
Technical Report
Number 991

Computer Laboratory

UCAM-CL-TR-991
ISSN 1476-2986

Porting a mix network client to mobile

Jacky W. E. Kung

December 2023

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

https://www.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 2023 Jacky W. E. Kung

This technical report is based on a dissertation submitted
May 2023 by the author for the degree of Bachelor of Arts
(Computer Science Tripos) to the University of Cambridge, St
Edmund’s College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-991

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-991

Abstract

This project set out to investigate the feasibility of mix network clients on the mobile

ecosystem. It considers the Android operating system, and Nym, a production-grade

mix network infrastructure based on the abstract Loopix architecture first presented in

2017. The goal of the project was to produce a minimal working prototype, and present

an evaluation of the trade-offs necessary for an efficient implementation in the Android

ecosystem. Nym’s client codebase written in Rust has been successfully ported over to

Android after adjusting parts of the code and constructing the compilation toolchain. An

exploration of the performance effects of compilation parameters and mixnet parameters is

presented. Two extension tasks were completed: a semi-automated compilation pipeline,

and further evaluation using measurements taken using the custom hardware provided

by my supervisor. The repository also contains, as a side-product, a Rust library that

provides a friendly interface between code that runs across the Rust and Kotlin languages.

3

Acknowledgements

I would like to extend my heartfelt gratitude to the following people who have supported

me in this journey:

• Daniel Hugenroth, my supervisor, for having me as a project supervisee, and for

providing invaluable guidance and constant encouragement throughout the course

of this project. Without his direction, this work would not have been possible.

• Zachery Liu, for the insightful discussions regarding privacy in the modern world.

• Chun Wei Yang, for kindly proofreading this dissertation.

• Luana Bulat, by Director of Studies, for her kind support and supervision over

my academic progress for the past three years.

• My friends and family, who have supported me in my undergraduate studies thus

far.

4

Contents

1 Introduction 7

1.1 Motivation . 7

1.2 Anonymity Networks . 7

1.2.1 Virtual Private Networks . 8

1.2.2 Onion Routing . 8

1.2.3 Traffic Analysis . 8

1.3 Mixnets . 9

1.3.1 Mixnets are increasingly necessary and practical 10

1.4 Contributions . 10

1.5 Starting Point . 10

2 Preparation 11

2.1 Loopix Mixnet . 11

2.1.1 Bitwise Unlinkability: Sphinx Packet Format 11

2.1.2 Metadata Unlinkability: Poisson Mix 12

2.1.3 Message Streams and Security Properties 12

2.2 Nym Mixnet: Discrepancies from Loopix 14

2.3 Technologies Used . 15

2.3.1 Rust and Community Crates . 15

2.3.2 The Android OS . 16

2.3.3 Kotlin and Java Native Interface 17

2.3.4 Android Frameworks and Libraries 17

2.4 Requirements Analysis . 18

3 Implementation 19

3.1 Repository Overview . 19

3.2 Compilation Toolchain . 20

3.2.1 Toolchain Construction . 20

3.2.2 Toolchain Debugging . 21

3.3 Developer Experience . 23

3.4 jvm_kotlin_typing Rust Library . 23

3.4.1 Mapping between Kotlin, C and Rust Types 24

3.4.2 Android Instrumentation Tests . 26

3.5 nym-jni Crate . 26

3.5.1 Porting Strategy Discussion . 26

3.5.2 Implementing topLevelInit(...) and Porting init(...) 27

3.5.3 Porting of run(...) . 28

3.6 Logging Timestamps . 28

3.7 nym Crate (fork) . 29

3.8 nym-pc Crate . 30

3.9 nym-android-port Android Application 30

3.9.1 Foreground Service (FGS) . 31

5

6

3.9.2 Database Tables . 31

3.9.3 Database for IPC and State Machine 32

3.10 Semi-Automatic Testing Framework (Extension) 33

4 Evaluation 35

4.1 Methodology . 35

4.2 Ability to Communicate with a PC Client 36

4.3 Debug versus Release Builds . 37

4.4 Probe Effect . 37

4.5 Effect of Android OS Power Management 39

4.6 Differences with PC and Ideal Distributions 39

4.7 Energy Consumption (Extension) . 40

4.7.1 Motivation: The Need for Quantitative Results 40

4.7.2 Experimental Setup . 41

4.7.3 Results and Discussion . 41

4.8 CPU and Memory Usage . 42

4.9 Application Size . 43

4.10 Generalisability of Results . 43

5 Conclusions 44

5.1 Reflections . 44

5.2 Future Work . 45

Bibliography 46

A Difficulties with the Nym Codebase 50

B Cryptographic Schemes 51

B.1 Sphinx . 51

B.2 Loopix . 52

B.3 Nym . 53

C Poisson Processes 54

C.1 Proof: Closure under Summation . 54

C.2 How Poisson Mixes foil Timing Analysis Attacks 54

D Mapping between Kotlin and Rust Data Types 56

Chapter 1

Introduction

This dissertation demonstrates the feasibility of implementing Nym clients for mobile de-

vices, and presents development and performance insights useful for developers of similar

systems. We begin with the motivations driving work of this nature.

1.1 Motivation

Privacy is the right to keep information about one’s personal life secret [1]. Historically,

it is declared as a fundamental human right under the Universal Declaration of Human

Rights [2]. In the digital world of today, data protection and privacy laws are legislated

in a majority of countries worldwide [3]: the 2018 General Data Protection Regulation

(GDPR) is one such example.

Edward Snowden’s revelations of prevalent global surveillance has sparked deep dis-

course [4]. Rogaway cautioned on its perils to society, and argues that privacy empowers

individuals to express themselves without excessive scrutiny [5]. Nobody should live in

constant fear that their private remarks may trigger punitive actions from higher powers;

whistleblowers should not be discouraged by fear of retaliation from speaking up against

injustice.

In digital communications, privacy takes the form of anonymity, which Pfitzmann defines

as being unidentifiable within a group called the anonymity set [6]. While cryptographic

encryption protects the confidentiality of data, the Internet infrastructure was not de-

signed for anonymity: metadata such as IP addresses are sent as plaintext in IP headers,

and can be used to identify communicating parties. To mitigate this, several anonymity-

preserving network architectures have been invented and deployed.

This work centres around the mix network (“mixnet”) architecture. However, current

implementations do not support mobile devices, which present unique challenges such as

providing offline support, working with a more restrictive OS API, and minimising power

consumption. At the same time, computer ownership is declining and usage shifting

towards mobile: worldwide, the average person spends 56.9% of their total Internet time

on mobile devices [7]. Smartphones contain a trove of personal identifiable information,

which are often shared via the Internet. This work hopes to spur further development of

anonymity networks in the mobile ecosystem for the benefit of mobile users.

1.2 Anonymity Networks

Consider this common scenario: a user U wishes to communicate with a service S while

remaining anonymous, that is, without any third-party or even S knowing that U was

7

8 CHAPTER 1. INTRODUCTION

the origin of the communication.

1.2.1 Virtual Private Networks

A Virtual Private Network (VPN) architecture can be modelled as a node V on the

Internet that tunnels U ’s traffic through itself:

U → V : Enck(S, m)

V → S : m

where k is a private key known to both U and V . I use the notation “A → B : m” to

represent an IP packet sent from source IP address A to destination IP address B, with

payload m (typically assumed to be encrypted using HTTPS for confidentiality). U is

anonymous to S, as S receives traffic that appears to originate from V . The fact that U

is conversing with S is also hidden from U ’s local Internet Service Provider (ISP), who

only sees that they are communicating with V . However, the VPN V is a trusted party

who can identify both endpoints engaged in a conversation, as in Figure 1.1.

Figure 1.1: The general VPN network architecture.

1.2.2 Onion Routing

Onion routing is similar to VPNs, but no onion router has the full end-to-end picture [8].

Like VPNs, it is an overlay logical network over the existing physical Internet infrastruc-

ture. Prior to communicating with S, U chooses three onion routers O1, O2, O3 from a

public directory.

U → O1 : Encs1
(O2, Encs2

(O3, Encs3
(S, m)))

O1 → O2 : Encs2
(O3, Encs3

(S, m))

O2 → O3 : Encs3
(S, m)

O3 → S : m

Using public-key exchange protocols, U establishes shared symmetric keys s1, s2, s3 with

the respective onion routers, such that the only parties with access to the private-key

encryption and decryption functions Encsi
(·) and Decsi

(·) are U and Oi. The traffic flow

is illustrated in Figure 1.2. Similarly to VPNs, U is anonymous to all nodes from O2

onwards.

1.2.3 Traffic Analysis

In our threat model, we consider global passive adversaries (GPAs) who can inspect net-

work traffic at the global scale. Their existence in the real world has been exemplified by

Edward Snowden’s document disclosures in 2013.

1.3. MIXNETS 9

Figure 1.2: The general onion routing network architecture.

Because VPNs and onion routing do not obfuscate inter-packet ordering and timings, they

are vulnerable to traffic correlation attacks, and do not provide anonymity in the presence

of GPAs. In the VPN architecture, a GPA can correlate traffic flowing into and out of

V to determine pairs (U, S) of communicating parties. In the onion routing architecture,

a GPA can still, with more effort, correlate end-to-end traffic flowing out of any U and

into any S to determine pairs (U, S) of communicating parties. Efficient attacks have

been demonstrated [9]. We next introduce a anonymity-preserving architecture that has

resistance against GPAs.

1.3 Mixnets

Formulated in 1979 by David Chaum, mixnets are similar to onion routing networks, but

employ strategies to foil traffic analysis [10]. Instead of forwarding messages in first-in-

first-out order (FIFO), each mixnet node maintains a buffer of incoming messages, and

only forwards a reshuffled full buffer. This foils attacks that rely on FIFO forwarding order.

By adding cover messages and artificial delay before forwarding messages, timing analysis

is also hindered (§2.1.2–2.1.3). Additionally, every packet is independently routed through

the mixnet via randomly chosen paths. Analysis by GPAs is thus harder in mixnets, in

contrast to onion routing wherein packets from the same session take the same route.

Figure 1.3 depicts an overview of a mixnet. We explore more details in the next chapter.

Figure 1.3: The general mixnet architecture (Nym). A message from U to S travels

through a randomly chosen path (example in black). GU and GS are gateways of U and

S respectively, and serve as their entry points to the mixnet.

However, U must be permanently online to receive messages. The wait for batches of

10 CHAPTER 1. INTRODUCTION

messages at mix nodes also significantly increases end-to-end latency. These made the

original mixnet designs unattractive for practical use.

1.3.1 Mixnets are increasingly necessary and practical

The existence of real-world GPA-like entities provide impetus for more widespread adop-

tion of mixnets. The publication of Loopix in 2017 demonstrated an abstract mixnet

architecture that reduces latency while strengthening privacy guarantees [11]. It also

supports offline clients for when they have poor connectivity, which is mobile-friendly.

Nym is the first large-scale implementation of the Loopix architecture, with plans to

partner with popular services such as Signal, Google and Brave and to support millions

of users by 2024 [12]. However, as of October 2022, Nym clients are only available on

the desktop environment. While Nym’s roadmap for 2023 aims to encourage adoption

for everyday use by further reducing latency, there are no publicly announced plans for a

mobile Nym client.

1.4 Contributions

The main contributions of this work are:

1. A prototype implementation of the Nym mixnet for Android devices, demonstrating

the practicality of such designs for mobile users.

2. An assessment of privacy properties of the implementation, and design trade-offs

(in particular, message frequency) necessitated by the mobile platform.

3. jvm_kotlin_typing, a Rust library for interfacing with Kotlin data types. It allows

Rust code to interact with a Java Virtual Machine (JVM) running Kotlin code while

utilising Rust’s unique language features. There is currently no suitable public

library. This library is general for use in other projects.

1.5 Starting Point

I had no prior experience with mixnets or the Rust programming language. Thus, I

read the Loopix paper over summer to gain basic understanding of the principles behind

mixnets. I also studied the Rust e-book [13], and have implemented a web-application

backend in Rust. I briefly experimented with Rust’s built-in cross-compilation facility,

but only to make Rust binaries compiled on my laptop (x86-64) run on a Raspberry Pi

(ARMv7).

I have prior experience with Android programming. The most recent major project is

writing a Kotlin application for my own personal expenses management in 2020. However,

new Jetpack frameworks have arisen since then, which I use in this work. Furthermore,

since it was pure Kotlin, I had not used Java Native Interface (JNI) or non-Kotlin code.

As for my supervisor, he has worked in an Android industry job before, has one year of

experience coding in Rust, and has worked with the Nym codebase before.

Chapter 2

Preparation

In this chapter, I describe Loopix formally and outline how Nym differs from it. I then

present the technologies used for implementation, and conclude with a requirements anal-

ysis.

2.1 Loopix Mixnet

The Loopix network consists of end users (e.g. sender U and receiver S), a global mixnet

of mix nodes arranged in a stratified topology with a fixed number of layers [14], and

“providers”, a special type of mix node that mediate end users’ interaction with the

mixnet (“gateways” in Figure 1.3). Providers are densely connected with the first and

final layers of the mixnet, and are responsible for storing messages for end users in case

they are offline. Providers and mix nodes are run by different entities, and in Nym,

they are rewarded with tokens to encourage good quality of service. The behaviour of

participants in a Loopix network is specified by a set of parameters shown in Table 2.1.

Symbol Units Meaning Usage in Nym Config Files

λP s−1 Mean rate of real/drop cover (real) packets sent by U average_packet_delay

λL s−1 Mean rate of loop cover packets sent by U loop_cover_traffic_average_delay

λD s−1 Mean rate of drop cover packets sent by U N/A

µ s−1 Reciprocal of mean packet delay at each Mi average_packet_delay

λM s−1 Mean rate of loop cover packets sent by Mi N/A

f s−1 Fixed frequency at which U polls GU for messages N/A

k – Fixed number of messages in GU ’s response to each poll N/A

Table 2.1: Summary of Loopix Parameters. As discussed in DIFF4, in Nym, λP is the

mean rate of real/ loop cover (real) packets sent by U .

2.1.1 Bitwise Unlinkability: Sphinx Packet Format

Sphinx is an efficient (high payload to overhead ratio) mixnet packet format, used as a

building block of Loopix. It provides bitwise unlinkability of packets across any node,

such that there is no correlation between their bits before and after the transformation

within a mix node. It also ensures that intermediate hops learn only essential routing

information. I present the high-level concepts here; a deeper mathematical account is

presented in Appendix B.

For each message m that U sends to S, U first pre-computes new shared secrets si in-

dependently with six parties: its own provider GU , three randomly chosen mix nodes

11

12 CHAPTER 2. PREPARATION

M1, M2, M3, S’s provider GS, and S. Sufficient information {I1, . . . , I6} is included in

Sphinx headers for each of the six to reconstruct their respective shared secrets, using a

mechanism similar to Diffie-Hellman key exchange. U then independently samples delays

{d1, . . . d5} from Exp(µ), to be used at the corresponding intermediate nodes, as explained

later in Section 2.1.2.

As shown in Figure 2.1, a Sphinx packet comprises of a header and a separately treated

payload. The payload that U sends to GU is simply m encrypted once for each of the

six nodes on the path to S, as in onion routing, such that each hop can peel off only one

layer of encryption. Similarly, the header is layer encrypted to expose to each node only

information required Ii to derive its shared secret, its own delay di, and the next hop

address.

Figure 2.1: Sphinx packet sent from U to GU .

2.1.2 Metadata Unlinkability: Poisson Mix

The Poisson Mix is a specific mixing strategy that doesn’t require a mix node’s buffer to

be full [15]. Upon arrival at a mix node, a Sphinx packet is transformed in preparation

for forwarding to the next hop, but forwarded only after waiting for the delay d that U

sampled from Exp(µ) when preparing the message for S.

It has the property that all packets currently held at a mix node have the same probability

of being the next emitted one, regardless of how long they have been waiting. A math-

ematical explanation is provided in Appendix C.2. This drastically reduces end-to-end

latency, and is the primary advantage of Loopix over other mixing strategies [11, §3.3].

Together with the Sphinx packet format, it immensely increases the difficulty for a GPA

to link and deanonymise traffic flows.

2.1.3 Message Streams and Security Properties

A Poisson process describes random events with a known mean rate λ (i.e. λ events per

unit time), such that the number of events occurring in a unit time interval is modelled

by the distribution Pois(λ), and the time interval between occurrences is modelled by

Exp(λ).

User “Push” Message Streams and Sender Anonymity

Each user emits three independent traffic streams to its provider, each a Poisson process:

2.1. LOOPIX MIXNET 13

• A stream of real messages, emitted at intervals ∼ Exp(λP). When a sampled interval

has elapsed and there are no real messages to send, a drop cover (real) message is

sent instead, destined to a random provider where it is dropped. This hides the

fact that U is actively communicating at any time, and also increase the size of U ’s

anonymity set, in the case where the current active user count in the mixnet is low.

• A stream of loop cover messages, emitted at intervals ∼ Exp(λL). These pass

through the mixnet and are received by the sender again.

• A stream of drop cover messages, emitted at intervals ∼ Exp(λD). These are

dropped at a random provider.

These combine to form an aggregate Poisson process (proof in Appendix C.1), which

prevents an eavesdropper between users and their providers from distinguishing between

messages from the component streams. This provides sender anonymity, where GPAs

cannot tell which of two users are communicating with a service [6, 16].

User “Pull” Message Streams and Receiver Anonymity

Users U send pull requests at a fixed frequency f to their providers GU , who reply with

k messages, comprising any combination of real or loop cover messages addressed to U ,

plus cover messages to make up k messages as required. Because all packets use Sphinx,

they are cryptographically indistinguishable, preventing GPAs from determining if there

are any real messages in the set. This provides receiver anonymity [6, 16].

Mix Node Message Streams and Sender-Receiver Anonymity

Apart from forwarding Sphinx packets, each mix node also emits at intervals ∼ Exp(λM)

a stream of loop cover messages, which decreases the probability of successfully linking

messages across a mix node [11, Theorem 2]. This strengthens sender-receiver anonymity,

making it harder for GPAs to identify the two end users of packets at a mix node.

Figure 2.2 depicts a summary of these Loopix message streams.

Figure 2.2: Loopix message streams, with the greyed out ones not present in Nym. Numer-

ical subscripts denote arbitrary nodes. When both sides of a “→” use the same subscript,

they both refer to the same node (e.g. U1 → U1).

14 CHAPTER 2. PREPARATION

2.2 Nym Mixnet: Discrepancies from Loopix

Figure 2.3: Nym message streams. Name changes are indicated in red.

Although Nym is based on Loopix, closer inspection of the Nym codebase reveals that it

is not a faithful implementation. I have identified the following differences:

DIFF1 “Providers” are renamed to “gateways”, and no longer serve the purpose of a

mix node. Gateways communicate with their users via symmetric encryption using

long-term private keys, instead of using Sphinx packets (details in Appendix B.3).

DIFF2 Gateways also no longer delay packets. This is done for speed, as gateways also

perform other functions such as ensuring end users have enough Nym credits to use

the mixnet (details outside the scope of this work).

DIFF3 U no longer sends drop cover messages.

DIFF4 U replaces drop cover (real) messages with loop cover (real) messages. These

loop back to U (a, b in Figure 2.3).

DIFF5 U no longer polls GU at fixed frequency f , and GU does not respond with a fixed

number of packets k per poll (Table 2.1). Instead, packets are forwarded from GU

to U as soon as they are delivered at GU , provided U is online.

DIFF6 Mix nodes do not send loop cover messages, despite this being promised in the

whitepaper [17, §4.6]. This is marked as a “TODO” in line 10 of Listing 2.1. This

weakens the sender-receiver anonymity property (§2.1.3) for Nym.

1 // nym/mixnode/src/node/listener/connection_handler/mod.rs:51

2 fn handle_received_packet(&self, framed_sphinx_packet: FramedSphinxPacket) {

3 match self.packet_processor.process_received(framed_sphinx_packet) {

4 Err(e) => /*...*/ ,

5 Ok(res) => match res {

6 MixProcessingResult::ForwardHop(forward_packet, delay) => {

7 self.delay_and_forward_packet(forward_packet, delay)

8 }

9 MixProcessingResult::FinalHop(..) => {

10 warn!("Somehow processed a loop cover message that we haven't implemented yet!")

11 }

12 },

13 }

14 }

Listing 2.1: Part of the code executed by mix nodes upon receiving a Sphinx packet.

Due to these differences, the only parameters in Table 2.1 that still apply in Nym are

λP , λL, µ.

2.3. TECHNOLOGIES USED 15

2.3 Technologies Used

With the essential theory of mixnets covered, I now introduce the technologies used in

the implementation chapter. I ensured all third-party dependencies used in my code are

open-sourced under permissive licenses such as Apache 2.0, MIT and BSD. Specifically,

I avoid using libraries licensed under copyleft licenses such GPL, which would force my

derived work to use the same license. I have released my code publicly under the MIT

license to make usage by other developers easy. The Nym codebase is licensed under

Apache 2.0, which permits me to make and distribute modifications, as I have done as a

forked repository. The fork continues to be licensed under Apache 2.0 for compatibility.

2.3.1 Rust and Community Crates

High-Level Language with Low-Level Guarantees. Nym is written in Rust, a

high-level system programming language popular for writing fast and reliable code, such

as in network applications. It has similar performance to C as it provides low-level memory

operations. At the same time, it provides high-level programming ergonomics, guarantee-

ing memory safety and bug-free concurrency at compile-time through language features

such as “borrow checking”. For these reasons, Google writes critical Android native OS

components in Rust [18].

Async Runtimes: Tokio community crate1. Rust did not initially ship with an

async runtime, which is required to drive execution of asynchronous code and handle

interprocess communication (IPC). The community has instead developed libraries, the

most popular of which is Tokio. It is the de facto standard for writing code with structured

concurrency today.

Async Runtimes: Tokio and the Nym Codebase. The Nym codebase makes ex-

tensive use of Tokio channels, which are concurrency-safe queues of which the transmitter

and receiver ends can be passed independently throughout the codebase to pass transfer

data between threads. They are conceptually similar to UNIX pipes. This presented a

major challenge when working on both the main implementation and evaluation: it was

difficult to track the web of data flows and to identify the correct places of interest to

insert timestamp logging code. Appendix A shows one of the diagrams I drew to get a

grasp of the complicated data flows. Table 2.2 shows the parts the Nym codebase that

are relevant to this project, with numbers to give a general sense of its size.

Limited Support for Compiling to Android. The Rust compiler supports cross-

compilation to a wide range of target architectures, including PC (typically x86-64) and

Android (typically ARM64 Android for newer devices and ARMv7a Android for older

devices). However, Android targets are supported by Rust only in the “Tier 2” category,

wherein Rust code is guaranteed to cross-compile, but the output may contain subtle bugs

that cause unexpected crashes at runtime [19]. In contrast, PC targets are supported in

the “Tier 1” category, wherein Rust code is guaranteed to cross-compile and work as

1A “crate” is a Rust compilation unit, and is analogous to a Python package. I use “community crate”

to refer to Rust repositories that are not developed by me.

16 CHAPTER 2. PREPARATION

Repository Line Count fn Count struct Count

.

+-- clients

| users use a client to connect to a gateway

| +-- client-core

| | library code for clients
7263 440 71

| +-- native

| code that runs on a user client; ported over to Android
2766 143 15

+-- common

| +-- client-libs

| | +-- gateway-client

| | | user clients user this to talk to a gateway
1261 58 8

| | +-- mixnet-client

| | gateways use this to talk to mix nodes
332 12 4

| +-- mixnode-common

| | library code for gateways and mix nodes
1357 75 17

| +-- nymsphinx

| Sphinx operations
7005 343 40

+-- gateway

| code that runs on a gateway
5345 319 43

+-- mixnode

code that runs on a mix node
2575 168 34

∑
27904 1558 232

Table 2.2: Line (.rs files only, including comments), function definition and struct defi-

nition counts in the unmodified Nym codebase at commit d92d687.

intended by the programmer. As I explain later in Section 3.2, this presented significant

problems when constructing the compilation toolchain.

2.3.2 The Android OS

The mobile platform of choice is Android primarily because it is the most popular one [20].

It is also open-source, which allows me to inspect the kernel source code for low-level OS

operations. It is also more amenable to measurements and benchmarking than other

popular OSes. As the project focuses on the general differences between desktop and

mobile platforms, the results obtained should in principle translate well to iOS and other

mobile platforms.

The Android OS runs a modified form of the PC Linux kernel. Applications are only

exposed to a restrictive subset of OS APIs. In particular, files cannot be stored in arbitrary

parts of the filesystem, since most locations are writeable by root only, and applications do

not run with root permissions. Implementing offline storage for Nym on Android requires

adherence to Android’s file storage APIs exposed through Kotlin, which presented a core

challenge that I describe in Section 3.5.1.

Additionally, the Nym client is designed as a command-line program. On PC, it can be

launched from any shell prompt and runs interrupted unless terminated by the out-of-

memory killer, only under extreme resource demands. On Android, launching arbitrary

processes is more complicated, and resource management policies (CPU and memory) are

more aggressive. Keeping the Nym client alive in spite of these proved to be another core

challenge, which I describe in Section 3.9.1.

2.3. TECHNOLOGIES USED 17

2.3.3 Kotlin and Java Native Interface

For development of the prototype, I use Kotlin, the Java Virtual Machine (JVM)-based

language recommended by Google for Android development. Rewriting Nym’s codebase

in Kotlin is not desirable as the Nym codebase is huge and already written in Rust. Reuse

of the Rust code is ideal both for development speed and maintainability, as there is no

need for anyone to painstakingly maintain a separate “nym-kotlin” repository that is in

sync with the main codebase.

However, Rust and Kotlin are quite different. Whereas Kotlin code uses a garbage collector

at runtime, Rust’s compile-time borrow checker guarantees no dangling pointers and hence

eliminates the need for one. Kotlin code is compiled into bytecode meant to be executed

on the Android RunTime (ART), while Rust is compiled directly to native code (.so

library file in Figure 3.1).

The Java Native Interface (JNI) is a foreign function interface framework that allows

developers to write Kotlin code that calls C code, and write C code that invokes func-

tionality of the ART (e.g. to instantiate Kotlin objects). With the help of the Rust jni

community crate, the C code that Kotlin code calls at runtime is generated from Rust

source code during compilation, as shown in Figure 2.4.

Figure 2.4: JNI acts as a shim between Kotlin and Rust. The “decompiled .dex file” and

“decompiled .so file” are human-readable versions of installed artefacts on Android (see

Figure 3.1), for illustrative purposes.

2.3.4 Android Frameworks and Libraries

Jetpack. Jetpack is an umbrella of libraries that speed up Android development. The

Compose framework allows declarative specification of the prototype’s user interface (UI)

layout. The alternative to this is using the legacy XML file format, which is much more

tedious and error-prone. WorkManager is a framework to handle background tasks. Room

is a high-level library for working with SQLite databases. It abstracts away boilerplate

of common database operations, and presents data as Flows, which interoperate nicely

with the Compose framework and automatically refreshes the UI when database values

update. The alternative of using low-level cursors is tedious and error-prone. Saving Nym

contacts and messages in a text file would also have required manual implementation of UI

synchronisation, on top of the four database properties: atomicity, consistency, isolation

and durability.

18 CHAPTER 2. PREPARATION

Foreground Services. A Foreground Service (FGS) is a type of background process

supported by the Android OS, and is the chosen alternative to WorkManager and Bound

Services. It is simpler and more closely matches the process model of PCs, where processes

are allowed to execute continuously in the background without intervention from the OS,

except during times of extreme resource demand.

Android Debug Bridge. Android Debug Bridge (ADB) is the primary means of send-

ing commands from a shell on my development PC to Android devices. I use it extensively

to construct a semi-automatic testing pipeline in Section 3.10.

2.4 Requirements Analysis

The requirements gathered here will guide the evaluation chapter. Hard requirements

must be fulfilled in its entirety; soft requirements may require trade-offs.

Hard Requirements

RH1 The prototype must run on Android continuously, allowing the user to send and

receive messages across the Nym test network to/from a PC without crashing. This

is the bare minimum of a prototype.

RH2 The prototype must be indistinguishable, to GPAs observing network traffic, from a

PC Nym client with regards to timing characteristics of message streams (unless this

is impossible). A successful port should not deviate from the expected behaviour of

a PC client.

Soft Requirements

RS1 The prototype should minimise power consumption while achieving privacy protec-

tion of the mixnet. My Pixel device should be able to last a day with the prototype

running continuously in the background.

RS2 The prototype should not cause device to lag. It is expected to maintain below 50%

CPU utilisation for extended periods of time.

RS3 The prototype should not take up more space than popular messaging applications

and anonymity network clients.

RS4 The prototype should be compatible with the majority of Android devices, in line

with the philosophy of promoting widespread usage of mixnets.

RS5 Implementation should be structured such that code maintenance is sustainable, in

line with good software engineering practices such as testing. This will not appear

in the evaluation chapter, but will guide the implementation.

Chapter 3

Implementation

In this chapter, I outline and justify the strategies employed for the implementation of

the prototype, starting with a review of the codebase. I then outline the difficulties with

the compilation toolchain, before describing the details of individual components, which

are the result of iterations of design experimentation, necessitated by the general lack of

online documentation.

3.1 Repository Overview

Repository Language Implementation Aspects

.

+-- nym-jni-android

| main implementation

| +-- nym-android-port (§3.9)

| | Nym client for Android
Kotlin self-authored, using Jetpack libraries

| +-- nym-jni (§3.4–3.5)

| | glues nym with nym-android-port

| | contains jvm_kotlin_typing library

Rust self-authored, using jni community crate

| +-- nym-pc (§3.8)

| Nym client for PC
Rust

minor modifications of example code

from nymtech/nym

+-- nym-data-analysis

| Jupyter notebooks
Python

self-authored, using data analysis libraries

(e.g. pandas, seaborn)

+-- nym (§3.7)

fork of nymtech/nym based at commit

d92d687 (Table 2.2)

Rust minor additions of timestamp logging code

Table 3.1: Overview of repositories.

In this chapter and the next, I refer to the original Nym repository as nymtech/nym,

and my fork of it as nym. Table 3.1 outlines the three repositories that I maintain for

this dissertation. I’ve chosen a mix of the mono-repo and multi-repo strategies as both

have their advantages. The main implementation is kept together in a mono-repo as its

sub-repositories are strongly coupled with one another. It contains two branches, main

and probe-effect-evaluation, that I frequently switch between during evaluation, and

all three sub-repositories behave slightly differently in these two branches. These two

branches also exist for nym, but as it is a fork of a public repository, I maintained it as a

separate repository.

While nym-data-analysis is coupled with the rest of the codebase (it makes as-

sumptions about formatting of timestamps), it doesn’t change between main and

probe-effect-evaluation, and is thus maintained separately.

19

20 CHAPTER 3. IMPLEMENTATION

3.2 Compilation Toolchain

Initially, I used a Gradle1 plugin called rust-android-gradle that allows an Android

application to call methods defined in a Rust library [21]. This matches this project’s

requirements, but allows only one Rust crate to be bound to the Android application.

With the benefit of hindsight, this is not an issue, but creating a solution that works for

more than a single crate also led to a deeper understanding of the compilation pipeline.

3.2.1 Toolchain Construction

Figure 3.1: The compilation toolchain for an Android application that uses Rust code

(Nym client). After installation, information from the .dex files and .so files are stored

as .vdex/.odex/.art files.

Figure 3.1 presents the big picture of the compilation toolchain I put together. On

the PC, application development in Kotlin (nym-android-port sub-repository) and Rust

(nym-jni and nym crates) uses JNI (§2.3.3). Compilation then proceeds in two stages.

First, Rust’s Cargo package manager is invoked to cross-compile Rust code in the nym-jni

crate into a target-specific (ARM64 or ARMv7a) libnym_jni.so shared library file under

the output folder in the nym-jni crate (1, 2 in Figure 3.2). I copy this into the jniLibs

folder in nym-android-port, where the Gradle build tool expects to find native code

(manual copying is automated later in Section 3.10). Secondly, Gradle is invoked to

1Gradle is the default build tool for Android development. Dependencies of an Android application

are specified through a build.gradle file in the project repository (Figure 3.2).

3.2. COMPILATION TOOLCHAIN 21

compile Kotlin code in the nym-android-port sub-repository into Dalvik Bytecode files,

and bundle them together with libnym_jni.so into a Android Package Kit (APK) file.

On the Android device, the APK is received through ADB and installed, converting its

contents into installed artefacts via a mix of ahead-of-time compilation and runtime just-

in-time compilation [22]. When the prototype is launched either programmatically or

through the UI, the installed artefacts are invoked by the ART to execute the prototype.

.

nym-jni-android/

nym-android-port/app/src/

build.gradle................specifies dependencies and arguments to Gradle compiler

androidTest/..instrumentation tests (§3.4.2)

main/

java/com/.../nymandroidport/....................application Kotlin code (§3.9)

jniLibs/

arm64-v8a/

libnym_jni.so..copied from (1)

armeabi-v7a/

libnym_jni.so..copied from (2)

nym-jni/

.cargo/config.toml specifies arguments to Cargo compiler

Cargo.toml..specifies dependencies

src/ .. application Rust code (§3.5)

android_instrumented_tests/ instrumentation tests (§3.4.2)

clients_native_src/.............................copies of files from nym (§3.5.1)

utils/.................................Kotlin types interoperability library (§3.4)

target/

aarch64-linux-android/release/

libnym_jni.so...(1)

armv7-linux-androideabi/release/

libnym_jni.so...(2)

Figure 3.2: Directory structure of selected parts of the nym-jni-android repository. As

part of the compilation toolchain, the target-specific shared library libnym_jni.so is

copied from (1, 2) into the jniLibs folder for the corresponding architecture.

Since many parts of this toolchain can break, a general advice I followed throughout devel-

opment is to make incremental progress, taking small steps at a time. This allowed me to

quickly isolate breaking changes and fix them. I started with a skeletal nym-android-port

sub-repository containing minimal UI Kotlin code. A skeletal nym-jni crate was also cre-

ated with only minimal Rust code that called some simple methods in the nym crate. I

then verified that the compilation toolchain worked before continuing with the porting

process. The next section describes challenges faced during this undertaking.

3.2.2 Toolchain Debugging

Cross-compilation from the host architecture (x86-64) to “Tier 2” target architectures

(ARM64 or ARMv7a) failed for a multitude of reasons. Pinpointing causes proved to be

22 CHAPTER 3. IMPLEMENTATION

challenging because of cryptic compiler and JNI errors. Adding to the difficulty, these

errors occurred together and were debugged simultaneously. Furthermore, workarounds

are not well-documented online, especially since cross-compilation to Android is not a

common use-case. As such, the solutions presented to the problems below are the result

of much trial and error.

Cross-compilation requires a pointer to Android NDK’s Clang linker. The

documentation page for Rust cross-compilation mentions the need to use the Android

Native Development Kit (NDK), which contains tools required for an Android appli-

cation to interact with C code. Importantly, the NDK provides target-specific Clang

linkers that Cargo requires for cross-compilation. I specified the path to the linkers in

nym-jni’s .cargo/config.toml file (Figure 3.2), using the linker attribute under the

[target.aarch64-linux-android] and [target.armv7-linux-androideabi] headers,

in order for Cargo to locate them.

Additional requirements of the build script of nym’s dependency ring. The

nym crate depends on the ring community crate for cryptographic operations. Since

it builds on C and assembly code, it uses a custom Rust build script, whose docu-

mentation mentions the need to specify paths to the target-specific NDK Clang linkers

and LLVM archivers [23, 24]. I did this via the .cargo/config.toml file, using the

CC_armv7_linux_androideabi and AR_armv7_linux_androideabi attributes under the

[env] header. This complication was documented but difficult to pinpoint, because ring

is a transitive dependency of the nym-jni crate which I work directly on.

Compilation of the nym’s dependency openssl. By default, Rust crates that depend

on the openssl crate are compiled to use dynamic links to the host’s (PC) installation

of openssl. As mobile devices do not typically have an OpenSSL installation, the ven-

dored crate feature of the openssl crate must be used, in order Cargo to compile and

statically link a copy of OpenSSL built for the target Android architecture, when pro-

ducing libnym_jni.so. I specified openssl = { ..., features = ["vendored"] } in

nym-jni’s Cargo.toml file. Despite this, the compilation of openssl only succeeds when

the RANLIB_aarch64_linux_android and RANLIB_armv7_linux_androideabi attributes

under the [env] in .cargo/config.toml are specified to point to NDK’s target-specific

LLVM archive indexers (llvm-ranlib). This final complication is undocumented.

Rust’s previous incompatibility with Android NDK. This project uses the latest

Long-Term Support (LTS) version of NDK, r25. As of November 2022, there was an open

issue in the Rust community: the Android NDK version upgrade from r22b to r23 intro-

duced a breaking change where the previous libgcc stack unwinding implementation was

replaced with libunwind. The Rust compiler however had not yet officially supported this

change, resulting in an obscure bug where using NDK r23 or newer caused crates to com-

pile without errors, but fail at runtime with an arcane JNI UnsatisfiedLinkError [25].

During the implementation of nym-jni (§3.5), I inlined methods from its dependencies

and commented lines out one by one until I identified the dependency responsible for error,

and then resorted to esoteric hacks to get the project to execute [26, 27]. Pinkus, a com-

munity contributer to the Rust language, provides a good summary of this issue [28, 29].

3.3. DEVELOPER EXPERIENCE 23

This incompatibility was retrospectively fixed in January 2023 in Rust version v1.68.0,

and I later removed the stopgap hacks by upgrading Rust from v1.62.0 to v1.68.1 in

March.

3.3 Developer Experience

On Android devices, the UNIX stdout and stderr file descriptors are redirected to

/dev/null. This causes the output of println calls in both Kotlin and Rust to not

appear on Android’s system messages viewer, logcat. In Kotlin, the logging utility class

android.util.Log works seamlessly with logcat, and also provides support for different

log levels (ranging from verbose to error).

Getting log messages from Rust to appear on logcat is more involved. I use the log

community crate to write log messages, as it provides support for log levels. These

are output to stdout. I then call the init_once method from the android_logger

community crate at application startup, to send the logs to logcat, as demonstrated in

Listing 3.1.

android_logger::init_once(

android_logger::Config::default()

.with_min_level(log::Level::Trace)

.with_tag("nym_jni_log"),

);

log::error!("Test!");

// logcat output (simplified):

// MM-dd HH:mm:ss.SSS <PID> <TID> E nym_jni_log: Test!

Listing 3.1: One of the first lines of Rust code executed by my prototype on an Android

device, linking Rust log messages to logcat.

For error handling, Kotlin uses exceptions. Runtime exceptions produce a stack trace

on logcat. However, Rust does not provide exceptions, and instead represents fallible

computations using a Result<T,E> enum type, whose value is either of type Ok(T) for

successful computations, or Err(E) for failures, where T, E are arbitrary data types. In

order for Err(E)s to be handled by the Android application, a JVM RuntimeException

must be manually raised using a JNI method provided by the jni community crate. Be-

cause such code is repetitive and error-prone, I created Rust macros to automatically

raise a RuntimeException when a function returns an error variant, as illustrated in List-

ing 3.2. These macros are contained in the jym_kotlin_typing library which I describe

next.

3.4 jvm_kotlin_typing Rust Library

Data types between Rust and Kotlin are not fully compatible, and are shimmed by C types

via JNI, as in Figure 2.4. Consider Listing 3.3 where a Kotlin function printInRust is

implemented in C using JNI. It takes as arguments a 32-bit non-nullable signed integer

Int and a 64-bit nullable unsigned integer ULong?. At runtime, these values are mapped

24 CHAPTER 3. IMPLEMENTATION

call_fallible!(f, env, class, f_arg1, ..., f_argN);

// expands into

// if let Err(str) = f(env, class, f_arg1, ..., f_argN) {

// env.throw(str).expect("Rust: Unable to throw Kotlin Exception");

// };

Listing 3.2: Example usage of my call_fallible!() macro which automatically raises

a JVM exception on failure of the argument function f.

to C types by the Kotlin standard library. On the Rust side, the jni community crate

exposes the respective C types jint and jobject. The last step is to map these into

Rust types i32 and Option<u64>. However, this may involve calling low-level JNI meth-

ods exposed by jni, and is repetitive and verbose in general. I therefore implemented

jvm_kotlin_typing, a Rust library presenting a higher-level API built upon the jni

community crate, for concise conversion between C-typed and Rust-typed values.

package p;

external fun printInRust(v1: Int, v2:

ULong?)↪→

use jni::{JClass, JNIEnv, objects::sys::jint};

use crate::jvm_kotlin_typing::{consume_kt_int,

consume_kt_nullable_string};↪→

#[no_mangle]

pub extern "C" fn Java_p_printInRust(

env: JNIEnv,

_: JClass,

v1: jint, // Int in Kotlin

v2: jobject, // ULong? in Kotlin

) -> Result<(), JNIError> {

let v1: i32 = consume_kt_int(value);

let v2: Option<u64> = consume_kt_nullable_ulong(env,

v2)?;↪→

log::info!("Kotlin sent: {}, {}", v1, v2);

}

Listing 3.3: Example usage of jvm_kotlin_typing. Calls to the Kotlin function on the

left passes the arguments v1, v2 through JNI to the Rust function on the right.

3.4.1 Mapping between Kotlin, C and Rust Types

Table 3.2 presents the mapping from Kotlin types TKotlin to their equivalents in C and

Rust, TC and TRust respectively. For each TKotlin, I implemented two jvm_kotlin_typing

functions consume_kt_TKotlin and produce_kt_TKotlin of the following signatures:

consume_kt_TKotlin : TC → TRust

produce_kt_TKotlin : TRust → TC

which decodes and encodes values from and to JNI respectively. In the cases where the

these functions may fail, a Result<T, JNIError> type is returned instead of T , as with

idiomatic Rust.

Booleans. The JNI specification represents booleans using the C jboolean type, which

is a 8-bit unsigned integer. The values false and true are represented as 0 and 1

respectively. My Rust function consume_kt_boolean thus takes a jboolean (provided

by jni, aliases to u8) and returns false if the value is 0, and true otherwise.

3.4. JVM_KOTLIN_TYPING RUST LIBRARY 25

TKotlin TC Implementation of consume_kt_TKotlin : TC → TRust TRust

Boolean jboolean 1 7→ true, 0 7→ false bool

Int jint Identity i32

Int? jobject (java/lang/Integer) Null check, then delegate to low-level JNI methods Result<Option<i32>, JNIError>

UInt jint Re-interpret bits u32

UInt? jobject (kotlin/UInt) Null check, then delegate to low-level JNI methods Result<Option<u32>, JNIError>

String jstring Delegate to low-level JNI methods Result<String, JNIError>

String? jobject
Null check, then use above

jstring 7→ Result<String, JNIError>
Result<Option<String>, JNIError>

Table 3.2: Mapping between Kotlin, C and Rust types through jvm_kotlin_typing’s

API. The full table is presented in Appendix D.

Primitive numbers. Primitive numbers types are numeric types supported by the JNI

specification: 8–64 bit signed integers, floats and doubles. I present here the 32-bit signed

integer case, which generalises to the other cases. For the non-nullable Kotlin Int, my

Rust function consume_kt_int is simply the identity function mapping jint (aliases to

i32) to i32. While this is functionally redundant, I wanted to present a uniform API

to Rust programmers, such that all values arriving via JNI should first pass through

a consume_kt_TKotlin function before usage within Rust. For the nullable Kotlin Int?,

the JNI representation is the jobject type that is either the null pointer or points to a

java/lang/Integer instance. Therefore, my Rust function consume_kt_nullable_int:

• returns value Ok(None) if null was passed from Kotlin,

• returns value Ok(v) where v is a u32 obtained by using low-level JNI methods ex-

posed by jni to invoke the java.lang.Integer.intValue method on the jobject

instance, or

• returns value Err(_) (fails) if Kotlin passed another object that is not of type Int?.

Unsigned numbers. Kotlin implements UInt as a wrapper inline class over an inner

field data of type Int, with the same bit representation [30]. For instance, the UInt 232−1

is stored as the Int −1, since they both have the same bit representation 0x11111111.

Since JNI only supports jint, I thus have to “re-interpret” the signed bits back to un-

signed. The remaining procedure is similar to the primitive numbers case above, except

the nullable case uses kotlin/UInt objects instead of java/lang/Integer objects. The

representation of Kotlin inline classes in JNI is poorly documented online, and I discovered

it by trial and error.

Strings and Characters. These are actually represented as “modified UTF-8 strings”

in C [31]. Conversion to and from a Rust String is non-trivial and performed via the low-

method JNI method get_string_utf_chars. My function consume_kt_string directly

delegates to it. My function consume_kt_nullable_string additionally performs a null

check and is fallible, similar to consume_kt_nullable_int. I left my methods that deal

with Kotlin’s Char and Char? types unimplemented, as their implementation involves

dealing with this technical detail, and would take an unjustifiable amount of time with

no benefit to this project.

My implementation of the produce_kt_TKotlin functions are inverses of the above (Ap-

pendix D). For Kotlin types represented as jobject, I construct these objects in the JVM

26 CHAPTER 3. IMPLEMENTATION

using low-level JNI methods. All of my functions are documented.

3.4.2 Android Instrumentation Tests

To test the correctness of my library, I wrote 140 Android instrumentation tests, which

are installed and executed on an Android device using Gradle but controlled from the

PC (unlike unit tests which execute on PC). They pass values between Kotlin and Rust

in both directions, testing each type’s minimal and maximal values, as well as the null

case where applicable. This provides confidence in my library’s correctness, as I use in

nym_jni (Section 3.5).

The tests are administered from Kotlin. When passing a value from Kotlin to Rust, the

Rust code generates a string that reports what it saw (both value and Rust type), which

is sent back to Kotlin, where equality is tested against an expected report. When passing

a value from Rust to Kotlin, the Kotlin code simply checks for equality with the expected

value.

3.5 nym-jni Crate

The nym-jni crate is conceptually a wrapper around two Rust methods in the

nymtech/nym crate: init(...) and run(...), making them suitable for invocation from

Kotlin. Since nymtech/nym is under active development, I work with a snapshot of the

repository, corresponding to Nym version 1.1.4 (commit d92d687, 20 December 2022).

The functionality of init(...) and run(...) are largely untouched, but tweaks were

necessary for them to execute properly on Android. init(...) creates a new Nym client

(with a Nym address), registers it with a randomly chosen gateway, and saves Nym

configurations in a config.toml file on the device, at a given location. run(...) runs

the Nym client as a continuous background process. I also wrote a topLevelInit(...)

method which executes first on application startup, in order to setup logging functionality

previously seen in Listing 3.1.

3.5.1 Porting Strategy Discussion

The nymtech/nym’s init(...) method saves the Nym configuration config.toml into

the home folder at ~/.nym/<client-id>/config/config.toml, a destination which is

hardcoded. However, Android applications are not permitted to write to this path; they

are only permitted to save to app-specific storage, whose path is accessible on Kotlin via

applicationContext.filesDir.absolutePath. There is thus a need to override certain

subroutines in init(...) to support receiving this path from Kotlin and using it instead

of the hardcoded path.

Because the init(...) method in nymtech/nym is not amenable to the object-oriented

inheritance pattern, the first strategy adopted was to copy lines from init(...) in

nymtech/nym into a single method in nym-jni, then add code to accept the path from

Kotlin. However, these lines reference structs and methods that have crate-local visibility

in nymtech/nym (pub(crate) visibility modifier) and could not be accessed from nym-jni.

3.5. NYM-JNI CRATE 27

For nym-jni to be part of the pub(crate) scope, a lot of code had to be copied over,

which became unwieldy.

The next and current strategy is to copy entire files, adapting lines as necessary. Because

these files came from the clients/native/ folder in nymtech/nym, I’ve parked them under

the clients_native_src/ folder in nym-jni (Figure 3.2). The alternative of publishing a

new branch in nymtech/nym is not feasible as I do not have the permissions to do so. The

current strategy also allows me to manage all Android-related Nym code in one nym-jni

crate.

My guiding principles were to mirror the original directory structure, and to make minimal

modifications (including ignoring linter warnings). Each copied file contains a comment

that explains why the copying was necessary (e.g. to get around pub(crate) restrictions)

and where the original file can be found within nymtech/nym. All structs and meth-

ods in copied files are prefixed with a comment describing the modifications I made (or

lack thereof). This makes tracking differences with nymtech/nym easier, and improves

readability for nymtech/nym maintainers who are familiar with the original crate. The

necessary minimal modifications are described next.

Avoiding prop drilling. The Rust code that controls the destination of the Nym con-

figuration file is hidden behind layers of calls to functions and Rust trait implementations.

Passing the path received from Kotlin to this code would require modifying function sig-

natures down a call chain (“prop drilling”), which would modify a lot of code. Instead,

environment variables were exploited, since they are a second form of arguments to any

function. topLevelInit(...) receives the path from Kotlin and saves it to a runtime

environment variable under a key that uniquely describes where it is used in code. When

init(...) saves the Nym configuration file, the destination is read from the same envi-

ronment variable (Listing 3.4).

Expanding visibility. All structs and methods referenced by the copied init(...)

must be accessible from nym-jni. This necessitated the widening of visibility modifiers

of selected structs and methods from pub(crate) to pub. Wherever possible, the most

restrictive visibility modifier is used.

Handling errors gracefully. As described in Section 3.3, I wrap the top-level

init(...), run(...) and topLevelInit(...) methods with my call_fallible!()

macro, in order for any failure to be propagated to Android via JNI as a

RuntimeException. Separately, calls to an Err(E) variant’s .expect() method imme-

diately crashes the Rust program. Instead, I want the Err(E)-typed value to propagate

up to the top-level methods in order to gracefully raise a RuntimeException. This was

achieved by replacing .expect() with .with_context()? from the anyhow community

crate.

3.5.2 Implementing topLevelInit(...) and Porting init(...)

On Kotlin, the native methods external fun topLevelInit(storageAbsPath: String)

and external fun nymInit(...) are defined in a file called NymHandler.kt, and are

28 CHAPTER 3. IMPLEMENTATION

called on application startup. These invoke corresponding Rust code through JNI, as

shown in Listing 3.4 with matching names mandated by the JNI specification. The Rust

method names may appear to be plucked out of thin air, but are actually revealed in

runtime UnsatisfiedLinkError exceptions when wrong names are used.

#[no_mangle]

pub extern "C" fn Java_com_p_NymHandlerKt_topLevelInit(/*...*/ storage_abs_path:

JString)↪→

{

call_fallible!(topLevelInit, /*...*/ , storage_abs_path);

}

fn topLevelInit(/*...*/ storage_abs_path: JString) -> Result<(), anyhow::Error> {

let storage_abs_path: String = consume_kt_string(env, storage_abs_path)?;

/*...*/

std::env::set_var(

"IMPL_NYMCONFIG_FOR_CONFIGANDROID_STORAGE_ABS_PATH",

storage_abs_path

);

}

#[no_mangle]

pub extern "C" fn Java_com_p_NymHandlerKt_nymInit(/*...*/) {

call_fallible!(init, /*...*/);

/* later when deciding where to save the Nym Configuration file Config.toml,

calls:↪→

std::env::var("IMPL_NYMCONFIG_FOR_CONFIGANDROID_STORAGE_ABS_PATH") */

}

#[no_mangle]

pub extern "C" fn Java_com_p_NymHandlerKt_nymRun(/*...*/) {

call_fallible!(run, /*...*/);

}

Listing 3.4: Top-level Rust implementations of the topLevelInit(...), init(...) and

run(...), wrapped with call_fallible!() and callable from Kotlin.

3.5.3 Porting of run(...)

Because clients_native_src mirrored the original directory structure, much of the ar-

chitectural groundwork has been heavy-lifted. I was able to easily scale up the amount

of code I ported while maintaining repository structure and cleanliness. Similar to

init(...), the porting of run(...) was accomplished by copying over the top-level

run(...) method from nymtech/nym and code referenced by it (as necessary), then

making adjustments. The native method external fun nymRun(...) is also defined

in NymHandler.kt.

3.6 Logging Timestamps

To characterise the timing characteristics of message streams sent by the prototype, times-

tamps must be logged. This section presents the timeline of a message, and the points at

3.7. NYM CRATE (FORK) 29

which timestamps are recorded.

Clock selection. I am only interested in time intervals between events. This makes

monotonic clocks suitable, as they are not affected by Network Time Protocol step-

ping. Furthermore, the experiments in the evaluation chapter are designed such that

messages are sent and received on the same device, making the monotonic timestamps

comparable. From man clock_gettime(3), CLOCK_BOOTTIME increments from boot and

even when the system is suspended, which makes it ideal. This clock is available on

both my PC and Android devices, which both run Linux. It is accessible on Rust via

nix::time::clock_gettime(nix::time::ClockId::CLOCK_BOOTTIME) with the help of

the nix community crate, and from Kotlin via SystemClock.elapsedRealtimeNanos().

Because the latter method’s documentation does not specify that it gets timestamps from

CLOCK_BOOTTIME, this fact was verified via inspection of Android’s source code [32].

Timestamps collected. Each message generated during evaluation passes through the

codebase as illustrated in Figure 3.3, and timestamps are collected as described in Table

3.3. Because the nymtech/nym codebase does not provide any facility for collecting times-

tamps, tagging timestamps to messages or a global key-value store, I had to manually

insert the timestamps at appropriate parts of the nym codebase (§3.7).

main and probe-effect-evaluation branches. I maintain these two branches in

the repositories (§3.1). The main branch logs timestamps t1–t8 as well as battery level

information, while the probe-effect-evaluation branch only logs timestamps t1 and t8

in order to investigate the strength of the probe effect (§4.4).

Figure 3.3: Overview of timestamps described in Table 3.3. This diagram fits into the

larger architecture in Figure 3.4. The WSC is introduced in Section 3.8.

3.7 nym Crate (fork)

nym-jni initially depended directly on nymtech/nym (not a fork). However, logging times-

tamps requires extensive changes in Nym’s code that are applicable to both Android and

PC clients. Therefore, rather than continuing to copy files over to nym_jni (Android-

specific), I created a fork named nym, and had nym_jni point to it instead of nymtech/nym.

30 CHAPTER 3. IMPLEMENTATION

Timestamp ID Event Collected in Repository

t1 WSC Sending nym-pc and nym-android-port

t2 Received from WSC

nym

t3 Enqueuing

t4 Dequeued

t5 Sending to Gateway

t6 Recevied from gateway

t7 Sending to WSC

t8 WSC Received nym-pc and nym-android-port

Table 3.3: Overview of timestamps collected.

Finding the right places to place log statements was a huge undertaking due to the highly

concurrent nature of the codebase (Section 2.3.1). I outline the general principles here.

Timestamps are collected from CLOCK_BOOTTIME as soon as the relevant event (Table

3.3) is triggered. Because printing them to stdout (PC) or logcat (Android) may incur

significant overhead, this is delayed until after important processing is done. For instance,

t1 is collected right before the WSC (§3.8) sends the message to nym but printed after

the message is sent; t2 is collected right after WSC receives the message but printed after

sending it off on a Tokio channel towards the Poisson mix queue. As further processing

of the timestamp is done asynchronously, the impact on runtime behaviour is minimised.

Because the printing the timestamps may be delayed, some level of prop drilling was

performed, to propagate timestamps through function calls until an appropriate time.

This sometimes involves piggybacking timestamps onto existing structs via a new struct

field. Where these are done, I prefixed my modifications with “log_”. There was also

a complication where the augmented code is reused for multiple purposes. For instance,

the same code is used to send payload messages (of interest) and Nym acknowledgements

(irrelevant to this project). In such cases, instead of passing u64 timestamps around,

Option<u64> is used. The None variant is drilled instead of Some(_) when logging is not

necessary.

3.8 nym-pc Crate

This sub-repository contains an adaptation of example code provided in nymtech/nym.

It executes a WebSocket Client (WSC), a long-running process that serves as a frontend

to the run(...) program, saving messages to a local database (Figure 3.4). The WSC

and run(...) processes are analogous to a chat application and background worker re-

spectively, and continue to run as shell programs until they are terminated via SIGINT

(control-C keystrokes).

3.9 nym-android-port Android Application

This section walks through the major components of the prototype, depicted in Figure 3.4.

The prototype runs two processes, namely a UI process alive only when the user interacts

with the UI, and a persistent background process executing the WSC and run(...)

3.9. NYM-ANDROID-PORT ANDROID APPLICATION 31

programs in separate threads (§3.9.1). A Room database is used to store messages, contact

information, and perform IPC (§3.9.2–3.9.3).

Figure 3.4: Data flows in the prototype.

3.9.1 Foreground Service (FGS)

The WSC and run(...) processes described in Section 3.8 must run continuously in the

background, even when the device screen is off, in order for the device to continuously

communicate with the gateway according to the mixnet design. However, Android appli-

cations have only one (UI) process by default, which is stopped when the user closes the

application. A FGS serves as the second persistent process necessary for correct operation.

The prototype UI provides three screens: ClientInfoScreen for controlling the FGS,

ContactsScreen for selecting a conversation target, and ChatScreen to send and receive

messages. The user first starts the FGS from ClientInfoScreen. When the user sends a

message from ChatScreen, it gets saved into the messages table of the Room database. The

FGS references a Flow pointing from the messages table, which automatically emits the

latest unsent message to the WSC thread, which propagates it to the run(...) thread.

Messages received from the gateway are saved in the same table. ChatScreen automati-

cally shows new messages on receipt, as it also references a Flow from the messages table,

which emits the conversation’s messages to the UI. The use of Room and Flows greatly

simplifies and automates UI synchronisation across the three screens.

Additionally, a wake lock is also held by the FGS. This provides immunity to most bat-

tery optimisations, in order for the WSC and run(...) threads to execute continuously

without being terminated by the Android OS [33].

Previous iterations used Android’s WorkManager library and Bound Services to handle

background tasks. While that is the approach recommended by Google, there exists

an undocumented 30 min execution limit that, once elapsed, triggers a cancellation and

immediate restart of the background work. This led to misbehaviour of the run(...)

thread, as explained later in Section 3.9.3. WorkManager was thus abandoned in favour

of the stability of FGSs.

3.9.2 Database Tables

For debugging purposes, ClientInfoScreen provides a facility to switch between different

Nym configurations (user accounts). There is thus a need to store the Nym address of

the active account on the device. Android’s SharedPreferences API was used in earlier

32 CHAPTER 3. IMPLEMENTATION

iterations, but switched in favour of Room as it lacked the automatic UI synchronisation

provided by Room and Flows. This, together with the state machine’s state NymRunState

(§3.9.3), are stored in a key-value table.

Each account (“owner”) has another account as a “contact” if they have exchanged mes-

sages before. The contacts table maps owner addresses to contact addresses. The messages

table contains four columns: the source Nym address, destination Nym address, message

string and a boolean flag indicating whether the message was successfully sent.

Nym leaves the design of the string payload to end-applications such as my prototype.

The sender’s address is not delivered to the recipient by default, but this information

is necessary for the prototype to function as a chat application. Therefore, all message

payloads take the form “<sender Nym address>|<message>”, as illustrated in Figure 3.3.

I have written unit tests to verify the correct operation of the Room database. Finally, it

uses the singleton design pattern to ensure each process only instantiates one expensive

connection to the database.

3.9.3 Database for IPC and State Machine

The run(...) thread misbehaves if its lifecycle is mismanaged (e.g. termination during

the setup phase results in an immediate crash rather than graceful exit). To prevent

it from crashing the prototype, I implemented a state machine that controls the FGS’s

lifecycle, as in Figure 3.5.

Figure 3.5: State transition diagram of the prototype’s state machine.

The current state is saved as NymRunState in the key-value table of the database (Fig-

ure 3.4). From the user’s point of view, pressing “start” on the ClientInfoScreen trig-

gers a cascade of state changes from IDLE to SOCKET_OPEN, and pressing “end” triggers

transitions back to IDLE. Importantly, the FGS process is up in all states except IDLE,

and the UI buttons are locked during the SETTING_UP and TEARING_DOWN phases to en-

force proper lifecycle management of the FGS from the UI process. Similarly to the

PC client (§3.8), the dismantling of the FGS is triggered by a SIGINT signal sent using

Process.sendSignal(pid, 2) in Kotlin.

IPC could be done via other avenues such as Bound Services and Messengers [34], but

using Room is not only simpler, but also provides automatic UI synchronisation (blocking

buttons, displaying state for debugging) as discussed previously.

3.10. SEMI-AUTOMATIC TESTING FRAMEWORK (EXTENSION) 33

3.10 Semi-Automatic Testing Framework (Exten-

sion)

The compilation toolchain described in Section 3.2 involved many moving parts. As bugs

occurred frequently during development, automating part of the compilation and data

collection pipeline promised to save a lot of time.

All experiments in the evaluation chapter use this pipeline. After startup, the FGS

generates one message every second containing an upwards counting message ID. These

messages are sent across the mixnet back to itself. After receiving N such messages, the

FGS sends a SIGINT signal to itself, concluding the experiment.

I have written shell scripts to aid with the data collection. They take arguments via the

command-line interface, specifying the target architecture and experimental parameters

(Table 4.2). I designed the scripts such that upon running a single command, the compi-

lation, application launch and data collection phases occur automatically in cascade, as

outlined below. After conclusion of a single experiment, the scripts restart the entire loop

with the next combination of parameters.

Compilation. First, the script performs git checkout operations to ensure all repos-

itories are in the correct branch (main or probe-effect-evaluation), then writes N

into a Kotlin file within nym-android-port, and the parameters λP , λL into a file within

nym. These values are referenced by the codebase at runtime. Compilation is performed,

including copying of the libnym_jni.so into the correct location. ADB commands are

used to install the application bundle onto the Android device, grant Android OS permis-

sions required for foreground services, switch to the correct data connectivity mode, set

the application’s battery optimisation mode, and configure Power Save Mode according

to experiment parameters.

Application Launch. The prototype is started via ADB. Two files

evaluationRunning.txt and evaluationMessagesReceived.txt, each always contain-

ing a single integer, are created in Android’s filesystem for synchronisation between PC

and Android (2–3 in Figure 3.6). In order to kick-start the FGS without interacting

with the UI, another short-lived kick-starter FGS is launched in order to emulate a user

interacting with the screen: change the NymRunState in the database from IDLE to

SETTING_UP and launch the main FGS (5). No UI process is created; everything runs in

the background.

Data Collection. A new log file is initialised on the PC with filename and lines describ-

ing the experiment’s parameters (1). The logcat shell program is launched on Android

using ADB to capture logcat messages (4). As the experiment proceeds, the prototype

increments the value in evaluationMessagesReceived.txt every 100 messages received

(6), and this value is printed on the PC shell for me to check that the prototype is not

stuck (9). Once the prototype receives N messages (7), it terminates itself and writes 0 to

evaluationRunning.txt (8), which is checked every minute by the PC shell (10). Polling

for values in these two files from the PC shell is a potentially expensive operation, since it

34 CHAPTER 3. IMPLEMENTATION

involves filesystem operations on Android. As checking for termination is more important

than getting an up-to-date count of received messages, the frequencies 1 minute and 6

minutes are chosen respectively to offer a balance between real-time fidelity and over-

head (9–10). Finally, the logcat process started in (4) is terminated (11), and contents

of logcat.txt copied from Android and appended onto the experiment_(...).txt file

created at the beginning (12).

The implementation of the extension task allowed me to run experiments one after an-

other with minimal supervision (e.g. overnight), and yielded significant time savings when

exploring the experiments’ parameter space.

Figure 3.6: Overview of automatic data collection process. The blue and red text indicate

steps initiated from the PC and Android devices respectively. Details of the persistent

ADB connection are explained in Section 4.7.1.

Chapter 4

Evaluation

In this chapter, I present qualitative and quantitative analyses to verify the extent that

the hard and soft requirements (§2.4) have been met.

4.1 Methodology

Table 4.1 lists the devices used for evaluation, and I will use the short name in the

text. The PC Client (§3.8) is run on PC (1.80 GHz quad-core Intel Core i7-10510U), and

the Android Client (§3.9) is run on two devices. Pixel (1.80 GHz octa-core Qualcomm

Snapdragon 765G) is used to gather qualitative data over the parameter space, while

Moto (2.0 GHz octa-core Cortex-A53) is primarily used to gather quantitative data about

battery power consumption. Importantly, all unused applications and services are disabled

on Moto, as far as the OS allows. This minimises external events not related to the

prototype.

Operating System Name Short Name Architecture RAM/GB Battery Capacity/Wh

Linux (Arch) Thinkpad T490 PC x86-64 16 N/A

Android 13 Pixel 4A 5G Pixel ARM64 6 14.7

Android 9 Motorola Moto E6 Plus Moto ARMv7a 2 11.7

Table 4.1: Overview of devices used for experiments.

I explored numerous parameters. For Pixel and Moto, compilation outputs either an

unoptimised build (“debug”) or an optimised one (“release”) (§4.3). All t1–t8 timestamps

could be logged (main branch), or only t1 and t8 (probe-effect-evaluation branch)

(§4.4). The prototype’s battery optimisation mode could be “unoptimised” or “optimised”

(§4.5). The device’s Power Save Mode (PSM) may be “on” or “off” (§4.5). The phone

can be connected to the Internet via cellular “data” or “Wi-Fi”. These are summarised

in Table 4.2. For PC, all the above apply except battery optimisation mode and PSM.

Connectivity is also fixed to “Wi-Fi”.

The Nym parameters (λP , λL) are initially fixed at the default values (50 s−1, 5 s−1), and

I vary these from Section 4.7 onwards. µ only affects the time taken for a message to

traverse the mixnet, and is thus fixed at the default 50 s−1. The number of messages N

sent in an experiment is fixed at 3600, and together with a message generation rate of 1 s−1

(§3.10), experiments are expected to last 1 h, in order to capture long-running behaviour

of the prototype. The messages take the form “<sender Nym address>|<mID>”, where

mID is a counter (Figure 3.4). Each message fits into a single Sphinx packet.

Two kinds of measurements are taken: logcat timestamps (Table 3.3) and power con-

sumption logs. Each permutation of parameters defines an experiment and an associated

35

36 CHAPTER 4. EVALUATION

Parameter Possible Values

Build { debug, release }

Probe Effect evaluation { false, true }

Battery optimisation mode { unoptimised, optimised }

Power Save Mode (PSM) { off, on }

Connectivity { data, Wi-Fi }

Parameter Values Explored

(λP , λL)







(50, 5),

(5, 0.5),

(0.5, 0.05),

(0.05, 0.005)







µ { 50 }

N { 3600 }

Table 4.2: Overview of experimental parameters explored. λP , λL, µ are defined in Table

2.1.

“dataset”. Each dataset is represented by a single box plot in the graphs that follow.

Timestamp datasets, augmented with with some battery statistics, are collected as in

Section 3.10 and discussed in the coming sections. Power datasets are discussed from

Section 4.7 onwards. Because the parameter space is huge, I first present the results of

exploratory work that reveal the redundancy of some parameters choices.

4.2 Ability to Communicate with a PC Client

Before analysing the data, I demonstrate that the prototype performs to the require-

ment RH1. On PC, nym’s run(...) command-line process is launched. nym-pc’s WSC

command-line process is then started, which first obtains its own Nym address, then waits

to communicate with the Android client. On Pixel, the prototype is launched. The PC

client’s Nym address is pasted in, and messages are sent between Pixel (Figure 4.1) and

PC (Figure 4.2).

Both the PC and Android clients are able to sustain the connection for over 1 h, until the

processes were manually terminated. The fourth screenshot of Figure 4.1 demonstrates

the offline storage capability of Nym: a message was sent from PC when Pixel’s state

machine was in the IDLE state, and later received when reactivated to the SOCKET_OPEN

state (exemplified by the notification). RH1 is satisfied.

Figure 4.1: Screenshots from Pixel as it communicates with PC.

4.3. DEBUG VERSUS RELEASE BUILDS 37

Figure 4.2: Screenshot from PC’s WSC process as it communicates with Pixel.

4.3 Debug versus Release Builds

During development, I built debug artefacts as they compile faster. These are the default

compiler settings (for both Gradle and Cargo). However, since end users run release

artefacts, those are also built during the evaluation phase of the project. For Gradle,

compilation of a release build requires cryptographic signing using a keystore. I created a

temporary keystore on my PC for this project and modified build.gradle (Figure 3.2)

to reference the keystore secrets indirectly (such that secrets are not uploaded onto Git

in plaintext) [35]. For Cargo, the --release flag was used during compilation.

For this section, we look at the Pixel and PC datasets only. (λP , λL) are fixed at (50, 5).

Figure 4.3(a) compares the per-message overhead before the mixnet, which is the time

elapsed before sending to the mixnet (t5 − t1) excluding the time spent in the queue

(t4 − t3). For release builds, median overhead is around 15 ms on Pixel, and around

5 ms on PC. However, in debug builds, the Pixel median overhead per message is around

75 ms, which is around 5 times that of the release builds. For PC, the factor is around 4,

and the overhead sits at around 20 ms. In ideal mixnet clients, this overhead is zero. The

larger additional probabilistic overhead in the debug builds cause the inter-packet timings

of their real message streams to deviate further from the ideal exponential distribution

Exp(λP), shown in green in Figure 4.3(e).

Figures 4.3(d) and 4.3(f) shows comparisons of the queue duration of real messages (∼

Exp(λP = 50)), and inter-packet timings of the loop cover stream (∼ Exp(λL = 5))

respectively. In both figures, the distributions for debug builds deviate further from the

ideal distributions than the release builds. The runtime performance of the Nym client

queues are therefore closer to ideal for release builds.

Finally, end users eventually only install release APKs. For all these reasons, I will

consider only release builds from now on.

4.4 Probe Effect

The presence of logging code fundamentally alters the runtime behaviour of the prototype.

There is a non-zero overhead incurred when retrieving timestamps from the OS and

writing them to a log file, particularly so for the main branch (§3.6) where all t1–t8 are

logged.

38 CHAPTER 4. EVALUATION

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Comparison between debug (blue) and release (orange) builds. PSM is off.

Ideal distributions are in green, where applicable. U refers to unrestricted and O refers to

optimised (see Table 4.2).

Figure 4.4 compares the per-message round-trip time (RTT) between datasets collected

on the two repository branches. Comparing each green box plot to the adjacent red ones,

there is no consistent or significant difference, and all RTTs have a median of around

450 ms. The time spent by each message on the mixnet (part of the RTT) is assumed to

be constant in this analysis, which may not be realistic.

However, the overhead introduced by logging statements is likely in the order of millisec-

onds, which is at least 2 orders of magnitude smaller than the RTT, which is dominated by

the time spent in the mixnet, exemplified by Figures 4.3(b)–4.3(c). There is therefore no

significant probe effect; data collection does not significantly alter the runtime behaviour

of the prototype.

Figure 4.4: Comparison between main (red) and probe-effect-evaluation (green)

branches. Dataset names are as in Figure 4.3.

4.5. EFFECT OF ANDROID OS POWER MANAGEMENT 39

4.5 Effect of Android OS Power Management

Battery Optimisation Mode. In Android, every application is assigned one of three

battery optimisation modes ∈ {restricted, optimised, unrestricted}. Restricted mode com-

pletely blocks background processing, and is thus not considered.

PSM. PSM is an OS-wide toggle that can be activated by the user to conserve battery,

primarily by limiting background processing [36].

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Comparison across battery optimisation mode and PSM modes (grey for “off”,

red for “on”). Dataset labels are as in Figure 4.3.

As exhibited in Figure 4.5, the choice of battery optimisation mode and the usage of PSM

both made no significant difference in performance. The median per-message overhead

before mixnet is around 13 ms across the board, and all configurations adhere closely to

the ideal distributions. Figures 4.5(b)–4.5(c) are displayed for completeness.

Foreground services are the same mechanism used by music player applications to contin-

uously playback audio when the device screen is off. Together with wake locks, the

prototype is immune to most battery optimisation measures such as Doze and App

Standby [37, 38, 39], which can explain why no differences are observed between the

datasets in Figure 4.5. From now on, I’ll only consider optimised mode, since that is the

default mode that applications are installed with. PSM is assumed off from now on.

4.6 Differences with PC and Ideal Distributions

The behaviour of real and loop cover streams are similar in both Pixel and PC, as seen

exemplified by the similar shape of the distribution of the datasets in Figure 4.6(a).

Figure 4.6(b) plots the log10(count) of the values in the “Pixel Data O” dataset, and they

indeed follow the ideal distribution very closely. The same result holds for the “Pixel

40 CHAPTER 4. EVALUATION

(a) The violin plot (kernel density estimation) of select distributions from Figures 4.3(d)–4.3(f).

(b) Detailed distributions of the “Pixel Data O” dataset. The y-axis is scaled logarithmically.

Figure 4.6: Android and PC clients both adhere closely to the ideal distributions.

Wi-Fi O” and PC datasets. Therefore, I conclude that there are no obvious deviations

from the observable message timings. Thus, RH2 is satisfied.

4.7 Energy Consumption (Extension)

Having met the hard requirements, I now evaluate the Android port against its soft re-

quirements, beginning with battery efficiency, which is the core premise of this work.

From this point on, the only parameters left to explore are connectivity (data or

Wi-Fi) and the four values of (λP , λL), which I now express as a delay factor d ∈

{1, 10, 100, 1000} for the respective values in Table 4.2. The repository branches are

fixed at probe-effect-evaluation, since we no longer perform any timing analyses.

4.7.1 Motivation: The Need for Quantitative Results

In early-phase experiments, I logged the Android devices’ battery levels at regular inter-

vals, then compared across experimental parameters the total percentage drop after one

hour. In general, the prototype drains less battery when running on Wi-Fi compared to

mobile data. Increasing the delay factor also reduces battery usage.

However, to allow controlling batches of experiments using the semi-automatic pipeline

in Section 3.10, these experiments were conducted while maintaining an persistent ADB

connection to my PC (Figure 3.6). For Pixel, this was done over USB as there is an

option to maintain a USB connection without receiving power from the PC, allowing me

to observe how the prototype consumes battery. For Moto, this feature is not available,

thus the ADB connection is persisted over TCP, resulting in significant power overhead.

The battery drain statistics are hence an overestimate, particularly for Moto.

4.7. ENERGY CONSUMPTION (EXTENSION) 41

Furthermore, the battery percentage values reported by the Android OS are coarse

(integer-valued) and innately inaccurate. More precise measurements of the prototype’s

energy usage may lead to interesting insights. I thus used an energy measurement kit

from my supervisor, described next.

4.7.2 Experimental Setup

Figure 4.7: Schematic of the hardware used to collect power consumption measurements

from a phone battery. (Credits: Adapted from the documentation of the energy kit)

I removed the battery from the Moto. The negative terminal is re-connected to the

phone, but the positive terminal is connected first to an INA219 power monitor chip

on the breadboard, before re-connecting to the phone, as shown in Figure 4.7. As the

phone operates, current flows from the battery to the phone through the INA219, which

continuously outputs current measurements to the Arduino [40]. The Arduino transfers

the measurements via USB to my PC, where it is captured by a Rust-based logger program

written by my supervisor.

Each experiment lasts an hour, and results in a dataset of M readings each of the form

(ti, Pi) where ti is the time elapsed since the start of the logger program, and Pi is the

mean power consumed from the detached battery since the previous reading. The total

energy consumed can be calculated using the Riemann sum
∑M−1

i=1 Pi · (ti − ti−1).

4.7.3 Results and Discussion

Table 4.3 summarises the results, including the baselines where the prototype is not

running. There is some variability in the data usage across runs, particularly when d = 1,

due to the probabilistic nature of the message streams. From Figure 4.8, we can see that

the total energy consumed decreases approximately linearly with the logarithm of the

delay factor.

The default d = 1 results in huge battery usage. On data, after just an hour of con-

tinuous operation, 995.06 mWh (6.8% and 8.5% of the Pixel and Moto battery capacities

respectively) was drained. Extrapolating this power consumption rate to Pixel, the Pixel’s

42 CHAPTER 4. EVALUATION

Connectivity d
Power

Range / mW

Mean Power / mW

Total Energy / mWh

Est. Life

(Moto) / h

Est. Life

(Pixel) / h
Data / MB

Wi-Fi

1 [8, 2623] 388.42 30.1 37.8 496.64

10 [7, 2461] 266.56 43.9 55.1 94.64

100 [3, 2210] 104.73 111.7 140.4 11.83

1000 [7, 1696] 60.11 194.7 244.6 3.82

(idle) [7, 1964] 41.76 280.2 352.0 N/A

Data

1 [10, 3611] 995.06 11.8 14.8 689.46

10 [10, 3491] 643.48 18.2 22.8 93.62

100 [1, 3311] 304.92 38.4 48.2 12.20

1000 [2, 3357] 168.62 69.4 87.2 3.60

(idle) [5, 3434] 27.91 419.2 526.7 N/A

Airplane Mode (idle) [5, 1688] 11.96 978.1 1228.8 N/A

Table 4.3: Quantitative comparison of battery and data consumption rates of the proto-

type in an hour.

Figure 4.8: Plot of total energy consumed against delay factor d.

battery lasts for about 15 h. With typical mobile usage patterns outside of experimental

conditions, the battery life is barely half a day. This does not satisfy RS1. The data

usage cannot be ignored too: 690 MB per hour translates to over 16 GB in just a day.

Unless end users have unlimited data, this alone would be a huge disincentive from using

the prototype.

For instant messaging applications, if the user can tolerate a bit of latency, higher delay

factors can be considered. When d = 100, the real stream outputs a message every 2 s on

average, and improves the estimated battery life on Pixel to 48.2 h, which now satisfies

RS1. The data usage rate is also more reasonable, at about 300 MB per day.

4.8 CPU and Memory Usage

Observations of the CPU and memory usage of the prototype were performed on Moto,

using Android Studio’s Profiler. Regardless of the parameters used (connectivity and d),

the memory usage hovers in the range 39–45 MB, oscillating due to the device’s garbage

collector. For CPU usage, there is no difference between Wi-Fi and data, but d makes a

difference. The CPU utilisation by the prototype hovers in the range 10–25% when d = 1,

and generally decreases to 0–5% when d = 1000, at which point the CPU is mostly idle

4.9. APPLICATION SIZE 43

except a heartbeat every second, corresponding to the creation of a message and saving

it to Room. RS2 is thus satisfied, even at d = 1.

4.9 Application Size

Table 4.4 shows the space used by the prototype, excluding application data. The pro-

totype uses less than 50 MB on both Pixel and Moto, which is less than the developed

applications, as expected of a prototype. When Application Binary Interface (ABI) split-

ting is done, the APK only contains the libnym_jni.so compiled for the device’s target

architecture, otherwise all versions of the shared binary is included. If the shared library

increases in size, or if more target ABIs are considered for implementation, then ABI split-

ting would be a useful technique. RS3 is satisfied, especially since the average storage

space on mobile devices is above 100 GB [41].

Application
Space Used on Pixel (ARM64) / MB Space Used on Moto (ARMv7a) / MB

without ABI split with ABI split without ABI split with ABI split

Prototype 48.05 39.43 41.25 31.62

Tor Browser 274 267 216 213

Whatsapp 118 - 85.27 -

Table 4.4: Space taken up on Moto by the prototype, compared to popular anonymity

network and chat clients. The space appears to be device-dependent likely due to the

different architectures involved.

4.10 Generalisability of Results

During data collection, some of the 3600 messages have missing timestamps, possibly due

to the OSes skipping log statements when busy. However, this does not affect the validity

of the discussed results, as I have verified that all datasets considered are 3500 ± 100 in

size.

My implementation’s minimum Android API level is set to 21, which is the current oldest

possible setting. According to Android Studio, the cumulative distribution of Android

users using API 21 or newer is 99.3% as of April 2023. This allows my prototype to be

used by almost all Android users today, fulfilling RS4.

The Pixel and Moto devices were chosen because these vendors make minimal changes

to the stock Android OS. According to “Don’t kill my app!” (DKMA), some vendors are

known to impose draconian limitations on background processes without workarounds for

developers and users [42], which would complicate implementation and evaluation. The

results discussed in this chapter thus should generalise to other devices not “blacklisted”

by DKMA.

Chapter 5

Conclusions

All success criteria set out in the initial proposal were met. I successfully demonstrated

a working implementation of an Android mixnet client, and presented an evaluation of a

wide range of experimental parameters, which were determined as the project progressed,

as planned. I further exceeded the base requirements by completing two out of the three

proposed extension tasks of constructing an automated testing pipeline and performing

power measurements using custom hardware from my supervisor. Admittedly, the com-

pilation and testing pipeline I constructed is not fully automatic from compilation to

experiment to data plots as initially envisioned, but accomplishing that would detract

from the main focus of the project.

I successfully debugged and assembled a complicated compilation toolchain, and put to

use a collection of open source libraries and frameworks for a complete implementation.

The highly concurrent multi-threaded Nym codebase was understood in order to collect

timestamp code at specific points during the codebase’s execution. As a side product, the

jvm_kotlin_typing library was implemented to ease the Rust programmer’s job when

interacting across JNI with a Kotlin application. It supports all primitive data types in

Kotlin and Rust, except Char, and is thus almost ready for publication as a community

crate.

During the baseline implementation, some of the problems faced were open issues still

undergoing discussion in the open source community. A central theme throughout this

work has been the general unavailability of documentation, and the need for time-intensive

searching and exploratory work, which dominated the first half of this project’s timeline.

I hope that the presentation of the difficulties, chosen solutions and alternative strategies

in this dissertation serves as a helpful resource for maintainers of similar projects.

5.1 Reflections

This project started off rather ambitious, but I quickly learnt the harsh realities of ex-

perimental work. I gained valuable experience in upholding consistency of good software

engineering techniques, such as code documentation and recording motivations behind

key decisions for the future me, which is especially applicable for long drawn projects.

My key takeaways from discussions with my supervisor are that of making incremental

progress in the face of monolithic undertakings, and that exploration, much as it is tedious

and sometimes undirected, is necessary for informing later exploitation.

Exploration of the explosion in parameter combinations became dauntingly unwieldy. I

now appreciate the importance of proper forward planning and bookkeeping (such as

maintaining a experiment table and naming log files descriptively) to keep afloat of con-

fusion. With the benefit of hindsight, I would have taken a more systematic and organised

44

5.2. FUTURE WORK 45

approach to cope with complexity. In particular, I would spend less time trying to collect

multiple datasets for all possible parameter combinations, but instead start off with the

aim of quickly reducing the parameter space, as I have structured the evaluation chapter.

The people working on Nym have expressed interest to see my work. While the project

was challenging, it also gave me a great sense of achievement and purpose, knowing that

my work could be useful to the mixnet community in the near future.

5.2 Future Work

Here are some proposed continuations of this project that were not feasible given the

project timeline:

• Further modularisation of the nym-android-port repository to fully decouple Nym

logic from the chat application, allowing Nym logic to be reused easily in multiple

projects.

• Automatic restarting of the FGS after an error occurs. One common problem is

with intermittent or unreliable connection: the state machine can still misbehave

when this happens.

• Long-term survival of the FGS. Increasing the delay seems to increase the probability

of an unexpected error, forcing the shutdown of the FGS. It is not currently clear

whether this is due to the Android OS terminating the prototype, the Nym gateway

resetting the connection, or other reasons. The prototype has failed during local

testing after (9 h, 5.5 h, 3 h) for d = (1, 100, 1000) respectively.

• The third extension task: implementation of multicast over mixnets [43].

Bibliography

[1] Cambridge Dictionary. Privacy. https://dictionary.cambridge.org/

dictionary/english/privacy, 2023. Last accessed 10 May 2023.

[2] United Nations General Assembly. Universal Declaration of Human Rights.

https://www.ohchr.org/sites/default/files/UDHR/Documents/UDHR_

Translations/eng.pdf, 1948. Last accessed 10 May 2023.

[3] United Nations Conference on Trade and Development. Data protec-

tion and privacy legislation worldwide. https://unctad.org/page/

data-protection-and-privacy-legislation-worldwide, 1948. Last accessed 10

May 2023.

[4] Ewen Macaskill and Gabriel Dance. NSA files decoded: Edward Snowden’s surveil-

lance revalations explained. https://www.theguardian.com/world/interactive/

2013/nov/01/snowden-nsa-files-surveillance-revelations-decoded#

section/1, 2013. Last accessed 6 April 2023.

[5] Phillip Rogaway. The moral character of cryptographic work. Cryptology ePrint

Archive, 2015.

[6] A Pfitzmann and Marit Hansen. A terminology for talking about privacy

by data minimization: Anonymity, unlinkability, undetectability, unobservabil-

ity, pseudonymity, and identity management. URL: http://dud. inf. tu-dresden.

de/literatur/Anon_Terminology_v0, 34, 01 2010.

[7] Simon Kemp. Digital 2023: Global overview report. https://datareportal.com/

reports/digital-2023-global-overview-report, 2023. Last accessed 10 May

2023.

[8] P.F. Syverson, D.M. Goldschlag, and M.G. Reed. Anonymous connections and

onion routing. In Proceedings. 1997 IEEE Symposium on Security and Privacy (Cat.

No.97CB36097), pages 44–54, 1997.

[9] S.J. Murdoch and G. Danezis. Low-cost traffic analysis of Tor. In 2005 IEEE

Symposium on Security and Privacy (S&P’05), pages 183–195, 2005.

[10] David L. Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Commun. ACM, 24(2):84–90, feb 1981.

[11] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George

Danezis. The Loopix anonymity system. In 26th USENIX Security Symposium

(USENIX Security 17), pages 1199–1216, Vancouver, BC, August 2017. USENIX

Association.

[12] Nym. Nym roadmap. https://nymtech.net/#roadmap, 2022. Last accessed 10 May

2023.

[13] Steve Klabnik and Carol Nichols. The Rust Programming Language. No Starch Press,

USA, 2018.

46

https://dictionary.cambridge.org/dictionary/english/privacy
https://dictionary.cambridge.org/dictionary/english/privacy
https://www.ohchr.org/sites/default/files/UDHR/Documents/UDHR_Translations/eng.pdf
https://www.ohchr.org/sites/default/files/UDHR/Documents/UDHR_Translations/eng.pdf
https://unctad.org/page/data-protection-and-privacy-legislation-worldwide
https://unctad.org/page/data-protection-and-privacy-legislation-worldwide
https://www.theguardian.com/world/interactive/2013/nov/01/snowden-nsa-files-surveillance-revelations-decoded#section/1
https://www.theguardian.com/world/interactive/2013/nov/01/snowden-nsa-files-surveillance-revelations-decoded#section/1
https://www.theguardian.com/world/interactive/2013/nov/01/snowden-nsa-files-surveillance-revelations-decoded#section/1
https://datareportal.com/reports/digital-2023-global-overview-report
https://datareportal.com/reports/digital-2023-global-overview-report
https://nymtech.net/#roadmap

BIBLIOGRAPHY 47

[14] Roger Dingledine, Vitaly Shmatikov, and Paul Syverson. Synchronous batching:

From cascades to free routes. volume 3424, 09 2004.

[15] Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop- and- go-mixes providing

probabilistic anonymity in an open system. volume 1525, pages 83–98, 04 1998.

[16] Michael Backes, Aniket Kate, Praveen Manoharan, Sebastian Meiser, and Esfandiar

Mohammadi. AnoA: A framework for analyzing anonymous communication proto-

cols. Journal of Privacy and Confidentiality, 7, 01 2017.

[17] Aggelos Kiayias Claudia Diaz, Harry Halpin. The Nym network, the next generation

of privacy infrastructure. https://nymtech.net/nym-whitepaper.pdf, 2021. Last

accessed 10 May 2023.

[18] Jeff Vander Stoep and Stephen Hines. Rust in the Android platform. https:

//security.googleblog.com/2021/04/rust-in-android-platform.html, 2021.

Last accessed 10 May 2023.

[19] The Rust Foundation. Platform support – the rustc book. https://doc.rust-lang.

org/nightly/rustc/platform-support.html#tier-2-with-host-tools, 2023.

Last accessed 10 May 2023.

[20] statista. Mobile operating systems’ market share worldwide from 1st quarter

2009 to 4th quarter 2022. https://www.statista.com/statistics/272698/

global-market-share-held-by-mobile-operating-systems-since-2009/,

2022. Last accessed 10 May 2023.

[21] Mozilla. Nym. https://github.com/mozilla/rust-android-gradle, 2022. Last

accessed 10 May 2023.

[22] Google. Configuring ART – how ART works. https://source.android.com/docs/

core/runtime/configure#how_art_works, 2023. Last accessed 10 May 2023.

[23] Rust. Build scripts - the Cargo book. https://doc.rust-lang.org/cargo/

reference/build-scripts.html, 2023. Last accessed 10 May 2023.

[24] Brian Smith. Building ring – cross compiling. https://github.com/briansmith/

ring/blob/main/BUILDING.md#cross-compiling, 2022. Last accessed 10 May

2023.

[25] Henrik Grimler. android/ndk repository issue 1614: [bug] with ndk r23 and newer,

builtin symbols cannot be found when a program is linked with libtool. https:

//github.com/android/ndk/issues/1614, 2021. Last accessed 10 May 2023.

[26] xtkoba. Comment 1369150244 on termux/termux-packages repository issue 8029:

Several configure&make packages give binaries with cannot locate symbol

"__extendsftf2". https://github.com/termux/termux-packages/issues/

8029#issuecomment-1369150244, 2022. Last accessed 10 May 2023.

[27] ssrlive. Comment 1096266946 on rust-lang/rust repository issue 85806: Support

Android ndk versions r23-beta3 and up. https://github.com/rust-lang/rust/

pull/85806#issuecomment-1096266946, 2022. Last accessed 10 May 2023.

https://nymtech.net/nym-whitepaper.pdf
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html#tier-2-with-host-tools
https://doc.rust-lang.org/nightly/rustc/platform-support.html#tier-2-with-host-tools
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://github.com/mozilla/rust-android-gradle
https://source.android.com/docs/core/runtime/configure#how_art_works
https://source.android.com/docs/core/runtime/configure#how_art_works
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://github.com/briansmith/ring/blob/main/BUILDING.md#cross-compiling
https://github.com/briansmith/ring/blob/main/BUILDING.md#cross-compiling
https://github.com/android/ndk/issues/1614
https://github.com/android/ndk/issues/1614
https://github.com/termux/termux-packages/issues/8029#issuecomment-1369150244
https://github.com/termux/termux-packages/issues/8029#issuecomment-1369150244
https://github.com/rust-lang/rust/pull/85806#issuecomment-1096266946
https://github.com/rust-lang/rust/pull/85806#issuecomment-1096266946

48 BIBLIOGRAPHY

[28] Alex Pinkus. Comment 1289987284 on rust-lang/rust repository issue 102332: Up-

date CI to use Android NDK r25b. https://github.com/rust-lang/rust/pull/

102332#issuecomment-1289987284, 2022. Last accessed 10 May 2023.

[29] Alex Pinkus. rust-lang/rust repository issue 103673: Android NDK r25b changes

will break developers using r22b or older. https://github.com/rust-lang/rust/

issues/103673, 2022. Last accessed 10 May 2023.

[30] Kotlin. Unsigned integer types. https://kotlinlang.org/docs/

unsigned-integer-types.html, 2023. Last accessed 10 May 2023.

[31] Oracle. Java Native Interface specification: 3 – JNI types and data structures – mod-

ified UTF-8 strings. https://docs.oracle.com/en/java/javase/19/docs/specs/

jni/types.html#modified-utf-8-strings, 2022. Last accessed 10 May 2023.

[32] Google. Systemclock.cpp - Android Code Search. https://cs.android.

com/android/platform/superproject/+/master:system/core/libutils/

SystemClock.cpp;l=64, 2008. Last accessed 10 May 2023.

[33] Google. Keep the device awake – keep the CPU on. https://developer.android.

com/training/scheduling/wakelock#cpu, 2023. Last accessed 10 May 2023.

[34] Google. Bound services overview – use a Messenger. https://developer.android.

com/guide/components/bound-services#Messenger, 2023. Last accessed 10 May

2023.

[35] Google. Remove signing information from your build files. https://developer.

android.com/studio/publish/app-signing#secure-shared-keystore, 2023.

Last accessed 10 May 2023.

[36] Google. Power management – battery saver improvements. https://developer.

android.com/about/versions/pie/power#battery-saver, 2021. Last accessed 10

May 2023.

[37] Google. Foreground services. https://developer.android.com/guide/

components/foreground-services, 2023. Last accessed 10 May 2023.

[38] Google. Optimize for Doze and App Standby – understanding app standby.

https://developer.android.com/training/monitoring-device-state/

doze-standby#understand_app_standby, 2023. Last accessed 10 May 2023.

[39] Google. Services overview – types of services. https://developer.android.com/

guide/components/services#Types-of-services, 2023. Last accessed 10 May

2023.

[40] Texas Instruments. INA219 data sheet, product information and support | ti.com.

https://www.ti.com/product/INA219, 2014. Last accessed 10 May 2023.

[41] statista. Mobile operating systems’ market share worldwide from 1st quarter

2009 to 4th quarter 2022. https://www.statista.com/statistics/1230433/

average-smartphone-nand-memory-capacity-by-brand/, 2021. Last accessed 10

May 2023.

https://github.com/rust-lang/rust/pull/102332#issuecomment-1289987284
https://github.com/rust-lang/rust/pull/102332#issuecomment-1289987284
https://github.com/rust-lang/rust/issues/103673
https://github.com/rust-lang/rust/issues/103673
https://kotlinlang.org/docs/unsigned-integer-types.html
https://kotlinlang.org/docs/unsigned-integer-types.html
https://docs.oracle.com/en/java/javase/19/docs/specs/jni/types.html#modified-utf-8-strings
https://docs.oracle.com/en/java/javase/19/docs/specs/jni/types.html#modified-utf-8-strings
https://cs.android.com/android/platform/superproject/+/master:system/core/libutils/SystemClock.cpp;l=64
https://cs.android.com/android/platform/superproject/+/master:system/core/libutils/SystemClock.cpp;l=64
https://cs.android.com/android/platform/superproject/+/master:system/core/libutils/SystemClock.cpp;l=64
https://developer.android.com/training/scheduling/wakelock#cpu
https://developer.android.com/training/scheduling/wakelock#cpu
https://developer.android.com/guide/components/bound-services#Messenger
https://developer.android.com/guide/components/bound-services#Messenger
https://developer.android.com/studio/publish/app-signing#secure-shared-keystore
https://developer.android.com/studio/publish/app-signing#secure-shared-keystore
https://developer.android.com/about/versions/pie/power#battery-saver
https://developer.android.com/about/versions/pie/power#battery-saver
https://developer.android.com/guide/components/foreground-services
https://developer.android.com/guide/components/foreground-services
https://developer.android.com/training/monitoring-device-state/doze-standby#understand_app_standby
https://developer.android.com/training/monitoring-device-state/doze-standby#understand_app_standby
https://developer.android.com/guide/components/services#Types-of-services
https://developer.android.com/guide/components/services#Types-of-services
https://www.ti.com/product/INA219
https://www.statista.com/statistics/1230433/average-smartphone-nand-memory-capacity-by-brand/
https://www.statista.com/statistics/1230433/average-smartphone-nand-memory-capacity-by-brand/

BIBLIOGRAPHY 49

[42] Urbandroid Team. Don’t kill my app! | hey android vendors, don’t kill my app!

https://dontkillmyapp.com/, 2023. Last accessed 10 May 2023.

[43] Daniel Hugenroth, Martin Kleppmann, and Alastair R. Beresford. Rollercoaster:

An efficient Group-Multicast scheme for mix networks. In 30th USENIX Security

Symposium (USENIX Security 21), pages 3433–3450. USENIX Association, August

2021.

[44] George Danezis and Ian Goldberg. Sphinx: A compact and provably secure mix

format. volume 2008, pages 269–282, 05 2009.

[45] Loopix. Loopix. https://github.com/UCL-InfoSec/loopix/, 2017. Last accessed

10 May 2023.

[46] Nym. Nym. https://github.com/nymtech/nym, 2022. Last accessed 10 May 2023.

[47] S.M. Ross. Introduction to Probability Models. Elsevier Science, 2006.

https://dontkillmyapp.com/
https://github.com/UCL-InfoSec/loopix/
https://github.com/nymtech/nym

Appendix A

Difficulties with the Nym Codebase

Figure A.1 shows one of the diagrams I drew out to understand data flow through Nym’s

codebase. The codebase is highly concurrent due to liberal usage of channels for inter-

thread communication. Each channel’s transmitter and receiver ends are passed indepen-

dently throughout the codebase, which was difficult to track.

Figure A.1: Each box represents a Rust struct and relevant parts of its implementation.

The red arrows represent the path messages take to get from my Android application

(“WS client side” on the right) to the Nym mixnet (”gateway” on top). The red lines

represent channels.

50

Appendix B

Cryptographic Schemes

The schemes presented in this appendix are meant as a introductory companion guide to

the formal cryptographic schemes used in Sphinx, Loopix and Nym. Loopix and Nym do

not formally specify the mathematical notation; the ones presented here are based on my

understanding of how they work.

B.1 Sphinx

Sphinx presents the following scheme for a single message from U to S through 3 mix

nodes N0, N1, N2 in an arbitrary mixnet [44] . Sphinx packets are made of a Sphinx header

and payload, which are handled independently. The Sphinx header that Ni receives takes

the form (αi, βi, γi), where αi = gx and γi is a message authentication code (MAC) of βi.

The details of the blinding of the αis (such that they become bitwise unlinkable across

a hop, but still serve their purpose) and padding are elided from this presentation for

simplicity.

U → N0 :




 gx

︸︷︷︸

α0

, Encs0
(N1, β1, γ1)

︸ ︷︷ ︸

β0

, Macs0
(β0)

︸ ︷︷ ︸

γ0






∥
∥
∥
∥
∥
∥
∥

Encs0
(Encs1

(Encs2
(N3, m)))

N0 → N1 :




 gx

︸︷︷︸

α1

, Encs1
(N2, β2, γ2)

︸ ︷︷ ︸

β1

, Macs1
(β1)

︸ ︷︷ ︸

γ1






∥
∥
∥
∥
∥
∥
∥

Encs1
(Encs2

(N3, m))

N1 → N2 :




 gx

︸︷︷︸

α2

, Encs2
(∗, 0, 0)

︸ ︷︷ ︸

β2

, Macs2
(β2)

︸ ︷︷ ︸

γ2






∥
∥
∥
∥
∥
∥
∥

Encs2
(N3, m)

N2 → S ≜ N3 : m

where ∗ is a distinguished value in the space of mixnet addresses that indicates that the

current node is the final mix node. Note that the recipient does not receive a Sphinx

packet.

For each message that U wants to send to S, U performs:

1. Choose mix node addresses N0, N1, N2. Obtain their public keys pkNi
.

2. Package the payload, recipient address and routing information into the Sphinx

packet format.

For the header, given g ∈ G a publicly known group element, U calculates:

• A single x ∈R Z
∗
|G| chosen uniformly at random

51

52 APPENDIX B. CRYPTOGRAPHIC SCHEMES

• Shared secret with each intermediate hop and recipient:

si = pkx
Mi

where pkMi
= gskMi by Diffie-Hellman, so each node Mi can calculate this

shared secret by raising gx to the power of its secret key:

si = gx·skMi

The header is then an “onion encrypted” version of the final header (received by

N2) as presented above.

Separately, the Sphinx payload is simply the raw message m, encrypted once for

each i ∈ {0, . . . , 4}, as in onion routing.

3. Sends the Sphinx packet to PU .

Each successive node in the mixnet peels off a layer of encryption from both the Sphinx

header and Sphinx payload.

B.2 Loopix

Loopix adds the concept of a provider, a special kind of mix node. A message from U

to S thus travels through 5 mix nodes M0, . . . , M4 where M0 ≜ PU (U ’s provider) and

M4 ≜ PS (S’s provider).

The following scheme conforms to the Loopix implementation [45], though not presented

in their paper. The main differences with the previous section are (1) the addition of the

delay parameter di in the header, for each mix node to know how long to hold packets for;

(2) the contents of the unencrypted payload, which now includes a MAC; (3) the recipient

now receives a Sphinx packet too.

U → PU ≜ M0 :




 gx

︸︷︷︸

α0

, Encs0
(M1, β1, γ1, d0)

︸ ︷︷ ︸

β0

, Macs0
(β0)

︸ ︷︷ ︸

γ0






∥
∥
∥
∥
∥
∥
∥

Encs0
(· · · Encs5

(S, m, Macs5
(S, m)) · · ·)

∀i ∈ {1, 2, 3, 4}. Mi−1 → Mi :




 gx

︸︷︷︸

αi

, Encsi
(Mi+1, βi+1, γi+1, di)

︸ ︷︷ ︸

βi

, Macsi
(βi)

︸ ︷︷ ︸

γi






∥
∥
∥
∥
∥
∥
∥

Encsi
(· · · Encs5

(S, m, Macs5
(S, m)) · · ·)

PS ≜ M4 → S :




 gx

︸︷︷︸

α5

, Encs5
(∗, 0)

︸ ︷︷ ︸

β5

, Macs5
(β5)

︸ ︷︷ ︸

γ5






∥
∥
∥
∥
∥
∥
∥

Encs5
(S, m, Macs5

(S, m))

where ∗ is a distinguished value in the space of Loopix addresses that indicates that the

current node is the recipient S.

Note that although PS receives a delay d4, it is ignored in code. Therefore, delays are

only done on intermediate hops.

B.3. NYM 53

B.3 Nym

The following scheme conforms to the Nym implementation [46], though not presented

in their whitepaper. The main differences with the Loopix scheme are presented in Sec-

tion 2.2.

U → GU ≜ M0 : Enclong-term(U,GU)

(

what GU ≜ M0 sends to M1

)

∀i ∈ {1, 2, 3}. Mi−1 → Mi :




 gx

︸︷︷︸

αi

, Encsi
(Mi+1, βi+1, γi+1, di)

︸ ︷︷ ︸

βi

, Macsi
(βi)

︸ ︷︷ ︸

γi






∥
∥
∥
∥
∥
∥
∥

Encsi
(· · · Encs4

(x′ ‖ EncsS
(m)) · · ·)

M3 → GS ≜ M4 :




 gx

︸︷︷︸

α4

, Encs4
(S, 0)

︸ ︷︷ ︸

β4

, Macs4
(β4)

︸ ︷︷ ︸

γ4






∥
∥
∥
∥
∥
∥
∥

Encs4
(x′ ‖ EncsS

(m))

M4 ≜ GS → S : Enclong-term(S,GS)

(

x′ ‖ EncsS
(m)

)

where similar to x, x′ is a ephemeral secret, that is accessible only by U, S and used to

derive the shared secret sS without conducting key exchange. The message m is also

protected by MAC but via another mechanism necessary to support Single Use Reply

Blocks (SURBs), details of which are outside the scope of this work.

Appendix C

Poisson Processes

C.1 Proof: Closure under Summation

Let P, L, D be the number of messages emitted per second by the independent streams

mentioned in Section 2.1.3. For a process whose events occur with intervals ∼ Exp(λ)

with rate parameter λ (units: s−1), the number of events per second has distribution

∼ Pois(λ). Therefore, P ∼ Pois(λP), L ∼ Pois(λL) and D ∼ Pois(λD).

We show that P + L + D ∼ Pois(λP + λL + λD):

P(P + L + D = n) =
n∑

a=0

n−a∑

b=0

P(P = a ∧ L = b ∧ D = n − a − b)

(by Law of Total Probability)

=
n∑

a=0

n−a∑

b=0

P(P = a) · P(L = b) · P(D = n − a − b)

(by independence)

=
n∑

a=0

n−a∑

b=0

λa
P e−λP

a!
·

λb
Le−λL

b!
·

λn−a−b
D e−λD

(n − a − b)!

= e−(λP +λL+λD)
n∑

a=0

λa
P

a!

n−a∑

b=0

λb
Lλn−a−b

D

b!(n − a − b)!

= e−(λP +λL+λD)
n∑

a=0

λa
P

a!(n − a)!

n−a∑

b=0

(

n − a

b

)

λb
Lλn−a−b

D

= e−(λP +λL+λD)
n∑

a=0

λa
P

a!(n − a)!
(λL + λD)n−a

=
e−(λP +λL+λD)

n!

n∑

a=0

(

n

a

)

λa
P (λL + λD)n−a

=
(λP + λL + λD)ne−(λP +λL+λD)

n!

which is indeed the probability mass function of Pois(λP + λL + λD). This is in fact an

instantiation of the more general property for independently distributed Poisson distri-

butions:
∑

i

Pois(λi) = Pois

(
∑

i

λi

)

C.2 How Poisson Mixes foil Timing Analysis Attacks

The exponential distribution is memoryless. Let D ∼ Exp(µ) be an R.V. representing a

Sphinx packet’s delay. Its tail distribution function P(D > t) is e−µt, which fully describes

54

C.2. HOW POISSON MIXES FOIL TIMING ANALYSIS ATTACKS 55

Exp(µ) just like the probability density function, satisfies:

P(D > s + t
︸ ︷︷ ︸

remaining
delay is t

after time s

| D > s) =
P(D > s + t ∧ D > t)

P(D > s)

=
P(D > s + t)

P(D > s)

=
e−µ(s+t)

e−µs

= e−µt

= P(D > t)

This is exactly the definition of memorylessness [47]. It states that the distribution of

delay D at time t = 0, P(D > t), is identical to the the distribution of the remaining

delay D − s at time t = s given that D is at least t, P(D > s + t | D > s).

From the perspective of an attacker observing a mix, the delays of each packet is unknown

and is thus represented by R.V.s Di ∼ Exp(µ) for each packet i. To perform linking, the

adversary must determine which packet is the next one to be forwarded. Suppose packets

1 and 2 enter the mix node, one at t = 0 and one at t = s. At t = s, the probability

distributions of their remaining delays D1, D2 are given by P(D1 > s + t) and P(D2 > t)

respectively, which by memorylessness are identical. Knowledge of the amount of time

packets have already spent waiting in the mix node grants the adversary no advantage

in ascertaining which packet is next to leave: in other words, once in a pool, the timing

characteristics of all packets are indistinguishable.

Appendix D

Mapping between Kotlin and Rust

Data Types

TKotlin TC Implementation of consume_kt_TKotlin : TC → TRust TRust

Boolean jboolean 1 7→ true, 0 7→ false bool

Byte jbyte Identity i8

UByte jbyte Re-interpret bits u8

Char jchar Not implemented char

Short jshort Identity i16

UShort jshort Re-interpret bits u16

Int jint Identity i32

UInt jint Re-interpret bits u32

Long jlong Identity i64

ULong jlong Re-interpret bits u64

Float jfloat Identity f32

Double jdouble Identity f64

String jstring Delegate to low-level JNI methods Result<String, JNIError>

Boolean? jobject (java/lang/Boolean) Null check, then delegate to low-level JNI methods Result<Option<bool>, JNIError>

Byte? jobject (java/lang/Byte) Null check, then delegate to low-level JNI methods Result<Option<i8>, JNIError>

UByte? jobject (kotlin/UByte) Null check, then delegate to low-level JNI methods Result<Option<u8>, JNIError>

Char? jobject Not implemented Result<Option<char>, JNIError>

Short? jobject (java/lang/Short) Null check, then delegate to low-level JNI methods Result<Option<i16>, JNIError>

UShort? jobject (kotlin/UShort) Null check, then delegate to low-level JNI methods Result<Option<u16>, JNIError>

Int? jobject (java/lang/Integer) Null check, then delegate to low-level JNI methods Result<Option<i32>, JNIError>

UInt? jobject (kotlin/UInt) Null check, then delegate to low-level JNI methods Result<Option<u32>, JNIError>

Long? jobject (java/lang/Long) Null check, then delegate to low-level JNI methods Result<Option<i64>, JNIError>

ULong? jobject (kotlin/ULong) Null check, then delegate to low-level JNI methods Result<Option<u64>, JNIError>

Float? jobject (java/lang/Float) Null check, then delegate to low-level JNI methods Result<Option<f32>, JNIError>

Double? jobject (java/lang/Double) Null check, then delegate to low-level JNI methods Result<Option<f64>, JNIError>

String? jstring
Null check, then use above

jstring 7→ Result<String, JNIError>
Result<Option<String>, JNIError>

Table D.1: Full table of the mapping between Kotlin, C and Rust type through

jvm_kotlin_typing’s API. This table describes all consume_kt_TKotlin functions as in

Section 3.4.1.

56

57

TRust Implementation of produce_kt_TKotlin : TRust → TC TC TKotlin

bool true 7→ 1, false 7→ 0 jboolean Boolean

i8 Identity jbyte Byte

u8 Re-interpret bits jbyte UByte

char Not implemented jchar Char

i16 Identity jshort Short

u16 Re-interpret bits jshort UShort

i32 Identity jint Int

u32 Re-interpret bits jint UInt

i64 Identity jlong Long

u64 Re-interpret bits jlong ULong

f32 Identity jfloat Float

f64 Identity jdouble Double

String Delegate to jni crate jstring String

Option<bool> None check, then delegate to low-level JNI methods (∗) jobject (java/lang/Boolean) Boolean?

Option<i8> None check, then delegate to low-level JNI methods (∗) jobject (java/lang/Byte) Byte?

Option<u8> None check, then delegate to low-level JNI methods (∗) jobject (kotlin/UByte) UByte?

Option<char> Not implemented jobject Char?

Option<i16> None check, then delegate to low-level JNI methods (∗) jobject (java/lang/Short) Short?

Option<u16> None check, then delegate to low-level JNI methods (∗) jobject (kotlin/UShort) UShort?

Option<i32> None check, then delegate to low-level JNI methods (∗) jobject (java/lang/Integer) Int?

Option<u32> None check, then delegate to low-level JNI methods (∗) jobject (kotlin/UInt) UInt?

Option<i64> None check, then delegate to low-level JNI methods (∗) jobject (java/lang/Long) Long?

Option<u64> None check, then delegate to low-level JNI methods (∗) jobject (kotlin/ULong) ULong?

Option<f32> None check, then delegate to low-level JNI methods (∗) jobject (java/lang/Float) Float?

Option<f64> None check, then delegate to low-level JNI methods (∗) jobject (java/lang/Double) Double?

Option<String>
None check, then use above

String 7→ jstring
jstring String?

Table D.2: The produce_kt_TKotlin functions in jvm_kotlin_typing’s API, as introduced

in Section 3.4.1. All rows tagged with (∗) actually return Result<TC, JNIError> in rust,

because the low-level JNI methods exposed by the jni community crate may fail.

	Introduction
	Motivation
	Anonymity Networks
	Virtual Private Networks
	Onion Routing
	Traffic Analysis

	Mixnets
	Mixnets are increasingly necessary and practical

	Contributions
	Starting Point

	Preparation
	Loopix Mixnet
	Bitwise Unlinkability: Sphinx Packet Format
	Metadata Unlinkability: Poisson Mix
	Message Streams and Security Properties

	Nym Mixnet: Discrepancies from Loopix
	Technologies Used
	Rust and Community Crates
	The Android OS
	Kotlin and Java Native Interface
	Android Frameworks and Libraries

	Requirements Analysis

	Implementation
	Repository Overview
	Compilation Toolchain
	Toolchain Construction
	Toolchain Debugging

	Developer Experience
	jvm_kotlin_typing Rust Library
	Mapping between Kotlin, C and Rust Types
	Android Instrumentation Tests

	nym-jni Crate
	Porting Strategy Discussion
	Implementing topLevelInit(…) and Porting init(…)
	Porting of run(…)

	Logging Timestamps
	nym Crate (fork)
	nym-pc Crate
	nym-android-port Android Application
	Foreground Service (FGS)
	Database Tables
	Database for IPC and State Machine

	Semi-Automatic Testing Framework (Extension)

	Evaluation
	Methodology
	Ability to Communicate with a PC Client
	Debug versus Release Builds
	Probe Effect
	Effect of Android OS Power Management
	Differences with PC and Ideal Distributions
	Energy Consumption (Extension)
	Motivation: The Need for Quantitative Results
	Experimental Setup
	Results and Discussion

	CPU and Memory Usage
	Application Size
	Generalisability of Results

	Conclusions
	Reflections
	Future Work

	Bibliography
	Difficulties with the Nym Codebase
	Cryptographic Schemes
	Sphinx
	Loopix
	Nym

	Poisson Processes
	Proof: Closure under Summation
	How Poisson Mixes foil Timing Analysis Attacks

	Mapping between Kotlin and Rust Data Types

