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Abstract

While the field of neural algorithmic reasoning (NAR) – training neural networks to imitate
algorithms and using them as algorithmic inductive biases in real-world problems – has risen
in popularity, there has been no investigation confirming that its fundamental claims hold in
general. Indeed, we argue that such an investigation has so far been infeasible, due to the
lack of a general extensible library creating a very high barrier to entry for reproductions and
systematic studies.

As such, we develop an extensible laboratory for NAR, by introducing a novel framework for
multi-domain, type-driven, declarative ML, and using its components to derive flexible NAR
pipelines from first principles through the paradigm of representations-as-types. We use this
laboratory to perform systematic analyses, reproductions and comparisons of prior work in
NAR, matching (and often beating) state-of-the-art performance across various domains by
identifying and alleviating bottlenecks across popular NAR frameworks and architectures.

We then conduct a systematic investigation into the fundamental claims of NAR, in the context
of a new synthetic dataset inspired by recent work in neural algorithmics. Through a series of
statistically-robust ablation tests, while we confirm the established result that algorithmic mod-
ules beat non-algorithmic baselines, we find evidence to refute one of the central claims of NAR,
showing that neural algorithmic processors (NAPs) do not overcome the ‘scalar bottleneck’ of
differentiable algorithmic black-boxes (sDABs).

Based on our observations, we develop a new hypothesis to replace this claim: that sDABs
instead suffer from an ‘ensembling bottleneck’ of not being able to execute multiple instances
of the same algorithm in parallel, which is alleviated not by NAPs, but by simply using an
unfrozen, structurally-aligned neural network. And, through exploring the effects of parallelis-
ing sDABs, we not only find strong evidence in support of this hypothesis, but also achieve
a long-standing goal of neural algorithmics: developing a way to deterministically distill an
algorithm into a robust, high-dimensional processor network that preserves both the efficiency
and correctness guarantees of sDABs while avoiding their performance bottleneck.
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1 Introduction

This dissertation explores neural algorithmic reasoning (NAR): a popular subfield of ma-
chine learning making a number of bold (but unsubstantiated) fundamental claims. Specifically,
we seek to build a laboratory to find out whether or not these claims are too good
to be true. In this section, we set the scene with a high-level overview of NAR, and briefly
outline the aims of this project.

§1.1 Motivation: investigating neural algorithmic reasoning
Setting the scene: building neural networks with algorithmic inductive biases. Through-
out the history of computing, algorithms have been used to automatically solve complex real-
world problems (e.g. finding the shortest path between two cities), provided we can model
them mathematically (e.g. as a graph with edge weights in R). In machine learning, many
tasks we wish to solve (e.g. finding the shortest path between two cities given weather and
traffic conditions) are algorithmic in nature but hard to model mathematically. As such, there
is considerable interest in building neural networks with an algorithmic inductive bias – in
other words, neural networks incentivised to learn computations that ‘look like’ those of some
algorithm A : S ! T – through the use of algorithmic modules: differentiable functions,
imitating the behaviour of a particular algorithm, that can be used as a module within a larger
neural network.

Designing algorithmic modules: sDABs vs NAPs. One popular way to build an algorithmic
module [Vlastelica et al., 2019, Farquhar et al., 2017, Wang et al., 2019, Petersen et al., 2021] is
to take an implementation of algorithm A and simply make it differentiable, thereby construct-
ing a scalar differentiable algorithmic black-box (sDAB) that can be used as a module
in a larger network. An alternative approach is that of neural algorithmic reasoning [Veličković
and Blundell, 2021]: training a neural network Â : Rn ! Rn to be a neural algorithmic
processor (NAP) imitating A in high-dimensional space, and using Â as a module in a larger
network.

The fundamental claim of NAR: NAPs alleviate the scalar bottleneck of sDABs. Al-
though NAPs require costly pre-training and lack the correctness guarantees of sDABs (es-
pecially out-of-distribution [Xu et al., 2020]), Veličković and Blundell [2021] claim that the
performance of sDABs is impaired by what they call the scalar bottleneck – the requirement
that we project rich latent states down to single scalar inputs – and that NAPs alleviate this
bottleneck by virtue of operating over a high-dimensional latent space.

This claim has not been systematically explored, and leaves lots of open questions. But
while Deac et al. [2021] have shown NAP modules to outperform sDAB modules in the context
of the value iteration algorithm, there has been no systematic investigation confirming
that NAPs outperform sDABs in general. And even assuming this result holds, not only
do Veličković and Blundell [2021] remain vague about the nature of the scalar bottleneck itself,
but it remains an open problem [Cappart et al., 2021] as to whether there are ways
to alleviate the scalar bottleneck while still retaining the correctness and efficiency
guarantees of sDABs.
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§1.2 Project aims
As such, this project seeks to perform an investigation into the fundamental claims of
NAR – to understand whether NAPs outperform sDABs, and if so, why – through building a
laboratory for neural algorithmics. Note that, not only would such a laboratory both increase
the reproducibility of research within NAR and lower the barrier-to-entry for exploration, but
systematically exploring the claims of NAR can help the research community to either increase
its confidence that it’s pursuing the right ideas, or steer its efforts away from dead-ends.

Specifically, our aims are as follows:

Core aims
As per our project proposal, the core aims of our project are to lay the groundwork for
a systematic investigation of NAR, by designing, building and evaluating a laboratory for
neural algorithmics. Specifically, we seek

(a) to build a laboratory for training, testing and analysing neural algorithmic reason-
ers across a variety of domains, consisting of

• a multi-domain algorithmic reasoning framework (MDARF) for design-
ing and training step-level NAPs (Chapter 3),

• the VI-Implicit-Planner real-world benchmark (Section 4.2), and

• the Warcraft-Shortest-Path synthetic benchmark (Section 4.3),

(b) to evaluate its correctness (Section 4.1) by using our MDARF to train step-level
NAPs and comparing their performance to the state-of-the-art,

(c) to evaluate its utility for reproduction (Section 4.2) by using these NAPs to
reproduce recent results in NAR (e.g. [Deac et al., 2021]), and

(d) to evaluate its utility for research (Section 4.3.2) by using these NAPs to per-
form a systematic comparison of step-level NAP and natively-differentiable sDAB
architectures within our benchmark environments.

Extension aims
Building on the results of our systematic comparison, our main extension is to use our
laboratory to begin exploring the foundations of NAR. Specifically, it would be desirable

(a) to expand our systematic comparison (Section 4.3.2) with a range of ablation
tests, in order to understand the influence of each aspect of the NAR regime on model
performance,

(b) to build evidence-based hypotheses (Section 4.3.3) as to why NAPs behave the
way they do, and

(c) to design more principled DABs (Section 4.3.4) that preserve both the empirical
performance of NAPs and the efficiency and correctness guarantees of sDABs.
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2 Preparation

Recall that the overarching question of this dissertation is whether NAPs outperform sDABs,
and if so, why. In this chapter, we first motivate this question by presenting NAR within its
broader context of neural algorithmics (Section 2.1). We then analyse how we can build a
laboratory to answer it (Section 2.3), before considering the software-engineering components
used throughout the course of this project (Section 2.4).

We assume a working knowledge of deep learning; we provide supplementary introductory
material and establish a few elements of non-standard notation in Appendix A.

§2.1 A survey of neural algorithmics
The NAR paradigm is situated within neural algorithmics: designing neural networks with
an inductive bias towards performing computations similar to those of some given algorithm
A, typically for use on real-world tasks for which we believe A to be relevant. In this section,
we conduct a taxonomy of neural algorithmics, and analysing the way in which NAR and its
claims fit into this picture.

§2.1.1 Building algorithmic modules: sDABs and NAPs
Arguably, the simplest way to give a neural network an inductive bias towards some algorithm
A is to give it access to a differentiable module performing computations that ‘look like’ those
of A. Most work in neural algorithmics, therefore, is centred around developing algorithmic
modules: differentiable algorithms Â : U ! V , mimicking the behaviour of some algorithm
A : U ! V , that can be used as a module within a larger network.

Now, the main technical challenge when building such modules is the non-differentiability of
most classical algorithms [Paulus et al., 2021], which prevents them from being directly used
in an end-to-end neural pipeline. In practice, there are three main ways by which we design
algorithmic modules in order to overcome this (Figure G.1):

sDAB: ‘Differentiate through the algorithm’ In cases where A : U ! V is almost every-
where differentiable (or if we have a differentiable relaxation of A), the most straightforward
solution is to use A itself as the algorithmic module – i.e. to set Â := encV � A � decU for
learnable functions decU : U ! U and encV : V ! V . We refer to such a module as a scalar
differentiable algorithmic black-box (A-sDAB), so called because we decode latent states
to scalars before passing them through A.

Note that we can further classify sDABs by their method of construction:

• Natively-differentiable sDABs are those for which we can calculate gradients for A
almost everywhere (e.g. [Petersen et al., 2021]).

• Gradient-approximation sDABs are those where, while A has a non-differentiable for-
ward pass, we implement a backward pass that approximates the gradient ofA (e.g. [Vlastel-
ica et al., 2019, 2021, Sahoo et al., 2022, Paulus et al., 2021]).

• Continuous-relaxation sDABs are those which use a continuous relaxation A0 of the
desired algorithm A – in other words, while A0 is differentiable, its forward pass may only
be an approximation of A (e.g. [Wang et al., 2019, Petersen et al., 2021]).
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(a) sDAB module
(Â := encV �A � decU )

(b) NAP module
(decV � Â � encU ⇡ A)

(c) SNN module
(Â designed to align with A)

Figure 2.1: Example usage of algorithmic modules in a natural-input to natural-output pipeline,
in increasing order of expressivity

NAP: ‘Neuralise the algorithm’ Now, especially for complex, discrete algorithms, we may
not always be able to transform our desired algorithmic prior A into an sDAB. As such, an
alternative way to obtain a differentiable version of A – the approach of neural algorithmic
reasoning – is to train a neural network to imitate the action of A in a high-dimensional
latent space. Specifically, we define our algorithmic module as a learnable function Â : U ! V ,
and train it alongside encU : U ! U and decV : V ! V to satisfy A ⇡ decV � Â � encU .1
Once trained, we call Â a neural algorithmic processor (A-NAP), and typically freeze its
weights before deploying it in real-world tasks. Following [Cappart et al., 2021], we can further
classify NAPs by the level of supervision they receive during training:

• Algorithm-level NAPs (e.g. [Veličković et al., 2021]) are those which we train to imitate
an algorithm end-to-end, from inputs to outputs. In other words, given an algorithm A
and a neural network P , we simply train Â, encU , decV to satisfy A ⇡ decV � Â � encU .

• Step-level NAPs (e.g. [Deac et al., 2021, Numeroso et al., 2023]) are those which we
train to imitate an algorithm end-to-end, but with the extra condition that submodules
of the NAP must learn to imitate the behaviour of corresponding submodules (or ‘steps’)
of the algorithm. For instance, given an algorithm A = An � ... �A1 and a neural network
Â = Pn�...�P1, we may want Pi, encTi , decTi to satisfy Aj�...�Ai ⇡ decTj�(Pj�...�Pi)�encTi

for all 1  i  j  n. (Note, though, that in practice we might only enforce a weaker
property at training time – e.g. that Ai�...�A1 ⇡ decTi �(Pi�...�P1)�encT1 for 1  i  n.)

SNN: ‘Structurally align with the algorithm’ Finally, the weakest way to enforce an al-
gorithmic prior on a neural network is to relax the constraint of our algorithmic module im-

1For learnable functions f, g : U ! V, we write ‘training f, g to satisfy f ⇡ g’ to refer to ‘training f, g to
minimise L(f(x), g(x)) for x 2 U , for an appropriate loss function L’.
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itating some specific algorithm A, and instead use a neural network whose computational
structure is ‘aligned’ with that of some class of algorithms C containing A. Specifically, such a
structurally-aligned neural network (SNN) has the property that the compositional struc-
ture of its submodules matches the compositional structure of subroutines in algorithms of class
C [Xu et al., 2019]. An important example is the graph neural network (and its algorithmically-
motivated variants [Veličković et al., 2020a, Tang et al., 2020, Strathmann et al., 2021]), which
is known to align with the class of dynamic programming algorithms [Dudzik and Veličković,
2022].

§2.1.2 The claims of NAR
Now, let’s dissect the claims of NAR as made in [Veličković and Blundell, 2021] in the context
of the tradeoffs between these three approaches to designing algorithmic modules.

Desiderata for algorithmic modules
Recall that the primary goal of developing an algorithmic module is to be able to deploy it in
real-world tasks with algorithmic priors – in other words, tasks which we suspect might require
the use of some algorithm A. In light of this, we ideally want these modules to be faithful to
their target algorithm A, to be adaptable to tasks involving variants A0 of their target algorithm
A,2 to be robust to noisy / low-data environments, and to have low cost at training / inference
time.

sDABs, NAPs and the scalar bottleneck
So, given these desiderata, what are the tradeoffs between our algorithmic modules? Recall
that, while we can’t always build an sDAB for an arbitrary algorithm with perfect fidelity,
when we are able to build them they require no training, tend to be efficient at inference time
[Vlastelica et al., 2019], and have strong performance guarantees both in and out of distribution.
By contrast, while NAR gives us a recipe to build an NAP for any arbitrary algorithm A, using
NAPs incurs the cost of pre-training a neural model, decreased efficiency at inference time and
weaker performance guarantees out of distribution [Xu et al., 2020, Veličković et al., 2020b].
Likewise, while we can easily build an SNN for any arbitrary algorithm, these confer extremely
weak algorithmic priors and have no performance guarantees out-of-distribution.

As such, if we are able to choose between all three, the sDAB (with its efficiency and correctness
guarantees) seems the obvious choice. But Veličković and Blundell [2021] argue that, despite
this theoretical correctness guarantee, sDABs should actually perform worse than NAPs, espe-
cially on problems involving complex real-world data. More specifically, they make the following
claim:

Fundamental claim of NAR: NAPs outperform sDABs by avoiding the scalar bottle-
neck.
Suppose we have a real-world task with an algorithmic prior towards A : U ! V .

• sDABs encV �A�decU perform poorly on tasks for which it is difficult (or impossible)
for decU to estimate algorithmic inputs satisfying the preconditions of A – for instance,
those with noisy, low-data or partially-observed environments (where we may not be
able to estimate such inputs precisely), and those for which the underlying algorithm
differs slightly from A (where we may not be able to estimate such inputs at all).

• This problem, known as the scalar bottleneck, is likely due to decU being forced to

2For instance, a task we approximate as involving a shortest-path problem may actually involve a time-
dependent shortest-path problem.
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predict a imperfect scalar estimate of each input of A: as A assumes its inputs are
free of noise and estimated correctly, any errors in our input will be propagated (and
potentially amplified) through the algorithm, and may lead to a suboptimal result.

• NAPs, by virtue of learning to perform A in a high-dimensional latent space, avoid
this problem, and outperform sDABs when deployed in such environments.

§2.2 The case for investigating the claims of NAR
While some recent results support the fundamental claim of NAR – specifically, that NAPs
trained to imitate value iteration outperform equivalent sDABs when used as a planning mod-
ule within model-free RL agents [Deac et al., 2021], and that restricting the input / output
dimensionality of NAPs trained to imitate an Atari CPU impairs performance when used in
a pixel-based contrastive learning pipeline [Veličković et al., 2021] – so far, there has been
no systematic investigation exploring whether NAPs outperform sDABs across a
range of tasks.

As such, our project aims to investigate the fundamental claim of NAR, by performing
a systematic comparison of NAP and sDAB architectures in carefully-selected benchmark prob-
lems, verifying whether NAPs outperform sDABs in general, and, if so, trying to understand
why this might be the case.

§2.2.1 Restricting the scope of our investigation to graph-based NAR
We note that most work in NAR [Deac et al., 2021, Veličković et al., 2021, Beurer-Kellner et al.,
2022, Numeroso et al., 2023] explores graph-based NAR, where our algorithms are functions
A : G[UN , UE] ! G[VN , VE],3 and our processors are learnable functions Â : G[UN ,UE] !
G[VN ,VE]. Accordingly, we restrict the scope of our investigation to a comparison of
graph-based, step-level NAPs.

These processors are typically implemented as graph neural networks (GNNs): neural
networks acting over graphs G = (V,E) (whose nodes u have one-hop neighbourhoods Nu =
{v 2 V | (v, u) 2 E} and features xu), of the form

hu = �(xu,
M

v2Nu

 (xu,xv))

for  a learnable message function, � a learnable readout function and � a permutation-
invariant aggregation function.4

§2.2.2 The case for a laboratory for graph-based neural algorithmics
In order to actually conduct this investigation, we need both a range of sDABs and step-level
NAPs, and a range of problems to evaluate them on. But, while sDABs are in general easy to
build, implementing a training pipeline for every NAP in every problem domain we want to
explore would quickly become cumbersome – and there currently exists no framework flexible
enough to support a systematic investigation of NAPs out-of-the-box.

3(for G[N,E] denoting the type of graphs whose nodes carry values of type N and whose edges carry values
of type E)

4Note that this ‘template’ can be instantiated in many ways, with different choices of �,  and � yielding
popular architectures such as GCNs [Kipf and Welling, 2017] and GATs [Veličković et al., 2018]; for more
background on GNNs, see e.g. [Hamilton, 2021].
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Indeed, we argue that the systematic evaluation of NAR has so far been infeasible, due to the
lack of a general extensible library creating a very high barrier-to-entry for reproductions and
systematic studies.

Prior work and its limitations
The closest thing we have to a framework for training step-level NAPs is the CLRS Algo-
rithmic Reasoning Benchmark framework (CLRSF) [Veličković et al., 2022]: a library
for evaluating the performance of various GNN architectures on graph-based representations
of algorithms from the CLRS textbook [Cormen et al., 2009], in order to assess their abstract
reasoning capabilities.

But although the CLRSF is a powerful, easy-to-use tool to declaratively train and evaluate
graph-based processors on algorithmic problems, it has a number of limitations making it un-
suitable for a systematic investigation of step-level NAPs:

Its underlying ML framework is non-standard. We note that the CLRSF is written in JAX
[Bradbury et al., 2018]; as PyTorch [Paszke et al., 2019] is the de facto framework for
academic ML research, this substantially increases the barrier-to-entry for researchers
wanting to use the framework in their own investigations.

It’s not easily extensible. The CLRSF implements a particular flavour of NAR (a step-based
‘input-hint-output’ NAR pipeline over graphs) and offers little flexibility outside of this
scope (e.g. training on algorithms that aren’t in a graph representation), short of rewriting
the majority of its 10,000-line codebase.

Its training pipeline isn’t designed for NAR. Finally, even in the domain of graph-based NAR,
the CLRSF training pipeline has several idiosyncrasies (e.g. a scalar bottleneck in its
pipeline, as discussed in Section 3.4.2) that deviate from the ‘NAR vision’ as outlined in
Section 2.1.1 and prevent it from being able to directly train the NAPs used in e.g. [Deac
et al., 2021] and [Numeroso et al., 2023].

Towards a laboratory for graph-based neural algorithmics
As such, in order to not only facilitate our investigation, but also provide the field of NAR
with a high-quality framework enabling reproducible research (in the spirit of Stable Baselines
3 [Raffin et al., 2021] for reinforcement learning, and PyTorch Geometric [Fey and Lenssen,
2019] for geometric deep learning), we seek to design, build and evaluate a laboratory for
neural algorithmics, consisting of

• a multi-domain algorithmic reasoning framework (MDARF) for specifying, train-
ing and evaluating NAPs in different domains, and

• a range of benchmark problems with which to evaluate it in a controlled setting.

We note that such a laboratory would unify many codebases estimated at thousands of lines of
Python each, and would not only lower the cost for ML practitioners to leverage the power of
NAR in their own applications, but also provide a platform to drive fundamental research in
interpretability, transfer learning and generalisation.

§2.3 Requirements analysis
So, given that we need a laboratory for NAR, what are its requirements? While we will discuss
our selection of benchmark problems in Section 4, in this section we consider how the limitations
of the CLRSF motivate the high-level desiderata for our MDARF.
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Designing for researchers of foundational NAR
To better understand what we want from our MDARF, let’s consider its target demographic:
researchers in foundational NAR. These researchers are typically skilled ML practitioners, who
are familiar with frameworks such as PyTorch [Paszke et al., 2019], but who do not necessarily
have a substantial software engineering background.

Now, the defining characteristic of this flavour of ML research is rapid prototyping and exper-
imentation: for instance, in the course of investigating the foundations of NAR, researchers
may wish to quickly train a range of NAPs imitating particular algorithms, deploy these NAPs
in real-world problems, and then probe or modify them based on what they see. As such,
the fundamental motivating factor behind the design of our framework should be progressive
disclosure: we want a framework that, in the common case, is as easy to use as the CLRSF,
but is also deeply configurable and easily adaptable to more complex pipelines.

Desiderata for the MDARF
Given this, what should our desiderata be for the MDARF? Arguably the most important
factor is that our framework should support the core functionality (and ease-of-use)
of the CLRSF, but with a pipeline tailored towards NAR. But, as a research tool,
our framework should also be flexible – in other words, open to extension, modification and
network surgery. Specifically, unlike the monolithic pipeline of the CLRSF, it should enjoy the
following properties:

Compatibility: As NAR research spans a wide range of target domains, our framework should
be compatible with researchers’ existing codebases, and should work with familiar tools.

Extensibility: As NAR pipelines aren’t limited to graphs, our framework should be easily ex-
tensible to work with new feature types and new latent spaces.

Modularity: In order to facilitate ‘network surgery’ on trained NAPs (e.g. extracting the pro-
cessor from the algorithmic pipeline), our framework should have a modular design.

Composability: As NAR pipelines are complex and often problem-specific, we should be able
to compose these modules in different ways to build custom NAR pipelines, while still
retaining the type-based abstractions that make the CLRSF easy to work with.

Configurability: Finally, while (like the CLRSF) it should be easy to build ‘default’ NAR
pipelines, all parameters of components of the framework should also be richly config-
urable.

§2.4 Software engineering tools and techniques
Development methodology. As this project very neatly divides into milestones, each of which
iteratively add features to our core deliverable, we adopted the spiral model of software
development [Boehm, 1988]. For each major milestone, we performed a new design iteration
with its own requirements analysis, implementation and evaluation section. We structured these
milestones in order to minimise risk, with the first milestones focusing on delivering the core
MDARF and its benchmarks, and the higher-risk exploratory experiments being scheduled later.
We present a dependency analysis for the implementation modules of this project, alongside its
key milestones, in Figure 2.2.

Languages and libraries. Recall that one of our desiderata for our MDARF is compatibility
with existing research codebases. As Python and PyTorch [Paszke et al., 2019] are the most
popular language and framework used in the ML research community (with 61% of research



2.4 Software engineering tools and techniques 14

Figure 2.2: A dependency analysis of the implementation components of this dissertation. All
work required for each milestone is indicated by a coloured box; red boxes indicate
high-priority work, orange boxes indicate medium-priority work, and green boxes
indicate low-priority work.

paper implementations hosted on Papers with Code using PyTorch), we are forced to use these
in order to fulfil our desiderata.

Licensing and the open-source community. Although our MDARF and benchmarks are still
proofs-of-concept and not quite ready for public use, we plan to improve the MDARF, and once
it reaches feature parity with the CLRSF [Veličković et al., 2022], we intend to release it as an
open-source library under the Apache-2.0 license as per the CLRSF. This license is a permissive
license, allowing for both commercial and non-commercial use, whose main conditions are the
preservation of copyright and license notices.

As discussed in Section 3.5, in the course of the project the author had to copy and extend a
module from Stable Baselines 3 [Raffin et al., 2021]; as this project uses the MIT license, we are
permitted to do so, and (as per the terms of the license) we append the license and copyright
notice to the top of the file.

https://paperswithcode.com/trends
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/DLR-RM/stable-baselines3/blob/9c338f917a822c8be13b1aa9f7b2319770481b62/stable_baselines3/ppo/ppo.py
https://github.com/DLR-RM/stable-baselines3/blob/9c338f917a822c8be13b1aa9f7b2319770481b62/stable_baselines3/ppo/ppo.py
https://opensource.org/license/mit/
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While developing this project, the author also contributed to the open-source community, push-
ing a pull request to the Python library for Weights and Biases (a tool for visualising and
tracking ML experiments). This PR fixed a very subtle, year-old bug in its mechanism for
synchronising TensorBoard event logs: while the fix is simple, the bug was non-trivial to find,
requiring very careful debugging and introspection of multithreaded code.

Testing strategy. Our development methodology included the continuous writing of over 100
per-component, system-wide and regression tests. In order to reduce the incidental complexity
of writing tests, we used the expect test pattern [Somers, 2023], implemented through the
Python expecttest library: instead of manually writing our expected output, we simply run
the test case whose output we wish to capture, and the testing engine will automatically update
the expected output of our test case with that output. Alongside significantly reducing the
overhead of testing code that manipulates complex data structures (which is very prevalent in
the MDARF), this pattern even enabled us to write regression tests for ML models, by setting
our expected output to be the output of our model when randomly initialised and given a
random input.

Code style and documentation. In order to ensure a consistent code style, we used the
black formatter to auto-format our repository. And, while we made use of Python docstrings
to document our code, we also used advanced Python type hints to make the type signatures
of our functions as informative as possible. In particular, we used the jaxtyping library to
type-annotate our tensors, letting us (for instance) write the signature of a function Rb⇥n⇥h !
Rb⇥h as Float[Tensor, "b n h"] -> Float[Tensor, "b h"]. While these tensor types can
optionally be dynamically checked at runtime, they form a useful, consistent secondary notation
to help us keep track of how our functions transform their input and output tensors.5

Hardware, version control and backup. We ran all experiments on the ampere cluster of
the Cambridge Service for Data Driven Discovery (CSD3),6 with 2x AMD EPYC 7763 64-Core
Processor 1.8GHz (128 cores in total), 1000GiB RAM and 1x NVIDIA A100-SXM-80GB GPU.
We used GitHub for version control (with a total of more than 160 commits), and backed up
all experimental results on Google Drive.

Reproducibility, logging and tracking. To ensure our experiments are reproducible, for each
run we saved not only the random seeds used for dataset generation and model initialisation,
but also the full configuration for each model, all experimental hyperparameters, and a full
dump of the entire codebase.7 Experimental results were logged to both TensorBoard and
Weights & Biases, with experiment metadata stored locally in a Google Sheet to keep track of
the status of pending runs.

§2.5 Starting point
Concepts. Although the author has some prior experience with machine learning, they had
no prior experience implementing neural algorithmic reasoners in PyTorch, and no background
in reinforcement learning.

5We note, though, that we try to keep as much tensor manipulation as possible under the hood, as a large
part of the aim of the MDARF is to minimise the amount of time developers need to spend thinking about
raw tensors.

6The CSD3 is operated by the University of Cambridge Research Computing Service, provided by Dell EMC
and Intel using Tier-2 funding from the Engineering and Physical Sciences Research Council (capital grant
EP/T022159/1), and DiRAC funding from the Science and Technology Facilities Council.

7Note that, while saving the entire codebase with every run may seem wasteful, its size is insignificant compared
to that of the model checkpoints saved with each run – and the author has learned from personal experience
the frustration of trawling through code history a few months later to piece together the model used for a
particular run.

https://github.com/wandb/wandb
https://wandb.ai/
https://pypi.org/project/expecttest/
https://pypi.org/project/black/
https://pypi.org/project/jaxtyping/
www.csd3.cam.ac.uk
www.dirac.ac.uk
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Tools and code. While the VI-Implicit-Planner was built on top of the Stable Baselines
3 framework for reinforcement learning [Raffin et al., 2021], the MDARF and the rest of the
benchmarks were built on top of vanilla PyTorch, with some use of PyTorch Lightning [Falcon
and The PyTorch Lightning team, 2019] wrappers in order to orchestrate training pipelines.

Prior implementations. While the author referenced the codebases of prior work (such as
that of the CLRSF [Veličković et al., 2022] and the XLVIN reproduction of He [2022]) in
order to confirm implementation details for the purposes of reproducibility, all frameworks
and benchmarks were implemented from scratch (and indeed, often ended up shorter than the
relevant official codebase).
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3 Implementation

Now that we’ve conducted our requirements analysis, in this chapter we explore the design
(Section 3.1) and implementation (Section 3.2) of our multi-domain algorithmic reasoning
framework (MDARF), which evolved into a framework for multi-domain, typed, declarative
ML. We also discuss the construction of a CLRSF-style encode-process-decode (EPD)
pipeline on top of our MDARF (Section 3.4), which we can use to train step-level, graph-
based NAPs. Finally, we give an overview of our repository structure (Section 3.5).

§3.1 Design goal: neural algorithmic reasoners à la carte
Before we dive into the high-level design of our framework, we briefly reflect on the design
considerations that brought us there.

§3.1.1 Perspective: the CLRSF as a restrictive framework for declarative
ML

Considering the tradeoffs of the CLRSF from Section 2.3, we notice that most of its ease-of-use
comes from its declarativity (as illustrated in Figure 3.1). By contrast, most of its limitations in
Section 2.2.2, such as the inflexibility of its training pipeline and its lack of extensibility to non-
graph-based algorithms, are ultimately a consequence of the restrictiveness of its declarative
specification language.

1 SPECS = types.MappingProxyType({
2 ...
3 'bellman_ford': {
4 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR),
5 's': (Stage.INPUT, Location.NODE, Type.MASK_ONE),
6 'A': (Stage.INPUT, Location.EDGE, Type.SCALAR),
7 'adj': (Stage.INPUT, Location.EDGE, Type.MASK),
8 'pi': (Stage.OUTPUT, Location.NODE, Type.POINTER),
9 'pi_h': (Stage.HINT, Location.NODE, Type.POINTER),

10 'd': (Stage.HINT, Location.NODE, Type.SCALAR),
11 'msk': (Stage.HINT, Location.NODE, Type.MASK)
12 },
13 ...
14 })

Figure 3.1: An example algorithmic specification (for the input, hint and output types of
Bellman-Ford) from the CLRSF [Veličković et al., 2022]. The first line of this spec-
ification states that each node in the input graph carries a scalar variable named
pos (i.e. a positional encoding / ‘node index’). By simply specifying the input,
hint and output types of our algorithm A (alongside a mechanism for generating
algorithmic traces), the CLRSF will automatically build a training pipeline for A-
NAPs, complete with encoders and decoders mapping between these types and the
space of latent graphs G[N , E ]
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Indeed, as the ‘essence’ of the CLRS pipeline – the encoding of a complex data type into
some latent state, the repeated application of a processor network to this latent state, and
the decoding of these intermediate latent states to other complex data types – is actually
very general, we could implement a more flexible CLRSF by delegating the work of building
declarative encoders and decoders between complex types and latent spaces to a more general
framework for declarative ML, and implementing a CLRSF-style pipeline as a thin wrapper on
top of it.

§3.1.2 Prior work: the Ludwig framework for typed, declarative ML
Now, the main prior work in the space of declarative ML is Uber’s Ludwig [Molino et al., 2019],
a general framework centred around the abstractions of data types and declarative configuration
files. Specifically, Molino et al. [2019] observe that, just like in the CLRSF pipeline, many ML
models can be decomposed into an encoder lifting input values to latent states, a combiner
merging and transforming these latent states, and a decoder projecting output values from
latent states. As such, their framework allows inexperienced users to build such encode-process-
decode (EPD) pipelines without writing any code, by simply specifying a YAML configuration
file (as in Figure 3.2) with the types they wish to map between and the particular network
architectures they wish to use for each map.

1 {input_features: [
2 {name: title, type: text, encoder: rnn},
3 {name: body, type: text, encoder: stacked_cnn}],
4 combiner: {type: concat, num_fc_layers: 2},
5 output_features: [
6 {name: class, type: category},
7 {name: tags, type: set}]}

Figure 3.2: An example model definition for the Ludwig framework, inspired by examples in
[Molino et al., 2019]. This definition describes a model taking two textual in-
puts, encoding them each to single latent states, combining these latent states by
concatenating them and passing them through a 2-layer MLP, and projecting out
categorical and subset outputs from the combined latent state.

§3.1.3 Designing the MDARF as a Pythonic framework for typed,
declarative ML

So, if Ludwig is already a framework for typed, declarative ML, can’t we just use it as our
MDARF? Unfortunately, not only does it not (yet) support key compound datatypes like graphs,
its level of abstraction is too high for our purpose. Specifically, as Ludwig does not target ML
researchers, it optimises for ease-of-use in the common case at the cost of expressivity and
flexibility : users cannot easily modify, compose or introspect on the generated pipeline in
Python.

As such, the design of our MDARF combines the simplicity of declarative specifications with
the flexibility of PyTorch: while the structure of our framework is heavily inspired by Ludwig’s
paradigm, we allow users to declaratively specify high-level, typed encoders, processors and
decoders, and compose these as native PyTorch modules within Python itself (as illustrated in
Figure 3.3). We then implement a CLRSF-like EPD pipeline as a thin wrapper on top of this
framework.
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1 @build_enc_dec(LatentSingle)
2 class InputFeatures(BatchableDataclass):
3 title: Text
4 body: Text
5

6 encoder = build(default_encoder_config(InputFeatures,
LatentSingleDims(hidden=128)),!

7

8 def model(input):
9 features = encoder(input)

10 ...

Figure 3.3: A (stylised) model definition for our MDARF. This definition describes (part of)
a model that takes two textual inputs and encodes / combines them into a single
latent state.

§3.2 A high-level overview of the MDARF
So, now that we’ve motivated the design of the MDARF, we present a high-level overview of
its main features, and briefly discuss how they satisfy our desiderata from Section 2.3.

Object-oriented primitive and compound feature types. In the MDARF, tensors represent-
ing features of a given type (e.g. a batch of scalars) are encapsulated within a class that
handles transformations relevant to that feature type, such as batching, pre-processing
and computing losses. As such, the MDARF supports a range of primitive feature
types such as scalars and categoricals, alongside a range of compound feature types
such as records {l1 : T1; ...; ln : Tn} and graphs G[TN , TE]. New primitive or compound
types (e.g. an ‘image’ type) can easily be added by implementing the relevant interface.
For ease of dataset generation, all feature types in the MDARF support random sam-
plers, either specified by the user (for primitive types), or automatically derived (for
compound types).

Desiderata satisfied: Modularity, Extensibility

Compositional, auto-generated maps between feature and latent-space types. The MDARF
supports a range of latent-space types, such as representations R and latent graphs
G[N , E ]. If provided with a compound feature type (e.g. a graph with categorical node
features and scalar edge features) and a compatible latent type (e.g. a latent graph
G[N , E ]), the MDARF can automatically derive an encoder and decoder mapping
between the datatype and the latent. Alternatively, the user can implement their own.

Desiderata satisfied: Modularity, Extensibility, Composability

Easy pipeline construction from typed processors and combiners. The MDARF also sup-
ports a range of processors (learnable functions between latent types) and combiners
(transformations, like sum and concat, that let us combine latent states). We can thus
build NAR pipelines (like that of the CLRSF) at a high level of abstraction, by simply
composing these encoders, processors, combiners and decoders as standard
PyTorch modules.

Desideratum satisfied: Composability

Rich defaults with deep customisability through staged configuration. While the MDARF
has rich support for defaults, all types, encoders, processors, combiners, decoders and
samplers built within it are deeply configurable and extensible. In particular, we
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represent neural modules (from processors to even entire NAR pipelines) as hierarchical
structures of composite classes. As such, through the power of defunctionalised
configuration (backed by Google’s Fiddle library [Saeta and Loper, 2022]), we can auto-
matically generate default modules for a particular specification of input and output
types, while having the freedom to easily modify and customise any level of their structure
within Python itself.

Desideratum satisfied: Configurability

A modular object-oriented framework, implemented in PyTorch. Finally, all the components
described above are implemented as statically-typed Python objects and functions.
In particular, every type of component – from types to latents to samplers – is imple-
mented to a specific abstract interface: this offers great flexibility, as we can replace
any component with our own implementation, so long as it satisfies the relevant interface.
Note also that the framework as a whole is built upon PyTorch [Paszke et al., 2019],
a widely-used ML library familiar to most academic researchers.

Desiderata satisfied: Compatibility, Extensibility

§3.3 Building the framework: a closer look at the MDARF
Given this high-level overview, let’s take a closer look at the implementation of each of the
MDARF’s core components (as presented in Figure 3.4). While we can (and will) deploy the
MDARF on complex algorithmic tasks, to keep things simple we’ll explore our pipeline through
the lens of the following toy problem:

Problem: neighbourhood statistics
Suppose we have some graph G, whose nodes have some colour (red, green or blue), and
whose edges have both a colour and a weight. Train a graph neural network that takes
graphs G as input, and computes, for every vertex v 2 G,

• the sum of the weights of all in-edges u! v with the same colour as v,

• and the most common colour of neighbouring edges.

§3.3.1 Representing data: feature types and batching
Let’s begin our exploration of the MDARF by understanding the way in which it handles the
representation and preprocessing of feature types.

Feature types. In the MDARF, a feature is any datum that can in principle be batched and
encoded to some arbitrary latent space – i.e. any class implementing the Batchable interface.

The MDARF supports a range of primitive feature types, such as scalar and categorical
values (which encode to latent representations R), and graph node pointers (which encode to
latent graphs G[N , E ]). The MDARF also supports a range of compound feature types,
including

• A graph type, implemented as a generic class Graph[NodeT, EdgeT, FeatureT, StructuralT]
and encoding to a latent graph with graph-level features G[N , E ] ⇥ F . Instances of this
class represent graphs carrying features NodeT (encoding to N ) on their nodes, features
EdgeT (encoding to E) on their edges, ‘graph-level’ features FeatureT (encoding to F),
and ‘structural’ features StructuralT (encoding to G[N , E ] – e.g. node pointers).1

1Tradeoff: structural features. As we’ll see later on, ideally encoders for compound feature types should be
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An overview of the MDARF

Latent states Latent states

Batched input features Batched (hard)
output features

Batched (soft)
output features

Features Losses and metrics

RNG
Staged configuration & type-
driven defaults (Section 3.3.2)

Sampling (Section 3.3.3)

Batching (Section 3.3.1)

Encoders (Section 3.3.3)

Processors &
combiners

(Section 3.3.4)

Decoders (Section 3.3.3)

Evaluation (Section 3.3.5)

Figure 3.4: An overview of the interactions between the components of the MDARF.

• Functionality for building batchable dataclasses (i.e. record feature types) – dataclasses
whose fields subclass Batchable, which inherit all the functionality of regular feature
types. To build one, one simply defines a dataclass subclassing BatchableDataclass, as
illustrated in Figure 3.5.

For ease of generating algorithmic inputs, each feature type stores a single datum of the relevant
feature (as opposed to a batch). We illustrate the relevant feature types for our toy problem in
Figure 3.5.

Batching and preprocessing. Now, in order to do anything interesting with our features, we
must first batch and preprocess them into a form suitable for ingestion by a neural network. In
a typical ML pipeline, a given batched feature will typically be pre- and post-processed through
three different representations:

• Hard: The raw, potentially discrete-valued representation of our feature (typically the
representation in which it is stored in the dataset).

Example: For a categorical variable in {1, ..., n}, a batch of indices [1,2,...]

• Soft input: A pre-processed, continuous-valued representation of our feature that we can
pass directly to our encoder.

Example: For a categorical variable in {1, ..., n}, a batch of per-class probability distri-
butions [[0.9,0.1,...],[0.2,0.7,...],...]

compositional : in other words, the encoder of some graph type G[N,E] should be built from the encoders
for types N and E. Unfortunately, the CLRSF contains a number of features living on graphs, such as
node masks and node pointers, which, when encoded, modify both the nodes and the edges of the latent
graph. As such, we make the tradeoff to treat them separately, even if they are semantically a node or an
edge feature: while this makes the framework slightly more awkward from the user-facing perspective, it
substantially reduces implementation complexity.
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1 class Colour(Enum):
2 red = 0; green = 1; blue = 2
3

4 @build_enc_dec_and_sampler(LatentSingle)
5 @dataclass
6 class EdgeData(BatchableDataclass):
7 colour: Categorical[Colour]
8 weight: Scalar
9

10 @build_enc_dec_and_sampler(LatentSingle)
11 @dataclass
12 class OutputData(BatchableDataclass):
13 most_common_colour: Categorical[Colour]
14 matching_weight_sum: Scalar
15

16 InputGraph = Graph[Categorical[Colour], EdgeData, Empty, Empty]
17 OutputGraph = Graph[OutputData, Empty, Empty, Empty]
18

19 example_graph: InputGraph = Graph(
20 nodes=[Categorical(Colour.red), ...],
21 edges=[[EdgeData(colour=Categorical(Colour.red), weight=Scalar(0.6)), ...],

...],,!

22 features=Empty(), pointers=Empty())

Figure 3.5: An illustration of the feature types for our toy problem. We define our input graph
type to store a categorical variable (representing colour) on each node, and an
instance of the EdgeData dataclass on each edge. Our output graph type stores an
instance of the OutputData dataclass on each node. Note that both graphs have
neither graph-level features nor structural features.

• Soft output: A continuous-valued representation of our feature produced by our decoder.2

Example: For a categorical variable in {1, ..., n}, a batch of per-class logits [[1.1,-1.0,
...],[-0.4,0.8,...],...]

As each of these representations should be treated differently, we opt to distinguish between them
at type-level, with batched representations of feature types T subclassing either Batched[T,
Hard], Batched[T, SoftInput] or Batched[T, SoftOutput] as appropriate.

This lets us write interfaces specifying functions over batched types that are polymorphic in the
underlying type being batched – for instance,

1 def loss(
2 pred: Batched[T, SoftOutput], target: Batched[T, Hard]
3 ) -> MaskedTensorTree:
4 ...

For each family Batched[T, EncodingT] of batched feature types for T, we provide ways to
instantiate batched feature types from lists of Ts, to convert between representations, and
to compute losses and evaluation metrics between predictions Batched[T, SoftOutput] and
ground-truth values Batched[T, Hard]. Finally, noting that our batched feature types are

2Note that, in order to allow the factoring of latent states through feature values as in [Ibarz et al., 2022], there
should ideally exist a (differentiable) map from this representation to our soft input representation.
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tensor containers – tree-based, hierarchical structures of tensors – we provide a principled
set of structural transformations we can apply to them, such as methods to stack, split and
reshape the tensors within them.3

§3.3.2 Building modules: staged configuration and type-driven defaults
So, now we have our feature types, to make progress on our toy problem we must be able to
randomly generate input features, and then lift them to latent space. To do so, we must build
modules, such as samplers, encoders and decoders, for our feature types.

Type-driven defaults. Recall that, as we’ve introduced compound type constructors, our fea-
ture types may be arbitrarily large and complex, making the manual specification of these
modules far too cumbersome to be practical. As such, the MDARF allows for the automatic,
type-driven generation of compositional modules for compound types, using the registry pattern
[Fowler et al., 2002] to allow users to register default module factories for a given type (or pair
of types). Note that, as the default samplers / encoders / decoders for compound types are
typically compositional (e.g. a sampler for G[N,E] can be built from samplers for N and for
E), so long as we register default module implementations for each primitive type, we can build
principled defaults for compound types by recursion on the structure of the compound type.

Staged configuration for auto-generated modules. As these default modules have many
parameters we may wish to configure (e.g. the sampling distribution used, or the particular
submodules used to generate encoders for batchable dataclasses), these module factories return
staged configuration trees, backed by Google’s Fiddle configuration framework [Saeta and
Loper, 2022]. As these configuration trees are abstract syntax trees representing nested applica-
tions of constructors (Figure 3.6), we can modify the arguments of our module (or submodule)
constructors as required, before building the tree to obtain the module itself.

1 >>> from fiddle import Config, build
2 >>> @dataclass
3 ... class List:
4 ... hd: int
5 ... tl: NoneType | "List"
6 ...
7 >>> conf = Config(List, hd=1, tl=Config(List, hd=2, tl=None))
8 >>> conf.tl.hd = 3
9 >>> build(conf)

10 List(hd=1, tl=List(hd=3, tl=None))

(a) We illustrate how a nested structure can be staged, modified and subse-
quently built.

(b) Rendered config
tree for conf

Figure 3.6: Example usage of the Fiddle configuration framework.

3An aside on TensorDict. When writing this report, the author discovered the TensorDict library [Moens,
2023]. This now-popular library provides wrappers and decorators to build dictionaries and dataclasses of
tensors supporting similar structural transformations to those we implemented for batched feature types.
Unfortunately, this library did not exist when the project was started in 2022; were the author to have
restarted this project in 2023, they would have built the core datatypes of the MDARF around this library
instead of reimplementing its functionality from scratch.
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§3.3.3 Using feature types: samplers, latent spaces, encoders and
decoders

So, now we’ve seen how to build modules from feature types, let’s take a look at how we use
modules to sample, encode and decode feature types.

Samplers. For the purposes of NAR, we will find it helpful to be able to randomly generate
instances of the complex feature types we use in our networks. As such, the MDARF provides
functionality for building sampler modules Sampler[T], that act as wrapped generators for
features of type T. In order to allow for deterministic generation of datasets, all randomness
within each sampler is provided by a NumPy random number generator passed in as an argu-
ment.

The MDARF comes with default samplers for each primitive type (e.g. a discrete uniform
sampler for categoricals), along with composite samplers for compound types: the default
graph sampler for graphs G[N,E], for instance, is built by sampling a graph structure from the
default adjacency matrix sampler (here, a sampler for Erdős-Renyi graphs [Erdös and Rényi,
1959]) and populating its nodes and edges through the default samplers for types N and E
respectively. Note that, if we desire the use of a custom sampler for nodes or edges, we can
simply modify the default configuration tree to include our custom sampler (an example of the
strategy pattern [Gamma et al., 1994]). For illustration, we demonstrate the construction of
samplers for our toy problem in Figure 3.7.

Latent states. Once we’ve generated our input features, we’re ready to lift them to latent
states. In a similar way to feature types, these are represented as tensor containers – tree-
based, hierarchical structures of tensors – and are equipped with appropriate methods for
structural transformation. Driven by the goal of reproducing work in graph-based NAR, the
MDARF currently supports latent representations R (as instances of LatentSingle) and latent
graphs G[N , E ] (as instances of LatentGraph), and is easily extensible to a wider range of latent
spaces.

Encoders and decoders. Given an arbitrary feature type T and a latent space L, the MDARF
supports the construction of learnable encoders T ! L and decoders L ! T . As these
encoders should in spirit ‘do no useful work’ beyond simply changing the structural represen-
tation of our data [Veličković et al., 2022], our default encoders are linear maps. As before,
the MDARF comes with default encoders for each primitive type (e.g. a linear map lifting
a scalar to a latent representation), and supports the automatic derivation of maps between
compound feature types and latent spaces by recursion on the structure of the compound type.
For illustration, we demonstrate the construction of encoders and decoders for our toy problem
in Figure 3.8.

§3.3.4 Latent-space transformations: processors and combiners
So, now that we can generate features, and map between feature types and latent spaces, let’s
take a brief look at the transformations we can apply to our latent states themselves.

These are roughly split into two categories: combiners (non-parameterised aggregation func-
tions, such as summation or concatenation, that can merge arbitrarily many latent states of the
same type into a single latent state) and processors (learnable functions performing computa-
tions on latent states). While combiners satisfy a light interface to allow for easy ‘plug-and-play’
usage in the automatic derivation of encoders, a processor is simply any PyTorch nn.Module
mapping between appropriate latent states.

In Figure 3.9, we use one of our default processors to demonstrate how, using the encoders and
decoders we built earlier, we can pass our feature inputs through an end-to-end neural pipeline.
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1 >>> rng = np.random.default_rng()
2 >>> sampler_config = default_sampler_config(InputGraph)
3 >>> sampler = build(sampler_config)
4 >>> sampled_batch: Batched[InputGraph, Hard] = sampler.batch(rng, 10)

(a) To randomly sample InputGraphs, we simply build a default sampler.

(b) A rendering of the configuration tree for sampler_config. Note that the default graph generator
produces directed Erdős-Renyi graphs G(n, p), with n = 16 and p sampled uniformly at random
from [0.0, 0.1, ..., 1.0] as per [Ibarz et al., 2022].

Figure 3.7: Generating random samples of our InputGraph feature type.

§3.3.5 Evaluating performance: losses and metrics
Finally, once we’ve passed our input features through our pipeline and obtained our (soft)
output, the only thing left to do is to compute the loss (and other performance metrics)
between our output and the ground truth.

Now, computing metrics between complex compound types is non-trivial, as not only must
we build a structure storing all the losses for each of the primitive types that make up the
compound type, but we must also be able to perform reductions on these structures (e.g. av-
eraging over a batch dimension, or combining all the losses from primitive types into a single
value). Furthermore, as (for our EPD pipeline) we introduce a compound type representing a
variable-length trajectory, we must handle the complication of masked tensors introduced by
the batching of variable-length sequences.

We satisfy these requirements by introducing masked tensor trees: wrapped trees built
from Python containers (e.g. dictionaries and lists), for which every leaf is a masked tensor
(i.e. a wrapped tensor with an associated Boolean mask, together with various functions for e.g.
averaging along dimensions while respecting the mask). These tensor trees support methods for
reshaping, stacking and averaging, along with a generalised reduce function for folding the tree
structure into a single value. As such, when we take the loss (or any other performance metric)
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1 >>> latent_dims = LatentGraphDims(hidden_node=16, hidden_edge=16,
hidden_feature=16),!

2 >>> encoder = build(default_encoder_config(InputGraph, latent_dims))
3 >>> decoder = build(default_decoder_config(latent_dims, OutputGraph))
4 >>> encoder
5 GraphEncoder(
6 (node_encoder): LinearEncoder(
7 (linear): Linear(in_features=3, out_features=16, bias=True)
8 )
9 (edge_encoder): BatchableDataclassEncoder(

10 (colour): LinearEncoder(
11 (linear): Linear(in_features=3, out_features=16, bias=True)
12 )
13 (weight): LinearEncoder(
14 (linear): Linear(in_features=1, out_features=16, bias=True)
15 )
16 )
17 (feature_encoder): EmptyEncoder()
18 (pointer_encoder): EmptyEncoder()
19 )

Figure 3.8: Building encoders and decoders between our InputGraph / OutputGraph feature
types, and a LatentGraph of hidden dimension 16. Observe that our encoders and
decoders are simply standard PyTorch modules.

1 >>> processor = build(MPNN.default_config(latent_dims, latent_dims))
2 >>> input_graph: Batched[InputGraph, SoftInput] =

sampled_batch.hard_to_soft_input(),!

3 >>> latent_input: LatentGraph = encoder(input_graph)
4 >>> latent_output: LatentGraph = processor(latent_input)
5 >>> output_graph: Batched[OutputGraph, SoftOutput] = decoder(latent_output)

Figure 3.9: Generating a message-passing neural network (MPNN) [Gilmer et al., 2017] proces-
sor, mapping from a latent graph with dimensions latent_dims to a latent graph
with dimensions latent_dims, and building a simple EPD pipeline. Note that type
annotations are added for clarity only, and aren’t required when using the library.

between two instances y, ŷ of the same feature type with the same structure, the MDARF will
recurse through these structures, taking the (elementwise) metric between each matching pair
of primitive features, and returning a masked tensor tree with these metrics as its leaves (as in
Figure 3.10).

§3.3.6 Example: using the MDARF beyond algorithmic reasoning
Before we conclude our discussion on the MDARF proper, we note that, although (for reasons
of time and scoping) we only implemented support for constructs relevant to NAR, the MDARF
is easily extensible for use beyond this context. As an example, we illustrate (in Figure 3.11)
how one might use the MDARF to solve the multimodal text / image classification problem
of predicting various properties of a piece of clothing (e.g. its style and market price) from an
image and a product description.
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1 >>> output_graph: Batched[OutputGraph, SoftOutput] = ... # batch of 10 graphs
2 >>> ground_truth: Batched[OutputGraph, Hard] = ... # batch of 10 graphs
3 >>> tree_losses = output_pred.loss(ground_truth_output)
4 >>> tree_losses.shape
5 MaskedTensorTree(data={
6 'nodes': {'most_common_colour': Size((10,)), 'matching_weight_sum':

Size((10,))},,!

7 'edges': None, 'features': None, 'pointers': None
8 })
9 >>> (tree_losses.reduce() # folds over tree (averaging by default)

10 ... .avg().data) # averages over batch dimension
11 tensor(0.4515, grad_fn=<WhereBackward0>)

Figure 3.10: Computing the loss between predicted and ground-truth output graphs in our toy
problem. Notice that, by default, our loss function returns a tree of per-batch-
element, per-feature losses, respecting the structure of our OutputGraph.

1 class Style(Enum):
2 casual = 0; formal = 1; sportswear = 2; ...
3

4 @build_enc_dec(LatentSingle)
5 class ProductData(BatchableDataclass):
6 image: Image; description: Text
7

8 @build_enc_dec(LatentSingle)
9 class ProductProperties(BatchableDataclass):

10 style: Categorical[Style]; price: Scalar
11

12 latent_dims = LatentSingleDims(hidden=128)
13 encoder = fdl.build(default_encoder_config(ProductData, latent_dims))
14 decoder = fdl.build(default_decoder_config(latent_dims, ProductProperties))
15

16 input_data: Batched[ProductData, SoftInput] = ...
17 latent: LatentSingle = encoder(input_data)
18 output_data: Batched[ProductProperties, SoftOutput] = decoder(latent)

Figure 3.11: A sample implementation of an inference pipeline for the clothing classification
problem in the MDARF. We assume we have the relevant input data batched in
the correct format, and stored in input_data. We assume our MDARF is ex-
tended with support for a Sequence[T] and LatentSequence type (with a proces-
sor LatentSequence -> LatentSingle such as an encoder-only transformer), a
type alias Text := Sequence[Categorical], and an Image type (with an encoder
of type Image -> LatentSingle, such as a CNN).

§3.4 An encode-process-decode pipeline for step-level NAPs
So, up until now, everything has been very general. In fact, what we’ve really built is a
compositional, typed, declarative way to automatically map complex datatypes to and from latent
spaces, which can help us implement both step-level and algorithm-level NAPs. But recall from
Section 2.2.1 that, for our investigation, we want to use our MDARF to build an end-to-end
encode-process-decode (EPD) pipeline for training step-level NAPs in the style of the
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CLRSF, which we can then use in our benchmark environments.

Now, while a number of recent works [Veličković et al., 2022, Deac et al., 2021, Numeroso et al.,
2023] explore EPD pipelines in the context of NAR, the structure of these pipelines can vary
substantially between implementations – and various preliminary experiments indicate that
even slight differences in EPD pipeline structure can have substantial effects on performance.
As such, in Section 3.4.1, we attempt to derive the structure of an ‘ideal’ EPD pipeline from first
principles using the paradigm of representations-as-types [Olah, 2015] – and, in Section 3.4.2,
we discuss how our theoretically-motivated design avoids a scalar bottleneck present in the EPD
pipeline of the CLRSF. Finally, in Section 3.4.3, we outline the implementation of this design
as a wrapper on top of our MDARF core.

§3.4.1 Deriving an EPD pipeline
A general model for algorithms. To build an EPD pipeline, we must first come up with
a general way to decompose algorithms into individual steps. For maximal flexibility (e.g. to
support online algorithms [Veličković et al., 2020a]), we consider algorithms to be functions A
mapping lists of input [x1, ..., xn] : List[I] to lists of output [y1, ..., yn] : List[O], such that, at
every time-step t, they ingest a new input xt (which may be ;), and return a new output yt
(which may be ;).

Observe that these algorithms a :: [Input] -> [Output] can be decomposed in terms of a
program state space State, an executor e :: (State, Input) -> State, an initial program
state s0 :: State, and an output projection function pi_y :: State -> Output, as

1 scanl :: ((a, b) -> a) -> a -> [b] -> a
2 scanl f s [x1, x2, ...] = [s, f(s,x1), f(f(s,x1),x2), ...]
3

4 a' :: [Input] -> [Output]
5 a' xs = map pi_y states
6 where states = scanl e s0 xs

In other words, given a sequence of inputs [x1, ..., xn], we scan our executor down this list of
inputs, yielding a sequence [s1, ..., sn] of per-step program states, from which we can project
per-step outputs. We refer to this representation as the stepwise form of A, and illustrate its
data-flow in Figure 3.12.

y1 y2 yn

s0 E s1 E s2 ... E sn

x1 x2 xn

⇡y ⇡y ⇡y

Figure 3.12: A data-flow diagram for the scanning decomposition of A, applied to input
[x1, ..., xn] with initial state s0, and returning output [y1, ..., yn].

Building our NAP. So, given a stepwise-decomposed algorithm a :: [Input] -> [Output],
how do we neuralise it (i.e. turn it into a step-level NAP)? Now, rather than neuralising a
directly, we will instead neuralise the following function mapping our list of inputs to our list
of program states:
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1 a_states :: [Input] -> [State]
2 a_states xs = scanl e s0 xs

Observe that, as ⇡y ‘does no work’ (i.e. only projects the output value from each state), the
NAP obtained by neuralising a_states is at least as powerful as that obtained by neuralising
a’.

So, drawing on the idea of representations-as-types (Appendix A), the natural way to neuralise
a_states is to simply lift e and s0 to latent space. Specifically, given latent spaces InputL and
StateL, a learnable parameter s0_hat :: Learnable StateL, and some learnable processor
function p :: Learnable ((StateL, InputL) -> StateL), we have

1 nap :: Learnable ([InputL] -> [StateL])
2 nap xs_hat = scanl p s0_hat xs_hat

Training our NAP (in principle). Now, how do we train this NAP? Recall from Section 2.1.1
that NAPs Â : X ! Y imitating A : X ! Y should be trained such that decY � Â � encX ⇡ A
(i.e. we should be able to recover A(x) 2 Y from Â(enc(x)) 2 Y). Thus, the most obvious way to
train nap :: Learnable ([InputL] -> [StateL]) to imitate a' :: [Input] -> [State]
would simply be to ensure the following diagram commutes (for suitable encoders and decoders
enc :: Input -> InputL and dec :: StateL -> State):

List[I] List[S]

List[I] List[S]A

Â

map enc map dec

In practice, this property can be enforced as illustrated in Figure 3.13.

Training our NAP (in practice).
Now, observe that the training conditions above enforce that our complete program states st
can be recovered in their entirety from our latent representations ŝt. As these states can be
quite complex, in practice we enforce a slightly weaker condition: we simply ensure that we
can extract some meaningful subset of our program state from our latent representations.

For our algorithm A in stepwise-decomposed form, we define a projection function ⇡h : S ! H,
that for any state st, extracts a per-step algorithmic hint – i.e. some subset of st that
we wish to be able to recover from our latent states ŝt. And, given these hints ht = ⇡h(st),
we ensure that, from any latent state ŝt, we can recover both our per-step hint ht and our
per-step output ot. More precisely, we ensure the following diagram commutes, for decoders
dech : S ! H and decy : S ! O:

List[I] List[S]

List[H] List[O]

List[I] List[S]A

Â

map enc

map dech

map ⇡h map ⇡y

map decy
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ŝ0 P ŝ1 P ŝ2 ...

în1 în2

s0 E s1 E s2 ...

x1 x2

encx encx

decs decs

1 wrapped_nap :: Learnable ([Input] -> [State])
2 wrapped_nap inputs = map dec_s (nap (map enc_in xs))
3

4 forall xs :: [Input]. algorithm inputs == wrapped_nap inputs

Figure 3.13: A data-flow diagram illustrating the ‘ideal’ training procedure for our NAP, given
an input [x1, ..., xn] and initial states s0 2 S, ŝ0 2 S. We train our network on
sequences of random inputs [x1, ..., xn] 2 List[I] such that ‘all ways of computing
blue variables yield equal results’ – in other words, for all blue variables, we min-
imise (some appropriate) loss between the values on each of the incoming arrows.

So, to train our NAPs, we enforce this diagram in the obvious way, but with one small mod-
ification: in order to avoid our processor having to represent data in its latent state that are
already carried by the input, we adapt dech and decy to map not from S, but rather from S⇥I.
We present the full training data-flow for this modified EPD pipeline in Figure 3.14.

§3.4.2 Comparing our pipeline to the CLRSF: avoiding the scalar
bottleneck

So, now that we’ve derived a principled EPD pipeline, let’s see how it compares to what’s used
in practice: specifically, the CLRSF pipeline, whose dataflow we sketch in Figure 3.15.

Now, the main difference between these pipelines is that, unlike the EPD, the CLRSF’s pro-
cessor P takes at every step not only the previous latent state ŝt�1 and the current encoded
input x̂t, but also a re-encoded version of the previous hint ht�1 = dech(ŝt�1, x̂t�1). In other
words, instead of passing our latent state directly to the processor, we first factor it through
a scalar bottleneck. While re-encoding hints in this way may provide a stronger inductive bias
towards learning relevant algorithmic representations, we argue that by not including this scalar
bottleneck (SB), our EPD pipeline is not only more suitable for NAR, but is likely to perform
better in the abstract domain:

The SB defeats the (claimed) purpose of NAR. Recall from Section 2.1.2 that the funda-
mental claim of NAR is that NAPs outperform sDABs by alleviating their scalar bottle-
neck. As such, if this claim holds, this scalar bottleneck should reduce the maximum
performance of our NAPs.4

4One may argue that this scalar bottleneck shouldn’t be an issue, as we pass it in alongside a ‘residual stream’
of latent states. But, especially given that the CLRSF trains by supervising on hints hi, our NAP will likely
learn to depend on the re-encoded versions of these hints alongside (or even in preference to) the latent
states flowing down the residual stream – and, given that (at least in recent work) NAPs are deployed in
real-world problems with frozen weights, this effect amounts to a scalar bottleneck in the NAP.
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ŝ0 P ŝ1 P ŝ2 ...

x̂1 (ŝ1, x̂1) x̂2 (ŝ2, x̂2)

h1 y1 h2 y2

s0 E s1 E s2 ...

x1 (s1, x1) x2 (s2, x2)

encx encx
⇡y

decy decy

⇡y⇡h

dech dech

⇡h

1 wrapped_algorithm :: [Input] -> ([Hint], [Output])
2 wrapped_algorithm xs =
3 (map pi_h (zip xs states), map pi_y (zip xs states))
4 where states = scanl e s0 xs
5

6 wrapped_nap :: Learnable ([Input] -> ([Hint], [Output]))
7 wrapped_nap xs =
8 (map dec_h (zip xs_hat states_hat), map dec_y (zip xs_hat states_hat))
9 where xs_hat = map enc_x xs

10 states_hat = scanl p s0_hat xs_hat
11

12 forall xs :: [Input]. wrapped_algorithm xs == wrapped_nap xs

Figure 3.14: A data-flow diagram illustrating the training procedure for our NAP, given a (ran-
domly sampled) input [x1, ..., xn] and initial states s0 2 S, ŝ0 2 S. We refer to
wrapped_algorithm and wrapped_nap as the input-hint-output (IHO) forms
of A and Â respectively.

ĥ0 P ŝ1 ĥ1 P ... ŝn�1 ĥn�1 P ŝn

ŝ0 h1 hn�1

x̂1 x̂2 x̂n

dech ench dech ench

Figure 3.15: A sketch of the data-flow for the ‘latent space level’ of the CLRSF pipeline. Given
a series of (encoded) inputs [x̂1, ..., x̂n] 2 List[I] and initial states ŝ0 2 S, ĥ0 2 H,
it emits a series of latents [ŝ1, ..., ŝn] 2 S.

The SB leads to numerical instability during training. Furthermore, recent work [Ibarz et al.,
2022] notes that one of the main performance bottlenecks of the CLRSF pipeline is the
gradient instability brought about by factoring the latent state through a scalar space
every timestep.

The SB likely harms OOD performance in the abstract domain. Finally, as per Section 2.1.2,
introducing a scalar bottleneck could worsen performance out-of-distribution (in partic-
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ular, over long trajectories), by amplifying small mispredictions over the course of the
trajectory.

§3.4.3 Implementing the EPD pipeline
Given that we’ve designed our EPD pipeline, let’s consider how we implement it in our MDARF.We
give a high-level overview of the training process in Figure 3.16, and outline its steps in Ap-
pendix C. For illustration, in Appendix D, we demonstrate a complete training pipeline for a
Bellman-Ford NAP in just 38 lines of vanilla PyTorch (excluding imports).

Training NAPs with the EPD pipeline

Write A in IHO form;
specify algorithmic
types I,H,O and
latent spaces I,S

Implement a sampler
for inputs xs 2 List[I]

Specify the neural
processor P : S ⇥ I ! S

Generate a streaming
dataset DA with inputs
xs and labels A0(xs) 2
List[H] ⇥ List[O]

Using P , automatically
derive a wrapped

NAP Â : List[I] !
List[H] ⇥ List[O]

Train Â on dataset
DA, and evaluate
on held-out data

Extract a trained
NAP for A

Experimentation

Figure 3.16: A flowchart illustrating the process of training NAPs with the EPD pipeline to im-
itate some given algorithm, expressed (as in Figure 3.14) as a wrapped_algorithm
A : List[I]! List[H]⇥ List[O].
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§3.5 Repository overview
Besides using the libraries mentioned in Section 2.4 (and one exception5 mentioned in Ta-
ble 3.4), all source code was written from scratch. Our codebase consists of four Python
packages, corresponding to the four main components of the project: the mdarf package (Ta-
ble 3.1) containing the core MDARF and the EPD pipeline, the training_reasoners package
(Table 3.2) containing a training wrapper for NAPs built with the EPD pipeline, and our
benchmark implementations in xlvin (Table 3.3) and warcraft (Table 3.4). While the final
three packages are all independent of each other, they all depend on the mdarf.

File / folder Description Lines of code

values/ A sub-package containing feature types, handling batch-
ing, sampling, encoders and decoders.

3281

latents/ A sub-package containing latent types. 343
combiners/ A sub-package containing combiners for latent types. 96
processors/ A sub-package containing processors for latent types. 729
utils/ A utility sub-package handling testing, pretty-printing,

registries and some auxiliary tensor containers.
464

epd/ A sub-package implementing the EPD pipeline, contain-
ing trajectory and trace datatypes, the executor module
and implementations of various algorithms to train on.

1451

Table 3.1: Top-level directory structure for the mdarf package (6364 lines of code)

File / folder Description Lines of code

data.py A module containing a PyTorch Lightning wrapper for
MDARF feature-type datasets.

100

model.py A module containing a PyTorch Lightning wrapper for
the EPD executor network.

179

main.py A module handling a lightweight CLI for the PyTorch
Lightning training pipeline.

68

experiments/ A folder for tracking experiments (logs, checkpoints,
SLURM scripts).

n/a

Table 3.2: Top-level directory structure for the training_reasoners package (347 lines of code)

5In order to implement XLVIN, we needed to slightly adapt two files within the codebase of Stable Baselines 3
to make them more general. While we attempted to submit these small modifications as a pull request, this
was rejected for being too niche — despite another user having submitted a pull request for a functionally
equivalent feature a few months ago (which was also rejected for being too niche). As such, we simply
modified the files directly, and included the modified versions in our repository.
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File / folder Description Lines of code

policy.py A module implementing the XLVIN actor-critic network. 185
transe/ A sub-package containing the TransE encoder, alongside

a utility module for pre-training it (if desired).
205

utils/ Various utility modules, including some modified files
from Stable Baselines 3.

335

envs.py A module containing configuration parameters for various
OpenAI gym environments on which to evaluate XLVIN.

27

config.py A module containing a general configuration dataclass
used to recursively construct our XLVIN.

19

main.py A module handling a lightweight CLI for the PyTorch
Lightning training pipeline.

128

experiments/ A folder for tracking experiments (logs, checkpoints,
SLURM scripts).

n/a

Table 3.3: Top-level directory structure for the xlvin package (899 lines of code)

File / folder Description Lines of code

data/ A sub-package handling data processing for the Warcraft-
Shortest-Path-Tree dataset.

140

models/ A sub-package containing models, feature extractors and
algorithmic modules for building Warcraft-Net.

312

utils/ A module containing utilities for efficiently processing
and computing metrics over sparse graphs (some of which
we JIT-compile with numba).

603

config.py A module containing a general configuration dataclass
used to recursively construct our Warcraft-Net.

101

train.py A module handling a lightweight CLI for the PyTorch
Lightning training pipeline.

261

experiments/ A folder for tracking experiments (logs, checkpoints,
SLURM scripts).

n/a

Table 3.4: Top-level directory structure for the warcraft package (1417 lines of code)
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4 Evaluation

Now that we’ve implemented our MDARF, as per our project aims in Section 1.2, we seek both
to evaluate its correctness by comparing it against state-of-the-art reasoners (Section 4.1), and
to evaluate its utility for reproduction and research by using it to explore NAPs within the
context of algorithmic benchmarks (Sections 4.2–4.3).

§4.1 Evaluating correctness: training NAPs on the CLRS-30
benchmark

Before we explore our benchmarks, we first evaluate the correctness of our EPD pipeline,
by using it to train GMPNN and Triplet-GMPNN NAPs on a subset of representative algorithms
from the CLRSB, and testing whether or not they match the state-of-the-art performance of
the CLRSF pipeline [Ibarz et al., 2022] in and out of distribution.

§4.1.1 Experimental details
Algorithms used. As it is out-of-scope to port all 30 CLRSB algorithms to the MDARF,
we chose to explore two contrasting algorithms: Bellman-Ford (BF), a simple, continuous
algorithm aligned with GNNs [Dudzik and Veličković, 2022], and Depth-First Search (DFS),
one of the most challenging algorithms in the CLRSB.

Metrics, hyperparameters and training. For both algorithms tested, we use the evaluation
metric of predecessor pointer accuracy on out-of-distribution graphs used by the CLRSB,
over 5 training runs. Full details of the model, training and evaluation hyperparameters can
be found in Appendix F.1.

Hypothesis testing. On the assumption that the predecessor pointer accuracies of randomly
initialised models are normally distributed, we use the one-sided unequal-variances t-test
[Welch, 1947] on sample means to ascertain the statistical significance of any performance
differences observed. Furthermore, as we will perform multiple hypothesis tests over the course
of this analysis, we use the Holm-Bonferroni method [Holm, 1979] to ensure the family-
wise error rate (FWER) (i.e. the risk of rejecting one or more true null hypotheses) is at
most ↵ = 0.05.1 Specifically, for all m null hypotheses H1, ..., Hm we test, we sort their p-values
P1, ..., Pm from lowest to highest, and reject the longest prefix of null hypotheses H1, ..., Hk

satisfying (for each 1  i  k) Pi <
↵

m+1�i . As such, in the following discussion, we write,
e.g., [(1) > (3) OOD: i = 1, Pi = 6.5⇥ 10�11 < 0.05

3 , 3] to abbreviate the following: “There is
sufficient evidence to suggest that architecture 1 performs better on the CLRSB test set than
architecture 3 at FWER ↵ = 0.05.

§4.1.2 Results and discussion
Recall that we’re interested in whether our EPD pipeline can match the state-of-the-art per-
formance of the CLRSF pipeline, both in and out of distribution. We observe from Figure 4.1
that, while processors trained on the EPD pipeline tend to perform worse than equivalent

1Note that this method is uniformly more powerful than the Bonferroni correction [Holm, 1979].
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Figure 4.1: Results of processors trained with the EPD pipeline on algorithms from the CLRSB,
in comparison with those analysed in [Ibarz et al., 2022]. Best results in bold-face,
second-best in underline. Standard deviations were taken over 5 runs for EPD
experiments, 3 runs for CLRS experiments [Veličković et al., 2022] and 10 runs for
GNAL experiments [Ibarz et al., 2022]. Note that Ibarz et al. [2022] did not report
validation results for GNAL processors.

processors trained on the CLRSF pipeline in-distribution, they perform significantly better
out-of-distribution.

In the case of BF, while both EPD processors (1, 2) and the top CLRS processors (4, 5)
achieve near-perfect performance (> 0.99) in-distribution, our best EPD processor (1) is the
only processor to do so out-of-distribution, and indeed significantly outperforms the previous
SOTA out-of-distribution [(1) > (3) OOD: i = 1, Pi = 6.5⇥ 10�11 < 0.05

2 , 3].

And in the case of DFS, we observe that the CLRSF pipeline leads to overfitting: while our
best EPD processor (7) performs worse than CLRSF processors (11, 12) in-distribution, it
significantly outperforms the previous SOTA out-of-distribution, albeit with a much higher
p-value than for BF [(7) > (8) OOD: i = 2, Pi = 0.029 < 0.05

1 , 3]. Observe also that, even
though our GMPNN (9) performs worse out-of-distribution than the SOTA, it significantly
outperforms its closest architectural equivalent from the CLRSB [(9) > (12) OOD: i = 1,
Pi = 6.5⇥ 10�7 < 0.05

1 , 3].

Summary. As processors trained with our EPD pipeline beat the state-of-the-art
on the CLRS-30 benchmark on both BF and DFS, we can use the EPD pipeline with
confidence when generating NAPs for our benchmark environments.2

§4.2 Evaluating utility for reproduction: exploring the
VI-Implicit-Planner benchmark

So, now we’ve seen that our framework for building NAPs beats the state-of-the-art in the
abstract domain, let’s explore how our NAPs perform in the real-world domain (and evaluate
the utility of our laboratory for reproducing existing results in NAR) by deploying them in our
first benchmark environment: VI-Implicit-Planner.

Benchmark overview. This benchmark is based on the observation that the problem of train-
ing deep reinforcement learning (RL) agents has an algorithmic prior : specifically, if our agent
could learn to build a search tree representing how the state of its environment would change if
it were to take various actions, then it could compute the optimal next action by running the
planning algorithm of value iteration (VI) over this tree (see Appendix B for more details).
Such agents, eXecuted Latent Value Iteration Networks (XLVINs) [Deac et al., 2021],
explicitly generate a search tree over possible sequences of actions (whose nodes are latent rep-
resentations of ‘possible next states’), and use some choice of algorithmic module to perform

2Note that this result also provides weak evidence towards the claim in Section 3.4.2 that the scalar bottleneck
harms OOD performance in the abstract domain. However, as the EPD pipeline has a number of other
improvements over the CLRSF, there are too many confounding factors to make this claim with confidence;
we leave more precise ablations for further work.
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VI over this tree to compute the optimal next action. (For implementation details, including
various improvements we made to the architecture of [Deac et al., 2021], see Appendix E.1.)

Summary of results. In the following section, we explore VI-Implicit-Planner in the con-
text of OpenAI’s Acrobot environment, and demonstrate that:

Our laboratory lets us easily implement performant NAPs. Using the MDARF, we success-
fully trained an NAP to imitate deterministic value iteration (see Appendix F.2.1 for
details), obtaining near-perfect performance out-of-distribution.

Our laboratory supports high-quality research. Using robust statistical methodology, we demon-
strated that neither our XLVIN implementation nor that of [He, 2022] substantially out-
performs the PPO baseline.

Our laboratory validates existing results. But we then saw that, if we alleviate the compute
bottleneck in the XLVIN training regime, our laboratory validates the performance claims
of XLVIN, with XLVIN substantially outperforming the PPO baseline on the Acrobot
environment.

Our laboratory leads us to new research insights. Finally, the rich configurability of our lab-
oratory allowed us to run many ablation tests; these revealed that, for the Acrobot en-
vironment, the performance improvement of XLVIN over the PPO baseline is unlikely to
be due to NAR.

§4.2.1 Experimental details
Environment. In this analysis, we study the VI-Implicit-Planner benchmark within the
Acrobot discrete-control environment. This sparse-reward environment is known to be challeng-
ing for policy-gradient algorithms, and was one of the ‘classical control’ environments explored
in [Deac et al., 2021] and [He, 2022].

Executor. To obtain a VI NAP, we trained a GMPNN processor on deterministic value itera-
tion, which learned to predict optimal next states with near-perfect accuracy out-of-distribution
(see Appendix F.2.1 for results).

Architecture, hyperparameters, training and metrics. We use the architecture and hyper-
parameters reported by He [2022], with minor modifications. We assessed every model over
20 training runs k, each initialised with a different random seed, reporting for each run the
per-run maximum average reward. For full details on architecture, hyperparameters and
metrics, see Appendix F.2.2.

Performance evaluation. As, in the few-run deep RL regime, point estimates of aggregate
metrics are typically dominated by statistical uncertainty,3 we follow the recommendations of
the RLiable framework [Agarwal et al., 2021] and instead report interval estimates of perfor-
mance. Specifically, for each set of runs, we report 95% confidence intervals (CIs) for
metrics such as mean, median and inter-quartile mean, computed via bootstrap resampling
[Efron, 1979]. And, in order to compare models X and Y , we estimate 95% confidence intervals
for the probability of improvement (PoI) of X over Y (in terms of per-run maximum av-
erage reward) via bootstrap resampling [Agarwal et al., 2021], by sampling from the empirical
distributions of X and Y , and computing the U-statistic from the Mann-Whitney U test [Mann
and Whitney, 1947] over these samples.

3Indeed, only reporting point estimates has historically led the field to erroneously conclude which methods
are state-of-the-art [Lin et al., 2021, Reimers and Gurevych, 2017]
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§4.2.2 Results and discussion
XLVIN is difficult to reproduce under its original conditions. We first observe that the
results of XLVIN, as reported by Deac et al. [2021], are very difficult to reproduce: not only is
XLVIN a very complex architecture with many hyperparameters and moving parts, but it is also
evaluated in extremely noisy environments. Furthermore, claims of performance improvement
are made by comparing unreliable point estimates of average reward.

As comparing these estimates without considering their variance can lead to misleading results
[Agarwal et al., 2021], we instead try plotting 95% CIs for the probability of improvement of
XLVIN over the PPO baseline (Figure 4.2), in both our codebase and the codebase of He [2022].
Observe that, while experiments suggest the PPO baseline may have a slightly higher PoI over
NAP, the difference here is marginal: indeed, the 95% confidence interval includes 0.5, so in
both the MDARF and the codebase of He [2022], there is insufficient evidence that
XLVIN performs better than PPO (or vice versa) in the Acrobot environment.

Figure 4.2: Probabilities of improvement (95% CI) of XLVIN over the PPO baseline, in both
the MDARF and He [2022], trained under the 1-epoch regime.

Relaxing the compute bottleneck lets us validate the claims of XLVIN. However, in both
of the standard implementations, XLVIN is trained under only one PPO epoch per minibatch.
This may cause a confounding factor of a compute bottleneck. To alleviate it, we repeat our
experiments from above on both the MDARF and the codebase of [He, 2022], this time training
for 10 PPO epochs per minibatch (Figure 4.3).

Observe from Figure 4.4 that, in this regime, our laboratory validates the claims of
XLVIN: in the MDARF we see that XLVIN substantially outperforms the PPO baseline (with
a PoI of 0̃.8, whose 95% CI does not contain 0.5).

Figure 4.3: Aggregate metrics (95% CI) for the PPO baseline and XLVIN architectures across
the MDARF and the codebase of [He, 2022], trained under the 10-epoch regime.

Figure 4.4: Probabilities of improvement (95% CI) of XLVIN over the PPO baseline, in both
the MDARF and HF and the codebase of [He, 2022], trained under the 10-epoch
regime.

Moreover, in Figure 4.5, we observe that our laboratory achieves stronger results than
[He, 2022] across the board: while our MDARF PPO baseline is marginally more performant
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than that of He [2022]’s codebase, we observe that our XLVIN is substantially more performant
(with a PoI of 0̃.87, whose 95% CI does not contain 0.5).4

Figure 4.5: Probabilities of improvement (95% CI) of architectures from the MDARF over those
from the HF, trained under the 10-epoch regime.

Ablating the NAP doesn’t significantly affect the performance of XLVIN. Now, before
we can use VI-Implicit-Planner as a benchmark for NAR, we must first ensure that the
performance improvements we observe are actually due to its use of a NAP. On close inspection,
we noticed that XLVIN has a complexity advantage over its PPO baseline: indeed, not only
does it use an NAP, but it also has many more layers than the baseline. Therefore, it’s unclear
if the performance improvements we observe can be attributed to the algorithmic inductive bias
of the NAP, or merely explained by the higher capacity of XLVIN compared to the baseline. As
such, to isolate the effect of the NAP, we performed an experiment in our codebase comparing
XLVIN with the ‘official’ PPO baseline, a version of XLVIN ablating only the NAP (the no-
NAP XLVIN), and and the default policy network from Stable Baselines 3.5

We illustrate the results of this experiment in Figure 4.6. Observe from Figure 4.7 that, while
our XLVIN outperforms the PPO baseline, there is very little evidence to suggest that
ablating the NAP reduces XLVIN performance, with XLVIN exhibiting a probability
of improvement over the ablated model of only 0.510. We also find that the MLP baseline
from Stable Baselines 3 substantially outperforms our NAP, with a probability of
improvement of 0.728 over XLVIN.

Figure 4.6: Aggregate metrics (95% CI) for the XLVIN, PPO baseline, no-NAP and Stable
Baselines 3 (SB3) architectures, trained in the MDARF under the 10-epoch regime.

Figure 4.7: Probabilities of improvement (95% CI) of XLVIN over the PPO, no-NAP and SB3
baselines, trained in the MDARF under the 10-epoch regime.

4We hypothesise that this result is due to a combination of the improvements made to the XLVIN architecture
in Appendix E.1, and our use of an optimised implementation of PPO backed by Stable Baselines 3 [Hill
et al., 2018].

5i.e. two three-layer MLPs with tanh activation, mapping from state to policy and state to value respectively
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§4.2.3 Conclusions and next steps
So we’ve seen that, while the exact results of [Deac et al., 2021] are noisy and difficult to
reproduce (with either our framework or that of [He, 2022]), a slight modification to the train-
ing procedure allowed us to validate their claims – but ablation tests then revealed that the
performance improvement of XLVIN is unlikely to be due to NAR.

Thus, while we originally planned to use VI-Implicit-Planner as an environment in which to
compare the performance of NAPs against sDABs, the findings of this section cast doubt
on the suitability of VI-Implicit-Planner (at least, when applied to classical
control tasks6) as a benchmark environment for NAR: not only is it extremely noisy
(making it very difficult to distinguish actual performance improvements from random noise),
but it is unclear as to whether using an algorithmic module improves performance within this
environment at all.

§4.3 Evaluating utility for research: exploring the
Warcraft-Shortest-Path benchmark

So, having evaluated the correctness of our laboratory with respect to the CLRSB, and its
utility for reproduction in the context of XLVIN, we now evaluate its utility for research by
using it to probe the foundations of neural algorithmic reasoning.

Benchmark overview. As we concluded in the previous section that VI-Implicit-Planner
is an unsuitable environment for exploring the claims of NAR, we perform this analysis in
the context of our second benchmark environment, Warcraft-Shortest-Path-Tree: a
synthetic supervised-learning environment with a much clearer algorithmic prior.

This benchmark, inspired by one of the most popular environments for testing sDABs [Vlastelica
et al., 2019], involves comparing algorithmic modules in the context of a neural network trained
to find the shortest-path tree from a k ⇥ k Warcraft terrain map (as described in Figure 4.8).
More precisely, this network uses the first five layers of ResNet-18 [He et al., 2015] to extract a
k ⇥ k grid of latent features, runs a graph-based sDAB or NAP over a grid graph constructed
from these features, and applies the pointer decoder from [Veličković et al., 2022] in order to
extract the predecessor node for each cell. (For implementation details, see Appendix E.2.)
Note that, while we can in principle use any sDAB or NAP with an algorithmic inductive bias
towards a single-source shortest path algorithm, for simplicity (and following [Petersen et al.,
2021]) we choose to explore sDABs and NAPs for Bellman-Ford.

We explore two different variants of this problem: the simpler optimal variant, where we train
our model to predict a distribution equally weighted over all optimal shortest-path predecessors,
and the more complex tie-breaking variant, where we train our model to break ties between
optimal predecessors in a deterministic way. (For more details, see Appendix F.3.1.)

Summary of results. Through our analysis of Warcraft-Shortest-Path-Tree, we show-
case our laboratory’s utility for research, by demonstrating that:
Our laboratory lets us systematically compare algorithmic modules.

Using our laboratory, we performed a systematic comparison of algorithmic modules,
yielding results that deviate from established wisdom in NAR. Specifically, we find that
(contra Veličković and Blundell [2021]) NAPs do not substantially outperform sDABs in
any environment tested.

6Note that, while it may be the case that a meaningful performance improvement can be observed when the
XLVIN architecture is deployed in richer environments (e.g. Atari games), we were not able to explore these
due to time and resource constraints.
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Figure 4.8: An illustration of an example Warcraft II terrain map [Guyomarch, 2017], alongside
the cost to traverse each tile in its underlying k ⇥ k grid, and the length of the
shortest path from the top left tile to each tile in the grid. Our neural network takes
a terrain map as input, and must return a k⇥ k grid of categorical variables, where
each categorical variable at position (i, j) indicates the direction of the shortest-path
predecessor for tile (i, j) (indicated by an arrow).

Our laboratory lets us perform ablation tests that challenge established wisdom in NAR.
Counter to the established wisdom in NAR [Deac et al., 2021] that NAPs should be frozen
to avoid catastrophic forgetting, we find that unfreezing NAPs substantially improves their
performance. However, we find that the performance of these unfrozen NAPs is matched
or beaten by structurally-aligned neural networks (SNNs) (Section 2.1.1) – in this case, a
simple randomly-initialised GMPNN. These results suggest that the scalar bottleneck of
sDABs afflicts NAPs as well, but is overcome by SNNs.

Our laboratory lets us prototype a more principled DAB, beating all other models tested
and solving an open problem in the literature.

To understand why we observed these results, we explored the effect of parallelising our
sDAB, and found that the resulting parallel DAB (pDAB) outperformed all other models
tested. Indeed, through this very simple trick, we obtained an algorithmic module that
preserves both the empirical performance of SNNs and the efficiency and correctness
guarantees of sDABs, a goal previously thought to be ‘very tricky’ to achieve, and marked
by Cappart et al. [2021] as a ‘potentially exciting area for future work’.

Our laboratory helps us validate hypotheses about the nature of the scalar bottleneck.
Based on these results, we validated the hypothesis that the “scalar bottleneck” of sDABs
is not a dimensional bottleneck, but rather an ensembling bottleneck – in other words,
that it is not simply the high dimensionality of SNNs that allows them to outperform
sDABs, but instead their ability to learn to perform multiple instances of the algorithm
in parallel.

§4.3.1 Experimental details
Metrics. We assessed each model on either exact tree-accuracy (i.e. the % of grids with
all predecessors correctly predicted) or optimal tree-accuracy (i.e. the % of grids for which
all predicted predecessor distributions in that grid have an optimal pointer as their mode) as
appropriate.

Hyperparameters and training. For each algorithmic module tested, across each problem
variant, we performed 5 training runs with different seeds. For each run, we trained on maps of
size 12⇥ 12, and periodically evaluated them on maps of size 18⇥ 18. We reported the results
of the highest-performing checkpoint of each run on the test sets of [Vlastelica et al., 2019],
assessing both in-distribution (map size 12 ⇥ 12) and out-of-distribution (map size 18 ⇥ 18)
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performance. For full details of hyperparameters, see Appendix F.3.2.

Performance evaluation. For this experiment, as per Section 4.2, we report model perfor-
mance through bootstrapped 95% CIs for mean (exact / optimal) tree-accuracy, and we compare
models through bootstrapped 95% CIs for probability-of-improvement.7

§4.3.2 Comparing algorithmic modules: the unreasonable effectiveness
of SNNs

We first perform a systematic comparison of algorithmic modules in the Warcraft environment
(comparing the performance of non-algorithmic baselines, NAPs and sDABs), and run ablation
tests exploring the effect of both unfreezing our NAPs, and of randomly initialising their weights.

Figure 4.9: 95% CIs for mean tree accuracy, both in-distribution (12x12 grids) and out-of-
distribution (18x18 grids), in the optimal and tiebreaking environments.

Algorithmic modules beat non-algorithmic baselines. To check the correctness of our en-
vironment, we first compare the performance of sDABs and NAPs against non-algorithmic
baselines. We evaluate our algorithmic modules against a ResNet-18 CNN [He et al., 2015],
and compare the performance of our algorithmic modules with using only the feature extractor.
In order to verify that our NAPs are properly trained, we also evaluate them against frozen,
randomly-initialised GNNs.

As per Figure 4.9, we see that both sDABs and NAPs outperform all three of our baselines.
Specifically, we observe from Figure 4.10 that both sDABs and NAPs substantially outperform
ResNet-18 (top left), that NAPs (i.e. frozen, pre-trained GNNs) substantially outperform
frozen, randomly-initialised GNNs (top right), and that ablating the executor from Warcraft-
Net does substantially impair its performance (bottom).

Figure 4.10: 95% CIs for probabilities of improvement in tree-accuracy for sDABs and NAPs
over various non-algorithmic baselines, both in-distribution (ID) and out-of-
distribution (OOD), in the optimal (Opt) and tie-breaking (Tie) environments.

7Observe that, as we collect n = 15 runs, we have
�15+15�1

15

�
= 7.8 ⇥ 107 possible bootstrap resamples, so we

have sufficient data for bootstrap resampling to be meaningful.
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NAPs do not outperform sDABs. But, although both NAPs and sDABs outperform al-
gorithmic baselines, we observe from Figure 4.11 that NAPs do not substantially outperform
sDABs, on either the optimal or tiebreaking environments.

Figure 4.11: 95% CIs for probabilities of improvement in tree-accuracy for sDABs over NAPs,
both in-distribution (ID) and out-of-distribution (OOD), in the optimal (Opt) and
tie-breaking (Tie) environments.

Unfreezing NAPs improves their performance – but they’re still no better than a randomly-
initialised GNN. As NAPs are simply frozen GNNs pre-trained on abstract algorithmic tasks,
we explore the effect of unfreezing them during training. We also contrast their performance
with unfrozen, randomly-initialised GNNs: as GNNs have been shown to align with Bellman-
Ford [Dudzik and Veličković, 2022], as per our taxonomy in Section 2.1.1 we consider these to
be structurally-aligned neural networks (SNNs).

We observe from Figure 4.12 that, contrary to established wisdom [Deac et al., 2021], unfreezing
NAPs substantially improves their performance across all environments, with the largest per-
formance improvements observed in the (more algorithmically-aligned) optimal environment.

But we also observe that our SNNs match or beat the performance of unfrozen NAPs: while
SNNs perform comparably to NAPs in the optimal environment, they substantially outperform
NAPs in the tiebreaking environment.

Figure 4.12: 95% CIs for probabilities of improvement in tree-accuracy for unfrozen NAPs over
NAPs and for SNNs over unfrozen NAPs, both in-distribution (ID) and out-of-
distribution (OOD), in the optimal (Opt) and tie-breaking (Tie) environments.

Conclusions. Contrary to several key claims of NAR, we found that NAPs do not outperform
sDABs in either environment – and appear to suffer from the same instability issues as sDABs.
Moreover, we find that both unfrozen NAPs and SNNs have better stability and performance
than either NAPs or sDABs (even out-of-distribution). And, on the more complex tiebreaking
task, it appears that introducing a parameter-based algorithmic prior is actively harmful to
performance.

So, in the Warcraft environment, it is very likely that NAPs trained as per [Veličković
et al., 2022] do not alleviate the scalar bottleneck of sDABs, and that this bottleneck
can instead be overcome by SNNs.
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§4.3.3 Understanding our results: developing hypotheses on the nature
of the scalar bottleneck

Now, these results leave us with a compelling question: why are sDABs outperformed by SNNs,
but not by NAPs? We list two possible hypotheses, which we seek to explore in the next section:

The ensembling-bottleneck hypothesis. SNNs outperform sDABs and frozen NAPs because
they can learn to perform many versions of the algorithm in parallel, over simple (possibly
scalar) representations. (Indeed, there is some evidence to suggest that neural networks
solving complex problems ‘in the wild’ learn multiple independent modules performing
the same algorithm in parallel [Wang et al., 2022].)

The expressivity-bottleneck hypothesis. SNNs outperform sDABs and frozen NAPs because
they can adapt to learn different variants of the algorithm, over more complex represen-
tations, that map more closely to the exact problem at hand.

§4.3.4 Testing the ensembling hypothesis: the power of parallel DABs
One easy way to test whether the ensembling-bottleneck hypothesis holds (i.e. that increasing
algorithmic parallelism without increasing network expressivity can improve model performance)
is to simply modify our sDAB to execute an ensemble of algorithms in parallel, and to compare
the performance of the resulting parallel DAB (pDAB) to that of other algorithmic modules
in the optimal environment. As such, we built a pDAB for Bellman-Ford as illustrated in
Algorithm 1, and tested it under all conditions explored in Section 4.3.2. We present the
results of this analysis in Figure 4.13.

Algorithm 1 A pseudocode implementation of a d-dimensional Bellman-Ford pDAB, for use
as an Algorithmic-Module in Warcraft-Net (Algorithm 4).
Require: The following learnable functions:

encw : I ! Rd := Linear dech : Rd ! On := Linear
encd : I ! Rd := Linear dece : I ! Oe := Linear

1: function pDab(G({hi}, {eij}) : G[I, I]) : G[On,Oe]

2: wij : Rd  encw(eij) . Extract stack of weights from edge features
3: d(0)

i : Rd  100 · �(encd(hi)) . Extract stack of initial distances from node features
4: for t 1, ..., (k ⇥ k) do . Perform BF relaxations on stack of d grid graphs
5: d(t)

j = min(d(t�1)
j ,mini!j(d

(t�1)
i +wij))

6: return G({dech(d(k⇥k)
i )}, {dece(eij)}) . Map final distances to latent space

Figure 4.13: 95% CIs for mean tree accuracy, both in-distribution (12x12 grids) and out-of-
distribution (18x18 grids), in the optimal and tiebreaking environments.

pDABs dominate all other algorithmic modules across all environments. Observe from
Figure 4.14 that pDABs dominate all other algorithmic modules in the optimal environment. We
see that pDABs very substantially outperform both sDABs (top left) and NAPs (top right), in
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and out of distribution. And, while pDABs perform on par with unfrozen NAPs (and marginally
better than SNNs) in-distribution, they very substantially outperform both out-of-distribution.

Moreover, we observe that this result holds even in the tie-breaking environment, where Bellman-
Ford alone should not be sufficient to solve the problem. This is surprising, as no positional
information is passed to the pDAB.

Figure 4.14: 95% CIs for probabilities of improvement in tree-accuracy for pDABs over all other
modules tested, both in-distribution (ID) and out-of-distribution (OOD), in the
optimal (Opt) and tie-breaking (Tie) environments.

The high dimensionality of pDABs can be leveraged in unanticipated ways to handle vari-
ant algorithms. To understand why pDABs perform so well in the tiebreaking environment,
let’s take a look at how exactly we learn to use them, by visualising the per-tile weight and
initial distance matrices we learn to pass them as input (Figure 4.15). While some dimensions
of the pDAB are used to predict the true shortest-path lengths for each tile, others appear to
be used to generate vertical and horizontal gradients. As these artefacts only appear in pDABs
trained on the tiebreaking problem, we hypothesise that our models have learned to use the
extra dimensions of the pDAB in an unexpected way, to generate robust positional encodings
for tiebreaking.

Figure 4.15: The ground-truth initial weight, initial distance and final distance matrices for a
randomly-sampled Warcraft terrain map, alongside the inputs that we learn to
pass to our sDAB, and representative examples of the three main classes of inputs
that we learn to pass to individual Bellman-Ford instances within our pDAB.
(For completeness, we present the full set of input and output matrices for each
Bellman-Ford instance in our pDAB in Appendix G.)
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pDABs are much more efficient to train than SNNs. Finally, we observe that, not only do
pDABs not require pre-training, but they are much more efficient to train than SNNs. Indeed,
training pDABs incurred an average time per epoch of 11.4±1.7 seconds (across 15 runs); while
slightly more compute-intensive than sDABs (9.2±1.4 seconds), they are over four times faster
than both NAPs (42.5± 1.6 seconds) and SNNs (51.4± 0.7 seconds).

Conclusions. So, as pDABs dominate all other models in the optimal environment, we have
strong evidence supporting the ensembling-bottleneck hypothesis – specifically, that
increasing the dimensionality of sDABs is enough to make them match the performance of
SNNs in-distribution.

But beyond simply validating this hypothesis, we also observed that pDABs are much more
efficient than SNNs, generalise much better than SNNs out-of-distribution, and even outperform
SNNs (which should, in principle, be more flexible than pDABs) on problems whose underlying
algorithm deviates slightly from our algorithmic prior. As such, through the discovery of
pDABs, we have achieved a long-standing goal of neural algorithmics [Cappart et al.,
2021]: developing a way to deterministically distill an algorithm into a robust, high-dimensional
processor network that preserves both the efficiency and correctness guarantees of sDABs while
avoiding their performance bottleneck.
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5 Conclusions

This project was a success: not only did we meet all our success criteria, but we completed a
range of extensions leading to new research results in the field of NAR.

§5.1 Work completed
The MDARF and EPD pipeline. In order to build a laboratory for NAR, we introduced a

new paradigm for constructing neural algorithmic reasoners à la carte . Syn-
thesising ideas from DeepMind’s CLRS benchmark [Veličković et al., 2022] and Uber’s
Ludwig [Molino et al., 2019], we designed, built and tested a novel, extensible multi-
domain algorithmic reasoning framework (MDARF) for type-driven, declarative
ML. On top of this framework, we implemented an encode-process-decode (EPD)
pipeline for training NAPs, which we derived from first principles using the paradigm of
representations-as-types [Olah, 2015] – and, in doing so, found and alleviated a num-
ber of bottlenecks in prior work. To verify the correctness of our framework, we used
this EPD pipeline to train NAPs to imitate complex graph-based algorithms, matching
(and, in some cases, beating) state-of-the-art performance [Ibarz et al., 2022].

The VI-Implicit-Planner benchmark. To verify the utility of our framework for reproduction,
we built the VI-Implicit-Planner benchmark by reimplementing the XLVIN ar-
chitecture [Deac et al., 2021] in our framework, identifying and fixing a number
of bugs and bottlenecks with its original formulation. Using robust statistical
methodology, we found that our implementation reproduced the relative results of [Deac
et al., 2021], outperforming the reproduction of [He, 2022]. Moreover, through a series
of rigorous ablation tests, we discovered that the performance improvement of XLVIN
over its non-algorithmic baseline is unlikely to be due to NAR (as claimed by [Deac
et al., 2021]): indeed, removing the NAP from the XLVIN architecture does not
substantially affect performance.

The Warcraft-Shortest-Path-Tree benchmark. To verify the utility of our framework for re-
search, we also implemented the synthetic Warcraft-Shortest-Path-Tree bench-
mark, inspired by the work of [Vlastelica et al., 2019], which we used to perform a system-
atic comparison of algorithmic modules. Using robust statistical methodology, while we
confirmed the established result that algorithmic modules beat non-algorithmic baselines,
we found evidence to refute one of the central claims of NAR as presented
by [Veličković and Blundell, 2021], showing that NAPs do not overcome the ‘scalar
bottleneck’ of sDABs.

The ensembling bottleneck and the power of parallel DABs. Instead, based on our find-
ings, we developed a new hypothesis: that sDABs instead suffer from an ensembling
bottleneck of not being able to execute multiple instances of the same algorithm in
parallel, and that this bottleneck is alleviated not by NAPs, but by simply using an un-
frozen, structurally-aligned neural network. Through exploring the effects of parallelising
an sDAB on its performance, we not only found strong evidence in support of this
hypothesis, but also achieved a long-standing goal of neural algorithmics [Cap-
part et al., 2021]: developing a way to deterministically distill an algorithm into a robust,
high-dimensional processor network that preserves both the efficiency and correctness
guarantees of sDABs while avoiding their performance bottleneck.
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§5.2 Lessons learned
Developing and evaluating MDARF has certainly been a massive undertaking: at over 10,000
lines of Python code, it is the largest software engineering project I have worked on to date.
It also made me realise a few bitter lessons about software engineering. In particular, when
developing the MDARF, I realised that there exists an important trade-off between type-safety
and verbosity, and that the usability of the MDARF is highly dependent on managing this
tradeoff well. Moreover, over the course of the project, I discovered that early and rapid
prototyping is unreasonably effective, and can be more sustainable in the long run than trying
to capture all of the project’s requirements from the very beginning.

§5.3 Future work
Having successfully implemented and battle-tested the MDARF through this dissertation, we
open the doors to a wide range of future investigations – for instance, exploring various input
graph distributions at training time, evaluating our hypotheses in the low-data regime, and
widening the range of NAR benchmark environments we consider. Indeed, we have already
conducted preliminary investigations into the first two of these, whose results suggest that the
conclusions of this dissertation are robust across sparse graph distributions, and reasonably
robust in the low-data regime.

We also propose a number of probative experiments which, while out-of-scope for this project
due to both time and space constraints, could substantially strengthen our conclusions:

Factoring SNNs through pDABs. While we hypothesised that SNNs break the bottleneck of
sDABs through ensembling, the only evidence we have for this is the strong performance
of pDABs: indeed, it could be the case that the advantage of SNNs is distinct from the
advantage of pDABs. To answer this question, we can test whether or not we can factor
the SNN in a trained Warcraft-Net through a pDAB without loss of performance.

Parallelising NAPs. In a similar vein, to test whether NAPs fail to break the bottleneck of
sDABs due to a lack of ensembling, we could try building parallel NAPs by training an
NAP to execute multiple instances of its relevant algorithm at once, and comparing their
performance to that of a pDAB.
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A Deep learning, representations and
types

In this appendix, we revisit some of the fundamental ideas behind deep learning through the
lens of functional programming, and establish a few elements of non-standard notation.

§A.1 Representations and the manifold hypothesis
One of the most popular perspectives on deep learning is the representations narrative: the
idea that a deep neural network is a composition of differentiable, parameterised functions,1
such that each successive function transforms our data into a new shape – or representation –
that’s more useful for the problem we want to solve.

More precisely, it is widely believed [Goodfellow et al., 2016] that most real-world, high-
dimensional data is concentrated around a low-dimensional curved surface (or manifold) M
capturing its geometrical structure, with input data points x : Rn lying on the image of an
embedding M ,! Rn. In this framing, our representations (the ‘shapes’ that the layers fi
of our network map between) are the images of manifold embeddings into Rn, and the layers
themselves are maps between manifolds lifted to their embeddings.

In this dissertation, we will refer to the images of (learned) manifold embeddings into Rn as
representations or latent spaces R, and the elements of a representation as hidden states,
latent states or latents v 2 R. (Confusingly, the term embedding is also sometimes used
to refer to a hidden state – typically the image of a feature vector under an encoder.)

§A.2 Representations as types
Now, given this compositional perspective on deep learning, an interesting parallel begins to
emerge between neural networks and functional programs [Olah, 2015, Nguyen and Wu, 2022].
Just as a representation can be seen as the embedding of a manifold in n-dimensional space,
a type can be seen as the embedding of some kind of data in n bits. And just as functional
programming (FP) is characterised by the composition of maps between types, deep learning
(DL) is characterised by the composition of maps between representations.

So that’s a cute observation. But why care? One salient implication here is that just as func-
tions can only be composed together if their types agree, neural networks can only be composed
together if their representations agree: when we train a network, adjacent layers will negotiate
the representation they communicate in (i.e. the second will learn to consume as its input rep-
resentation the output representation of the first), and after training, passing data to a network
of the wrong representation will (very likely) lead to nonsensical results.

As we’ll see later on, it’s often helpful to make explicit these ‘representational constraints’
imposed on our neural modules by the structure of our network. To do so, we devise the
novel formalism of representation variables: type variables that express the most restrictive

1For instance, recall from Part IB Artificial Intelligence that the simplest neural network architecture is the
multi-layer perceptron (MLP): the composition f := fL�...�f1 of L learnable functions fi = �(Wix+bi)
for Wi,bi learnable parameters and � a elementwise non-linearity.
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constraints on the input and output representations of a learnable function that we know at
compile-time (i.e. before training).

Specifically, we introduce representation variables A,B, C, ... to denote arbitrary represen-
tations that a trained neural network learns to map between.

We introduce typing judgements f : A ! B for functions f : Rn ! Rm, and e : C for vector-
valued expressions e : Rn, where A,B, C, ... are the most general solution to the constraints
emitted by e.g.

f : A! B e : C
f(e) : D

A = C ^ B = D
e1 : A e2 : B

e1 k e2 : C
C = A⇥ B

Observe that, given a neural network, we can easily perform representation variable inference
through a constraint-based analysis, walking the network and unifying representation variables
where necessary.

§A.3 Neural networks as functional programs
One other implication of this is that we can view the construction of neural networks as the
construction of differentiable, parameterised pure functional programs (an idea embodied by
DL frameworks like JAX [Bradbury et al., 2018]). And by do so, we can take powerful ideas
for structuring functional programs, pass them chunks of neural network, and get out powerful,
principled neural architectures.

Consider, for instance, the problem of reducing a list of data of type a to a single value of type
b. In FP, the canonical way to do so is to fold over the list with an appropriate aggregation
function and initial element:

fold :: ((a, b) -> b) -> b -> [a] -> b
fold f z [] = z
fold f z (x:xs) = f (x, fold f z xs)

But if we parameterise our fold by a learnable accumulator f : R ⇥ S ! S and a learnable
initialisation element z : S, we obtain a recurrent neural network [Elman, 1990], a popular
family of architectures for reducing a list of latents xi 2 R to some y 2 S:

rnnCell :: Rep r, s => Learnable ((r, s) -> s)
initialState :: Rep s => Learnable s

rnn :: Rep r, s => Learnable ([r] -> s)
rnn = fold rnnCell initialState

Indeed, throughout this dissertation, we’ll see that thinking about neural networks as differ-
entiable, pure functional programs often gives us a natural way to frame the design of various
algorithmic modules.
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B An introduction to reinforcement
learning and value iteration

In this appendix, we provide an overview of reinforcement learning and the value iteration
algorithm.

§B.1 A stylised overview of reinforcement learning
At a very high level, the field of RL is concerned with building agents that learn to act within
some environment through trial and error. More precisely, suppose we have an agent in some
environment (e.g. some ML model playing a video game), that we can reward or punish based
on the actions it takes. We’re interested in answering the question: how can we build an agent
that, based on the feedback we give it, can learn to get as much reward as possible?

In order to answer this question, let’s try building a mathematical model of agents acting
in a stochastic environment, and see if we can solve our problem there. For the kinds of
environments we want to train agents to act in, the way in which the environment evolves over
time is partly random and partly due to the actions of the agent. The classical way to model
decision-making under these conditions is through a Markov decision process (MDP), a
structure M := (S,A, P,R, s0) not entirely dissimilar to that of a Markov chain:

• We model our world as a (possibly infinite) set S of states, such that our agent is always
in one particular state at any given time.

• We model our agent’s interaction with the world as taking place over a series of time-
steps t = 0, 1, 2, ...

• Our agent starts in some initial state s0 2 S.

• At every time-step t, our agent (in state st) gets to choose some action at from a fixed
set A. (Note that, for simplicity, we will restrict ourselves to discrete action spaces –
in other words, we assume A is finite.) Based on their chosen action and their current
state, they will obtain some (possibly negative) reward R(st, at) 2 R, and will be sent
to some next state s0 with probability P (s0 | st, at).

• We call the sequence of actions and states ⌧ = (s0, a0, s1, a1, ...) observed over the course
of our agent’s interaction with its environment a trajectory.

So, given this model, we want to build an agent that tries to maximise its ‘cumulative reward’
R(⌧) (known as its return) over the course of a trajectory. Note that there are a number of
ways to formalise this notion of ‘return’; for illustration, one popular definition is the infinite-
horizon discounted return R(⌧) =

P1
t=0 �

tR(st, at), which values future rewards less than
present ones according to an exponential discount factor � 2 [0, 1].

As such, our goal is to design a stochastic policy ⇡ for our agent (i.e. a strategy that, given
a current state st, gives us a distribution at ⇠ ⇡(· | st) over actions it should take) such that
sampling actions according to ⇡ maximises its expected return E⌧⇠⇡[R(⌧)] over trajectories
⌧ . Indeed, finding the optimal stochastic policy ⇡⇤ = argmax⇡ E⌧⇠⇡[R(⌧)] for a given
environment is the central optimisation problem of RL.
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§B.2 Value iteration: finding the optimal policy given a
known MDP

So, suppose we can model our environment perfectly with some MDP M , for which S,A, P,R, s0
are all known. (We call such an MDP a tabular MDP.) Given this, can we find the optimal
policy ⇡⇤?

To motivate this discussion, notice that, if we had what’s known as an optimal value function
V ⇤(s) = E⌧⇠⇡⇤ [R(⌧) | s0 = s] – an oracle that, for every state s, could tell us our expected
return if we acted optimally starting from s – we could use this to find the expected return
E⌧⇠⇡⇤ [R(⌧) | s0 = s, a0 = a] for any a, and our optimal policy would simply be to take the
action maximising this expected return.

Now, for an MDP under infinite-horizon discounted return, expanding the equation above yields
the following recurrence:

V ⇤(s) = max
a

E
s0⇠P (·|s,a)

[R(s, a) + �V ⇤(s0)] (B.1)

As such, we can solve for V ⇤ in a process known as value iteration (VI), by randomly
initialising V ⇤

0 (s) for all s 2 S and iteratively applying the following equation until convergence:

V ⇤
t+1(s) = max

a

 
R(s, a) + �

X

s0

P (s0 | s, a)V ⇤
t (s

0)

!
(B.2)

(Note that, while each iteration can be computed in O(|A||S|2) time, the number of iterations
required until convergence may grow exponentially with the discount factor � [Condon, 1992].)

And, as mentioned earlier, once we have such a value function V ⇤, our optimal policy in this
environment simply becomes to (deterministically) choose the action a that maximises our
expected return E⌧⇠⇡⇤ [R(⌧) | s0 = s, a0 = a]:

⇡⇤(s) = argmax
a

 
R(s, a) + �

X

s0

P (s0 | s, a)V ⇤(s0)

!
(B.3)

Stepping back a little, we can interpret VI as a planning algorithm: we explore all possible
sequences of actions to find the ones that will lead to the maximal reward in expectation, using
the property of semiring distributivity (à la Bellman-Ford) to prevent the exponential blow-up
in space complexity that this would otherwise entail.

§B.3 Reinforcement learning in practice
So, in the world of mathematics, we’ve built a framework for modelling environments as MDPs,
and we’ve derived an algorithm to find the optimal policy for a tabular MDP. But can we
translate this back to the real world, to actually build agents that learn?

Now, while any real-world problem can be modelled as a (sufficiently large) MDP, we run
into a number of issues if we naïvely try to build an optimal agent for this MDP through
VI. Indeed, in almost all cases, MDPs modelling environments of interest are intractably large
(and therefore infeasible to tabulate); moreover, we often don’t even know the exact state our
agent is currently in (e.g. the RAM state of a game console), and can only obtain a partial
observation of this state (e.g. what’s currently displayed on the screen).
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Instead, the typical approach to solving these problems is to make some component of the MDP
learnable, and to try to arrive at an approximate solution through gradient descent. While there
exist many ways to do this, in this dissertation we’ll focus on the method of model-free policy
optimisation:

• We define our policy as a learnable policy network at ⇠ ⇡✓(· | ot) – i.e. a neural network
mapping observations ot to a distribution over possible next actions at.

• We then train our policy by gradient ascent to directly maximise its expected return
J(⇡✓) := E⌧⇠⇡✓

[R(⌧)], by periodically sampling trajectories D = {⌧i}i=1,...,n from policy
⇡✓, and using these to estimate the policy gradient r✓J(⇡✓).

Now, as the naïve estimator for policy gradient

r✓J(⇡✓) = E
⌧⇠⇡✓

"
TX

t=0

r✓ log ⇡✓(at | st)R(⌧)

#
(B.4)

(obtained by expanding J(⇡✓) := E⌧⇠⇡✓
[R(⌧)]) has very high variance, in practice we use a lot

of tricks to reduce the variance of our estimate. One of the most popular such bundles of tricks
(and the one we’ll use for this problem) is proximal policy optimisation (PPO) [Schulman
et al., 2017].

A notable distinction of PPO is that it introduces a learnable approximator V�(ot) of our on-
policy value function V ⇡(st) := E⌧⇠⇡✓

[R(⌧) | o0 = o] that we train alongside our policy
network ⇡✓. We call this pair of networks (which typically share some modules) an actor-
critic network; here, the policy network ⇡✓ is the ‘actor’, and the value network V� assessing
the long-term reward of its behaviour is the ‘critic’.
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C Implementation details for the EPD
pipeline

We explain the stages of Figure 3.16 in detail:

Specifying algorithmic types. To get started, we need batchable type representations for
List[I], List[H] and List[O]. As per Section 3.3.1, we can easily use primitive and com-
pound feature types to build type representations Input, Hint, Output <: Batchable
for I, H and O – and, in order to represent lists in the MDARF, we introduce a new com-
pound type Trajectory[BatchableT], representing sequences of (optional) elements of
type BatchableT. We also need to define type representations for I and S: for simplicity,
we assume these are latent graphs.

Implementing the sampler and generating the streaming dataset. Once we’ve defined our
Input type, as per Section 3.3.2 we can easily build (and customise) a default sampler
for our trajectory type Trajectory[Input]. Then, given our input sampler, we can
use A : List[I] ! List[H] ⇥ List[O] to implement a generator for algorithmic traces
(i.e. tuples List[I]⇥List[H]⇥List[O]), encoded for batching purposes as a new compound
type Trace[InputT, HintT, OutputT].

To facilitate this process, users can obtain generators for new algorithms by subclassing
the interface AlgorithmSampler[InputT, HintT, OutputT] <: Sampler[Trace[InputT,
HintT, OutputT]] – specifying the relevant types, an appropriate input sampler, and an
execution function generating traces from algorithmic inputs.

These generators can be used to build either fixed-size or streaming (i.e. ‘infinite’) datasets
of batched algorithmic traces:

1 sampler_config = ALGORITHM.default_config(GRAPH_SIZE)
2 sampler = fdl.build(sampler_config)
3 dataset = SamplerIterableDataset(sampler, rng, BATCH_SIZE)

Specifying the neural processor and deriving the wrapped NAP. Now, given we have our
data and our algorithmic types, all we need to build our NAP is a processor P : G[SN ,SE]⇥
G[IN , IE]! G[SN ,SE] (i.e. a recurrent GNN cell). In this dissertation, following prior
work [Veličković et al., 2022, Ibarz et al., 2022], we use the state-of-the-art GMPNN and
Triplet-GMPNN processors; while we explore the Triplet-GMPNN processor to eval-
uate our framework against the CLRSB, we use the GMPNN processor when training
NAPs for our benchmark environments.

For convenience, we provide an EPDExecutor[InputT, HintT, OutputT] module that,
given an algorithm and processor, generates the relevant encoders and decoders between
feature and latent types, and applies the processor to algorithmic input according to the
EPD pipeline:

1 executor_config = EPDExecutor.default_config(
2 algorithm=ALGORITHM, processor=ClrsMPNN,
3 latent_input_dims=LATENT_DIMS, latent_hint_dims=LATENT_DIMS)
4 executor = fdl.build(executor_config).to(DEVICE)
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Training and evaluating the NAP. Finally, given an executor and an algorithmic dataset, this
wrapped NAP can be trained in PyTorch using one’s method of choice. For illustration,
in Appendix D, we demonstrate a complete training pipeline for a Bellman-Ford NAP in
just 38 lines of vanilla PyTorch (excluding imports). For convenience, we also provide
a fully-featured experimental pipeline for training NAPs, built with PyTorch Lightning
[Falcon and The PyTorch Lightning team, 2019].
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D Example code for training NAPs
with the MDARF

We present below a working code snippet (excluding imports) that trains an NAP to imitate
Bellman-Ford.

1 ALGORITHM = BellmanFordSampler; GRAPH_SIZE = 16
2 LATENT_DIMS = LatentGraphDims(
3 hidden_node=128, hidden_edge=128, hidden_feature=128)
4 BATCH_SIZE = 32; LR = 0.001; DEVICE = 'cuda:0'
5 rng = np.random.default_rng()
6

7 # Building the executor
8 executor_config = EPDExecutor.default_config(
9 algorithm=ALGORITHM, processor=ClrsMPNN,

10 latent_input_dims=LATENT_DIMS, latent_hint_dims=LATENT_DIMS)
11 executor = fdl.build(executor_config).to(DEVICE)
12

13 # Building the dataset
14 sampler_config = ALGORITHM.default_config(GRAPH_SIZE)
15 sampler = fdl.build(sampler_config)
16 dataset = SamplerIterableDataset(sampler, rng, BATCH_SIZE)
17 dataloader = DataLoader(dataset, batch_size=None)
18

19 # Training loop
20 optimizer = torch.optim.Adam(executor.parameters(), lr=LR)
21 for i, (batch_hard, batch_soft) in enumerate(dataloader):
22 optimizer.zero_grad()
23 batch_hard = batch_hard.to(DEVICE); batch_soft = batch_soft.to(DEVICE)
24 pred_hints, pred_outputs = executor.execute(
25 batch_soft.inputs, batch_soft.hints)
26

27 output_loss = pred_outputs.summary_loss(batch_hard.outputs).reduce().data
28 hint_loss = pred_hints.summary_loss(batch_hard.hints).reduce().data
29 loss = output_loss + hint_loss
30 loss.backward()
31 optimizer.step()
32

33 output_metric = (
34 pred_outputs.soft_output_to_hard()
35 .summary_evaluate_against(batch_hard.outputs)
36 .map(lambda x: x.data.item()).data)
37 print(f'[Batch {i + 1:2d}] loss: {loss.item():.3f}, '
38 f'output pi: {output_metric["pointers"]["pi"]:.3f}')
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E Implementation details for the
benchmarks

§E.1 The VI-Implicit-Planner benchmark
Our first benchmark (VI-Implicit-Planner) allows for the comparison of algorithmic mod-
ules in the context of providing an implicit-planning policy network with an inductive bias
towards value iteration. So, in order to build this benchmark, we must first design such a
policy network that, when given an appropriate algorithmic module, can use it to execute value
iteration over a latent MDP.

We base our policy network on that of the eXecuted Latent Value Iteration Network
(XLVIN) [Deac et al., 2021], the current state-of-the-art for implicit planning and one of
the flagship results of NAR. As such, in this section, we give a rough outline of our VI-
Implicit-Planner benchmark, by briefly reviewing the XLVIN architecture and discussing a
few improvements we make to its design.

A note on RL environments. Recall from Section B that, for a given RL environment,
its action space can be either continuous or discrete, and its underlying MDP can be either
deterministic or non-deterministic. While some work [He et al., 2022] has been conducted
extending XLVIN to continuous action spaces, for the purposes of this dissertation we only
explore environments with discrete action spaces. Furthermore, as the environments we intend
to explore with VI-Implicit-Planner are deterministic, we explore XLVIN within the context
of environments with underlying deterministic MDPs.

A note on implementation. While the rest of this section mostly discusses XLVIN (and
its modifications) at a high level, we briefly mention some implementation details. Notably, in
contrast to the works of [Deac et al., 2021] and [He, 2022] (which build custom training wrappers
for XLVIN by modifying the library of Kostrikov [2018]), we instead implement XLVIN as a
policy within Stable Baselines 3 [Raffin et al., 2021], one of the most popular frameworks for
deep RL, in order to ensure reliable, reproducible results.

§E.1.1 A review of the XLVIN architecture
XLVIN is an actor-critic policy network : a network (⇡✓(a | o), V�(o)) that, given some obser-
vation o 2 O of the current state, predicts both a distribution ⇡✓ over next actions from the
current state, and the expected long-term reward V� of acting according to ⇡✓ from the current
state.

As we may wish to deploy our network in environments with a range of observation spaces
(e.g. images of an Atari gameboard, or scalars representing the position and velocity of a
cartpole), we define the XLVIN architecture as a function Xlvin : O ! P ⇥ V mapping
latent observations to latent policy and value representations, from which we can (linearly)
project out policy logits and value predictions. This function can then be precomposed with an
appropriate encoder enco : O ! O, and postcomposed with appropriate decoders dec⇡ : P !
Categorical[A] and decv : V ! R, to yield a policy network operating over observation space
O.

We present a pseudocode implementation of the XLVIN architecture in Algorithm 2.
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A high-level summary of XLVIN. The key idea behind XLVIN is that we introduce an algo-
rithmic inductive bias towards implicit planning by inferring a latent state from our observation,
inferring a tree of latent next states from this latent state, performing value iteration over this
tree with an algorithmic module, and projecting latent policy and value representations from
the results of this process.

Inferring latent states from observations. To lift latent observations o 2 O to latent states
s 2 S, XLVIN uses an MLP encoder z : O ! S.

Generating the tree of latent next states. In order to generate our tree of latent next
states, we must be able to generate the latent next state s0 to which we transition after taking
some action a from latent state s. To do so, XLVIN introduces an MLP transition function
T : S ⇥ A ! S, such that taking action a in latent state s sends us to s + T (s, a). We then
use this transition function to roll out a tree of depth k (where k is a hyperparameter to be
chosen), representing all possible length-k trajectories s0

a1�! ...
ak�! sk starting from our initial

latent state s0.

Regularising towards sensible latent state embeddings. To ensure we learn sensible latent
state embeddings, we apply the TransE loss [Bordes et al., 2013] as a regularisation term: for
all observed transitions (o, a, o0), we ensure that our latent state embedding of observation o0

is as close as possible to our predicted next state embedding of observation o after applying
action a in latent space, and as far away as possible from latent state embeddings of other
observations õ. In other words, we ensure the following diagram commutes:

S S

O O

z � enco

take action a

z � enco

�s.s+T (s,a)

Performing value iteration over the tree. After generating the tree, we linearly map its
nodes into algorithmic latent space, and use an algorithmic module of our choice to perform
value iteration over the tree; for the original XLVIN implementation, this is a (pre-trained,
frozen) NAP returning a result embedding v0

i for each node i of the tree.

Projecting latent policy and value representations. Finally, in the original XLVIN imple-
mentation, we take the result embedding v0

0 2 S for the root node of the tree, and project
policy and value representations out from the pair (v0

0, s0).

§E.1.2 Modifications made to the XLVIN architecture
Now, upon analysing this architecture, we noticed a number of potential issues with the way
in which the value iteration NAP was trained and used in XLVIN. As such, we outline some of
these issues, and discuss the ways in which we fixed them.

Analysing the XLVIN NAP
Now, although the latent MDP constructed by the XLVIN is deterministic, Deac et al. [2021]
follow Deac et al. [2019] and instead train the XLVIN NAP to, at every timestep, imitate the
delta of a single step of value iteration

Vt+1(s)� Vt(s) = max
a2A

 
(R(s, a)� Vt(s)) +

X

s02S

�P (s0 | s, a)Vt(s
0)

!
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Algorithm 2 A pseudocode implementation of XLVIN [Deac et al., 2021], with modifications
we made marked in red.
Require: For FC := Linear . ReLU , the following learnable functions:

z : O ! S := FC3 decn : V (out)
n ! S 0 := Linear

encn : S ! V (in)
n := Linear ⇡ : S ⇥ S 0 ⇥ S 0|A| ! P := Linear

ence : A⇥ R! V (in)
e := Linear V : S ⇥ S 0 ⇥ S 0|A| ! V := Linear

T : S ⇥ A! S := FC2 . LayerNorm . FC

1: function Expand-Tree(s0 : S, k : N) : G[S,V (in)
e ] . Expand tree to depth k

2: g  newTree(root = s0)
3: for i 1, ..., k do
4: for su  getLeaves(g) do . Expand each leaf state with all possible actions.
5: g.addEdges({su

ence(a,�)�����! T (su, a) | a 2 A})

6: function Value-Iteration(tree : G[V (in)
n ,V (in)

e ], k : N) : G[V (out)
n ,V (out)

e ]

7: . Executes algorithmic module (NAP or sDAB) over depth-k tree.
8: . Example: for NAP P : G[V (out)

n ,V (out)
e ]⇥G[Vn,Ve]! G[V (out)

n ,V (out)
e ]:

9: state G({0}, {0})
10: for i 1, ..., k do state P (state, tree)
11: return state

12: function Xlvin(obs : O, k : N) : P ⇥ V . XLVIN policy-value network with tree depth k
13: . Map observation to latent state
14: s0  z(obs)

15: . Generate latent-state tree (rooted at s0)
16: G({si}, {eij}) Expand-Tree(h0)

17: . Map to algorithmic latent space and execute algorithmic module
18: vi  encn(si)
19: G({v0

i}, {e0ij}) Value-Iteration(G({vi}, {eij}), k)
20: s0i  decn(v0

i)

21: . Project policy / value from original state, result and neighbours
22: S 0

N  {s0i | s00
a! si, a 2 A}

23: return ⇡(s0, s00, S
0
N ), V (s0, s00, S

0
N )
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over non-deterministic MDPs represented as stacks of graphs. This NAP is then deployed in
XLVIN as detailed in Algorithm 3.

Algorithm 3 An illustration of the usage of the pre-trained VI NAP in XLVIN, for f a
pre-trained linear layer.

1: function Value-Iteration(tree : G[V (in)
n ,Ve], k : N) : G[V (out)

n ,Ve]

2: G({h(in)
s }, {e(in)s0s }) tree

3: h(0)
s  0

4: for t 0, ..., k � 1 do
5: hs  h(in)

s + h(t)
s

6: h(t+1)
s := maxs0 a!s

⇣
hs + f(hs0 ,hs, e

(in)
s0s )

⌘

7: return G({h(k)
s }, {e(in)s0s })

Now, recall that, as we freeze our NAP before deployment, strictly speaking, the only guarantees
we have on its behaviour are those enforced by the way in which we pre-trained it (see Section 3.4
for more details).

While the derivation is rather messy (and omitted for brevity), considering the way in which
this NAP was pre-trained and subsequently deployed, we obtain the following guarantee for the
behaviour of the Value-Iteration function in Algorithm 3:

There exist maps encn, ence, dec such that, for all timesteps t:

• If hs = encn([Vt(s), R(s, a)]) 8a and es0s = ence([1, �]) for all states s, s0,

• then Vt+1(s)� Vt(s) = dec(h(t+1)
s ).

Given this, we observe the following issues:

• For the specification to be met, for all states s, our learned latent representation of reward
(within hs) must be the same for all actions a out of s. In other words, we can only
model deterministic MDPs with per-state rewards – i.e. MDPs with rewards R(s)
as opposed to R(s, a) – restricting expressivity in a (likely) unintended way.

• While the NAP’s processor is only ever trained on single steps of value iteration, when
deployed, its output latent state is passed in as part of the input latent state for the next
time-step. So, in order for us to use the NAP in this way and still satisfy the specification,
we must learn representations h(in)

s such that, for some h(t)
s satisfying Vt(s) � Vt�1(s) =

dec(h(t)
s ), we have h(in)

s + h(t)
s = encn([Vt(s), R(s, a)]) 8a. Now, while our NAP may

happen to generalise beyond its specification, in general there is no guarantee that it will
be possible to learn a h(in)

s satisfying this property – not least because there’s no guarantee
h(t)
s even stores data about Vt(s), as opposed to just the difference Vt(s) � Vt�1(s). In

short, we use our pre-trained NAP in a way that ‘doesn’t type-check’, and as
such, the behaviour of our NAP may be no more meaningful than that of a
randomly-initialised, frozen GNN.

• Recall that, after the execution of Value-Iteration, we attempt to recover the predicted
policy and value from state s00, which contains at most as much information as is present
in state h(k)

0 . Observe that, as we only guarantee that Vt+1(s)� Vt(s) is recoverable from
this state, our decoder has insufficient information to predict the optimal next
action (i.e. to transition to the neighbouring state s0 with the highest V ⇤(s0)).
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1 VIInput = Graph[{reward: Scalar}, {gamma: Scalar}, Empty, Empty]
2 VIHint = Graph[{value: Scalar}, Empty, Empty, Empty]
3 VIOutput = Graph[Empty, Empty, Empty, NodePointer]
4

5 def run(
6 x: VIInput,
7 ) -> EPDTrace[VIInput, VIHint, VIOutput]:
8 h: VIHint = Graph(nodes=[{value=0.0} for _ in x.nodes])
9 trace = EPDTraceBuilder(input=x, initial_hint=h)

10

11 iter_diff = inf
12 while iter_diff > 1e-4:
13 new_values = [0.0 for _ in x.nodes]
14 for s in x.nodes:
15 # V_{t+1}(t) = max_{t -> s} (R(s) + gamma V_t(t))
16 new_values[s], output.pi[s] = max(
17 (x[s].reward + e.gamma * h[t].value, t)
18 for (t, e, s) in in_edges_of(s))
19

20 iter_diff = max(abs(h[i].value - new_values[i]) for i in range(n))
21 for i in range(n): h[i].value = new_values[i]
22 trace.step(hint)
23

24 return trace.finalize_using_last_hint(output=Graph(pointers={pi: ptrs}))

Figure E.1: A (simplified) presentation of algorithmic trace generation for value iteration.

Our improved NAP
Given these issues with the existing training pipeline, we instead train a (type-safe) NAP as per
Section 3.4 to directly imitate value iteration over deterministic MDPs with per-state rewards :

V0(s) = 0

Vt+1(s) = R(s) + �max
s0!s

Vt(s
0)

Specifically, we represent our MDP inputs as directed graphs (V,E), whose nodes correspond to
states and whose edges u a�! v correspond to actions a 2 A taken from state v, with a per-state
reward R(s) stored on each node and the MDP discount factor � stored on every edge. Given
an input MDP, we train our NAP (supervising on algorithmic traces generated as in Figure E.1)
to output the optimal value predictions V ⇤(s) for all nodes s, alongside per-node pointers to
the optimal state s

⇡⇤(s)���! t.

Neighbourhood decoding
We resolve the problem of the decoder having insufficient information to predict the next action
by performing neighbourhood decoding – in other words, allowing the decoder to project out
predicted logits and value functions from both s00 and its set of neighbour states {s0i | 0! i}.

§E.2 The Warcraft-Shortest-Path benchmark
We now turn to the design of our second benchmark: Warcraft-Shortest-Path. This
benchmark, inspired by the work of Vlastelica et al. [2019], allows for the comparison of al-
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gorithmic modules in the context of finding the shortest-path tree for a Warcraft terrain map;
as such, in this section, we outline both the adaptations we made to the problem setting of
Vlastelica et al. [2019], and the architecture we used to compare algorithmic modules on this
problem.

§E.2.1 Adaptations made to prior work
As a general theme, as we’re trying to explore the null hypothesis that NAPs perform better
than sDABs, in order to minimise the risk of false positives, we typically choose design decisions
that are favourable towards the NAP.

The original problem setting. Recall that we based the design of this problem on Warcraft-
Shortest-Path, a popular problem for benchmarking sDABs [Vlastelica et al., 2019, Berthet
et al., 2020, Petersen et al., 2021]. This problem involved training a network (with an algorith-
mic inductive bias) to take as input an image of a k ⇥ k Warcraft terrain map, and return as
output a k ⇥ k matrix indicating the cells of the terrain map involved in the optimal shortest
path from the top left to the bottom right corner.

Exploring the problem in the context of Bellman-Ford. Note that, to solve this problem,
we can use algorithmic modules with an AIB towards any single-source shortest path algorithm
(e.g. Dijkstra [Vlastelica et al., 2019] or Bellman-Ford [Petersen et al., 2021]). As we wish to
benchmark step-level NAPs against natively-differentiable sDABs, we choose to explore algo-
rithmic modules with an AIB towards Bellman-Ford, a simple, natively-differentiable algorithm
that aligns well with graph-based NAPs.

From shortest-path to shortest-path-tree. Observe, however, that to actually solve this
problem, we need algorithmic modules that not only compute the minimum distance from the
source to every other node, but also walk the resulting predecessor tree in O(V ) time in order
to recover the actual shortest path from the top left to the bottom right cell. Now, while it is
easy to add this postprocessing step to an sDAB, adding another O(V ) steps to a Bellman-Ford
NAP could substantially impact performance. As such, to minimise the trajectory length of
our NAP, and to align more closely with the version of Bellman-Ford used to train NAPs in the
literature [Veličković et al., 2022], we avoid this postprocessing overhead by instead supervising
on the shortest path tree of per-node predecessors rooted in the top-left grid cell.

Removing the inductive bias of algorithmic supervision. Now, in its original form, Warcraft-
Shortest-Path is a problem of algorithmic supervision [Petersen et al., 2021]: given an sDAB
mapping a grid with weights to an indicator matrix representing the shortest path across it,
we precompose this sDAB with a feature extractor (which should learn to predict a cost for
each type of tile) and supervise directly on the shortest-path output of our sDAB. We note,
however, that in most real-world problems with AIBs (which are ultimately where we want to
apply NAR), we can’t directly supervise on algorithmic outputs – instead, we must typically
learn to postprocess (or project out relevant information from) the output of our algorithmic
module. As such, we adapt our architecture by both pre-composing and post-composing our
algorithmic module with learnable layers, and ensuring the outputs of our algorithmic modules
require some mild post-processing in order to extract the final outputs.

§E.2.2 The Warcraft-Net architecture
So, given our adapted problem of Warcraft-Shortest-Path-Tree, we now outline the
architecture we built to solve it. We define this architecture as a function Warcraft-Net :
Grid[(8k, 8k), 3] ! Grid[(8k, 8k), Categorical[8]], mapping 8k ⇥ 8k ⇥ 3 images of Warcraft
terrain maps to grids of categorical variables indicating the predecessor cell for each cell in the
grid.
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We present a pseudocode implementation of the Warcraft-Net architecture in Algorithm 4.

A high-level summary of Warcraft-Net. In a similar vein to the architecture of XLVIN,
our Warcraft-Net has four main components: extracting a k ⇥ k grid of features from the
original image, generating a latent graph from these features, applying an algorithmic module
to this latent graph, and projecting out predecessor pointers from this latent graph.

Extracting the grid of features. As per [Vlastelica et al., 2019], we extract features from our
input image using the first five layers of ResNet-18. But while Vlastelica et al. [2019] use this
feature extractor to directly predict a k ⇥ k grid of cell costs which they pass to their sDAB,
as we wish to use our architecture with either sDABs or NAPs, we instead return a k ⇥ k grid
f : Grid[(k, k), I] of latent per-cell features.

Generating the grid graph. Given such a grid f , in order to compute its shortest-path tree,
we must first generate its underlying latent grid graph. This graph has a node (i, j) for every cell
fij in the grid, and each node (i, j) has an out-edge to each neighbouring cell (i0, j0) (including
those diagonally adjacent to (i, j)). Now, to decide how to populate nodes and edges with
features, based on the type signature of the Bellman-Ford algorithm we want our nodes to
carry information about whether or not their corresponding cell is the source node, and our
edges to carry information about their cost of traversal. As such, we populate nodes (i, j)
with node features fij, and following Vlastelica et al. [2019], who synthesise their grid graph
such that the weight of an edge (i, j)! (i0, j0) is the cost of the terrain type of cell (i0, j0), we
populate edges (i, j)! (i0, j0) with edge features fi0j0 .

Executing the algorithmic module. Now, once we have a latent grid graph g : G[I, I], we
can apply a wrapped algorithmic module in order to execute Bellman-Ford over it. For this
benchmark, we provide two algorithmic modules for comparison:

• NAP: A frozen, graph-based EPD NAP (pre-trained as described in Section 4.1), wrapped
with linear encoders and decoders (Algorithm 5).

• sDAB: A scalar implementation of Bellman-Ford, wrapped with skip-connected linear
encoders and decoders (Algorithm 6). Note that, when extracting initial distances from
node features, we apply a scaled sigmoid to introduce an inductive bias towards either
predicting d(0)i = 0 or d(0)i =1 (where1 ⇡ 100 to avoid issues with numerical instability).

Predicting predecessor pointers. Finally, once we have our output graph g : G[On,Oe], for
each node in our graph, we attend to its in-edges (using node pointer decoding as in [Veličković
et al., 2022]) to obtain a distribution over its 8 possible predecessors. We output these per-
node predecessor distributions as a grid of per-cell categorical variables indicating the cardinal
direction (e.g. North, North-East, East etc) of the predecessor cell.
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Algorithm 4 A pseudocode implementation of Warcraft-Net for a k ⇥ k terrain map.
Require: The following learnable functions:

enc : R3 ! I := Linear
f1, f2 : On ! P := Linear
fe : Oe ! P := Linear
(alongside the first five layers of ResNet-18)

1: function ResNet-Feature-Extractor(img : Grid[(8k, 8k), 3]) : Grid[(8k, 8k), I]
2: h : Grid[(2k, 2k), 3] ResNet-18.(conv1 . bn1 . ReLU .MaxPool . layer1)(img)
3: h0 : Grid[(2k, 2k), I] map(enc,h)
4: return maxPool(h0, (2k, 2k)! (k, k))

5: function Build-Graph(h : Grid[(k, k), I]) : G[I, I]
6: g  newGraph(nodes = {(y, x) | y, x 2 [1..k]})
7: for (y, x) 2 [1..k]⇥ [1..k] do
8: g.nodes[(y, x)] hyx

9: g.addEdges({(y0, x0)
hyx��! (y, x) | (y0, x0) 2 getAdjacent8Cells(y, x)})

10: return g

11: function Predict-Pointers(G({hi}, {eij}) : G[On,Oe]) : Grid[(k, k), Categorical[8]]
12: . For each node, compute a weighted distribution over its in-edges.
13: ⇡i!j : R fm(max[f1(hj), f2(hi) + fe(eij)])

14: . Convert these per-node weighted distributions to a grid of categoricals
15: representing the direction {N,NE,E, SE, S, ...} of the pointed-to in-edge
16: predsyx  softmax([⇡(y0,x0)!(y,x) | (y0, x0) 2 getAdjacent8Cells(i, j)])
17: return preds

18: function Algorithmic-Module(g : G[I, I]) : G[On,Oe]
19: . A NAP or sDAB, wrapped in appropriate encoders and decoders.

20: function Warcraft-Net(img : Grid[(8k, 8k), 3]) : Grid[(k, k), Categorical[8]]
21: . Extract a k ⇥ k grid of features from the terrain map.
22: h ResNet-Feature-Extractor(obs)

23: . Generate latent grid graph from grid
24: g(in)  Build-Graph(h0)

25: . Execute algorithmic module on grid graph
26: g(out)  Algorithmic-Module(g(in))

27: . For each node, identify its optimal predecessor(s) by attending to its in-edges.
28: return Predict-Pointers(g(out))
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Algorithm 5 A pseudocode implementation of a Bellman-Ford NAP (i.e. a wrapper around an
Epd-Nap pre-trained as in Section 4.1), for use as an Algorithmic-Module in Warcraft-
Net (Algorithm 4).
Require: The following learnable functions:

encn : I ! V (in)
n := Linear dech : V (out)

n ! On := Linear
ence : I ! V (in)

e := Linear dece : V (out)
e ! Oe := Linear

1: function Nap(G({hi}, {eij}) : G[I, I]) : G[On,Oe]

2: . Map into algorithmic latent space
3: h(in)

i , e(in)ij  ench(hi), ence(eij)

4: . Execute EPD-trained NAP
5: G({h(out)

i }, {e(out)ij }) Epd-Nap(G({h(in)
i , e(in)ij }))

6: . Map out of algorithmic latent space
7: h(ret)

i , e(ret)ij  dech(h
(in)
i ,h(out)

i ), dece(e
(in)
ij , e(out)ij )

8: . Return graph
9: return G({h(ret)

i }, {e(ret)ij })

Algorithm 6 A pseudocode implementation of a Bellman-Ford sDAB, for use as an
Algorithmic-Module in Warcraft-Net (Algorithm 4).
Require: The following learnable functions:

encw : I ! R := Linear dech : R! On := Linear
encd : I ! R := Linear dece : I ! Oe := Linear

1: function sDab(G({hi}, {eij}) : G[I, I]) : G[On,Oe]

2: . Extract weights from edge features
3: wij : R encw(eij)

4: . Extract initial distances from node features
5: d(0)i : R 100 · �(encd(hi))

6: . Perform Bellman-Ford relaxations on grid graph
7: for t 1, ..., (k ⇥ k) do
8: d(t)j = min(d(t�1)

j ,mini!j(d
(t�1)
i + wij))

9: . Map final distances to latent space and return latent graph
10: return G({dech(d(k⇥k)

i )}, {dece(eij)})
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F Hyperparameters and experimental
details

In this appendix, we present hyperparameters and experimental details for each of the experi-
ments we ran.

§F.1 Evaluating correctness: training NAPs on the CLRS-30
benchmark

Evaluation metric. For both algorithms tested (BF and DFS), we use the evaluation metric of
predecessor pointer accuracy from the CLRSB. Observe that we can frame the algorithms
of BF and DFS as generating spanning trees (or forests) of their input: BF generates a shortest
path tree, where an edge u ! v is included in the tree iff it is part of some shortest path
s !⇤ u ! v, and DFS generates a predecessor forest, where an edge u ! v is included in the
tree iff it is explored by the DFS algorithm. So, for ease of evaluation, the CLRSB defines the
output of BF and DFS to be the parent arrays of their respective predecessor subgraphs (i.e. for
every node v, we predict a pointer to its parent node u, or to itself if it has none) and scores BF
and DFS performance based on the (per-node) accuracy of these predicted predecessor pointers.

Hyperparameters and training. We adopted the hyperparameters and input data distribu-
tion of [Ibarz et al., 2022], with the exception of fixing our graph size to n = 16 as opposed to
sampling this from a distribution.1

For each processor and each algorithm tested, we performed 5 training runs with different
seeds. For each run, we trained for 10,000 steps on (continuously-sampled) batches of 32
trajectories with graph size 16, using a validation set of 32 trajectories with graph size 64
to choose the highest-performing checkpoint for evaluation. We then evaluated the highest-
performing checkpoint of each run on the official CLRSB validation and test datasets (which
we converted to work with the MDARF), assessing in-distribution (graph size 16) and out-of-
distribution (graph size 64) performance respectively.

§F.2 Evaluating utility for reproduction: exploring the
VI-Implicit-Planner benchmark

§F.2.1 Training NAPs for value iteration
Input distribution. Our algorithmic inputs for this problem consist of deterministic MDPs
with per-state rewards, represented as directed graphs (V,E) (whose nodes correspond to states
and whose edges u a�! v correspond to actions a 2 A taken from state v), with a per-state reward
R(s) on each node, and the MDP discount factor � on every edge. We randomly generate MDPs
of size n by sampling |A| ⇠ Unif [1, n � 1], � ⇠ Unif [0.1, 0.9], R(s) ⇠ N (0, 1), and for each
node u, choosing a random subset of V \ {u} of size |A| as the next states for actions out of u.

1While we also tested the graph size distribution used in [Ibarz et al., 2022] (i.e. cycling through sizes
[4, 7, 11, 13, 16]), we found this did not confer the performance improvements observed by Ibarz et al. [2022].
This is likely due to the fact that the GNAL uses fully-connected graphs, and is hence at risk of overfitting to
nodes with a particular in-degree if trained on fixed-size graphs – but because we don’t use fully-connected
graphs, we’re not susceptible to this issue.
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Architecture and hyperparameters. We follow the standard EPD pipeline, as detailed in
Section 3.4. Note that, for our executor, we use a slightly older version of our MPNN: we
implemented the Triplet-GMPNN later on in the course of the project, but due to resource
constraints, we were unable to rerun all experiments in this section to adapt to this change.
Note also that, due to resource limitations, we were only able to conduct 3 training runs for this
experiment. All other hyperparameters and training conditions are as specified in Section 4.1.1.

Metrics and evaluation. Recall that our algorithmic outputs for this problem consist of, for
each node s, an optimal value prediction V ⇤(s), and a pointer to the next state t given by
s

⇡⇤(s)! t. We score VI performance based on mean-squared error between predicted and ground-
truth values averaged across every time-step of VI, and pointer accuracy between predicted and
ground-truth optimal next states, aggregating these metrics as described in Section 4.1.

Results and discussion. Observe from Figure F.1 that our trained value-iteration NAP learns
to predict the optimal next state with near-perfect accuracy both in and out of distribution.
As such, for our subsequent experiments, we chose to use the trained NAP with the best
out-of-distribution accuracy for ⇡⇤(s).

Figure F.1: A table of aggregate performance metrics for our trained value-iteration NAPs,
evaluated on both in-distribution (graph size 16) and out-of-distribution (graph
size 64) data. The checkpoint we selected for XLVIN had in-distribution accuracy
0.9961 / MSE 0.0115, and out-of-distribution accuracy 0.9917 / MSE 0.0174.

§F.2.2 Training XLVIN
Architecture and hyperparameters. Besides the changes described in Appendix E.1, unless
otherwise stated, we use the architecture and hyperparameters reported by the reproduction of
He [2022].2

Training and metrics. Recall from Appendix B that, in (policy-based) RL, the training pro-
cess consists of repeatedly using our current policy to sample a batch of trajectories, using these
to estimate the policy gradient, and updating the model’s weights based on this estimate. For
each model we explored, we assessed it over 20 training runs k, each initialised with a different
random seed; to ensure a low-data regime, each run took place over 20 batches of 5 trajectories
each. As per [Deac et al., 2021] and [He, 2022], after each batch i of training run k, we sampled
100 test trajectories and computed the average reward rk,i obtained across all trajectories. We
then report rk := maxi rk,i as the per-run maximum average reward obtained across run
k.

§F.3 Evaluating utility for research: exploring the
Warcraft-Shortest-Path benchmark

§F.3.1 Details of the optimal and tiebreaking dataset variants
For comparability, we base our dataset on that of [Vlastelica et al., 2019], consisting of 10,000
training, 1,000 validation and 1,000 test images of randomly-generated terrain maps from the

2Note that, in keeping with [Deac et al., 2021] we do not pre-train the TransE encoder and transition model,
but, in keeping with [He, 2022], we apply the TransE loss to our PPO baseline.
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Warcraft II tileset [Guyomarch, 2017].

Now, we observe that these terrain maps do not always have unique shortest paths (let alone
shortest path trees). Indeed, while Vlastelica et al. [2019] simply ignore this issue,3 we handle
it by adapting our training and evaluation metrics accordingly.

Indeed, we explore two different ways of dealing with non-unique predecessors:

Optimal variant. For each grid cell, we train via cross-entropy loss to predict a distribution
over its predecessors, with uniform weight over all optimal predecessors, and zero weight
everywhere else. We evaluate our models based on both optimal accuracy (i.e. the
percentage of predicted predecessor distributions which have an optimal pointer as their
mode), and optimal tree-accuracy (i.e. the percentage of grids for which all predicted
predecessor distributions in that grid have an optimal pointer as their mode).

Tie-breaking variant. For each grid cell, we train via cross-entropy loss to predict the optimal
predecessor, breaking ties by priority (with the highest priority predecessor being the
eastern cell, and priority decreasing clockwise). We evaluate our models based on exact
accuracy (i.e. the percentage of correctly-predicted predecessors), and exact tree-
accuracy (i.e. the percentage of trees with correctly-predicted predecessors).

As neither our sDAB nor our NAP are designed to break ties in the manner described above4,
while the optimal problem variant is easily solvable with only information about per-node dis-
tances, to solve the tiebreaking variant, our NAPs and sDABs must need to learn to distinguish
between different nodes with the same shortest path length. As such, comparing performance
across these two environments lets us explore the claim that NAR confers a particular advantage
in the case where the underlying algorithm of our problem differs slightly from our algorithmic
prior.

§F.3.2 Experimental details
Executors. Recall that the problem of Warcraft-Shortest-Path-Tree has an algorith-
mic prior towards Bellman-Ford. As such, in the following experiments, we compare the relative
performance of Warcraft-Net (Appendix E.2) when equipped with various executors with
an algorithmic inductive bias towards Bellman-Ford – specifically, the Bellman-Ford sDAB (as
described in Section E.2), and a Bellman-Ford NAP (as trained in Section 4.1). For our exper-
iments, we chose to use the NAP with the highest test pointer accuracy; this NAP achieved
a pointer accuracy of 0.9941 in-distribution (on graphs of size 16), and a pointer accuracy of
0.9561 out-of-distribution (on graphs of size 64).

Hyperparameters and training. For each model, across each of our two environments, we
performed 5 training runs with different seeds. For each run, we adopted the hyperparameters
and training regime of Vlastelica et al. [2019], training for 50 epochs with batch size 70 and
learning rate 5⇥10�4, and evaluating on a validation set of size 1,000 after every epoch to choose
the highest-performing checkpoint for evaluation. We then evaluated the highest-performing
checkpoint of each run on the test sets of [Vlastelica et al., 2019], assessing both in-distribution

3Note that, during training, Vlastelica et al. [2019] select a particular shortest path to supervise on for each
map, and during evaluation, they score models based on whether or not their predicted shortest path is
optimal. This can potentially lead to performance issues if the shortest path on which we supervise is
selected in a deterministic way: in particular, the model may try to learn the algorithm for choosing the
exact shortest path in specific cases, at the cost of decreasing its overall performance at choosing an optimal
path.

4Indeed, our sDAB only outputs per-node shortest path lengths, and while the NAP we use (i.e. the Bellman-
Ford NAP from Section 4.1) was trained with supervision on both per-node shortest path lengths and
predecessor pointers, as all edges had weights uniformly randomly sampled from [0, 1], it never learned to
perform tie-breaking.
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(tree size 12 ⇥ 12) and out-of-distribution (tree size 18 ⇥ 18) performance in terms of either
tree-accuracy or optimal tree-accuracy as appropriate.5

Note that, while in principle we should run our executors for |V | = 144 steps, in order for
Bellman-Ford to converge, we need only apply our executors for n steps, where n is the max-
imum number of edges in any shortest path from the root node. As such, due to compute
limitations, we only apply our executors for 45 steps, the maximum number of edges in any
shortest path from the root node across all our training and test data.

Performance evaluation. For this experiment, as in Section 4.2, we report model performance
through bootstrapped 95% CIs for mean tree-accuracy (or optimal tree-accuracy), and we
compare models through bootstrapped 95% CIs for probability-of-improvement. Observe that,
as we collect n = 15 runs, we have

�
15+15�1

15

�
= 7.8 ⇥ 107 possible bootstrap resamples, so we

have sufficient data for bootstrap resampling to be meaningful.

5Note that, due to limitations of the ResNet-18 architecture, as per [Vlastelica et al., 2019], we are unable to
evaluate its out-of-distribution performance.
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G An illustration of weight matrices
from a learned pDAB-Warcraft-Net

(a) Initial weight matrices (wij) (b) Initial distance matrices (d(0)ij )

(c) Final distance matrices (d(k⇥k)
ij )

Figure G.1: The inputs and outputs to each of the 64 Bellman-Ford instances within our pDAB,
when run on the Warcraft terrain map analysed in Section 4.3.4, presented as
(individually-scaled) heatmaps. Each cell (i, j) corresponds to the learned input /
output for the 8i+ jth Bellman-Ford instance in our pDAB.
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