
Technical Report
Number 996

Computer Laboratory

UCAM-CL-TR-996
ISSN 1476-2986

It is time to standardize principles and
practices for software memory safety

(extended version)

Robert N. M. Watson, John Baldwin, Tony Chen, David Chisnall,
Jessica Clarke, Brooks Davis, Nathaniel Wesley Filardo,

Brett Gutstein, Graeme Jenkinson, Christoph Kern, Ben Laurie,
Alfredo Mazzinghi, Simon W. Moore, Peter G. Neumann,

Hamed Okhravi, Alex Rebert, Alex Richardson, Peter Sewell,
Laurence Tratt, Murali Vijayaraghavan, Hugo Vincent,

Konrad Witaszczyk

February 2025

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

https://www.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 2025 Robert N. M. Watson, John Baldwin, Tony Chen,
David Chisnall, Jessica Clarke, Brooks Davis, Nathaniel
Wesley Filardo, Brett Gutstein, Graeme Jenkinson, Christoph
Kern, Ben Laurie, Alfredo Mazzinghi, Simon W. Moore, Peter
G. Neumann, Hamed Okhravi, Alex Rebert, Alex Richardson,
Peter Sewell, Laurence Tratt, Murali Vijayaraghavan, Hugo
Vincent, Konrad Witaszczyk

Distribution Statement A: Approved for public release.
Distribution is unlimited. This material is based in part upon
work supported by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory
(AFRL) under contract FA8750- 24-C-B047 (“DEC”), and in
part upon work supported by the Under Secretary of Defense
for Research and Engineering under Air Force Contract
No. FA8702-15-D-0001. Any opinions, findings, conclusions
or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of
the Department of Defense, Under Secretary of Defense for
Research and Engineering, or the U.S. Government.

This work was supported in part by Innovate UK projects
105694 and 10027440, by EPSRC grants EP/V000292/1
(“CHaOS”) and EP/V000373/1 (“CapableVMs”), by UKRI
(ERC-AdG-2022 funding guarantee) grant EP/Y035976/1
(“SAFER”), and by ERC-AdG-2017 grant 789108 (“ELVER”).
Additional support was received from Arm, Google, and
Microsoft.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-996

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-996

Abstract
This is the extended version of the paper, It is time to standardize principles and practices for
software memory safety, which appeared in the February 2025 issue of Communications of
the ACM.

In this report, we explore memory-safety standardization, which we argue is an essential step
to promoting universal strong memory safety in government and industry, and, in turn, to
ensure access to more secure software for all. Over the last two decades, a set of four research
technologies for strong memory safety – memory-safe systems languages, hardware and
software memory protection, formal approaches, and software compartmentalization – have
reached sufficient maturity to see early deployment in security-critical use cases. However,
there remains no shared, technology-neutral terminology or framework with which to specify
memory-safety requirements.

This is needed to enable reliable specification, design, implementation, auditing, and
procurement of strongly memory-safe systems. Failure to speak in a common language
makes it difficult to understand the possibilities or communicate accurately with one another,
limiting perceived benefits and hence actual demand. The lack of such a framework also acts
as an impediment to potential future policy interventions, and, in turn, as an impediment to
stating requirements to address observed market failures preventing adoption of these
technologies. Standardization would also play a critical role in improving industrial best
practice, another key aspect of adoption.

We begin with an overview of the many techniques – from hardware to software to formal
theories – that have been developed and redefined over several decades, and how each plays a
part in moving us towards strong memory safety. We explore how these technologies can be
differentiated, considering both differences in functional protection and strength. We discuss
how adoption barriers and potential market failures have limited adoption, and how the
standardization gap limits potential interventions. We propose potential approaches to
standardization – likely a task not limited to any one institution or standards body – and
conclude with an illustrative universal memory-safety adoption timeline proposing a realistic
path to universal adoption given suitable incentivization.

3

4

It is time to standardize principles and
practices for software memory safety

(extended version)
Robert N. M. Watson1 2, John Baldwin7, Tony Chen5, David Chisnall6, Jessica Clarke1,

Brooks Davis3, Nathaniel Wesley Filardo5 6, Brett Gutstein1, Graeme Jenkinson2,
Christoph Kern4, Ben Laurie1 2 4, Alfredo Mazzinghi2, Simon W. Moore1 2,

Peter G. Neumann3, Hamed Okhravi10, Alex Rebert4, Alex Richardson4, Peter Sewell1,
Laurence Tratt8, Muralidaran Vijayaraghavan4, Hugo Vincent9, and Konrad Witaszczyk1

1 University of Cambridge 2 Capabilities Limited 3 SRI International
4 Google, Inc 5 Microsoft, Inc 6 SCI Semiconductor

7 Ararat River Consulting 8 King's College London 9 Arm Limited
 10 MIT Lincoln Laboratory

Table of Contents

Introduction 7
Background 8
Industrial best practices and market failure 12
Cost vs. assurance tradeoffs 14
Enabling business processes and market interventions 18

The memory-safety standardization gap 19
Audiences for memory-safety standardization 20
Goals for memory-safety standardization 21
Potential structures for one or more standards or documents 23

Adoption narratives and timelines 24
Potential events and interventions 25
Candidate timeline 26

Conclusion 28
Acknowledgements 29

5

6

Introduction
For many decades, endemic memory-safety vulnerabilities in software Trusted Computing
Bases (TCBs) have enabled the spread of malware and devastating targeted attacks on critical
infrastructure, national-security targets, companies, and individuals around the world. Over
the last two years, the information-technology industry has seen increasing calls for the
adoption of strong memory-safety technologies, framed as part of a broader initiative for
Secure by Design, from government1 2 3 4, academia5, and within the industry itself6 7. These
calls are grounded in extensive evidence that memory-safety vulnerabilities have persistently
made up the majority of critical security vulnerabilities over multiple decades, and have
affected all mainstream software ecosystems and products – and also the growing awareness
that these problems are almost entirely avoidable by using recent advances in strong and
scalable memory-safety technology.

In this report, we explore memory-safety standardization, which we argue is an essential step
to promoting universal strong memory safety in government and industry, and, in turn, to
ensure access to more secure software for all. Over the last two decades, a set of four research
technologies for strong memory safety – memory-safe systems languages, hardware and
software memory protection, formal approaches, and software compartmentalization – have
reached sufficient maturity to see early deployment in security-critical use cases. However,
there remains no shared, technology-neutral terminology or framework with which to specify
memory-safety requirements. This is needed to enable reliable specification, design,
implementation, auditing, and procurement of strongly memory-safe systems. Failure to
speak in a common language makes it difficult to understand the possibilities or communicate
accurately with one another, limiting perceived benefits and hence actual demand. The lack
of such a framework also acts as an impediment to potential future policy interventions, and,
in turn, as an impediment to stating requirements to address observed market failures
preventing adoption of these technologies. Standardization would also play a critical role in
improving industrial best practice, another key aspect of adoption.

7 Satya Nadella, Prioritizing security above all else, May 2024,
https://blogs.microsoft.com/blog/2024/05/03/prioritizing-security-above-all-else/.

6 Alex Rebert and Christoph Kern, Secure by Design: Google's Perspective on Memory Safety, March 2024,
https://storage.googleapis.com/gweb-research2023-media/pubtools/7665.pdf.

5 H. Okhravi, Memory Safety, IEEE Security & Privacy, Volume 22, Number 4, July-August 2024,
https://ieeexplore.ieee.org/document/10621922.

4 Department for Business, Energy & Industrial Strategy, Confronting cyber threats to businesses and personal
data, October 2019,
https://www.gov.uk/government/news/confronting-cyber-threats-to-businesses-and-personal-data.

3 NSA, Software Memory Safety, Cybersecurity Information Sheet, April 2023,
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF.

2 CISA, NSA, FBI, ASD’s ACSC, CCCS, NCSC-UK, NCSC-NZ, and CERT-NZ, The Case for Memory Safe
Roadmaps Why Both C-Suite Executives and Technical Experts Need to Take Memory Safe Coding Seriously,
December 2023,
https://www.cisa.gov/sites/default/files/2023-12/The-Case-for-Memory-Safe-Roadmaps-508c.pdf.

1 The White House, Back to the Building Blocks: A Path Towards Measurable Security, February 2024,
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf.

7

https://blogs.microsoft.com/blog/2024/05/03/prioritizing-security-above-all-else/
https://storage.googleapis.com/gweb-research2023-media/pubtools/7665.pdf
https://ieeexplore.ieee.org/document/10621922
https://www.gov.uk/government/news/confronting-cyber-threats-to-businesses-and-personal-data
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://www.cisa.gov/sites/default/files/2023-12/The-Case-for-Memory-Safe-Roadmaps-508c.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

We begin with an overview of the many techniques – from hardware to software to formal
theories – that have been developed and redefined over several decades, and how each plays a
part in moving us towards strong memory safety. We explore how these technologies can be
differentiated, considering both differences in functional protection and strength. We discuss
how adoption barriers and potential market failures have limited adoption, and how the
standardization gap limits potential interventions. We propose potential approaches to
standardization – likely a task not limited to any one institution or standards body – and
conclude with an illustrative universal memory-safety adoption timeline proposing a realistic
path to universal adoption given suitable incentivization.

A shortened version of this report appeared as an article in the February 2025 issue of
Communications of the ACM8.

Background
For over two decades, memory-safety vulnerabilities have consistently made up around two
thirds of critical security vulnerabilities in every major open-source and proprietary systems
software TCB, including Windows,9 Linux, Android, iOS, Chromium,10 OpenJDK,
vxWorks11, FreeRTOS12, and others. While many of the vulnerabilities were discovered,
reported and fixed before they were potentially used to build successful attack vectors,
studies show that this class of vulnerabilities is the foundation of many 0-day exploits
observed in the wild13 – and that these vulnerabilities sometimes continue to be present in
unpatched (sometimes unpatchable) systems for years after they become known14. These
problems primarily originate from an existing multi-billion line-of-code C/C++ code corpus
that is difficult (probably impossible in practice) to entirely replace due to its scale.
According to an industry estimate, it costs around $1 trillion dollars to rewrite one billion
lines of code15. Of particular importance within this are the language runtimes of many
type-safe and/or memory-safe programming languages, such as Java, JavaScript, and Python,
which are often implemented in (or depend heavily on) C and C++. This can especially

15 D. Wallach, TRACTOR Proposers Day Presentation (slide 26), August 2024,
https://www.darpa.mil/research/programs/translating-all-c-to-rust.

14 CISA, PRC State-Sponsored Actors Compromise and Maintain Persistent Access to U.S. Critical
Infrastructure, February 2024, https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-038a.

13 Google, The More You Know, The More You Know You Don’t Know, Project Zero, April 2021,
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html.

12 Zimperium, FreeRTOS TCP/IP Stack Vulnerabilities – The Details, December 2018,
https://www.zimperium.com/blog/freertos-tcpip-stack-vulnerabilities-details/.

11 Armis, URGENT/11 Affects Additional RTOSs - Highlights the Risks on Medical Devices, Originally
published 2020, https://www.armis.com/research/urgent-11/.

10 Google, Memory safety, The Chromium Projects’ documentation, Originally published 2020.
https://www.chromium.org/Home/chromium-security/memory-safety/.

9 David Weston, Windows 11: The journey to security by default, BlueHat IL, March 2023, slide 38:
https://github.com/dwizzzle/Presentations/blob/master/David%20Weston%20-%20Windows%2011%20Security
%20by-default%20-%20Bluehat%20IL%202023.pdf.

8 Robert N. M. Watson, John Baldwin, Tony Chen, David Chisnall, Jessica Clarke, Brooks Davis, Nathaniel
Wesley Filardo, Brett Gutstein, Graeme Jenkinson, Ben Laurie, Alfredo Mazzinghi, Simon W. Moore, Peter G.
Neumann, Hamed Okhravi, Alex Rebert, Alex Richardson, Peter Sewell, Laurence Tratt, Muralidaran
Vijayaraghavan, Hugo Vincent, and Konrad Witaszczyk, It is time to standardize principles and practices for
software memory safety, Communications of the ACM, Volume 68, Number 2, February 2025.

8

https://www.darpa.mil/research/programs/translating-all-c-to-rust
https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-038a
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://www.zimperium.com/blog/freertos-tcpip-stack-vulnerabilities-details/
https://www.armis.com/research/urgent-11/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://github.com/dwizzzle/Presentations/blob/master/David%20Weston%20-%20Windows%2011%20Security%20by-default%20-%20Bluehat%20IL%202023.pdf
https://github.com/dwizzzle/Presentations/blob/master/David%20Weston%20-%20Windows%2011%20Security%20by-default%20-%20Bluehat%20IL%202023.pdf

present a problem for language runtimes that are routinely exposed to malicious code, such as
JavaScript interpreters embedded in web browsers, where memory safety of the language
itself does not translate to freedom from exploitable memory-safety vulnerabilities.

Memory-safety vulnerabilities are particularly important because, when combined with
network communications or other malignant data, they can enable an attacker to escalate (via
a multi-step exploit chain) to arbitrary code execution, operating outside the confines of the
programming language16. These vulnerabilities have proven impossible to completely prevent
with conventional engineering, and are especially dangerous because a single error (perhaps
one line in a multi-million line-of-code system) is sufficient for an attacker to achieve total
control of a vulnerable system.

Defensive techniques have not stood still – a series of incremental (and reactive) mitigation
techniques have (in the short term) complicated work for attackers – but in the longer term
these simply contributed to an evolving arms race with attack techniques that are able to
bypass them17. Despite countless hours of manual source-code auditing, and significant
investments in static analysis tooling and fuzzing, the rate of memory-safety vulnerabilities
has remained roughly constant for over two decades.

Mitigation and sanitization techniques frequently fail in the longer term because they are
incomplete (e.g., PAC18 or CFI19, which defend against only a narrow range of attack
techniques, or a limited set of vulnerability types identifiable with specific static analysis
tools) and/or because they are probabilistic (e.g., because they utilize secrets or keys that can
be leaked or guessed, such as ASLR20 or MTE21). These increasingly widely deployed
techniques, which reflect current industry best practice in software TCBs, include:

21 Arm, Introduction to the Memory Tagging Extension (MTE), April 2024,
https://developer.arm.com/documentation/108035/0100/Introduction-to-the-Memory-Tagging-Extension.

20 Brad Spengler, PaX: The Guaranteed End of Arbitrary Code Execution, retrieved 4 February 2025,
https://grsecurity.net/PaX-presentation.pdf.

19 Burow, Nathan, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brunthaler, and Matthis Payer,
Control-Flow Integrity: Precision, security, and performance, ACM Computing Surveys (CSUR) Volume 50,
Issue 1, April 2017.

18 Arm, Armv8.1-M PACBTI Extensions, March 2024,
https://developer.arm.com/documentation/109576/0100/Pointer-Authentication-Code/Introduction-to-PAC.

17 László Szekeres, Mathias Payer,Tao Wei, and Dawn Song, SoK: Eternal War in Memory, 2013 IEEE
Symposium on Security and Privacy, Berkeley, CA, USA, May 2013.

16 Haroon Meer, Memory Corruption Attacks: The Almost Complete History, BlackHat, June 2010.

9

https://developer.arm.com/documentation/108035/0100/Introduction-to-the-Memory-Tagging-Extension
https://grsecurity.net/PaX-presentation.pdf
https://developer.arm.com/documentation/109576/0100/Pointer-Authentication-Code/Introduction-to-PAC

Table 1: Current industry best practice.

Category Description Examples

Development-time
techniques (static and
dynamic)

Static checking and
automated dynamic
bug finding

Coverity and Fortify; fuzzing
combined with dynamic techniques
such as Valgrind22, ASAN23, MSAN24,
and UBSAN25 sanitizers; subsets of
otherwise unsafe languages that can
reduce exposure to memory-safety
issues, such as MISRA C/C++26

Run-time techniques Systems that handle
violations of memory
safety at run time,
coercing them into fail
stops, masking their
effects, or limiting
their exploitability

Software-only techniques such as
stack canaries, ASLR and CFI, and
also hardware-enabled techniques
such as PAC, MTE, W^X (a.k.a.
DEP), and architectural “safe stacks”27

Fortunately, the last decade has seen the maturation of practically deployable research
technologies that have a realistic chance of breaking that arms race in favor of the defending
side, introducing strong memory safety that non-probabilistically prevents a broad set of
memory-safety vulnerabilities and attack techniques in critical software TCBs. Broadly, these
technologies, now seeing early industrial adoption, fall into four categories:

Table 2: Strong memory-safety techniques.

Category Description Examples

Memory-safe and
type-safe languages

Fully memory-safe
and/or type-safe
languages; statically
checkable safe subsets
of unsafe languages

Rust, Python, Swift, Java, C#,
SPARK, and OCaml – excluding code
in their unsafe TCBs (e.g., Unsafe
Rust); memory-safe C++ subsets28 29

29 Sean Baxter and Christian Mazakas, Safe C++, September 2024, https://safecpp.org/draft.html.
28 LLVM Project, C++ Safe Buffers, retrieved December 2024, https://clang.llvm.org/docs/SafeBuffers.html.
27 Intel, Control-flow Enforcement Technology Preview, Document 334525-002, Intel, June 2017.
26 MISRA, MISRA, Retrieved 4 February 2025, https://misra.org.uk/.

25 The Clang Team, Clang 21.0.0 git documentation: UndefinedBehaviorSanitizer, retrieved 4 February 2025,
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html.

24 The Clang Team, Clang 21.0.0 git documentation: MemorySanitizer, retrieved 4 February 2025,
https://clang.llvm.org/docs/MemorySanitizer.html.

23 The Clang Team, Clang 21.0.0 git documentation: AddressSanitizer, retrieved 4 February 2025,
https://clang.llvm.org/docs/AddressSanitizer.html.

22 The Valgrind Developers, Valgrind, Retrieved 4 February 2025, https://valgrind.org/.

10

https://safecpp.org/draft.html
https://clang.llvm.org/docs/SafeBuffers.html
https://misra.org.uk/
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://valgrind.org/

Formal methods Mathematically
rigorous formal
verification of memory
safety, and broader
safety / correctness
properties for
memory-safety TCBs
themselves

Machine-checked formal proofs (e.g.,
using Coq30, Isabelle31, or Lean32), of
systems such as CompCert33 or seL434;
formal verification of unsafe language
fragments (e.g., RustBelt35); tools for
verification of C/C++ source code
(e.g., CBMC36, CN37, Frama-C38, or
VeriFast39)

Hardware memory
protection

Systems that
deterministically detect
violations of memory
safety at run time,
coercing them into fail
stops, masking their
effects, or preventing
their exploitation

CHERI C/C++ memory safety40

40 Robert N.M. Watson, David Chisnall, Jessica Clarke, Brooks Davis, Nathaniel Wesley Filardo, Ben Laurie,
Simon W. Moore, Peter G. Neumann, Alexander Richardson, Peter Sewell, Konrad Witaszczyk, and Jonathan
Woodruff. CHERI: Hardware-Enabled C/C++ Memory Protection at Scale. IEEE Security & Privacy, Volume
22, Number 4, July-August 2024.

39 Pieter Philippaerts, Jan Tobias Mühlberg, Willem Penninckx, Jan Smans, Bart Jacobs, and Frank Piessens.
2014. Software verification with VeriFast: Industrial case studies. Science of Computer Programming, Volume
82, March 2014. https://doi.org/10.1016/j.scico.2013.01.006.

38 Patrick Baudin, François Bobot, David Bühler, Loïc Correnson, Florent Kirchner, Nikolai Kosmatov, André
Maroneze, Valentin Perrelle, Virgile Prevosto, Julien Signoles, and Nicky Williams. 2021. The dogged pursuit of
bug-free C programs: the Frama-C software analysis platform. Communications of the ACM, Volume 64,
Number 8, August 2021. https://doi.org/10.1145/3470569.

37 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel
Krishnaswami, CN: Verifying systems C code with separation-logic refinement types, Proceedings of the ACM
on Programming Languages, Volume 7, Issue POPL, https://dl.acm.org/doi/10.1145/3571194.

36 Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A tool for checking ANSI-C programs. In Tools
and Algorithms for the Construction and Analysis of Systems: 10th International Conference, TACAS 2004,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona,
Spain, March 29-April 2, 2004, Proceedings 10, Springer, 2004.

35 Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer, RustBelt: securing the foundations of
the Rust programming language, Proceedings of the ACM on Programming Languages, Volume 2 (POPL),
Article 66, January 2018. https://doi.org/10.1145/3158154.

34 Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal Kolanski, and Gernot
Heiser, Comprehensive formal verification of an OS microkernel. ACM Transactions on Computer. Systems,
Volume 32, Number 1, Article 2, February 2014. https://doi.org/10.1145/2560537.

33 Xavier Leroy, Formal verification of a realistic compiler, Communications of the ACM Volume 52, Number
7, July 2009, https://doi.org/10.1145/1538788.1538814.

32 Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer, The Lean
theorem prover (system description), in Automated Deduction-CADE-25: 25th International Conference on
Automated Deduction, Springer International Publishing, August 2015.

31 Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson, Isabelle/HOL: a proof assistant for higher-order
logic, Springer-Verlag, 2002.

30 The Coq Development Team, The Coq Reference Manual, retrieved January 2025,
https://coq.inria.fr/distrib/current/refman/.

11

https://doi.org/10.1016/j.scico.2013.01.006
https://doi.org/10.1145/3470569
https://dl.acm.org/doi/10.1145/3571194
https://doi.org/10.1145/3158154
https://doi.org/10.1145/2560537
https://doi.org/10.1145/1538788.1538814
https://coq.inria.fr/distrib/current/refman/

Software fault isolation
and software
compartmentalization

Systems that allow
continued operation
through privilege
minimization despite
effective exploitation
of memory unsafety,
limiting further rights
and attack surfaces
exposed to attackers.
These systems are
frequently built on the
above techniques, and
add the further ability
to constrain attacks
that have already
achieved arbitrary code
execution.

Deterministic sandboxing using
processes or virtual machines as found
in iOS and Android, software-only
techniques such as eBPF41 and
WASM42, OS compartmentalization
such as HAKC43, and
hardware-enabled techniques such as
CHERI compartmentalization

This work has not happened in isolation: concepts such as hardware memory protection and
type-safe programming languages have existed almost since the inception of computer
systems. However, these current technologies are incrementally adoptable within current
hardware or systems software stacks, and their growing maturity comes alongside an
increasingly critical need for memory safety.

Industrial best practices and market failure
Universally deployed strong memory safety enabled by new memory-safety protection
technologies presents a remarkable opportunity. However, our excitement is tempered by the
understanding that it will require a substantial change in approach by an industry that may see
little economic incentive to change the status quo – and, in fact, the real risk of market
disadvantage in doing so.

Today, common industrial practices consist of the widespread use of memory-unsafe
languages and coding practices in even our most sensitive computing environments, albeit
with some adoption of incomplete or probabilistic memory-safety mitigations such as those
described in Table 1. Changes such as the widespread deployment of CHERI hardware, the
Rust language, or formal verification are challenging in several ways. They would involve
immediate (perceived or real) deployment or development costs, due to disruption of existing
software ecosystems, and also (and more importantly) require vendors to potentially divert

43 Derrick McKee, Yianni Giannaris, Carolina Ortega, Howard Shrobe, Mathias Payer, Hamed Okhravi, and
Nathan Burow, Preventing Kernel Hacks with HAKCs, Network and Distributed System Security symposium
(NDSS), April 2022.

42 Andreas Rossberg, WebAssembly Specification (Release 2.0 draft 2025-01-28), retrieved 4 February 2025,
https://ebpf.io/.

41 eBPF.io authors, eBPF, retrieved 4 February 2025, https://webassembly.github.io/spec/core/.

12

https://ebpf.io/
https://webassembly.github.io/spec/core/

engineering resources from other areas of development – a high opportunity cost44. Some
vendors find these costs difficult to justify when the immediate benefits of strong memory
safety are not clearly expressed through market signals or when customer demand appears
focused on other features.

This lack of incentive to address fundamental security flaws has fostered a large and
profitable after-market security industry. This situation is reminiscent of the automotive
industry's reliance on after-market kits necessary to fix flawed car designs before adequate
safety regulations were in place45. In that era, just as in the software industry today, there was
little economic motivation for manufacturers to proactively address safety issues. Instead, a
secondary market emerged to patch the problems, often ineffectively. Similarly, in the
software world, we see a proliferation of security add-ons and services that attempt to
mitigate the risks of memory-unsafe code, rather than eliminating the root cause. These
after-market solutions, while sometimes necessary, add complexity, increase costs, and
expose us to additional significant safety risks themselves.46 While this sector demonstrates
that there is money to be made in addressing security vulnerabilities, it primarily focuses on
reactive, after-the-fact solutions, rather than incentivizing proactive, secure-by-design
development that would prevent these vulnerabilities from arising in the first place.

We suggest that the slow adoption of strong memory safety in spite of its clear security
benefits may reflect a potential market failure47: society, as a whole, pays an extremely high
cost for memory-safety vulnerabilities48, as well as taking on a very high risk as these
vulnerabilities are present in essentially all critical infrastructure, national security
applications, and systems protecting financial and privacy-sensitive data. The history of
catastrophic failure associated with these vulnerabilities can be traced at least as far back as
the Morris Worm in 198849, and many recent examples include ransomware spread50 or
widespread denial of service51 originating from memory-safety issues. Furthermore, the
existence of a thriving after-market security sector does not negate this market failure; rather,

51 CISA, Widespread IT Outage Due to CrowdStrike Update, Originally published July 2024,
https://www.cisa.gov/news-events/alerts/2024/07/19/widespread-it-outage-due-crowdstrike-update.

50 NHS Digital, WannaCry Ransomware Using SMB Vulnerability, Originally published May 2017,
https://digital.nhs.uk/cyber-alerts/2017/cc-1411.

49 U.S. v. Morris, 928 F.2d 504 (2d Cir. 1991).
https://scholar.google.com/scholar_case?case=551386241451639668.

48 Andy Greenberg, Ransomware Payments Hit a Record $1.1 Billion in 2023, Wired Magazine, February 2024,
https://www.wired.com/story/ransomware-payments-2023-breaks-record/.

47 Emmanuel Kopp, Lincoln Kaffenberger, and Nigel Jenkinson, Cyber risk, market failures, and financial
stability, International Monetary Fund, August 2017.

46 Sean Peisert, Bruce Schneier, Hamed Okhravi, Fabio Massacci, Terry Benzel, Mohammad Mannan, Jelena
Mirkovic, Atul Prakash, and James Bret Micahel, Perspectives on the SolarWinds Incident, IEEE Security &
Privacy, Volume 19, Number 2, March-April 2021.

45 Ralph Nader, Unsafe at any speed: The designed-in dangers of the American automobile, Grossman
Publishers, New York, 1965.

44 National Academies of Sciences, Engineering, and Medicine. Workshop on Secure Building Blocks for
Trustworthy Systems, panel discussion with Robert Watson and Richard Grisenthwaite, Seattle, Washington,
USA, 31 July 2024,
https://www.nationalacademies.org/event/43213_07-2024_workshop-on-secure-building-blocks-for-trustworthy
-systems.

13

https://www.cisa.gov/news-events/alerts/2024/07/19/widespread-it-outage-due-crowdstrike-update
https://digital.nhs.uk/cyber-alerts/2017/cc-1411
https://scholar.google.com/scholar_case?case=551386241451639668
https://www.wired.com/story/ransomware-payments-2023-breaks-record/
https://www.nationalacademies.org/event/43213_07-2024_workshop-on-secure-building-blocks-for-trustworthy-systems
https://www.nationalacademies.org/event/43213_07-2024_workshop-on-secure-building-blocks-for-trustworthy-systems

it is a symptom of it. The need for these add-on solutions highlights the underlying issue: the
failure of the market to incentivize the production of secure software from the outset.

This analysis is consistent with many other past economic analyses of security, in which
negative security impact is an externality52 uncaptured by production costs, sales of
products, or (beyond the short term) market cap. The potential cost savings of avoiding
deployment of strong memory safety are immediate, tangible and concentrated, while the
costs arising from failures are often delayed or dispersed. The market thus provides little
immediate pressure on vendors to prioritize strong memory safety53, and the financial impacts
of failing to do so tend to be externalized from vendors54, through mechanisms like
after-market solutions, disaster recovery, and national security implications, with billions of
dollars in damage arising from even a small number of high-profile incidents and data
breaches.

This disconnect between the cost of insecurity and the responsibility for mitigating that risk,
compounded by two-sided incomplete information, can result in under-investment in robust
security measures. The knowing, continued use of memory-unsafe technologies with serious
consequences for both individuals and society may be enabled, in part, by a lack of direct
feedback from the market, lack of liability for the impact of product defects, and the
challenges all market participants face in accurately assessing the risks, costs of
adoption, and benefits of memory safety.

Cost vs. assurance tradeoffs

A significant part of this "incomplete information" problem comes from the lack of a
standardized framework for understanding and evaluating memory safety. As discussed in the
previous section, the market currently offers a range of solutions, from weaker, probabilistic
mitigations to strong, deterministic protections. These solutions vary significantly in their
development costs, runtime overheads, and the level of assurance they provide. Without a
common framework to describe these solutions, it is difficult for vendors to make informed
decisions about which approach is best suited for their specific needs and constraints.
Similarly, customers struggle to express their safety requirements in a way that vendors can
understand and reliably fulfill.

The considerations involved are multi-dimensional, and intersect with constraints relevant to
the specific use case. For example, memory-safe, garbage-collected languages such as Java,
Kotlin, Go or Scala, and interpreted languages such as Python, Ruby or JavaScript, are
popular with developers and are already widely used for the development of software that

54The Register, CISA boss: Makers of insecure software must stop enabling today's cyber villains, Originally
published September 2024., https://www.theregister.com/2024/09/20/cisa_software_cybercrime_villains/.

53 CISA, Secure by Demand Guide: How Software Customers Can Drive a Secure Technology Ecosystem,
Originally published August 2024. https://www.cisa.gov/resources-tools/resources/secure-demand-guide.

52 Ross Anderson and Tyler Moore, The Economics of Information Security, October 2006,
https://www.science.org/doi/abs/10.1126/science.1130992.

14

https://www.theregister.com/2024/09/20/cisa_software_cybercrime_villains/
https://www.cisa.gov/resources-tools/resources/secure-demand-guide
https://www.science.org/doi/abs/10.1126/science.1130992

can tolerate their performance overhead.55 Conversely, until Rust emerged as a viable
alternative over the past decade, developers of performance-critical and low-level systems
software had no memory-safe languages at their disposal. Furthermore, developers with large,
existing codebases in unsafe languages such as C and C++ are faced with the (likely
prohibitive in most scenarios) cost of translation into a safe language, and therefore must
navigate the nuance of an incremental transition towards memory safety.

This lack of a common framework exacerbates the market failures outlined earlier. For
instance, a vendor might choose to implement a weaker, less costly mitigation because they
are unable to accurately assess the added benefits of a stronger, more expensive solution.
Conversely, a customer might be willing to pay a premium for strong memory safety but lack
the means to communicate this preference effectively or verify that a vendor's product meets
their needs. This ambiguity hinders both supply and demand for strong memory safety.

To address this issue, we need to understand the subtle tradeoffs between the costs (both
development- and run-time) of various approaches to memory safety, and the achievable level
of assurance. This understanding will pave the way for a standardized framework that can
guide decision-making and facilitate communication between stakeholders, including
vendors, consumers, and policy makers. While a comprehensive discussion of all these
tradeoffs is beyond the scope of this paper, we provide in the following some illustrative
examples to highlight the complexities involved:

● Formal methods can achieve very high degrees of assurance of security and functional
correctness properties (which necessarily implies memory safety and absence of
undefined behavior), but at the same time can incur very substantial development
cost56 57. In addition, formal verifiability as a design goal can impose constraints on
the overall design58.

● The overhead and architectural constraints of providing strong temporal safety
through runtime mechanisms such as garbage collection, reference counting,
quarantining, or sweeping revocation can be non-trivial and make them unsuitable for
certain classes of software.

● Memory-safe systems languages such as Rust can provide strong memory safety with
negligible or small run-time overhead and at much lower development cost compared
to full formal verification. This however comes at somewhat reduced levels of
assurance due to the in-practice unavoidable use of unsafe Rust in some components
(including the standard library), validation of which at present relies on human code

58 Toby Murray and P.C. van Oorschot, 2018, September. BP: Formal proofs, the fine print and side effects. In
2018 IEEE Cybersecurity Development (SecDev), IEEE, September 2018,
https://ieeexplore.ieee.org/abstract/document/8543381.

57 Daniel Matichuk, Toby Murray, June Andronick, Ross Jeffery, Gerwin Klein, and Mark Staples, Empirical
Study Towards a Leading Indicator for Cost of Formal Software Verification, IEEE/ACM 37th IEEE
International Conference on Software Engineering (ICSE), May 2015.

56 Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal Kolanski, and Gernot
Heiser, Comprehensive formal verification of an OS microkernel, ACM Transactions on Computer Systems
(TOCS), Volume 32, Number 1, February 2014, https://dl.acm.org/doi/abs/10.1145/2560537.

55 JetBrains, State of Developer Ecosystem Report 2024, retrieved January 2025,
https://www.jetbrains.com/lp/devecosystem-2024/#swtype_by_lang.

15

https://ieeexplore.ieee.org/abstract/document/8543381
https://dl.acm.org/doi/abs/10.1145/2560537
https://www.jetbrains.com/lp/devecosystem-2024/#swtype_by_lang

review and informal reasoning. However, there is promising research applying formal
methods to the verification of Rust modules that present safe abstractions around
unsafe Rust59 60, making separate, modular formal verification of unsafe-Rust modules
a possibility.

● Hardware-based memory-safety mechanisms such as CHERI provide strong memory
safety for code written in unsafe languages while typically requiring no or minimal
changes to existing code, hence incurring minimal development-time costs. However,
their use involves tradeoff considerations around run-time overheads of temporal
safety mechanisms, memory bandwidth due to out-of-band metadata, tradeoffs with
reliability when ECC bits are used to hold metadata, memory overhead of wide
pointers, the opportunity cost of die area, the market bootstrapping problem of
achieving deployment in platforms, and so on.

Weaker memory safety protections, such as runtime exploit mitigations, provide less strong
assurance, since they typically do not remove the underlying software defect, but rather focus
on blocking its exploitation. They are typically easier to adopt due to their lower overhead
and non-disruption of existing source code and software ecosystems, even though they can
still incur non-trivial run-time overhead in some cases.

Conversely, there are encouraging signs that commercial software developers have been able
to successfully navigate these tradeoffs and have found it cost effective to adopt
memory-safe, and more generally, secure-by-design, development practices. It appears that in
some cases, not only is the opportunity cost of switching to a safe development environment
relatively small, but benefits beyond safety and security add favourably to the overall
cost-benefit equation:

● Over the past 6 years, Android has been gradually transitioning away from memory
unsafe languages for development of new code, with Android 13 being the first
release whose majority of new code is developed in a memory safe language
(including Rust, Java and Kotlin)61. This has coincided with a significant drop in the
fraction of reported memory safety vulnerabilities in Android (76% to 24%)62.
Beyond security and reliability, there are indications that Rust adoption has had
substantial benefits to developer experience and productivity in the Android team63.

63 Lars Bergstrom, Beyond Safety and Speed: How Rust Fuels Team Productivity, Rust Nation UK, March 2024,
https://youtu.be/QrrH2lcl9ew?si=rBiOwWtfuhfsaCjg&t=323.

62 Jeff Vander Stoep and Alex Rebert, Eliminating Memory Safety Vulnerabilities at the Source, September 2024,
https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html.

61 Jeffrey Vander Stoep, Memory Safe Languages in Android 13, December 2022,
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html.

60 Andrea Lattuada, Travis Hance, Chanhee Cho , Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon Howell,
Bryan Parno, and Chris Hawblitzel, Verus: Verifying rust programs using linear ghost types. Proceedings of the
ACM on Programming Languages, Volume 7, Issue OOPSLA1, April 2023,
https://dl.acm.org/doi/abs/10.1145/3586037.

59 Nima Rahimi Foroushaani and Bart Jacobs, VeriFast for Rust: Towards Sound journeys through Unsafe areas
riding VeriFast, In Fourth Rust Verification Workshop, co-located with ETAPS 2024, April 2024,
https://lirias.kuleuven.be/retrieve/778974.

16

https://youtu.be/QrrH2lcl9ew?si=rBiOwWtfuhfsaCjg&t=323
https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://dl.acm.org/doi/abs/10.1145/3586037
https://lirias.kuleuven.be/retrieve/778974

● Memory-safe languages relying on garbage-collection (including Java, C#, Go and
many others) have been widely used for decades to develop client and server-side
application components.

● Engineers at Cloudflare report that their HTTP proxy, implemented in Rust, not only
achieved significantly improved security and reliability, but also realized substantial
performance and efficiency benefits over their previous NGINX-based solution64.

● The early use of Rust within the Linux kernel, despite some tensions, further
demonstrates the growing acceptance of Rust even in performance-critical and
historically C-dominated environments.

● Google reports on enabling bounds checks in the C++ standard library65 throughout
user-facing application and infrastructure workloads, providing strong spatial safety
for libc++ data structures at modest, sub-1% run-time overhead66.

● Similarly, Apple's creation and promotion of Swift within its ecosystem demonstrates
a major industry player's commitment to memory-safe languages. Notably, Swift 6
expanded its safety guarantees to prevent data races at compile time.

● Arm's development of the Morello processor and platform67 has enabled large-scale
demonstrations of memory-safe C/C++ in open-source software. Major software
packages like FreeBSD68, nginx69, and KDE70 have been successfully adapted to
CHERI, showcasing its potential in real-world scenarios.

● Building on this momentum, Microsoft's CHERIoT71 microcontroller platform is
experiencing early adoption across multiple vendors, with CHERI-enabled products
expected to ship as early as 2026, fostering an open-source ecosystem around
hardware-enforced memory safety.

● In other domains with stubborn classes of vulnerabilities, in particular
Cross-site-script and SQL injection vulnerabilities (ranked 2nd and 3rd in the list of

71 Saar Amar, David Chisnall, Tony Chen, Nathaniel Wesley Filardo, Ben Laurie, Kunyan Liu, Robert Norton,
Simon W. Moore, Yucong Tao, Robert N.M. Watson, and Hongyan Xia, CHERIoT: Complete Memory Safety for
Embedded Devices, IEEE MICRO, November 2023.

70 Robert N.M. Watson, Ben Laurie, and Alex Richardson, Assessing the Viability of an Open-Source CHERI
Desktop Software Ecosystem, Capabilities Limited Technical Report, September 2021,
https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_e0f23245dace466297f20a0dbd22d371.pdf.

69 Graeme Jenkinson, Alfredo Mazzinghi, and Robert N.M. Watson, CHERI-based memory protection and
compartmentalisation for web services on Morello, Capabilities Limited Technical Report, April 2024,
https://www.capabilitieslimited.co.uk/_files/ugd/893621_985a92a599bf41208e4c5710abcf3a68.pdf.

68 Brooks Davis, Robert N.M. Watson, Alexander Richardson, Peter G. Neumann, Simon W. Moore, John
Bladwin, David Chisnall, Jessica Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joannou, Ben
Laurie, A. Theodore Markettos, J. Edward Maste, Alfredo Mazzinghi, Edward Tomasz Napierala, Robert M.
Norton, Micahel Roe, Peter Sewell, Stacey Son, and Jonathan Woodruff, CheriABI: Enforcing Valid Pointer
Provenance and Minimizing Pointer Privilege in the POSIX C Run-time Environment, Architectural Support for
Programming Languages and Operating Systems (ASPLOS), April 2019.

67 Richard Grisenthwaite, Graeme Barnes, Robert N. M. Watson, Simon W. Moore, Peter Sewell, and Jonathan
Woodruff, The Arm Morello Evaluation Platform — Validating CHERI-based security in a high-performance
system, IEEE Micro, Volume 43, Issue 3, May-June 2023.

66 Alex Rebert, Max Shavrick and Kinuko Yasuda. Retrofitting spatial safety to hundreds of millions of lines of
C++, November 2024, https://security.googleblog.com/2024/11/retrofitting-spatial-safety-to-hundreds.html.

65 LLVM Project, libc++ documentation: Hardening Modes, retrieved 30 January 2025,
https://libcxx.llvm.org/Hardening.html.

64 Yuchen Wu and Andrew Hauck, How we built Pingora, the proxy that connects Cloudflare to the Internet,
September 2022,
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/.

17

https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_e0f23245dace466297f20a0dbd22d371.pdf
https://www.capabilitieslimited.co.uk/_files/ugd/893621_985a92a599bf41208e4c5710abcf3a68.pdf
https://security.googleblog.com/2024/11/retrofitting-spatial-safety-to-hundreds.html
https://libcxx.llvm.org/Hardening.html
https://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/

Stubborn Weaknesses in the CWE Top 2572), approaches based on safe-by-design
APIs and platform features have achieved near-zero residual reported-defect rates
across 100+ systems, at marginal amortized cost73. While in a different domain, there
are substantial parallels between the approach used to prevent code injection
vulnerabilities and key concepts in memory-safe languages, suggesting that some
aspects of the rollout experience might transfer74.

● Commercial software developers have found it beneficial to apply formal methods to
critical system components, even outside of safety-critical applications. This includes
verification of memory safety and (partial) functional correctness of critical systems
components and foundational software libraries75 76. Use of formal methods has
enabled performance optimizations that might have been deemed too risky
otherwise77.

Enabling business processes and market interventions
A detailed analysis of this apparent market failure, and potential interventions affecting
incentives, is beyond the scope of this paper. However, we observe that a common
requirement for many conceivable interventions (and a gap in current thinking) – for
example, in regulating consumer electronics or in informing government procurement – is the
ability to concisely express strong memory-safety requirements or guarantees in a
technology-neutral manner. This becomes obvious when trying to imagine how one might:

● Improve industrial best practice to utilize strong memory-safety solutions in all areas
● Enable concise acquisition requirements that incorporate memory safety
● Enable reliable and meaningful procurement of strongly memory-safe systems
● Inform product liability legislation and insurance
● Enable review and audit of systems for strong memory safety
● Enable test and evaluation (T&E) for memory safety
● Enable Common Criteria Certification Requirements to include lab-certifiable

memory safety requirements
● Enable subsidies, tax incentives, or other mechanisms to encourage the rapid adoption

of strong memory safety

77 Joel Kuepper, Andres Erbsen, Jason Gross, Owen Conoly, Chuyue Sun, Samuel Tian, David Wu, Adam
Chlipala, Chitchanok Chuengsatiansup, Daniel Genkin, Markus Wagner, and Yuval Yarom, CryptOpt: Verified
compilation with randomized program search for cryptographic primitives, Proceedings of the ACM on
Programming Languages, June 2023.

76 Nathan Chong, Byron Cook, Jonathan Eidelman, Konstantinos Kallas, Kareem Khazem, Felipe R. Monteiro,
Daniel Schwartz‐Narbonne, Serdar Tasiran, Michael Tautschnig, and Mark R. Tuttle, Code‐level model
checking in the software development workflow at Amazon web services, Software: Practice and Experience,
Volume 51, Number 4, April 2021.

75 Byron Cook, Khazem Khazem, Daniel Kroening, Serdar Tasiran, Michael Tautschnig, and Mark R. Tuttle,
Model checking boot code from AWS data centers, Formal Methods in System Design, Volume 57, July 2021.

74 Alex Rebert and Christoph Kern, Secure by Design: Google's Perspective on Memory Safety, March 2024,
https://storage.googleapis.com/gweb-research2023-media/pubtools/7665.pdf.

73 Christoph Kern, Developer Ecosystems for Software Safety, Communications of the ACM, May 2024, Volume
67, Number 6, https://dl.acm.org/doi/full/10.1145/3651621.

72 MITRE, Stubborn Weaknesses in the CWE Top 25, September 2023,
https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html.

18

https://storage.googleapis.com/gweb-research2023-media/pubtools/7665.pdf
https://dl.acm.org/doi/full/10.1145/3651621
https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html

● Support policy interventions to mandate the use of security best practices including
strong memory safety in specific classes of products or use cases

● Define safe harbor provisions in a potential software liability regime

We see a set of closely linked problems that must be resolved in order to lift industrial best
practices, enable business changes (such as expressing strong memory-safety requirements
during procurement), or support potential market interventions (such as regulation of critical
infrastructure technologies to ensure use of strong memory safety):

● Develop an intellectual framework that allows these diverse technologies and
approaches to be consistently described, with their benefits and costs documented in
common language that can be used in reasoning about potential use cases

● Develop and document improvements to current industrial practices, based on
these technologies, able to support the development and composition of strongly
memory-safe systems in a manner acceptable to industry

● Enable the clear enunciation of technology-neutral memory-safety requirements
facilitated by these technologies, and of improved practices for the purposes of
acquisition, compliance, regulation, composition, and so on.

The memory-safety standardization gap
When designing, implementing, test and evaluating, certifying, and procuring systems able to
resist attacks on memory-safety vulnerabilities, it is easy to imagine a broad range of
desirable policies enabled by new memory-safety technologies and accompanying improved
industrial best practices; for example:

● A smartphone’s general-purpose OS and all of its network-facing applications must be
implemented with at least non-deterministic data and control-flow pointer protections
within five years, and strong memory safety within fifteen years. Mobile device
management (MDM) systems must support enterprises administratively prohibiting
installation of memory-unsafe applications.

● All data-center TCBs responsible for isolating hosted government systems from each
other, and from other customers, must be implemented with strong memory safety
within fifteen years.

● All smartphone TCBs that handle, store, and process biometric and other
privacy-sensitive data, hold keys required to authenticate OS updates or use encrypted
storage, implement NFC payments, hold financial data, or implement low-level
wireless support must implement strong memory safety within five years.

● All cloud-hosted, customer-facing systems of a particular instance type selected by
the customer must implement strongly memory-safe kernels and network services
within fifteen years. Customer-provided legacy applications not implementing strong
memory safety can be installed and used, but must be deployed in environments that
adequately mitigate the impact of potential compromise, for example through
isolation mechanisms including sandboxes, virtual machines and network isolation.

19

● All networking infrastructure (such as wireless access points) or cyber-physical
systems where software interacts with the physical environment (such as automobiles
or certain IoT devices such as smart locks, security cameras, smart thermostats, etc.)
shipped after 2034 must be implemented with strong memory safety.

● All Common Criteria-certified Smart Cards, Secure Elements and Trusted Platform
Modules should satisfy stringent memory safety requirements on the firmware to
enforce that the Common Criteria Requirements (such as keys not extractable) of the
certification cannot be bypassed due to a memory safety vulnerability.

● Smart phones and IoT devices using machine-learning models on sensitive personal
data, such as inputs from cameras, microphones, GPS and other sensors as well as
stored data preserved in order to answer questions such as “where are my glasses?”
must, by 2040, be strongly isolated using compartmentalization in order to preserve
the privacy and integrity of the data, particularly from the large number of other
applications typically running on the same device.

Today, however, there is no consistent and widely adopted means to signal these types of
general requirements for memory safety, nor even specific choices (such as a requirement for
deterministic memory safety). This gap significantly impedes adoption even of current
mitigation technologies; there appear to be no widely adopted means even of requesting or
validating the use of commonly available features such as stack canaries, hardware pointer
protections, address-space layout randomization, and so on in vendor-neutral forms, let alone
stronger memory-safety techniques in a technology-neutral way. We propose to fill this gap
through the production of standards that enable practical and reliable engineering and
procurement, as well as eventual compliance requirements.

Audiences for memory-safety standardization
Two closely related goals of standards are to (a) allow the clear and practical communication
of requirements between consumers of systems and those providing or implementing them,
and (b) similarly allow those providing or implementing systems to describe conformance of
systems to consumers. Important audiences for this work would include:

● Those specifying requirements for acquisition (e.g., US DoD, US GSA, UK MoD,
and UK NCSC).

● Memory-safety system designers and implementers (e.g., the authors of Rust or
OCaml, or those adapting operating systems to support CHERI).

● Application software designers and developers (e.g., the authors of Firefox or
Chrome).

● Industrial bodies specifying approaches and technologies to be used within specific
sectors (e.g., AutoSAR for automotive systems).

● Government and/or regulatory bodies seeking to incentivize rapid adoption of strong
memory safety, or limit the use of memory-unsafe systems through laws, liability, tax
incentives, or other mechanisms

20

● End system designers, implementers, and integrators (e.g., designers of a smartphone
product).

● Test and evaluation (T&E), certification, and accreditation bodies (e.g., Common
Criteria testing laboratories, DOT&E, external security auditors, system integrators,
and administrators).

● Those educating future designers, engineers, and others (e.g., those teaching computer
science in universities, or [re-]training staff within companies).

Goals for memory-safety standardization
We argue that standardizing memory safety is an essential step to widespread adoption of
strong memory-safety technologies. Currently, those technologies are seeing early use in
selected critical use cases in government and industry – especially in roots of trust and
prototypes of more secure IoT or cloud infrastructure. Examples include the use of Rust in an
increasing number of “from-scratch” software components, and Microsoft’s CHERIoT-Ibex
processor seeing early deployment across multiple key industry players. However, getting
these technologies to mainstream adoption will require a clear articulation of the benefits,
appropriate engineering, and standards that support effective interaction and business models
between the producers and consumers of systems. We believe that there are multiple gaps,
which this work would aim to fill through the development of both a technology-neutral
framework for memory safety, and technology-specific mappings of that framework
alongside guidance for their use:

● Develop broad, cross-sector technical consensus on a practical systemization of
strong memory-safety properties and a clear intellectual framework in which to
explain their strengths and weaknesses, appropriate use cases, and so on. This would
include classifying sets of technologies based on properties such as coverage of
attacks, contributions to abstract memory-safety goals (such as spatial or temporal
safety), being probabilistic/secrets-based or deterministic, support for
compartmentalization, the potential need for total software rewrites or ABI changes,
dependencies on new underlying hardware, potential costs in use and deployment,
compartmentalization scalability, memory-safety granularity, and so on. It would also
explore the tension between design principles underlying memory-protection
technologies (e.g., definitions and implementations of topics such as “spatial safety”,
“temporal safety”, etc.) versus a vulnerability-oriented perspective (in which memory
safety is defined in terms of known forms of memory unsafety). The current lack of a
working consensus and standardized vocabulary prevents systems designers,
engineers, security evaluators, and consumers from agreeing on the basic properties of
systems being built and procured.

● Define best practices for the use of specific memory-safety technologies, with
respect to this framework, such as when and to what extent dependence on unsafe
Rust code is suitable within larger Rust software systems, guidelines on structuring
such dependencies to support compositional reasoning about safety, the uses of
CHERI C and C++ that maximize safety, how to validate whether the implemented

21

hardware-software stack correctly makes use of the memory-safety features, etc.
Pragmatic documentation of best practices will be essential to the consistent and safe
deployment of these technologies, as well as enabling management and minimization
of risks associated with necessary memory-safety TCBs.

● Consider the implications of composing multiple technologies, which will
frequently be present in complete computer systems or products – for example, a
C-language OS kernel and C++ language run-time (protected weakly by current
mitigation techniques or more strongly with CHERI C/C++ in the future), and an
application stack written in a type-safe and memory-safe language. Note also that
some technologies implementing partial memory safety may have
competing/conflicting side effects on other technologies composed in the larger
system78.

To be successful, we believe that a memory-safety standardization framework must:

● Incorporate existing weaker protection technologies into this systemization,
enabling their specification while also making clear that they are points on a
longer-term – and escalating – roadmap for memory safety. It is essential to recognize
current industry leaders' efforts in creating and deploying weaker but more accessible
technologies within industry. They have been at the forefront of reducing the harms
from memory unsafety, and we will need them to lead in adopting stronger
protections. Those early explorations and deployments have taught us valuable
lessons. In particular, it has become clear from the continued high-rate of
memory-safety vulnerabilities that they have proven insufficient: We need the
industry to transition to strong protections.

● Focus on enabling approaches that are technology and vendor neutral, which will
avoid hampering future procurement processes that require independent competing
proposals. For example, a clear request for “strong memory safety” in a requirements
statement might be satisfied by either Rust or CHERI C/C++ in a responding
proposal.

● Make clear the boundaries between industrial best practice and ongoing
research to: (a) prevent premature engagement with still immature aspects of
memory-safety technologies, (b) reassure implementers that likely extensions to
current strong memory-safety technologies will be incrementally adoptable, and (c)
lay out a long-term roadmap for future memory-safety technology improvements.

● Establish tiered safety assurance levels to guide technology selection based on
requirements and constraints, acknowledging their varying costs.

● Provide distinct guidance for new systems and existing codebases, recognizing
that different strategies may be necessary depending on the context.

Overall, the aim would be to create a foundation for the improvement of industry
practices in adopting memory safety, taking into account their complexities, which include:

78 Samuel Mergendahl, Nathan Burow, and Hamed Okhravi, Cross-Language Attacks, Network and Distributed
System Security (NDSS), April 2022.

22

● Currently inconsistent definitions of memory safety;
● Necessary limitations to the various technologies imposed by constraints of their use

cases – e.g., limitations of Rust static analysis and lack of support for compiler
distrust, CHERI temporal memory safety for stacks and focus on type safety rather
than memory safety, and the need for sizeable TCBs for both; and

● The reality is that complex real-world systems are composed of many parts, which
may individually use one or more forms of memory safety, or not use memory safety
at all – for example, memory-safe applications (e.g., written in Rust) running on a
memory-unsafe OS or firmware (e.g., running Linux compiled for a non-CHEIR
ISA).

Potential structures for one or more standards or documents
It would be premature to try to fix the best structure for the results of this effort. It seems
likely that it could include some combination of standards, engineering best practices, and/or
technical reports written for a specific audience (e.g., application software designers).
However, we expect that they should, in some form address the following:

● Define, in a technology- and vendor-neutral form, a standard terminology and an
intellectual framework for discussing and specifying memory-safety principles and
impacts.

● Define engineering practices in a technology- and vendor-neutral form,
considering topics such as TCB minimization, interoperability with legacy
memory-unsafe components to be deprecated or adapted to memory safety in the
future, management of weaknesses or omissions in memory-safety technologies,
identification of potential performance and/or power efficiency changes, composition
of multiple parts (e.g., in a software stack or across an SoC) utilizing different
memory-safety technologies, and documentation practices aimed to support review
and assessment.

● Define, per-technology, engineering best practices specific to each technology (e.g.,
for use of CHERI, Rust, etc.)

● Define a methodology for reasoning about the composition of multiple forms of
memory safety within a single system.

● Provide guidance on memory-safety T&E, review, and assessment practice.

Recognizing that different deployment scenarios, and resulting tradeoffs, require different
levels of assurance, it may be helpful to incorporate hierarchies of assurance levels into
memory safety standards, similar to leveled standards in other security domains such as
supply chain integrity79. Leveled standards can help frame discussions around cost vs
assurance tradeoffs, and also provide a structure for incremental and intermediate adoption
targets.

79 The Linux Foundation, Safeguarding artifact integrity across any software supply chain: SLSA Security
Levels, retrieved 30 January 2025, https://slsa.dev/spec/v1.0/levels.

23

https://slsa.dev/spec/v1.0/levels

Adoption narratives and timelines
A key function of this work will be to enable longer-term adoption narratives for strongly
memory-safe systems. Of particular interest to us are two classes of widely used systems:

● Industrial best-practice systems utilize rigorous and engaged practices employed for
commodity software at well-funded companies such as Microsoft, Apple, and Google
in developing platforms for application writers. Today, these vendors are aggressively
adopting memory-safety mitigation technologies such as ASLR and hardware-enabled
cryptographic pointer protections. It is not, however, clear that this is generally
reflective of industry practice outside of these companies, where we do see
widespread use of ASLR, but only limited adoption of techniques such as PAC.

● Security- and privacy-critical systems reflect engineering used specifically for
essential TCBs in mission-critical systems such as those that are used in critical and
national infrastructure, defenses, and aerospace. Today, vendors of such systems are
already engaging with systematic deployment of strong memory-safety technologies
such as Rust and CHERI.

The timeline for memory-safety deployment is necessarily a long one, with security-critical
applications leading in adoption – a key question being how to guide and enable the adoption
of stronger technologies in commercial off-the-shelf (COTS) products.

One sample narrative we have been exploring is a gradual escalation of expectation that both
rewards current and near-term engagement with memory safety, and makes clear that there
will be ratcheting up of requirements with suitable lead time to allow the more significant
engineering lifts required to achieve those goals.

We also differentiate new systems from legacy ones – it is easiest to deploy these
technologies in the design of a fresh system, especially when new software ecosystems may
be created, than it is to deploy them into existing ones. A clear challenge with this narrative is
that entirely new systems are only built infrequently, and even where they could be written
with a memory-safe language from scratch, they will be created within a large pre-existing
memory-unsafe ecosystem that would also need to be migrated or have suitable interfaces
created. To facilitate a gradual transition, new components built with memory-safety
technologies must be able to interoperate with existing unsafe legacy components.

Finally, we are concerned with policies enabled by standardization and improvements in
industry practices, such as documentable requirements in acquisition, regulation, insurance,
liability determination, and so on. These become reasonable to enforce only as widespread
availability and adoption is achieved, and also depend on clear expectation setting and
messaging. However, there is also clearly a form of cyclic dependency here: Technologies
will become more available in response to well-signposted roadmaps from regulators,
insurers, and critical consumer sectors.

24

Potential events and interventions
We have developed a timeline based on an “organic” adoption of strong memory-safety
technologies that follows current trends and allows significant time periods for consensus
building across government and industry. This takes into account an increasing sense of
urgency but continuing difficulties in transition due to significant non-technical adoption
barriers (such as market failures). However, there are both external events and potential
interventions that could accelerate (or stall) such a timeline. These include:

New research: An important consideration is the potential impact of new research on
accessible timelines. For technologies such as Rust, reliable and scalable automated
techniques to migrate existing source code bases into a memory-safe representation or
execution environment might be transformative for adoption80. Similarly, significant
improvements in automation for formal methods might improve their adoptability outside of
a narrow set of higher-assurance use cases. Either of those, and any number of other potential
research contributions in languages, hardware, and formal methods could significantly
accelerate and broaden adoption.

Education: Another key barrier to the adoption of memory-safety technologies lies in
ensuring that there is an educated workforce that is familiar and comfortable with those
technologies, which might be achieved through substantive new interventions in higher
education internationally. For example, the provision of memory-safe CHERI hardware,
template teaching material, and grants would enable much more widespread and hands-on
teaching of undergraduate computer-science students, who could then enter industry or the
defense industrial base with direct expertise necessary to support adoption.

Market changes: In addition, there is the potential for substantial changes in market
conditions, including market interventions, to shorten adoption timelines. These might
include changes such as:

● Industry, academia, and government self-organize to preemptively improve
industrial practices through industry organizations, contributions to shared
open-source hardware and software TCBs, and educational efforts. This might happen
as a result of nation-state governments, the automotive sector, and/or the finance
industry – who are particularly exposed or suffer from greater threats – making a
concerted effort to utilize their influence to enable more rapid memory-safety
adoption.

● A major cyber event significantly impacts sectors or markets, triggering more rapid
adoption of memory-safety technologies, especially in affected or exposed sectors.

● A coordinated regulatory effort is made, internationally, to improve the rate of
adoption of memory safety in national security, critical infrastructure, automotive,
healthcare, or other sectors by virtue of mandating engineering standards, changing
liability regarding software defects and their impacts, and so on.

80 DARPA, Translating All C to Rust (TRACTOR), retrieved 19 October 2024,
https://www.darpa.mil/program/translating-all-c-to-rust.

25

https://www.darpa.mil/program/translating-all-c-to-rust

● A coordinated effort is made by the international insurance industry and underwriters,
perhaps motivated by anticipation of potential liability changes, to require improved
engineering practices for manufacturers and software developers to maintain
professional indemnity coverage.

● A success story in one region or one sector creates a sense of urgency in other
regions/sectors to adopt memory safety.

New barriers: And, of course, there is the potential for events that lengthen adoption
timelines, such as:

● Ultimately unsuccessful attempts to prematurely mandate adoption of
memory-safety technologies that are unready for, or inappropriate to, use cases or
sectors, discrediting the cause of strong memory-safety adoption.

● Memory-safety technologies that prove too incomplete or vulnerable to have a
long-term impact on the exploitable vulnerability rate lead to a disaffection with
strong memory safety following poor deployment experiences.

● A belief that deferring investment in strong memory safety is a preferred strategy
due to the potential for future research to further reduce adoption cost or performance
overheads, which could, in effect, increase the window of exposure by decades, or
even defer adoption indefinitely. While techniques such as automated C-to-Rust
conversion or using generative machine learning to correct memory-safety bugs have
inspired enormous interest, it is currently entirely unclear when (or even if) these
research threads, or others like them, will come to fruition.

● Large volumes of LLM-generated unsafe code accelerate at a faster rate than what
technology today can scalably secure.

One of the greatest risks to adoption will be that of discrediting individual technologies, or in
fact the entire approach, due to attempts to push the memory-safety agenda too early or in
directions unacceptable to industry.

Candidate timeline
Establishing potential timelines for adoption is challenging given the potential for enabling
interventions of research combined with historically strong industrial reluctance to adopting
disruptive technologies with less clear translation into concrete consumer demand. The
following candidate timeline has been developed based on what we see as realistic timelines
given the state of the technology, combined with evolving thinking on potential interventions
including the growing appetite for regulation of technologies that have strong impacts on
personal data privacy, especially around machine learning, as well as in growing interest in
software liability, which might help motivate improvements in industrial practice:

26

Period Sector Narrative

2018-2027
(current
period)

Industry best
practices

Industry leaders widely deploy probabilistic protection
techniques such as ASLR and PAC in well engineered,
non-critical applications and devices.

Security-critical
applications

Newly designed critical devices and software systems
from industry leaders and national security system
acquisition are adopting deterministic memory-safety
technologies such as Rust and CHERI, and selected use
of formal methods.

2028-2037
(coming
decade)

Industry best
practices

Over the course of this decade, newly designed
non-critical devices and software systems will
increasingly ship with partial or complete deterministic
memory-safety. The use of branding and certification
schemes to clearly signpost less-safe systems as
damaging to security and privacy; organizations
increasingly require policy exemptions for use of
memory-unsafe systems in more security-sensitive
environments.

Legacy systems and applications continue to use
probabilistic protection where it is economically
infeasible to transition, but at potentially growing cost
due to a shift in industry best practice leaving vendors
open to product liability claims or regulatory problems.
Component deprecation and support stoppage may act as
force functions to retire legacy components.

Toward the tail end of this period, it becomes reasonable
for insurers to incentivise the use of memory safety,
both with respect to software development (professional
indemnity insurance) and software procurement and
deployment (cybersecurity insurance), as well as for
regulators setting standards for next generations of
devices to require the use of strong memory safety

Security-critical
applications

Near universal adoption of deterministic memory
safety in newly deployed systems is achieved in this
decade, with significant regulatory, acquisition
requirement, insurance efforts to ensure memory safety in
new systems, and to de-certify non-memory-safe systems.

27

2038-2047
(longer
term)

Industry best
practices

Near universal adoption of deterministic memory
safety in newly deployed systems. Small pools of
remaining non-memory-safety in long-lived products
such as deeply embedded, non-network-connected
devices; long lived legacy software stacks that must run
only in highly protected environments that impose
limitations on their casual use.

Successful completion of the long-term project to ground
memory safety in formally verified designs and
implementations increase confidence in strong
memory-safety technologies, and in particular that their
TCBs are vulnerability-free.

Security-critical
applications

Elimination of non-memory safety outside of very small
pools of long-lived, fielded devices, but with significant
effort made to totally eliminate them as well. No new
security-critical systems without memory safety are
created during this decade.

Conclusion
We believe that contemporary language-based, hardware-based, and formal techniques for
achieving strong memory safety are now of sufficient maturity to allow a path to be planned
towards universal memory safety, the adoption of strong memory-safety techniques
throughout all forms of computer systems. The timeline for such an adoption path is long –
likely multiple decades – requiring the deployment of a combination of new hardware,
software, and formal techniques serving different adoption paths and catering to differing
tolerances for disruption. However, to achieve these goals, industry requires a clear definition
of memory safety, accompanied by improvements in engineering practice.

Memory-safety standardization will therefore play an essential role in allowing requirements
to be framed in design and procurement, engineering of systems to be tailored to those
requirements, and suitable implementation to be auditable. Today, attempts to request
memory safety in acquisition, regulation, or liability contexts would be hampered by a lack of
a clear set of definitions and practice. Filling this gap requires building industrial consensus
on technical approaches, but also a collaborative effort with government and academia to
bring such effort to fruition. Despite the need for research to further improve aspects of these
technologies, and especially to understand their composition, it is urgent that an effort to
appropriately define memory safety begin as quickly as possible based on current
technologies and understandings, to feed not just into research, but also improvements in
training and delivery.

28

Acknowledgements
We gratefully acknowledge Graeme Barnes (Arm), Ron Black (Codasip), Mike Eftimakis
(Codasip), Andy Frame (VyperCore), John Goodacre (UKRI), Richard Grisenthwaite (Arm),
Alice Hutchings (University of Cambridge), William Martin (NSA), Ed Nutting (VyperCore),
Anjana Rajan (ONCD), Jonathan Ring (ONCD), Carl Shaw (Codasip), Howie Shrobe
(DARPA), Domagoj Stolfa (University of Cambridge), Dan Wallach (DARPA), and Paul
Waller (NCSC) for their thoughtful comments and detailed conversations with us about these
ideas. Finally, we acknowledge – and remember – Professor Ross Anderson (University of
Cambridge), who developed key ideas in the application of economic principles to computer
security, and whose advice helped inspire this work.

Distribution Statement A: Approved for public release. Distribution is unlimited. This
material is based in part upon work supported by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL) under contract
FA8750-24-C-B047 (“DEC”), and in part upon work supported by the Under Secretary of
Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001.
Any opinions, findings, conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the Department of Defense, Under
Secretary of Defense for Research and Engineering, or the U.S. Government.

This work was supported in part by Innovate UK projects 105694 and 10027440, by EPSRC
grants EP/V000292/1 (“CHaOS”) and EP/V000373/1 (“CapableVMs”), by UKRI
(ERC-AdG-2022 funding guarantee) grant EP/Y035976/1 (“SAFER”), and by
ERC-AdG-2017 grant 789108 (“ELVER”). Additional support was received from Arm,
Google, and Microsoft.

29

	It is time to standardize principles and practices for software memory safety(extended version)
	
	
	Introduction
	Background
	Industrial best practices and market failure
	Cost vs. assurance tradeoffs
	Enabling business processes and market interventions

	The memory-safety standardization gap
	Audiences for memory-safety standardization
	Goals for memory-safety standardization
	Potential structures for one or more standards or documents

	Adoption narratives and timelines
	Potential events and interventions
	Candidate timeline

	Conclusion
	Acknowledgements

