on the block index will involve uniform
vectors. Similarly, threads in the same warp will have consecutive thread indices, hence cal-
culations on the thread index will involve affine vectors with a unit stride. To compound this,
the CUDA programming guide [60] recommends that memory addresses for loads and stores
should be the same (uniform) or consecutive (affine) across a warp, where possible, to max-
imise performance.

Value regularity can be exploited to reduce onchip storage requirements by storing uniform
and affine vectors in a compact form. It can also be exploited to reduce energy requirements,
or improve instruction throughput, by processing uniform and affine vectors in a specialised
affine data path (with a single execution unit), separate from the general vector data path (with
multiple execution units). These optimisations can be achieved using a technique known as
scalarisation, which either operates statically in the compiler with instruction-set support [1,9,
17, 36, 43, 72, 82] or dynamically in the microarchitecture [19, 29, 39, 42, 46, 53, 64, 81].

2.4 The SIMTIGHT GPGPU
Over the past decade, open-source GPGPU hardware has emerged as a promising platform for
research and development. While early designs were based either on proprietary instruction
sets [6], preventing free deployment of hardware, or custom instruction sets [2, 4, 8], with no
access to a mature software stack or compiler, recent designs have started to employ the open
RISC-V standard [16,53,65,70], avoiding both problems. Researchers have shown that RISC-
V is well-suited to SIMT execution, and how to extend RISC-V to support graphics. They have
also demonstrated OpenGL, OpenCL, and CUDA-like software stacks on top of SIMT-style
RISC-V GPGPUs. SIMTIGHT [53] is the latest in a line of such GPGPUs, which we use as a
basis for the work presented in this report.

SIMTIGHT implements RISC-V’s rv32ima zfinx profile, i.e., a 32-bit machine with integer,
multiply and divide, atomics, and single-precision floating-point support, with a merged integer
and floating-point register file. The streaming multiprocessor (SM) component of SIMTIGHT

9

is depicted in Figure 3 and has the following features:

• It is parameterised by the number of warps and the number of threads per warp, the latter
of which is equivalent to the number of vector lanes as all threads in a warp can execute
an instruction in parallel.

• It employs a 6-stage processor pipeline fed by a barrel scheduler that switches between
warps on every cycle. At most one instruction per warp is present in the pipeline at any
time, avoiding data and control hazards.

• Each thread in a warp has its own program counter (PC), supporting control-flow diver-
gence. The Active Thread Selection stage of the pipeline determines a subset of these
threads which have the PC. The instruction at this common PC is fetched and decoded
once, and then executed by all active threads in the warp, exploiting control-flow regu-
larity. Thread convergence is achieved by prioritising the selection of threads residing at
the deepest nesting level in the structured control-flow graph [18]. Further details about
convergence can be found in the SIMTIGHT paper [53] and the NOCL manual [52].

• Warps executing a multi-cycle instruction are suspended in the execute stage and resumed
in the writeback stage without blocking the pipeline, tolerating high-latency operations
such as memory loads and floating-point operations.

• Memory-access regularity is exploited using a coalescing unit that tries to pack memory
requests from each vector lane into a smaller set of wider main-memory accesses using
coalescing rules similar to those found in early NVIDIA Tesla devices [45].

• Value regularity is exploited using a set of microarchitectural techniques referred to as
advanced dynamic scalarisation [53]. This includes register-file compression to reduce
register-file storage requirements, a key feature of SIMTIGHT that we exploit in our
implementation of CHERI, which is is introduced in detail in Section 3.1.

• Efficient communication between hardware threads is facilitated through a scratchpad
memory supporting parallel random access. This is implemented as a set of SRAM banks
and a fast switching network. The scratchpad is critical for efficient implementation of
shared memory in CUDA and local memory in OpenCL.

The main limitation of SIMTIGHT is that it currently supports only a single SM. This is suffi-
cient for the work described in this report, where the majority of changes relate to components
within an SM rather than the memory subsystem that connects SMs together. However, this
does mean that the overheads we report are relative to a single SM rather than a full GPGPU
design with multiple SMs and an advanced shared-memory subsystem.

The SIMTIGHT distribution ships with a programming API called NOCL [52] that supports
writing CUDA-like compute kernels in plain C++ (no special compute language is required). It
also includes a suite of benchmark compute kernels written in NOCL. A sample NoCL kernel
to compute 256-bin histograms is shown in Figure 4. The authors report high IPC in many
benchmarks (Figure 5) as well as high performance density on FPGA compared to other open-
source GPGPUs.

10

0 struct Histogram : Kernel {
1 // Parameters
2 int len; unsigned char* in; int* out;
3

4 // Histogram bins in shared local memory
5 int* bins;
6

7 void init() {
8 declareShared(&bins, 256);
9 }

10

11 void kernel() {
12 // Initialise bins
13 for (int i = threadIdx.x; i < 256; i += blockDim.x)
14 bins[i] = 0;
15

16 __syncthreads();
17

18 // Update bins
19 for (int i = threadIdx.x; i < len; i += blockDim.x)
20 atomicAdd(&bins[in[i]], 1);
21

22 __syncthreads();
23

24 // Write bins to global memory
25 for (int i = threadIdx.x; i < 256; i += blockDim.x)
26 out[i] = bins[i];
27 }
28 };

Figure 4: NOCL kernel written in plain C++ to compute the 256-bin histogram of a given byte array
using a single thread block [53]. It is almost identical to the CUDA version of the same kernel, shown in
Figure 2. Full source code for this benchmark, including host-side code, can be found in Appendix A.

2.5 Capability Hardware Enhanced RISC Instructions (CHERI)
CHERI extends conventional instruction-set architectures (MIPS, RISC-V, ARM, and x86)
with capabilities. In the 32-bit RISC-V architecture, which we focus on in this report, CHERI
replaces 32-bit machine-word addresses with 64+1-bit capabilities. A capability captures an
address together with bounds and permissions, and can be stored in registers or in memory.
The bit representation of a 64+1-bit capability is as follows.

1-bit tag

020 1532

permissions other compressed bounds

address

 64 bits

When using a capability to access memory (e.g., via load and store instructions), CHERI re-
quires the address to lie within the bounds, throwing an exception if that is not the case. This is
the basis for enforcing spatial memory safety. CHERI then provides instructions to manipulate
capabilities, such as modifying the address (pointer arithmetic), reducing the permissions, and
narrowing the bounds. When manipulating capabilities, the address is allowed to wander out

11

Ve
cA

dd

Histo
gra

m
Re

du
ce

Sca
n

Tra
nsp

ose

MatV
ecM

ul

MatM
ul

Bito
nic

Sm

Bito
nic

La
SP

MV

BlkS
ten

cil

Str
Ste

nci
l

Ve
cG

CD

Moti
on

Est
0

8

16

24

32
In

st
rs

 P
er

 C
yc

le

Figure 5: Instruction throughput for a single 32-lane SIMTIGHT SM [53]. Workloads achieve an IPC
approaching the number of vector lanes, where expected.

of bounds to some extent. This is necessary to implement C/C++ pointers, which are allowed
to point one byte beyond the end of an object and, in practice, often point further away than
that [11].

A key property of CHERI is that capabilities are unforgeable: the only way to create a capability
is to derive one from an existing capability using CHERI instructions, and doing so can never
increase the bounds or permissions of the original. Consequently, the only memory that can
be accessed by software running on a CHERI processor is that which is transitively reachable
from capabilities stored in the register file. To achieve non-forgeability, CHERI stores a hidden
tag bit for every register, and for every 64-bit word in memory, to distinguish valid capabilities
from normal data. This makes it impossible to write arbitrary data to a register, or to memory,
and subsequently interpret that data as a valid capability. It also makes pointers precisely
distinguishable from non-pointers, permitting garbage collection and revocation [26, 27].

The tag bits of capabilities in memory are typically implemented by storing them in a reserved
region of memory that is not architecturally addressable. A component called the tag controller,
placed in front of main memory, ensures that each addressable 64-bit word and its correspond-
ing tag bit are accessed atomically by processors. The tag controller includes a tag cache to
optimise access to tag bits. It turns out that the miss rate of the tag cache, and hence the over-
head of accessing tag bits, can be reduced to almost zero in practice by exploiting the fact that
blocks of memory (cache lines or pages) will often not hold any capabilities at all, allowing a
highly compact representation in the tag cache [37].

To keep the size of a capability to just 64 bits, CHERI represents the bounds in a compressed
format known as CHERI Concentrate [80]. Specifically, a 32-bit lower bound and a 33-bit
upper bound are together stored in just 15 bits by encoding them in a floating-point-like format
relative to the address. The hardware costs of bounds compression are discussed in Section 3.3.

The properties provided by CHERI are deterministic and enforced, not subject to probabilities
or bypassing.

3 Design and Implementation
In this section, we present the main changes needed to efficiently implement CHERI in the
SIMTIGHT GPGPU. Specifically, we implement a large subset of version 9 of the 32-bit
CHERI instruction set [76], as shown in Figure 6.

12

Get/clear tag bit
CGetTag rd, cs1
CClearTag cd, cs1

Get/reduce permissions
CGetPerm rd, cs1
CAndPerm cd, cs1, rs2

Get/set bounds
CGetBase rd, cs1
CGetLen rd, cs1
CSetBounds cd, cs1, rs2
CSetBoundsImm cd, cs1, imm
CSetBoundsExact cd, cs1, rs2

Load/store via capabilities
CL[BHW][U] rd, cs1, imm
CS[BHW] rs2, cs1, imm

Load/store capabilities
CLC cd, cs1, imm
CSC cs2, cs1, imm

Get/set/increment address
CGetAddr rd, cs1
CSetAddr cd, cs1, rs2
CIncOffset cd, cs1, rs2
CIncOffsetImm cd, cs1, imm

Other
AUIPCC cd, imm
CJALR cd, cs1, imm
CJAL cd, imm
CMove cd, cs1
CGetType rd, cs1
CGetSealed rd, cs1
CGetFlags rd, cs1
CSetFlags cd, cs1, rs2
CSealEntry cd, cs1
CSpecialRW cd, cs1, imm
CRRL rd, rs1
CRAM rd, rs1

Figure 6: List of CHERI instructions implemented in SIMTIGHT (excluding atomics). CHERI extends
each 32-bit general-purpose register with 33-bits of metadata. Operands rd, rs1, and rs2 refer to the 32-
bit general-purpose portion of a register while operands cd, cs1, and cs2 refer to the full 65-bit contents.
When an instruction writes to rd, the capability metadata for that register is set to a null value with the
tag bit cleared.

3.1 Register File
Adapting a 32-bit RISC-V implementation to support CHERI requires extending every 32-bit
general-purpose register to 65 bits. This is potentially a large cost in a streaming multiproces-
sor with thousands of hardware threads, each with their own set of private registers. However,
our hypothesis is that there is likely to be a lot of value regularity in the capability metadata
between threads executing in lockstep: threads accessing different elements of the same array
at the same time will likely involve the same bounds and permissions. Before trying to ex-
ploit this hypothesis, it is first useful to look at SIMTIGHT’s existing register-file compression
mechanism in more detail.

A single SIMTight streaming multiprocessor contains 32× numWarps× numThreadsPerWarp
architectural registers or, equivalently, 32×numWarps architectural vector registers (each scalar
register in a thread can be viewed as an element of vector register in a warp). SIMTIGHT’s
compressed register file aims to reduce onchip storage requirements by exploiting the property
that vector registers will often hold uniform or affine vectors that can be stored compactly.
It detects these uniform and affine vectors at run time using an array of comparators in the
register-file write path (cheaper inference-based mechanisms for detecting uniform and affine
vectors are also possible [19, 39, 81] but are not yet supported in SIMTIGHT). Uniform and
affine vectors are then stored in a scalar register file (SRF) while general (non-compressible)
vectors are allocated on-demand in a larger, size-constrained vector register file (VRF). For
every architectural vector register, the SRF either holds a compressed vector (a base + stride
pair) or a pointer to a register in the VRF. The size of the VRF can be set arbitrarily. Currently
in SIMTIGHT it is chosen statically at synthesis time based on experimental evaluation, but
in principle it can be set dynamically, which is useful if, as in modern NVIDIA GPGPUs, the
physical memory implementing the register file is shared with other storage structures such
as the scratchpad and L1 cache [28]. VRF overflow is handled in hardware by dynamically
spilling vector registers to main memory. The overall structure of the compressed register file
is shown and explained in Figure 7.

13

Scalar Register
File (SRF)

rs1

rs2

Expander

Expander

Vector
Register

File (VRF)

rd Expander

Compressor

vec1

vec2

vs1
vs2

vd

write mask

Reg Id Value
0 10 + 0
1 &VRF[20]
2 64 + 4
… …

Free Stack

Store Path

Load Path

data

VRF
full?

Figure 7: Overview of SIMTIGHT’s compressed register file. Registers rs1 and rs2 are looked up to
produce vectors vec1 and vec2 respectively. The active elements of vector data (as specified by write
mask) are written to register rd. If any of the registers rs1, rs2, and rd are not held in the SRF then the
SRF emits the locations vs1, vs2, and vd of these registers respectively in the VRF. The Compressor
attempts to transform a vector to a base + stride pair that can be stored in the SRF, while the Expander
performs the inverse transformation. For vectors that cannot be compressed, the Free Stack tracks unused
locations in the VRF where they can be stored. If this stack becomes near-empty, the VRF full flag is
asserted, triggering the pipeline to spill registers from the VRF to main memory.

The SIMTIGHT authors report that a compressed register file with a quarter-sized VRF (i.e.,
a VRF big enough to hold a quarter of all architectural vector registers) has a minimal impact
on run-time performance while reducing register-file storage requirements by 68% per 2,048-
thread SM.

3.2 Metadata Register File
To support CHERI in the register file, we instantiate two compressed register files: a 32-bit
general-purpose register file and a new 33-bit capability-metadata register file. This has the
advantage that integer addresses and capability metadata are compressed separately: if we have
a vector of capabilities that all have the same metadata but different (non-affine) addresses,
then the metadata can still be compressed even though the addresses cannot. We enable the
detection of only uniform (not affine) vectors in the metadata register file as the notion of a
stride does not really exist for capability metadata.

The main drawback of this simple approach is fragmentation: there are two VRFs, each capable
of holding on only one kind of vector (data or metadata), and if one becomes full then spilling
will occur even if there is space available in the other. Furthermore, the SIMTIGHT baseline
enforces a minimum VRF capacity of four vector registers per thread and capability metadata
may be more compressible than that. We therefore implement a shared VRF between the
general-purpose and capability-metadata register files. To avoid additional read ports on the
shared VRF, we serialise data and metadata accesses, i.e., accessing a register that requires both
an uncompressed data vector and and uncompressed metadata vector will result in a pipeline
stall. Our hypothesis is that this will not happen very often due to inter-thread regularity.

As shown in Figure 7, the baseline SRF requires three read ports, two in the load path and one

14

CL[B
HW][U

]

CInc
Offs

et[
..]

CS[B
HW][U

]
CSC CJAL

CMov
e

CLC

CSe
tAd

dr

CSp
eci

alR
W

CSe
tBou

nd
s[.

.]

AUIPC
C

CJALR

CGetL
en

0.1%

1%

10%

100%
Fr

eq
ue

nc
y

Figure 8: Average execution frequency of CHERI instructions on GPGPU workloads relative to total in-
structions executed, obtained using the experimental setup introduced in Section 4. CHERI instructions
that are not shown here are not executed at all in the analysed workloads.

in the store path. SIMTIGHT implements this using two instances of a two-read-port SRAM
primitive, with each instance holding identical data. This can be avoided in the capability-
metadata SRF. As shown in Figure 6, the vast majority of CHERI instructions use only one
capability source operand (i.e., cs1 and not cs2). Only the CSC instruction to store a capability
via a capability refers to both capability source operands. We therefore reduce the number of
read ports on the capability-metadata SRF in exchange for taking an extra cycle to implement
CSC. This means that the capability-metadata SRF essentially uses half the amount of storage
as the baseline SRF. As shown in Figure 8, the execution frequency of the CSC instruction is
quite low, around 2%.

The baseline register file restricts itself to total scalarisation: for a vector to be compressible,
all elements must satisfy the uniform or affine requirements. One can envisage a generalisation
of this where, for example, a vector can be partitioned into two different uniform or affine
vectors and still held more compactly than an uncompressed vector. This would be useful in the
presence of control-flow divergence, when a uniform or affine vector gets partially overwritten
with a different uniform or affine vector. To implement this, each SRF entry would need to store
an additional base + stride pair and a bit mask denoting which partition each vector element
belongs to. Unfortunately, we have found that this SRF cost generally outweighs the associated
savings in the VRF. However, the situation is slightly different for the capability-metadata
SRF. First, it is half the size of the baseline SRF so increasing its size by a constant factor
is not as expensive in absolute terms. Second, when a register holds an integer or floating-
point value, rather than a capability, which is often the case, the metadata for that register is
known to be a constant null value. This raises the possibility of extending the SRF with just a
mask denoting which vector elements are null, supporting a form of partial scalarisation. We
have implemented this as an optional feature in the metadata register file, which we refer to as
the null-value optimisation (NVO). When a uniform vector is partially overwritten with a null
vector, or vice-versa, that vector remains in the SRF. Furthermore, when a partially uniform
vector is partially overwritten with a null vector or the same partially uniform vector, that
vector also remains in the SRF.

3.3 Pipeline
Besides increasing the register size, another cost of adding CHERI to SIMTIGHT lies in the
additional logic required to implement CHERI instructions in the pipeline and, in particular,

15

– In-memory capability format including tag bit
type CapMem = Bit 65
– In-pipeline (partially decompressed) capability format
type CapPipe = Bit 91
– Memory access width: 20, 21, 22, or 23 bytes
type AccessWidth = Bit 2

Fr
eq

ue
nt

ly
ne

ed
ed



– Convert from the in-memory format
fromMem :: CapMem→ CapPipe
– Convert to the in-memory format
toMem :: CapPipe→ CapMem
– Set the address, invalidating the capability if the address is too far out-of-bounds
setAddr :: (CapPipe, Bit 32) → CapPipe
– Check that an access of given width from given capability is within bounds
isAccessInBounds :: (CapPipe, AccessWidth) → Bit 1

In
fr

eq
ue

nt
ly

ne
ed

ed



– Return the base (lower bound) of the capability
getBase :: CapPipe→ Bit 32
– Return the length of the capability
getLength :: CapPipe→ Bit 33
– Return the top (upper bound) of the capability
getTop :: CapPipe→ Bit 33
– Return a capability of given length whose base is the address of given capability
setBounds :: (CapPipe, Bit 32) → CapPipe

(46 ALMs)

(0 ALMs)

(106 ALMs)

(25 ALMs)

(50 ALMs)

(20 ALMs)

(78 ALMs)

(287 ALMs)

Figure 9: Key functions of the CHERICAPLIB library [66] to handle compressed bounds in 64+1-
bit capabilities. The logic area requirement of each function in ALMs (Intel Stratix 10 Adaptive Logic
Modules) is listed on the right-hand side. As a point of reference, a 32-bit multiplier requires 567 ALMs.
As shown, the isAccessInBounds function can check against partially decompressed bounds much more
cheaply than fully decompressing the bounds via getBase and getTop and then using two address-width
comparators.

to handle compressed bounds in capabilities. We use a standard library implementation of the
CHERI Concentrate compressed bounds format [80] called CHERICAPLIB [66] whose main
functions, along with their logic-area costs, are summarised in Figure 9. While CHERICAPLIB

functions for getting and setting bounds are quite expensive, the CHERI instruction histogram
in Figure 8 shows that instructions to get and set bounds are not frequently executed in GPGPU
workloads. This motivates the separation of CHERICAPLIB functions into those that are fre-
quently needed (such as pointer arithmetic and bounds checking) and those that are infrequently
needed (such as getting and setting bounds). The former can be instantiated per vector lane (fast
path) while the latter can be instantiated per SM in a shared-function unit (slow path).

The shared-function unit (SFU) is a common feature in GPGPU designs and indeed SIMTIGHT

includes one that is used to implement floating-point square root and division. SIMTIGHT’s
SFU connects to every vector lane via a request serialiser and a response deserialiser. To support
CHERI instructions in the SFU, we increase the size of SFU requests and responses to hold
capability-sized operands and results respectively. This, in turn, increases the logic needed for
serialisation and deserialisation but, overall, area is substantially reduced by moving logic out

16

fromMem
65

91

[31:0]

setAddr

+

Int & Float ALUs

Capability ALU

isAccessInBounds

toMem

pc

pcc
…

…

…

Shared Func Unit (SFU) Reqs SFU RespsPer-Lane Exceptions To Reg File

imm

[31:0]

65

From Reg File (Operands)

33

32
65

4: Operand Fetch

……

5: Execute / Suspend 6: Writeback

[64:32]

Figure 10: SIMTIGHT pipeline modifications to support CHERI. The output of the integer ALU’s adder
either contains the address result for CIncOffset[..]/CSetAddr, the address to access for CL[..]/CS[..], or
the address to jump to for CJAL[..]. This address is fed into setAddr to yield a capability that is either
written to a result register via toMem, fed to isAccessInBounds for bounds checking, or written to the
PCC.

of the per-lane ALUs. We implement the CGetBase, CGetLen, CSetBounds[..], CRRL, and
CRAM instructions in the SFU. All other CHERI instructions are implemented per vector lane
using four CHERICAPLIB function calls, as shown in Figure 10.

In CHERI, the program counter is also considered to be a capability. Accordingly, we extend
SIMTight’s per-thread program counters (PCs) to be program-counter capabilities (PCCs). In
the Active Thread Selection stage of the pipeline, we require that the chosen threads not only
have the same PC but the same PCC. This means that only a single program-counter bounds
check is required per SM. Nevertheless, these changes do increase logic area and, in software,
we do not currently exploit the ability to change program-counter metadata dynamically in
GPGPU kernels. We therefore provide an optional feature whereby PC metadata is set once
per warp at kernel-invocation time but never changed. This allows Active Thread Selection to
disregard PC metadata. We refer to this feature as the static PC metadata restriction.

3.4 Memory Subsystem
SIMTIGHT’s memory subsystem supports 8-bit, 16-bit, and 32-bit accesses natively. To im-
plement 64-bit (capability width) accesses, we use multi-flit transactions whereby a series of
contiguous memory requests terminated by an is-final bit are treated atomically by the memory
subsystem. A 64-bit access is then achieved using two inseparable 32-bit accesses. This avoids
increasing the data-path width and associated logic in the memory subsystem in exchange for
a two-cycle capability access time. As shown in Figure 8, the CLC and CSC instructions for
loading and storing capabilities are executed fairly infrequently. The logic required to serialise
and deserialise 64-bit requests and responses respectively is placed between the pipeline and
the coalescing unit.

CHERI requires a 1-bit tag to be maintained for every naturally aligned 64-bit value in memory,
indicating whether or not that 64-bit value holds a capability or not. As SIMTight’s memory
subsystem is natively 32-bit, we opt to maintain a 1-bit tag for every 32-bit naturally aligned
value for simplicity (not necessity). We maintain the invariant that for a 64-bit capability to
be valid, the tag bits of both its upper and lower halves must be set. To allow capabilities
to be stored in scratch memory, we extend the data width of each onchip SRAM scratchpad

17

Benchmark Description Source
VecAdd Vector addition [58]
Histogram 256-bin histogram calculation [57]
Reduce Vector summation [57]
Scan Parallel prefix sum [54]
Transpose Matrix transpose [57]
MatVecMul Matrix × vector multiplication [58]
MatMul Matrix × matrix multiplication [57]
BitonicSm Bitonic sorter (small arrays) [58]
BitonicLa Bitonic sorter (large arrays) [58]
SPMV Sparse matrix × vector multiplication [7]
BlkStencil Block-based stencil computation In house
StrStencil Stripe-based stencil computation In house
VecGCD Vectorised greatest common divisor In house
MotionEst Motion estimation In house

Figure 11: NOCL benchmark suite.

bank from 32 to 33 bits. To allow capabilities to be stored in main memory, we follow the
approach taken by existing CHERI-enabled CPUs: tag bits are stored in a reserved region and
a tag controller is placed just in front of main memory providing the illusion of atomic access
to each value and its tag bit [37, 67, 79].

Compressed uniform and affine vectors can be passed from the register file to the memory sub-
system for further storage savings. As a proof-of-concept, SIMTIGHT includes a compressed
stack cache in the coalescing unit to optimise compiler-inserted register spills of uniform and
affine vectors. This reduces memory bandwidth utilisation while requiring only a small amount
of additional onchip storage. We extend the compressed stack cache to be able to store capa-
bilities. As we compress the metadata separately from the integer address, it is natural to allow
the metadata to be cached even if the address cannot. This breaks the atomicity of capability
writes, but we allow it on the basis that stack data is private and not shared between threads (a
property that can be enforced using CHERI itself), making it impossible to observe a partially
written capability.

4 Evaluation
In this section, we evaluate the overheads of adding CHERI to SIMTIGHT and the impact of our
proposed optimisations. All artefacts used for evaluation are available online [51]. Instructions
for reproducing the main results are available in Appendix B.

4.1 Experimental Setup
We use the suite of 14 CUDA-like NOCL benchmark programs shipped as part of the stan-
dard SIMTIGHT distribution [51] and listed in Figure 11. To compile the benchmarks, we
use the CHERI fork of Clang 13 (the latest compiler supporting CHERI-RISC-V at the time),
both when targeting RISC-V and CHERI-RISC-V. For a fair comparison, we disable scalar
evolution (SCEV) of pointers, a compiler optimisation that is not yet supported when target-

18

Scalar Pipeline
rv32im_zfinx_xcheri

32-Lane 64-Warp Pipeline
rv32ima_zfinx_xcheri

L1 Data Cache Coalescing Unit

DDR4 Controller
TC

IM

TC
IM

M
ai

lb
ox

SRAM
Bank

SRAM
Bank

...

Switching Network

...

512b

Tag Controller

U
A

R
T

SIMTight SM

...32b 32b 32b32b

...32b

32b32b

Host CPU 32b 32b

512b

512b

Figure 12: Diagram of the SIMTIGHT evaluation SoC, with data-bus widths (excluding tag bits).

ing CHERI-RISC-V but which is expected to be available in future. To support CHERI, some
minor changes to the NOCL library are needed, such as setting the bounds of the stack and
dynamically allocated buffers, but the benchmarks themselves do not require any source-code
modifications at all.

We use the standard optimisation level -O2 but force the compiler to inline the kernel()

method of every NOCL compute kernel. This avoids function-call overhead in the NOCL
inner loop, which invokes this method for every thread in a block, and every block in a grid.
Aggressive inlining is standard when compiling GPGPU code, e.g., all device functions in
CUDA are inlined by default [60]. In Section 4.4, we discuss some of the advantages of inlining
in more detail.

We obtain all of our results on a Terasic DE10-Pro development board with an Intel Stratix-10
FPGA holding a single SIMTIGHT SM connected to a DDR4 DIMM, a tightly-coupled instruc-
tion memory (TCIM), and a CHERI-enabled host CPU, as depicted in Figure 12. Following
modern NVIDIA devices, and prior work on SIMTIGHT, we use 64 warps and 32 threads per
warp providing 2,048 hardware threads in total per SM. This number of warps is sufficient to
mask the latency of DDR4 memory on FPGA, achieving good performance without caches.
While the absence of caches reduces the accuracy of our setup for predicting ASIC perfor-
mance, we show in Section 4.4 that our reported CHERI overheads are not affected by this
limitation.

For the compressed register file, the SIMTIGHT authors report that a 1/4-size VRF provides a
68% storage reduction with negligible run-time and memory-access overheads. However, they
were using a modern GCC (version 12) while we are using a relatively old Clang (the latest
version that supports CHERI at the time), which yields inferior results. We therefore opt for a
3/8-size VRF in the baseline providing a 55% storage reduction, as shown in Table 1.

We consider three main configurations of SIMTIGHT:

• Baseline A baseline configuration with a compressed general-purpose register file and
a compressed stack cache, but without support for CHERI. Benchmarks run with no
memory safety.

• CHERI An extension of the baseline configuration with CHERI. Value regularity in ca-
pability metadata is not detected or exploited. No CHERI instructions are implemented in

19

VRF Size Total Storage Compression Cycle Main Memory
(Vector Registers) (Kilobits) Ratio Overhead Access Overhead

1,024 (1/2) 1,202 1 : 0.57 0.8% 0.1%
768 (3/8) 937 1 : 0.45 0.9% 2.2%
512 (1/4) 672 1 : 0.32 4.3% 39.9%

Table 1: Storage savings and geometric-mean overheads in the SIMTIGHT baseline, using Clang 13,
due to register-file compression for a 1/2-size, 3/8-size, and 1/4-size VRF relative to an uncompressed
register file (which contains 2,048 vector registers occupying 2,097 kilobits of storage).

the shared function unit. Benchmarks run with full spatial memory safety and referential
integrity.

• CHERI (Optimised) An extension of the CHERI configuration with optimisations.
Value regularity in capability metadata is detected and exploited. The capability-metadata
register file is compressed. The shared VRF and null-value optimisations are both en-
abled. Capability metadata is cached in the compressed stack cache. CHERI instructions
for getting and setting bounds are implemented in the shared function unit. This config-
uration also enables the static PC metadata restriction.

4.2 Threat Model
We consider a simple threat model in which an attacker seeks to exploit an out-of-bounds mem-
ory access to exfiltrate or corrupt data, or hijack control flow. When CHERI is enabled, applica-
tions are compiled in pure capability mode with all C++ pointers (and architectural addresses,
such as the stack pointer and return addresses) being implemented as capabilities, enabling
deterministic prevention of all such attacks. This covers code running on the SIMTIGHT SM
and the host CPU, which can freely exchange capabilities via main memory. CHERI lays the
foundation for protection against a much wider range of threats, including exploitation of use-
after-free bugs, and interaction with untrusted software components. These threats are beyond
the scope of this report, but we refer the reader to detailed security evaluations of CHERI on
CPUs, which may be indicative [3, 27, 35, 38, 74].

4.3 Register-File Overhead
Figure 13 shows the proportion of register values that need be stored as uncompressed vectors
in the shared VRF, both for values stored in the general-purpose register file and the capability-
metadata register file. With the null-value optimisation, only the BlkStencil benchmark uses
space in the VRF for capability metadata (explained below). The register-file storage overhead
of CHERI is therefore almost entirely accounted for by the cost of the capability-metadata SRF,
which is 14% of the total register-file storage of the baseline.

Figure 14 shows that no benchmark uses more than half of the available registers to hold capa-
bilities. Therefore, with some basic compiler support to guarantee that only a subset of registers
are used to store capabilities, the size of the capability-metadata SRF could be halved without
impacting run-time performance in this benchmark suite. This would bring the register-file
storage overhead of CHERI down to 7%.

20

Ve
cA

dd

Histo
gra

m
Re

du
ce

Sca
n

Tra
nsp

ose

MatV
ecM

ul

MatM
ul

Bito
nic

Sm

Bito
nic

La
SP

MV

BlkS
ten

cil

Str
Ste

nci
l

Ve
cG

CD

Moti
on

Est Mea
n

0

20

40

60
Ve

ct
or

 R
eg

ist
er

s (
%

) General Register File Metadata Register File Metadata Register File (with NVO)

Figure 13: Proportion of registers stored as vectors in the VRF (lower is better) for the general-purpose
register file, and for the capability-metadata register file with and without the null-value optimisation
(NVO). Remaining registers are stored compactly as scalars in the SRF. Note that for the metadata
register file, there are often no registers stored in the VRF, which is represented by the absence of a bar.

Ve
cA

dd

Histo
gra

m
Re

du
ce

Sca
n

Tra
nsp

ose

MatV
ecM

ul

MatM
ul

Bito
nic

Sm

Bito
nic

La
SP

MV

BlkS
ten

cil

Str
Ste

nci
l

Ve
cG

CD

Moti
on

Est
0

8

16

24

32

Re
gi

st
er

s u
se

d
to

ho
ld

 c
ap

ab
ilit

ie
s

Figure 14: Number of registers per thread used to hold capabilities. Each thread has access to 32
registers in total. The remaining registers are never used to hold capabilities.

In the literature, the register file is typically considered to account for around 256KB of onchip
storage per SM, compared to 64KB per SM for scratchpad memory and 64KB per SM for
the L1 cache [28]. Furthermore, the shared L2 cache typically accounts for around 128KB to
256KB of storage per SM in modern GPGPUs [56]. We therefore estimate that the register
file accounts for less than half of total onchip GPGPU storage. The total storage overhead of
CHERI in a full GPGPU design would therefore likely fall below 3.5%.

Upon inspection of the BlkStencil benchmark, we see that the capability-metadata divergence
arises from a compiler optimisation. A line of source code of the form

if (cond) {acc += *p1;} else {acc += *p2;}

effectively gets transformed to

if (cond) {tmp = p1;} else {tmp = p2;}; acc += *tmp;

where p1 and p2 point to elements of different arrays (one stored in global memory and the other
in shared local memory). The compiler has therefore transformed control-flow divergence into
pointer-value divergence. In this work, we are using entirely pre-existing compiler toolchains
but the above optimisation could potentially be disabled for SIMT targets, to preserve value
regularity.

21

Ve
cA

dd

Histo
gra

m
Re

du
ce

Sca
n

Tra
nsp

ose

MatV
ecM

ul

MatM
ul

Bito
nic

Sm

Bito
nic

La
SP

MV

BlkS
ten

cil

Str
Ste

nci
l

Ve
cG

CD

Moti
on

Est
0

2

4

6

8
DR

AM
 B

an
dw

id
th

Us
ag

e
(G

B/
s)

Baseline CHERI (Optimised)

Figure 15: DRAM bandwidth usage (lower is better) with and without CHERI.

Ve
cA

dd

Histo
gra

m
Re

du
ce

Sca
n

Tra
nsp

ose

MatV
ecM

ul

MatM
ul

Bito
nic

Sm

Bito
nic

La
SP

MV

BlkS
ten

cil

Str
Ste

nci
l

Ve
cG

CD

Moti
on

Est

Geo
mea

n
0

3

6

9

Ov
er

he
ad

 (%
)

Cycles Instructions Retired

Figure 16: Execution-time overheads of the optimised CHERI configuration relative to the baseline
configuration (lower is better), both in terms of clock cycles taken and instructions retired.

4.4 Memory-Bandwidth Overhead

Figure 15 shows that the introduction of CHERI does not significantly affect DRAM bandwidth
usage in SIMTIGHT. Inlining of GPGPU functions plays an interesting role here. Without
inlining, CHERI incurs a slightly larger overhead, which is partly ameliorated by the ability of
SIMTIGHT’s compressed stack cache to cache capability metadata. This is because function
calls introduce more stack accesses, and hence more loading and storing of double-size pointers
to memory. With aggressive inlining, caching of capability metadata does not appear to have a
major impact on DRAM bandwidth, despite the potential to reduce the cost of register spilling.

4.5 Execution-Time Overhead

Figure 16 shows the execution-time overhead of adding CHERI to SIMTIGHT. The geometric-
mean cycle overhead is 1.6%. We note that this is lower than CHERI overheads reported on
CPU prototypes [68], suggesting that CHERI is cheaper on GPGPUs than CPUs. This is likely
due to heavy function-call inlining and lack of pointer chasing in GPGPU workloads, limiting
the number of accesses to double-sized pointers on the stack and heap respectively.

The main outlier in the execution-time results is the BlkStencil benchmark, which exhibits two
uncommon but costly behaviours: capability-metadata divergence (Section 4.3) and execution
of a relatively high number of CSC instructions, each of which can incur a one-cycle perfor-
mance penalty during operand fetch in the SIMTIGHT microarchitecture (Section 3.2).

22

Configuration Area (ALMs) Area (DSPs) Block RAM (Kilobits) Fmax (MHz)
Baseline 126,753 0 2,156 180
CHERI 166,796 0 4,399 181
CHERI (Optimised) 149,356 0 2,394 180

Table 2: Synthesis results for a single SIMTIGHT SM on an Intel Stratix 10 FPGA with and without
CHERI. The use of DSP blocks on the FPGA has been disabled to obtain a single ALM count represent-
ing all logic used.

4.6 Synthesis Results
Table 2 shows the logic area and onchip storage overheads of adding CHERI to SIMTIGHT.
Our optimitisations reduce the area overhead by 44% to 708 ALMs per vector lane, comparable
to (but slightly larger than) the cost of an additional multiplier (567 ALMs) per vector lane. The
onchip memory storage overhead, measured in bits, is largely eliminated.

Compared to academic prototype implementations of CHERI on CPUs [67], our area overheads
are relatively low; we have been able to amortise the cost of CHERI logic across multiple
execution units. Furthermore, Arm’s prototype implementation of CHERI in their Neoverse
N1 CPU exhibits significantly lower area overheads [73] than academic CPU prototypes as the
baseline design is richer in terms of architectural features and microarchitectural optimisations.
For similar reasons, it is reasonable to expect that the relative area overheads of CHERI in a
commercial-grade GPGPU would be lower than those for SIMTIGHT.

4.7 Software Bounds Checking
For comparison against CHERI, we have developed an experimental Rust port of NOCL and
its benchmark suite that runs on the SIMTIGHT GPGPU. Rust is a modern general-purpose
systems programming language that can serve as a suitable replacement for C/C++, providing
similar levels of efficiency but with stronger correctness properties. In safe Rust, memory safety
is enforced: all references point to valid live memory and cannot be accessed out of bounds.

Our Rust port is ‘like-for-like’ in the sense that C++ and Rust versions of each benchmark are
defined very similarly. This gives confidence that different versions of the same benchmark
are behaving in a similar way, allowing a fair performance comparison. On the other hand, it
overlooks an important property of Rust. Rust’s ownership system prohibits multiple threads
from having write access to the same memory region at the same time, preventing data races.
But such accesses are commonplace in data-parallel languages such as CUDA and OpenCL,
e.g., multiple threads writing different parts of a result array at the same time. Resolving this
discrepancy is an open problem, and we discuss some recent research in this area in Section 5.2.
In our experimental NOCL port, we do not attempt to solve this issue; the Rust compiler is
simply unaware of the presence of multiple GPU threads.

Figure 17 compares the execution times of C++ and Rust versions of the benchmarks running
on SIMTIGHT. The C++ and Rust compilers used are both based on version 19.1.7 of LLVM.
Overall, there is a geometric mean overhead of 46% from using Rust. If we disable bounds
checks, this overhead drops to 9%. Bounds checking accounts for a 34% overhead in Rust
alone. This indicates the software bounds checking is fairly expensive in low-level GPGPU

23

Ve
cA

dd

Histo
gra

m
Re

du
ce

Sca
n

Tra
nsp

ose

MatV
ecM

ul

MatM
ul

Bito
nic

Sm

Bito
nic

La
SP

MV

BlkS
ten

cil

Str
Ste

nci
l

Ve
cG

CD

Moti
on

Est

Geo
mea

n
0

25
50
75

100
125

Ex
ec

ut
io

n-
Ti

m
e

 O
ve

rh
ea

d
(%

)
Rust Rust (Bounds Checking Disabled)

Figure 17: Execution-time overheads of our Rust port of NOCL running on SIMTIGHT.

code, at least without providing further information about the relationships between the sizes
of the buffers being accessed, which the compiler could use to eliminate some of the checks.

5 Related Work

5.1 GPU Debugging Tools
Memory-safety violations on GPUs are sufficiently common that a range of debugging tools
have been built to detect them [22,24,55,62,69]. CUDA-MEMCHECK [55] and Oclgrind [62]
tools can reliably detect buffer overflows (and other common errors) in CUDA and OpenCL
code respectively, but introduce order-of-magnitude performance overheads. Canary-based
approaches have much higher performance [22, 24]. They work by allocating padding bytes
before/after each buffer and monitoring whether these bytes are ever modified, but they cannot
detect out of bounds reads or access violations that fall outside the padding bytes. Very recently,
NVIDIA has developed cuCatch [69] for probabilistically catching memory safety violations
in CUDA code with a mean execution-time overhead of 19%. While useful, these tools are not
appropriate from a security perspective where a viable solution will ideally provide both strong
deterministic memory safety and low overheads.

5.2 Safe Languages Targeting GPUs
Over the past decade, GPUs have become a target for a number of high-level data-parallel array
programming languages [25,30,32,34,47,59]. The goal is to move from low-level management
of individual threads and memory accesses to high-level combinations of bulk parallel array
operations such as map, reduce, scan, and so on. These languages have been shown to achieve
useful levels of performance while often guaranteeing properties such as memory safety and
data-race freedom. Interestingly, many bulk array operations are safe by construction and do
not require bounds checks. However, some operations, such as gather and scatter, permit ad-hoc
indexing and do require run-time safety checks. The authors of the high-level array language
Futhark [34] report a 6% average performance overhead due to bounds checking on GPUs [33].

The flip side of abstracting away from low-level details is that the programmer loses control
over these details. Köpcke et al. argue that such control is needed to extract the highest levels
of performance from GPU hardware [40]. Inspired by Rust, they propose a safe low-level
language for GPU programming called Descend. They use the concept of views to safely
describe parallel accesses to shared memory in a way that can be statically checked for memory

24

safety and data-race freedom. Essentially, this means that the programmer expresses both the
individual memory accesses of each thread and a form of proof that these accesses are safe.
As a result, Descend programs look quite different to CUDA programs and are harder to write;
there are likely to be major costs in terms of porting existing applications and re-educating
users. As in Rust, there are also cases where it is difficult to express the desired behaviour in
a way that can be checked by the compiler, and Descend provides unsafe code blocks as an
escape hatch. Any programs containing such blocks are no longer guaranteed to be safe.

Compiling Rust itself down to GPGPUs has also been explored. The Rust-CUDA project [20]
extends the Rust compiler with support for targeting NVVM IR, a subset of LLVM IR. The
CUDA toolkit ships with a closed-source library libnvmm that converts NVVM IR to NVIDIA’s
PTX portable bytecode format, which can in turn be compiled to GPGPU assembly by a closed-
source NVIDIA device driver. The project is described as being in the early stages of devel-
opment, providing two sample compute kernels written in Rust, but does not yet present any
performance analysis. Currently, the sample compute kernels are declared as unsafe. Very
recently, the developers have announced a new effort to pursue the project further [44].

Finally, it is worth noting that CHERI and safe languages are likely to be complementary on
GPGPUs, just as they are considered to be on CPUs [10].

5.3 Hardware Support for GPU Memory Safety
To our knowledge, the only prior hardware approach to GPU memory safety is GPUShield [41].
This extends NVIDIA and Intel GPU models with a bounds table and uses the top 16 bits of
every 64-bit pointer to hold an index into the table. The bounds table is setup before a GPU
kernel is launched, and remains unchanged for the duration of execution. Bounds on kernel
arguments are provided by the caller, and the compiler is extended to emit bounds information
for buffers declared within a kernel. The compiler is also modified to avoid bounds checking
on accesses that are known to be safe by static analysis; this is achieved by marking pointers as
‘unprotected’ in the top 16 bits.

The authors argue that extending the size of registers is unacceptable on GPUs due to memory
bandwidth overheads and already-massive GPU register files. However, our results suggest
that these costs can be largely eliminated by exploiting inter-thread redundancy in the metadata.
Furthermore, extending the pointer size has a number of benefits, such as retaining access to the
full address space, supporting 32-bit architectures as well as 64-bit architectures, and increasing
the number of bits available to encode metadata. This in turn avoids the need for a limit on the
number of buffers that can be protected, and indeed the need for indirection via a bounds table
in the first place, as bounds can be encoded directly within the metadata itself.

GPUShield has been developed with a strong emphasis on efficiency, and the authors report
a low average execution-time overhead of 0.8%. However, there are limitations in terms of
expressibility and security. From an expressibility perspective, bounds cannot be modified dur-
ing kernel execution, meaning that dynamically allocated memory cannot be protected. From
a security perspective, pointer metadata is unprotected, which means that the buffer id can
be corrupted or forged. Furthermore, GPUShield’s ‘unprotected’ pointers, which allow the
bounds table lookup to be bypassed for efficiency, makes it possible to forge a pointer to any
address in memory. As GPUShield was developed in simulation, the area overhead is unclear,

25

Feature GPUShield CHERI
Supports spatial memory safety 3 3

Provides referential integrity 7 3

Supports both 32-bit and 64-bit architectures 7 3

Permits use of entire address space 7 3

Supports an unlimited number of buffers 7 3

Supports dynamic allocation of buffers on the GPU 7 3

Supports isolation of software components including GPU kernels 7 3

Allows pointers to be distinguished from data 7 3

Applies to both CPUs and GPUs 7 3

Demonstrated in a synthesisable GPU core 7 3

Run-time performance overhead on GPUs Low Low
Silicon area overhead on GPUs Low (likely) Moderate

Figure 18: Feature comparison of GPUShield [41] and CHERI.

but it would probably be lower than CHERI’s as data-path widths are largely unaffected and
bounds are uncompressed. A feature comparison of GPUShield and CHERI is summarised in
Figure 18.

6 Conclusion

Despite huge numbers of registers in heavily-threaded GPGPU cores, extending registers with
metadata can, in fact, be feasible. Storage costs in SIMT designs are dependent on the amount
of value regularity between threads executing in lockstep. Capability metadata exhibits sub-
stantial value regularity, which can be exploited to largely eliminate the storage overhead of
CHERI’s double-size registers. Furthermore, the logic-area overhead of CHERI can be signif-
icantly reduced by amortising the cost of some CHERI instructions across multiple execution
units. With these optimisations, CHERI offers a viable path to memory-safe GPGPU applica-
tions written in CUDA and OpenCL, avoiding the need for widespread porting of applications
to new memory-safe languages and the associated re-education of users. Compared to state-
of-the-art work on hardware support for GPU memory safety, CHERI provides far stronger
security properties with similar runtime overheads, but likely higher area overheads. CHERI
supports a much broader threat model, which in future would be interesting to explore in the
context of GPGPUs.

Acknowledgements

Thanks to Jianyi Cheng for improving the reproducibility of the results presented in this report.
This work was supported by the UK EPSRC under the CAPcelerate Project (EP/V000381/1)
and the Chrompartments Project (EP/X015963/1), both part of the Digital Security by Design
(DSbD) Programme and the DSbDtech initiative. CHERI support for SIMTIGHT has been
merged into the main SIMTIGHT distribution, available at https://github.com/CTSRD-C
HERI/SIMTight.

26

https://github.com/CTSRD-CHERI/SIMTight
https://github.com/CTSRD-CHERI/SIMTight

References

[1] Advanced Micro Devices (AMD). Southern Islands Series Instruction Set Architecture
1.1, 2012.

[2] Muhammed Al Kadi, Benedikt Janssen, and Michael Huebner. FGPU: An SIMT-
Architecture for FPGAs. In ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA 2016).

[3] Saar Amar, David Chisnall, Tony Chen, Nathaniel Wesley Filardo, Ben Laurie, Kunyan
Liu, Robert Norton, Simon W. Moore, Yucong Tao, Robert N. M. Watson, and Hongyan
Xia. CHERIoT: Complete Memory Safety for Embedded Devices. In Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2023.

[4] Kevin Andryc, Murtaza Merchant, and Russell Tessier. FlexGrip: A soft GPGPU for
FPGAs. In International Conference on Field-Programmable Technology (FPT 2013).

[5] Arm. Arm Morello Program. https://www.arm.com/architecture/cpu/morel
lo (accessed 2024-01-30), 2024.

[6] Raghuraman Balasubramanian, Vinay Gangadhar, Ziliang Guo, Chen-Han Ho, Cherin
Joseph, Jaikrishnan Menon, Mario Paulo Drumond, Robin Paul, Sharath Prasad, Pradip
Valathol, and Karthikeyan Sankaralingam. Enabling GPGPU Low-Level Hardware Ex-
plorations with MIAOW: An Open-Source RTL Implementation of a GPGPU. ACM
Transactions on Architecture and Code Optimisation, 12(2), 2015.

[7] Nathan Bell and Michael Garland. Efficient Sparse Matrix-Vector Multiplication on
CUDA. Research report, NVIDIA Corporation, 2008.

[8] Jeff Bush, Mohammad A. Khasawneh, Khaled Z. Mahmoud, and Timothy N. Miller.
NyuziRaster: Optimizing rasterizer performance and energy in the Nyuzi open source
GPU. In IEEE International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS 2016).

[9] Zhongliang Chen and David Kaeli. Balancing Scalar and Vector Execution on GPU Archi-
tectures. In IEEE International Parallel and Distributed Processing Symposium (IPDPS
2016).

[10] David Chisnall. CHERI Myths: I don’t need CHERI if I have safe languages. https:

//cheriot.org/cheri/myths/2024/08/28/cheri-myths-safe-languages.

html (accessed 2024-12-19), 2024.

[11] David Chisnall, Colin Rothwell, Robert N.M. Watson, Jonathan Woodruff, Munraj
Vadera, Simon W. Moore, Michael Roe, Brooks Davis, and Peter G. Neumann. Be-
yond the PDP-11: Architectural Support for a Memory-Safe C Abstract Machine. In 20th
International Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS 2015).

[12] Chromium Team. The Chromium Projects: Memory safety. https://www.chromium
.org/Home/chromium-security/memory-safety/ (accessed 2024-01-25), 2024.

27

https://www.arm.com/architecture/cpu/morello
https://www.arm.com/architecture/cpu/morello
https://cheriot.org/cheri/myths/2024/08/28/cheri-myths-safe-languages.html
https://cheriot.org/cheri/myths/2024/08/28/cheri-myths-safe-languages.html
https://cheriot.org/cheri/myths/2024/08/28/cheri-myths-safe-languages.html
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/

[13] Cybersecurity & Infrastructure Security Agency (CISA), National Security Agency
(NSA), Federal Bureau of Investigation (FBI), Australian Cyber Security Centre (ACSC),
Canadian Centre for Cyber Security (CCCS), United Kingdom’s National Cyber Se-
curity Centre (NCSC-UK), Germany’s Federal Office for Information Security (BSI),
Netherlands’ National Cyber Security Centre (NCSC-NL), Computer Emergency Re-
sponse Team New Zealand (CERT NZ), and New Zealand’s National Cyber Security Cen-
tre (NCSC-NZ). Shifting the Balance of Cybersecurity Risk: Principles and Approaches
for Security-by-Design and -Default. https://www.cisa.gov/sites/default/f
iles/2023-04/principles approaches for security-by-design-defaul

t 508 0.pdf (accessed 2024-08-02), 2023.

[14] Cybersecurity & Infrastructure Security Agency (CISA), National Security Agency
(NSA), Federal Bureau of Investigation (FBI), Australian Cyber Security Centre (ASD’s
ACSC), Canadian Centre for Cyber Security (CCCS), United Kingdom’s National Cyber
Security Centre (NCSC-UK), Computer Emergency Response Team New Zealand (CERT
NZ), and New Zealand’s National Cyber Security Centre (NCSC-NZ). The Case for
Memory Safe Roadmaps: Why Both C-Suite Executives and Technical Experts Need to
Take Memory Safe Coding Seriously. https://bidenwhitehouse.archives.g

ov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

(accessed 2025-02-18), 2023.

[15] Codasip. Codasip delivers processor security to actively prevent the most common cyber-
attacks. https://codasip.com/press-release/2023/10/31/codasip-deliv
ers-processor-security-to-actively-prevent-cyberattacks/ (accessed
2024-01-30), 2024.

[16] Caroline Collange. Simty: generalized SIMT execution on RISC-V. In 1st Workshop on
Computer Architecture Research with RISC-V (CARRV 2017).

[17] Caroline Collange. Identifying scalar behavior in CUDA kernels. Research report, ENS
Lyon, 2011.

[18] Caroline Collange. Stack-less SIMT reconvergence at low cost. Research report, ENS
Lyon, 2011.

[19] Caroline Collange, David Defour, and Yao Zhang. Dynamic Detection of Uniform and
Affine Vectors in GPGPU Computations. In Euro-Par 2009 – Parallel Processing Work-
shops.

[20] Riccardo D’Ambrosio. The Rust CUDA Project. https://github.com/Rust-GPU/
Rust-CUDA (commit 8a6cb73, accessed 2024-02-01), 2021.

[21] Bang Di, Jianhua Sun, and Hao Chen. A Study of Overflow Vulnerabilities on GPUs. In
International Conference on Network and Parallel Computing, 2016.

[22] Bang Di, Jianhua Sun, Dong Li, Hao Chen, and Zhe Quan. GMOD: a dynamic GPU
memory overflow detector. In Proceedings of the 27th International Conference on Par-
allel Architectures and Compilation Techniques, PACT 2018, 2018.

28

https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://codasip.com/press-release/2023/10/31/codasip-delivers-processor-security-to-actively-prevent-cyberattacks/
https://codasip.com/press-release/2023/10/31/codasip-delivers-processor-security-to-actively-prevent-cyberattacks/
https://github.com/Rust-GPU/Rust-CUDA
https://github.com/Rust-GPU/Rust-CUDA

[23] Christopher Erb, Mike Collins, and Joseph L. Greathouse. Dynamic buffer overflow de-
tection for GPGPUs. In IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), 2017.

[24] Christopher Erb and Joseph L. Greathouse. clARMOR: A Dynamic Buffer Overflow
Detector for OpenCL Kernels. In Proceedings of the International Workshop on OpenCL,
IWOCL 2018, 2018.

[25] August Ernstsson, Lu Li, and Christoph Kessler. SkePU 2: Flexible and Type-Safe Skele-
ton Programming for Heterogeneous Parallel Systems. International Journal of Parallel
Programming, 46(1), 2018.

[26] Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, Sam Ainsworth, Lucian
Paul-Trifu, Brooks Davis, Hongyan Xia, Edward Tomasz Napierala, Alexander Richard-
son, John Baldwin, David Chisnall, Jessica Clarke, Khilan Gudka, Alexandre Joannou,
A. Theodore Markettos, Alfredo Mazzinghi, Robert M. Norton, Michael Roe, Peter
Sewell, Stacey Son, Timothy M. Jones, Simon W. Moore, Peter G. Neumann, and Robert
N. M. Watson. Cornucopia: Temporal Safety for CHERI Heaps. In IEEE Symposium on
Security and Privacy (SP), 2020.

[27] Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, Jessica Clarke, Peter
Rugg, Brooks Davis, Mark Johnston, Robert Norton, David Chisnall, Simon W. Moore,
Peter G. Neumann, and Robert N. M. Watson. Cornucopia Reloaded: Load Barriers for
CHERI Heap Temporal Safety. In 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), Volume 2, 2024.

[28] Mark Gebhart, Stephen W. Keckler, Brucek Khailany, Ronny Krashinsky, and William J.
Dally. Unifying Primary Cache, Scratch, and Register File Memories in a Throughput
Processor. In 45th IEEE/ACM International Symposium on Microarchitecture (MICRO),
2012.

[29] Syed Zohaib Gilani, Nam Sung Kim, and Michael Schulte. Power-efficient computing
for compute-intensive GPGPU applications. In 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT 2012).

[30] Jing Guo, Jeyarajan Thiyagalingam, and Sven-Bodo Scholz. Breaking the GPU program-
ming barrier with the auto-parallelising SAC compiler. In Sixth Workshop on Declarative
Aspects of Multicore Programming (DAMP), 2011.

[31] Yanan Guo, Zhenkai Zhang, and Jun Yang. GPU memory exploitation for fun and profit.
In 33rd USENIX Conference on Security Symposium, 2024.

[32] Bastian Hagedorn, Johannes Lenfers, Thomas Kœhler, Xueying Qin, Sergei Gorlatch, and
Michel Steuwer. Achieving high-performance the functional way: A functional pearl on
expressing high-performance optimizations as rewrite strategies. Proceedings of the ACM
on Programming Languages, 4(ICFP), 2020.

[33] Troels Henriksen. Bounds Checking on GPU. International Journal of Parallel Program-
ming, 49(6), 2021.

29

[34] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E.
Oancea. Futhark: purely functional GPU-programming with nested parallelism and in-
place array updates. In 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2017.

[35] Graeme Jenkinson, Alfredo Mazzinghi, and Robert N. M. Watson. CHERI-based mem-
ory protection and compartmentalisation for web services on Morello. Technical Report,
Capabilities Limited, https://www.capabilitieslimited.co.uk/ files/u

gd/893621 985a92a599bf41208e4c5710abcf3a68.pdf (accessed 2025-03-12),
2024.

[36] Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo Scarpazza. Dissecting the
NVIDIA Turing T4 GPU via Microbenchmarking, 2019. arXiv 1903.07486.

[37] Alexandre Joannou, Jonathan Woodruff, Robert Kovacsics, Simon W. Moore, Alex Brad-
bury, Hongyan Xia, Robert N.M. Watson, David Chisnall, Michael Roe, Brooks Davis,
Edward Napierala, John Baldwin, Khilan Gudka, Peter G. Neumann, Alfredo Mazzinghi,
Alex Richardson, Stacey Son, and A. Theodore Markettos. Efficient Tagged Memory. In
International Conference on Computer Design (ICCD), 2017.

[38] Nicolas Joly, Saif ElSherei, and Saar Amar. Security Analysis of CHERI ISA. Technical
Report, Microsoft Security Response Center, https://github.com/microsoft/M
SRC-Security-Research/blob/master/papers/2020/Security%20analysi

s%20of%20CHERI%20ISA.pdf (commit 1372d4f, accessed 2025-03-12), 2020.

[39] Ji Kim, Christopher Torng, Shreesha Srinath, Derek Lockhart, and Christopher Batten.
Microarchitectural mechanisms to exploit value structure in SIMT architectures. In 40th
Annual International Symposium on Computer Architecture (ISCA 2013).

[40] Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer. Descend: A Safe GPU Systems
Programming Language. Proceedings of the ACM on Programming Languages, 8(PLDI),
2024.

[41] Jaewon Lee, Yonghae Kim, Jiashen Cao, Euna Kim, Jaekyu Lee, and Hyesoon Kim.
Securing GPU via region-based bounds checking. In 49th International Symposium on
Computer Architecture (ISCA), 2022.

[42] Sangpil Lee, Keunsoo Kim, Gunjae Koo, Hyeran Jeon, Won Woo Ro, and Murali An-
navaram. Warped-Compression: Enabling Power Efficient GPUs through Register Com-
pression. In 42nd Annual International Symposium on Computer Architecture (ISCA
2015).

[43] Yunsup Lee, Ronny Krashinsky, Vinod Grover, Stephen W. Keckler, and Krste Asanović.
Convergence and scalarization for data-parallel architectures. In IEEE/ACM International
Symposium on Code Generation and Optimization (CGO 2013).

[44] Christian Legnitto. Rebooting the Rust CUDA project. https://rust-gpu.github.
io/blog/2025/01/27/rust-cuda-reboot/ (accessed 2025-02-07), 2025.

[45] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A
Unified Graphics and Computing Architecture. IEEE Micro, 28(2), 2008.

30

https://www.capabilitieslimited.co.uk/_files/ugd/893621_985a92a599bf41208e4c5710abcf3a68.pdf
https://www.capabilitieslimited.co.uk/_files/ugd/893621_985a92a599bf41208e4c5710abcf3a68.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://rust-gpu.github.io/blog/2025/01/27/rust-cuda-reboot/
https://rust-gpu.github.io/blog/2025/01/27/rust-cuda-reboot/

[46] Zhenhong Liu, Syed Gilani, Murali Annavaram, and Nam Sung Kim. G-Scalar: Cost-
Effective Generalized Scalar Execution Architecture for Power-Efficient GPUs. In IEEE
International Symposium on High Performance Computer Architecture (HPCA 2017).

[47] Trevor L. McDonell, Manuel M.T. Chakravarty, Gabriele Keller, and Ben Lippmeier. Op-
timising purely functional GPU programs. In 18th ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP), 2013.

[48] Andrea Miele. Buffer overflow vulnerabilities in CUDA: a preliminary analysis. Journal
of Computer Virology and Hacking Techniques, 12(2), 2016.

[49] Matt Miller. Trends, challenges, and strategic shifts in the software vulnerability mitiga-
tion landscape. https://github.com/Microsoft/MSRC-Security-Research/
tree/master/presentations/2019 02 BlueHatIL (accessed 2024-01-25), 2019.

[50] Sparsh Mittal. A Survey of Techniques for Architecting and Managing GPU Register
File. IEEE Transactions on Parallel and Distributed Systems, 28(1), 2017.

[51] Matthew Naylor. SIMTight Open-Source Repository. https://github.com/CTSRD
-CHERI/SIMTight (commit 467bb3a, accessed 2024-12-20), 2024.

[52] Matthew Naylor. NoCL Manual. https://github.com/CTSRD-CHERI/SIMTight/
blob/master/doc/NoCL.md (commit 46ad488, accessed 2025-02-18), 2025.

[53] Matthew Naylor, Alexandre Joannou, Paul Metzger, A. Theodore Markettos, Simon W.
Moore, and Timothy M. Jones. Advanced Dynamic Scalarisation for RISC-V GPGPUs.
In 42nd IEEE International Conference on Computer Design (ICCD), 2024.

[54] Hubert Nguyen. GPU Gems 3. Addison-Wesley Professional, first edition, 2007.

[55] NVIDIA Corporation. CUDA-MEMCHECK User Manual. https://docs.nvidia.
com/cuda/archive/11.7.1/pdf/CUDA Memcheck.pdf (accessed 2023-02-24),
2022.

[56] NVIDIA Corporation. NVIDIA Ada GPU Architecture (v2.02). https://images.n

vidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architect

ure.pdf (accessed 2025-01-07), 2023.

[57] NVIDIA Corporation. CUDA Code Samples. https://developer.nvidia.com/c
uda-code-samples (accessed 2024-01-23), 2024.

[58] NVIDIA Corporation. NVIDIA OpenCL SDK Code Samples. https://developer.
nvidia.com/opencl (accessed 2024-01-23), 2024.

[59] NVIDIA Corporation. Thrust, the CUDA C++ template library, Version 2.1.0. https:
//developer.nvidia.com/thrust (accessed 2024-12-18), 2024.

[60] NVIDIA Corporation. CUDA C++ Programming Guide (Release 12.8). https://do

cs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf (accessed 2025-02-
13), 2025.

31

https://github.com/Microsoft/MSRC-Security-Research/tree/master/presentations/2019_02_BlueHatIL
https://github.com/Microsoft/MSRC-Security-Research/tree/master/presentations/2019_02_BlueHatIL
https://github.com/CTSRD-CHERI/SIMTight
https://github.com/CTSRD-CHERI/SIMTight
https://github.com/CTSRD-CHERI/SIMTight/blob/master/doc/NoCL.md
https://github.com/CTSRD-CHERI/SIMTight/blob/master/doc/NoCL.md
https://docs.nvidia.com/cuda/archive/11.7.1/pdf/CUDA_Memcheck.pdf
https://docs.nvidia.com/cuda/archive/11.7.1/pdf/CUDA_Memcheck.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://developer.nvidia.com/cuda-code-samples
https://developer.nvidia.com/cuda-code-samples
https://developer.nvidia.com/opencl
https://developer.nvidia.com/opencl
https://developer.nvidia.com/thrust
https://developer.nvidia.com/thrust
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[61] Sang-Ok Park, Ohmin Kwon, Yonggon Kim, Sang Kil Cha, and Hyunsoo Yoon. Mind
control attack: Undermining deep learning with GPU memory exploitation. Computers
& Security, 102(C), 2021.

[62] James Price and Simon McIntosh-Smith. Oclgrind: an extensible OpenCL device sim-
ulator. In Proceedings of the 3rd International Workshop on OpenCL, IWOCL 2015,
2015.

[63] Alex Rebert, Ben Laurie, Murali Vijayaraghavan, and Alex Richardson. Google Security
Blog: Securing tomorrow’s software: the need for memory safety standards. https:

//security.googleblog.com/2025/02/securing-tomorrows-software-ne

ed-for.html (accessed 2025-02-26), 2025.

[64] Sangpil Lee, Keunsoo Kim, Gunjae Koo, Hyeran Jeon, Murali Annavaram, and Woo Woo
Ro. Improving Energy Efficiency of GPUs through Data Compression and Compressed
Execution. IEEE Transactions on Computers, 66(05), 2017.

[65] Blaise Tine, Varun Saxena, Santosh Srivatsan, Joshua R. Simpson, Fadi Alzammar, Liam
Cooper, and Hyesoon Kim. Skybox: Open-Source Graphic Rendering on Programmable
RISC-V GPUs. In 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS 2023, Volume 3).

[66] Peter Rugg, Alexandre Joannou, Jonathan Woodruff, and Ivan Ribeiro. CheriCapLib
Library. https://github.com/CTSRD-CHERI/cheri-cap-lib (commit 354a673,
accessed 2024-10-30), 2024.

[67] Peter Rugg, Jonathan Woodruff, Alexandre Joannou, and Simon W. Moore. A Suite
of Processors to Explore CHERI-RISC-V Microarchitecture. In 27th Euromico Digital
System Design Conference (DSD), 2024.

[68] Peter David Rugg. Efficient spatial and temporal safety for microcontrollers and
application-class processors. Technical Report UCAM-CL-TR-984, University of Cam-
bridge, Computer Laboratory, July 2023.

[69] Mohamed Tarek Ibn Ziad, Sana Damani, Aamer Jaleel, Stephen W. Keckler, and Mark
Stephenson. cuCatch: A Debugging Tool for Efficiently Catching Memory Safety Vio-
lations in CUDA Applications. Proceedings of the ACM on Programming Languages,
7(PLDI), 2023.

[70] Blaise Tine, Krishna Praveen Yalamarthy, Fares Elsabbagh, and Kim Hyesoon. Vortex:
Extending the RISC-V ISA for GPGPU and 3D-Graphics. In 54th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2021).

[71] Jeff Vander Stoep, Android Security & Privacy Team, Chong Zhang, and Android Media
Team. Google Security Blog: Queue the Hardening Enhancements. https://secu

rity.googleblog.com/2019/05/queue-hardening-enhancements.html

(accessed 2024-01-25), 2019.

[72] Kai Wang and Calvin Lin. Decoupled affine computation for SIMT GPUs. In ACM/IEEE
44th International Symposium on Computer Architecture (ISCA 2017).

32

https://security.googleblog.com/2025/02/securing-tomorrows-software-need-for.html
https://security.googleblog.com/2025/02/securing-tomorrows-software-need-for.html
https://security.googleblog.com/2025/02/securing-tomorrows-software-need-for.html
https://github.com/CTSRD-CHERI/cheri-cap-lib
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html

[73] Robert N. M. Watson, Jessica Clarke, Peter Sewell, Jonathan Woodruff, Simon W. Moore,
Graeme Barnes, Richard Grisenthwaite, Kathryn Stacer, Silviu Baranga, and Alexander
Richardson. Early performance results from the prototype Morello microarchitecture.
Technical Report UCAM-CL-TR-986, University of Cambridge, Computer Laboratory,
September 2023.

[74] Robert N. M. Watson, Ben Laurie, and Alex Richardson. Assessing the Viability of an
OpenSource CHERI Desktop Software Ecosystem. Technical Report, Capabilities Lim-
ited, https://www.capabilitieslimited.co.uk/ files/ugd/f4d681 e0f23

245dace466297f20a0dbd22d371.pdf (accessed 2025-03-12), 2021.

[75] Robert N. M. Watson, Simon W. Moore, Peter Sewell, and Peter Neumann. An Introduc-
tion to CHERI. University of Cambridge Technical Report, UCAM-CL-TR-941, 2019.

[76] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Hesham
Almatary, Jonathan Anderson, John Baldwin, Graeme Barnes, David Chisnall, Jessica
Clarke, Brooks Davis, Lee Eisen, Nathaniel Wesley Filardo, Franz A. Fuchs, Richard
Grisenthwaite, Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon W.
Moore, Steven J. Murdoch, Kyndylan Nienhuis, Robert Norton, Alexander Richardson,
Peter Rugg, Peter Sewell, Stacey Son, and Hongyan Xia. Capability Hardware Enhanced
RISC Instructions: CHERI Instruction-Set Architecture (Version 9). Technical Report
UCAM-CL-TR-987, University of Cambridge, Computer Laboratory, 2023.

[77] Robert N.M. Watson, John Baldwin, David Chisnall, Tony Chen, Jessica Clarke, Brooks
Davis, Nathaniel Filardo, Brett Gutstein, Graeme Jenkinson, Ben Laurie, Alfredo Mazz-
inghi, Simon Moore, Peter G. Neumann, Hamed Okhravi, Alex Richardson, Alex Re-
bert, Peter Sewell, Laurence Tratt, Murali Vijayaraghavan, Hugo Vincent, and Konrad
Witaszczyk. It is time to standardize principles and practices for software memory safety.
Communications of the ACM, 68(2), 2025.

[78] Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore, Jonathan
Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben Laurie,
Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and Munraj Vadera.
CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmen-
talization. In 2015 IEEE Symposium on Security and Privacy, 2015.

[79] Jonathan Woodruff. CHERI: a RISC capability machine for practical memory safety. PhD
Thesis, UCAM-CL-TR-858, University of Cambridge, 2014.

[80] Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox, Robert M. Norton,
David Chisnall, Brooks Davis, Khilan Gudka, Nathaniel W. Filardo, A. Theodore Mar-
kettos, Michael Roe, Peter G. Neumann, Robert N. M. Watson, and Simon W. Moore.
CHERI Concentrate: Practical Compressed Capabilities. IEEE Transactions on Comput-
ers, 68(10), 2019.

[81] Ping Xiang, Yi Yang, Mike Mantor, Norm Rubin, Lisa R. Hsu, and Huiyang Zhou. Ex-
ploiting Uniform Vector Instructions for GPGPU Performance, Energy Efficiency, and
Opportunistic Reliability Enhancement. In 27th ACM International Conference on Su-
percomputing (ICS 2013).

33

https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_e0f23245dace466297f20a0dbd22d371.pdf
https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_e0f23245dace466297f20a0dbd22d371.pdf

[82] Ayse Yilmazer, Zhongliang Chen, and David Kaeli. Scalar Waving: Improving the Effi-
ciency of SIMD Execution on GPUs. In IEEE 28th International Parallel and Distributed
Processing Symposium (IPDPS 2014).

Appendix A: Sample NOCL Benchmark

This appendix contains the full C++ source code for the Histogram benchmark written using
the NOCL library, including both host-side code and device-side code. The host-side code
allocates and initialises buffers, launches the kernel on the device, and verifies the output. It
runs on the CPU in the SIMTIGHT evaluation SoC. Meanwhile, the device-side code runs on
the streaming multiprocessor in the SIMTIGHT evaluation SoC. No modifications are required
when compiling using the CHERI compiler.

0 #include <NoCL.h>
1 #include <Rand.h>
2

3 // Kernel for computing 256-bin histograms
4 struct Histogram : Kernel {
5 // Parameters
6 int len; unsigned char* in; int* out;
7

8 // Histogram bins in shared local memory
9 int* bins;

10

11 void init() {
12 declareShared(&bins, 256);
13 }
14

15 void kernel() {
16 // Initialise bins
17 for (int i = threadIdx.x; i < 256; i += blockDim.x)
18 bins[i] = 0;
19

20 __syncthreads();
21

22 // Update bins
23 for (int i = threadIdx.x; i < len; i += blockDim.x)
24 atomicAdd(&bins[in[i]], 1);
25

26 __syncthreads();
27

28 // Write bins to global memory
29 for (int i = threadIdx.x; i < 256; i += blockDim.x)
30 out[i] = bins[i];
31 }
32 };
33

34

35 int main()
36 {
37 // Are we in simulation?
38 bool isSim = getchar();

34

39

40 // Vector size for benchmarking
41 int N = isSim ? 3000 : 1000000;
42

43 // Input and output vectors
44 nocl_aligned unsigned char input[N];
45 nocl_aligned int output[256];
46

47 // Initialise inputs
48 uint32_t seed = 1;
49 for (int i = 0; i < N; i++)
50 input[i] = rand15(&seed) & 0xff;
51

52 // Instantiate kernel
53 Histogram k;
54

55 // Use single block of threads
56 k.blockDim.x = SIMTLanes * SIMTWarps;
57

58 // Assign parameters
59 k.len = N;
60 k.in = input;
61 k.out = output;
62

63 // Invoke kernel
64 noclRunKernelAndDumpStats(&k);
65

66 // Check result
67 bool ok = true;
68 int goldenBins[256];
69 for (int i = 0; i < 256; i++) goldenBins[i] = 0;
70 for (int i = 0; i < N; i++) goldenBins[input[i]]++;
71 for (int i = 0; i < 256; i++)
72 ok = ok && output[i] == goldenBins[i];
73

74 // Display result
75 puts("Self test: ");
76 puts(ok ? "PASSED" : "FAILED");
77 putchar(’\n’);
78

79 return 0;
80 }

Appendix B: Reproducing the Results
This appendix contains instructions for reproducing the main results of the paper. These in-
structions have been tested on Ubuntu 20.04 with Docker 24.0.7, but should work on any sys-
tem with a suitable Docker installation.

To begin, recursively clone the cheri-report branch of the SIMTIGHT repository:
git clone -b cheri-report --recursive https://github.com/CTSRD-CHERI/SIMTight

To satisfy the dependencies of the project, simply enter a Docker shell:

35

cd SIMTight && make shell

This takes around 7 minutes in the first instance, but only a matter of seconds thereafter.

Download and build the exact version of the CHERI compiler used in this report, and add it to
the environment:
cd cheri-tools && ./build-cheri.sh
cd cheri-tools && source ./add-cheri-tools-to-path.sh

This takes around 25 minutes to complete. Note that if you exit the Docker shell, and later
re-enter it, you will not need to rebuild the CHERI tools but you will need to re-add them to
the environment.

To enable CHERI support in SIMTight, modify inc/Config.h to contain:

• #define EnableTaggedMem 1

• #define EnableCHERI 1

• #define UseClang 1

The SIMTight evaluation SoC can then be built and tested in simulation with the command:
cd test && ./test.sh

This takes around 90 minutes to complete. It runs the RISC-V test suite on both the CPU and
the SM. It also runs all the NOCL benchmarks, which are self-checking. The expected output
is:
SIMTight build: ok
Simulator build: ok
Starting simulator: ok

Test Suite (CPU, Simulation)
============================

I/add ok
I/addi ok
I/and ok
I/andi ok
I/beq ok
I/bge ok
I/bgeu ok
I/blt ok
I/bltu ok
I/bne ok
I/lui ok
I/or ok
I/ori ok
I/simple ok
I/sll ok
I/slli ok
I/slt ok
I/slti ok
I/sltiu ok
I/sltu ok
I/sra ok
I/srai ok

36

I/srl ok
I/srli ok
I/sub ok
I/xor ok
I/xori ok
M/div ok
M/divu ok
M/mul ok
M/mulh ok
M/mulhsu ok
M/mulhu ok
M/rem ok
M/remu ok
CHERI/auipcc ok
CHERI/candperm ok
CHERI/ccleartag ok
CHERI/cgetaddr ok
CHERI/cgetbase ok
CHERI/cgetflags ok
CHERI/cgetlen ok
CHERI/cgetperm ok
CHERI/cgetsealed ok
CHERI/cgettag ok
CHERI/cgettype ok
CHERI/cincoffset ok
CHERI/cincoffsetimm ok
CHERI/cjalr ok
CHERI/clb ok
CHERI/clh ok
CHERI/clw ok
CHERI/cmove ok
CHERI/csb ok
CHERI/csc ok
CHERI/csealentry ok
CHERI/csetaddr ok
CHERI/csetbounds ok
CHERI/csetboundsexact ok
CHERI/csetboundsimm ok
CHERI/csetflags ok
CHERI/csh ok
CHERI/csub ok
CHERI/csw ok

Summary: ok

Test Suite (SIMT Core, Simulation)
==================================

I/add ok
I/addi ok
I/and ok
I/andi ok
I/beq ok
I/bge ok
I/bgeu ok

37

I/blt ok
I/bltu ok
I/bne ok
I/lui ok
I/or ok
I/ori ok
I/simple ok
I/sll ok
I/slli ok
I/slt ok
I/slti ok
I/sltiu ok
I/sltu ok
I/sra ok
I/srai ok
I/srl ok
I/srli ok
I/sub ok
I/xor ok
I/xori ok
M/div ok
M/divu ok
M/mul ok
M/mulh ok
M/mulhsu ok
M/mulhu ok
M/rem ok
M/remu ok
CHERI/auipcc ok
CHERI/candperm ok
CHERI/ccleartag ok
CHERI/cgetaddr ok
CHERI/cgetbase ok
CHERI/cgetflags ok
CHERI/cgetlen ok
CHERI/cgetperm ok
CHERI/cgetsealed ok
CHERI/cgettag ok
CHERI/cgettype ok
CHERI/cincoffset ok
CHERI/cincoffsetimm ok
CHERI/cjalr ok
CHERI/clb ok
CHERI/clh ok
CHERI/clw ok
CHERI/cmove ok
CHERI/csb ok
CHERI/csc ok
CHERI/csealentry ok
CHERI/csetaddr ok
CHERI/csetbounds ok
CHERI/csetboundsexact ok
CHERI/csetboundsimm ok
CHERI/csetflags ok
CHERI/csh ok

38

CHERI/csub ok
CHERI/csw ok
CHERI/A/camoadd_w ok
CHERI/A/camoand_w ok
CHERI/A/camomax_w ok
CHERI/A/camomaxu_w ok
CHERI/A/camomin_w ok
CHERI/A/camominu_w ok
CHERI/A/camoor_w ok
CHERI/A/camoswap_w ok
CHERI/A/camoxor_w ok

Summary: ok

Apps (Simulation)
=================

Samples/VecAdd (build): ok
Samples/VecAdd (run): ok
Samples/Histogram (build): ok
Samples/Histogram (run): ok
Samples/Reduce (build): ok
Samples/Reduce (run): ok
Samples/Scan (build): ok
Samples/Scan (run): ok
Samples/Transpose (build): ok
Samples/Transpose (run): ok
Samples/MatVecMul (build): ok
Samples/MatVecMul (run): ok
Samples/MatMul (build): ok
Samples/MatMul (run): ok
Samples/BitonicSortSmall (build): ok
Samples/BitonicSortSmall (run): ok
Samples/BitonicSortLarge (build): ok
Samples/BitonicSortLarge (run): ok
Samples/SparseMatVecMul (build): ok
Samples/SparseMatVecMul (run): ok
InHouse/BlockedStencil (build): ok
InHouse/BlockedStencil (run): ok
InHouse/StripedStencil (build): ok
InHouse/StripedStencil (run): ok
InHouse/VecGCD (build): ok
InHouse/VecGCD (run): ok
InHouse/MotionEst (build): ok
InHouse/MotionEst (run): ok

All tests passed

In simulation, all benchmarks are run on small datasets to ensure timely completion. To obtain
performance counters for each benchmark, the --stats option may be passed to test.sh

(though these counters may not be particularly meaningful in simulation due to small datasets
not masking startup costs).

The three main configurations of SIMTIGHT used in this report — Basline, CHERI, and
CHERI (Optimised) — are defined in scripts/sweep.py and can be tested as follows.

39

cd scripts && ./sweep.py test

This will take around 5 hours to complete. Test results for the three configurations are written
to the file test/test.log.

To obtain results on FPGA, we require:

• Version 22.1pro of Quartus in the path, with the environment variable QUARTUS ROOTDIR

pointing to it, and the environment variable LM LICENSE FILE pointing to a valid li-
cense.

• A Terasic DE10-Pro development board (revision D) connected via USB and visible as
the sole device when running the jtagconfig command.

To build an FPGA image for SIMTIGHT:
cd de10-pro && make

This takes around an hour to complete.

To download the image onto the FPGA:
cd de10-pro && make download-sof

This takes around 30 seconds to complete.

To run all benchmarks on FPGA and obtain all performance counters:
cd test && ./test.sh --stats --fpga-d --apps-only

This takes around a minute to complete, assuming that the FPGA image has already been built
(the script will build and download the FPGA image if it has not already been done, but a
stepwise approach is more advisable when exercising the flow for the first time).

To reproduce the results for the three main configurations of SIMTIGHT used in the paper:
cd scripts && ./sweep.py bench

This takes around three hours to complete, as each configuration must be synthesised from
scratch. The output is three .bench files in the test directory, one for each configuration.
A .bench file is simply a file containing the output of test.sh with the --stats option
enabled.

For FPGA synthesis results, we use Quartus Design Space Explorer to synthesise each config-
uration of SIMTIGHT across 16 different seeds, selecting the design with the highest Fmax.
This long process can be initiated with the command:
cd scripts && ./sweep.py synth

This should be run on a modern server with at least 256GB of RAM, where it takes around a
day to complete. A summary of the synthesis results is written to de10-pro/synth.log.

40

	Introduction
	Background
	Single Instruction, Multiple Threads (SIMT)
	GPGPU Programming
	Value Regularity
	The SIMTight GPGPU
	Capability Hardware Enhanced RISC Instructions (CHERI)

	Design and Implementation
	Register File
	Metadata Register File
	Pipeline
	Memory Subsystem

	Evaluation
	Experimental Setup
	Threat Model
	Register-File Overhead
	Memory-Bandwidth Overhead
	Execution-Time Overhead
	Synthesis Results
	Software Bounds Checking

	Related Work
	GPU Debugging Tools
	Safe Languages Targeting GPUs
	Hardware Support for GPU Memory Safety

	Conclusion
	Acknowledgements
	References
	Appendix A: Sample NoCL Benchmark
	Appendix B: Reproducing the Results

