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Abstract

Balanced allocations under incomplete information:
New settings and techniques
Dimitrios Los

In the balanced allocations framework, there are m balls to be allocated into n bins with the aim
of minimising the maximum load of any of the bins, or equivalently minimising the gap, i.e., the
difference between the maximum load and the average load. In this dissertation, we focus on the
heavily-loaded case where m≫ n, which tends to be more challenging to analyse.

In a decentralised setting, the simplest process is ONE-CHOICE, which allocates each ball to a bin
sampled uniformly at random. It is well-known that w.h.p. Gap(m) = Θ(

pm
n ·log n) for any m≫ n. A

great improvement over this is the TWO-CHOICE process [18, 99], which allocates each ball to the
least loaded of two bins sampled uniformly at random. Berenbrink, Czumaj, Steger, and Vöcking [29]
showed that w.h.p. Gap(m) = log2 log n+Θ(1) for any m ⩾ n. This improvement is known as the
“power of two choices”. It has found several applications in hashing, load balancing and routing;
and its importance was recently recognised in the 2020 ACM Theory and Practice Award [17].

In this dissertation, we introduce a set of techniques based on potential functions. These enable
us to analyse (both in terms of gap and load distribution) a wide range of processes and settings in
the heavily-loaded case and to establish interesting insights in the balanced allocations framework:

• We analyse variants of the TWO-CHOICE process which trade sample efficiency, completeness of
information and gap guarantees. For the (1+β)-process which mixes ONE-CHOICE and TWO-
CHOICE with probability β ∈ (0, 1], we prove tight bounds for small and large β , extending
the results of Peres, Talwar and Wieder [152]. Another sample efficient family is that of
TWO-THINNING processes, which allocate to the two sampled bins in an online manner. For
TWO-THINNING processes that use as a decision function thresholds relative to the average
load or thresholds in the rank domain, we establish tight bounds and also resolve a conjecture
by Feldheim and Gurel-Gurevich [75]. We also quantify trade-offs for two-sample processes
between the number of queries and the gap bound, establishing a “power of two queries”
phenomenon.

• We analyse the TWO-CHOICE process with random, adversarial and delay noise, proving tight
bounds for various settings. In the adversarial setting, the adversary can decide in which of
the two sampled bins the ball is allocated to, only when the two loads differ by at most g. The
analysis of this setting implies bounds for settings with random noise and delay.

For the setting where load information is updated periodically every b steps, for b = n we
tighten the bound of [28] to Θ

�

log n
log log n

�

and prove that TWO-CHOICE is optimal in this setting
for any b ∈ [n · e− logc n, n log n] for any constant c > 0. For b ∈ [n log n, n3], we show that
TWO-CHOICE achieves w.h.p. a Θ(b/n) gap, while surprisingly the (1+β)-process with appro-
priately chosen β achieves w.h.p. a Θ(

p

b
n ·log n) gap, which is optimal over a large family of

processes. This proves that in the presence of outdated information, less aggressive strategies
can outperform the greedy processes (such as TWO-CHOICE), which has been empirically ob-
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served in the queuing setting for centralised processes since 2000 [58, 134], but to the best of
our knowledge has not been formally proven.

• Next we analyse TWO-CHOICE in the graphical setting, where bins are vertices of a graph and
each ball is allocated to the lesser loaded of the vertices adjacent to a randomly sampled edge.
We extend the results of Kenthapadi and Panigrahy [100] proving that for dense expanders
in the heavily-loaded case the gap is w.h.p. O(log log n). In the presence of weights, we make
progress towards [152, Open Problem 1] by proving that for graphs with conductance φ, the
gap is w.h.p. O(log n/φ).

• Further, we introduce and analyse processes which can allocate more than one balls to a
sampled bin. We prove that these processes achieve w.h.p. an O(log n) gap (which also applies
for any d-regular graph), while still being more sample-efficient than ONE-CHOICE (“power of
filling”).

• For the MEMORY process that can store bins in a cache, we generalise the O(log log n) gap
bound by Mitzenmacher, Prabhakar and Shah [136] to the heavily-loaded case and prove a
matching lower bound. Further, in the presence of heterogeneous sampling distributions, we
establish a striking difference between TWO-CHOICE (or even d-CHOICE with d = O(1)) and
MEMORY, showing that for the later the gap is bounded, while for the former it is known to
diverge [176] (“power of memory”).
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A note to the reader

The dissertation is organised mainly around the analysis techniques:

• Chapter 1 outlines these techniques, presents the processes and settings, and summarises the
main results obtained.

• Chapter 2 gives the formal definitions for processes and settings.

• Chapters 3 to 6 present the main analysis techniques. Some direct applications of the relevant
techniques can be found in Sections 3.2 and 5.2.2.

• Chapter 7 presents most of the results for the various processes and settings, obtained by
applying the techniques in Chapters 3 to 6 mostly as a black box.

For the first read, it is recommended to read Chapter 1 in full and Sections 2.1 and 2.2 regarding
the core definitions of balanced allocation processes. The rest of the definitions can be referred to,
on a need-to-know basis, by clicking on the process or setting name (you may find Alt + useful).
Table 2.4 gives a concise summary of the various settings. Then, we suggest to proceed by reading
the introductory pages from each of the Chapters 3 to 6 (and perhaps the direct applications in Sec-
tions 3.2 and 5.2.2) which present each of the techniques in more detail. Finally, read applications
of interest from Chapter 7, perhaps starting with the example in Section 7.1.

Tables A.1 to A.4 in Appendix A give a detailed summary of the lower and upper bounds obtained
in this work and those in related work. You may also find the index useful for looking up definitions
and results.

A high-level visual introduction to balanced allocations and the results obtained in this thesis
can be accessed in the following link:

dimitrioslos.com/phd-thesis
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INTRODUCTION

1.1 Balanced allocations

In the sequential balanced allocations framework, we are given m balls (tasks or jobs) to allocate
into n bins (servers or machines) indexed by the set [n] := {1, . . . , n}. Let x t

i be the load of the
i-th bin after the t-th ball has been allocated. The goal is to minimise the maximum load after
allocating m balls, i.e., minimise maxi∈[n] xm

i , which is equivalent to minimising the gap, where
Gap(m) =maxi∈[n]

�

xm
i −

m
n

�

(see Fig. 1.1).

1 2 3 4 5 6 7 8

Gap
Max. Load

m
n

Figure 1.1: Example of a load vector xm = (4, 2,0, 2,5, 3,4,0) for n= 8 bins and m= 20 balls.

In a centralised setting, this problem is easy to solve using ROUND-ROBIN allocation, i.e., allocat-
ing each ball to the least loaded bin and breaking ties arbitrarily. However, in a decentralised setting,
we have to consider processes that assume less coordination between the bins. This modelling as-
sumption makes this framework applicable to hashing [177], load balancing [137] and several other
areas (see Section 1.5 for further applications).

The simplest such process is the ONE-CHOICE process, where each ball is allocated to a bin
chosen uniformly at random. In the lightly-loaded case, i.e., when m = n, it is well established that
w.h.p.1 the gap is Θ

�

log n
log log n

�

[89] and in the heavily-loaded case, i.e., when m≫ n w.h.p. the gap is
Θ
�
p

m
n ·log n

�

[157].

Power of two choices. A great improvement over ONE-CHOICE is the TWO-CHOICE process, where
for each ball two bins are sampled at random and the ball is allocated to the lesser loaded of the
two. This process has been experimentally studied in load balancing since at least 1986 in the
work by Eager, Lazowska and Zahorjan [68], but was not rigorously analysed until the work by
Azar, Broder, Karlin and Upfal [18] (and implicitly by Karp, Luby, and Meyer auf der Heide [99])
who showed that TWO-CHOICE has w.h.p. a gap of log2 log n+Θ(1) in the lightly-loaded case. This
is exponentially better than that of ONE-CHOICE. Berenbrink, Czumaj, Steger and Vöcking [29]
extended the analysis to the heavily-loaded case, proving that w.h.p. the gap remains log2 log n +
Θ(1). Here the improvement is even more dramatic, as the bound on the gap does not depend on
m, as opposed to ONE-CHOICE. If instead, for each ball we sample d bins, then w.h.p. the gap is
logd log n+Θ(1). We also remark that the heavily-loaded case is much more challenging to analyse,
because m being unbounded means that with very high probability we will encounter arbitrarily

1In general, with high probability refers to probability of at least 1− n−c for some constant c > 0. For brevity, we may
say gap bound and by this we mean a w.h.p. bound on the gap of the process in question.
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bad configurations and so the analysis needs to demonstrate that we are always able to recover
from these.

The practical significance of the “power of two choices” was recognised in the 2020 ACM Paris
Kanellakis Theory and Practice award [17]:

“[...] it is not surprising that the power of two choices that requires only a local decision
rather than global coordination has led to a wide range of practical applications. These
include i-Google’s web index, Akamai’s overlay routing network, and highly reliable dis-
tributed data storage systems used by Microsoft and Dropbox, which are all based on vari-
ants of the power of two choices paradigm. There are many other software systems that use
balanced allocations as an important ingredient.”

Motivation for variants and settings. The sequential balanced allocation setting makes several
simplifying assumptions compared to real-world applications, giving rise to the following important
questions:

1. What if we cannot always access both samples? Can we relax the coordination required by the
two sampled bins?

2. What if the reported load of a bin at time t is outdated, e.g., the reported load might be as
small as the load at an earlier time t −τ for some parameter τ?

3. What if the reported load of a bin at time t is subject to some adversarial (or random) noise,
e.g., the reported load of a bin might be an adversarial (or random) perturbation from the
exact load within some range g?

For these reasons, TWO-CHOICE has been studied in various settings, and several variants of this
process have been proposed. Notably, the Paris Kanellakis award mentions that practical adaptations
are “based on variants of the power of two choices paradigm”.

The main focus of this dissertation is to address these questions for TWO-CHOICE and other
processes, by developing the necessary analysis toolkit; and also to devise processes that overcome
limitations of TWO-CHOICE. Below, we will provide a brief overview of the variants and settings we
study, and then summarise our results. Additional related work will be presented in Section 1.5.

Variants of TWO-CHOICE. Mitzenmacher [131] introduced the
OnePlusBeta–process, which with probability β it performs TWO-CHOICE and with probability 1−β
it performs ONE-CHOICE. Peres, Talwar and Wieder [152] showed that this process w.h.p. achieves
an O((log n)/β + log(1/β)/β) gap in the heavily-loaded case, which is tight for any poly(n−1) ⩽
β ⩽ 1 − ε, for any constant ε ∈ (0, 1). This process has the advantage that it does not make use
of the second sample in every step, leading to the improved sample efficiency of 1+ β samples per
allocation, while maintaining a bounded gap.

Another family of processes that improve on the sample efficiency of TWO-CHOICE is that of d-
THINNING2 processes. Here, for each ball, up to d bins may be sampled and the decision on whether
to accept or reject a bin is made in an online manner. This process was empirically studied by
Zhou [180] and only recently, Feldheim and Gurel-Gurevich [75] proved that the asymptotically
optimal gap for TWO-THINNING is Θ

�r

log n
log log n

�

in the lightly-loaded case. They also conjectured that
this bound extends to the heavily-loaded case. Compared to TWO-CHOICE, this process has the
additional advantage that it does not require to “hold” the two bins until the allocation is completed,
i.e., until it receives both reported loads, and so can perform allocations independently at each server
(see Fig. 1.2). Particularly attractive are the RELATIVE-THRESHOLD( f (n)) processes, where at step
t ⩾ 0, the decision function is a threshold t

n + f (n), for some offset function f : N→ Z. This means

2We use red colour for concrete processes, blue for family of processes, and orange for settings. The distinction between
the first two is often blurry. The hyperlink on the process name redirects to the formal definition of the process.
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𝑖1 𝑖2

Load? Load?

Allocate

TWO-CHOICE

𝑖1 𝑖2

Allocate
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𝑡 < 𝑓𝑡
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TWO-THINNING
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𝐴1
𝐴2

𝐵1 𝐵2

𝐶

Figure 1.2: (left) The three stages A, B, C for allocating a request with the TWO-CHOICE process,
which assumes that no other request is being allocated to the two sampled bins (so the two bins
are being “held” until the allocation is complete). (right) The (at most) two stages for allocating a
request with a TWO-THINNING process with threshold f t . Here, none of the bins needs to be “held”.

that upon receiving a ball, the bin can decide whether to accept the ball or forward it to another
random bin, requiring just an estimate for the average ⌈t/n⌉, which changes only every n allocations.

A variant of d-CHOICE with memory was presented in [136, 166]. In the (d, M)-MEMORY process,
in addition to the d samples taken for each ball, the process can cache M bins and use them in future
allocations. In [136], for M = d = 1, it was shown that in the lightly-loaded case this process has
w.h.p. a gap of logφ log n+Θ(1), where φ = 1+

p
5

2 is the golden ratio.

Settings. To model outdated information, Mitzenmacher [134] and Dahlin [58] introduced the
b-BATCHED setting (also called periodic bulletin model), where the load of the bins is updated every
b steps (Fig. 1.3). They used a fluid-limit approximation and empirical studies to observe that when
b is large, increasing d in the d-CHOICE process leads to a worse gap. This may seem counter-
intuitive given that, for b = 1 (no delay), d-CHOICE is the optimal out of all processes that use d
samples for each allocation (Corollary 2.7). The only rigorous bound for the b-BATCHED setting
was given by Berenbrink, Czumaj, Englert, Friedetzky and Nagel [28], who proved that for TWO-
CHOICE and b = n, w.h.p. the gap is O(log n) in the heavily-loaded case. A related setting where
balls are again allocated in batches, but some of them are also processed/removed, was studied
in [31] and in the Repeated Balls-into-Bins setting [23, 45–47]. The question of which processes
perform well under outdated information has also been empirically investigated in the queuing
setting [12, 82, 106, 175]. In particular, Whitt [175] states the following regarding optimal rules:

“We have shown that several natural selection rules are not optimal in various situations,
but we have not identified any optimal rules. Identifying optimal rules in these situations
would obviously be interesting, but appears to be difficult. Moreover, knowing an optimal
rule might not be so useful because the optimal rule may be very complicated.”

Alistarh, Brown, Kopinsky, Li and Nadiradze [7] investigated an adversarial version of TWO-
CHOICE, called the g-BOUNDED process, where for each ball two bins are sampled, and if their load
difference is at most g, then the ball is allocated to the heavier bin; otherwise, it is allocated to the
lesser loaded bin (Fig. 1.4). This process was used to analyse relaxed concurrent data structures,
such as the multi-counter.

Wieder [176] investigated the d-CHOICE process where the bins are sampled according to a
skewed distribution. They proved that the O(log log n) gap bound remains, as long as the probabil-
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Figure 1.3: An instance of the b-BATCHED

process for b = n. The b shaded balls are all
allocated simultaneously.

i1 i2

2 ≤ g

Figure 1.4: An instance of the g-BOUNDED

process for g = 3. The two sampled bins i1
and i2 have a load difference of 2 and hence
the adversary can force the (shaded) ball to
be allocated to the heavier bin.

ity si of sampling a bin i ∈ [n] satisfies 1
an ⩽ si ⩽

b
n for some constants a := a(d) and b := b(d),

otherwise the gap may diverge. A related setting is the GRAPHICAL setting (or graphical allocations),
where the bins are vertices of a graph G and each ball is allocated to the least loaded of the two adja-
cent bins of an edge sampled uniformly at random. Kenthapadi and Panigrahy [100] recovered the
O(log log n) bound on expander graphs in the lightly-loaded case and [152] proved an O(log n/φ)
bound for graphs with conductance φ in the heavily-loaded case. Bansal and Feldheim analysed
a sophisticated algorithm that achieves a poly-logarithmic gap on sparse regular graphs [20], and
Greenhill, Mans and Pourmiri studied graphical allocation on dynamic hypergraphs [90].

The WEIGHTED setting has also been studied for several processes. In particular, the bounds
obtained for a large family of processes in [152] also hold for weights sampled from distributions
with finite moment generating functions (MGFs). Talwar and Wieder [169], proved tight o(log n)
bounds for d-CHOICE for a wide class of weight distributions satisfying some mild conditions on their
second and fourth moments. A model with heterogeneous bin capacities was studied by Berenbrink,
Brinkmann, Friedetzky and Nagel [27], who showed that the gap bound of logd log n+O(1) for d-
CHOICE continues to apply (see also [30, 32, 129]).

1.2 Main results and new processes

In this section, we state the main results of this work. We develop a set of proof techniques based
on potential functions and use them to analyse numerous processes in the heavily-loaded case.
These techniques allow us to prove new results for existing processes in various settings, develop
new processes and new settings, and obtain insights into balanced allocations, which could also be
useful in real-world settings.

1.2.1 Outdated information settings

We begin by stating our results for settings with outdated information. For TWO-CHOICE in the b-
BATCHED setting with b = n, we tighten the bound by [28] from O(log n) toΘ

�

log n
log log n

�

, which matches
the gap of ONE-CHOICE with n balls. We extend this to show that for any b ∈ [n · e− logc n, n log n], it
follows the gap of ONE-CHOICE with b balls and, hence, it is asymptotically optimal over all processes
sampling two bins for each ball (Section 7.4.3). We also show that these bounds hold in a more
relaxed setting, which we call the τ-DELAY setting, where, once a bin is sampled, an adversary
can choose to report the load of the bin in any of the last τ steps (see Fig. 1.5). Therefore, τ-DELAY

subsumes the b-BATCHED setting for b = τ and also relaxes the requirement that all bins synchronise
their loads at the same step.
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t−τ t−1
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Bin i2 is allocated

Figure 1.5: The load evolution of the two sampled bins i1 and i2, and two adversaries G1 and G2
reporting different bin loads (shown in yellow), forcing a different allocation for TWO-CHOICE in
the τ-DELAY setting (with τ = 7). The adversaries can report any of the non-shaded loads for the
allocation of the t-th ball.

On the contrary, for b ∈ [ω(n log n), n3], we show that TWO-CHOICE has w.h.p. a Θ
� b

n

�

gap and
that increasing the number of choices d in the d-CHOICE may lead w.h.p. to a worse gap, confirming
the empirical observations of [58] and [134]. We also prove the surprising fact that the
OnePlusBeta–process with an appropriate choice of parameter β , which is the mix of ONE-CHOICE

and TWO-CHOICE, achieves the asymptotically optimal Θ
�p

b
n ·log n

�

gap for all processes, giving a
roughly quadratic improvement over TWO-CHOICE. These bounds also extend to the WEIGHTED

setting and apply to a large family of processes (Section 7.5).

1.2.2 Adversarial and random noise settings

Next, we analyse the additive adversarial setting g-ADV for TWO-CHOICE, where an adversary can
influence the allocation decision if the loads of the two sampled bins differ by at most g. In Sec-
tion 7.4.1, we show that for any adversary, w.h.p. the gap of this process is

O
�

g +
g

log g
· log log n

�

.

To better understand this bound, we see that for g = Θ(1), we recover the O(log log n) gap bound
for TWO-CHOICE and for g = Ω(polylog(n)) the bound grows linearly in g. For ω(1) = g =
o(poly(log n)), it grows sublinearly in g. We show this bound is tight for the g-BOUNDED process,
improving on the O(g log(ng)) bound by [7]. We also show that this bound is tight for a weaker ver-
sion of this process, namely, the g-MYOPIC-COMP process, where the adversary allocates randomly
whenever the two loads are close (Appendix C.2).

This analysis of the general g-ADV setting allows us to obtain tight (or nearly tight) bounds for
a large number of interesting processes and settings, including TWO-CHOICE with random additive
noise and the aforementioned b-BATCHED and τ-DELAY settings (see Section 7.4.3).

1.2.3 Thinning processes

Another main focus of our work are TWO-THINNING processes. For these processes, we disprove the
conjecture by Feldheim and Gurel-Gurevich [76, Open Problem 1.3], claiming that the O

�r

log n
log log n

�

gap bound extends to the heavily-loaded setting. We do this by showing that any TWO-THINNING

process w.h.p. has an Ω(
p

log n) gap at m = Θ(n
p

log n) and an Ω
� log n

log log n

�

gap at least once in an

interval of length Θ(n log2 n) (see Appendix C.3).

15



i1 i2
f4

f3

f2

f1

f0

i1 i2
f4

f3

f2

f1

f0

Figure 1.6: Two instances of a 3-THRESHOLD( f1, f2, f3) process and its interpretation as TWO-
CHOICE with incomplete information, being able to distinguish two bins iff they are in a different
“load band” as defined by the thresholds. (Left): The loads of the two bins are in different bands
and so the process allocates to the lesser loaded bin. (Right): The loads of the two bins are in the
same band and so the process cannot distinguish between the two bins, so it allocates randomly.

Further, we introduce two families of TWO-THINNING processes, namely the RELATIVE-THRESHOLD

and the QUANTILE processes. In the RELATIVE-THRESHOLD( f (n)) process, the t-th ball is allocated
to the first bin sample if its load is at most t

n + f (n), otherwise, it is allocated to the second sample.
In the QUANTILE(δ) process, a ball is allocated to the first bin sample if the rank of the sampled bin
in the sorted load vector is greater than δn.

For two specific instances of these processes MEAN-THINNING (= RELATIVE-THRESHOLD(0)) and
MEDIAN-QUANTILE (= QUANTILE(1/2)), we prove that w.h.p. the gap is Θ(log n) in the heavily-
loaded case. As a corollary for the analysis of the MEAN-THINNING process, we obtain tight bounds
for any RELATIVE-THRESHOLD( f (n)) process with an offset f (n) = Ω(log n) (see Section 5.2.2).

Subsequently, it was shown by Feldheim, Gurel-Gurevich and Li [76] that there is a TWO-THINNING

process whose decisions depend on the entire history of the process and which w.h.p. achieves the
optimal O

� log n
log log n

�

gap, matching our lower bound. We complement these results by showing that

the more lightweight QUANTILE
�

(log log n)2

log n

�

process also achieves this optimal gap (see Section 7.2.3).
Furthermore, we consider extensions of the QUANTILE and RELATIVE-THRESHOLD processes, the

k-QUANTILE(δ1, . . . ,δk) and k-THRESHOLD( f1, . . . , fk) processes. In these processes, two bins are
sampled and their loads can be distinguished if they appear in different bands of the quantile do-
main, i.e., (0,δ1n], . . . , (δkn, 1], or of the load domain, i.e., (∞, f1], . . . , ( fk−1, fk] respectively (see
Fig. 1.6). These can be interpreted as a version of TWO-CHOICE with incomplete information. For
any 1 ⩽ k = O(log log n), we show that for some choice of k quantiles, the k-DENSE-QUANTILE and
for some choice of k offsets, the k-DENSE-THRESHOLD process achieves w.h.p. an O(k · (log n)1/k)
gap (see Section 7.2). For k = 2, this establishes almost a quadratic improvement in the gap over
k = 1. We call this the “power of two queries” phenomenon, extending the results of [97] to the
heavily-loaded case. By majorisation, we also obtain bounds for the
OnePlusBeta–process for β close to 1 (see Section 7.3.2), recover the O(log log n) bound for TWO-
CHOICE, and obtain near-tight bounds for d-THINNING (see Section 7.3). Further, we obtain bounds
for TWO-CHOICE in the GRAPHICAL setting, which as a special case extends the Θ(log log n) bound
for graphs with poly(n) expansion by [100] to the heavily-loaded case.

1.2.4 Additional processes

Power of filling. We investigate processes that can allocate more than one ball at a single step.
In particular, we introduce the TWINNING process, which samples one bin per step and allocates
two balls if the load of the bin is at most the average (underloaded); otherwise allocates one ball.
Extending this idea further, we analysed the PACKING process, which allocates as many balls to un-
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derloaded bins as to make the bin overloaded (just by one ball). For both processes, we proved3 a
Θ(log n) gap in the heavily-loaded case (Corollary 5.12), demonstrating a different way for main-
taining balanced allocations, while at the same time being more sample efficient than ONE-CHOICE

and also applicable to the GRAPHICAL setting for any d-regular graph.

GRAPHICAL setting. For the GRAPHICAL setting, we make progress towards [152, Open problem
1] by showing that the bounds hold even in the presence of weights sampled from a distribution
with finite MGFs (see Section 7.6.1).

OnePlusBeta–process. In addition to the aforementioned bounds, for the (1+ β)-process with β
close to 1, we prove a tight bound for β = poly(n−ω(1)) (see Section 3.2.1). Therefore, we obtain
an almost complete characterisation for the gap of this process for any β ∈ (0, 1].

Memory. Finally, we analysed the MEMORY process in the heavily-loaded case and showed that it
achieves a Θ(log log n) gap even in the presence of arbitrary constant imbalance in the bin sampling
distribution S, i.e., S satisfying a

n ⩽ Si ⩽
b
n for each bin i ∈ [n]. This is in stark difference to the

d-CHOICE process for d = O(1), where for some sufficiently large (constant) imbalance, the gap
becomes Ω(

p

m
n ·log n) (see Section 7.7). We complement our results by proving an Θ(log n) gap for

MEMORY where the cache resets every d steps, thus demonstrating the robustness of MEMORY.4

1.2.5 Published papers

The work presented in this dissertation is based on the following published papers:

• Dimitrios Los and Thomas Sauerwald. 2022. Balanced Allocations with Incomplete Informa-
tion: The Power of Two Queries. In 13th Innovations in Theoretical Computer Science Confer-
ence (ITCS’22). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pages 103:1–103:23. [All
results]

• Dimitrios Los, Thomas Sauerwald, and John Sylvester. 2022. Balanced Allocations: Caching
and Packing, Twinning and Thinning. In 33rd Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA’22). SIAM, pages 1847–1874. [Partial: Results for MEAN-BIASED processes
and proofs outlined]

• Dimitrios Los and Thomas Sauerwald. 2022. Balanced Allocations with the Choice of Noise.
In 41st Annual ACM-SIGOPT Principles of Distributed Computing (PODC’22). ACM, pages
164–175. [All results]

• Dimitrios Los and Thomas Sauerwald. 2022. Balanced Allocations in Batches: Simplified
and Generalized. In 34th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA’22). ACM, pages 389–399. [All results]

• Dimitrios Los and Thomas Sauerwald. 2023. Tight Bounds for Repeated Balls-Into-Bins. In
40th International Symposium on Theoretical Aspects of Computer Science (STACS’23), Vol. 254.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pages 45:1–45:22. [None]

• Dimitrios Los, Thomas Sauerwald, and John Sylvester. 2023. Balanced Allocations with Het-
erogeneous Bins: The Power of Memory. In 34th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’23). SIAM, pages 4448–4477. [Results and proofs outlined]

3Due to space constraints the proof of PACKING is omitted. It can be found in [117, Section 5].
4Due to space constraints, the proofs for MEMORY are only outlined. These can be found in [118].
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• Dimitrios Los and Thomas Sauerwald. 2023. Balanced Allocations in Batches: The Tower
of Two Choices. In 35th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA’23). ACM, 51–61. [Partial: Proofs for tighter bounds omitted]

Our paper on noisy processes [113] was awarded the "Best Student Paper Award" at PODC
2022 [6] and was one of the two papers of the conference to be invited to the Journal of the ACM.

1.3 A brief overview of the techniques

We obtain most of the aforementioned results by using a set of techniques on aggregate functions
of the load vector, the so-called potential functions.

We start with some (necessary) preliminary definitions, which we revisit in more detail in the
beginning of Chapter 2. Each process, based on its history Ft (which includes the allocation of
the t-th ball), induces a probability allocation vector qt , whose i-th entry gives the probability to
allocate the (t + 1)-th ball to bin i. For some processes, such as TWO-CHOICE, the sorted probability
allocation vector eqt , whose i-th entry gives the probability to allocate to the i-th most loaded bin is
time-homogeneous (modulo moving probability between bins with the same load; see Theorem 2.1).
For instance, for TWO-CHOICE, the sorted probability allocation vector is given by

eqt
i :=

2i − 1
n2

, for any i ∈ [n],

and for the (1+ β)-process with β ∈ [0,1],

eqt
i := β ·

2i − 1
n2

+ (1− β) ·
1
n

, for any i ∈ [n].

A particularly “nice” family (we shall soon explain why) of eqt vectors are the ones that are (i)
non-decreasing (so, there is a larger probability to allocate to lighter bins) and for which (ii) there
exists a constant δ ∈ (0, 1) and a not-necessarily constant ε ∈ (0, 1) such that

eqt
i ⩽

1− ε
n

, for any i ⩽ nδ,

meaning that there is a significant probability bias to allocate away from heavy bins. For instance, for
TWO-CHOICE one can pick δ = 1/4 and ε= 1/2, and for the (1+β)-process, δ = 1/4 and ε= β/2.

The hyperbolic cosine potential. Peres, Talwar and Wieder [152] used the hyperbolic cosine
potential, defined for some smoothing parameter γ=O(1) as

Γ t := Γ t(γ) :=
n
∑

i=1

�

eγ(x
t
i −t/n) + e−γ(x

t
i −t/n)

�

=
n
∑

i=1

2 · cosh
�

γ · (x t
i − t/n)

�

.

If at some step t ⩾ 0, we have that Γ t = poly(n), then this implies that Gap(t) =O
� log n
γ

�

. In [152],
they showed that the second term is necessary to deduce the following drop inequality when γ =
O(ε), for any step t ⩾ 0 (and for any history of the process Ft):

E
�

Γ t+1
�

� Ft
�

⩽ Γ t ·
�

1−
κ1

n

�

+κ2,

for some not necessarily constants κ1 := κ1(γ,ε) > 0 and κ2 := κ2(γ,ε) > 0. This inequality is
enough to deduce (using simple induction) that for any step t ⩾ 0

E
�

Γ t
�

⩽
κ2

κ1
· n.
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By Markov’s inequality and because each of the terms in the potential is positive, this implies
w.h.p. an O

� log n
ε

�

gap bound for these “nice” probability allocation vectors that we defined above. In
particular, for TWO-CHOICE this proves an O(log n) bound on the gap and for the (1+β)-process an
O
� log n
β

�

bound for any Ω(poly(n−1))⩽ β ⩽ 1− eε, for any constant eε ∈ (0,1). For β = o(poly(n−1)),
the bound no longer applies as κ1/κ2 =ω(poly(n)).

Now we are ready to present the main techniques that we use in this dissertation:

Technique 1: Expectation bounds for Γ . We extend the analysis in [152] so that it works for the
b-BATCHED, WEIGHTED and GRAPHICAL settings. We also tighten the drop inequality to show that
there exist constants c1, c2 > 0, such that for sufficiently small γ > 0 and for any t ⩾ 0,

E
�

Γ t+1
�

� Ft
�

⩽ Γ t ·
�

1−
c1γε

n

�

+ c2γε.

This allows us to deduce that E
�

Γ t
�

⩽ c2
c1
·n at any step t ⩾ 0 (Theorem 3.2), which directly implies

the tight O
� log n
β

�

bound for (1+β)-process for any β ⩽ 1/2. However, even more significant is the
fact that it enables us to prove that Γ is concentrated at O(n). In turn, this allows us to characterise
the shape of the load vector w.h.p. and gives sufficient conditions for stronger potential functions to
drop in expectation, as we explain in Technique 2.

Technique 2: Analysis of super-exponential potentials. The analysis in [152] cannot be directly
used to prove o(log n) bounds on the gap, since it applies only for γ = O(1). To obtain o(log n)
bounds, we use super-exponential potential functions of the following form:

Φt := Φt(φ, z) =
n
∑

i=1

eφ(x
t
i −

t
n−z)+

for some smoothing parameter φ = ω(1), some offset z > 0, and where u+ := max{u, 0}. These
potentials may increase in expectation in some steps, even if they are large. However, we show they
satisfy the conditional drop inequality (Lemma 6.2)

E
h

Φt+1
�

�

�Ft , eKt
φ

i

⩽ Φt ·
�

1−
1
n

�

+ 2,

whenever the following event holds

eKt
φ :=

§

∀i ∈ [n]: x t
i ⩾

t
n
+ z − 1 ⇒ qt

i ⩽
1
n
· e−φ

ª

.

For the full details, see Chapter 6.

Technique 3: Concentration bounds for Γ . For some processes, like the TWO-CHOICE and the
k-DENSE-QUANTILE processes, in order to show that event eKt

φ
holds in some step t, we bound the

number of bins with a load above some offset z.
If at some step t ⩾ 0, it holds that Γ t ⩽ cn, then we have that the number of bins with load at

least t
n + z is at most

cn · e−γz .

On a very high level, for TWO-CHOICE and Φ := Φ(φ, z) with φ = Θ(1/
p

log n) and z = Θ(
p

log n),
we can show that the potential drops in expectation and by waiting sufficiently long, Φ becomes
O(n) implying an O(

p

log n) bound on the gap. The details of these derivations can be found in
Chapter 7.
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This motivates us to obtain concentration bounds for Γ (and other super-exponential potentials).
To achieve this, we use two potential functions Γ1 := Γ (γ1) and Γ2 := Γ2(γ2) with smoothing param-
eters satisfying γ2 = Θ(γ1) and γ2 < γ1. The interplay is such that when Γ1 = poly(n) (which
we obtain by Markov’s inequality), we also get that Γ t

2 cannot change much over the next step, i.e.,
�

�Γ t+1
2 − Γ t

2

�

�=O(neε), for some constant eε ∈ (0,1). These conditional bounded differences allow us to
apply a concentration inequality with a bad event to obtain that Γ2 is concentrated (see Chapter 3).

Technique 4: Layered induction over super-exponential potentials. To establish an o(log n)
bound on the gap, we define a series of exponential and super-exponential potential functions Φ j
with smoothing parameters φ1 ⩽ . . .⩽ φk. By using Techniques 1 and 3, we obtain that Φ1 =O(n),
and conditioning on that event for an O(n · polylog(n)) interval, it follows that eKφ j+1

also holds. So
eventually, Φ j+1 = Φ j+1(φ j+1, z j+1) becomes O(n), for an appropriately chosen offset z j+1. Through
this layered induction, which is over super-exponential potentials (see Fig. 1.7), we conclude that
Φm

k =O(n), thus the gap is O
�

zk +
log n
φk

�

.
This technique (with some small variations) can be used to deduce tight gaps for several pro-

cesses, including k-DENSE-QUANTILE, k-DENSE-THRESHOLD, (1+β), TWO-CHOICE in the g-ADV set-
ting and a few more (see Chapter 7).

t

⇝ Gap(m) = O(log n)

⇝ Gap(m) = O(2(log n)3/4)

⇝ Gap(m) = O(3(log n)2/4)

⇝ Gap(m) = O(4(log n)1/4)

m− 6n log4 n m− 4n log4 n m− 2n log4 n m

Φ1-recovery Φ1-stabilisation

Φ2-recovery Φ2-stabilisation

Φ3-recovery Φ3-stabilisation

Γt = O(n) ⇒ Kt
ϕ1

Φt
1 = O(n) ⇒ Kt

ϕ2

Φt
2 = O(n) ⇒ Kt

ϕ3

Γt

Φt
1 Φt

2 Φt
3

Figure 1.7: Layered induction for the k-DENSE-QUANTILE process for k = 4, showing that when the
potential at layer j satisfies Φt

j = O(n), the the drop condition at layer j + 1, i.e., eKt
φ j+1

is implied.

Then, after a recovery phase the potential Φ j+1 stabilises at O(n) and implies a tighter bound on the
gap.

Technique 5: Interplay between absolute value and quadratic potentials. For the MEAN-THINNING,
TWINNING and TWO-CHOICE in the g-ADV setting (for g ⩽ log n), the hyperbolic cosine potential
Γ := Γ (γ) (for constant γ > 0) may not satisfy the drop inequality in every step.

For example, in the MEAN-THINNING process, if almost all bins’ loads exceed the average, then
the potential Γ may increase in expectation. In more technical terms, if δt is the quantile of the
average, then Γ satisfies the drop inequality if at step t ⩾ 0, we have δt ∈ (ε, 1−ε) and we call such
step, good. So, the task becomes to show that, in a sufficiently long interval, there are sufficiently
many good steps.

To show this, we use an interplay between the absolute value and the quadratic potential, which
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are defined as

∆t :=
n
∑

i=1

�

�

�x t
i −

t
n

�

�

� and Υ t :=
n
∑

i=1

�

x t
i −

t
n

�2
.

In particular, we show that in any step t ⩾ 0,

E
�

Υ t+1
�

� Ft
�

⩽ Υ t −
∆t

n
+ 1. (1.1)

Thus, whenever ∆t = Ω(n), the quadratic potential decreases in expectation. So, there cannot be
“too many steps” with ∆t = Ω(n). In steps with ∆t = O(n), we show that there is a constant
fraction of good steps in the next Θ(n) steps, which on aggregate implies the drop inequality for
Γ . For TWINNING and g-ADV, the parameters in Eq. (1.1) are slightly different. The details can be
found in Chapter 5. In [116], we also used a similar interplay between the quadratic potential and
the number of empty bins to analyse the Repeated Balls-into-Bins setting, but the details are not
included in this dissertation.

Technique 6: A reallocation argument This is a technique for analysing a process PA with allo-
cation vector qt

A, by relating it to a process PB, whose allocation vector qt
B is obtained by moving

“small amounts” of probability between bins whose loads are “close”. We use this technique in two
parts in the analysis of the g-ADV setting: (i) for bounding the change of the hyperbolic cosine po-
tential (Section 3.3) and (ii) for bounding the change of the quadratic potential (Section 5.3); and
also to formally relate the RESET-MEMORY process to the MEMORY process (see [118, Section 4]).

Fig. 1.8 gives a diagrammatic overview of how these techniques are used to prove the bounds
described above.

1.4 Organisation

The dissertation is organised as follows:
In Chapter 2, we give general definitions for the balanced allocations processes and then proceed

to define rigorously the various processes and settings. The second part can be skipped on the first
read and used as a reference for the remaining of the dissertation.

In Chapter 3, we present the refined analysis for the bounds on the expectation of the hyperbolic
potential function used in [152] (Technique 1). Then, we apply the refined analysis to obtain nearly
tight gap bounds for a large family of processes in the b-BATCHED setting in the presence of weights.
Further, we show how to obtain tight bounds for the (1+β)-process for small β and for the WEIGHTED

GRAPHICAL setting. Finally, we present the reallocation technique (Technique 6) for obtaining an
O(g log(ng)) gap bound for the g-ADV setting.

In Chapter 4, we obtain the high probability concentration of the hyperbolic cosine potential, by
using the interplay between two hyperbolic cosine potentials (Technique 3).

In Chapter 5, we present the interplay between the absolute value and the quadratic potentials
(Technique 5) for analysing the MEAN-THINNING and TWINNING processes, and the g-ADV setting
for g ⩾ log n, giving full details only for the later.

In Chapter 6, we prove a drop inequality for the expectation of the super-exponential potentials
and prove a concentration inequality (Techniques 2 and 3).

In Chapter 7, using the lemmas from the last four chapters, we obtain o(log n) bounds for several
processes and settings, including the k-DENSE-QUANTILE, the QUANTILE(δ∗) process, the (1 + β)-
process, the k-DENSE-THRESHOLD process, the d-THINNING process and GRAPHICAL setting on dense
expanders (Technique 4).

In Chapter 8, we conclude with a summary of results and some open problems.
Finally, Appendix A gives a summary of results in table form, Appendix B lists several standard

tools that we used, Appendix C gives some techniques for proving lower bounds and (oftentimes
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tight) lower bounds for many of the aforementioned processes, and Appendix D contains some of
the details of omitted proofs. In Appendix E, we conclude we add some empirical results.
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b-BATCHED for (1+ β),
QUANTILE(δ)
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�
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n · log n

�
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b-BATCHED and WEIGHTED
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g-ADV for any g
Gap(m) =O(g · log(ng))

MEMORY

Reallocation
Argument

(Section 3.3)

(1+η)

Figure 1.8: Diagram showing the relations between the main theorems and their applications: (i) in red, the tighter analysis for the hyperbolic cosine
potential in expectation (Technique 1), (ii) in green, the different concentration bounds for the hyperbolic cosine potential and super-exponential potentials
(Techniques 2, 3 and 5), (iii) in yellow, the re-allocation argument (Technique 6), (iv) in blue, the results for the various processes and settings, obtained
using Techniques 1-6 and (v) in grey, results not presented in this dissertation.
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1.5 Further related work

Randomisation in algorithms has been studied at least since the early years of computing. There are
several standard books [67, 138, 141] covering randomised algorithms, their numerous applications
and rich theory.

Balanced allocations have been studied under several names, including occupancy problems,
balls-into-bins and urn processes. A comprehensive account of early classical occupancy results is
provided in several textbooks [59, 98, 102] and some more recent results are included in [103,
124, 151]. Recent surveys [137, 177] in balanced allocations cover several of the results within the
power of two choices paradigm.

Further processes. Several other variants of the d-CHOICE processes have been studied. In the
LEFTd process, the bins are split into d groups and each of the d samples is uniform and independent
from a different group. By breaking ties favouring bins from groups with smaller ids, Vöcking [172]
showed that this process achieves a log log n

d·log(φd )
+ Θ(1) gap, where φd is the limit of the root of the

generalised Fibonacci sequence.
Relating to d-THINNING, Czumaj and Stemann [56] analysed a large family of processes in the

lightly-loaded case, in which given a threshold for each of the steps, a bin is sampled until the load
of the sampled bin is below the threshold. Berenbrink, Khodamoradi, Sauerwald and Stauffer [33]
analysed the special case where the threshold is always

�m
n + 1

�

, meaning that the process samples
a new bin until one with load equal or below the (final) average is found.

Augustine, Moses, Redlich and Upfal [15] introduced FIRST-DIFFd where bins are sampled un-
til the first bin is found whose load differs from the first one or 2Θ(d) bins have been sampled.
Redlich [158] analysed the UNFAIR process, which always performs the opposite decisions to that
of TWO-CHOICE. Park [146] analysed the (k, d)-CHOICE process, which allocates balls to k of the d
least loaded bins, and has been used in [144].

Several other variants have been studied in the balanced allocations literature, such as alloca-
tions with feedback [49, 66], bins being points in a metric space [35, 43], bins having limited bits
to represent their load [11, 26], bins being of bounded size (including applications to Cuckoo hash-
ing) [61, 63, 73, 84, 101, 135, 145], bins being multi-dimensional vectors [13, 19, 40, 53, 143],
chains-into-bins [21, 22, 74, 150, 162], balls being allocated in parallel and communicating in
rounds to finalise allocation [3, 72, 109, 110], allocations with deletions [20, 54] and allocations
with local search [37, 38]. Related versions of these processes have also been studied in the queuing
setting [8, 42, 120, 121, 173]. Another line of research has focused on analysing balanced allocation
processes with explicit hash function families [1, 48, 50, 57, 64, 149].

Techniques. In the lightly-loaded case, there are several techniques for analysing the TWO-CHOICE

process, many of which were later applied to analyse other processes.
Azar, Broder, Karlin and Upfal [18] used the layered induction approach where inductively, in

layer j out of the total of log2 log n+Θ(1), the number of bins with load at least j are upper bounded.
In the end, a Chernoff bound is used to deduce that all bins have load at most log2 log n+O(1). This
approach has been used to prove tight lower and upper bounds for various processes [3, 54, 56, 138].

The witness tree technique [128, 165] is an encoding argument [34] which associates a bad
event (e.g., the maximum load being at least log2 log n+Ω(1)) with a combinatorial object. Then by
bounding the expected number of such objects, an upper bound on the probability for the bad event
is obtained. This technique has also been applied to analyse the LEFTd process [172], balls-into-bins
with deletions [54] and graphical allocations [90].

Mitzenmacher [133] demonstrated the use of differential equations in analysing balanced alloca-
tion processes. This technique is related to Wormald’s method [174, 178] and the fluid limit method,
and has been applied to several processes [15, 122, 130, 158].
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Another approach to analysing balanced allocation processes is through the connection to k-
orientable graphs. A graph is k-orientable if there is an assignment of each edge (u, v) to either u
or v such that no vertex is assigned more than k edges. The analysis of log2 log n-orientable graphs
gives bounds for TWO-CHOICE [44, 80] and other processes [81, 86, 108].

In the heavily-loaded case (especially prior to this dissertation), there is a smaller set of ap-
proaches to choose from.

The Markov-chain based approach by [29] shows that TWO-CHOICE has a short memory in the
sense that after a sufficiently long interval the initial configuration is “forgotten” and then uses a
layered-induction style of proof to analyse the process for poly(n) steps. This was later shown to
work for other settings with weights or heterogeneous bins [169, 176].

Potential functions, and more specifically, exponential potential functions, have been employed
for analysing a wide range of processes in settings with weights, or in graphical allocations [33, 152].

Finally, the Poissonisation technique has been commonly used to analyse ONE-CHOICE [102, 138]
and, more recently, to analyse some TWO-THINNING processes [75, 76].

Applications. Balanced allocations have numerous theoretical and real-world applications. The-
oretical applications include those in combinatorial optimisation (matching [78, 95, 140], bin-
packing [4, 179], travelling salesman problem [164], online carpooling [91]), private computa-
tion [83, 93, 94, 105, 148, 153], stabilising consensus [65], space-efficient population protocols [5,
8, 139], routing and random walks algorithms [10, 16, 87, 156], local computation [125, 159], data
structures [36, 60, 161], distributed data structures [7, 9, 88, 147, 155, 160], cake cutting [69, 70],
selfish routing [104, 127, 154], controlled random graph processes [2, 24, 25] and group test-
ing [41].

Real-world applications include: TWO-CHOICE as for looking up IPs [39, 92], garbage collec-
tion [171], duplicates detection [168], simulation on shared RAMs [55, 62, 99, 128], searchable
encryption [14, 167], and routing in interconnection networks [54, 123].
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NOTATION, PROCESSES AND SETTINGS

In Section 2.1, we introduce the notation used in all chapters of this dissertation and prove some
basic properties, which are often used in other works, but are not explicitly proven. In Section 2.2,
we define the general family of processes sampling d bins for each allocation and in Section 2.3, we
introduce a few more important tools and concepts, such as composition of processes and majorisa-
tion. In Section 2.4, we introduce numerous settings including weights, batches, delays, noise and
sampling with biased distributions. Finally, in Section 2.5, we define the remaining processes that
we will be using in the coming chapters.

Sections 2.3 to 2.5 can be skipped when reading for the first time and definitions can be referred
to when analysing the relevant processes and settings.

2.1 General notation

In this section, we introduce the notation used to define and analyse balanced allocation processes in
the various settings, including weights, noise and outdated information. For convenience, a setting
is a function that transforms a process into another process. The motivation for doing this is that
we only need to define settings once for a wide range of processes, rather than redefining them
separately for every process. This way in the coming chapters of the dissertation we will always be
analysing processes.

2.1.1 Preliminary mathematical notation

We start with some basic mathematical notation.

• The set of natural numbers is denoted by N= {0,1, 2, . . .}, the set of positive natural numbers
by N+ = {1,2, . . .} and the finite set [n] = {1,2, . . . , n}, for n ∈ N+.

• For a vector v ∈ Rn, we denote the i-th component as vi , so v = (v1, v2, . . . , vn).
• The standard vectors en

k ∈ R
n for n ∈ N+ and k ∈ [n] defined as

(en
k)i =

¨

1 if i = k,

0 otherwise,

for all i ∈ [n]. The superscript n is omitted if it can be inferred from the context. The zero
vector is denoted by 0= (0, . . . , 0) ∈ Rn.

• The vector u=
� 1

n , 1
n , . . . , 1

n

�

is called the uniform vector.
• A probability vector p ∈ Rn is a vector such that

∑n
i=1 pi = 1 and pi ∈ [0,1] for any i ∈ [n].

• We use the shorthand u ∈U [a, b] to denote sampling from the continuous uniform distribution
U[a, b]. Similarly, for a finite set S, i ∈U S denotes sampling with probability 1/|S| any of the
elements of S. More generally, u ∈p S denotes sampling element i ∈ S with probability pi for
any probability vector p.

• For random variables Y , Z we say that Y is stochastically smaller than Z (or equivalently, Y
is stochastically dominated by Z) if Pr [Y ⩾ x ]⩽ Pr [ Z ⩾ x ] for all x ∈ R.

• We write rem(u, d) for the reminder of u divided by d, for any u ∈ N and d ∈ N+.
• We define the function arg smallMi∈S f (i) to return the M items of the ordered set S that achieve

the M smallest values of the function f : S→ R, favouring smaller items in case of ties.

26



2.1.2 Balanced allocations notation

We define balanced allocations processes so that they always allocate balls sequentially. However, as
we will see in Sections 2.4.3 and 2.4.4, we can (and will use) these definitions to capture processes
and settings where balls are allocated in “parallel”.

For a sequential balanced allocation process SEQUENTIAL(qt) over n bins, we maintain the loads
of the bins at step (or time) t ∈ N in a load vector x t ∈ Rn, where x t

i gives the load of the bin
i ∈ [n]. Initially, we start with the empty load vector x0 = 0 ∈ Rn. The t-th ball for t ∈ {1,2, . . .},
is allocated using the information from steps 0,1, . . . , t − 1, (e.g., using the loads at step t − 1), to
obtain the new load vector x t := x t−1+ei t , where i t ∈ [n] is the allocated bin for the t-th ball (see
Fig. 2.1).

t = 0 t = 1 t = 2 t = 3

Ball 1 is
allocated

Ball 2 is
allocated

Ball 3 is
allocated

. . .

steps

Figure 2.1: Illustration of the relation between steps and balls. In particular, the t-th ball for
t ∈ {1,2, . . .} is allocated using information in Ft−1 (which includes the load vector x t−1 at step
t − 1).

The allocated bin i t is chosen according to the probability allocation vector (or just allocation
vector)

qt−1 = qt−1(Ft−1) =
�

qt−1
1 , . . . , qt−1

n

�

,

where qt−1
i gives the probability to allocate to bin i and Ft−1 ∈ F t−1 is the filtration of the process,

which includes the full history of the process for steps {0, 1, . . . , t − 1}. The filtration could include
more than just the allocation history Ht = {i1, . . . , i t−1} ∈ [n]t−1. For example, some THINNING

processes in [76] make decisions based on the number of times a particular bin has been sampled.
In short, a general sequential allocation process is defined as follows:

SEQUENTIAL(qt) Process:
Parameter: A function q : F t → Rn producing a .. . . . . . . . . . . . . . . . . . .probability vector in Rn.
Initialise: The load vector x0 = 0 ∈ Rn.
Iteration: At step t ⩾ 0, to allocate ball t + 1:

1. Determine the probability allocation vector qt = qt(Ft), using the full history Ft ∈ F t of
the process including step t.

2. Sample the allocated bin i t+1 ∈qt [n].
3. Set x t+1 := x t + ei t+1 .

Note that most processes for which the next allocation depends on the entire history of the
process are impractical to implement. However, this general definition will allow us to capture large
families of processes and various interesting settings.

The normalised load vector y t ∈ Rn is defined as y t
i := x t

i − x t for any i ∈ [n], where x t :=
1
n ·
∑n

j=1 x t
j is the average load at step t. For the unweighted case, we have that x t = t, but in

arbitrary weighted settings this may not hold (see Section 2.4.1). We call a bin i ∈ [n] overloaded
at step t, if y t

i ⩾ 0, otherwise we call it underloaded. Also, we define the set of overloaded bins
B t
+ at step t as

B t
+ :=

�

i ∈ [n] : y t
i ⩾ 0

	

,
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and the set of underloaded bins B t
− := [n] \ B t

+.
Any permutation ℓ : [n]→ [n], we call a labelling of the bins. We will overload notation and

allow applying a permutation on a vector z ∈ Rn such that ℓ(z) ∈ Rn and ℓ(z) j = zℓ( j).
We define the labelling st : [n] → [n] that sorts the load vector x t , i.e., x t

st (1) ⩾ x t
st (2) ⩾ . . . ⩾

x t
st (n), favouring bins with lower indices in case of a tie. We say that st( j) is the j-th most loaded

bin. We write ex t = st(x t) for the sorted load vector and ey t = st(y t) for the sorted normalised
load vector. We refer to the inverse of st as Rankt , so that ex t

Rankt (i)
= x t

i , for any bin i ∈ [n].
The maximum load of the process at step t is defined as

max
i∈[n]

x t
i = x t

st (1) = ex
t
1,

and the minimum load as
min
i∈[n]

x t
i = x t

st (n) = ex
t
n.

The gap of the process at step t is defined as the normalised maximum load, i.e., the difference of
the maximum to the average load,

Gap(t) :=max
i∈[n]

y t
i =max

i∈[n]

�

x t
i − x t�= ey t

1.

We call a process Markovian if qt(Ft) = qt(x t), i.e., the probability allocation vector depends
only on the current load vector.

A Markovian process is index-independent if for any load vector x t and any labelling ℓ

qt(ℓ(x t)) = ℓ(qt(x t)).

For example, if we define the TWO-CHOICE process to compare the loads of the two randomly sam-
pled bins and to use random tie-breaking, then it is an index-independent process, because bins
with the same load get allocated the ball with the same probability. However, if we define TWO-
CHOICE to tie break by favouring the bin with the smaller index, then the process is no longer
index-independent. We will show that these two versions are equivalent in the following sense:
Two process P and Q are called load-vector indistinguishable, if for any load vector x ∈ Rn at any
step m⩾ 0,

Pr
�

exm
P = x

�

= Pr
�

exm
Q = x

�

.

A load probability preserving transformation is a function f : (Rn,Rn) → Rn, transforming
the probability vector qt into bqt = f (x t , qt), such that for any load value v ∈ R, we have

∑

i∈[n]:x t
i=v

qt
i =

∑

i∈[n]:x t
i=v

bqt
i .

Intuitively, the function f “re-allocates” probability between bins of the same load, so the load and
probability vector pairs form equivalence classes under these transformations. For instance, for the
load vector x t = (3,4, 3,4, 6), we have that qt

1 = (0.1,0.2, 0.15,0.2, 0.45) and qt
2 = (0.08,0.15, 0.17,0.25, 0.45)

are equivalent, as one can be transformed to the other via a load probability preserving transforma-
tion that reallocates a probability of 0.02 from bin 1 to 3 (since x t

1 = x t
3 = 3) and of 0.05 from bin

2 to 4 (since x t
2 = x t

4 = 4).

Theorem 2.1. Consider a Markovian index-independent process P = SEQUENTIAL(qt) with allocation
vector qt and process Q= SEQUENTIAL(bqt) whose allocation vector bqt satisfies bqt = f t(x t

Q, qt(x t
Q)) for

some load probability preserving transformation f t at any step t ⩾ 0. Then, P and Q are load-vector
indistinguishable.
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Proof. We will define a coupling between the processes P and Q, so that the sorted load vectors of
the two processes are the same, i.e., ex t

P = ex t
Q for each step t. At step t = 0, this clearly holds as

both load vectors are empty, i.e., ex0
P = ex

0
Q = 0.

Consider an arbitrary step t ⩾ 0 and assume that ex t
P = ex t

Q. Then consider any labelling
ℓ of the bins such that ℓ(x t

P) = x t
Q. Because P is index-independent, its allocation vector is

given by ℓ(qt(x t
P)) after the relabelling ℓ. By the load probability-preserving property, i.e., bqt =

f t(x t
Q, qt(ℓ(x t

P))) and so for any load value v ∈ R

rv :=
∑

i∈[n]:(x t
P )ℓ(i)=v

qt
ℓ(i) =

∑

i∈[n]:(x t
Q)i=v

bqt
i .

Now, we define the coupling between the two processes:

1. Sample the load value of the bin to increment (not the bin itself), from the (at most) n possible
values v ∈ R each with probability rv .

2. Conditional on the load of the bin, for each of the two processes, sample the bin i t+1 to
increment. This might be different for each process, but their load values will be the same.

Hence, after incrementing a bin with the same load value, the load entries in x t+1
P and x t+1

Q will
remain the same, and so ex t+1

P = ex t+1
Q . Hence, by induction, we get the claim for all steps.

We also make the following simple observation.

Observation 2.2. For any index-independent process, it is load-vector indistinguishable regardless of
how ties are broken when sorting the load vector.

We define eqt to be the sorted probability allocation vector at step t, where eqt
i gives the prob-

ability to allocate to the i-th most loaded bin. A process is said to have a time-homogeneous
probability allocation vector if eqt = p(n), i.e., the sorted allocation vector does not depend on the
time nor on the load vector. These processes are by definition index-independent.

TIME-HOMOGENEOUS(p) Process:
Parameters: A probability vector p ∈ Rn.
Iteration: At step t ⩾ 0, the allocation vector qt satisfies

qt
i (x

t) = pRankt (i), for any i ∈ [n].

The averaging transformation A : Rn×Rn→ Rn is a special load probability preserving trans-
formation which spreads evenly the probability across bins with the same load:

(A(x t , qt))i :=
1

�

�

�

j ∈ [n] : x t
j = x t

i

	�

�

·
∑

j∈[n]:x t
j=x t

i

qt
j , for any i ∈ [n]. (2.1)

This may be viewed as some kind of randomised tie-breaking between bins with the same load.
This gives rise to the TIME-HOMOGENEOUS-WITH-RAND-TIE-BREAKS(p) process which is load-vector
indistinguishable from the respective TIME-HOMOGENEOUS(p) process in the unit weight case (as
shown in Theorem 2.1), but in parallel settings (e.g., the b-BATCHED setting) it may not be (see
Section 2.4.3).

TIME-HOMOGENEOUS-WITH-RAND-TIE-BREAKS(p) Process:
Parameters: A probability vector p ∈ Rn.
Iteration: At step t ⩾ 0, the allocation vector qt is given by the averaging transformation,

qt
i (x

t) = (A(ex t , p))Rankt (i), for any i ∈ [n].
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The simplest TIME-HOMOGENEOUS(p) process is perhaps the ROUND-ROBIN process, which has
pi = 1i=n, meaning that it allocates to a bin with minimum load and so it is the optimal process in
the unit weight case.

ROUND-ROBIN Process:
Iteration: At step t ⩾ 0, allocate to the bin with minimum load, breaking ties arbitrarily.

[time homo. prob. vector pi = 1i=n, index independent ]

2.2 Sample-based processes

2.2.1 d-SAMPLE processes

We now look at a general family of processes which includes the d-CHOICE process. In each step, it
samples d bins independently and uniformly at random (called bin samples or just samples) and
allocates to one of these using a general decision function Qt .

d-SAMPLE(Qt) Process:
Parameters:

• d: The number of bins sampled independently and uniformly at random in each step.
• Qt : F t × [n]d × [d]→ [0, 1]: The decision function, which gives the probability to allocate

to one of the d samples.
For any Ft ∈ F t and any samples j1, . . . , jd ∈ [n], it must satisfy:

∑

i∈[d]

Qt(Ft , j1, . . . jd , i) = 1.

Iteration: At step t ⩾ 0, the allocation vector induced by the decision function is given by

qt
i (F

t) =
1
nd
·

∑

j1,..., jd∈[n]

∑

k∈[d]: jk=i

Qt(Ft , j1, . . . , jd , k).

For example, the TWO-CHOICE process is a TWO-SAMPLE(Qt) process with decision function:

Qt(x t , j1, j2, i) =











1
2 if x t

j1
= x t

j2
,

1x t
j1
<x t

j2
else if i = 1,

1x t
j1
>x t

j2
otherwise.

(2.2)

Corollary 2.3. The TWO-CHOICE = TWO-SAMPLE(Qt) process is load-vector indistinguishable from the
TIME-HOMOGENEOUS(p) process with pi =

2i−1
n2 for any i ∈ [n].

Proof. We define the ÒQ= TWO-SAMPLE(bQt) process, with

bQt(x t , j1, j2, i) =























1i=1 if j1 = j2,

1Rankt ( j1)>Rankt ( j2) else if x t
j1
= x t

j2
,

1x t
j1
<x t

j2
else if i = 1,

1x t
j1
>x t

j2
otherwise.

Compared to the update function Qt of TWO-CHOICE defined in Eq. (2.2), this decision function
allocates differently iff the two sampled bins have the same load. Hence, there is a load probability
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preserving transformation between qt of TWO-CHOICE and bqt of ÒQ. In order to allocate to bin with
rank i, we need to sample that bin and any of the i − 1 bins with higher rank, so

bqt
st (i)(F

t) =
1
n2
·
∑

j1∈[n]

Qt(Ft , j1, st(i), 2) +
1
n2
·
∑

j2∈[n]

Qt(Ft , st(i), j2, 1) =
i − 1
n2
+

i
n2
=

2i − 1
n2

.

Both processes are index-independent, hence they are load-vector indistinguishable by Theorem 2.1.

2.2.2 d-CHOICE process

We start by defining the d-CHOICE process informally for any d ∈ N+.

d-CHOICE Process:
Iteration: At step t ⩾ 0, sample d bins j1, . . . , jd ∈ [n] independently and uniformly at ran-
dom. Allocate ball t + 1 to a bin jmin ∈ { j1, . . . , jd} satisfying x t

jmin
= mink∈[d] x t

jk
, breaking ties

arbitrarily.

Now, we make this definition formal by defining it as a d-SAMPLE process. This slightly more com-
plicated definition will allow us to easily define the process in different settings including weighted
balls, heterogeneous sampling distributions, noisy and outdated information (see Section 2.4).

d-CHOICE (⊆ d-SAMPLE(Qt)) Process:
Iteration: At step t ⩾ 0, the decision function to allocate ball t + 1 is given by

Qt(Ft , j1, . . . , jd , i) :=Q(x t
j1

, . . . , x t
jd

, i) :=
1x t

ji
=vmin

∑

k∈[d] 1x t
jk
=vmin

,

where vmin :=mink∈[d] x t
jk

.

Special cases: ONE-CHOICE (for d = 1), TWO-CHOICE (for d = 2)

[time homo. prob. vector pi =
� i

n

�d
−
� i−1

n

�d
, index independent, d-SAMPLE ]

We can also define d-CHOICE as the TIME-HOMOGENEOUS(p) with pi =
� i

n

�d
−
� i−1

n

�d
, for any

i ∈ [n]. As shown in Corollary 2.3, for d = 2 this process is load-vector indistinguishable from the
TWO-SAMPLE definition. This definition has the benefit of defining d-CHOICE for any d ∈ R⩾1 (not
just for d ∈ N+). In [176], this process was called GREEDY[1+ ε], where ε= d − 1.

2.2.3 d-SAMPLE-WITH-MEMORY-M processes

More generally, we define d-SAMPLE processes that can store up to M bin indices in a cache. In each
step, the process is allowed to allocate to any of the M cached bins in addition to the d sampled
bins, using some decision function Qt . The contents of the cache are c t

1, . . . , c t
M ∈ [n]∪{0}, where 0

denotes an empty cache and at the end of each step they are updated through the function U t .

d-SAMPLE-WITH-MEMORY-M(Qt , U t) Process:
Parameters:

• d: The number of bins sampled in each step.
• M : The cache size, i.e., the number of stored bin indices that can be used across steps.
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• Qt : F t × ([n] ∪ {0})M × [n]d × [M + d]→ [0,1]: The decision function, which gives the
probability to allocate to one of the caches or one of the samples.
For any Ft ∈ F t , any sampled bins j1, . . . , jd ∈ [n] and any memory contents c t

1, . . . , c t
M ∈

[n]∪ {0}, it must satisfy:
∑

i∈[M+d]

Qt(Ft , c t
1, . . . , c t

M , j1, . . . jd , i) = 1,

and for any i ∈ [M] with c t
i = 0,

Qt(Ft , c t
1, . . . , c t

M , j1, . . . jd , i) = 0,

meaning that we cannot allocate to an empty cache.
• U t : Rn×([n]∪{0})M×[n]d → ([n]∪{0})M : The update function, which given the contents

of the caches c t and the sampled bins (after the allocation), decides which bins to keep in
the cache. In particular, for any i ∈ [M],

(U t(x t+1, c t
1, . . . , c t

M , j1, . . . , jd))i ⊆ {c t
1, . . . , c t

M , j1, . . . , jd}.

Initialise: The cache c0 = 0 ∈ ([n]∪ {0})M , where 0 denotes an empty cache.
Iteration: At step t ⩾ 0,

• The allocation vector qt induced by the decision function is given by

qt
i (F

t) =
1
nd
·

∑

j1,..., jd∈[n]

∑

k∈[M]:c t
k=i

Qt(Ft , c t
1, . . . , c t

M , j1, . . . , jd , k)

+
1
nd
·

∑

j1,..., jd∈[n]

∑

k∈[d]: jk=i

Qt(Ft , c t
1, . . . , c t

M , j1, . . . , jd , M + k).

• The cache is updated using

c t+1 := U t(x t+1, c t
1, . . . , c t

M , j1, . . . , jd).

A load comparison d-SAMPLE-WITH-MEMORY-M process has a decision function which depends
only on the loads of the cached and sampled bins, i.e.,

Qt(Ft , c t
1, . . . , c t

M , j1, . . . , jd , i) :=Q(x t
c t
1
, . . . , x t

c t
M

, x t
j1

, . . . , x t
jd

, i).

An average-aware load comparison d-SAMPLE-WITH-MEMORY-M process has decision function
which may also depend on the average load

Qt(Ft , c t
1, . . . , c t

M , j1, . . . , jd , i) :=Q(x t , x t
c t
1
, . . . , x t

c t
M

, x t
j1

, . . . , x t
jd

, i).

Maintaining an estimate for the average is a less strict requirement than knowing the entire load
vector. Both these two definitions apply for d-SAMPLE processes (by setting M = 0).

2.2.4 MEMORY process

The following process was introduced in [136]. It allocates to the least loaded of the sampled and
cached bins, and then updates the cache to store the M least loaded of these.
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(d, M)-MEMORY Process (⊆ d-SAMPLE-WITH-MEMORY-M(Qt , U t)):
Parameters:

• d: The number of bins sampled in each step.
• M : The cache size.

Iteration: At step t ⩾ 0, the decision function Qt is given by

Q(x t
c t
1
, . . . , x t

c t
M

, x t
j1

, . . . , x t
jd

, i) =
1

∑

k∈[M] 1x t
c t
k
=vmin

+
∑

k∈[d] 1x t
jk
=vmin

·







1x t
c t
k
=vmin

if i ⩽ M ,

1x t
ji−M
=vmin

otherwise,

where vmin := min
�

x t
c t
1
, . . . , x t

c t
M

, x t
j1

, . . . , x t
jd

	

(with x t
0 =∞ for convenience) is the minimum

load out of the samples and cached bins at step t.
The update function, stores the M smallest of the cached and sampled bins, breaking ties by

comparing bin indices,

U t(x t+1, c t
1, . . . , c t

M , j1, . . . , jd) = arg smallMk∈{c t
1,...,c t

M , j1,..., jd}
x t+1

k .

[load comparison d-SAMPLE-WITH-MEMORY-M ]

A load-vector indistinguishable version of the special case with d = M = 1 is given explicitly below.

MEMORY Process:
Iteration: At step t ⩾ 0, sample a uniform bin i, and update its load (or of cached bin c t

1):














x t+1
i = x t

i + 1 if x t
i < x t

c t
1

(also update cache c t
1 = i),

x t+1
i = x t

i + 1 if x t
i = x t

c t
1
,

x t+1
c t
1
= x t

c t
1
+ 1 if x t

i > x t
c t
1
.

We introduce the following variant of the (d, M)-MEMORY process, where the cache resets every r
steps.

(d, M , r)-RESET-MEMORY Process (⊆ d-SAMPLE-WITH-MEMORY-M(Qt , U t)):
Parameters:

• d: The number of bins sampled in each step.
• M : The cache size.
• r: The reset period.

Iteration: At step t ⩾ 0, the decision function Qt is given as in (d, M)-MEMORY and the update
function U t is given by

U t =

¨

0M if r | t,
arg smallMk∈{c t

1,...,c t
M , j1,..., jd}

x t+1
k otherwise.

The special case of (1,1, 2)-RESET-MEMORY can be seen as a sample efficient (1+β)-process with
β = 1/2, in the sense that it makes exactly one sample per allocation instead of 1+1/2 samples (in
expectation), while still maintaining the same asymptotic gap bound of O(log n) (Theorem 7.49).
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2.3 More notation and concepts

2.3.1 Composition of processes

In [132] (and also [152]), the (1 + β)-process was defined as the process where in step t, with
probability β ∈ [0,1] we do TWO-CHOICE and with 1− β we do ONE-CHOICE.

(1+ β)-Process (= β-MIXED(TWO-CHOICE,ONE-CHOICE)):
Parameter: A probability β ∈ [0,1].
Iteration: At step t ⩾ 0, with probability β allocate via the TWO-CHOICE process, otherwise
allocate via the ONE-CHOICE process.

[time homo. prob. vector pi = β ·
2i−1

n + (1− β) · 1
n , TWO-SAMPLE ]

Here, we generalise this way of mixing processes. More concretely for any two processes P =
SEQUENTIAL(qt) andQ= SEQUENTIAL(bqt), we define the process β-MIXED(P,Q) as the SEQUENTIAL(r t)
process with

r t(Ft) := β · qt(Ft) + (1− β) · bqt(Ft).

In particular, when P and Q have time-homogeneous allocation vectors p and bp, then their compo-
sition β-MIXED(P,Q) is the TIME-HOMOGENEOUS(r) with r = β · p+ (1− β) · bp.

More generally, for N processes P1 = SEQUENTIAL(qt
1), . . . ,PN = SEQUENTIAL(qt

N ) and a proba-
bility vector (β t

1, . . . ,β t
N ), we define the (β t

1, . . . ,β t
N−1)-MIXED(P1, . . . ,PN ) process as the SEQUENTIAL(r t)

process with
r t(Ft) := β t

1 · q
t
1(F

t) + . . .+ β t
N · q

t
N (F

t).

2.3.2 Folding of a process

In some cases, it makes sense to look at a sequence of consecutive ball allocations as a single “round”
(see for example, the b-BATCHED setting or the PACKING process). Starting at step t, we define a
function f : F ×N×N→ {0,1} where f (Ft , s0, t) for t ⩾ s0 determines whether the current round
which started at s0 should end at step t. This way, all steps are assigned to a particular round. The
function Ts0

: N→ N converts steps to rounds for any step t ⩾ s0.
For convenience, we use the notation x r,1, x r,2, . . . to denote the load vector at substeps 1,2, . . .

of round r. The load vector x r,0 corresponds to that at the end of round r − 1.

2.3.3 Majorisation

We say that a vector u ∈ Rn majorises another vector v ∈ Rn, and denote it by u ⪰ v iff for all
k ∈ [n],

k
∑

i=1

ui ⩾
k
∑

i=1

vi .

We recall that a function f : Rn→ R is called Schur convex [126] if for any u, v ∈ Rn,

u⪰ v⇒ f (u)⩾ f (v).

In particular, any convex function is Schur-convex, so when ex t
P ⪰ ex

t
Q it also implies that:

1. The maximum load of P is at least that of Q.

2. The minimum load of P is at most that of Q.

3. Convex potential functions, such as the quadratic, the exponential and the hyperbolic cosine
potential are at least as large for P than for Q.
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The following result was shown in [152, Theorem 3.1].

Theorem 2.4. Consider any P = TIME-HOMOGENEOUS(p1) and Q = TIME-HOMOGENEOUS(p2) pro-
cesses, such that p1 ⪰ p2. Then, there is a coupling between the two processes such that for any step
t ⩾ 0,

ex t
P ⪰ ex

t
Q.

We will prove a slightly stronger version of this theorem where majorisation holds for the sorted
allocation vectors at any step t ⩾ 0, but they need not be time-homogeneous.

Theorem 2.5. Consider any two processes P = SEQUENTIAL(qt
1) and Q = SEQUENTIAL(qt

2) such that
for any step t ⩾ 0 and any filtrations Ft

P and Ft
Q,

eqt
1(F

t
P)⪰ eq

t
2(F

t
Q).

Then, there is a coupling such that ex t
P ⪰ ex

t
Q for any step t ⩾ 0.

Usually, when we apply this theorem at least one of the two processes is TIME-HOMOGENEOUS.
In order to prove this theorem, we will make use of the following lemma.

Lemma 2.6. For any process P = SEQUENTIAL(qt), at any step t ⩾ 0,
�

�i ∈ [n]: ex t+1
i ̸= ex

t
i

�

�= 1.

Note that this statement does not necessarily hold in the case of non-unit weights (see Fig. 2.3).

Proof. Let i = i t+1 be the allocated bin. Then, the sorted vector ex t+1 is obtained from ex t by incre-
menting the load of the bin with rank j, where j is smallest index such that ex t

j = ex
t
i (see Fig. 2.2).

j i

ex t
ex t+1

Figure 2.2: Illustration of one bin difference
between ex t and ex t+1 for the unit weights case.

i

ex t
ex t+1

Figure 2.3: Illustration that Lemma 2.6 does
not necessarily hold for non-unit weights.

Proof of Theorem 2.5. We will define a coupling between the processes P and Q, so that the sorted
load vectors of the two processes are the same, i.e., ex t

P = ex t
Q for each step t. At step t = 0, this

clearly holds as both load vectors are empty, i.e., ex0
P = ex

0
Q = 0.

Consider an arbitrary step t ⩾ 0 and assume that ex t
P = ex

t
Q. We define the coupling between the

two processes, so that ball t + 1 is allocated as follows:

1. Sample u ∈U [0, 1].

2. For process P, allocate to st
P(i1), where i1 ∈ [n] is the smallest rank such that

i1
∑

i=1

(eqt
1)i ⩾ u.

Similarly, for process Q allocate to st
Q(i2), where i2 ∈ [n] is the smallest rank such that

i2
∑

i=1

(eqt
2)i ⩾ u.
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The probability to allocate to the i-th most loaded bin in P is (eqt
1)i and to the i-th most loaded bin

in Q is (eqt
2)i . Hence, the coupling is valid. Also, because eqt

1 ⪰ eq
t
2, it follows that i1 ⩽ i2. We will

now show that for ex t+1
P := ex t

P + ei1 and ex t+1
Q := ex t

Q + ei2 , we have ex t+1
P ⪰ ex

t+1
Q .

By Lemma 2.6, only one bin changes between ex t and ex t+1. Let j1 be that bin for process P and
j2 for process Q.

Case 1 [ j1 ⩽ j2]: The prefix sums that change (by +1) for P are a superset of those in Q, so
ex t+1
P ⪰ ex

t+1
Q .

Case 2 [ j1 > j2]: Now, we need to verify that majorisation still holds for all indices in [ j2, j1].
Assume that this is not the case. Then, there exists k ∈ [ j2, j1] such that

k
∑

i=1

(ex t
P)i =

k
∑

i=1

(ex t
Q)i ,

and (ex t
P)k ⩽ (ex

t
Q)k. Also, by Lemma 2.6, we have that for ℓ ∈ ( j2, i2], (x t

Q)ℓ = z for some fixed
value z. But then we must have (ex t

P)k+1 = (ex t
Q)k+1 = z, as otherwise, (ex t

P)k+1 < (ex t
Q)k+1 and

consequently

k+1
∑

i=1

(ex t
P)i =

k
∑

i=1

(ex t
P)i + (ex

t
P)k+1 =

k
∑

i=1

(ex t
Q)i + (ex

t
P)k+1 <

k+1
∑

i=1

(ex t
Q)i ,

which would be a contradiction. Hence, (ex t
P)ℓ = z for all ℓ ∈ [k, i1], so j1 ⩽ k and so the prefix sums

match.

The following corollary states that TWO-CHOICE is optimal over all TWO-SAMPLE processes in the
unit weight case. As we shall show in Section 7.5, this is not true e.g., in the b-BATCHED setting.

Corollary 2.7. Any TWO-SAMPLE(Qt) process majorises the TWO-CHOICE process.

In general, any d-SAMPLE process majorises the d-CHOICE, but for simplicity we look at the d = 2
case.

Proof. Consider an arbitrary TWO-SAMPLE(Qt) process and let qt
P be its allocation vector. Also, let

eQ be the decision function of the TWO-CHOICE process and qt
Q its allocation vector.

We define the probability allocation vectors p0 =: eqt
P , p1, . . . , pn2 , where pi is derived from pi−1

by changing the decision for a pair of bins ( j1, j2) from Q(Ft , j1, j2, j) to eQ(Ft , j1, j2, j) (for j = 1 and
j = 2).

In the probability allocation vectors, this corresponds to (possibly) “reallocating” up to 1/n2

probability from heavier to lighter bins, so p0 ⪰ p1 ⪰ . . . ⪰ pn2 = eqQ and hence by transitivity of
majorisation eqt ⪰ bqt .

2.3.4 Conditions on probability vectors

The uniform probability vector p =
� 1

n , . . . , 1
n

�

corresponds to the ONE-CHOICE process, which has
w.h.p. Gap(m) = Ω(

pm
n log n) for large m. In [152], the authors show that if a process has a bias of

ε/n to place away from the n/4 heavier bins and towards the n/4 lighter bins, then the process has
an upper bound on the gap that does not depend on m. Here, we generalise this condition and in
Chapter 3 we will provide a tighter analysis for this family of processes.

A probability vector p is said to be (ε,δ)-biased for ε := ε(n) ∈ (0, 1) and quantile δ := δ(n) ∈
{1/n, . . . , 1}, if p is non-decreasing and

pδn ⩽
1− ε

n
.

For δ = 1/4, this condition implies the condition in [152].
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Observation 2.8. For any (ε,δ)-biased probability vector p ∈ Rn, we have that

pi ⩽
1− ε

n
, for any i ⩽ δn, and pi ⩾

1+ eε
n

, for any i ⩾ δn+ 1,

where eε= δ
1−δ · ε.

The following observation gives the worst-case (ε,δ)-biased probability vector and this simplifies
the analysis in Chapter 3.

Observation 2.9. For any (ε,δ)-biased probability vector p ∈ Rn, we have that for probability vector
q ∈ Rn, whose entries are given by

qi =

¨

1−ε
n if i ⩽ δn,

1+eε
n otherwise,

q majorises p, i.e., q ⪰ p.

We now generalise the (ε,δ)-biased condition to prefix sums. This will allow us to apply our
analysis to the GRAPHICAL setting (Section 2.4.7 and Lemma 7.40).

• Condition C1: There exist constant1 δ ∈ (0, 1) and (not necessarily constant) ε ∈ (0, 1), such
that for any 1⩽ k ⩽ δn,

k
∑

i=1

pi ⩽ (1− ε) ·
k
n

,

and, similarly, for any δn+ 1⩽ k ⩽ n,

n
∑

i=k

pi ⩾
�

1+ ε ·
δ

1−δ

�

·
n− k+ 1

n
.

• Condition C2: There exists C > 1, such that maxi∈[n] pi ⩽
C
n .

• Condition C3: There exists C > 1, such that maxi∈[n]
�

�pi −
1
n

�

�⩽ C−1
n .

Observation 2.10. Any (ε,δ)-biased probability vector satisfies condition C1 with the same δ and ε.

Proof. Since pδn ⩽
1−ε

n and p is non-decreasing, it follows that pi ⩽
1−ε

n for all 1⩽ i ⩽ δn, and thus
the prefix sum condition of C1 holds, i.e., for any 1⩽ k ⩽ δn,

k
∑

i=1

pi ⩽
1− ε

n
· k = (1− ε) ·

k
n

.

By Observation 2.8, it holds that pi ⩾
1+eε

n for any i ⩾ δn+1. So, we obtain the suffix sum condition
of C1, i.e., for any δn+ 1⩽ k ⩽ n,

n
∑

i=k

pi ⩾
1+ eε

n
· (n− k+ 1) = (1+ eε) ·

n− k+ 1
n

.

Using this observation, it is easy to verify that TWO-CHOICE, the (1+β)-process and QUANTILE(δ)
satisfy the two conditions C1 and C2.

Proposition 2.11. For any β ∈ (0, 1], the (1+β)-process satisfies condition C1 with δ = 1
4 and ε= β

2
and condition C2 with C = 2. Further, for any constant δ ∈ (0,1), the QUANTILE(δ) process satisfies
condition C1 with δ and ε= 1−δ, and condition C2 with C = 2.

1Here constant means that the quantile δ ∈ (δ1,δ2) with constant δ1,δ2 ∈ (0,1).
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2.3.5 Naming and notational conventions

Variable naming conventions:
• Bins are indexed by variables i, j, k ∈ [n].
• Time and ball indices are t, s, u. When we are aiming to prove a guarantee for a specific fixed

time, this will be denoted by m, i.e., after the m-th ball has been allocated.
• Processes without a name are denoted by P,Q,R.

Notation conventions:
• When it is not clear from the context which process P we analyse, we will write x t

P for the
load vector (and (x t

P)i for the i-th entry) and GapP(t) for the gap.
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2.4 Settings

Recall that a setting is a function that transforms a process into another process. Table 2.4 gives an
overview of the settings, along with the set of processes to which they can be applied. In the coming
chapters, whenever we do not specify the process P, it should be assumed that we are working with
P = TWO-CHOICE.

Setting Input process constraints Brief description
WEIGHTED(P,W t) P = SEQUENTIAL(qt) Balls have weights following W t .

HETEROGENEOUS(P,S t) P = d-SAMPLE-WITH-MEMORY-M(Qt , U t) Bins are sampled using S t .
b-BATCHED(P) P = SEQUENTIAL(qt) Balls are allocated in batches of size b.
τ-DELAY(P, G t) Markovian P = SEQUENTIAL(qt) Bin loads can be outdated by at most τ

steps.
g-ADV-LOAD(P, G t) Markovian P = SEQUENTIAL(qt) Each bin load can be perturbed by an

additive amount g by an adversary G t .
g-ADV-COMP(P, G t) P = TWO-SAMPLE(Qt) Decisions for bins with load difference

at most g can be altered by an adversary
G t .

ρ-NOISY-LOAD(P) Markovian P = SEQUENTIAL(qt) Bin loads are perturbed by random
amount sampled from ρ t .

ρ-NOISY-COMP(P) P = TWO-SAMPLE(Qt) ρ t(δ) gives the probability of a correct
comparison between two sampled bins
with load difference of δ.

GRAPHICAL(P, G) P = TWO-SAMPLE(Qt) The two sampled bins are adjacent ver-
tices of an edge sampled uniformly at
random from graph G = ([n], E).

Table 2.4: Overview of the different settings considered.

g-ADV-COMPg-BOUNDED (g/2)-ADV-LOAD

g-MYOPIC-COMP
τ-DELAY

b-BATCHED

ONE-CHOICE (1+ β) (w.o. noise) TWO-CHOICE (w.o. noise)

ρ-NOISY-COMPσ-NOISY-LOAD

Adversarial Noise

Probabilistic Noise

Without Noise

Figure 2.5: Overview of settings (rounded rectangles) and processes (rectangles) for TWO-CHOICE.
A directed arrow from setting (process) A to setting (process) B means that B is stronger than A
(that is, for each process in A, there is a load-vector indistinguishable process in B). For τ-DELAY,
a dashed arrow is used for the connection to g-ADV-COMP, as the relation is slightly more involved
(Section 7.4.2).

2.4.1 WEIGHTED setting

We define the weighted setting for any SEQUENTIAL(qt) process.
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WEIGHTED(P,W t) Setting:
Parameters:

• P: A sequential allocation process SEQUENTIAL(qt).
• W t+1 :=W t+1(Ft , i t+1): The weight distribution.

Initialise: The load vector x0 = 0 ∈ Rn.
Iteration: At step t ⩾ 0, to allocate ball t + 1

1. Determine the probability allocation vector qt = qt(Ft).
2. Sample the bin i t+1 ∈qt [n] for allocation.
3. Determine the distribution for the weights W t+1 =W t+1(Ft , i t+1).
4. Sample the weight wt+1 ∈W t+1.
5. Set x t+1 := x t +wt+1 · ei t+1 .

The total weight of the allocated balls until step t is defined as

W t :=
t
∑

s=1

ws.

So, the average x t =W t/n. We also give names to the following special cases:

• In the unweighted case (or unit weight case), wt = 1 and so W t = t.

• The independent weights case, where the weights are independent, i.e.,

W t+1(Ft) =W,

for some fixed distribution W :=W(n).
• The load-dependent weights case, where the weights depend on the bin being allocated, i.e.,

W t+1(Ft) =W t+1(t, x t
i t+1).

For example, the TWINNING process samples a bin i and allocates two balls to bins with x t
i <

t
n

and one ball otherwise. Also, PACKING allocates one ball to overloaded bins and
�

y t
i +1

�

balls
to underloaded bins (see Section 2.5.5).

Weights with finite moments FINITE-MGF

In the FINITE-MGF(ζ) setting, the weight of each ball is drawn independently from a fixed distribu-
tion W over [0,∞). Following [152], we assume that the distribution W satisfies:

• E[W ] = 1.

• E[ eζW ]<∞ for some ζ > 0.

Specific examples of distributions satisfying the above conditions (after scaling) are the geometric,
exponential, binomial and Poisson distributions.

Similar to the arguments in [152], the above two assumptions can be used to prove that:

Lemma D.4 (Restated, page 220). There exists S := S(ζ) ⩾ max{1, 1/ζ}, such that for any γ ∈
(0,min{ζ/2,1}) and any κ ∈ [−1, 1],

E
�

eγ·κ·W
�

⩽ 1+ γ ·κ+ Sγ2 ·κ2.

As this parameter is used in most of the upper bounds involving the FINITE-MGF(ζ) weights, we
often refer to the setting as FINITE-MGF(S) or FINITE-MGF(ζ, S).
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2.4.2 HETEROGENEOUS sampling distributions

In Section 2.2, we defined the d-SAMPLE-WITH-MEMORY-M to implicitly have the uniform sampling
vector S =

� 1
n , . . . , 1

n

�

meaning that each d-tuple of indices had exactly the same probability 1/nd of
being sampled.

In [176], the setting of heterogeneous sampling distributions S was introduced for the d-CHOICE

process. We extend this to any d-SAMPLE-WITH-MEMORY-M process.

HETEROGENEOUS(P,S t) Setting:
Parameters:

• P: A d-SAMPLE-WITH-MEMORY-M(Qt , U t) process.
• S t : A probability vector for sampling the bins.

Iteration: At step t ⩾ 0, allocate ball t + 1 using the allocation vector

qt
i (F

t) =
∑

j1,..., jd∈[n]

∑

k∈[M]:c t
k=i

Qt(Ft , c t
1, . . . , c t

M , j1, . . . , jd , k) ·
d
∏

ℓ=1

S t
jℓ

+
∑

j1,..., jd∈[n]

∑

k∈[d]: jk=i

Qt(Ft , c t
1, . . . , c t

M , j1, . . . , jd , M + k) ·
d
∏

ℓ=1

S t
jℓ
.

And update the cache using the function U t .

The only difference with the definition of the d-SAMPLE-WITH-MEMORY-M process is that the 1/nd

term is replaced by
∏d
ℓ=1 S t

jℓ
, meaning that the probability to sample a bin may not be uniform.

2.4.3 b-BATCHED setting

In [28], a parallel setting was considered for TWO-CHOICE, where balls are allocated in batches of
size n. Here, we generalise this to arbitrary batch size b ∈ N+ and for any process P.

b-BATCHED(P) Setting:
Parameters:

• b ∈ N+: The batch size, i.e., the number of balls allocated in the same batch.
• P: A SEQUENTIAL(bqt) process.

Iteration: At step t ⩾ 0, allocate ball t + 1 using the allocation vector

qt := bqt−rem(t,b)(Ft−rem(t,b)),

where t − rem(t, b) is the starting step of the batch containing step t.

Remark 2.12. In the b-BATCHED setting for b > 1, it could be that two load-vector indistinguishable
processes P and Q are no longer load-vector indistinguishable. For instance, in the first batch the
TWO-CHOICE process with random tie-breaks has allocation vector

q1 =
�

1
n

, . . . ,
1
n

�

,

while with the TIME-HOMOGENEOUS definition, the process has a allocation vector

q2 =
�

1
n2

, . . . ,
2i − 1

n2
, . . . ,

2
n
−

1
n2

�

.

Hence, with q1 all bins are allocated b/n balls in expectation, while with q2 there are bins that are
allocated approximately 2b/n balls in expectation.
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2.4.4 τ-DELAY setting

A shortcoming of batching is that it requires the batches to be synchronised, i.e., all bin loads need
to be updated at the same step. We relax this for any Markovian process P with allocation vector
bqt = bqt(x t). We define the τ-DELAY(P, G t) setting where in each step t, an adversary G t transforms
the load vector x t into bx t under the constraint that bx t

i ∈ [x
t−τ+1
i , x t

i ], for each i ∈ [n]. More
formally:

τ-DELAY(P, G t) Setting:
Parameters:

• P: A Markovian SEQUENTIAL(bqt) process with bqt := bqt(x t).
• G t : F t → Rn: A function bx t = G t(Ft), such that for any filtration Ft (corresponding to

load vector x t),
bx t

i ∈ [x
t−τ+1
i , x t

i ], for all i ∈ [n].

Iteration: At step t ⩾ 0, allocate ball t + 1 using the allocation vector

qt(Ft) := bqt(G t(Ft)).

Note that the process τ-DELAY(P, G t) is no longer Markovian, as an allocation could depend on
the last τ steps.

t−τ+1 t

xt
i

Figure 2.6: The evolution of the load of a fixed bin i ∈ [n]. In τ-DELAY, the adversary can choose
to report any load of the last τ steps (shown highlighted), when allocating ball t + 1.

2.4.5 g-ADV setting

For any Markovian process P = SEQUENTIAL(bqt), we define the g-ADV-LOAD(P, G t) process, where
the adversary G t can modify each of the loads by at most an additive value g. Formally, for any step
t ⩾ 0, the resulting process has an allocation vector

qt = bqt(bx t),

where bx t = G(Ft) is the perturbed load vector satisfying bx t
i ∈ [x

t
i − g, x t

i + g] for all i ∈ [n].

g-ADV-LOAD(P, G t) Setting:
Parameters:

• P: A Markovian SEQUENTIAL(bqt) process with bqt := bqt(x t).
• G t : F t → Rn: A function bx t = G t(Ft) satisfying for any load vector x t ∈ Rn that

bx t
i ∈ [x

t
i − g, x t

i + g], for all i ∈ [n].

Iteration: At step t ⩾ 0, allocate ball t + 1 using the allocation vector

qt := qt(bx t) := bqt(G t(Ft)).
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For any average-aware load comparison TWO-SAMPLE process P, we also define the process g-
ADV-COMP (P, G t), where the adversary can influence the comparison between pairs of bins ( j1, j2)
with load difference

�

�x t
j1
− x t

j2

�

�⩽ g. Formally,

g-ADV-COMP(P, G t) Setting (⊆ TWO-SAMPLE(Qt)):
Parameters:

• P: An average-aware load comparison TWO-SAMPLE(bQt) process with bQt :=
bQt(x t , x t

j1
, x t

j2
, i).

• G t : F t × [n]2 × [2]→ [0, 1]: A function G t(Ft , j1, j2, i) giving the decisions of the adver-
sary.

Iteration: At step t ⩾ 0, allocate ball t + 1 using the modified decision function

Qt(Ft , j1, j2, i) :=

¨

G t(Ft , j1, j2, i) if |x t
j1
− x t

j2
|⩽ g,

bQt(x t , x t
j1

, x t
j2

, i) otherwise.

Special cases: g-BOUNDED, g-MYOPIC-COMP

We will also look at two particular instances of these settings. The first one is where the adversary
always allocates to the heavier bin. This setting was introduced in [7] for the TWO-CHOICE process
under the name g-BOUNDED process. Here, we extend the definition to any average-aware load
comparison process P, such that g-BOUNDED(P) is the g-ADV-COMP(P, G t) process with

G t(Ft , x t
j1

, x t
j2

, i) =

(

1x t
j1
>x t

j2
if i = 1,

1x t
j1
⩽x t

j2
otherwise.

We also define the g-MYOPIC-COMP(P) process where the adversary decides randomly when the
two bin loads differ by at most g, i.e., it is the g-ADV-COMP(P, G t) with

G t(Ft , x t
j1

, x t
j2

, i) =
1
2

.

2.4.6 ρ-NOISY setting

For a Markovian process P = SEQUENTIAL(bqt), we define the ρ-NOISY-LOAD(P) process, where in
step t, the load of bin i is perturbed by bρ t

i ∼ ρ, i.e., bx t = x t + bρ t and so its probability allocation
vector is given by qt = bqt(bx t).

ρ-NOISY-LOAD(P) Setting:
Parameters:

• A density function ρ t .
• A Markovian process P = SEQUENTIAL(bqt) with bqt := bqt(x t).

Iteration: At step t ⩾ 0, allocate ball t + 1 using the allocation vector

qt := bqt(bx t),

where bx t
i = x t

i + bρ
t
i with bρ t

i ∼ ρ
t(Ft), for each i ∈ [n].

Special cases: σ-NOISY-LOAD(P) (for ρ = σ =N (0,σ2))

For any average-aware load comparison P = TWO-SAMPLE(bQt), we also define the ρ-NOISY-
COMP(P) process, where ρ : N→ [0,1] gives the probability of a correct comparison, whose decision
function Qt is given by

Qt(x t , x t
j1

, x t
j2

, i) = bQt(x t , x t
j1

, x t
j2

, i) ·ρ(|x t
j1
− x t

j2
|) + (1− bQt(x t , x t

j1
, x t

j2
, i)) · (1−ρ(|x t

j1
− x t

j2
|)).
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Special cases: (1+ β)-process (for TWO-CHOICE with ρ = β), g-BOUNDED(TWO-CHOICE) (for
ρ(δ) = 1δ>g), g-MYOPIC-COMP(TWO-CHOICE) (for ρ(δ) = 1δ>g +

1
2 · 1δ⩽g).

1

0.5

0
g

δ

ρ(δ)

(a) g-BOUNDED

1

0.5

0
g

δ

ρ(δ)

(b) g-MYOPIC-COMP

1

0.5

0
σ 2σ

δ

ρ(δ)

(c) σ-NOISY-LOAD

Figure 2.7: In the graphs above, δ =
�

�x t
j1
− x t

j2

�

� is the load difference among the two sampled bins
and ρ(δ) is the probability that the load comparison is correct.

A special case of this is the σ-NOISY-LOAD setting, which is based on the following idea. When
sampled at step t, a bin i reports an unbiased load estimate bx t

i = x t
i + Z t

i , where Z t
i has a normal

distribution N (0,σ2) (and all {Z t
i }i∈[n],t⩾0 are mutually independent). Then the process allocates

a ball to the bin that reports the smallest load estimate. Thus if x t
j1
− x t

j2
= δ > 0, the probability

for allocating into the smaller bin can be computed as follows:

Pr
�

bx t−1
j1
⩽ bx t−1

j2

�

= Pr
�

Z t−1
j1
− Z t−1

j2
⩽ δ

�

= 1− Pr
�

N (0, 2σ2)> δ
�

= 1− Pr
�

N (0, 1)> δ/(
p

2σ)
�

= 1−Φ(δ/(
p

2σ)).

Note that Φ(z) = 1/2 for z = 0, and Φ(z) is increasing in z. As shown in [96, page 17],

1
p

2π
·

2
p

z2 + 4+ z
· e−z2/2 ⩽ 1−Φ(z)⩽

1
p

2π
·

2
p

z2 + 2+ z
· e−z2/2.

Hence ignoring the linear term in 1/z, setting z := δ/(
p

2σ) and re-scaling σ, we can define σ-
NOISY-LOAD as the setting which satisfies for all steps t and samples j1, j2 with x t

j2
− x t

j1
= δ > 0

that

Pr
�

bx t
j1
⩽ bx t

j2

�

= 1−
1
2
· exp

�

−
�

δ

σ

�2
�

, (2.3)

meaning that the correct comparison probability exhibits a Gaussian tail behaviour.

2.4.7 GRAPHICAL setting

We define the GRAPHICAL(G,P) setting for any TWO-SAMPLE process P on the graph G = (V =
[n], E). In each step, an edge e is sampled randomly from the graph and the decision function of P
is used to determine to which of the two nodes adjacent to e we are going to allocate the ball. In
a sense, this extends the HETEROGENEOUS setting by relaxing the independence assumption of the
two samples.

GRAPHICAL(P, G)
Parameter:

• G = (V, E): An undirected connected graph.
• P: A TWO-SAMPLE(Qt) process with decision function Qt .

Iteration: At step t ⩾ 0, allocate ball t + 1 using

qt
i (F

t) =
∑

( j1, j2)∈E

∑

k∈[2]: jk=i

Qt(Ft , j1, j2, k) ·
1
|E|

.
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2.5 Additional processes

SEQUENTIAL(qt) WEIGHTED(SEQUENTIAL(qt),W t)

TIME-HOMOGENEOUS(p) d-SAMPLE-WITH-MEMORY-M

ROUND-ROBIN

(1+ β)

d-CHOICE

d-SAMPLE d-THINNING

TWO-SAMPLE

TWO-THINNINGk-QUANTILE k-THRESHOLD

k-UNIFORM-QUANTILE

k-DENSE-QUANTILE MEDIAN-QUANTILE

ONE-QUANTILE ONE-THRESHOLD k-RELATIVE-THRESHOLD

MEAN-THINNING

TWINNING PACKING

MEAN-BIASED

k-DENSE-THRESHOLD

Figure 2.8: Hierarchy between some of processes and families of processes considered.

2.5.1 THINNING processes

d-THINNING( f t
1 , . . . , f t

d−1) Process (⊆ d-SAMPLE(Qt)):

Parameters: Decision functions f t
1 , . . . , f t

d−1, where f t
k : F t × [n]k → {0, 1} decides whether to

accept the k-th sample.
Iteration: At step t ⩾ 0, sample d bins j1, . . . , jd ∈ [n], and allocate ball t +1 using the decision
function

Qt(Ft , j1, . . . , jd , i) = f t
i (F

t , j1, . . . , ji) ·
i−1
∏

k=1

�

1− f t
k (F

t , j1, . . . , jk)
�

.

Special cases: ONE-THRESHOLD, ONE-QUANTILE ⊆ TWO-THINNING

[d-SAMPLE ]

For a d-THINNING process, we define the number of samples S t taken up to step t, as

S t := t +
t
∑

s=1

d−1
∏

k=1

�

1− f s
k (F

s, js1, . . . , jsk)
�

,

and the sample-efficiency ηt as

ηt :=

∑n
i=1 x t

i

S t
.

2.5.2 THRESHOLD processes

A special case of TWO-SAMPLE processes are the k-THRESHOLD processes which sample two bins and
send k non-adaptive queries to the bins j ∈ { j1, j2} in the form “Is x t

j > f t
i ?”. The allocator gathers
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the responses and allocates to the bin that was witnessed to be smaller (see Fig. 1.6).

k-THRESHOLD( f t
1 , f t

2 , . . . , f t
k ) Process (⊆ TWO-SAMPLE(Qt)):

Parameters: Threshold functions f t
1 , . . . , f t

k , where f t
i : F t → R such that for any filtration

Ft ∈ F t ,
∞= f t

0 (F
t)> f t

1 (F
t)> f t

2 (F
t)> . . .> f t

k (F
t).

Iteration: At step t ⩾ 0, we define the tightest witnessed upper bound for a bin as

ℓ(Ft , i) :=max{u ∈ [k]∪ {0} : f t
u (F

t)> x t
i },

and define the decision function Qt that decides between the two bin samples j1 and j2 as
follows,

Qt(Ft , j1, j2, i) =











1
2 if ℓ(Ft , j1) = ℓ(Ft , j2),
1ℓ(Ft , j1)>ℓ(Ft , j2) else if i = 1,

1ℓ(Ft , j1)<ℓ(Ft , j2) otherwise.

Special cases: ONE-RELATIVE-THRESHOLD ⊆ TWO-THRESHOLD, k-RELATIVE-THRESHOLD

[TWO-SAMPLE ]

A particularly attractive family of k-THRESHOLD processes are the k-RELATIVE-THRESHOLD pro-
cesses, where the thresholds are at a fixed offset from the average, i.e., f t

j = x t + r j(n), where r j :
N→ N and 1⩽ j ⩽ k. This means that the thresholds can be computed with having just (an estimate
for) the average (so they are average-aware load comparison processes). The MEAN-THINNING pro-
cess is a special case with k = 1 and r1(n) = 0 for all n ∈ N. We callη-MIXED(MEAN-THINNING,ONE-CHOICE)
the (1+η)-process. These will be analysed in Sections 5.2 and 5.2.2.

Note that ONE-THRESHOLD( f t) is equivalent to the TWO-THINNING processes with bf t(Ft , j) :=
1 f t⩽x t

j
.

Observation 2.13. For any ONE-THRESHOLD( f t) process, there exists a load-vector indistinguishable
TWO-THINNING (bf t) process.

However, for certain load vectors (where several bins have the same load), the THRESHOLD

process cannot provide fine-grained control.

Remark 2.14. There exists a TWO-THINNING( f t) process that has no load-vector indistinguishable
ONE-THRESHOLD equivalent.

We can however add randomness to THRESHOLD processes obtaining the k-RANDOMISED-THRESHOLD

processes that are load-vector indistinguishable to k-QUANTILE (as we shall see in Lemma 2.18). In
Section 7.2.2, we analyse the k-DENSE-THRESHOLD process with the following thresholds,

f t
j :=

¨

t
n if j = 1,
t
n +

 

3
γ2
· j · (log n)1/k

£

− 2 if 2⩽ j ⩽ k,

where γ2 > 0 is a constant to be defined in Section 7.2.2.

MEAN-THINNING and RELATIVE-THRESHOLD

By the analysis of MEAN-THINNING, we can obtain upper bounds for RELATIVE-THRESHOLD( f (n))
with any non-negative threshold function f (n).
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Lemma 2.15. Let f (n) be any non-negative function. Let Gap0 and Gap f (n) be the gaps of MEAN-
THINNING and RELATIVE-THRESHOLD( f (n)). Then Gap f (n) is stochastically smaller than Gap0+ f (n).

Before proving the lemma, we need the following domination result:

Lemma 2.16. Let P be the THRESHOLD( t
n + f (n)) process where f (n) is non-negative, starting with an

empty load vector x0
P = 0. Further, let Q be the THRESHOLD( t

n + f (n)) process with initial load vector
(x0

Q)1 = (x
0
Q)2 = · · ·= (x

0
Q)n = f (n). Then, there is a coupling so that at any step t ⩾ 0, it holds that

(x t
P)i ⩽ (x

t
Q)i , for any bin i ∈ [n].

Proof of Lemma 2.16. Let j1 = j t
1 and j2 = j t

2 be the two bins sampled at step t ⩾ 0, which are
uniform and independent over [n]. We consider a coupling between P and Q, where these random
bin samples are identical, and prove inductively that for any t ⩾ 0 and any i ∈ [n],

(x t
P)i ⩽ (x

t
Q)i .

The base case t = 0 holds by definition. For the induction step, we make a case distinction:
Case 1 [(x t

P) j1 < t/n+ f (n)]. In this case, P allocates a ball to j1. If (x t
Q) j1 < t/n+ f (n), then Q

also allocates a ball to j1; otherwise, we have (x t
Q) j1 ⩾ t/n+ f (n), and hence (x t

Q) j1 > (x
t
P) j1 , i.e.,

(x t
Q) j1 ⩾ (x

t
P) j1 + 1. This implies

(x t+1
Q ) j1 = (x

t
Q) j1 ⩾ (x

t
P) j1 + 1= (x t+1

P ) j1 ,

and the inductive step follows from this and the induction hypothesis.

Case 2 [(x t
P) j1 ⩾ t/n + f (n)]. In this case, P allocates a ball to j1. By induction hypothesis,

(x t
P) j1 ⩽ (x

t
Q) j1 , which implies Q also allocates a ball to j1. Thus we have

(x t+1
Q ) j1 = (x

t
Q) j1 + 1⩾ (x t

P) j1 + 1= (x t+1
P ) j1 ,

and the inductive step is complete. Since in both cases all other bins remain unchanged the proof is
complete.

Lemma 2.17. Let P be the THRESHOLD( t
n + f (n)) process starting with the initial load vector (x0

P)1 =
. . .= (x0

P)n = f (n) and Q be the MEAN-THINNING process with initial load vector x0
Q = 0. Then, there

is a coupling so that x t
P = x t

Q + f (n) for any step t ⩾ 0.

Proof. In the execution of the process P, we start the process at step t = 0 from an initial load of f (n)
balls in each bin. Since the threshold is t/n+ f (n), that is the process P does not have a threshold
relative to the actual average load, the effect of adding these balls is to reduce the threshold of P by
exactly f (n). Thus, P is operating with a threshold of t/n+ f (n)− f (n) = t/n, which is equivalent
to MEAN-THINNING process, i.e., Q. So, we obtain a coupling such that x t

P = x t
Q+ f (n) for any step

t ⩾ 0.

We can now complete the proof of Lemma 2.15.

Proof of Lemma 2.15. We define the following processes:

• P1: The RELATIVE-THRESHOLD( f (n)) process (starting from the empty load vector).

• P2: The THRESHOLD( t
n + f (n)) starting with (x0

P2
)1 = . . .= (x0

P2
)n = f (n).

• P3: The MEAN-THINNING process (starting from the empty load vector).

By Lemma 2.16, there exists a coupling such that x t
P2

pointwise majorises x t
P1

for any step t ⩾ 0.
By Lemma 2.17, there exists a coupling such that x t

P2
= x t

P3
+ f (n). Hence, we deduce that there is

a coupling between the three processes such that

Gap f (n)(t) = GapP1
(t) =max

i∈[n]
(x t

P1
)i−

t
n
⩽max

i∈[n]
(x t

P2
)i−

t
n
=max

i∈[n]
(x t

P3
)i+ f (n)−

t
n
= Gap0(t)+ f (n).
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2.5.3 QUANTILE processes

k-QUANTILE(δt
1,δt

2, . . . ,δt
k) Process (⊆ TWO-SAMPLE(Qt)):

Parameter: Quantile functions δt
1, . . . ,δt

k (for k ⩽ n), where δt
i : F t → {1/n, 2/n, . . . , 1} such

that for any filtration Ft ,

δ0 = 0< δt
1(F

t)< δt
2(F

t)< . . .< δt
k(F

t).

Iteration: At step t ⩾ 0, we define the tightest witnessed upper bound for a bin

ℓ(Ft , i) :=max{ j ∈ [k]∪ {0} : n ·δt
j (F

t)< Rankt(i)},

and define the decision function Qt as follows

Qt(Ft , j1, j2, i) =











1
2 if ℓ(Ft , j1) = ℓ(Ft , j2),
1ℓ(Ft , j1)>ℓ(Ft , j2) else if i = 1,

1ℓ(Ft , j1)<ℓ(Ft , j2) otherwise.

Special cases: k-UNIFORM-QUANTILE, TWO-CHOICE

[TWO-SAMPLE ]

In the special case where the quantile functions do not depend on time nor load vector we call
this a k-UNIFORM-QUANTILE process, i.e., δt

j := δ j(n) for j ∈ [k]. A process of this family is also
TIME-HOMOGENEOUS (p), with probability vector p defined as

pi =































δ1
n , if i ⩽ δ1n,
δ1+δ2

n , if δ1n< i ⩽ δ2n,
...
δk−1+δk

n if δk−1n< i ⩽ δkn,
1+δk

n if i > δkn.

Lemma 2.18. For every k-QUANTILE process P, there is a k-RANDOMISED-THRESHOLD process Q, such
that P and Q are load-vector indistinguishable.

Note that since QUANTILE(δt) is indistinguishable from TWO-THINNING( f t)with f t(Ft , j) := 1Rankt ( j)>δt n,
we have that:

Observation 2.19. For any QUANTILE(δt) process, there is a load-vector indistinguishable TWO-THINNING

( f t) process.

In Section 7.2.1, we will prove for the following concrete k-UNIFORM-QUANTILE process that
w.h.p. Gap(t) =O(k(log n)1/k) for any 1⩽ k ⩽O(log log n).

k-DENSE-QUANTILE Process (= k-UNIFORM-QUANTILE(δ1,δ2, . . . ,δk)):
Parameters: We define

eδi =

¨

1
2 if i = k,

e−
1
4 (log n)(k−i)/k

if 1⩽ i < k ,
(2.4)

and the quantiles δ1, . . . ,δk as the eδi ’s rounded up to the nearest multiple of 1/n.

Special cases: MEDIAN-QUANTILE (for k = 1)
[time homo. prob. vector, TWO-SAMPLE ]
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2.5.4 Relation between THRESHOLD and QUANTILE processes

We state the following results connecting k-THRESHOLD and k-QUANTILE processes and defer their
proofs to Appendix D.1.

Lemma D.1 (Restated, page 218). Any THRESHOLD( f t
1 , . . . , f t

k ) process can be simulated by a QUAN-
TILE (δt

1, . . . ,δt
k) process.

Lemma D.2 (Restated, page 218). For any QUANTILE(δt
1, . . . ,δt

k) process, there exist thresholds
f t
1 , . . . , f t

k and probability vector (β t
1, . . . ,β t

k) such that (β t
1, . . . ,β t

k)−MIXED(THRESHOLD( f t
1 ), . . . , THRESHOLD( f t

k )).

Lemma D.3 (Restated, page 219). Any QUANTILE(δ1, . . . ,δk) process can be simulated by an adaptive
(and randomised) (2k)-THINNING process.

2.5.5 TWINNING and PACKING processes

The process WEIGHTED(ONE-CHOICE,W t)where W t(W t , x t
i t+1) = 1+1y t

i t+1<0 was presented in [117]
(see Fig. 2.9). Here, we also give an explicit definition:

TWINNING Process:
Iteration: At step t ⩾ 0, sample a bin i ∈ [n] uniformly at random, and update its load:

x t+1
i =

¨

x t
i + 1 if x t

i ⩾
W t

n ,

x t
i + 2 if x t

i <
W t

n .

[ONE-SAMPLE, WEIGHTED(ONE-CHOICE,W t)]

Wt/n Wt/n

i i

Figure 2.9: The two cases for the TWINNING process: (i) allocating to an overloaded bin and (ii)
allocating to an underloaded bin.

Remark 2.20. This process can be implemented in any d-regular graph (even the cycle), by sampling
an edge randomly and then choosing one of its endpoints randomly. As we show in Corollary 5.12,
TWINNING achieves w.h.p. an O(log n) gap, which is much better than the observed poly(n) gap of
TWO-CHOICE (e.g., on the cycle).

The following process is a more extreme version of TWINNING, which “fills up” underloaded bins
until they become overloaded. In particular it is the process WEIGHTED(ONE-CHOICE,W t) where
W t(W t , x t

i t+1) = 1+ 1y t
i t+1<0 · ⌈−y t

i t+1⌉ (see Fig. 2.10).

PACKING Process:
Iteration: At step t ⩾ 0, sample a bin i ∈ [n] uniformly at random, and update its load:

x t+1
i =

¨

x t
i + 1 if x t

i ⩾
W t

n ,
�W t

n

�

+ 1 if x t
i <

W t

n .

[ONE-SAMPLE, WEIGHTED(ONE-CHOICE,W t)]
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Wt/n Wt/n

i i

Figure 2.10: The two cases for the PACKING process: (i) allocating to an overloaded bin and (ii)
allocating to an underloaded bin.

Since every ONE-SAMPLE process is trivially a ONE-THINNING process, sample efficiency is defined
(and is of interest) for both TWINNING and PACKING.

2.5.6 MEAN-BIASED processes

In this section, we define the MEAN-BIASED processes that captures both the TWINNING and MEAN-
THINNING, as well as several other processes. First, we define qt

+ :=maxi∈B t
+

qt
i and qt

− :=mini∈B t
−

qt
i ,

as the largest (smallest) probability for allocating to a fixed overloaded (underloaded) bin at step t,
respectively. We define,

Condition P2: At any step t ⩾ 0, the probability allocation vector qt must satisfy qt
+ ⩽

1
n ⩽ qt

−.

Condition W2: At any step t ⩾ 0, if i := i t+1 is chosen for allocation,

– If y t
i < 0, then allocate w− balls to bin i,

– If y t
i ⩾ 0, then allocate w+ balls to bin i,

where 1⩽ w+ ⩽ w− are constant integers.

Both conditions are natural, but on their own they are not sufficient to establish a good bound on
the gap, as the ONE-CHOICE process satisfies both conditions with equalities. Thus, we will require
processes to satisfy at least one of two stronger versions of P2 and W2:

Condition P3: This is as Condition P2, but additionally, there are time-independent constants
k1 ∈ (0,1], k2 ∈ (0, 1] such that for any step t ⩾ 0:

qt
+ ⩽

1− k1

n
+

k1 · |B t
+|

n2
=

1
n
−

k1 · (1−δt)
n

,

qt
− ⩾

1
n
+

k2 · |B t
+|

n2
=

1
n
+

k2 ·δt

n
.

Condition W3: This is as Condition W2, but additionally we have the strict inequality: w+ <
w−. Also, we assume that for each t ⩾ 0, allocation vector eqt

i is non-decreasing in i.

The reason we attach the non-decreasing property of eqt to W3 and not to P2 is to make our main
result slightly stronger. We call MEAN-BIASED processes the ones that satisfy P2 and W3 or P3 and
W2.

The rationale behind condition P3 is that we wish to slightly bias the allocation vector qt towards
underloaded bins at each step t. However, it is natural to assume that this influence is limited by a
process that samples, say, at most two bins uniformly and independently, and then allocates balls to
the least loaded of the two. Concretely, if a process takes two independent and uniform bin samples
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at each step, the probability of picking two overloaded bins equals
� |B t

+|
n

�2
. Hence by averaging, there

must be a bin i ∈ B t
+ such that

qt
+ ⩾ qt

i ⩾
�

|B t
+|

n

�2

·
1
|B t
+|
=
|B t
+|

n2
.

The relaxation of the first constraint in P3 by taking a strict convex combination of 1
n and

|B t
+|

n2 ensures
some slack, for instance, it allows the framework to cover the
OnePlusEta-process, a “noisy” version of MEAN-THINNING, where at each step, it performs a ONE-
CHOICE allocation with some constant probability η ∈ (0, 1), and otherwise we perform an allocation
following the MEAN-THINNING process (see Lemma D.5 for details). Similarly, for any process which
takes at most two uniform samples, by averaging, there must be a bin j ∈ B t

− such that

qt
− ⩽ qt

j ⩽
1− |B

t
+|

2

n2

|B t
−|

=
(n− |B t

+|) · (n+ |B
t
+|)

n2|B t
−|

=
1
n
+
|B t
+|

n2
.

Finally, we remark that P3 resembles the framework of [152, Equation 2], where pt
i = pi is

non-decreasing in i and pn/3 ⩽
1−4ε

n and p2n/3 ⩾
1+4ε

n holds for some 0 < ε < 1/4 (not necessarily
constant). In contrast to that, for constants k1, k2 > 0, the conditions in P3 are relaxed as they
only imply such a bias if δt is bounded away from 0 and 1, which may not hold in all steps. It is
straightforward that TWINNING fits into the MEAN-BIASED framework.

Lemma 2.21. The TWINNING process is a MEAN-BIASED process.

Proof. The TWINNING process satisfies W3, since w− = 2 > 1 = w+ and P2, since bins are sampled
uniformly at random in each step.

MEAN-THINNING also fits into the framework, but satisfying a different set of conditions.

Lemma 2.22. The MEAN-THINNING process is a MEAN-BIASED process.

Proof. The probability of allocating to any overloaded bin i ∈ B t
+ is qt

i =
δt

n =
1
n −

1·(1−δt )
n , so we can

choose k1 := 1. For any underloaded bin i ∈ B t
−, qt

i =
1+δt

n = 1
n +

1·δt

n , so we can choose k2 := 1,
and P3 holds. Condition W2 is trivially satisfied, since w+ = w− = 1.

The (1+η)-process also fits into the framework:

Lemma D.5 (Restated, page 220). For any constant η > 0, the (1 + η)-process is a MEAN-BIASED

process.

Finally, we just remark that although the (1+β)-process is not a MEAN-BIASED process it can be
majorised by (1+η). So, the upper bound on the MEAN-BIASED processes also applies to (1+ β).

Lemma D.6 (Restated, page 221). For any constant β ∈ (0, 1], the (1 + η)-process with η = β
majorizes (1+ β)-process at each step.
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EXPECTATION OF THE HYPERBOLIC CO-
SINE POTENTIAL

Peres, Talwar and Wieder [152] analysed the hyperbolic cosine potential for a large family of pro-
cesses. In this chapter,1 we will present a refined analysis for the expectation of the hyperbolic
cosine potential which also holds for a large family of processes including weights and outdated
information (see discussion below for details of the refinements). Recall that the hyperbolic cosine
potential with smoothing parameter γ > 0 is defined as

Γ t := Γ t(γ) := Φt +Ψ t :=
n
∑

i=1

eγy t
i +

n
∑

i=1

e−γy t
i , (3.1)

where Φt := Φt(γ) is the overload exponential potential and Ψ t := Ψ t(γ) is the underload exponential
potential. We also decompose Γ t by defining

Γ t
i := Φt

i +Ψ
t
i , where Φt

i := eγy t
i and Ψ t

i := e−γy t
i for any bin i ∈ [n].

Further, we use the following shorthands to denote the changes in the potentials over one step
∆Φt+1

i := Φt+1
i −Φ

t
i , ∆Ψ

t+1
i := Ψ t+1

i −Ψ
t
i and ∆Γ t+1

i := Γ t+1
i − Γ t

i .
The following theorem was proven in [152, Section 2].

Theorem 3.1 ([152, Section 2]). Consider any TIME-HOMOGENEOUS(p) process with non-decreasing
p, satisfying for some ε ∈ (0, 1/4) that

pi ⩽
1− 4ε

n
, for any i ⩽

n
3

, and pi ⩾
1+ 4ε

n
, for any i ⩾

2n
3

.

Further, consider the WEIGHTED setting with weights from a FINITE-MGF(ζ, S) distribution with S ⩾ 1.
Then, for Γ := Γ (γ) with γ :=min

¦

ε
6S , ζ2

©

, there exists c = poly(1/ε) such that for any step t ⩾ 0,

E
�

∆Γ t+1
�

� Ft
�

⩽ −Γ t ·
γε

4n
+ c.

Recall from Section 1.3 (see also Lemma B.1 (ii)), that when a process satisfies this drop in-
equality it also satisfies E

�

Γ t
�

⩽ 4c
γε · n for every step t ⩾ 0.

In order to state our generalised version of the theorem, we first recall the conditions C1 and C2
for a probability vector p as defined in Section 2.3.4:

• Condition C1: There exist constant δ ∈ (0, 1) and (not necessarily constant) ε ∈ (0,1), such
that for any 1⩽ k ⩽ δ · n,

k
∑

i=1

pi ⩽ (1− ε) ·
k
n

,

and similarly for any δ · n+ 1⩽ k ⩽ n,

n
∑

i=k

pi ⩾
�

1+ ε ·
δ

1−δ

�

·
n− k+ 1

n
.

It follows by Observation 2.10, that any process that satisfies the precondition in Theorem 3.1
with ε′ ∈ (0,1/4) also satisfies condition C1 with ε= 4ε′ and δ = 1/3.

1After the submission of this thesis, we compiled the content of this chapter in [115], where we also included some
simpler-to-verify conditions for the main theorem.
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• Condition C2: There exists C > 1, such that maxi∈[n] pi ⩽
C
n .

Recall that any d-SAMPLE process satisfies this condition with C = d.

As we shall describe shortly, the main theorem (Theorem 3.2) applies to a variety of settings.
However, in order to more precisely highlight the differences to Theorem 3.1, we first state a corol-
lary for TIME-HOMOGENEOUS processes in the non-batched WEIGHTED setting with weights from a
FINITE-MGF distribution. The two main differences are: (i) that p satisfies preconditions C1 and C2,
and (ii) the additive term which changes from poly(1/ε) to O(γε).
Corollary 3.6 (Of Theorem 3.2 – Restated, page 63). Consider any TIME-HOMOGENEOUS(p) process
with p satisfying condition C1 for some constant δ ∈ (0, 1) and some ε ∈ (0,1), and condition C2 for
some C > 1.

Further, consider the WEIGHTED setting with weights from a FINITE-MGF(S) distribution with S ⩾ 1.
Then, there exists a constant c := c(δ)> 0, such that for Γ := Γ (γ) with any γ ∈

�

0, εδ
16CS

�

and for any
step t ⩾ 0,

E
�

∆Γ t+1
�

� Ft
�

⩽ −Γ t ·
γεδ

8n
+ cγε.

Now we state the main theorem, where the preconditions are expressed in terms of the expected
change of the overload and underload potentials for a folding of a sequential allocation process. Note
that in the following theorem the probability vector p need not be the probability allocation vector
q of the process being considered. When the rounds consist of multiple steps, then this probability
vector expresses some kind of “average number” of balls allocated to the i-th bin.

Theorem 3.2. Consider any folding of a P = SEQUENTIAL(qt) process and a probability vector pt

satisfying condition C1 for some constant δ ∈ (0, 1) and some ε ∈ (0, 1) at every round t ⩾ 0. Further
assume that there exist K > 0, γ ∈

�

0, min
�

1, εδ8K

	�

and R > 0, such that for any round t ⩾ 0, process
P satisfies for potentials Φ := Φ(γ) and Ψ := Ψ(γ) that for bins sorted in non-increasing order of their
loads,

n
∑

i=1

E
�

∆Φt+1
i

�

� Ft
�

⩽
n
∑

i=1

Φt
i ·
�

�

pt
i −

1
n

�

· R · γ+ K · R ·
γ2

n

�

,

and,
n
∑

i=1

E
�

∆Ψ t+1
i

�

� Ft
�

⩽
n
∑

i=1

Ψ t
i ·
�

�

1
n
− pt

i

�

· R · γ+ K · R ·
γ2

n

�

.

Then, there exists a constant c := c(δ)> 0, such that for Γ := Γ (γ) and any round t ⩾ 0,

E
�

∆Γ t+1
�

� Ft
�

⩽ −Γ t · R ·
γεδ

8n
+ R · cγε,

and
E
�

Γ t
�

⩽
8c
δ
· n.

This theorem is a refinement of Theorem 3.1 in the following ways:

• When rounds consist of a single step and the allocation vector q coincides with the probability
vector p, we relax the preconditions on p, requiring that it satisfies conditions C1 and C2.

This allows us to apply the theorem for TWO-CHOICE on the WEIGHTED, GRAPHICAL setting
for d-regular expanders as q satisfies C1 and C2 (as we shall see in Lemma 7.40). Note that
the majorisation argument in [152, Section 3] only applies to the unit weights case.

• It has two parts: (i) proving an upper bound on the expected change of the Φ and Ψ potentials
and (ii) combining these bounds to deduce a bound on the expected change of Γ .

This split allows us to apply the theorem for processes that allocate balls to more than one
bins, such as TWINNING-WITH-QUANTILE (Section 3.2.1) and (1,1, 2)-RESET-MEMORY, and also
to the b-BATCHED setting (Sections 3.2.2 and 3.2.3).
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• We show that Γ := Γ (γ) satisfies the following drop inequality for some constants c1, c2 > 0,

E
�

∆Γ t+1
�

� Ft
�

⩽ −Γ t ·
c1γε

n
+ c2γε.

This allows us to deduce that for any round t ⩾ 0, it holds that E
�

Γ t
�

⩽ c2
c1
·n (Lemma B.1 (ii))

and this directly implies the tight O
� log n
β

�

bound on the (1 + β)-process for all β ⩽ 1 − ε′,
for any constant ε′ > 0 (Theorem 3.7). Furthermore, it allows us to prove, in Chapter 4,
that Γ concentrates at O(n) which we later use to prove the tighter gap bounds for the b-
BATCHED setting, improving O

� b
n · log n

�

to O
� b

n

�

(Section 7.5), and for the QUANTILE(δ∗)

process, improving O
�� log n

log log n

�2�
to O

� log n
log log n

�

(Section 7.2.3).

The key lemma that we use to prove Theorem 3.2 is a drift inequality that is agnostic of balanced
allocation processes and is essentially an inequality involving Φ,Ψ, Γ over an arbitrary (load) vector
x (with y = x − x being its normalised version) and a probability vector p satisfying condition C1.

Lemma 3.3 (Key Lemma). Consider any probability vector p satisfying condition C1 for constant δ ∈
(0,1) and (not necessarily constant) ε ∈ (0, 1), and any sorted load vector x ∈ Rn with Φ := Φ(γ),
Ψ := Ψ(γ) and Γ := Γ (γ) for any smoothing parameter γ ∈ (0, 1]. Further define,

∆Φ :=
n
∑

i=1

∆Φi :=
n
∑

i=1

Φi ·
�

pi −
1
n

�

· γ, and ∆Ψ :=
n
∑

i=1

∆Ψ i :=
n
∑

i=1

Ψi ·
�

1
n
− pi

�

· γ.

Then, there exists a constant c := c(δ)> 0, such that

∆Γ :=
n
∑

i=1

∆Γ i :=
n
∑

i=1

∆Φi +∆Ψ i ⩽ −Γ ·
γεδ

4n
+ cγε.

Organisation. The remainder of this chapter is structured as follows. In Section 3.1, we prove the
key lemma and the main theorem. Then, in Section 3.2.1 we prove Corollary 3.6 for the non-batched
setting and apply it to get bounds for the QUANTILE(δ), (1 + β) and TWINNING-WITH-QUANTILE

processes. In Section 3.2.2, for the b-BATCHED setting, we show that processes whose allocation
vectors satisfy conditions C1 and C2, satisfy the preconditions of the main theorem, allowing us to
deduce an O

� b
n · log n

�

bound on their gap. Finally, in Section 3.2.3 for processes whose allocation
vectors satisfy condition C3 (i.e., they are close to the uniform distribution), we deduce an O

�
q

b
n ·

log n
�

bound on their gap.
Later, in Section 7.5 we will improve the O

� b
n · log n

�

bound to O
� b

n

�

, which in Appendix C.1 we
show to be tight. Similarly in Section 7.5, we will also improve the O(

q

b
n ·log n) bound to O(

q

b
n ·log n),

which again in Appendix C.1, we show to be tight.

3.1 Proof of Theorem 3.2

We start by proving the key lemma. Note that this holds for any probability vector p satisfying con-
dition C1 and any sorted load vector x (with y being its normalised load vector). Before presenting
the proof, we outline the key ideas in the proof:

1. It suffices to analyse ∆Γ =∆Φ+∆Ψ for the simplified probability vector,

ri :=

¨

1−ε
n if i ⩽ δn,

1+eε
n otherwise,

(3.2)

where eε := ε· δ1−δ , as r maximises the terms∆Φ and∆Ψ, over all probability vectors satisfying
condition C1 for a given δ and ε.
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2. For any bin i ∈ [n], there is one dominant term in Γi = Φi +Ψi = eγyi + e−γyi : for overloaded
bins (yi ⩾ 0) it is Φi = eγyi (and Ψi = e−γyi ⩽ 1) and for underloaded bins (yi < 0) it is Ψi
(and Φi ⩽ 1). In Claim 3.4, we show that the contribution of the non-dominant term in ∆Γ is
subsumed by the additive term, i.e., cγε.

3. Any overloaded bin i ∈ [n] with i ⩽ δn, satisfies ri =
1−ε

n and so∆Φi = −Φi ·
γε
n . We call these

the set G+ of good overloaded bins, as their dominant term decreases in expectation. The rest
of the overloaded bins are the bad overloaded bins B+, as these satisfy ∆Φi = +Φi ·

γeε
n .

Similarly, good underloaded bins G− with i > δn, satisfy ∆Ψ i = −Ψi ·
γeε
n and bad underloaded

bins B− satisfy ∆Ψ i = +Ψi ·
γε
n .

Set Load Index ri Contribution ∆Γ i

G+ yi ⩾ 0 i ⩽ δn 1−ε
n −Φi ·

γε
n +Ψi ·

γε
n

B+ yi ⩾ 0 i > δn 1+eε
n +Φi ·

γeε
n −Ψi ·

γeε
n

G− yi < 0 i > δn 1+eε
n +Φi ·

γeε
n −Ψi ·

γeε
n

B− yi < 0 i ⩽ δn 1−ε
n −Φi ·

γε
n +Ψi ·

γε
n

Table 3.1: The definition of the four sets of bins and the contribution term of each bin to ∆Γ . The
dominant term is coloured. The sign of the dominant term determines if a bin is good (negative
sign/decrease) or bad (positive sign/increase).

4. We can either have B+ ̸= ; or B− ̸= ; (see Fig. 3.2).

The handling of one case is symmetric to the other due to the symmetric nature of ∆Φ and
∆Ψ (with δ being replaced by 1−δ). So, from here on we only consider the case with B+ ̸= ;
(and B− = ;).

5. Case A.1: When the number of bad overloaded bins is small (i.e., 1 ⩽ |B+| ⩽ n
2 · (1 − δ)),

the positive contribution of the bins in B+ is counteracted by the negative contribution of the
bins in G+ (Fig. 3.3). We prove this by making the worst-case assumption that all bad bins are
equal to yδn. All underloaded bins are good, so on aggregate we get a decrease.

6. Case A.2: Consider the case when the number of bad overloaded bins is large |B+|> n
2 ·(1−δ).

The positive contribution of the first n
2 · (1− δ) of the bins B+, call them B1, is counteracted

by the negative contribution of the bins in G+ as in Case A.1. The positive contribution of the
remaining bad bins B2 is counteracted by a fraction of the negative contribution of the bins
in G−. This is because the number of “holes” (empty ball slots in the underloaded bins) in the
bins of G− are significantly more than the number of balls in B2. Hence, again on aggregate
we get a decrease (Fig. 3.4).
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Figure 3.2: The two cases of bad bins (B+ ̸= ; and B− ̸= ; respectively) in a load vector and their
dominant terms in∆Γ for each of the set of bins. The dominant terms that are decreasing are shown
in green and the dominant terms that are increasing are shown in red.

We proceed with a simple claim for bounding the contributions of the non-dominant terms:

Claim 3.4. Consider the probability vector r as defined in Eq. (3.2). For any bin i ∈ [n] with yi ⩾ 0,
we have that

∆Ψ i ⩽ −Ψi ·
γεδ

4n
+

2γε
n

,

and for any bin i ∈ [n] with yi < 0, we have that

∆Φi ⩽ −Φi ·
γεδ

4n
+

2γeε
n

.

Proof. For any bin i ∈ [n] with yi ⩾ 0, we have that

∆Ψ i ⩽max
§

+Ψi ·
γε

n
,−Ψi ·

γeε

n

ª

= −Ψi ·
γεδ

4n
+Ψi ·

γ

n
·
�

εδ

4
+ ε
�

⩽ −Ψi ·
γεδ

4n
+Ψi ·

2γε
n

,

using that δ ⩽ 1.
Similarly, for any bin i ∈ [n] with yi < 0, we have that

∆Φi ⩽max
§

+Φi ·
γeε

n
,−Φi ·

γε

n

ª

= −Φi ·
γεδ

4n
+Φi ·

γ

n
·
�

εδ

4
+ eε

�

⩽ −Φi ·
γεδ

4n
+Φi ·

2γeε
n

,

using that εδ ⩽ εδ
1−δ = eε.

We now turn to the proof of Lemma 3.3.

Proof of Lemma 3.3. Fix a labelling of the bins so that they are sorted non-increasingly according
to their load in x . Let p be the probability vector satisfying condition C1 for some ε ∈ (0, 1) and
δ ∈ {1/n, . . . , 1}. Recall that the probability vector r was defined as,

ri :=

¨

1−ε
n if i ⩽ δn,

1+eε
n otherwise,

(3.3)
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where eε := ε · δ1−δ . Thanks to the definition of eε, it is clear that r is also a probability vector. Further,
for any 1⩽ k ⩽ δn, due to condition C1,

k
∑

i=1

pi ⩽ (1− ε) ·
k
n
=

k
∑

i=1

ri ,

and any δ · n+ 1⩽ k ⩽ n,

n
∑

i=k

pi ⩾
�

1+ ε ·
δ

1−δ

�

·
n− k+ 1

n
=

n
∑

i=k

ri .

This implies that p is majorised by r. Since Φi (and Ψi) are non-increasing (and non-decreasing) in
i ∈ [n], using Lemma B.2, the terms

∆Φ=
n
∑

i=1

Φi ·
�

pi −
1
n

�

· γ, and ∆Ψ =
n
∑

i=1

Ψi ·
�

1
n
− pi

�

· γ,

are at least as large for r than for p. Hence, from now on, we will be working with p = r.
Recall that we partition overloaded bins i with yi ⩾ 0 into good overloaded bins G+ with pi =

1−ε
n

and into bad overloaded bins B+ with pi =
1+eε

n (see Table 3.1). These are called good bins, because
any bin i ∈ G+ satisfies ∆Φi = −Φi ·

γε
n and since Ψi ⩽ 1 for overloaded bins, this implies overall a

drop in expectation for Γi .
In Case A, we consider the case where B+ ̸= ;. Further, we partition B+ into B1 := B+∩{i ∈ [n] :

i ⩽ n
2 · (1+δ)} and B2 := B+ \B1. In Case A.1 we handle the case where B2 = ; and in Case A.2 the

case where B2 ̸= ;. Finally, in Case B we handle the case where B+ ̸= ; by a symmetry argument.

𝑦

1 −
1

4
⋅ +

1

4
⋅≤

1

4
⋅

𝑧1

𝛿𝑛
𝑛

2
⋅ 1 + 𝛿

𝒢+ ℬ+

Figure 3.3: Case A.1: The dominant (positive) contribution of bins in B+ (shown in red) is coun-
teracted by a fraction of the (negative) contribution term of the good bins G+ (shown in green).
In grey, the dominant decrease terms for G+ and G− (which do not contribute to counteracting the
increase).

Case A.1 [1⩽ |B+|⩽ n
2 · (1−δ)]: Intuitively, in this case there are not many bad bins in B+, so

their (positive) contribution is counteracted by the (negative) contribution of good bins in G+ (see
Fig. 3.3). To formalise this, let z1 := yδn (by assumption, |B+|⩾ 1 and so z1 ⩾ 0). Then, yi ⩾ z1 for
any bin i ∈ G+, and yi ⩽ z1, for any i ∈ B+. With some foresight, we use B1 instead of B+, since in
this case B1 = B+ and it will also allow us to use Eq. (3.6) in Case A.2. Hence,

∑

i∈B1

∆Φi =
∑

i∈B1

Φi ·
γeε

n
= −

∑

i∈B1

Φi ·
γεδ

4n
+
∑

i∈B1

Φi ·
γ

n
·
�

eε+
εδ

4

�

(a)
⩽ −

∑

i∈B1

Φi ·
γεδ

4n
+
∑

i∈B1

Φi ·
3γeε
2n
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(b)
⩽ −

∑

i∈B1

Φi ·
γεδ

4n
+

n
2
· (1−δ) · eγz1 ·

3γeε
2n

(c)
= −

∑

i∈B1

Φi ·
γεδ

4n
+ eγz1 ·

3γεδ
4

, (3.4)

using in (a) that εδ ⩽ eε and in (b) that yi ⩽ z1 for i ∈ B1 (and so Φi ⩽ eγz1) and |B1| ⩽
n
2 · (1− δ),

and in (c) that eε= εδ
1−δ . For bins in G+,

∑

i∈G+
∆Φi = −

∑

i∈G+
Φi ·

γε

n
= −

∑

i∈G+
Φi ·

γε

4n
−
∑

i∈G+
Φi ·

3γε
4n

(a)
⩽ −

∑

i∈G+
Φi ·

γε

4n
−
∑

i∈G+
eγz1 ·

3γε
4n

(b)
= −

∑

i∈G+
Φi ·

γε

4n
− eγz1 ·

3γεδ
4

, (3.5)

using in (a) that yi ⩾ z1 for any i ∈ G+ and in (b) that |G+|= δn, since |B1|⩾ 1.

Hence, combining Eq. (3.4) and Eq. (3.5), the contribution of overloaded bins to Φ is given by

∑

i∈G+∪B1

∆Φi ⩽ −
∑

i∈G+
Φi ·

γε

4n
−
∑

i∈B1

Φi ·
γεδ

4n
⩽ −

∑

i∈G+∪B1

Φi ·
γεδ

4n
. (3.6)

Therefore, aggregating the contributions to ∆Γ as described above, we get that

∆Γ =
∑

i∈G+
∆Γ i +

∑

i∈B1

∆Γ i +
∑

i∈G−
∆Γ i

=
∑

i∈G+∪B1

∆Φi +
∑

i∈G−
∆Ψ i +

∑

i∈G+∪B1

∆Ψ i +
∑

i∈G−
∆Φi

(3.6)
⩽ −

∑

i∈G+∪B1

Φi ·
γεδ

4n
−
∑

i∈G−
Ψi ·

γeε

n
+

∑

i∈G+∪B1

∆Ψ i +
∑

i∈G−
∆Φi

(a)
⩽ −

∑

i∈G+∪B1

Φi ·
γεδ

4n
−
∑

i∈G−
Ψi ·

γεδ

4n
−

∑

i∈G+∪B1

Ψi ·
γεδ

4n
−
∑

i∈G−
Φi ·

γεδ

4n
+

n
∑

i=1

2γ
n
·max{ε, eε}

(b)
= −

n
∑

i=1

Γi ·
γεδ

4n
+ 2γ ·max{ε, eε}= −Γ ·

γεδ

4n
+ 2γ ·max{ε, eε},

using in (a) that εδ ⩽ eε and Claim 3.4 to bound the contributions of the non-dominant terms and
in (b) that Γi = Φi +Ψi for any bin i ∈ [n].
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Figure 3.4: Case A.2: The dominant (positive) contribution of the bins in B1 (shown in red) is
counteracted by a fraction of the dominant (negative) contribution of the bins in G+ (shown in
green) as in Case A.1. The dominant (negative) contribution of the bins in B2 is counteracted by
a fraction of the dominant (negative) contribution of the bins in G− (shown in green), when z2 is
sufficiently large. In grey, the dominant decrease terms for G+ and G− (which do not contribute to
counteracting the increase).

Case A.2 [|B+| > n
2 · (1− δ)]: Recall that we partitioned the bins B+ into B1 := B+ ∩ {i ∈ [n] :

i ⩽ n
2 · (1+ δ)} and B2 := B+ \B1. We will counteract the positive contribution ∆Φi for bins i ∈ B1

by the negative contribution of the bins in G+ as in Eq. (3.6) in Case A.1. For that of bins in B2 we
will consider two cases based on z2 := y n

2 ·(1+δ) > 0, the load of the heaviest bin in B2. Similarly to
Claim 3.4, we obtain a bound for the dominant contribution of the bins in B2

∑

i∈B2

∆Φi =
∑

i∈B2

Φi ·
γeε

n
= −

∑

i∈B2

Φi ·
γεδ

4n
+
∑

i∈B2

Φi ·
γ

n
·
�

εδ

4
+ eε
�

⩽ −
∑

i∈B2

Φi ·
γεδ

4n
+
∑

i∈B2

Φi ·
2γeε

n

(a)
⩽ −

∑

i∈B2

Φi ·
γεδ

4n
+ |B2| · eγz2 ·

2γeε
n

(b)
⩽ −

∑

i∈B2

Φi ·
γεδ

4n
+ eγz2 · (γεδ), (3.7)

using in (a) that yi ⩽ z2 for i ∈ B2 and in (b) that |B2|⩽
n
2 · (1−δ) and eε= εδ

1−δ .
Case A.2.1 [z2 ⩽

1
γ ·

1−δ
2δ · log(8/3)]: In this case, the loads of the bins in B2 are small enough

for their contribution to be counteracted by the additive term. More precisely, we get that

∑

i∈B2

∆Φi

(3.7)
⩽ −

∑

i∈B2

Φi ·
γεδ

4n
+ eγz2 · (γεδ)⩽ −

∑

i∈B2

Φi ·
γεδ

4n
+ e

1−δ
2δ ·log(8/3) · (γεδ). (3.8)

Hence, we can now aggregate the contributions as follows

∆Γ =
∑

i∈G+
∆Γ i +

∑

i∈B1

∆Γ i +
∑

i∈B2

∆Γ i +
∑

i∈G−
∆Γ i

=
∑

i∈G+∪B1

∆Φi +
∑

i∈B2

∆Φi +
∑

i∈G−
∆Ψ i +

∑

i∈G+∪B+
∆Ψ i +

∑

i∈G−
∆Φi

(a)
⩽ −

∑

i∈G+∪B1

Φi ·
γεδ

4n
−
∑

i∈B2

Φi ·
γεδ

4n
+ e

1−δ
2δ ·log(8/3) · (γεδ)−

∑

i∈G−
Ψi ·

γεδ

4n
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−
∑

i∈G+∪B+
Ψi ·

γεδ

4n
−
∑

i∈G−
Φi ·

γεδ

4n
+

n
∑

i=1

2γ
n
·max{ε, eε}

⩽ −
n
∑

i=1

Γi ·
γεδ

4n
+ 4γ ·max

¦

ε, eε,εδ · e
1−δ
2δ ·log(8/3)

©

,

using in (a): (i) Eq. (3.6) for bounding the contribution of bins in B1, (ii) the Eq. (3.8) for bounding
the contribution of bins in B2 and (iii) the Claim 3.4 for bounding the contributions of the non-
dominant terms.

Case A.2.2 [z2 >
1
γ ·

1−δ
2δ ·log(8/3)]: In this case, z2 being large means that there are substantially

more holes (ball slots below the average line) in the underloaded bins than balls in the overloaded
bins of B1. Hence, as we will prove below the negative contribution ∆Ψ for bins in G− counteracts
the positive contribution of ∆Φ for B1 (Fig. 3.4).

Next note that because Ψi is non-decreasing in i ∈ [n], the term
∑

i∈G− Ψi is minimised when all
underloaded bins are equal to the same load −z3 < 0, i.e.,

∑

i∈G− Ψi ⩾ |G−| · eγz3 . Further, note that

z3 ⩾
z2·(|G+|+|B+|)
|G−| ⩾ z2·

n
2 ·(1+δ)
|G−| by the assumption |B+|> n

2 · (1−δ) and |G+|= δn, and therefore,

∑

i∈G−
Ψi ⩾ |G−| · eγ·

z2 ·
n
2 ·(1+δ)
|G−| =: g(|G−|),

where we seek to lower bound the function g : [1, n]→ R. To this end, we will first upper bound
|G−|, using the assumption for Case A.2,

|G−|= n− |G+| − |B+|⩽ n− nδ−
n
2
· (1−δ) =

n
2
· (1−δ).

Further, n
2 · (1− δ) ⩽ γ · z2 ·

n
2 · (1+ δ) =: M , by definition of z2 (and that 2δ ⩽ 1+ δ), and so we

also have |G−|⩽ M . By Lemma B.3, the function f (x) = x · ek/x is decreasing for 0< x ⩽ k, and so
g is decreasing for 1 < |G−| ⩽ n

2 · (1− δ) ⩽ M . Hence, g(|G−|) is minimised by |G−| = n
2 · (1− δ).

Therefore,
∑

i∈G−
∆Ψ i = −

∑

i∈G−
Ψi ·

γeε

n
⩾ − min

|G−|∈[1, n
2 ·(1−δ)]

|G−| · e
M
|G−| ·

γeε

n
= −

n
2
· (1−δ) · e

M
n
2 ·(1−δ) ·

γeε

n
. (3.9)

We can lower bound the exponent of the last term as follows,

M
n
2 · (1−δ)

=
γz2 · (1+δ)

1−δ
= γz2 + γz2 ·

2δ
1−δ

⩾ γz2 + log(8/3),

using the assumption that z2 >
1
γ ·

1−δ
2δ · log(8/3).

Now we will split the contributions of the bins in G−,
∑

i∈G−
∆Ψ i = −

∑

i∈G−
Ψi ·

γeε

n
= −

∑

i∈G−
Ψi ·

γeε

4n
−
∑

i∈G−
Ψi ·

3γeε
4n

(3.9)
⩽ −

∑

i∈G−
Ψi ·

γeε

4n
−

n
2
· (1−δ) · eγz2+log(8/3) ·

3γeε
4n

= −
∑

i∈G−
Ψi ·

γeε

4n
− eγz2 · (γεδ), (3.10)

using in the last equality that eε= εδ
1−δ .

We will now show that the dominant increase for bins in B2 is counteracted by a fraction of the
dominant decrease of those in G−. Combining Eq. (3.7) and Eq. (3.10)

∑

i∈B2

∆Φi +
∑

i∈G−
∆Ψ i ⩽ −

∑

i∈B2

Φi ·
γεδ

4n
+ eγz2 · (γεδ)−

∑

i∈G−
Ψi ·

γeε

4n
−
∑

i∈G−
Ψi ·

3γeε
4n
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(3.10)
⩽ −

∑

i∈B2

Φi ·
γεδ

4n
−
∑

i∈G−
Ψi ·

γeε

4n
⩽ −

∑

i∈B2

Φi ·
γεδ

4n
−
∑

i∈G−
Ψi ·

γεδ

4n
. (3.11)

Finally, overall the contributions are given by

∆Γ =
∑

i∈G+
∆Γ i +

∑

i∈B1

∆Γ i +
∑

i∈B2

∆Γ i +
∑

i∈G−
∆Γ i

=
∑

i∈G+∪B1

∆Φi +

 

∑

i∈B2

∆Φi +
∑

i∈G−
∆Ψ i

!

+
∑

i∈G+∪B+
∆Ψ i +

∑

i∈G−
∆Φi

(a)
⩽ −

∑

i∈G+∪B+
Φi ·

γεδ

4n
−
∑

i∈B2

Φi ·
γεδ

4n
−
∑

i∈G−
Ψi ·

γεδ

4n
−

∑

i∈G+∪B+
Ψi ·

γεδ

4n
−
∑

i∈G−
Φi ·

γεδ

4n

+
n
∑

i=1

2γ
n
·max{ε, eε}

= −Γ ·
γεδ

4n
+ 2γ ·max{ε, eε}, (3.12)

using in (a) that (i) Eq. (3.6) for bounding the contribution of the bins in B1, (ii) the Eq. (3.11) for
bounding the contribution of the bins in B2∪G− and (iii) Claim 3.4 for bounding the non-dominant
terms.

Case B [B− ̸= ;]: This case is symmetric to Case A, by interchanging Φ with Ψ, δ with 1−δ, εδ
with eε(1−δ), and negating and sorting the normalised load vector. In particular, the three sub-cases
are:

• Case B.1 [1⩽ |B−|⩽ n
2 ·δ]

• Case B.2.1 [|B−|> n
2 ·δ, z′2 ⩽

1
γ ·

δ
2·(1−δ) · log(8/3)] where z′2 := y n

2 ·δ

• Case B.2.2 [|B−|> n
2 ·δ, z′2 >

1
γ ·

δ
2·(1−δ) · log(8/3)]

Combining the Case A and Case B, we get that

∆Γ ⩽ −Γ ·
γεδ

8n
+ cγε,

where c := 4 ·max
¦

1−δ
δ , e

1−δ
2δ ·log(8/3) · δ1−δ ,δ · e

δ
2·(1−δ) ·log(8/3)

©

, recalling that eε := ε · δ1−δ .

By scaling the quantities ∆Φ and ∆Ψ in Lemma 3.3 by some R> 0 (usually the number of steps
in each round, e.g., R := b for b-BATCHED) and selecting a sufficiently small smoothing parameter
γ, we obtain the main theorem.

Theorem 3.2 (Restated). Consider any folding of a P = SEQUENTIAL(qt) process and a probability
vector pt satisfying condition C1 for some constant δ ∈ (0,1) and some ε ∈ (0, 1) at every round t ⩾ 0.
Further assume that there exist K > 0, γ ∈

�

0,min
�

1, εδ8K

	�

and R> 0, such that for any round t ⩾ 0,
process P satisfies for potentials Φ := Φ(γ) and Ψ := Ψ(γ) that for bins sorted in non-increasing order
of their loads,

n
∑

i=1

E
�

∆Φt+1
i

�

� Ft
�

⩽
n
∑

i=1

Φt
i ·
�

�

pt
i −

1
n

�

· R · γ+ K · R ·
γ2

n

�

,

and,
n
∑

i=1

E
�

∆Ψ t+1
i

�

� Ft
�

⩽
n
∑

i=1

Ψ t
i ·
�

�

1
n
− pt

i

�

· R · γ+ K · R ·
γ2

n

�

.
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Then, there exists a constant c := c(δ)> 0, such that for Γ := Γ (γ) and any round t ⩾ 0,

E
�

∆Γ t+1
�

� Ft
�

⩽ −Γ t · R ·
γεδ

8n
+ R · cγε,

and
E
�

Γ t
�

⩽
8c
δ
· n.

Proof. Consider a labelling of the bins so that they are sorted in non-increasing order of the loads
at step t. Applying Lemma 3.3 for the current load vector x t and the quantities

∆Φ :=
n
∑

i=1

Φt
i ·
�

pi −
1
n

�

· γ and ∆Ψ :=
n
∑

i=1

Ψ t
i ·
�

1
n
− pi

�

· γ,

we get that

∆Φ+∆Ψ ⩽ −
γεδ

4n
· Γ t + cγε. (3.13)

By the assumptions,

E
�

∆Γ t+1
�

� Ft
�

= E
�

∆Φt+1
�

� Ft
�

+ E
�

∆Ψ t+1
�

� Ft
�

⩽ R ·
�

∆Φ+∆Ψ + K ·
γ2

n
· Γ t

�

. (3.14)

Hence, combining Eq. (3.13) and Eq. (3.14), we get

E
�

∆Γ t+1
�

�Ft
�

⩽ R ·
�

−
γεδ

4n
· Γ t + cγε+ K ·

γ2

n
· Γ t

�

⩽ −R ·
γεδ

8n
· Γ t + R · cγε,

using that γ⩽ εδ
8K .

Finally, by Lemma B.1 (ii), the second statement follows.

3.2 Applications

3.2.1 The non-batched setting

We start by verifying the preconditions of Theorem 3.2 for the non-batched setting.

Lemma 3.5. Consider any SEQUENTIAL(qt) process with probability allocation vector qt satisfying con-
dition C2 for C > 1 at every step t ⩾ 0. Further, consider the WEIGHTED setting with weights from a
FINITE-MGF(ζ, S) distribution with S ⩾ 1. Then, for the potentials Φ := Φ(γ) and Ψ := Ψ(γ) with any
smoothing parameter γ ∈

�

0,min{ζ/2,1}
�

, for any step t ⩾ 0,

E
�

∆Φt+1
�

� Ft
�

⩽
n
∑

i=1

Φt
i ·
�

�

qt
i −

1
n

�

· γ+ 2CS ·
γ2

n

�

,

and

E
�

∆Ψ t+1
�

� Ft
�

⩽
n
∑

i=1

Ψ t
i ·
�

�

1
n
− qt

i

�

· γ+ 2CS ·
γ2

n

�

.

Proof. Consider an arbitrary bin i ∈ [n]. Then, for the overload potential we have that

E
�

Φt+1
i

�

� Ft
�

= Φt
i · E

�

eγW (1−1/n)
�

� Ft
�

· qt
i +Φ

t
i · E

�

e−γW/n
�

� Ft
�

· (1− qt
i )

(a)
⩽ Φt

i ·
�

1+ γ ·
�

1−
1
n

�

+ Sγ2
�

· qt
i +Φ

t
i ·
�

1−
γ

n
+ S
γ2

n2

�

· (1− qt
i )
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= Φt
i ·
�

1+ γ ·
�

qt
i −

1
n

�

+ Sγ2 · qt
i + S

γ2

n2
· (1− qt

i )

�

(b)
⩽ Φt

i ·
�

1+ γ ·
�

qt
i −

1
n

�

+ 2CS ·
γ2

n

�

,

using in (a) Lemma D.4 twice with κ= 1− 1
n and with κ= − 1

n respectively (and that (1−1/n)2 ⩽ 1),
and in (b) that qi ⩽

C
n with C > 1 by condition C2. Similarly, for the underloaded potential we have

that

E
�

Ψ t+1
i

�

� Ft
�

= Ψ t
i · E

�

e−γW (1−1/n)
�

� Ft
�

· qt
i +Ψ

t
i · E

�

eγW/n
�

� Ft
�

· (1− qt
i )

(a)
⩽ Ψ t

i ·
�

1− γ ·
�

1−
1
n

�

+ Sγ2
�

· qt
i +Ψ

t
i ·
�

1+
γ

n
+ S
γ2

n2

�

· (1− qt
i )

= Ψ t
i ·
�

1+ γ ·
�

1
n
− qt

i

�

+ Sγ2 · qt
i + S

γ2

n2
· (1− qt

i )

�

(b)
⩽ Ψ t

i ·
�

1+ γ ·
�

1
n
− qt

i

�

+ 2CS ·
γ2

n

�

,

using in (a) Lemma D.4 with κ = −(1− 1
n) and with κ = 1

n respectively (and that (1− 1/n)2 ⩽ 1)
and in (b) that qi ⩽

C
n with C > 1 by condition C2. This completes the proof.

Combining Lemma 3.5 with Theorem 3.2, for the identity folding, we obtain:

Corollary 3.6. Consider any TIME-HOMOGENEOUS(p) process with p satisfying condition C1 for some
constant δ ∈ (0, 1) and some ε ∈ (0,1), and condition C2 for some C > 1.

Further, consider the WEIGHTED setting with weights from a FINITE-MGF(S) distribution with S ⩾ 1.
Then, there exists a constant c := c(δ)> 0, such that for Γ := Γ (γ) with any γ ∈

�

0, εδ
16CS

�

and for any
step t ⩾ 0,

E
�

∆Γ t+1
�

� Ft
�

⩽ −Γ t ·
γεδ

8n
+ cγε.

(1+ β)-process for small β

Next we improve the upper bound on the gap for the (1+ β)-process from previous work for very
small β in the unit weights setting. In [152, Corollary 2.12], it was shown that this gap is O(log n/β+
log(1/β)/β). For β = n−ω(1), the second term dominates. We improve this gap bound toO(log n/β).
This is tight up to multiplicative constants for any β ⩽ 1/2, due to a lower bound of Ω(log n/β)
shown in [152, Section 4].

Theorem 3.7. Consider the (1 + β)-process for any β ∈ (0,1]. Then, there exists a constant κ > 0,
such that for any step m⩾ 0,

Pr
�

Gap(m)⩽ κ ·
log n
β

�

⩾ 1− n−2.

Proof. By Proposition 2.11, the (1+ β)-process satisfies conditions C1 for ε = β
4 and δ = 1

4 and C2
for C = 2. Hence, by Corollary 3.6 (with S = 1 since we are in the unit weights setting), there exists
a constant c := c(δ)> 0, such that for Γ := Γ (γ) with γ := εδ

16CS =
β

512 , for any step m⩾ 0,

E [ Γm ]⩽
8c
δ
· n.
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Hence, using Markov’s inequality

Pr
�

Γm ⩽
8c
δ
· n3

�

⩾ 1− n−2.

When the event {Γm ⩽ 8c
δ · n

3} holds, we deduce the desired bound on the gap

Gap(m)⩽
1
γ
·
�

log
�

8c
δ

�

+ 3 · log n
�

⩽
4
γ
· log n= 4 ·

512
β
· log n=O

�

log n
β

�

.

QUANTILE(δ) process

Recall from Section 2.5.3 that the QUANTILE(δ) process is equivalent to the TIME-HOMOGENEOUS(p)
process with

pi =

¨

δ
n for i ⩽ δn,
1+δ

n otherwise.

Note that for any constant δ ∈ (0,1), the QUANTILE(δ) process satisfies condition C1 at quantile δ
and for ε= 1−δ, and condition C2 for C = 2, as it is a TWO-SAMPLE process. Hence, by Corollary 3.6,
we obtain an O(log n) bound on the gap.

For non-constant δ, we cannot directly apply Theorem 3.2 because condition C1 is not satisfied.
We use the following majorisation lemma to “move” the bias to a constant quantile, e.g., 1/3.

Lemma 3.8. For any quantileδ ⩽ 1/3, the QUANTILE(δ) process is majorised by the TIME-HOMOGENEOUS(p)
process with

pi =

¨

1−ε
n if i ⩽ n/3,

1+eε
n otherwise,

where ε= 2δ and eε= δ.

Proof. The prefix sums for the two probability vectors at i = n/3 are equal since,

n/3
∑

i=1

eqi = δ
2 +

�n
3
−δn

�

·
1+δ

n
=

1− 2δ
3

, and
n/3
∑

i=1

pi =
n
3
·

1− ε
n
=

1− ε
3

.

Since the first n/3 entries in p are equal and eq is non-decreasing, p majorises eq for all indices i ⩽ n/3.
Similarly, this argument applies to the last 2n/3 entries.

Hence, by Corollary 3.6, QUANTILE(δ) satisfies C1 for ε = Θ(δ) and δ = 1/3, and C2 for C = 2,
so we deduce an O

� log n
δ

�

bound on the gap.

Corollary 3.9. Consider any QUANTILE(δ) process with any quantile δ ⩽ 1/2. Then, there exists a
constant κ > 0 such that for any step m⩾ 0,

Pr
�

Gap(m)⩽ κ ·
log n
δ

�

⩾ 1− n−2.

TWINNING-WITH-QUANTILE

To demonstrate the power of Theorem 3.2, we also analyse a variant of the TWINNING process, which
is based on quantiles. Note that this process allocates 1 ·δ2 + 2 · (1−δ2) = 2−δ2 balls per sample
in expectation, so it is more sample efficient than ONE-CHOICE. We will now show that this process
also has an O(log n) gap.
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TWINNING-WITH-QUANTILE(δ) Process:
Iteration: At step t ⩾ 0, sample a bin i ∈ [n] uniformly at random, and update its load:

x t+1
i =

¨

x t
i + 1 if Rankt(i)⩽ δn,

x t
i + 2 otherwise.

We will now show that this process satisfies the preconditions for Theorem 3.2 for the sorted
allocation vector p of the QUANTILE(δ) process, given by

pi =

¨

δ
n if i ⩽ δn,
1+δ

n otherwise.

Lemma 3.10. Consider the TWINNING-WITH-QUANTILE(δ) process for any constant quantile δ ∈ (0,1)
and the overload potential Φ := Φ(γ) with any γ ∈ (0,1/2]. Then, for any step t ⩾ 0, we have that

E
�

∆Φt+1
�

� Ft
�

⩽
n
∑

i=1

Φt
i ·
�

γ ·
�

pi −
1
n

�

+ 5 ·
γ2

n

�

,

where p is the sorted allocation vector of QUANTILE(δ).

Proof. We will analyse the expected change of Φ over an arbitrary step t. We consider two cases
based on the rank of a bin i ∈ [n], splitting them into heavy (Rankt(i)⩽ δn) and light (Rankt(i)>
δn):

Case 1 [Rankt(i)⩽ δn]: If we sample this heavy bin i, then we allocate one ball to it, so

E
�

Φt+1
i

�

� Ft
�

= Φt
i · e

γ(1−1/n) ·
1
n

︸ ︷︷ ︸

Allocate one ball to bin i

+ Φt
i · e
−γ/n ·

�

δ−
1
n

�

︸ ︷︷ ︸

Allocate one ball to any other heavy bin

+Φt
i · e
−2γ/n · (1−δ)

︸ ︷︷ ︸

Allocate to any light bin

.

Now, we proceed to bound this quantity,

E
�

Φt+1
i

�

� Ft
�

= Φt
i ·
�

1+ (eγ(1−1/n) − 1) ·
1
n
+ (e−γ/n − 1) ·

�

δ−
1
n

�

+ (e−2γ/n − 1) · (1−δ)
�

(a)
⩽ Φt

i ·
�

1+
�

γ ·
�

1−
1
n

�

+ γ2
�

·
1
n
+

�

−
γ

n
+
γ2

n2

�

·
�

δ−
1
n

�

+

�

−
2γ
n
+

4γ2

n2

�

· (1−δ)
�

⩽ Φt
i ·
�

1+ γ ·
�

δ

n
−

1
n

�

+ 3 ·
γ2

n

�

,

using in (a) the Taylor estimate ev ⩽ 1+ v + v2 for any |v|⩽ 1 (and that 0< γ⩽ 1/2).
Case 2 [Rankt(i)> δn]: If we sample this light bin i, then we allocate two balls to it, so

E
�

Φt+1
i

�

� Ft
�

= Φt
i · e

γ(2−2/n) ·
1
n

︸ ︷︷ ︸

Allocate two balls to bin i

+ Φt
i · e
−γ/n ·δ

︸ ︷︷ ︸

Allocate one ball to any heavy bin

+Φt
i · e
−2γ/n ·

�

1−δ−
1
n

�

︸ ︷︷ ︸

Allocate to any other light bin

.

Similarly to Case 1, we proceed to bound this quantity,

E
�

Φt+1
i

�

� Ft
�

= Φt
i ·
�

1+ (eγ(2−2/n) − 1) ·
1
n
+ (e−γ/n − 1) ·δ+ (e−2γ/n − 1) ·

�

1−δ−
1
n

��

(a)
⩽ Φt

i ·
�

1+
�

γ ·
�

2−
2
n

�

+ 4γ2
�

·
1
n
+

�

−
γ

n
+
γ2

n2

�

·δ+
�

−
2γ
n
+

4γ2

n2

�

·
�

1−δ−
1
n

�

�

⩽ Φt
i ·
�

1+ γ ·
δ

n
+ 5 ·

γ2

n

�

,
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using in (a) the Taylor estimate ev ⩽ 1 + v + v2 for any |v| ⩽ 1 (and that 0 < γ ⩽ 1/2). Hence,
combining the two cases, we have that

E
�

Φt+1
�

� Ft
�

⩽
n
∑

i=1

Φt
i ·
�

1+ γ ·
�

pi −
1
n

�

+ 5 ·
γ2

n

�

.

In a similar manner, we also obtain the bounds for the change of the underload potential.

Lemma 3.11. Consider the TWINNING-WITH-QUANTILE(δ) process for any constant δ ∈ (0,1) and the
underload potential Ψ := Ψ(γ) with any γ ∈ (0, 1/2]. Then, for any step t ⩾ 0, we have that

E
�

∆Ψ t+1
�

� Ft
�

⩽
n
∑

i=1

Ψ t
i ·
�

γ ·
�

1
n
− pi

�

+ 5 ·
γ2

n

�

,

where p is the sorted allocation vector of QUANTILE(δ).

Lemmas 3.10 and 3.11 verify the preconditions of Theorem 3.2, so applying the theorem for the
identity folding, we get an O(log n) bound on the gap.

Corollary 3.12. For the TWINNING-WITH-QUANTILE(δ) process for any constant δ ∈ (0, 1), there exists
a constant κ := κ(δ)> 0, such that for any step m⩾ 0,

Pr [Gap(m)⩽ κ · log n ]⩾ 1− n−2.

3.2.2 b-BATCHED setting: The O
�

b
n · log n

�

upper bound

In this section we derive an upper bound of O
� b

n · log n
�

for the weighted batched setting for a
family of processes. For the (1+ β)-process with constant β ∈ (0,1), this upper bound is tight for
b = Θ(n), as we will show in Appendix C. This will also serve as the base case for the tighter analysis
for b =ω(n) in Section 7.5.

The main goal is to derive the preconditions of Theorem 3.2 and apply it for R := b over the
batches (not individual time steps).

Lemma 3.13. Consider any SEQUENTIAL(qt) process with qt satisfying condition C2 for some C > 1
at every step t ⩾ 0. Further, consider the WEIGHTED b-BATCHED setting with batch size b ⩾ n with
weights from a FINITE-MGF(S) distribution with S ⩾ 1. Then, for Φ := Φ(γ) and Ψ := Ψ(γ) with any
γ ∈

�

0, n
2CSb

�

and for any step t ⩾ 0 being a multiple of b,

E
�

Φt+b
�

� Ft
�

⩽
n
∑

i=1

Φt
i ·
�

1+
�

qt
i −

1
n

�

· b · γ+
5C2S2 b

n
· b ·

γ2

n

�

, (3.15)

and

E
�

Ψ t+b
�

� Ft
�

⩽
n
∑

i=1

Ψ t
i ·
�

1+
�

1
n
− qt

i

�

· b · γ+
5C2S2 b

n
· b ·

γ2

n

�

. (3.16)

Proof. Consider an arbitrary step t being a multiple of b and for convenience let q = qt . Consider
an arbitrary bin i ∈ [n]. Let Z ∈ {0, 1}b be the indicator vector, where Z j indicates whether the j-th
ball was allocated to bin i. The expected change for the overload potential Φt

i , is given by

E
�

Φt+b
i

�

� Ft
�

= Φt
i ·

∑

z∈{0,1}b
Pr [ Z = z ] · E

�

e
γ
∑b

j=1

�

z j w
t+ j− wt+ j

n

�
�

�

�

�

Ft , Z = z

�

.
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In the following, let us upper bound the factor of Φt
i :

∑

z∈{0,1}b
Pr [ Z = z ] · E

�

e
γ
∑b

j=1

�

z j w
t+ j− wt+ j

n

�
�

�

�

�

Ft , Z = z

�

(a)
=
∑

z∈{0,1}b

b
∏

j=1

(qi)
z j (1− qi)

1−z j (E[ eγW (1− 1
n ) ])z j (E[ e−γW/n ])1−z j

(b)
⩽

∑

z∈{0,1}b

b
∏

j=1

�

qi ·
�

1+ γ ·
�

1−
1
n

�

+ Sγ2
��z j

·
�

(1− qi) ·
�

1−
γ

n
+

Sγ2

n2

��1−z j

(c)
=

�

qi ·
�

1+ γ ·
�

1−
1
n

�

+ Sγ2
�

+ (1− qi) ·
�

1−
γ

n
+

Sγ2

n2

��b

=

�

1+ γ ·
�

qi −
1
n

�

+ qi · Sγ2 + (1− qi) ·
Sγ2

n2

�b

(3.17)

(d)
⩽
�

1+ γ ·
�

qi −
1
n

�

+ 2 ·
C
n
· Sγ2

�b

, (3.18)

using in (a) that the weights are independent given Ft , in (b) Lemma D.4 twice with κ= 1− 1
n and

with κ = − 1
n respectively (and that (1 − 1/n)2 ⩽ 1), in (c) the binomial theorem and in (d) that

qi ⩽
C
n for C > 1. Let us define

u :=
�

qi −
1
n

�

· γ+ 2 ·
C
n
· Sγ2.

We first claim that |u · b|⩽ 1, which holds indeed since

|u · b|=
�

�

�

�

�

qi −
1
n

�

· b · γ
�

�

�

�

+ 2 ·
C
n
· b · Sγ2 ⩽

C
n
· b · γ+ 2 ·

C
n
· b · Sγ2 ⩽

2CS
n
· γ · b ⩽ 1,

where we used2 qi ⩽
C
n for C > 1 and that γ⩽ n

2CSb ⩽
1
2 .

Then,

E
�

Φt+b
i

�

� Ft
� (a)
⩽ Φt

i · e
u·b

(b)
⩽ Φt

i ·
�

1+ u · b+ (u · b)2
�

= Φt
i ·
�

1+
�

qi −
1
n

�

· b · γ+ 2 ·
C
n
· Sγ2 · b+

��

qi −
1
n

�

· b · γ+ 2 ·
C
n
· b · Sγ2

�2
�

,

using in (a) that 1+ v ⩽ ev for any v, and in (b) that ev ⩽ 1+ v + v2 for v ⩽ 1.75. Since qi ⩽
C
n for

all i ∈ [n] and S ⩾ 1, we conclude

E
�

Φt+b
i

�

� Ft
�

⩽ Φt
i ·
�

1+
�

qi −
1
n

�

· b · γ+ 2 ·
CS
n
· γ2 · b+

�

2CS
n
· b · γ

�2
�

⩽ Φt
i ·
�

1+
�

qi −
1
n

�

· b · γ+
5C2S2 b

n
· b ·

γ2

n

�

.

Similarly, for the underloaded potential Ψ t , for any bin i ∈ [n],

E
�

Ψ t+b
i

�

� Ft
�

= Ψ t
i ·

∑

z∈{0,1}b
Pr [ Z = z ] · E

�

e
−γ
∑b

j=1

�

z j w
t+ j− wt+ j

n

�
�

�

�

�

Ft , Z = z

�

.

2There is some slack in this bound, especially for C = 1+ o(1). We will exploit this in Lemma 3.16.
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As before, we will upper bound the factor of Ψ t
i :

∑

z∈{0,1}b
Pr [ Z = z ] · E

�

e
−γ
∑b

j=1

�

z j w
t+ j− wt+ j

n

�
�

�

�

�

Ft , Z = z

�

(a)
=
∑

z∈{0,1}b

b
∏

j=1

(qi)
z j (1− qi)

1−z j (E[ e−γW ·(1− 1
n ) ])z j (E[ eγW/n ])1−z j

(b)
⩽

∑

z∈{0,1}b

b
∏

j=1

�

qi ·
�

1− γ ·
�

1−
1
n

�

+ Sγ2
��z j

·
�

(1− qi) ·
�

1+
γ

n
+

Sγ2

n2

��1−z j

(c)
=

�

qi ·
�

1− γ ·
�

1−
1
n

�

+ Sγ2
�

+ (1− qi) ·
�

1+
γ

n
+

Sγ2

n2

��b

=

�

1+
�

1
n
− qi

�

· γ+ qi · Sγ2 + (1− qi) ·
Sγ2

n2

�b

(3.19)

⩽
�

1+
�

1
n
− qi

�

· γ+ 2 ·
C
n
· Sγ2

�b

, (3.20)

using in (a) that the weights W are independent given Ft , in (b) Lemma D.4 twice with κ= −
�

1− 1
n

�

and with κ= 1
n respectively and in (c) the binomial theorem. So,

E[ Ψ t+b
i

�

� Ft ]
(a)
⩽ Ψ t

i · e
( 1

n−qi)·b·γ+2· Cn ·Sγ
2·b

(b)
⩽ Ψ t

i ·
�

1+
�

1
n
− qi

�

· b · γ+ 2 ·
C
n
· Sγ2 · b+

��

1
n
− qi

�

· b · γ+ 2 ·
C
n
· Sγ2 · b

�2
�

(c)
⩽ Ψ t

i ·
�

1+
�

1
n
− qi

�

· b · γ+ 2 ·
CS
n
· γ2 · b+

�

2CS
n
· b · γ

�2
�

⩽ Ψ t
i ·
�

1+
�

1
n
− qi

�

· b · γ+
5C2S2 b

n
· b ·

γ2

n

�

,

using in (a) that 1 + v ⩽ ev for any v, in (b) that ev ⩽ 1 + v + v2 for any v ⩽ 1.75 and that
( 1

n − qi) · b · γ+ 2 · qi · Sγ2 · b ⩽ 1
n · b · γ+ 2 · C

n · Sγ
2 · b ⩽ 2CS · γ · b

n ⩽ 1, since γ ⩽ n
2CSb ⩽

1
2 and

S ⩾ 1.

We are now ready to apply Theorem 3.2 for R := b, folding every b steps, meaning that each
round consists of b consecutive allocations.

Theorem 3.14. Consider any SEQUENTIAL(qt) process with qt satisfying condition C1 for constant δ ∈
(0,1) and (not necessarily constant) ε ∈ (0,1) as well as condition C2 for some constant C > 1 at every
step t ⩾ 0. Further, consider the WEIGHTED b-BATCHED setting with any b ⩾ n and weights from a
FINITE-MGF(S) distribution with constant S ⩾ 1. Then, there exists a constant κ := κ(δ, C , S) > 0,
such that for any step m⩾ 0 being a multiple of b,

Pr
�

max
i∈[n]
|ym

i |⩽ κ ·
1
ε
·

b
n
· log n

�

⩾ 1− n−2.

Remark 3.15. The same upper bound in Theorem 3.14 also holds for TIME-HOMOGENEOUS-WITH-
RAND-TIE-BREAKS (p) processes with a probability vector p satisfying the preconditions of Lemma 3.13.
The reason for this is that (i) averaging probabilities in Eq. (2.1) can only reduce the maximum entry
in the allocation vector qt , i.e. maxi∈[n] q

t
i (x

t) ⩽ maxi∈[n] pi , so it still satisfies C2 and (ii) moving
probability between bins i, j with x t

i = x t
j (and thus Φt

i = Φ
t
j and Ψ t

i = Ψ
t
j ), implies that the aggregate

upper bounds in (3.15) and (3.16) remain the same.
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Proof of Theorem 3.14. By Lemma 3.13, the preconditions of Theorem 3.2 are satisfied for p := q,
K := 5C2S2 b

n , R := b and γ := εδ
8K ⩽

n
2CSb (as ε ⩽ 1, δ ⩽ 1 and C ⩾ 1, S ⩾ 1). Hence, there exists a

constant c := c(δ)> 0 such that for any step m⩾ 0 being multiple of b,

E [ Γm ]⩽
8c
δ
· n.

Hence, by Markov’s inequality

Pr
�

Γm ⩽
8c
δ
· n3

�

⩾ 1− n−2.

To prove the claim, note that when {Γm ⩽ 8c
δ · n

3} holds, then also,

max
i∈[n]
|ym

i |⩽
1
γ
·
�

log
�

8c
δ

�

+ 3 · log n
�

⩽
4
γ
· log n= 4 ·

8 · 5C2S2

εδ
·

b
n
· log n.

3.2.3 b-BATCHED setting: The O
�q

b
n · log n

�

upper bound

We now refine our analysis from Section 3.2.2, allowing us to obtain tighter bounds for the (1+β)-
process. These bounds show that for batch sizes b =ω(n log n), the (1+β)-process outperforms the
TWO-CHOICE process.

The key idea is to redo the later part of the analysis in Lemma 3.13 for probability allocation
vectors q that satisfy the following condition C3:

• There exists C > 1, such that for any bin i ∈ [n],
�

�

�

�

qi −
1
n

�

�

�

�

⩽
C − 1

n
.

Note that this condition implies condition C2, i.e., that qi ⩽
C
n (with the same C).

This condition is satisfied by the (1+ β)-process for C = 1+ β , since
�

�

�

�

qi −
1
n

�

�

�

�

=

�

�

�

�

2i − 1
n2
· β +

1
n
· (1− β)−

1
n

�

�

�

�

⩽max
§

qn −
1
n

,
1
n
− q1

ª

=
β

n
−
β

n2
⩽
β

n
.

It is also satisfied by the β-MIXED(QUANTILE(1/2), ONE-CHOICE) process.

Lemma 3.16 (cf. Lemma 3.13). Consider any SEQUENTIAL(qt) process with probability allocation
vector qt satisfying condition C3 for some C ∈ (1, 1.9) at every step t ⩾ 0. Further, consider the
WEIGHTED b-BATCHED setting with weights from a FINITE-MGF(S) distribution with constant S ⩾ 1
and a batch size b ⩾ 2CS

(C−1)2 · n. Then for Φ := Φ(γ) and Ψ := Ψ(γ) with any smoothing parameter
γ ∈ ( n

2(C−1)·b ] and any step t ⩾ 0 being a multiple of b,

E
�

Φt+b
�

� Ft
�

⩽
n
∑

i=1

Φt
i ·
�

1+
�

qt
i −

1
n

�

· b · γ+
5(C − 1)2 b

n
· b ·

γ2

n

�

,

and

E
�

Ψ t+b
�

� Ft
�

⩽
n
∑

i=1

Ψ t
i ·
�

1+
�

1
n
− qt

i

�

· b · γ+
5(C − 1)2 b

n
· b ·

γ2

n

�

.

Proof. Consider an arbitrary step t ⩾ 0 being a multiple of b and for convenience let q = qt . First
note that the given assumptions γ⩽ n

2(C−1)·b and b ⩾ 2CS
(C−1)2 · n imply that

γ⩽
n

2(C − 1) · b
⩽

C − 1
4CS

.
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Consider an arbitrary bin i ∈ [n]. Using Eq. (3.17) in Lemma 3.13,

E
�

Φt+b
i

�

� Ft
�

⩽ Φt
i ·
�

1+ γ ·
�

qi −
1
n

�

+ qi · Sγ2 + (1− qi) ·
Sγ2

n2

�b

⩽ Φt
i ·
�

1+ γ ·
�

qi −
1
n

�

+ 2 · qi · Sγ2
�b

,

using that
�

�qi −
1
n

�

�⩽ C−1
n for C ∈ (1, 1.9). Let us define

u :=
�

qi −
1
n

�

· γ+ 2 · qi · Sγ2. (3.21)

Compared to the proof in Lemma 3.13, we will aim for a tighter bound. More specifically, we will
now show that |u · b|⩽ 2(C − 1) · b · γn ⩽ 1, which holds indeed since

|u · b|=
�

�

�

�

�

qi −
1
n

�

· b · γ+ 2 · qi · b · Sγ2

�

�

�

�

⩽
�

�

�

�

�

qi −
1
n

�

· b · γ
�

�

�

�

+ 2 · qi · b · Sγ2

(a)
⩽

C − 1
n
· b · γ+ 2 ·

C
n
· b · Sγ2

= (C − 1+ 2CSγ) · b ·
γ

n
(b)
⩽ 2(C − 1) · b ·

γ

n
(3.22)

(c)
⩽ 1, (3.23)

using in (a) that
�

�qi −
1
n

�

�⩽ C−1
n by condition C3, in (b) that γ⩽ C−1

2CS and in (c) that γ⩽ n
2(C−1)·b .

Then,

E
�

Φt+b
i

�

� Ft
� (a)
⩽ Φt

i · e
u·b

(b)
⩽ Φt

i ·
�

1+ u · b+ (u · b)2
�

(3.21)
= Φt

i ·
�

1+
�

qi −
1
n

�

· b · γ+ 2 · qi · b · Sγ2 + (u · b)2
�

(3.22)
⩽ Φt

i ·
�

1+
�

qi −
1
n

�

· b · γ+ 2 · qi · b · Sγ2 +
�

2(C − 1) · b ·
γ

n

�2�

(c)
⩽ Φt

i ·
�

1+
�

qi −
1
n

�

· b · γ+
5(C − 1)2 b

n
· b ·

γ2

n

�

,

using in (a) that 1+ v ⩽ ev for any v, in (b) that ev ⩽ 1+ v+ v2 for v ⩽ 1.75 and Eq. (3.23), and in

(c) that (C−1)2 b
n · b · γ

2

n ⩾ 2 · C
n · b · Sγ

2 ⩾ 2 · qi · b · Sγ2, since b ⩾ 2CS
(C−1)2 · n.

Similarly, for the underloaded potential Ψ t , using Eq. (3.19), for any bin i ∈ [n]

E
�

Ψ t+b
i

�

� Ft
�

⩽ Ψ t
i ·
�

1+
�

1
n
− qi

�

· γ+ qi · Sγ2 + (1− qi) ·
Sγ2

n2

�b

⩽ Ψ t
i ·
�

1+
�

1
n
− qi

�

· γ+ 2 · qi · Sγ2
�b

,

using that
�

�qi −
1
n

�

�⩽ C−1
n for C ∈ (1, 1.9). Let us define

eu :=
�

1
n
− qi

�

· γ+ 2 · qi · Sγ2. (3.24)

Similarly, to Eq. (3.23), we get that

|eub|⩽
�

�

�

�

�

1
n
− qi

�

· b · γ
�

�

�

�

+ 2 · qi · b · Sγ2 ⩽ 2(C − 1) · b ·
γ

n
(3.25)
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⩽ 1. (3.26)

So,

E
�

Ψ t+b
i

�

� Ft
� (a)
⩽ Ψ t

i · e
eub

(b)
⩽ Ψ t

i ·
�

1+ eub+ (eub)2
�

(3.24)
= Ψ t

i ·
�

1+
�

1
n
− qi

�

· b · γ+ 2 · qi · Sγ2 · b+ (eu · b)2
�

(3.25)
⩽ Ψ t

i ·
�

1+
�

1
n
− qi

�

· b · γ+ 2 · qi · b · γ2 +
�

2(C − 1) · b ·
γ

n

�2�

(c)
⩽ Ψ t

i ·
�

1+
�

1
n
− qi

�

· b · γ+
5(C − 1)2 b

n
· b ·

γ2

n

�

,

using in (a) that 1+ v ⩽ ev for any v, in (b) that ev ⩽ 1+ v+ v2 for v ⩽ 1.75 and Eq. (3.26), and in

(c) that (C−1)2 b
n · b · γ

2

n ⩾ 2 · C
n · b · Sγ

2 ⩾ 2 · qi · b · Sγ2, since b ⩾ 2CS
(C−1)2 · n.

Theorem 3.17. Consider any SEQUENTIAL(qt) process with qt satisfying condition C1 for constant δ ∈
(0,1) and (not necessarily constant) ε ∈ (0,1) as well as condition C3 for some C > 1, at every step t ⩾
0. Further, consider the WEIGHTED b-BATCHED setting with weights from a FINITE-MGF(S) distribution
with constant S ⩾ 1 and a batch size b ⩾ 2CS

(C−1)2 · n. Then, there exists a constant κ := κ(δ) > 0, such
that for any step m⩾ 0 being a multiple of b,

Pr

�

max
i∈[n]
|ym

i |⩽ κ ·
(C − 1)2

ε
·

b
n
· log n

�

⩾ 1− n−2.

Proof. Consider the folding of the b-BATCHED process at steps that are a multiple of b. By Lemma 3.16,
the preconditions of Theorem 3.2 are satisfied for K := 5 · (C − 1)2 · b

n , R := b and γ := εδ
8K =

εδ

40·(C−1)2· bn
⩽ n

2(C−1)·b , since ε ⩽ C − 1 and also γ ⩽ 1 since b ⩾ 2CS
(C−1)2 · n, C > 1 and S ⩾ 1. Hence,

there exists a constant c := c(δ)> 0 such that for any step m⩾ 0 which is a multiple of b,

E [ Γm ]⩽
8c
δ
· n.

Therefore, by Markov’s inequality

Pr
�

Γm ⩽
8c
δ
· n3

�

⩾ 1− n−2.

To prove the claim, note that when
�

Γm ⩽ 8c
δ · n

3
	

holds, then also,

max
i∈[n]
|ym

i |⩽
1
γ
·
�

log
�

8c
δ

�

+ 3 · log n
�

⩽ 4 ·
log n
γ
⩽ 4 ·

8 · 5 · (C − 1)2

εδ
·

b
n
· log n.

Recall that the (1+ β)-process satisfies condition C1 with ε = β
4 and δ = 1

4 , and conditions C2
and C3 with C = 1+ β .

In particular, by considering β = Θ(
p

n/b) we get a process that is asymptotically better than
TWO-CHOICE. As we show in Observation C.4, this is just a

p

log n factor from the optimalΩ(
p

b/n · log n)
bound, which holds for any d-SAMPLE process with constant d (in the unit weights setting).

Corollary 3.18. Let b ⩾ n log n and consider the WEIGHTED b-BATCHED setting with weights from a
FINITE-MGF(S) distribution with S ⩾ 1. Then, there exists κ := κ(S) > 0 such that for the (1+ β)-
process with β =

Æ

4S · n
b and for any step m⩾ 0 being a multiple of b,

Pr

�

Gap(m)⩽ κ ·

√

√ b
n
· log n

�

⩾ 1− n−2.
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3.3 A re-allocation argument

In this section, we exploit the intuitive idea that for TWO-SAMPLE processes, it should not matter
much if we change decisions between bins with a small (e.g., constant) load difference. We will
handle such changes with a potential function argument which bounds the expected change of the
potential function for the “noisy” process by relating it to that of the “original” process.

In this section we will prove the O(g log(ng)) gap bound for the g-ADV-COMP setting for the
TWO-CHOICE process (with g ⩾ 1 being arbitrary) using this re-allocation argument, also recovering
the O(g log(ng)) gap bound for the g-BOUNDED process proven in [142].

By Lemma 3.5, we have for any TWO-SAMPLE process (as it satisfies condition C2 for C = 2),

Lemma 3.19. Consider any TWO-SAMPLE process with probability allocation vector qt and the potential
Γ := Γ (γ) with any γ ∈ (0,1]. Then, for any step t ⩾ 0,

E
�

∆Γ t+1
�

� y t
�

⩽
4γ2

n
· Γ t +

n
∑

i=1

�

eγy t
i ·
�

qt
i −

1
n

�

· γ+ e−γy t
i ·
�

1
n
− qt

i

�

· γ
�

. (3.27)

For convenience, we rewrite Eq. (3.27) by decomposing the upper bound into the components
that are independent of the probability allocation vector qt and those that are not, i.e.,

E
�

∆Γ t+1
�

� y t
�

⩽ h(y t) +
n
∑

i=1

qt
i · f (y

t
i ), (3.28)

where h(y t) := 4γ2

n · Γ
t − γn ·

∑n
i=1 eγy t

i + γ
n ·
∑n

i=1 e−γy t
i and f (y t

i ) := eγy t
i · γ− e−γy t

i · γ.
Recalling that TWO-CHOICE without noise satisfies condition C1 with ε= 1

2 , δ = 1
4 and condition

C2 with C = 2, by Lemma 3.3 the expectation of Γ satisfies the following drop inequality:

Lemma 3.20. Consider the TWO-CHOICE process without noise with probability allocation vector p and
the potential Γ := Γ (γ) with any γ ∈ (0,1]. Then, there exists a constant c > 0, such that for any step
t ⩾ 0,

E
�

∆Γ t+1
�

� y t
�

⩽ h(ey t) +
n
∑

i=1

pi · f (ey t
i )⩽ −

γ

32n
· Γ t +

4γ2

n
· Γ t + c.

We will analyze ∆Γ t+1 for the g-ADV-COMP setting by relating it to the change ∆Γ t+1 for the
TWO-CHOICE process without noise. To this end, it will be helpful to define all pairs of ranks of bins
(of unequal load), whose comparison is under the control of the adversary:

Rt :=
¦

(i, j) ∈ [n]× [n]: ey t
j < ey

t
i ⩽ ey

t
j + g

©

. (3.29)

So for each pair (i, j) ∈ Rt , the adversary determines the outcome of the load comparison assuming
{i, j} are the two bin samples in step t + 1, which happens with probability 2 · 1

n ·
1
n =

2
n2 . This can

be seen as moving a probability of up to 2
n2 from bin j to bin i, if we relate the probability allocation

vector p (of TWO-CHOICE without noise) to the sorted allocation vector eqt = eqt(Ft) of TWO-CHOICE

with noise.

Theorem 3.21. Consider the g-ADV-COMP setting with any g ⩾ 1, and the potential Γ := Γ (γ) with
γ := − log(1 − 1

17·32)/g < 1
16·32 . Then, there exist constants c1 ⩾ 1, c2 > 0, c3 ⩾ 2, such that the

following three statements hold for all steps t ⩾ 0:

(i) E
�

∆Γ t+1
�

� y t
�

⩽ −
γ

64n
· Γ t + c1,

(ii) E
�

Γ t
�

⩽ c2ng,

(iii) Pr
�

max
i∈[n]

�

�y t
i

�

�⩽ c3 g log(ng)
�

⩾ 1− (ng)−14.
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x t
i : 21 19 13 12 12 11 8 6
i: 1 2 3 4 5 6 7 8

Rt = {(1,2), (3,4), (3, 5), (3, 6), (4, 6), (5,6), (6,7), (7,8)}

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

i

Pr
[·
]

TWO-CHOICE without noise p
g-ADV-COMP eqt

Figure 3.5: Illustration of the set Rt and the change in the sorted allocation vector from p to eqt ,
where n = 8 and g = 3. In the example, each directed arrow moves a probability of 2

n2 (indicated
by the blue rectangles) from a bin j to a heavier bin i < j. Note that in this example, the adversary
decides not to reverse some of the comparisons, e.g., between bins 7 and 8.

Proof. First statement. Consider the sorted allocation vector eqt at step t in the g-ADV-COMP setting.
By Eq. (3.28) we have

E
�

∆Γ t+1
�

� y t
�

⩽ h(ey t) +
n
∑

i=1

eqt
i · f (ey

t
i ).

Recall that p is the probability allocation vector of TWO-CHOICE without noise. Then,

eqt := p+
∑

(i, j)∈Rt

�

ei − e j

�

· γt
i, j +

∑

(i, j)∈[n]×[n]: ey t
i =ey

t
j

�

ei − e j

�

· γt
i, j ,

where ei is the i-th unit vector, and γt
i, j is a number in

�

0, 2
n2

�

. Hence,

E
�

∆Γ t+1
�

� y t
�

⩽ h(ey t) +
n
∑

i=1

pi · f (ey t
i ) +

∑

(i, j)∈Rt

γt
i, j ·

�

f (ey t
i )− f (ey t

j )
�

+
∑

(i, j)∈[n]×[n]: ey t
i =ey

t
j

γt
i, j ·

�

f (ey t
i )− f (ey t

j )
�

= h(ey t) +
n
∑

i=1

pi · f (ey t
i ) +

∑

(i, j)∈Rt

γt
i, j ·

�

f (ey t
i )− f (ey t

j )
�

⩽ −
γ

32n
· Γ t +

4γ2

n
· Γ t + c +

∑

(i, j)∈Rt

γt
i, j ·

�

f (ey t
i )− f (ey t

j )
�

, (3.30)

using in the last inequality that by Lemma 3.20 there exists such a constant c > 0 for the TWO-CHOICE

process without noise and for the same γ.
For any (i, j) ∈ Rt , we define

ξt
i, j := γt

i, j ·
�

f (ey t
i )− f (ey t

j )
�

⩽
2γ
n2
·
�

eγey
t
i − e−γey

t
i − eγey

t
j + e−γey

t
j
�

,

and proceed to upper bound ξt
i, j , using the following lemma, which is based on a case distinction

and Taylor estimates for exp(·).
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Lemma 3.22. For any pair of indices (i, j) ∈ Rt , we have ξt
i, j ⩽

γ
128n2 · (Γ t

i + Γ
t
j ) +

16
n2 .

Proof of Lemma 3.22. Recall that for any (i, j) ∈ Rt we have that ey t
j < ey t

i ⩽ ey
t
j + g. So, now we

consider the following three disjoint cases:
Case 1 [ey t

i > g]: In this case, we also have that ey t
j > 0, so
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i, j

(a)
⩽
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·
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� (b)
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t
i −g) + 1
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=
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·
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eγey
t
i · (1− e−γg) + 1

�

,

using in (a) that e−γey
t
k ⩽ 1 for any bin k ∈ [n] with ey t

k > 0, and in (b) that ey t
i ⩽ ey

t
j + g.

Case 2 [ey t
j < −g]: In this case, we also have that ey t

i < 0,
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⩽
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n2
·
�

−e−γey
t
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e−γey
t
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,

using in (a) that eγey
t
k ⩽ 1 for any bin k ∈ [n] with ey t

k < 0 and in (b) that ey t
i ⩽ ey

t
j + g.

Case 3 [max{|ey t
i |, |ey

t
j |}⩽ g]: In this case we have that

ξt
i, j ⩽

2γ
n2
· (Γ t

i + Γ
t
j )⩽

2
n2
· (2 · 2 · eγg)⩽

2γ
n2
· 8,

using that by definition of γ, we have eγg = e− log(1− 1
17·32 ) < 2.

Combining the upper bounds for the three cases, we have that for any (i, j) ∈ Rt ,

ξt
i, j ⩽

2γ
n2
·
�

eγey
t
i · (1− e−γg) + e−γey

t
j · (1− e−γg) + 8

�

⩽
2γ
n2
·
�

Γ t
i · (1− e−γg) + Γ t

j · (1− e−γg) + 8
�

⩽
2γ
n2
·
�

Γ t
i + Γ

t
j

�

·
1

4 · 32
+

16
n2

,

using in the last inequality that γ= − log(1− 1
17·32)/g and γ⩽ 1.

We continue with the proof of Theorem 3.21. By Lemma 3.22 and Eq. (3.30), we have

E
�

∆Γ t+1
�

� y t
�

⩽ −
γ

32n
· Γ t +

4γ2

n
· Γ t + c +

∑

(i, j)∈Rt

�

γ

4 · 32n2
· (Γ t

i + Γ
t
j ) +

16
n2

�

(a)
⩽ −

γ

32n
· Γ t +

4γ2

n
· Γ t + c +

γ

4 · 32n
· Γ t + 16

(b)
⩽ −

γ

32n
· Γ t +

γ

2 · 32n
· Γ t + c + 16

⩽ −
γ

64n
· Γ t + c1, (3.31)

for c1 := c+ 16⩾ 1, where (a) holds since if (i, j) ∈ Rt then ( j, i) ̸∈ Rt , so every bin k ∈ [n] appears
at most n times in Rt and in (b) that γ⩽ 1

16·32 . This concludes the proof of the first statement.

Second statement. By Lemma B.1 (ii) (for a = 1− γ
64n and b = c1), since Γ 0 = 2n ⩽ 64c1

γ · n (as
c1 ⩾ 1 and γ⩽ 1) and Eq. (3.31) hold, it follows that

E
�

Γ t
�

⩽
64c1

γ
· n=: c2ng.

Third statement. Using Markov’s inequality, for any step t ⩾ 0,

Pr
�

Γ t ⩽ c2 · (ng)15
�

⩾ 1− (ng)−14.
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When the event
�

Γ t ⩽ c2 · (ng)15
	

holds, we have that

max
i∈[n]

�

�y t
i

�

�⩽
1
γ
· (log c2 + 15 log(ng))⩽

16 log(ng)
γ

=: c3 g log(ng),

for sufficiently large n and for the constant

c3 :=
16
γg
=

16

− log(1− 1
17·32)

⩾ 2. (3.32)

Therefore we conclude that,

Pr
�

max
i∈[n]

�

�y t
i

�

�⩽ c3 g log(ng)
�

⩾ 1− (ng)−14.

Next we will also state a simple corollary that starting with a “small” gap, in any future step,
w.h.p. the gap will be small. This corollary will be used in obtaining the tighter O(g + log n) gap
bound in Section 5.3.

Corollary 3.23. Consider the g-ADV-COMP setting for any g ⩾ 1. Then, for any steps t0 ⩾ 0 and
t1 ⩾ t0, we have that

Pr

�

max
i∈[n]

�

�y t1
i

�

�⩽ 2g(log(ng))2
�

�

�

�

Ft0 , max
i∈[n]

�

�y t0
i

�

�⩽ g(log(ng))2
�

⩾ 1− (ng)14.

Proof. We will be using the hyperbolic cosine potential Γ := Γ (γ) with smoothing parameter γ :=
− log(1− 1

17·32)/g as we did in the proof of Theorem 3.21.
Consider an arbitrary step t0 with maxi∈[n]

�

�y t0
i

�

�⩽ g(log(ng))2. Then, it follows that

Γ t0 ⩽ 2n · eγg(log(ng))2 .

By Theorem 3.21 (i), there exists a constant c1 ⩾ 1 such that

E
�

Γ t+1
�

� Ft
�

⩽
�

1−
γ

64n

�

+ c1,

and using Lemma B.1 (i) (for a := 1− γ
64n and b := c1) at step t1 ⩾ t0, we have that

E
h

Γ t1

�

�

�Ft0 , Γ t0 ⩽ 2n · eγg(log(ng))2
i

⩽ 2n · eγg(log(ng))2 ·
�

1−
γ

64n

�t1−t0
+

64c1n
γ
⩽ 4n · eγg(log(ng))2 ,

recalling that γ= Θ
� 1

g

�

. Hence, by Markov’s inequality, we have that

Pr
�

Γ t1 ⩽ 4n · eγg(log(ng))2 · (ng)14
�

�

� Ft0 ,max
i∈[n]

�

�y t0
i

�

�⩽ g(log(ng))2
�

⩾ Pr
h

Γ t1 ⩽ 4n · eγg(log(ng))2 · (ng)14
�

�

� Ft0 , Γ t0 ⩽ 2n · eγg(log(ng))2
i

⩾ 1− (ng)−14.

When the event
�

Γ t1 ⩽ 4n · eγg(log(ng))2 · (ng)14
	

holds, then it also follows that

max
i∈[n]

�

�y t1
i

�

�⩽
log Γ t1

γ
⩽ g(log(ng))2 +

1
γ
· (log(4n) + 14 log(ng))⩽ 2g(log(ng))2,

for sufficiently large n and using that γ= Θ
� 1

g

�

. Hence, we get the conclusion.
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Chapter 31/2: Physical balanced alloca-
tions

In the spirit of the Galton board [85], we can construct physical automata that “sample” distribu-
tions of various balanced allocation processes. The simplest process to simulate is the ONE-CHOICE

process, where balls flow from the top of the board and then they encounter a binary branching
structure, where at each junction the ball is assumed to randomly pick one of the two disjoint bal-
anced subsets of the bins. After encountering log2 n such junctions, it reaches one of the n bins. See
Fig. 3.6 for the blueprints and laser cut version of the automaton.

Figure 3.6: On the left is the blueprint for the ONE-CHOICE process, in the middle is the actual
implementation of this blueprint and on the right is the blueprint of a modification that prevents
balls being stuck in the top junction.

For more complicated processes, these automata become more difficult to construct. Fig. 3.7
shows the blueprint for a general TWO-THINNING process, where the decision function is encoded
using a knob for each bin, which determines if that bin should accept a ball at a first allocation (and
the ball is directed through the dashed lines to the respective bin) or whether it should be allocated
to a second random sample, which is done by passing through a second ONE-CHOICE structure.
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Figure 3.7: Blueprint for the TWO-THINNING processes, where the red/green circles correspond to
knobs directing the incoming balls either directly to the bins below (dashed path) or to a second
ONE-CHOICE allocation (solid path), corresponding to allocating to the second sample.
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CONCENTRATION OF THE HYPERBOLIC

COSINE POTENTIAL

Recall the hyperbolic cosine potential Γ := Γ (γ) was defined in Eq. (3.1) as

Γ t := Γ t(γ) :=
n
∑

i=1

eγy t
i +

n
∑

i=1

e−γy t
i .

In Chapter 3, we saw that for a wide family of processes the hyperbolic cosine potential Γ with a
suitable smoothing parameter γ⩽ 1 is O(n) in expectation. By Markov’s inequality this expectation
bound implies that w.h.p. Γ t = poly(n), for any step t. This is enough for showing that w.h.p. the
gap is O(log n/γ), for γ ⩽ 1. The main focus of this chapter is to strengthen this, by obtaining
concentration bounds for the hyperbolic cosine potential function, i.e., proving that w.h.p. Γ t =O(n)
for any step t.

The reason why high probability bounds are useful was outlined in Section 1.3. We will repeat
the motivating factors here and make connections to Chapter 6. For some processes (e.g., TWO-
CHOICE, k-DENSE-QUANTILE, etc), our goal is to prove w.h.p. a tighter o(log n) gap. In order to
do this, we use exponential potentials with smoothing parameters γ = ω(1), the so-called super-
exponential potentials. Unlike the hyperbolic cosine potential these potentials may not always de-
crease in expectation even if large. However, in Chapter 6 we show that in steps t where the number
of bins N t

⩾v with normalised load at least some value v is small, then these potentials decrease in
expectation. In order to bound N t

⩾v , we use the concentration of Γ , i.e., that w.h.p. Γ t = O(n).1
More specifically, in any step t with Γ t ⩽ cn, we can deduce that

N t
⩾v ⩽ cn · e−γv .

In Chapter 7, we show how these can be applied to obtain bounds for the QUANTILE(δ∗), k-
DENSE-QUANTILE, k-DENSE-THRESHOLD and g-ADV(TWO-CHOICE, G t) processes.2

We start by stating the main theorem for the concentration of the hyperbolic cosine potential.
The rest of the chapter is devoted to proving this theorem.

Theorem 4.1. Consider any balanced allocation process P, where in each step at most d ∈ N+ balls
are allocated (where d is not necessarily constant) and consider an arbitrary constant κ ⩾ 6. Further,
assume for this process that for the hyperbolic potential functions Γ1 := Γ1(γ1) and Γ2 := Γ2(γ2) with
smoothing parameters γ1 ∈ (0, 1/(2d)) and γ2 ⩽

γ1
12κ respectively, there exists an ε > 0 (with γ2ε ⩾

n−1/6) and constants c1, c2 > 0 (with c1 ⩽ c2), such that for any step t ⩾ 0,

E
�

Γ t+1
1

�

� Ft
�

⩽ Γ t
1 ·
�

1−
c1γ1ε

n

�

+ c2γ1ε, (4.1)

and

E
�

Γ t+1
2

�

� Ft
�

⩽ Γ t
2 ·
�

1−
c1γ2ε

n

�

+ c2γ2ε. (4.2)

Then, for c := 2 · c2
c1
⩾ 2 and for any step t ⩾ 0,

Pr
�

Γ t
2 ⩽ 3cn

�

⩾ 1− n−κ.
1See Section 7.1.1 for a discussion about some results that can be deduced using just Markov’s inequality with a weaker

probability guarantee.
2For the last two processes, the layered induction over super-exponential potentials is very similar to that of k-DENSE-

QUANTILE. However, the concentration for the hyperbolic cosine potential is a bit more involved, making use of the
absolute value and quadratic potentials, and so will be the main focus of Chapter 5.
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4.1 Proof outline of Theorem 4.1

In this section, we will outline the proof of Theorem 4.1, giving some intuition for the require-
ment/choice of the two potential functions Γ1 and Γ2.

Our goal is to show that w.h.p. Γ t
2 ⩽ 3cn, for any given t ⩾ 0. We will prove this by analysing the

steps in the interval [t− Tr , t], where Tr :=
�

2 · 4/3+2κ
c1γ2ε
·n log n

�

. In particular, in this interval, which
we call the recovery interval, we will show that w.h.p. Γ r

2 ⩽ cn for at least one step r ∈ [t− Tr , t] and
then we will show that it stabilises, i.e., remains small, for all steps in [r, t].

Now, we will give a few more details for the steps in the proof (see Fig. 4.1). By the expectation
bound proven in Chapter 3, we have that E

�

Γ t
1

�

⩽ cn for any step t ⩾ 0. So, by Markov’s inequality
w.h.p. Γ s

1 ⩽ cn2κ+1 for all s ∈ [t − Tr , t].

t − Tr r t

Γ s
1 ⩽ cn2κ+1 for all s ∈ [t − Tr , t] (Lemma 4.2 (iii)+Markov’s Ineq.)

Γ
t−Tr
2 ⩽ n4/3

∃r ∈ [t − Tr , t] : Γ r
2 ⩽ cn w.h.p.

Γ s
2 ⩽ 3cn for all s ∈ [r, t]

Lemma 4.3 (i)

Lemma 4.4

Starting point

Bounded difference
(Lemma 4.3 (ii))

Drop inequality
(Lemma 4.2 (ii))

Completion of the Proof of Theorem 4.1 (Section 4.4)

Figure 4.1: Outline for the proof of Theorem 4.1. Results in green are used in the application of
Azuma’s concentration inequality for super-martingales (Lemma B.10) in Theorem 4.1.

By the choice of γ2 ⩽
γ1

12κ , we will show that when Γ s
1 ⩽ cn2κ+1, then we also have (i) that

Γ s
2 ⩽ n4/3 and (ii) that

�

�Γ s+1
2 − Γ

s
2

�

�⩽ n1/3 (Lemma 4.3). The first condition will be useful for proving
the recovery, i.e., that Γ r

2 ⩽ cn for at least one step r ∈ [t − Tr , t] (Lemma 4.4). Then, starting from
this step r and using the second condition allows us to use a concentration inequality to deduce that
Γ2 stabilises, i.e., that Γ s

2 ⩽ 3cn for all steps s ∈ [r, t] (Lemma 4.5).

4.2 Auxiliary lemmas

In this section, we will prove some auxiliary lemmas for the potentials Γ1 := Γ1(γ1) and Γ2 := Γ2(γ2)
as defined in Theorem 4.1.

Lemma 4.2. Consider any balanced allocation process P satisfying the preconditions of Theorem 4.1.
Then, for any step t ⩾ 0,

(i) E
�

Γ t+1
1

�

� Ft , Γ t
1 > cn

�

⩽ Γ t
1 ·
�

1−
c1γ1ε

2n

�

,

(ii) E
�

Γ t+1
2

�

� Ft , Γ t
2 > cn

�

⩽ Γ t
2 ·
�

1−
c1γ2ε

2n

�

,

(iii) E
�

Γ t
1

�

⩽ cn.

Proof. First Statement. Recall that c = 2 · c2
c1
⩾ 2. For the first statement, by the assumptions

E
�

Γ t+1
1

�

� Ft , Γ t
1 > cn

�

⩽ Γ t
1 ·
�

1−
c1γ1ε

n

�

+ c2γ1ε

= Γ t
1 ·
�

1−
c1γ1ε

2n

�

− Γ t
1 ·

c1γ1ε

2n
+ c2γ1ε

79



⩽ Γ t
1 ·
�

1−
c1γ1ε

2n

�

− 2 ·
c2

c1
· n ·

c1γ1ε

2n
+ c2γ1ε= Γ

t
1 ·
�

1−
c1γ1ε

2n

�

.

Second Statement. Similarly, we obtain the second statement for Γ2.
Third statement. By Lemma B.1 (ii) for a = 1− c1γ1ε

n and b = c2γ1ε, since Γ 0
1 = 2n⩽ 2· c2

c1
·n= cn,

it follows that E[ Γ t ]⩽ cn, for any step t ⩾ 0.

Lemma 4.3. Consider any process P satisfying the preconditions of Theorem 4.1. For any step t ⩾ 0
where Γ t

1 ⩽ cn2κ+1 holds, we have that

(i) Γ t
2 ⩽ n4/3,

(ii)
�

�Γ t+1
2 − Γ t

2

�

�⩽ n1/3.

Proof. Consider an arbitrary step t where Γ t
1 ⩽ cn2κ+1. We start by proving the following bound on

the normalised load y t
i for any bin i ∈ [n],

Γ t
1 ⩽ cn2κ+1⇒ eγ1·y t

i + e−γ1·y t
i ⩽ cn2κ+1⇒ y t

i ⩽
3κ
γ1
· log n ∧ −y t

i ⩽
3κ
γ1
· log n,

where in the second implication we used log c + 2κ+1
γ1

log n ⩽ 3κ
γ1

log n, for sufficiently large n as c is
a constant and κ⩾ 6⩾ 1.

First Statement. Recall that γ2 ⩽ γ1/12κ. By the definition of Γ t
2 and the bound on each nor-

malised bin load, we get that

Γ t
2 ⩽ 2 ·

n
∑

i=1

exp
�

γ2 ·
3κ
γ1
· log n

�

= 2n · n1/4 ⩽ n4/3.

Second Statement. Consider Γ t+1
2 as a sum over 2n exponentials, which is obtained from Γ t

2 by
slightly changing the values of the 2n exponents. The total ℓ1-change in the exponents is upper
bounded by 4d, as we will increment d entries in the load vector x t (and each of these entries
appear twice), and we will also increment the average load by d

n in all 2n exponents. Since exp(·)
is convex, the largest change is upper bounded by the (hypothetical) scenario in which the largest
exponent increases by 4d and all others remain the same,

�

�Γ t+1
2 − Γ t

2

�

�⩽ exp
�

γ2 ·
�

4d +max
i∈[n]

�

�y t
i

�

�

��

⩽ e4dγ2 · exp
�

γ2 ·
3κ
γ1
· log n

�

= e4dγ2 · n1/4 ⩽ n1/3,

using that γ2 ⩽
γ1

12κ and that γ2 ⩽ γ1 ⩽ 1/(2d).

4.3 Recovery and stabilisation

Using the second and third statements in Lemma 4.2, we will now prove a weaker statement of
Theorem 4.1, showing that Γ r

2 ⩽ cn for at least one step r ∈ [t − Tr , t], where Tr is the length of the
recovery interval

Tr :=
¡

2 ·
4/3+ 2κ

c1γ2ε
· n log n

¤

. (4.3)

Before we do this, we proceed by defining an auxiliary process.
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Auxiliary process. Let P be the process satisfying the preconditions of Theorem 4.1. We want to
condition that P has Γ s ⩽ cn2κ+1 for every step s in an interval of poly(n) length, so that we can
deduce it satisfies the bounded difference condition (Lemma 4.2) and then apply Azuma’s inequality
(Lemma B.10).

To this end, we will define an auxiliary process ePt0
:= ePt0

(P) for some arbitrary step t0 ⩾ 0. Let
σ := inf

�

s ⩾ t0 : Γ s > 1
2 cn2κ+1

	

. Then, we define ePt0
so that

• in steps [0,σ) it makes the same allocations as P, and

• in steps [σ,∞) it allocates to the currently least loaded bin, i.e., it uses the sorted probability
allocation vector eqs = (0, . . . , 0, 1).

Let y s
eP be the normalised load vector of ePt0

at step s ⩾ 0. By Lemma 4.2 (iii), Markov’s inequality
and the union bound, it follows that for any interval [t0, m] with m− t0 ⩽ Tr , with high probability
the two processes agree,

Pr





⋂

s∈[t0,m]

¦

y s
eP = y s

©



⩾ Pr





⋂

s∈[t0,m]

�

Γ s
1 ⩽ cn2κ+1

	



⩾ 1− n−2κ · Tr . (4.4)

The process ePt0
is defined in this way to satisfy the following property:

• (Property 1) The ePt0
process satisfies the drop inequalities for the potential functions Γ1, eP

and Γ2, eP (preconditions (4.1) and (4.2)) for any step s ⩾ 0. This holds because for any step
s < σ, the process follows P. For any step s ⩾ σ, the process allocates to the currently
least loaded bin and therefore minimises the potential Γ s+1

1, eP given any Fs, which means that

Γ s+1
1, eP ⩽ E

�

Γ s+1
1 | Fs

�

and so it trivially satisfies any drop inequality (and similarly for Γ2, eP).

Further, we define the event that the potential Γ1 is small at step t0, as

Z t0 :=
§

Γ
t0

1, eP ⩽
1
2

cn2κ+1
ª

, (4.5)

where c ⩾ 1 is the constant defined in Theorem 4.1. When the event Z t0 holds, then the process
ePt0

also satisfies the following property (which “implements” the conditioning that Γ s
1, eP ⩽ cn2κ+1):

• (Property 2) For any step s ⩾ t0, it follows that

Γ s
1, eP ⩽ cn2κ+1.

At any step s ∈ [t0,σ), this holds by the definition of σ. For any step s ⩾ σ, a ball will never
be allocated to a bin with y s

i > 0 and in every n steps the at most n bins with load equal to the
minimum load (at step s) will be allocated at least one ball each. Hence, over any n steps the
maximum absolute normalised load does not increase and in the steps in between this can be
larger by at most d and hence,

Γ s
1, eP ⩽ eγ1d · Γσ

1, eP ⩽ eγ1d ·
1
2

cn2κ+1 ⩽ cn2κ+1.

Lemma 4.4 (Recovery). Consider any step t ⩾ 0 and the auxiliary process ePt−Tr
:= ePt−Tr

(P) for any
P satisfying the preconditions of Theorem 4.1 and with Z t−Tr being the event defined in Eq. (4.5). For
any step t ⩾ 0,

Pr





⋃

r∈[t−Tr ,t]

�

Γ r
2 ⩽ cn

	

�

�

�

�

�

Ft−Tr ,Z t−Tr



⩾ 1− 2n−2κ−1.
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Proof. When t < Tr , then deterministically Γ r
2 = 2n ⩽ cn for r = 0 and so the statement follows.

Otherwise, by the condition Z t−Tr , we have that
�

Γ
t−Tr
1 ⩽ cn2κ+1

	

holds. By Lemma 4.3 (i), this

implies that
�

Γ
t−Tr
2 ⩽ n4/3

	

also holds.
By Lemma 4.2 (ii), for any step s ⩾ 0,

E
�

Γ s+1
2

�

� Fs, Γ s
2 > cn

�

⩽ Γ s
2 ·
�

1−
c1γ2ε

2n

�

. (4.6)

Next, we define the “killed” potential function at steps s ⩾ t − Tr as

bΓ s
2 := Γ s

2 · 1⋂r∈[t−Tr ,s]{Γ r
2>cn}.

Note that when
�

Γ s
1 ⩽ cn

	

then also
�

bΓ s
1 = 0

	

and
�

bΓ s+1
1 = 0

	

. Therefore, the bΓ potential uncondi-
tionally satisfies the inequality of Eq. (4.6), that is for any s ⩾ t − Tr

E
�

bΓ s+1
2

�

� Fs
�

⩽ bΓ s
2 ·
�

1−
c1γ2ε

2n

�

.

Inductively applying this for Tr steps, starting with bΓ t−Tr
2 ⩽ Γ t−Tr

2 ⩽ n4/3, we get

E
�

bΓ t
2

�

� Ft−Tr ,Z t−Tr
�

⩽ E
�

bΓ t
2

�

� Ft−Tr , Γ t−Tr
2 ⩽ n4/3

�

⩽ n4/3 ·
�

1−
c1γ2ε

2n

�Tr (a)
⩽ n4/3 · e−

1
2 c1γ2ε·

Tr
n
(b)
⩽ n−2κ,

using in (a) that 1+ u ⩽ eu (for any u) and in (b) that Tr =
�

2 · 4/3+2κ
c1γ2ε

· n log n
�

. So, by Markov’s
inequality,

Pr
�

bΓ t
2 ⩽ n

�

� Ft−Tr ,Z t−Tr
�

⩾ 1− n−2κ−1.

Since deterministically Γ s
2 ⩾ 2n at any step s, we conclude that when

�

bΓ t
2 ⩽ n

	

, then also
�

bΓ t
2 = 0

	

,
and so

1⋂
r∈[t−Tr ,t]{Γ r

2>cn} = 0, implying that ¬
⋂

r∈[t−Tr ,t]

�

Γ r
2 > cn

	

holds

with probability at least 1− 2n−2κ, concluding the claim.

We will now show that whenever Γ r
2 ∈ [cn, 2cn] holds for some step r ∈ [t − Tr , t], then with

high probability (i) it remains small until step t, i.e., Γ s
2 ⩽ 3cn for all s ∈ [r, t] or (ii) it remains small

until some step s ⩽ t where it becomes very small, i.e., Γ s
2 ⩽ cn.

Lemma 4.5 (Stabilisation). Consider any step t ⩾ 0 and the auxiliary process ePt−Tr
:= ePt−Tr

(P) for
any P satisfying the preconditions of Theorem 4.1 and with Z t−Tr being the event defined in Eq. (4.5).
Then, for any step r ∈ [t − Tr , t] for Tr as defined in Eq. (4.3),

Pr





⋂

s∈[r,t]

�

Γ s
2 ⩽ 3cn

	

∪
⋃

s∈(r,t]

 

⋂

u∈[r,s]

�

Γ u
2 ⩽ 3cn

	

∩
�

Γ s
2 ⩽ cn

	

! �

�

�

�

�

Z t−Tr ,Fr , Γ r
2 ∈ [cn, 2cn]



⩾ 1−n−
4
3κ.

Proof. Consider an arbitrary step r ∈ [t − Tr , t] such that Γ r
2 ∈ [cn, 2cn]. We define the stopping

time
τ := inf

�

er > r : Γ er2 ⩽ cn
	

,

and the sequence X s
r for any step s ∈ [r, t],

X s
r := Γ s∧τ

2 .

We defined (X s
r)s∈[r,t] this way so that it forms a super-martingale. To see this, note that by Lemma 4.2 (ii),

for any step s < τ we have that

E
�

X s+1
r

�

� Fs, s < τ
�

⩽ E
�

Γ s+1
2

�

� Fs, Γ s
2 ⩾ cn

�

⩽ Γ s
2, (4.7)
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and for any step s ⩾ τ,

E
�

X s+1
r

�

� Fs, s ⩾ τ
�

= X s
r . (4.8)

Recall that when Z t−Tr holds, then by Property 2 (see Section 4.3), it holds that Γ s
1 ⩽ cn2κ+1 for

every step s ⩾ t − Tr . So, by Lemma 4.3 (ii) it also holds that
�

�Γ s+1
2 − Γ

s
2

�

�⩽ n1/3.
Hence, applying Azuma’s inequality (Lemma B.10) for any s ∈ [r, t] gives

Pr
�

X s
r ⩾ X r

r + cn
�

�Z t−Tr ,Fr , Γ r
2 ∈ [cn, 2cn]

�

⩽ exp

�

−
c2n2

2 · Tr · (n1/3)2

�

⩽ 2 · Tr · n−2κ,

using that Tr =O(n ·n1/6 · log n). Also recall that at the starting point r, it holds that X r
r = Γ

r
2 ⩽ 2cn.

Hence, we can conclude that

Pr
�

X s
r > 3cn

�

�Z t−Tr ,Fr , Γ r
2 ∈ [cn, 2cn]

�

⩽ 2 · Tr · n−2κ.

By taking the union bound over all steps s ∈ [r, t], we get

Pr

� t
⋂

s=r

�

X s
r ⩽ 3cn

	

�

�

�

�

Z t−Tr ,Fr , Γ r
2 ∈ [cn, 2cn]

�

⩾ 1− 3 · T2
r · n
−2κ ⩾ 1− n−κ,

using that κ⩾ 6. Now, assuming that
⋂t

s=r

�

X s
r ⩽ 3cn

	

holds, we consider the following cases based
on the stopping time τ:

• Case 1 [τ > t]: Then for all steps u ∈ [r, t], we have that Γ u
2 = X u

r ⩽ 3cn.

• Case 2 [τ⩽ t]: Then for all steps u ∈ [r,τ], we have that Γ u
2 = X u

r ⩽ 3cn and Γ τ2 ⩽ cn. So the
following event holds for s = τ > r,

⋃

s∈(r,t]

 

⋂

u∈[r,s]

�

Γ u
2 ⩽ 3cn

	

∩
�

Γ s
2 ⩽ cn

	

!

.

Hence, this concludes the claim.

4.4 Completing the proof of Theorem 4.1

Before we complete the proof of Theorem 4.1, we first prove the statement for the auxiliary process
ePt−Tr

.

Lemma 4.6. Consider any step t ⩾ 0 and the auxiliary process ePt−Tr
:= ePt−Tr

(P) for any P satisfying
the preconditions of Theorem 4.1 and with Z t−Tr being the event defined in Eq. (4.5). Then, for c :=
2 · c2

c1
⩾ 2 and for any step t ⩾ 0,

Pr
�

Γ t
2 ⩽ 3cn

�

� Z t−Tr
�

⩾ 1−
1
2

n−κ.

Proof. The proof will be concerned with steps ∈ [t − Tr , t]. First, by applying Lemma 4.4, it holds
that

Pr





⋃

r0∈[t−Tr ,t]

�

Γ
r0
2 ⩽ cn

	

�

�

�

�

�

Ft−Tr ,Z t−Tr



⩾ 1− 2n−2κ−1. (4.9)

Consider now an arbitrary step r0 ∈ [t−Tr , t] and assume that Γ r0
2 ⩽ cn. We partition the time-steps

s ∈ [r0, t] into red and green phases (see Fig. 4.2):
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1. Red Phase: The step s is in a red phase if Γ s
2 > cn.

2. Green Phase: Otherwise, the process is in a green phase.

Note that by the choice of r0, the process is at a green phase at time r0. Then each green phase
may be preceded by a red phase. Trivially, for each step s in a green phase, we have Γ s

2 ⩽ cn. Also,
when s is the first step of a red phase after a green phase, it follows that Γ s

2 ⩽ eγ2d · Γ s−1
2 ⩽ 2 · Γ s−1

2 ⩽
2cn, since 0< γ2 < 1/(2d).

We now let Rs denote the event that step s is the first step of a red phase. Additionally, let As be
the event that all steps u ∈ [s, t] in the same phase as s, satisfy Γ u

2 ⩽ 3cn. By Lemma 4.5, we have
that

Pr
�

As
�

�Z t−Tr ,Fs,Rs
�

⩾ 1− n−
4
3κ.

For any events E1 ̸= ; and E2, we have that Pr [E2 ∪¬E1 ]⩾ 1− Pr [¬E2 | E1 ] and hence

Pr
�

As ∪¬Rs
�

�Z t−Tr ,Fs
�

⩾ 1− n−
4
3κ.

By taking the union-bound over all steps s in [r0, t], we have that

Pr





⋂

s∈[r0,t]

(As ∪¬Rs)

�

�

�

�

�

Z t−Tr ,Fr0 , Γ r0
2 ⩽ cn



⩾ 1− n−
4
3κ · Tr ⩾ 1−

1
4

n−κ.

When ∩s∈[r0,t] (As ∪¬Rs) holds, all steps u in all red phases satisfy Γ u
2 ⩽ 3cn. Thus, since steps in

green phases are good by definition, we have that

Pr





⋂

s∈[r0,t]

�

Γ s
2 ⩽ 3cn

	

�

�

�

�

�

Z t−Tr ,Fr0 , Γ r0
2 ⩽ cn



⩾ 1− n−
4
3κ · Tr ⩾ 1−

1
4

n−κ.

Hence, by defining the stopping time ρ := inf{r0 ⩾ t − Tr : Γ r0
2 ⩽ cn}, we have

Pr
�

Γ t
2 ⩽ 3cn

�

⩾
t
∑

r0=t−Tr

Pr
�

Γ t
2 ⩽ 3cn

�

� Z t−Tr ,ρ = r0

�

· Pr
�

ρ = r0

�

�Z t−Tr
�

⩾
t
∑

r0=t−Tr

Pr





⋂

s∈[r0,t]

�

Γ s
2 ⩽ 3cn

	

�

�

�

�

�

Z t−Tr ,Fr0 , Γ r0
2 ⩽ cn



 · Pr
�

ρ = r0

�

�Z t−Tr
�

⩾
�

1−
1
4

n−κ
�

·
t
∑

r0=t−Tr

Pr
�

ρ = r0

�

�Z t−Tr
�

=
�

1−
1
4

n−κ
�

· Pr [ρ ⩽ t ]

(a)
⩾
�

1−
1
4

n−κ
�

·
�

1− 2n−2κ
�

⩾ 1−
1
2

n−κ,

using Eq. (4.9) in (a) and so the conclusion follows.

Now we complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Consider the auxiliary process ePt−Tr
and let Γ2, eP be its Γ2 potential. Then, by

Lemma 4.6 we have that

Pr
h

Γ t
2, eP ⩽ 3cn

�

�

� Z t−Tr

i

⩾ 1−
1
2

n−κ. (4.10)
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cn

2cn

Γ r
2

r

m− Tr s0 τ1 s1 τ2 m

Recovery by Lemma 4.4

Figure 4.2: Green phases indicate steps where Γ r
2 is small and red phases indicate steps for which

the potential is large and drops (in expectation). In Lemma 4.5, we show that Γ2 ⩽ 3cn at every
point within a red phase using a concentration inequality.

By Lemma 4.2 and Markov’s inequality, since ePt−Tr
and P agree for every step s ⩽ t − Tr , we have

that

Pr
�

Z t−Tr
�

= Pr
�

Γ
t−Tr
1 ⩽

1
2

cn2κ+1
�

⩾ 1− 2n−2κ. (4.11)

Hence, by combining Eq. (4.10) and Eq. (4.11), we have that

Pr
�

Γ t
2, eP ⩽ 3cn

�

⩾
�

1−
1
2

n−κ
�

·
�

1− 2n−2κ
�

⩾ 1−
3
4

n−κ.

As shown in Eq. (4.4), w.h.p. the process eP agrees with P in all steps in [t − Tr , t], and hence

Pr
�

Γ t
2 ⩽ 3cn

�

⩾ Pr





¦

Γ t
2, eP ⩽ 3cn

©

∩
⋂

s∈[t−Tr ,t]

¦

y s = y s
eP

©



⩾ 1−
3
4

n−κ − n−2κ · Tr ⩾ 1− n−κ,

using that Tr =O(n · n1/6 · log n).
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Chapter 41/2: Disks-into-bins

A load balancing process related to balls-into-bins is the disks-into-bins process. At step t ⩾ 0, this
process:

• Samples one point (x , y) uniformly at random from the square [0,1]2, i.e., x ∼ U[0,1] and
y ∼ U[0,1].

• Places a disk of radius r at that position.

The load of each point in the [−r, 1 + r]2 square is the number of times that a disk covers it.
What is the maximum load over all points for this process?

The equivalent coupon collector question, i.e., the number of disks required to cover all points,
can be perhaps answered using slight modifications of the classical argument.

Figure 4.3: Example of the ONE-CHOICE process in the disks-into-bins setting with n = 100 balls
and radius r = 0.1. The maximum load here is 8.

Another reasonable question is whether a process similar to TWO-CHOICE would produce a lower
maximum load than ONE-CHOICE. In particular, consider the process, which at step t ⩾ 0:

• Samples two points P1 and P2 uniformly at random from the square [0, 1]2.

• Computes the maximum load of the points covered by placing a disk at P1 and at P2.

• Places to the disk at the point where this value is smaller (breaking ties randomly).

Some empirical results in Table 4.4 for various values of radius r and number of disks m, suggest
that this TWO-CHOICE process is superior to ONE-CHOICE. However, it is not clear whether TWO-
CHOICE is optimal over all TWO-SAMPLE processes or even if the tie-breaking rule is important.
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n\r 0.05 0.1 0.2 0.3
100 5/3.4 8.9/6.7 21.2/17.5 36.7/31.1
200 7.5/4.9 15.7/11 38.2/31.7 69.4/59.2
300 9.4/6.2 20.5/15.3 54.4/44.7 100.5/88.2
500 12.7/8.9 29.6/22.9 84.1/72.6 160.8/141.9

Table 4.4: Maximum loads for the ONE-CHOICE/TWO-CHOICE processes for various values of n and
r.

Figure 4.5: Example of disk distribution for ONE-CHOICE and TWO-CHOICE for n= 300 and r = 0.1.
Note that in the TWO-CHOICE distribution the loads are more balanced.
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INTERPLAY BETWEEN THE ABSOLUTE

VALUE AND QUADRATIC POTENTIALS

In this section, we present the interplay between two lower-order potential functions, namely the
absolute value potential defined as the ℓ1-norm of the normalised load vector

∆t :=
n
∑

i=1

�

�y t
i

�

� ,

and the quadratic potential defined as the sum of the squares of normalised loads

Υ t :=
n
∑

i=1

(y t
i )

2.

This interplay allows us to analyse:

1. The g-ADV-COMP setting for the TWO-CHOICE process showing an O(g + log n) bound in Sec-
tion 5.3 and establishing the base case for the O

� g
log g · log log n

�

bound for any g = o(log n)
to be proven in Section 7.4.1. This upper bound also applies to g-BOUNDED, g-ADV-LOAD and
g-MYOPIC-COMP settings for TWO-CHOICE, so we refer to g-ADV-COMP as g-ADV setting for
short.

2. The MEAN-THINNING process showing an O(log n) bound in Section 5.2. The analysis works
for the family of MEAN-BIASED processes, so we obtain bounds for the TWINNING, (1+η) and
RELATIVE-THRESHOLD( f (n)) processes with f (n)⩾ 0 as corollaries in Section 5.2.2.

In Section 5.1, we outline the limitations of using a single hyperbolic cosine potential and ex-
plain how the interplay between the absolute value and the quadratic potential overcomes these
limitations. In Section 5.2, we present a detailed outline for the analysis of the MEAN-BIASED pro-
cesses, but proofs are deferred to [117] (and [119]). In Section 5.3, we give the full details for
obtaining the O(g + log n) in the g-ADV setting for TWO-CHOICE. Finally, in Section 5.4, we prove
strong stabilisation, i.e., that a variant of the hyperbolic cosine potential is w.h.p. O(n), which we
later use for the tighter bounds for g = o(log n) in Section 7.4.1.

5.1 Motivation

5.1.1 For the MEAN-THINNING process

Recall that the MEAN-THINNING (= RELATIVE-THRESHOLD(0)) process is the TWO-THINNING process
which uses the mean (average) t/n as a threshold decision for whether or not to allocate a ball to
the first bin sample or not. For MEAN-THINNING, we aim to prove an O(log n) bound on the gap.

Let δt be the quantile of the average, i.e., δt := |B t
+|/n, where B t

+ := {i ∈ [n] : y t
i ⩾ 0}. At any

step t ⩾ 0 the sorted allocation vector is the same as that of QUANTILE(δt), i.e.,

eqt :=

�

δt

n
, . . . ,

δt

n
︸ ︷︷ ︸

nδt entries

,
1+δt

n
, . . . ,

1+δt

n
︸ ︷︷ ︸

n·(1−δt ) entries

�

.

The problem here is that when δt = o(1) or when δt = 1 − o(1), then the hyperbolic cosine
potential Γ := Γ (γ) with any constant smoothing parameter γ > 0 might increase in expectation. A
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concrete such load vector is given in [117, Claim B.2]. In particular, when δt = 1
n , the process is

equivalent to the process that just avoids allocating to the maximum load (if possible), i.e.,

eqt :=
�

1
n2

,
1
n
+

1
n2

, . . . ,
1
n
+

1
n2

�

.

For processes with such small biases, we can only show that the hyperbolic cosine potential Γ0 :=
Γ0(γ0) with smoothing parameter γ0 = Θ(1/n) is linear in expectation, from which we get an
O(n log n) bound on the gap.

However, we need to bound Γ := Γ (γ) for constant γ > 0 to get the O(log n) bound. By the
analysis in Chapter 3, when δt ∈ (ε, 1−ε) for some constant ε ∈ (0,1), we have that Γ := Γ (γ) with
(sufficiently small) constant γ := γ(ε)> 0 drops in expectation.

Thus, our goal becomes to show that δt ∈ (ε, 1− ε) in a large constant fraction of the steps, so
that the potential Γ drops overall in expectation. We do this using an interplay between the absolute
value potential and the quadratic potential.

More specifically, we show that the expected value of the quadratic potential for MEAN-THINNING

satisfies the following drop inequality at any step t ⩾ 0,

E
�

Υ t+1
�

� Ft
�

⩽ Υ t −
∆t

n
+ 1. (5.1)

This implies that when ∆t = Ω(n) (even if the quantile δt of the average is o(1) or 1− o(1)), then
the quadratic potential drops in expectation. By looking at a sufficiently long interval we can deduce
that a large constant fraction of the steps t satisfy ∆t = O(n). Then by a ONE-CHOICE argument
(Lemma 5.5), we can deduce that for many steps s in [t, t + Θ(n)], the quantile stabilises, i.e.,
δs ∈ (ε, 1−ε). On aggregate, using an adjusted version of the hyperbolic cosine potential, we show
that Γ is w.h.p. O(n) every O(n log n) steps, implying by smoothness an O(log n) gap at every step.

5.1.2 For the g-ADV setting

In the g-ADV setting for TWO-CHOICE, we have a similar problem: There exist configurations where
the hyperbolic cosine potential for constant smoothing parameter may increase in expectation even
when large. For instance, when all bins have almost the same load, i.e., x t with maxi∈[n] x t

i −
mini∈[n] x t

i ⩽ g, then the adversary G t can “force” the sorted allocation vector eqt to be worse than
that of ONE-CHOICE, e.g., the reverse of the TWO-CHOICE vector,

eqt :=
�

2
n
−

1
n2

, . . . ,
2(n− i + 1)− 1

n2
, . . . ,

1
n2

�

.

Again, by investigating the expected change of the quadratic potential, we obtain the following
interplay with ∆t

E
�

Υ t+1
�

� Ft
�

⩽ Υ t −
∆t

n
+ 2g + 1.

This is very similar to the drop inequality Eq. (5.1) for MEAN-THINNING, with the difference that the
additive term may be non-constant. This inequality implies that when ∆t > Dng (for D = 365),
then the quadratic potential drops in expectation. So again by looking at a sufficiently long interval
we can deduce that a large constant fraction of the steps satisfy ∆t ⩽ Dng. Next note that when
∆t ⩽ Dng, then using a first moment argument, the number of bins with load at least 3

2 Dg is at
most n

3 , and so there is a constant bias ε = 1/3 to allocate away from bins with load at least 2Dg.
Similarly, for bins with load at most −2Dg, there is a constant bias to allocate to them (see Fig. 5.1).
Hence, in Lemma 5.21 using a similar analysis to that in Chapter 3, we obtain that the hyperbolic
cosine potential Λ with an offset of c4 g = 2Dg,

Λt := Λt(α, c4 g) =
n
∑

i=1

Λt
i :=

n
∑

i=1

�

eα·(y
t
i −c4 g)+ + eα·(−y t

i −c4 g)+
�

,
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has w.h.p. Λt =O(n) at an arbitrary step t and so we can deduce that Gap(t) =O(g + log n).

⩾ 2Dg [ 3
2 Dg, 2Dg) < 3

2 Dg

⩽ n/3 ⩾ 2n/3i j

> − 3
2 Dg (-2Dg, - 3

2 Dg] ⩽ −2Dg

⩾ 2n/3 ⩽ n/3 ij

Figure 5.1: Consider any step t with ∆t ⩽ Dng, then:
(Top) There are at most n

3 bins with y t
i ⩾

3
2 Dg, so in the g-ADV-COMP, we can distinguish between

the red and green bins, so the probability to allocate to a red bin is at most 2
3n .

(Bottom) There are at most n
3 bins with y t

i ⩽ −
3
2 Dg, so in the g-ADV-COMP, we can distinguish

between the red and green bins, so the probability to allocate to a green bin is at least 4
3n .

5.2 MEAN-BIASED processes

Recall that a MEAN-BIASED process is any process that satisfies conditions P3 and W2 or P2 and W3
defined in Section 2.5.6, where we also verified that MEAN-THINNING, TWINNING and some other
processes satisfy them. For convenience, we repeat these conditions here:

Condition P2: At any step t ⩾ 0, the probability allocation vector qt must satisfy qt
+ ⩽

1
n ⩽ qt

−.

Condition W2: At any step t ⩾ 0, if i := i t+1 is chosen for allocation,

– If y t
i < 0, then allocate w− balls to bin i,

– If y t
i ⩾ 0, then allocate w+ balls to bin i,

where 1⩽ w+ ⩽ w− are constant integers.

Condition P3: This is as Condition P2, but additionally, there are time-independent constants
k1 ∈ (0,1], k2 ∈ (0, 1] such that for any step t ⩾ 0:

qt
+ ⩽

1− k1

n
+

k1 · |B t
+|

n2
=

1
n
−

k1 · (1−δt)
n

,

qt
− ⩾

1
n
+

k2 · |B t
+|

n2
=

1
n
+

k2 ·δt

n
.

Condition W3: This is as Condition W2, but additionally we have the strict inequality: w+ <
w−. Also, we assume that for each t ⩾ 0, allocation vector eqt

i is non-decreasing in i.

5.2.1 Analysis outline

In this section, we will give the statements for the key lemmas used in the proof of the following
theorem. All omitted proofs can be found in [117].

Theorem 5.1 ([117, Theorem 4.15]). For any MEAN-BIASED process, there exists a constant κ > 0
such that for any step m⩾ 0,

Pr

�

max
i∈[n]

�

�

�

�

xm
i −

W m

n

�

�

�

�

⩽ κ log n

�

⩾ 1− n−3;

so in particular, Pr [Gap(m)⩽ κ log n ]⩾ 1− n−3.
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The following basic, yet crucial result follows from the preconditions in Theorem 5.1:

Lemma 5.2. For any MEAN-BIASED process, there exists a constant c1 := c1(k1, k2, w−, w+) > 0, so
that for any step t ⩾ 0,

qt
− ·w− − qt

+ ·w+ ⩾
c1

n
.

Proof. First assume P2 and W3 holds. In this case, P2 implies qt
− ⩾

1
n ⩾ qt

+, and thus

qt
− ·w− − qt

+ ·w+ ⩾
1
n
·w− −

1
n
·w+ ⩾

c1

n
,

for c1 := w− −w+ > 0, since by W3 the weights are constants satisfying w− > w+.
Next assume P3 and W2 holds. In this case, W2 implies w− ⩾ w+ ⩾ 1. Using P2, for c1 :=

min{k1, k2},

qt
− ·w− − qt

+ ·w+ ⩾ qt
− ·w+ − qt

+ ·w+ ⩾ (q
t
− − qt

+) · 1⩾
�

1
n
+

k2 ·δt

n
−

1
n
+

k1 · (1−δt)
n

�

⩾
c1

n
.

A large portion of the analysis is devoted to derive a weaker quantile condition, that is, we prove
that for sufficiently many steps, the quantile δt is in the range (ε, 1− ε) for some (small) constant
ε. For this analysis, the inequality in Lemma 5.2 will be useful when we establish a connection
between the absolute and quadratic potential function (Lemma 5.4). We now list the 9 key steps in
the analysis along with some of the important lemmas/theorems.

1. (Weak gap bound) In any step, there is at least one bin with load at least the average, so the
MEAN-BIASED process always has a bias not to allocate to that bin. By using a hyperbolic cosine
potential Γ0 := Γ0(γ0) with γ0 = Θ(1/n), we get w.h.p. at any step t ⩾ 0, the weak bound of
Gap(t) =O(n log n) and also a weak bound for Γ := Γ (γ) with any constant γ ∈ (0,1).

Lemma 5.3 (Lemma 8.10 in [117]). For any MEAN-BIASED process, there exists a constant c6 > 0
such that for any step m⩾ 0,

Pr [Gap(m)⩽ c6 · n log n ]⩾ 1− n−12,

and so, for Γ := Γ (γ) with any (constant) smoothing parameter 0< γ < 1,

Pr [ Γm ⩽ exp(2c6n log n) ]⩾ 1− n−12.

2. (Absolute value/Quadratic potential interplay) Next, we establish the following interplay
between the absolute value potential and the quadratic potential. For MEAN-BIASED processes,
this implies that when ∆t = Ω(n), then the quadratic potential drops in expectation.

Lemma 5.4 (Lemma 6.2 in [117]). Consider any allocation process satisfying P2 and W2. Then for
any step t ⩾ 0, the quadratic potential satisfies

E
�

Υ t+1
�

� Ft
�

⩽ Υ t − (qt
− ·w− − qt

+ ·w+) ·∆
t + 4 · (w−)2.

Hence for any MEAN-BIASED process, this implies by Lemma 5.2 that there exist constants c1, c2 > 0
such that for any step t ⩾ 0,

E
�

Υ t+1
�

� Ft
�

⩽ Υ t −
c1

n
·∆t + c2.

3. (Quantile stabilisation) For every step t with ∆t ⩽ Cn (for sufficiently large constant C :=
C(c1, c2) > 0), we have that in the next Θ(n) steps, there is a large constant fraction of steps
with δt ∈ (ε, 1− ε) for some constant ε > 0. This follows from the fact that ∆t ⩽ Cn implies
a constant fraction of the bins have constant normalised load |y t

i | ⩽ ec and that MEAN-BIASED
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processes sample uniformly among the bins. If there are too many overloaded bins, then
because qt

+ ⩽
1
n , by a ONE-CHOICE argument w.h.p. in the next ecn steps a constant fraction

of them will not be chosen, so they will become underloaded. If there are too many under-
loaded bins with constant load, then because qt

− ⩾
1
n , by a ONE-CHOICE argument w.h.p. a

constant fraction of them will be allocated at least 2ec balls to exceed the average and become
overloaded.

Lemma 5.5 (Mean Quantile Stabilisation (Lemma 6.1 in [117])). Consider any allocation process
satisfying P2 and W2. Then, for any integer constant C ⩾ 1, there exists some ε := ε(C)> 0 such that
for any integers t0 ⩾ 0 and t1 := t0 +

 

2Cn
w+

£

+
 

n
w+

£

+
 

n
10w−

£

we have

Pr
h

�

�

�

t ∈ [t0, t1]: δ
t ∈ (ε, 1− ε)

	�

�⩾ ε · n
�

�

� Ft0 ,∆t0 ⩽ C · n
i

⩾ 1− e−ε·n.

4. (Many steps with δt ∈ (ε, 1 − ε)) Using the interplay between the absolute value and the
quadratic potential, we can deduce that in sufficiently long intervals, a large constant fraction
of the steps s satisfy ∆s ⩽ Cn, for some constant C > 0. Then, using the mean quantile
stabilisation lemma, we get a large constant fraction of steps with δs ∈ (ε, 1 − ε). We have
two versions of this theorem, one for the recovery phase (where the starting point is a weak
bound on Γ ) and one for the stabilisation phase (where the starting point is a linear bound on
Γ ). In the statements below, we let G t1

t0
be the number of steps t ∈ [t0, t1] with ∆t ⩽ Cn.

Lemma 5.6 (Lemma 9.3 in [117]). Consider any MEAN-BIASED process and the potential Γ := Γ (γ)
for any constant γ ∈ (0,1). Then, for ε := ε(C) as in Lemma 5.5, r :=min

�

ε
20C , 1

2

	

, and for any steps
t0 and t1 with t1 ⩾ t0 + n3 log3 n, it holds that

Pr
h

G t1
t0
> r · (t1 − t0)

�

�

� Ft0 , Γ t0 ⩽ exp(2c6n log n)
i

⩾
1
2
− (t1 − t0) · e−εn,

where c6 > 0 is the constant from Lemma 5.3.

Lemma 5.7 (Lemma 9.4 in [117]). Consider any MEAN-BIASED process and the potential Γ := Γ (γ)
with any constant γ ∈ (0, 1). Then, for ε := ε(C) as in Lemma 5.5, r :=min

�

ε
20C , 1

2

	

, for any constants
κ1,κ2 > 0 and for any steps t0 and t1 satisfying t1 := t0 +κ2 · n log n, it holds that

Pr
h

G t1
t0
> r · (t1 − t0)

�

�

� Ft0 , Γ t0 ⩽ κ1 · n
i

⩾ 1− 3 · n−12.

5. (Good/bad steps for Γ ) For the expectation of the hyperbolic cosine potential Γ := Γ (γ) with
constant γ > 0, we prove a drop inequality in a good step (where δt ∈ (ε, 1−ε)) and a weaker
bound for a bad step.

Corollary 5.8. Consider any MEAN-BIASED process, let ε ∈ (0,1) be any constant and the potential

Γ := Γ (γ) with γ := γ(ε) as defined in [117, Lemma 7.4]. Choose c :=max
�3(c3+w−)·e2w−

γc3
, 2
γ2

	

> 1, for
some constant c3 := c3(ε). Then, for any step t ⩾ 0,

E
�

Γ t+1
�

� Ft , {δt ∈ (ε, 1− ε)}, Γ t ⩾ c · n
�

⩽ Γ t ·
�

1−
c3γ

n

�

.

More generally, for any step t ⩾ 0, and c4 := 3w− · e2w− > 0, we have

E
�

Γ t+1
�

� Ft , Γ t ⩾ c · n
�

⩽ Γ t ·
�

1+
γ2c4

n

�

.
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6. (Adjusted hyperbolic potential) In order to show that the hyperbolic cosine potential Γ :=
Γ (γ) becomes small, we use the adjusted hyperbolic cosine potential, defined as eΓ t0

t0
(c3,γ,ξ) :=

Γ t0(γ) and, for any step s > t0 as

eΓ s
t0
(c3,γ,ξ) := Γ s · 1E s−1

t0
· exp

�

−
c3γξ

n
· Bs−1

t0

�

· exp
�

+
c3γ

n
· Gs−1

t0

�

, (5.2)

where ξ := r
2(1−r) .

Lemma 5.9 (Lemma 9.1 in [117]). The sequence (eΓ s
t0
)s⩾t0

forms a super-martingale.

7. (Recovery phase) Starting with the weak O(n log n) bound on the gap at step t0 and using
the adjusted hyperbolic cosine potential, we can deduce that for any sufficiently long interval
w.h.p. there exists some step t with Γ t =O(n).

Lemma 5.10 (Recovery (Lemma 9.5 in [117])). Consider any MEAN-BIASED process and the poten-
tial Γ := Γ (γ) with γ := γ(ε) as defined in [117, Lemma 7.4]. Then, for the constant c > 1 as defined
in Corollary 5.8, for any step m⩾ 0,

Pr





⋃

s∈[m−40n3 log4 n,m]

{Γ s < cn}



⩾ 1− n−10.

8. (Stabilisation phase) Again, using the adjusted hyperbolic cosine potential, we show that
once Γ is small w.h.p. it becomes small again every O(n log n) steps.

Lemma 5.11 (Stabilisation (Lemma 9.7 in [117])). Consider any MEAN-BIASED process and the
potential Γ := Γ (γ) with γ := γ(ε) as defined in [117, Lemma 7.4]. Then, for the constant c > 1 as
defined in Corollary 5.8, there exists a constant cs > 0, such that for any step t0 ⩾ 0,

Pr





⋃

t∈[t0,t0+csn log n−1]

�

Γ t < cn
	

�

�

�

�

�

Ft0 , Γ t0 ∈ [cn, 2cn]



⩾ 1−
1
2
· n−7.

9. (Gap deduction) Finally, by a smoothness argument since the gap can decrease by at most
O(w− · log n) in Θ(n log n) steps, we deduce the O(log n) bound on the gap at every step.

5.2.2 Applications

Thanks to the reductions in Lemmas 2.21, 2.22 and D.6, by Theorem 5.1 we also deduce:

Corollary 5.12. For MEAN-THINNING, TWINNING and the (1+β)-process for any constant β ∈ (0,1],
there exists a constant κ > 0 such that for any step m⩾ 0,

Pr [Gap(m)⩽ κ log n ]⩾ 1− n−3.

As we shall show in Corollary C.24, these bounds are tight for MEAN-THINNING, TWINNING and
the (1+β)-process for constant β ∈ (0,1). By Lemma 2.15, we also obtain the following corollary.

Corollary 5.13. For any RELATIVE-THRESHOLD( f (n)) process with f (n) > 0 , there exists a constant
κ > 0 such that for any step m⩾ 0,

Pr [Gap(m)⩽ κ log n+ f (n) ]⩾ 1− n−3.

We will show in Lemma C.25 that for f (n)⩾ log n, this bound is asymptotically tight.
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5.3 g-ADV setting: Stabilisation

In this section we give the proof for the O(g+ log n) gap bound, as stated in the theorem below. For
any g = Ω(log n), this matches the lower bound for the g-MYOPIC-COMP process in Proposition C.8
up to multiplicative constants.

Lemma 5.14 (Simplified, page 110). Consider the g-ADV-COMP setting for any g ⩾ 1. Then, there
exists a constant κ > 0, such that for any step m⩾ 0,

Pr
�

max
i∈[n]

�

�ym
i

�

�⩽ κ · (g + log n)
�

⩾ 1− 2 · (ng)−9.

5.3.1 Proof outline of Theorem 5.26

The proof of this theorem is considerably more involved than Theorem 3.21, requiring the interplay
between an exponential potential, the absolute value potential and the quadratic potential, similar
to the one for the MEAN-BIASED processes.

1. (Weak gap bound) By Theorem 3.21, w.h.p. Gap(t) =O(g log(ng)) for any step t ⩾ 0.

2. (Absolute value/Quadratic potential interplay) We establish the following interplay be-
tween the absolute value and the quadratic potential. This is similar to the one for the MEAN-
BIASED processes, but the additive term may be super-constant here.

Lemma 5.17 (Restated, page 98). Consider the g-ADV-COMP setting for any g ⩾ 1. Then, for any
step t ⩾ 0,

E
�

Υ t+1
�

� y t
�

⩽ Υ t −
∆t

n
+ 2g + 1.

3. (Many steps with ∆t ⩽ Dng for D = 365) Using this interplay, we can establish that starting
with a bound of T on the quadratic potential Υ t0 ⩽ T , then in the next Θ(T/g) steps, a large
constant fraction of the steps satisfy ∆t ⩽ Dng (good steps). In the recovery, stabilisation and
strong stabilisation phases, we instantiate this lemma with different values for T (depending
on the strength of the bound). For convenience, we let G t1

t0
be the number of good steps in

[t0, t1].

Lemma 5.18 (Restated, page 99). Consider the g-ADV-COMP setting for any g ⩾ 1 and let r := 6
6+ε ,

ε := 1/12 and D := 365. Then, for any constant ĉ ⩾ 1 and any T ∈ [ng2, n2 g3/ĉ], we have for any
steps t0 ⩾ 0 and t1 := t0 + ĉ · T · g−1 − 1,

Pr

�

G t1
t0
(D)⩾ r · (t1 − t0 + 1)

�

�

�

�

Ft0 ,Υ t0 ⩽ T, max
i∈[n]

�

�y t0
i

�

�⩽ g(log(ng))2
�

⩾ 1− 2 · (ng)−12.

3. (Good/bad steps for Λ) Consider the following variant of the hyperbolic cosine potential with
a constant smoothing parameter α := 1

18 and with an offset of c4 g = 2Dg,

Λt := Λt(α, c4 g) =
n
∑

i=1

Λt
i :=

n
∑

i=1

�

eα·(y
t
i −c4 g)+ + eα·(−y t

i −c4 g)+
�

, (5.3)

where v+ :=max{v, 0}. We prove the following drop inequality for the expectation of Λ over
a good step (where ∆t ⩽ Dng) and a weaker bound over a bad step.
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Lemma 5.14 (Simplified versions of Lemmas 5.20 and 5.21). Consider the g-ADV-COMP setting
with g ⩾ 1 and let ε := 1/12. Then, for any step t ⩾ 0,

E
�

Λt+1
�

� Ft ,∆t ⩽ Dng
�

⩽ Λt ·
�

1−
2αε

n

�

+ 18α.

More generally, for any step t ⩾ 0,

E
�

Λt+1
�

� Ft
�

⩽ Λt ·
�

1+
3α
n

�

.

4. (Adjusted hyperbolic cosine potential) In order to show that Λ drops in expectation, we use
the adjusted hyperbolic cosine potential, defined as eΛt0

t0
:= Λt0 and, for any step s > t0 as

eΛs
t0

:= Λs · 1E s−1
t0
· exp

�

−
3α
n
· Bs−1

t0

�

· exp
�

+
αε

n
· Gs−1

t0

�

, (5.4)

where Gs−1
t0

(and Bs−1
t0

) is the number of good (and bad) steps in [t0, s).

5. (Recovery phase) Using the weak bound as a starting point t0 and the adjusted hyperbolic
cosine potential, we show that after Θ(ng · (log(ng))2) steps, w.h.p. the potential Λ becomes
O(n).

Lemma 5.23 (Recovery – Simplified version, page 106). Consider the g-ADV-COMP setting with
g ⩾ 1. Then, there exists a constant c > 0, such that for any step t0 ⩾ 0 and∆r := Θ(ng · (log(ng))2),

Pr





⋃

t∈[t0,t0+∆r ]

{Λt ⩽ cn}



⩾ 1− (ng)−11.

6. (Stabilisation phase) Again, using the adjusted hyperbolic cosine potential, we show that
once Λ=O(n), w.h.p. it becomes small again every O(n ·max{log n, g}) steps.

Lemma 5.24 (Stabilisation – Simplified version, page 107). Consider the g-ADV-COMP setting with
g ⩾ 1. For any step t0 ⩾ 0 and ∆s := 60cs

αεr · n ·max{log n, g}, we have that

Pr





⋃

t∈[t0,t0+∆s]

�

Λt ⩽ cn
	

�

�

�

�

�

Ft0 ,Λt0 ⩽ 2cn



⩾ 1− (ng)−11.

7. (Gap deduction) Hence w.h.p. there is a step t ∈ [m, m+Θ(n · (g + log n))] with Gap(t) =
O(g + log n), which by smoothness implies Gap(m) =O(g + log n) (Section 5.3.7).

In this section we give the proof of the O(g + log n) gap bound, as stated in the theorem below. For
g = Ω(log n), this matches the lower bound for the g-MYOPIC-COMP setting in Proposition C.8 up to
multiplicative constants.

Theorem 5.26 (Simplified version, page 110). Consider the g-ADV-COMP setting for any g ⩾ 1.
Then, there exists a constant κ > 0, such that for any step m⩾ 0,

Pr
�

max
i∈[n]

�

�ym
i

�

�⩽ κ · (g + log n)
�

⩾ 1− 2 · (ng)−9.
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5.3.2 Absolute value and quadratic potentials

Recall that the absolute value potential is defined as

∆t :=
n
∑

i=1

�

�y t
i

�

� , (5.5)

and the quadratic potential is defined as

Υ t :=
n
∑

i=1

(y t
i )

2. (5.6)

We will upper bound the expected change of the quadratic potential E
�

∆Υ t+1
�

� y t
�

in the g-ADV-
COMP setting by relating it to the change of the quadratic potential for TWO-CHOICE without noise,
starting with the same load vector y t at step t.

We will first analyse the expected change of the quadratic potential for the TWO-CHOICE process
without noise. We will make use of the following general lemma, which provides a formula for the
change of the quadratic potential:

Lemma 5.15. Consider any SEQUENTIAL(r t) process. Then, for any step t ⩾ 0, (i) it holds that

E
�

∆Υ t+1
�

� y t
�

=
n
∑

i=1

2 · r t
i · y

t
i + 1−

1
n
⩽

n
∑

i=1

2 · r t
i · y

t
i + 1,

and (ii) it holds that
�

�∆Υ t+1
�

�⩽ 4 ·max
i∈[n]

�

�y t
i

�

�+ 2.

Proof. First statement. For any bin i ∈ [n], its expected contribution to Υ t+1 is given by,

E
�

Υ t+1
i

�

� y t
�

=
�

y t
i + 1−

1
n

�2

· r t
i +

�

y t
i −

1
n

�2

· (1− r t
i )

= (y t
i )

2 + 2 ·
�

1−
1
n

�

· y t
i · r

t
i − 2 ·

1
n
· y t

i · (1− r t
i ) +

�

1−
1
n

�2

· r t
i +

1
n2
· (1− r t

i )

= (y t
i )

2 + 2 ·
�

r t
i −

1
n

�

· y t
i +

�

1−
1
n

�2

· r t
i +

1
n2
· (1− r t

i ).

Hence, by aggregating over all bins we get,

E
�

Υ t+1
�

� y t
�

=
n
∑

i=1

�

(y t
i )

2 + 2 ·
�

r t
i −

1
n

�

· y t
i +

�

1−
1
n

�2

· r t
i +

1
n2
· (1− r t

i )

�

= Υ t +
n
∑

i=1

2 ·
�

r t
i −

1
n

�

· y t
i +

�

1−
1
n

�2

+
1
n
−

1
n2

= Υ t +
n
∑

i=1

2 ·
�

r t
i −

1
n

�

· y t
i + 1−

1
n

= Υ t +
n
∑

i=1

2 · r t
i · y

t
i −

n
∑

i=1

2
n
· y t

i + 1−
1
n

(a)
= Υ t +

n
∑

i=1

2 · r t
i · y

t
i + 1−

1
n

⩽ Υ t +
n
∑

i=1

2 · r t
i · y

t
i + 1,
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using in (a) that
∑n

i=1 y t
i = 0. Therefore, by subtracting Υ t , statement (i) follows.

Second statement. Let M := maxi∈[n] |y t
i |. We will upper bound the change ∆Υ t+1

i for an arbi-
trary bin i ∈ [n], by considering the following two cases:

Case 1: Ball at step t + 1 is allocated to bin i. So,

�

�∆Υ t+1
i

�

�=
�

�

�

�

y t
i + 1−

1
n

�2

− (y t
i )

2
�

�

�=
�

�

�2 ·
�

1−
1
n

�

· y t
i +

�

1−
1
n

�2 �
�

�⩽ 2M + 1.

Case 2: Ball at step t + 1 is not allocated to bin i. So,

�

�∆Υ t+1
i

�

�=

�

�

�

�

�

y t
i −

1
n

�2

− (y t
i )

2

�

�

�

�

=

�

�

�

�

−
2
n
· y t

i +
1
n2

�

�

�

�

⩽
2M
n
+

1
n

.

Aggregating over all bins i ∈ [n] yields

�

�∆Υ t+1
�

�⩽
n
∑

i=1

�

�∆Υ t+1
i

�

�⩽ 2M + 1+ (n− 1) ·
�

2M
n
+

1
n

�

⩽ 4M + 2.

We now use the general formula in Lemma 5.15 (i) to obtain an expression for the expected
change of the quadratic potential for TWO-CHOICE without noise.

Lemma 5.16. Consider the TWO-CHOICE = TIME-HOMOGENEOUS(p) process without noise, where
pi =

2i−1
n2 for any i ∈ [n]. Then, for any step t ⩾ 0, it holds that

E
�

∆Υ t+1
�

� y t
�

⩽
n
∑

i=1

2 · pi · ey t
i + 1⩽ −

∆t

n
+ 1.

Proof. Applying Lemma 5.15 (i) to TWO-CHOICE yields

E
�

∆Υ t+1
�

� y t
�

⩽
n
∑

i=1

2 · pi · ey t
i + 1.

Let B t
+ := {i ∈ [n]: ey t

i ⩾ 0} be the set of overloaded bins at step t and B t
− := {i ∈ [n]: ey t

i < 0},
the set of underloaded bins. The TWO-CHOICE process allocates a ball to the set of overloaded
bins with probability |B t

+|
2/n2, and thus the average allocation probability across overloaded bins is

pt
+ = |B

t
+|/n

2. Consequently, TWO-CHOICE allocates to the set of underloaded bins with probability
1− |B t

+|
2/n2, and thus the average allocation probability across underloaded bins is

pt
− =

1
|B t
−|
·
�

1−
|B t
+|

2

n2

�

=
1

n− |B t
+|
·
(n+ |B t

+|) · (n− |B
t
+|)

n2
=

1
n
+
|B t
+|

n2
.

By splitting the sum
∑n

i=1 2 · pi · ey t
i into underloaded and overloaded bins, we get

n
∑

i=1

2 · pi · ey t
i =

∑

i∈B t
+

2 · pi · ey t
i +

∑

i∈B t
−

2 · pi · ey t
i .

Since pi is non-decreasing, we have
∑ j

i=1 pi ⩽
∑ j

i=1 pt
+ for all 1 ⩽ j ⩽ |B t

+|. Further, since ey t is
non-increasing over the overloaded bins, by Lemma B.2 we have

∑

i∈B t
+

2 · pi · ey t
i ⩽

∑

i∈B t
+

2 · pt
+ · ey

t
i = 2 · pt

+ ·
∑

i∈B t
+

ey t
i =
|B t
+|

n2
·∆t ,
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since
∑

i∈B t
−
ey t

i = −
∑

i∈B t
+
ey t

i and thus
∑

i∈B t
+
ey t

i =
1
2∆

t . Analogously, since ey t is non-increasing
over the underloaded bins,

∑

i∈B t
−

2 · pi · ey t
i ⩽

∑

i∈B t
−

2 · pt
− · ey

t
i = 2 · pt

− ·
∑

i∈B t
−

ey t
i =

�

1
n
+
|B t
+|

n2

�

·∆t .

Combining these we get

E
�

∆Υ t+1
�

� y t
�

⩽
n
∑

i=1

2 · pi · ey t
i + 1⩽

|B t
+|

n2
·∆t −

�

1
n
+
|B t
+|

n2

�

·∆t + 1= −
∆t

n
+ 1.

Now we relate the change of the quadratic potential for the g-ADV-COMP setting to the change
of the quadratic potential for TWO-CHOICE without noise, using that the adversary can determine
(and possibly revert) a load comparison between y t

i and y t
j only if |y t

i − y t
j |⩽ g.

Lemma 5.17. Consider the g-ADV-COMP setting for any g ⩾ 1. Then, for any step t ⩾ 0,

E
�

Υ t+1
�

� y t
�

⩽ Υ t −
∆t

n
+ 2g + 1.

Proof. By Lemma 5.15 (i), for the g-ADV-COMP probability allocation vector qt we have,

E
�

∆Υ t+1
�

� y t
�

⩽
n
∑

i=1

2 · qt
i · y

t
i + 1=

n
∑

i=1

2 · eqt
i · ey

t
i + 1.

This sorted allocation vector eqt is obtained from the probability vector p of TWO-CHOICE without
noise by moving a probability of up to 2

n2 from any bin j to a bin i with ey t
j < ey

t
i ⩽ ey

t
j + g. Recalling

that Rt := {(i, j) ∈ [n]× [n]: ey t
j < ey

t
i ⩽ ey

t
j + g},

E
�

∆Υ t+1
�

� y t
�

⩽
n
∑

i=1

2 · pi · ey t
i + 1+ 2 ·

∑

(i, j)∈Rt

2
n2
· (ey t

i − ey
t
j )

⩽
n
∑

i=1

2 · pi · ey t
i + 1+ 2 ·

∑

(i, j)∈Rt

2
n2
· g

⩽
n
∑

i=1

2 · pi · ey t
i + 1+ 2g,

using that |Rt |< 1
2 n2. Hence, using Lemma 5.16, we conclude that

E
�

∆Υ t+1
�

� y t
�

⩽ −
∆t

n
+ 2g + 1.

5.3.3 Constant fraction of good steps

We define a step s ⩾ 0 to be a good step if Gs := {∆s ⩽ Dng} holds, for D := 365. Further,
G t1

t0
:= G t1

t0
(D) denotes the number of good steps in [t0, t1]. Later, in Section 5.3.4 we will show

that in a good step, the exponential potential Λ with any sufficiently small constant α drops in
expectation.

In the following lemma we show that at least a constant fraction r of the steps are good in
a sufficiently long interval. We will apply this lemma with two different values for T : (i) in the
recovery phase, to prove that there exists a step s ∈ [m−Θ(ng · (log(ng))2), m] with Λs =O(n) and
(ii) in the stabilisation phase, to prove that every O(n · (g + log n)) steps there exists a step s with
Λs =O(n). In the analysis below, we pick r := 6

6+ε , where ε := 1
12 .
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Lemma 5.18. Consider the g-ADV-COMP setting for any g ⩾ 1 and let r := 6
6+ε , ε := 1/12 and

D := 365. Then, for any constant ĉ ⩾ 1 and any T ∈ [ng2, n2 g3/ĉ], we have for any steps t0 ⩾ 0 and
t1 := t0 + ĉ · T · g−1 − 1,

Pr

�

G t1
t0
(D)⩾ r · (t1 − t0 + 1)

�

�

�

�

Ft0 ,Υ t0 ⩽ T, max
i∈[n]

�

�y t0
i

�

�⩽ g(log(ng))2
�

⩾ 1− 2 · (ng)−12.

Proof. We define the sequence (Z t)t⩾t0
with Z t0 := Υ t0 and for any t > t0,

Z t := Υ t +
t−1
∑

s=t0

�

∆s

n
− 2g − 1

�

.

This sequence forms a super-martingale since by Lemma 5.17,

E
�

Z t+1
�

� Ft
�

= E

�

Υ t+1 +
t
∑

s=t0

�

∆s

n
− 2g − 1

�

�

�

�

�

�

Ft

�

⩽ Υ t −
∆t

n
+ 2g + 1+

t
∑

s=t0

�

∆s

n
− 2g − 1

�

= Υ t +
t−1
∑

s=t0

�

∆s

n
− 2g − 1

�

= Z t .

Further, let τ := inf
�

t ⩾ t0 : maxi∈[n] |y t
i | > 2g(log(ng))2

	

and consider the stopped random
variable

eZ t := Z t∧τ,

which is then also a super-martingale. Applying Corollary 3.23 and the union bound over steps
[t0, t1], we get

Pr

�

τ⩽ t1

�

�

�

�

Ft0 ,Υ t0 ⩽ T, max
i∈[n]

�

�y t0
i

�

�⩽ g(log(ng))2
�

⩽ (ĉ · T · g−1) · (ng)−14 ⩽ (ng)−12, (5.7)

using that T ⩽ n2 g3/ĉ. This means that the maximum absolute normalised load does not increase
above 2g(log(ng))2 in any of the steps in [t0, t1] w.h.p.

To prove concentration of eZ t1+1, we will now derive an upper bound on the difference |eZ t+1−eZ t |:

Case 1 [t ⩾ τ]: In this case, eZ t+1 = Z (t+1)∧τ = Zτ, and similarly, eZ t = Z t∧τ = Zτ, so |eZ t+1−eZ t |= 0.

Case 2 [t < τ]: In this case, we have maxi∈[n] |y t
i | ⩽ 2g(log(ng))2 and by Lemma 5.15 (ii), we

have that |∆Υ t+1|⩽ 8c3 g(log(ng))2 + 2. This implies that

|eZ t+1−eZ t |⩽ |∆Υ t+1|+
�

�

�

�

∆t

n
−2g−1

�

�

�

�

⩽ 8g(log(ng))2+2+(2g(log(ng))2−2g−1)⩽ 10g(log(ng))2.

Combining the two cases above, we conclude that for all t ⩾ t0,

|eZ t+1 − eZ t |⩽ 10g(log(ng))2.

Using Azuma’s inequality for super-martingales (Lemma B.10) for λ= T and ai = 10g(log(ng))2,

Pr

�

eZ t1+1 − eZ t0 ⩾ T

�

�

�

�

Ft0 ,Υ t0 ⩽ T, max
i∈[n]

�

�y t0
i

�

�⩽ g(log(ng))2
�
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⩽ exp

 

−
T2

2 ·
∑t1

t=t0
(10g(log(ng))2)2

!

= exp

�

−
T2

ĉ · T · g−1 · 200 · g2 · (log(ng))4

�

= exp
�

−
T

200 · ĉ · g · (log(ng))4

�

(a)
⩽ exp

�

−
ng2

200 · ĉ · g · (log(ng))4

�

= (ng)−ω(1),

where in (a) we used that T ⩾ ng2. Hence, we conclude that

Pr

�

eZ t1+1 < eZ t0 + T

�

�

�

�

Ft0 ,Υ t0 ⩽ T, max
i∈[n]

�

�y t0
i

�

�⩽ g(log(ng))2
�

⩾ 1− (ng)−ω(1).

Thus by taking the union bound with Eq. (5.7) we have

Pr

�

Z t1+1 < Z t0 + T

�

�

�

�

Ft0 ,Υ t0 ⩽ T, max
i∈[n]

�

�y t0
i

�

�⩽ g(log(ng))2
�

⩾ 1− 2 · (ng)−12.

For the sake of a contradiction, assume now that more than an (1−r) fraction of the steps t ∈ [t0, t1]
satisfy ∆t > Dng. This implies that

t1
∑

t=t0

∆t

n
> Dg · (1− r) · (t1 − t0 + 1) = D · (1− r) · ĉ · T, (5.8)

using that t1 − t0 + 1= ĉ · T · g−1. When {Z t1+1 < Z t0 + T} and {Υ t0 ⩽ T} hold, then we have

Υ t1+1 +
t1
∑

t=t0

∆t

n
− (2g + 1) · (t1 − t0 + 1)< Υ t0 + T ⩽ 2T.

By rearranging this leads to a contradiction as

0⩽ Υ t1+1 < 2T −
t1
∑

t=t0

∆t

n
+ (2g + 1) · (t1 − t0 + 1)

(a)
= 2T −

t1
∑

t=t0

∆t

n
+ ĉ(2g + 1) · T · g−1

(b)
⩽ −

t1
∑

t=t0

∆t

n
+ 5ĉ · T

(5.8)
< −D · (1− r) · ĉ · T + 5ĉ · T
(c)
= 0

using in (a) that t1 − t0 + 1= ĉ · T · g−1, in (b) that ĉ ⩾ 1 and g ⩾ 1, and in (c) that D = 5
1−r = 365

(as r = 6
6+1/12).

We conclude that when {Z t1+1 < Z t0+T} holds, then at least an r fraction of the steps t ∈ [t0, t1]
satisfy ∆t ⩽ Dng, and thus,

Pr

�

G t1
t0
⩾ r · (t1 − t0 + 1)

�

�

�

�

Ft0 ,Υ t0 ⩽ T, max
i∈[n]

�

�y t0
i

�

�⩽ g(log(ng))2
�

⩾ 1− 2 · (ng)−12.
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The following lemma provides two ways of upper bounding the quadratic potential using the
exponential potential Λ. These will be used in the recovery and stabilisation lemmas, to obtain the
starting point condition (Υ t0 ⩽ T) for Lemma 5.18.

Lemma 5.19. Consider the potential Λ := Λ(α, c4 g) for any constant α ∈ (0, 1), any g ⩾ 1 and any
constant c4 > 0. Then (i) for any constant ĉ > 0, there exists a constant cs := cs(α, c4, ĉ)⩾ 1, such that
for any step t ⩾ 0 with Λt ⩽ ĉ · n,

Υ t ⩽ cs · ng2.

Furthermore, (ii) there exists a constant cr := cr(α, c4)⩾ 1, such that for any step t ⩾ 0,

Υ t ⩽ cr · n ·
�

g2 + (logΛt)2
�

.

Proof. First statement. We begin by proving some basic inequalities between exponential, quadratic
and linear terms. Let û := (4/α) · log(4/α). Note that eu ⩾ u (for any u ⩾ 0) and hence for any
u⩾ û,

eαu/2 = eαu/4 · eαu/4 ⩾
αu
4
· eαû/4 =

αu
4
·

4
α
= u,

and eαu = eαu/2 · eαu/2 ⩾ u · u= u2. Therefore, for every u⩾ 0,

u2 ⩽max
�

û2, eαu
	

. (5.9)

Recall that for any bin i ∈ [n], Λt
i := eα·(y

t
i −c4 g)+ + eα·(−y t

i −c4 g)+ . Hence,

�

(y t
i − c4 g)+

�2
+
�

(−y t
i − c4 g)+

�2 (a)⩽ max
�

2û2,Λt
i

	 (b)
⩽ max

�

2û2 ·Λt
i ,Λ

t
i

	 (c)
= 2û2 ·Λt

i , (5.10)

where in (a) we used Eq. (5.9) first with u = (y t
i − c4 g)+ and then with u = (−y t

i − c4 g)+, in (b)
that Λt

i ⩾ 1 for any i ∈ [n] and in (c) that û⩾ 1, since α ∈ (0,1).
We now proceed to upper bound the quadratic potential,

Υ t ⩽
n
∑

i=1

�

�

(y t
i − c4 g)+ + c4 g

�2
+
�

(−y t
i − c4 g)+ + c4 g

�2 �

(a)
⩽ 2 ·

n
∑

i=1

�

�

(y t
i − c4 g)+

�2
+
�

(−y t
i − c4 g)+

�2
+ 2 · (c4 g)2

�

(5.10)
⩽ 4û2 ·Λt + 4c2

4 · ng2

(b)
⩽ 4ĉû2 · n+ 4c2

4 · ng2

⩽ (4ĉû2 + 4c2
4) · ng2,

using in (a) that (a+ b)2 ⩽ 2 · (a2 + b2) (for any a, b) and in (b) that Λt ⩽ ĉ · n. Therefore, for the
constant cs := cs(α, c4, ĉ) := 4ĉû2 + 4c2

4 , we get the first statement.
Second statement. For any bin i ∈ [n] we have,

|y t
i |⩽ c4 g +

1
α

logΛt .

Hence, using that (a+ b)2 ⩽ 2 · (a2 + b2),

(y t
i )

2 ⩽
�

c4 g +
1
α

logΛt
�2
⩽ 2 ·

�

c2
4 g2 +

1
α2
· (logΛt)2

�

⩽ cr ·
�

g2 + (logΛt)2
�

,

for some constant cr := cr(α, c4) = max
�

2c2
4 , 2
α2

	

⩾ 1. By aggregating the contributions over all
bins, we get the second statement.
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5.3.4 Hyperbolic cosine potential

We now prove bounds on the expected change of the Λ potential function over one step. Note that
these hold for any sufficiently small constant α > 0.

We start with a relatively weak bound which holds at any step.

Lemma 5.20. Consider any SEQUENTIAL(r t) process such that maxi∈[n] r t
i ⩽

2
n for any step t ⩾ 0.

Further, consider the potential Λ := Λ(α, c4 g) for any α ∈
�

0, 1
2

�

, any g ⩾ 1 and any c4 > 0. Then, for
any step t ⩾ 0, (i) for every bin i ∈ [n] it holds that

E
�

Λt+1
i

�

� Ft
�

⩽ Λt
i ·
�

1+
3α
n

�

.

Furthermore, by aggregating over all bins, (ii) it holds that

E
�

Λt+1
�

� Ft
�

⩽ Λt ·
�

1+
3α
n

�

.

Proof. Consider an arbitrary bin i ∈ [n]. We upper bound the change of the overloaded compo-
nent, i.e., eα·(y

t
i −c4 g)+ , by placing one ball in bin i ∈ [n] with probability r t

i ⩽
2
n and ignoring the

change of the average load. Also, we upper bound the change for the underloaded component, i.e.,
eα·(−y t

i −c4 g)+ , by considering only the change of the average load by 1/n. Hence,

E
�

Λt+1
i

�

� Ft
�

⩽ eα·(y
t
i −c4 g)+ · ((1− r t

i ) + r t
i · e

α) + eα·(−y t
i −c4 g)+ · ((1− r t

i ) · e
α/n + r t

i · e
α/n)

= eα·(y
t
i −c4 g)+ · (1+ r t

i · (e
α − 1)) + eα·(−y t

i −c4 g)+ · eα/n

(a)
⩽ eα·(y

t
i −c4 g)+ ·

�

1+
2
n
· 1.5α

�

+ eα·(−y t
i −c4 g)+ ·

�

1+ 1.5
α

n

�

⩽ Λt
i ·
�

1+
3α
n

�

,

using in (a) that eu ⩽ 1+ 1.5u (for any 0⩽ u⩽ 0.7), α⩽ 1/2 and r t
i ⩽

2
n .

Now we improve this bound for any good step t, i.e., when ∆t ⩽ Dng holds.

Lemma 5.21. Consider the g-ADV-COMP setting for any g ⩾ 1 and the potential Λ := Λ(α, c4 g) for
any α ∈

�

0, 1
18

�

, c4 := 2D and D := 365. Then, for any step t ⩾ 0, (i) for ε := 1
12 , it holds that

E
�

Λt+1
�

� Ft ,∆t ⩽ Dng
�

⩽ Λt ·
�

1−
2αε

n

�

+ 18α.

Furthermore, this also implies that (ii) for c := 18
ε , it holds that

E
�

Λt+1
�

� Ft ,∆t ⩽ Dng,Λt > cn
�

⩽ Λt ·
�

1−
αε

n

�

.

Proof. First statement. Consider an arbitrary step t ⩾ 0 with ∆t ⩽ Dng. We bound the expected
change of Λ over one step, by considering the following cases for each bin i ∈ [n]:

Case 1 [y t
i ∈ (−c4 g − 2, c4 g + 2)]: Using Lemma 5.20 (i),

E
�

Λt+1
i

�

� Ft
�

⩽ Λt
i ·
�

1+
3α
n

�

= Λt
i ·
�

1−
α

6n

�

+Λt
i ·
� α

6n
+

3α
n

�

(a)
⩽ Λt

i ·
�

1−
α

6n

�

+ (2 · e2α) ·
�1

6
+ 3

�

·
α

n
(b)
⩽ Λt

i ·
�

1−
α

6n

�

+
18α

n
,
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using in (a) that Λt
i ⩽ e2α + 1 ⩽ 2 · e2α by the assumption that y t

i ∈ (−c4 g − 2, c4 g + 2) and in (b)
that (2 · e2α) · (1

6 + 3)⩽ 18, since α⩽ 1/4.
Case 2 [y t

i ⩾ c4 g + 2]: By the condition ∆t ⩽ Dng, the number of bins j with y t
j ⩾

3
2 Dg is

at most 1
2∆

t · 2
3Dg ⩽

Dng
3Dg =

n
3 (see Fig. 5.1 (top)). We allocate to bin i ∈ [n] with y t

i ⩾ c4 g + 2 =
2Dg + 2⩾ 3

2 Dg + g if we sample bin i and a bin j with y t
j ⩾

3
2 Dg. Hence,

qt
i ⩽ 2 ·

1
n
·

1
3
=

2
3n

.

By assumption, bin i deterministically satisfies y t+1
i ⩾ c4 g + 2− 1/n> c4 g, so

E
�

Λt+1
i

�

� Ft ,∆t ⩽ Dng
�

= eα·(y
t
i −c4 g)+ ·

�

(1− qt
i ) · e

−α/n + qt
i · e

α(1−1/n)
�

+ 1

(a)
⩽ eα·(y

t
i −c4 g)+ ·

�

(1− qt
i ) ·
�

1−
α

n
+
α2

n2

�

+ qt
i ·
�

1+α ·
�

1−
1
n

�

+α2
�

�

+ 1

= eα·(y
t
i −c4 g)+ ·

�

1+α ·
�

qt
i −

1
n

�

+ (1− qt
i ) ·
α2

n2
+ qt

i ·α
2
�

+ 1

(b)
⩽ eα·(y

t
i −c4 g)+ ·

�

1−
α

3n
+

4α2

3n

�

+ 1

(c)
⩽ eα·(y

t
i −c4 g)+ ·

�

1−
α

6n

�

+ 1

= eα·(y
t
i −c4 g)+ ·

�

1−
α

6n

�

+ 1 ·
�

1−
α

6n

�

+
α

6n

= Λt
i ·
�

1−
α

6n

�

+
α

6n
,

using in (a) that eu ⩽ 1+ u+ u2 for u < 1.75, α ⩽ 1 and (1− 1/n)2 ⩽ 1, in (b) that qt
i ⩽

2
3n and

(1− qt
i ) ·

α2

n2 ⩽ 2α2

3n for n⩾ 2, and in (c) that α⩽ 1
8 , so 4α2

3n ⩽
α
6n .

Case 3 [y t
i ⩽ −c4 g − 2]: The number of bins j with y t

j ⩽ −
3
2 Dg is at most 1

2∆
t · 2

3Dg ⩽
Dng
3Dg =

n
3

and the number of bins j with y t
j > −

3
2 Dg is at least 2n

3 (see Fig. 5.1 (bottom)). Similarly to Case
2, we can allocate to a bin i ∈ [n] with load y t

i ⩽ −c4 g − 2 only if we sample i and a bin j with
y t

j > −
3
2 Dg. Hence,

qt
i ⩾ 2 ·

1
n
·

2
3
=

4
3n

.

By assumption, bin i deterministically satisfies y t+1
i ⩽ −c4 g − 2+ 1< −c4 g, so

E
�

Λt+1
i

�

� Ft ,∆t ⩽ Dng
�

= 1+ eα(−y t
i −c4 g)+ ·

�

(1− qt
i ) · e

α/n + qt
i · e
−α(1−1/n)

�

(a)
⩽ 1+ eα(−y t

i −c4 g)+ ·
�

(1− qt
i ) ·
�

1+
α

n
+
α2

n2

�

+ qt
i ·
�

1−α ·
�

1−
1
n

�

+α2
�

�

= 1+ eα(−y t
i −c4 g)+ ·

�

1+α ·
�1

n
− qt

i

�

+ (1− qt
i ) ·
α2

n2
+ qt

i ·α
2
�

(b)
⩽ 1+ eα(−y t

i −c4 g)+ ·
�

1−
α

3n
+

5α2

2n

�

(c)
⩽ 1+ eα(−y t

i −c4 g)+ ·
�

1−
α

6n

�

=
�

1−
α

6n

�

+ eα(−y t
i −c4 g)+ ·

�

1−
α

6n

�

+
α

6n
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= Λt
i ·
�

1−
α

6n

�

+
α

6n
,

using in (a) that eu ⩽ 1+ u+ u2 for u< 1.75, α⩽ 1 and (1− 1/n)2 ⩽ 1, in (b) that qt
i ∈ [

4
3n , 2

n] and

(1− qt
i ) ·

α2

n2 ⩽ α2

2n for n⩾ 2 and in (c) that α⩽ 1
15 , so 5α2

2n ⩽
α
6n .

Combining these three cases and letting ε := 1
12 , we conclude that

E
�

Λt+1
�

� Ft ,∆t ⩽ Dng
�

⩽
n
∑

i=1

�

Λt
i ·
�

1−
α

6n

�

+
18α

n

�

= Λt ·
�

1−
2αε

n

�

+ 18α.

Second statement. Letting c := 18
ε = 18 · 12, it follows that

E
�

Λt+1
�

� Ft ,∆t ⩽ Dng,Λt > cn
�

⩽ Λt ·
�

1−
2αε

n

�

+ 18α

= Λt ·
�

1−
αε

n

�

−Λt ·
αε

n
+ 18α

⩽ Λt ·
�

1−
αε

n

�

.

5.3.5 Adjusted hyperbolic cosine potential

In Lemma 5.21, we proved that in a good step t with Λt > cn (for c := 18 · 12), the potential drops
in expectation by a multiplicative factor. Our goal will be to show that w.h.p. Λt ⩽ cn at a single
step (recovery) and then show that it becomes small at least once every O(n · (g + log n)) steps
(stabilisation). Since we do not have an expected drop in every step, but only at a constant fraction
r of the steps, we will define an adjusted hyperbolic cosine potential function. First, for any step t0,
and any step s ⩾ t0, we define the following event:

E s
t0

:=
⋂

t∈[t0,s]

�

Λt > cn
	

.

Next, we define the sequence (eΛs
t0
)s⩾t0

:= (eΛs
t0
)s⩾t0

(α, c4 g,ε) as eΛt0
t0

:= Λt0(α, c4 g) and, for any
s > t0,

eΛs
t0

:= Λs(α, c4 g) · 1E s−1
t0
· exp

�

−
3α
n
· Bs−1

t0

�

· exp
�

+
αε

n
· Gs−1

t0

�

, (5.11)

recalling that G t1
t0

is the number of good steps in [t0, t1], i.e., steps where the event Gs := {∆s ⩽ Dng}
holds, and B t1

t0
:= [t0, t1] \ G t1

t0
is the number of bad steps in [t0, t1].

In the next lemma, we prove that by its definition and Lemmas 5.20 and 5.21, the sequence
(eΛs

t0
)s⩾t0

is a super-martingale.

Lemma 5.22. Consider the g-ADV-COMP setting for any g ⩾ 1 and the sequence (eΛs
t0
)s⩾t0

:= (eΛs
t0
)s⩾t0

(α, c4 g,ε)

for any starting step t0 ⩾ 0, any α ∈ (0, 1
18] and ε, c4 > 0 as defined in Lemma 5.21. Then, for any

step s ⩾ t0,

E
h

eΛs+1
t0

�

�

� Fs
i

⩽ eΛs
t0

.

Proof. Recalling the definition of eΛ in Eq. (5.11),

E
�

eΛs+1
t0

�

�Fs
�

= E
�

Λs+1 · 1E s
t0

�

�Fs
�

· exp
�

−
3α
n
· Bs

t0

�

· exp
�αε

n
· Gs

t0

�

= E
�

Λs+1 · 1E s
t0

�

�Fs
�

· exp
�

αε

n
· 1Gs −

3α
n
· 1¬Gs

�

· exp
�

−
3α
n
· Bs−1

t0

�

· exp
�αε

n
· Gs−1

t0

�

.
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Recovery phase Stabilisation phase

Theorem 3.21

cn

2cn

ec3 g log(ng)

Λt

t

m−∆r s0 τ1 s1 τ2 s2m m+∆s

Recovery by Lemma 5.23 Each si −τi ⩽∆s = Θ(n ·max{log n, g}) by Lemma 5.24

Figure 5.2: Visualisation of the recovery (Lemma 5.23) and stabilisation (Lemma 5.24) phases.
Note that the red intervals w.h.p. will have length⩽∆s, implying Gap(m) =O(g+ log n) by smooth-
ness.

Thus, to prove the statement, it suffices to show that

E
�

Λs+1 · 1E s
t0

�

�Fs
�

· exp
�

αε

n
· 1Gs −

3α
n
· 1¬Gs

�

⩽ Λs · 1E s−1
t0

. (5.12)

To show Eq. (5.12), we consider two cases based on whether Gs holds.

Case 1 [Gs holds]: Recall that when Gs holds, then ∆s ⩽ Dng. Further, when Λs ⩽ cn holds (for
c > 0 the constant in Lemma 5.21), then 1E s

t0
= 0. Thus, using Lemma 5.21 (ii),

E
�

Λs+1 · 1E s
t0

�

�Fs,Gs
�

⩽ Λs · 1E s−1
t0
·
�

1−
αε

n

�

⩽ Λs · 1E s−1
t0
· exp

�

−
αε

n

�

.

Hence, since in this case 1Gs = 1, the left hand side of Eq. (5.12) is equal to

E
�

Λs+1 · 1E s
t0

�

�Fs,Gs
�

· exp
�αε

n

�

⩽
�

Λs · 1E s−1
t0
· exp

�

−
αε

n

��

· exp
�αε

n

�

= Λs · 1E s−1
t0

.

Case 2 [Gs does not hold]: By Lemma 5.20 (ii), we get

E
�

Λs+1 · 1E s
t0

�

�Fs,¬Gs
�

⩽ Λs · 1E s−1
t0
·
�

1+
3α
n

�

⩽ Λs · 1E s−1
t0
· exp

�

3α
n

�

.

Hence, since in this case 1Gs = 0, the left hand side of Eq. (5.12) is equal to

E
�

Λs+1 · 1E s
t0

�

�Fs,¬Gs
�

· exp
�

−
3α
n

�

⩽
�

Λs · 1E s−1
t0
· exp

�

3α
n

��

· exp
�

−
3α
n

�

= Λs · 1E s−1
t0

.

Since Eq. (5.12) holds in either case, we deduce that (eΛs
t0
)s⩾t0

forms a super-martingale.

5.3.6 Recovery and stabilisation

We are now ready to prove the recovery, i.e., thatΛ becomes small at least once everyO(ng(log(ng))2)
steps.
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Lemma 5.23 (Recovery). Consider the g-ADV-COMP setting for any g ⩾ 1 and the potential Λ :=
Λ(α, c4 g) with α = 1

18 , and c4 > 0 as defined in Lemma 5.21. Further, let the constants c,ε > 0 be as
defined in Lemma 5.21, cr := cr(α, c4) ⩾ 1 as in Lemma 5.19 (ii), r ∈ (0, 1) as in Lemma 5.18 and

c3 ⩾ 2 as in Theorem 3.21. Then, for any step t0 ⩾ 0, (i) for ∆r := ∆r(g) :=
60c2

3 cr
αεr · ng · (log(ng))2,

it holds that

Pr





⋃

t∈[t0,t0+∆r ]

{Λt ⩽ cn}

�

�

�

�

�

Ft0 , max
i∈[n]

�

�y t0
i

�

�⩽ c3 g log(ng)



⩾ 1− 3 · (ng)−12.

Further, (ii) for any step t0 ⩾ 0, it holds that,

Pr





⋃

t∈[t0,t0+∆r ]

{Λt ⩽ cn}



⩾ 1− (ng)−11.

Proof. First statement. Consider an arbitrary step t0 with maxi∈[n] |y
t0
i | ⩽ c3 g log(ng). Our aim

is to show that w.h.p. Λt ⩽ cn for some step t ∈ [t0, t0 +∆r]. We will do this by first showing
that w.h.p. there is a significant number of good steps, i.e., G t1

t0
⩾ r ·∆r , and when this happens

w.h.p. eΛt1
t0
= 0, which implies the conclusion.

We start by upper bounding Λt0 as follows,

Λt0 ⩽ 2n · eαc3 g log(ng) ⩽ ec3 g log(ng) =: λ, (5.13)

since α ⩽ 1
18 and c3 ⩾ 2. Hence, by Lemma 5.19 (ii), there exists a constant cr := cr(α, c4), such

that
Υ t0 ⩽ cr · n · (g2 + (logΛt0)2)⩽ 2cr · n · (c3 g log(ng))2 =: T.

Let t1 := t0 +∆r . Applying Lemma 5.18 with T = 2cr · n · (c3 g log(ng))2 = o(n2 g3) (and ⩾ ng2)
and ĉ = ∆r ·g

T ⩾
30
αεr ⩾ 1 as α,ε, r ⩽ 1, we get

Pr

�

G t1−1
t0
⩾ r ·∆r

�

�

�

�

Ft0 ,Λt0 ⩽ λ, max
i∈[n]

�

�y t0
i

�

�⩽ c3 g log(ng)

�

⩾ Pr

�

G t1−1
t0
⩾ r ·∆r

�

�

�

�

Ft0 ,Υ t0 ⩽ T, max
i∈[n]

�

�y t0
i

�

�⩽ g(log(ng))2
�

⩾ 1− 2 · (ng)−12. (5.14)

By Lemma 5.22, (eΛt
t0
)t⩾t0

is a super-martingale, so E[ eΛt1
t0
| Ft0 ]⩽ eΛt0

t0
= Λt0 . Hence, using Markov’s

inequality we get Pr
�

eΛ
t1
t0
> Λt0 · (ng)12

�

�Ft0 ,Λt0 ⩽ λ
�

⩽ (ng)−12. Thus, by the definition of eΛt1
t0

in
Eq. (5.11), we have

Pr

�

Λt1 · 1E t1−1
t0
⩽ Λt0 · (ng)12 · exp

�

3α
n
· B t1−1

t0
−
αε

n
· G t1−1

t0

�

�

�

�

�

Ft0 ,Λt0 ⩽ λ
�

⩾ 1− (ng)−12. (5.15)

Further, if in addition to the two events {eΛt1
t0
⩽ Λt0 · (ng)12} and {Λt0 ⩽ λ}, also the event {G t1−1

t0
⩾

r ·∆r} holds, then

Λt1 · 1E t1−1
t0
⩽ Λt0 · (ng)12 · exp

�

3α
n
· B t1−1

t0
−
αε

n
· G t1−1

t0

�

⩽ ec3 g log(ng) · (ng)12 · exp
�

3α
n
· (1− r) ·∆r −

αε

n
· r ·∆r

�

(a)
= ec3 g log(ng) · (ng)12 · exp

�

αε

n
·

r
2
·∆r −

αε

n
· r ·∆r

�
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= ec3 g log(ng) · (ng)12 · exp
�

−
αε

n
·

r
2
·∆r

�

= ec3 g log(ng) · (ng)12 · exp
�

−
αε

n
·

r
2
·

60c2
3 cr

αεr
· ng · (log(ng))2

�

(b)
⩽ ec3 g log(ng) · (ng)12 · exp (−30c3 g log(ng))

⩽ 1,

where we used in (a) that r = 6
6+ε implies 3α

n ·(1− r) = 3α
n ·

ε
6+ε =

αε
n ·

r
2 , in (b) that g ⩾ 1, cr ⩾ 1 and

c3 ⩾ 1. By the definition of Λ, we have that Λt1 ⩾ n holds deterministically, and so we can deduce
from the above inequality that 1E t1−1

t0
= 0, that is,

Pr

�

¬E t1−1
t0

�

�

�

�

Ft0 , eΛ
t1
t0
⩽ Λt0 · (ng)12, Λt0 ⩽ λ, G t1−1

t0
⩾ r ·∆r

�

= 1.

Recalling the definition of E t1−1
t0

:=
⋂

t∈[t0,t1−1]{Λ
t > cn} and taking the union bound over Eq. (5.14)

and Eq. (5.15) yields

Pr





⋃

t∈[t0,t0+∆r ]

{Λt ⩽ cn}

�

�

�

�

�

Ft0 ,Λt0 ⩽ λ



⩾ 1− 2 · (ng)−12 − (ng)−12 = 1− 3 · (ng)−12. (5.16)

Second statement. Using Theorem 3.21 (iii), for the constant c3 ⩾ 2, it holds that,

Pr
�

max
i∈[n]

�

�y t0
i

�

�⩽ c3 g log(ng)
�

⩾ 1− (ng)−14.

Recall by Eq. (5.13), that this implies that

Pr
�

Λt0 ⩽ λ
�

⩾ 1− (ng)−14.

Hence, combining with Eq. (5.16), we conclude that

Pr





⋃

t∈[t0,t0+∆r ]

{Λt ⩽ cn}



⩾
�

1− 3 · (ng)−12
�

·
�

1− (ng)−14
�

⩾ 1− (ng)−11.

The derivation of the lemma below is similar to that of Lemma 5.23, with the main difference
being the tighter condition that Λt0 ⩽ 2cn, which allows us to choose a slightly shorter time window
of Θ(n ·max{log n, g}) steps (see Fig. 5.2).

Lemma 5.24 (Stabilisation). Consider the g-ADV-COMP setting for any g ⩾ 1 and the potential Λ :=
Λ(α, c4 g) with α = 1

18 , and c4 > 0 as defined in Lemma 5.21. Further, let the constants c,ε > 0 be as
defined in Lemma 5.21, cs := cs(α, c4, 2c) ⩾ 1 as in Lemma 5.19 (i) and r ∈ (0,1) as in Lemma 5.18.
Then, for ∆s :=∆s(g) := 60cs

αεr · n ·max{log n, g}, we have that for any step t0 ⩾ 0,

Pr





⋃

t∈[t0,t0+∆s]

�

Λt ⩽ cn
	

�

�

�

�

�

Ft0 ,Λt0 ⩽ 2cn



⩾ 1− (ng)−11.

Proof. By Lemma 5.19 (i), Λt0 ⩽ 2cn implies that deterministically Υ t0 ⩽ csng2 for constant cs :=
cs(α, c4, 2c)⩾ 1 and

max
i∈[n]

�

�y t0
i

�

�⩽ c4 g +
1
α
· log(2cn)⩽ g(log(ng))2,
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for sufficiently large n using that c4,α, c > 0 are constants. Let t1 := t0 +∆s. By Lemma 5.18 with
T := csng ·max{log n, g}⩾ csng2 (and T = o(n2 g3)) and ĉ := ∆s·g

T = 60
αεr ⩾ 1 as α,ε, r ⩽ 1, we have

that

Pr
h

G t1−1
t0
⩾ r ·∆s

�

�

� Ft0 ,Λt0 ⩽ 2cn
i

⩾ Pr
�

G t1−1
t0
⩾ r ·∆s

�

�

� Ft0 ,Υ t0 ⩽ T,max
i∈[n]

�

�y t0
i

�

�⩽ g(log(ng))2
�

⩾ 1− 2 · (ng)−12. (5.17)

By Lemma 5.22, (eΛt
t0
)t⩾t0

is a super-martingale, so E[ eΛt1
t0
| Ft0 ,Λt0 ⩽ 2cn ] ⩽ eΛt0

t0
= Λt0 . Hence,

using Markov’s inequality we get Pr
�

eΛ
t1
t0
> Λt0 · (ng)12 | Ft0 ,Λt0 ⩽ 2cn

�

⩽ (ng)−12. Thus, by the

definition of eΛt1
t0

in Eq. (5.11), we have

Pr

�

Λt1 · 1E t1−1
t0
⩽ Λt0 · (ng)12 · exp

�

3α
n
· B t1−1

t0
−
αε

n
· G t1−1

t0

�

�

�

�

�

Ft0 ,Λt0 ⩽ 2cn

�

⩾ 1− (ng)−12.

(5.18)
Further, if in addition to the two events {eΛt1

t0
⩽ Λt0 ·(ng)12} and {Λt0 ⩽ 2cn}, also the event {G t1−1

t0
⩾

r ·∆s} holds, then

Λt1 · 1E t1−1
t0
⩽ Λt0 · (ng)12 · exp

�

3α
n
· B t1−1

t0
−
αε

n
· G t1−1

t0

�

⩽ 2cn · (ng)12 · exp
�

3α
n
· (1− r) ·∆s −

αε

n
· r ·∆s

�

(a)
= 2cn · (ng)12 · exp

�

−
αε

n
·

r
2
·∆s

�

= 2cn · (ng)12 · exp
�

−
αε

n
·

r
2
·

60cs

αεr
· n ·max{log n, g}

�

(b)
⩽ 2cn · (ng)12 · exp (−30 ·max{log n, g})

⩽ 2cn · (ng)12 · exp (−15 · log(ng))

⩽ 1,

where we used in (a) that r = 6
6+ε implies 3α

n · (1− r) = 3α
n ·

ε
6+ε =

αε
n ·

r
2 and in (b) that cs ⩾ 1 and

α ⩽ 1/2. Also Λt1 ⩾ 2n holds deterministically, so we can deduce from the above inequality that
1E t1−1

t0
= 0, that is,

Pr

�

¬E t1−1
t0

�

�

�

�

Ft0 , eΛ
t1
t0
⩽ Λt0 · (ng)12, Λt0 ⩽ 2cn, G t1−1

t0
⩾ r ·∆s

�

= 1.

Recalling the definition of E t1−1
t0

:=
⋂

t∈[t0,t1−1]{Λ
t > cn}, and taking the union bound over Eq. (5.17)

and Eq. (5.18) yields

Pr





⋃

t∈[t0,t0+∆s]

{Λt ⩽ cn}
�

�

�

�

Ft0 ,Λt0 ⩽ 2cn



⩾ 1− 2 · (ng)−12 − (ng)−12 ⩾ 1− (ng)−11.

5.3.7 Completing the proof of Theorem 5.26

We will now prove that starting with Λt0 ⩽ 2cn implies that for any step t1 ∈ [t0, t0 + (ng)2], we
have w.h.p. Gap(t1) =O(g + log n).
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Lemma 5.25. Consider the g-ADV-COMP setting for any g ⩾ 1, the potential Λ := Λ(α, c4 g) with
α = 1

18 , c4 > 0 as defined in Lemma 5.21 and ∆s > 0 as defined in Lemma 5.24. Then, there exists a
constant κ⩾ 1

α such that for any steps t0 ⩾ 0 and t1 ∈ (t0, t0 + (ng)2],

Pr
�

max
i∈[n]

�

�y t1
i

�

�⩽ κ · (g + log n)
�

�

� Ft0 ,Λt0 ⩽ cn
�

⩾ 1− (ng)−9.

Proof. Consider any step t0 with Λt0 ⩽ cn. We define the event for any step t1 ⩾ t0

Mt1
t0

:= {for all t ∈ [t0, t1] there exists s ∈ [t, t +∆s] such that Λs ⩽ cn} ,

that is, if Mt1
t0

holds then we have Λs ⩽ cn at least once every ∆s := 60cs
αεr · n ·max{log n, g} steps.

Assume now that Mt1
t0

holds. We will show that

max
i∈[n]

�

�y t1
i

�

�⩽ κ · (g + log n).

Choosing t = t1, implies that there exists s ∈ [t1, t1 +∆s] such that Λs ⩽ cn, which in turn implies
by definition of Λ that maxi∈[n] |y s

i |⩽
1
α · log(cn)+ c4 g < 2

α · log n+ c4 g. Clearly, any y t
i can decrease

by at most 1/n in each step, and from this it follows that if Mt1
t0

holds, then

max
i∈[n]

y t1
i ⩽max

i∈[n]

�

�y s
i

�

�+
∆s

n
⩽ κ · (g + log n),

for the constant

κ :=
2
α
+ c4 +

∆s

n ·max{log n, g}
=

2
α
+ c4 +

60cs

αεr
> 0. (5.19)

If t1 ⩾ t0+∆s and Mt1
t0

holds, then choosing t = t1−∆s, there exists s ∈ [t1−∆s, t1] such that
Λs ⩽ cn. (In case t1 < t0 +∆s, then we arrive at the same conclusion by choosing s = t0 and using
the precondition Λt0 ⩽ cn). This in turn implies maxi∈[n] |y s

i |⩽
2
α · log n+ c4 g. Hence

min
i∈[n]

y t1
i ⩾ −max

i∈[n]

�

�y s
i

�

�−
∆s

n
⩾ −κ · (g + log n).

Hence, Mt1
t0

together with the precondition on Λt0 ⩽ cn implies that maxi∈[n]
�

�y t1
i

�

�⩽ κ · (g + log n).

It remains to bound Pr
h

¬Mt1
t0

�

�

� Ft0 ,Λt0 ⩽ cn
i

.

Note that if for some step j1 we have thatΛ j1 ⩽ cn and for some j2 ⩾ j1 thatΛ j2 > 2cn, then there
must exist j ∈ ( j1, j2) such thatΛ j ∈ (cn, 2cn], since for every t ⩾ 0 it holds thatΛt+1 ⩽ Λt ·eα ⩽ 2Λt ,
as α ⩽ 1/2. Let t0 < τ1 < τ2 < · · · and t0 =: s0 < s1 < · · · be two interlaced sequences defined
recursively for i ⩾ 1 by

τi := inf {τ > si−1 : Λτ ∈ (cn, 2cn]} and si := inf {s > τi : Λs ⩽ cn} .

Thus we have
t0 = s0 < τ1 < s1 < τ2 < s2 < · · · ,

and since τi > τi−1 we have τt1−t0
⩾ t1. Therefore, if the event ∩t1−t0

i=1 {si − τi ⩽ ∆s} holds, then
also Mt1

t0
holds.

Recall that by Lemma 5.24 we have for any i = 1,2, . . . , t1 − t0 and any τ= t0 + 1, . . . , t1

Pr





⋃

t∈[τi ,τi+∆s]

�

Λt ⩽ cn
	

�

�

�

�

�

Fτ, Λτ ∈ (cn, 2cn],τi = τ



⩾ 1− (ng)−11,
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and by negating and the definition of si ,

Pr
h

si −τi >∆s

�

�

�Fτ,Λτ ∈ (cn, 2cn],τi = τ
i

⩽ (ng)−11.

Since the above bound holds for any i ⩾ 1 and Fτ, with τi = τ, it follows by the union bound over
all i = 1, 2, . . . , t1 − t0, as t1 − t0 ⩽ (ng)2,

Pr
h

¬Mt1
t0

�

�

� Ft0 ,Λt0 ⩽ cn
i

⩽ (t1 − t0) · (ng)−11 ⩽ (ng)−9.

Finally, we deduce that for the g-ADV-COMP setting, for an arbitrary step m w.h.p. Gap(m) =
O(g + log n).

Theorem 5.26. Consider the g-ADV-COMP setting for any g ⩾ 1, the constant κ ⩾ 1
α defined in

Eq. (5.19) in Lemma 5.25 and α= 1
18 . Then, for any step m⩾ 0,

Pr
�

max
i∈[n]

�

�ym
i

�

�⩽ κ · (g + log n)
�

⩾ 1− 2 · (ng)−9.

Proof. Consider an arbitrary step m ⩾ 0 and recall that ∆r :=
60c2

3 cr
αεr · ng · (log(ng))2. If m < ∆r ,

then the claim follows by Lemma 5.25 as Λ0 = 2n⩽ cn and ∆r < (ng)2.
Otherwise, let t0 := m−∆r . Firstly, by the recovery lemma (Lemma 5.23 (ii)), we get

Pr





⋃

t∈[t0,t0+∆r ]

�

Λt ⩽ cn
	



⩾ 1− (ng)−11. (5.20)

Hence for τ := inf{s ⩾ t0 : Λs ⩽ cn} we have Pr [τ⩽ m ]⩾ 1− (ng)−11, as t0 +∆r = m.
Secondly, using Lemma 5.25, there exists a constant κ := κ(α,ε) > 0 such that for any step

s ∈ [t0, m],

Pr
�

max
i∈[n]

�

�ym
i

�

�⩽ κ · (g + log n)
�

�

� Fs,Λs ⩽ cn
�

⩾ 1− (ng)−9. (5.21)

Combining the two inequalities from above, we conclude the proof

Pr
�

max
i∈[n]

�

�ym
i

�

�⩽ κ · (g + log n)
�

⩾
m
∑

s=t0

Pr
�

max
i∈[n]

�

�ym
i

�

�⩽ κ · (g + log n)
�

�

� τ= s
�

· Pr [τ= s ]

⩾
m
∑

s=t0

Pr
�

max
i∈[n]

�

�ym
i

�

�⩽ κ · (g + log n)
�

�

� Fs,Λs ⩽ cn
�

· Pr [τ= s ]

(5.21)
⩾

�

1− (ng)−9
�

· Pr [τ⩽ m ]
(5.20)
⩾

�

1− (ng)−9
�

·
�

1− (ng)−11
�

⩾ 1− 2 · (ng)−9.

5.4 g-ADV setting: Strong stabilisation

In this section, we will obtain for the g-ADV-COMP setting a stronger guarantee for a variant of the
Λ potential used in Section 5.3. The precise upper bound that we need on g is g ⩽ c6 log n, where
c6 > 0 is a sufficiently small constant defined as

c6 :=
r

9 · 20 ·ecs · log(2ce2α1)
⩽ 1, (5.22)
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where r ∈ (0,1) is as defined in Lemma 5.18, ecs := ecs(α1, c4, e2α1 c) ⩾ 1 as defined in Lemma 5.19
(for c4 := 730), c > 0 as defined in Lemma 5.21 and α1 := 1

6κ ⩽
α
6 , for κ > 0 the constant defined

in Eq. (5.19) and α := 1
18 used in Section 5.3.

In Section 5.3, we showed that w.h.p. Λt =O(n) at least once every O(n·(g+log n)) steps. Here,
we will show that w.h.p. for any step t, we have for all steps s ∈ [t, t + n log5 n] that Ψs

0 = O(n).
This will serve as the base case for the layered induction in Theorem 7.25.

We start by defining the potential function V := V (α1, c4 g) which is a variant of the Λ :=
Λ(α, c4 g) potential function (defined in Eq. (5.3)), with the same offset c4 g = 2Dg = 730g, but
with a smaller smoothing parameter α1 ⩽

α
6 ,

V t := V t(α1, c4 g) :=
n
∑

i=1

V t
i :=

n
∑

i=1

�

eα1(y t
i −c4 g)+ + eα1(−y t

i −c4 g)+
�

. (5.23)

In Section 5.3, we proved that w.h.p. every O(n · (g + log n)) steps the potential Λ satisfies
Λs ⩽ cn. In this section, we will strengthen this to show that every O(ng) steps (for g = O(log n))
the potential V satisfies V s ⩽ eO(α1 g) · n. We will derive Lemma 5.29, which implies the base case
of the layered induction in Section 7.4.1, i.e., that for all steps s ∈ [m − n log5 n, m], Ψs

0 ⩽ Cn for
C := 2e2α1 · c+1 and recalling that Ψ0 := Ψ0(α1, c5 g) for some sufficiently large constant c5 > 0 (to
be defined in Eq. (5.36) in Lemma 5.33) is given by

Ψ t
0 =

n
∑

i=1

exp
�

α1 · (y s
i − z0)

+
�

=
n
∑

i=1

exp
�

α1 · (y s
i − c5 g)+

�

.

We also define

Φs
0 := Φs

0(α2, z0) :=
n
∑

i=1

Φs
0,i :=

n
∑

i=1

exp
�

α2 · (y s
i − z0)

+
�

, (5.24)

where α2 := α1
84 .

The proof follows along the lines of Theorem 5.26 in Section 5.3, but it further conditions on the
gap being O(g+ log n) at every step of the analysis. In particular, by conditioning on maxi∈[n] |y t

i |⩽
κ · (g + log n), we obtain that |∆V t+1| = O(n1/3) (Lemma 5.30), which allows us to apply Azuma’s
inequality (Lemma B.10) to deduce that w.h.p. V remains small. This bounded difference condition
is similar to the one used in Chapter 4.

5.4.1 A modified process

Let P be the process in the g-ADV-COMP setting (with arbitrary 1 ⩽ g ⩽ c6 log n) that we want to
analyse. We would like to condition on the event that P satisfies maxi∈[n] |y t

i | ⩽ κ · (g + log n), for
every step t in an interval of 2n log5 n steps, which holds w.h.p., as implied by Theorem 5.26.

We implement this conditioning by defining a modified process Qg,r0
:= Qg,r0

(P) for the same
g and some arbitrary step r0. Consider the stopping time σ := inf{s ⩾ r0 : maxi∈[n] |y s

i | > κ · (g +
log n)}, then the process Qg,r0

is defined so that

• in steps s ∈ [0,σ) makes the same allocations as P, and

• in steps s ∈ [σ,∞) allocates to the currently least loaded bin, i.e., it uses the probability
allocation vector rs = (0, 0, . . . , 0, 1).

Let y s
Q be the normalised load vector of Qg,r0

at step s ⩾ 0. By Theorem 5.26, it follows that for
any interval [r0, m] with m− r0 ⩽ n2, with high probability the two processes agree, i.e.,

Pr





⋂

s∈[r0,m]

�

y s
Q = y s

	



⩾ Pr





⋂

s∈[r0,m]

§

max
i∈[n]

�

�y s
i

�

�⩽ κ · (g + log n)
ª




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⩾ 1− 2 · (ng)−9 · n2 ⩾ 1− 2n−7. (5.25)

The process Qg,r0
is defined in a way to satisfy the following property:

• (Property 1) The Qg,r0
process satisfies the drop inequalities for the potential functions ΛQ,

VQ and ΥQ (Lemmas 5.17, 5.20 (ii) and 5.21) for any step s ⩾ 0. This holds because for any
step s < σ, the process follows P and so it is an instance of the g-ADV-COMP setting. For any
step s ⩾ σ, the process allocates to the currently least loaded bin and therefore minimises the
potential Λs+1

Q given any Fs, which means that Λs+1
Q ⩽ E

�

Λs+1 | Fs
�

and so it trivially satisfies
any drop inequality of the original process (and similarly for VQ and ΥQ).

Further, we define the event that the maximum normalised load in absolute value is small at step r0
as,

Z r0 :=
§

max
i∈[n]

�

�

�y r0
Q,i

�

�

�⩽min {κ · (g + log n), c3 g log(ng)}
ª

, (5.26)

where c3 ⩾ 2 is the constant defined in Eq. (3.32). We are primarily interested in the κ · (g + log n)
bound on the gap and the second bound is only needed for very small values of g =O(1). When the
event Z r0 holds, then the process Qg,r0

also satisfies the following property (which “implements”
the conditioning that the gap is O(g + log n)):

• (Property 2) For any step s ⩾ r0, it follows that

max
i∈[n]

�

�y s
i

�

�⩽ κ · (g + log n) + 1⩽ 2κ log n,

using that g ⩽ c6 log n with c6 ⩽
1
4 by Eq. (5.22). At any step s ∈ [r0,σ), this holds by the

definition of σ. For any step s ⩾ σ, a ball will never be allocated to a bin with y s
i > 0 and in

every n steps the at most n bins with load equal to the minimum load (at step s) will receive
at least one ball each. Hence, over any n steps the maximum absolute normalised load does
not increase and in the steps in between this can be larger by at most 1.

5.4.2 Preliminaries

We now define the adjusted potential eV , analogously to eΛ in Eq. (5.11). Note that Lemma 5.21 with
constants ε = 1

12 , c = 12 · 18 also applies to the potential V , since V has the same form as Λ but a
smaller smoothing parameter α1 ⩽ α. Next, we define the sequence (eV s

t0
)s⩾t0

:= (eV s
t0
)s⩾t0

(α1, c4 g,ε)

as eV t0
t0

:= V t0(α1, c4 g) and, for any s > t0,

eV s
t0

:= V s(α1, c4 g) · 1
eE s−1

t0
· exp

�

−
3α1

n
· Bs−1

t0

�

· exp
�

+
α1ε

n
· Gs−1

t0

�

, (5.27)

where Gs−1
t (and Bs−1

t ) is the number of good (bad) steps in [t0, s− 1] (as defined in Section 5.3.5)
and

eE s
t0

:= eE s
t0
(V, c) :=

⋂

t∈[t0,s]

�

V t > cn
	

.

Similarly, to eΛ in Section 5.3, we have that eV is a super-martingale.

Lemma 5.27 (cf. Lemma 5.22). Consider the Qg,r0
process for any g ⩾ 1, any step r0 ⩾ 0, the

sequence (eV s
t0
)s⩾t0

:= (eV s
t0
)s⩾t0

(α1, c4 g,ε) for any t0 ⩾ r0 with α1 > 0 as defined in Eq. (7.4) and
ε, c4 > 0 as defined in Lemma 5.21. For any step s ⩾ t0, we have that,

E[ eV s+1
t0
| Fs ]⩽ eV s

t0
.

112



Proof. The proof is analogous to that of Lemma 5.22, by substituting Λ with V and eΛ with eV . The
drop inequalities follow from Lemma 5.20 and Lemma 5.21, since V has the same form as Λ and
a smaller smoothing parameter α1 ⩽ α. The process Qg,r0

also satisfies the drop inequalities by
Property 1 (see Section 5.4.1).

The next lemma is a simple smoothness argument for the potential V defined in Eq. (5.23).

Lemma 5.28. Consider the potential V := V (α1, c4 g) for any α1 > 0, any c4 > 0 and any g ⩾ 1.
Then, (i) for any step t ⩾ 0, we have that

e−α1 · V t ⩽ V t+1 ⩽ eα1 · V t .

Further, (ii) for any ĉ > 0, for any integer T > 0 and any step t ⩾ 0, for which there exist steps
s0 ∈ [t − T, t] and s1 ∈ [t, t + T], such that V s0 ⩽ ĉn and V s1 ⩽ ĉn, we have that

V t ⩽ eα1
T
n · 2ĉn.

Proof. First statement. In each step the normalised load of any bin can change by at most 1, i.e.,
|y t+1

i − y t
i |⩽ 1 and so e−α1 · V t

i ⩽ V t+1
i ⩽ eα1 · V t

i . By aggregating over all bins, we get the claim.
Second statement. For any bin i ∈ [n], in T steps the normalised load can decrease by at most

T/n, i.e., y s1
i ⩾ y t

i −
T
n . So, the overload term is bounded by

eα1(y t
i −c4 g)+ ⩽ eα1

T
n · eα1(y

s1
i −c4 g)+ ⩽ eα1

T
n · V s1

i .

Similarly, y t
i ⩾ y s0

i −
T
n , and so the underload term is bounded by

eα1(−y t
i −c4 g)+ ⩽ eα1

T
n · eα1(−y

s0
i −c4 g)+ ⩽ eα1

T
n · V s0

i .

Hence, by aggregating over all bins and using the preconditions V s0 ⩽ ĉn and V s1 ⩽ ĉn,

V t =
n
∑

i=1

�

eα1(y t
i −c4 g)+ + eα1(−y t

i −c4 g)+
�

⩽ eα1
T
n ·

n
∑

i=1

�

V s1
i + V s0

i

�

= eα1
T
n · (V s1 + V s0)⩽ eα1

T
n · 2ĉn.

The following lemma shows that by choosing a large enough offset c5 > 0 in the potential
Ψ0 := Ψ0(α1, c5 g) (defined in Eq. (7.10)), when V t = eO(α1 g) · cn, then Ψ t

0 =O(n).

Lemma 5.29. Consider any c, ĉ > 0 and the potential V := V (α1, c4 g) for any α1 > 0, any c4 > 0
and any g ⩾ 1. Further, consider the potential Ψ0 := Ψ0(α1, c5 g) with offset c5 := 2 ·max{c4, ĉ} and
C := 2e2α1 · c + 1. Then, for any step t ⩾ 0 with V t ⩽ eα1·ĉ·g · 2e2α1 cn, it holds that Ψ t

0 ⩽ Cn.

Proof. We start by upper bounding Ψ t
0,

Ψ t
0 =

n
∑

i=1

eα1(y t
i −c5 g)+

=
∑

i∈[n]: y t
i ⩾c5 g

eα1(y t
i −c5 g) +

∑

i∈[n]: y t
i <c5 g

e0

⩽ e−α1(c5/2)g
∑

i∈[n]: y t
i ⩾c5 g

eα1(y t
i −(c5/2)g) + n

(a)
⩽ e−α1(c5/2)g

∑

i∈[n]: y t
i ⩾c4 g

eα1(y t
i −c4 g) + n

⩽ e−α1(c5/2)g
n
∑

i=1

eα1(y t
i −c4 g)+ + n
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= e−α1(c5/2)g · V t + n,

where in (a) we used that c5/2 ⩾ c4. Now, using the precondition of the lemma that V t ⩽ eα1·ĉ·g ·
2e2α1 cn and c5 ⩾ 2 · ĉ, we conclude

Ψ t
0 ⩽ e−α1(c5/2)g · V t + n⩽ 2e2α1 · cn+ n= Cn.

Compared to Section 5.3, where we proved stabilisation over an interval of Ω(n ·max{log n, g})
steps, here we will be using a shorter interval of length

e∆s :=
20 ·ecs · log(2ce2α1)

α1εr
· ng, (5.28)

where constants ε := 1
12 , r := 6

6+ε > 0 are as defined in Section 5.3 and ecs := ecs(α1, c4, e2α1 c) ⩾ 1 is
defined in Lemma 5.19.

We now prove the bounded difference condition for the eV potential. This follows from the second
property of Qg,r0

that the maximum normalised load in absolute value is O(g + log n) for any step
s ⩾ r0.

Lemma 5.30. Consider the Qg,r0
process for any g ∈ [1, c6 log n] with c6 > 0 as defined in Eq. (5.22),

any step r0 ⩾ 0, andZ r0 as defined in Eq. (5.26). Further, consider the sequence (eV s
t0
)s⩾t0

:= (eV s
t0
)s⩾t0

(α1, c4 g,ε)
for any step t0 ⩾ r0 with α1 > 0 as defined in Eq. (7.4) and ε, c4 > 0 as defined in Lemma 5.21. Then,
for any step s ⩾ t0 ⩾ r0 we have that eV s+1

t0
= 0 or

�
�

�

�∆eV s+1
t0

�

�

� | Z r0 ,Fs
�

⩽ 16 · eα1ε·
s−t0

n · n1/3.

Proof. Consider an arbitrary step s ⩾ r0 and assume that the event Z r0 holds. By Property 2 of the
Qg,r0

process (see Section 5.4.1), we have that

max
i∈[n]

�

�y s
i

�

�⩽ κ · (g + log n) + 1,

which also implies for c4 := 730> 0, since g ⩽ c6 log n⩽ log n and κ > 1 that

max
i∈[n]

�

(y s
i − c4 g)+, (−y s

i − c4 g)+
	

⩽ κ · (g + log n) + 1− c4 g ⩽ 2κ log n. (5.29)

We will now show that |∆V s+1| ⩽ 5n1/3 and then use this to bound |∆eV s+1|. By Eq. (5.29) for
any bin i ∈ [n],

V s
i ⩽ 2 · e2α1κ log n = 2 · e

1
3 ·log n = 2n1/3,

using that α1 := 1
6κ . Hence, by aggregating over all bins, V s ⩽ 2n4/3. Furthermore, if the ball at

step s+ 1 is allocated to bin j ∈ [n], then

∆V s+1 ⩽ eα1/n · V s + eα1 · V s
j − V s ⩽

2α1

n
V s + 2 · 2n1/3 ⩽

2α1

n
· (2n4/3) + 4n1/3 ⩽ 5n1/3,

using that eα1/n ⩽ 1+ 2 · α1
n and eα1 ⩽ 2, which both hold as α1 ⩽ 1/4. Similarly,

∆V s+1 ⩾ e−α1/n · V s − eα1 · V s
j − V s ⩾ −

α1

n
V s − 2 · 2n1/3 ⩾ −

α1

n
· (2n4/3)− 4n1/3 ⩾ −5n1/3,

using that e−α1/n ⩾ 1− α1
n and eα1 ⩽ 2, as α1 ⩽ 1/4.
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Now, we turn to upper bounding |∆eV s+1
t0
| by proving lower and upper bounds on eV s+1

t0
. If eV s+1

t0
=

0, then the conclusion follows. Otherwise, since eV s+1
t0

> 0, we have that 1
eE s

t0
= 1

eE s−1
t0
= 1, so by

definition of eV in Eq. (5.27),

eV s
t0
= V s · exp

�

−
3α1

n
· Bs−1

t0

�

· exp
�

+
α1ε

n
· Gs−1

t0

�

⩽ 2 · eα1ε·
s−t0

n · n4/3, (5.30)

using that Gs−1
t0
⩽ s− t0 and V s ⩽ 2n4/3.

Now, we upper bound eV s+1
t0

, recalling that 1
eE s

t0
= 1,

eV s+1
t0
= V s+1 · exp

�

−
3α1

n
· Bs

t0

�

· exp
�

+
α1ε

n
· Gs

t0

�

⩽ (V s + 5n1/3) · exp
�

−
3α1

n
· Bs

t0

�

· exp
�

+
α1ε

n
· Gs

t0

�

⩽ (V s + 5n1/3) · exp
�

−
3α1

n
· Bs−1

t0

�

· exp
�

+
α1ε

n
· Gs−1

t0

�

· exp
�α1ε

n

�

= eV s
t0
· exp

�α1ε

n

�

+ 5 · n1/3 · exp
�

−
3α1

n
· Bs−1

t0

�

· exp
�

+
α1ε

n
· Gs−1

t0

�

· exp
�α1ε

n

�

(a)
⩽ eV s

t0
·
�

1+
3α1

n

�

+ 5 · n1/3 · eα1ε·
s−t0

n · 2

(b)
⩽ eV s

t0
+ (2 · eα1ε·

s−t0
n · n4/3) ·

3α1

n
+ 10 · n1/3 · eα1ε·

s−t0
n

⩽ eV s
t0
+ 16 · eα1ε·

s−t0
n · n1/3, (5.31)

using in (a) that eα1ε/n ⩽ 1+ 3α1
n as α1 ⩽ 1 and ε = 1

12 , Gs−1
t0
⩽ s − t0, and eα1ε/n ⩽ 2 and in (b)

using Eq. (5.30).
Similarly, we lower bound eV s+1

t0
,

eV s+1
t0
= V s+1 · exp

�

−
3α1

n
· Bs

t0

�

· exp
�

+
α1ε

n
· Gs

t0

�

⩾ (V s − 5n1/3) · exp
�

−
3α1

n
· Bs

t0

�

· exp
�

+
α1ε

n
· Gs

t0

�

(a)
⩾ (V s − 5n1/3) · exp

�

−
3α1

n
· Bs−1

t0

�

· exp
�

+
α1ε

n
· Gs−1

t0

�

· exp
�

−
3α1

n

�

= eV s
t0
· exp

�

−
3α1

n

�

− 5 · n1/3 · exp
�

−
3α1

n
· Bs−1

t0

�

· exp
�

+
α1ε

n
· Gs−1

t0

�

· exp
�

−
3α1

n

�

(b)
⩾ eV s

t0
·
�

1−
3α1

n

�

− 5 · n1/3 · eα1ε·
s−t0

n

(c)
⩾ eV s

t0
− (2 · eα1ε·

s−t0
n · n4/3) ·

3α1

n
− 5 · n1/3 · eα1ε·

s−t0
n

⩾ eV s
t0
− 16 · eα1ε·

s−t0
n · n1/3, (5.32)

using in (a) that V s ⩾ 2n ⩾ 5n1/3 holds deterministically, in (b) that e−3α1/n ⩾ 1− 3α1
n and Gs−1

t0
⩽

s− t0 and in (c) using Eq. (5.30).
Hence, combining the two upper bounds in Eq. (5.31) and Eq. (5.32), we conclude that |∆eV s+1

t0
|⩽

16 · eα1ε·
s−t0

n · n1/3.

5.4.3 Strong stabilisation

We will now prove the following slightly stronger version of Lemma 5.24, meaning that stabilisation
is over intervals of length Θ(ng) instead of Θ(n · (g + log n)).
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Lemma 5.31 (Strong stabilisation). Consider the Qg,r0
process for any g ∈ [1, c6 log n] for c6 > 0

as defined in Eq. (5.22), any step r0 ⩾ 0 and Z r0 as defined in Eq. (5.26). Then, for the potential
V := V (α1, c4 g) with α1 > 0 as defined in Eq. (7.4), c4, c > 0 as defined in Lemma 5.21 and e∆s > 0
as defined in Eq. (5.28), it holds that for any step t0 ⩾ r0,

Pr





⋃

s∈[t0,t0+e∆s]

{V s ⩽ eα1 cn}

�

�

�

�

�

�

Z r0 ,Ft0 , eα1 cn< V t0 ⩽ e2α1 cn



⩾ 1− n−11.

Proof. The proof of this lemma proceeds similarly to that of Lemma 5.24, but we will apply Azuma’s
inequality for eV s

t0
instead of Markov’s inequality. However, we cannot directly apply concentration

to eV s
t0

because the bounded difference condition (Lemma 5.30) holds only when eV s
t0

is positive. So
instead we apply it to a stopped random variable X s

t0
to be defined in a way that ensures it is always

positive.
Let t1 := t0 + e∆s. We define the stopping time τ := inf{s ⩾ t0 : V s ⩽ eα1 cn} and for any

s ∈ [t0, t1],
X s

t0
:= eV s∧τ

t0
.

We will now verify that X s
t0
> 0 for all s ∈ [t0, t1]. Firstly, consider any s < τ. Since V s > eα1 cn, by

Lemma 5.28 (i), we have that V s+1 ⩾ V s · e−α1 > cn and hence X s+1
t0
= eV s+1

t0
> 0. Secondly, for any

s ⩾ τ, it trivially holds that X s+1
t0
= X s

t0
> 0.

We proceed to verify the preconditions of Azuma’s inequality for super-martingales (Lemma B.10)
for the sequence (X s

t0
)s∈[t0,t1]. Firstly, using Lemma 5.27 it forms a super-martingale, i.e., that

E[X s
t0
| Fs−1 ] ⩽ X s−1

t0
. Secondly, by Lemma 5.30, since X s

t0
> 0, for any filtration Fs−1 where Z r0

holds, we have that
�
�

�X s
t0
− X s−1

t0

�

� | Z r0 ,Fs−1
�

⩽
�
�

�
eV s

t0
− eV s−1

t0

�

� | Z r0 ,Fs−1
�

⩽ 16 · eα1ε·
e∆s
n · n1/3

(a)
= (16 · e20·ecs·r−1·log(2ce2α1 )g) · n1/3

(b)
⩽ 16 · e20·ecs·r−1·log(2ce2α1 )·c6 log n · n1/3

= 16 · n4/9,

using in (a) that e∆s := 20·ecs·log(2ce2α1 )
α1εr · ng and in (b) that g ⩽ c6 log n and c6 := r

9·20·ecs·log(2ce2α1 ) .

Hence, applying Lemma B.10 for λ := n, N := e∆s and ci := 16 · n4/9,

Pr
h

X t1
t0
⩾ X t0

t0
+ n

�

�

� Z r0 ,Ft0 , eα1 cn< V t0 ⩽ e2α1 cn
i

⩽ exp

�

−
n2

2 · e∆s · (16 · n4/9)2

�

⩽ n−ω(1),

(5.33)

using that e∆s =O(ng) =O(n log n).
As we condition on {V t0 ⩽ e2α1 cn}, we have that

max
i∈[n]

�

�y t0
i

�

�⩽ c4 g +
log(e2α1 cn)

α1
⩽ g(log(ng))2,

for sufficiently large n, using that α1, c5, c > 0 are constants. Further, by Lemma 5.19 (i) (since V
has the same form as Λ), we have that Υ t0 ⩽ ecsng2, for some constant ecs := ecs(α1, c4, e2α1 c)⩾ 1.

Applying Lemma 5.18 for T := ecsng2 (since T ∈ [ng2, o(n2 g3)]) and ĉ :=
e∆s·g

T ⩾
20
α1εr ⩾ 1 (since

α1,ε, r ⩽ 1),

Pr
h

G t1−1
t0
⩾ r · e∆s

�

�

� Z r0 ,Ft0 , eα1 cn< V t0 ⩽ e2α1 cn
i
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⩾ Pr
�

G t1−1
t0
⩾ r · e∆s

�

�

� Ft0 ,Υ t0 ⩽ T, max
i∈[n]

�

�y t0
i

�

�⩽ g(log(ng))2
�

⩾ 1− 2 · n−12. (5.34)

Taking the union bound over Eq. (5.33) and Eq. (5.34), we have

Pr
h

�

X t1
t0
< X t0

t0
+ n

	

∩
¦

G t1−1
t0
⩾ r · e∆s

©

�

�

� Z r0 ,Ft0 , eα1 cn< V t0 ⩽ e2α1 cn
i

⩾ 1− n−11.

Assume that {X t1
t0
< X t0

t0
+ n} and {G t1−1

t0
⩾ r · e∆s} hold. Then, we consider two cases based on

whether the stopping time occurred before t1.
Case 1 [τ ⩽ t1]: Here, clearly there is an s ∈ [t0, t1], namely s = τ, such that V s ⩽ eα1 cn and

the conclusion follows.
Case 2 [τ > t1]: Here, using that {τ > t1} and {X t1

t0
< X t0

t0
+ n} both hold, it follows that

eV t1
t0
< eV t0

t0
+ n,

and so, by definition of eV t1
t0

(Eq. (5.27)),

V t1 · 1
eE t1−1

t0
· exp

�

−
3α1

n
· B t1−1

t0

�

· exp
�

+
α1ε

n
· G t1−1

t0

�

< V t0 + n.

By re-arranging and using that {G t1−1
t0
⩾ r · e∆s} holds, we have that

V t1 · 1
eE t1−1

t0
< (V t0 + n) · exp

�

3α1

n
· B t1−1

t0
−
α1ε

n
· G t1−1

t0

�

⩽ (e2α1 cn+ n) · exp
�

3α1

n
· (1− r) · e∆s −

α1ε

n
· r · e∆s

�

(a)
= 2e2α1 · cn · exp

�

α1ε

n
·

r
2
· e∆s −

α1ε

n
· r · e∆s

�

= 2e2α1 · cn · exp
�

−
α1ε

n
·

r
2
· e∆s

�

= 2e2α1 · cn · exp
�

−
α1ε

n
·

r
2
·

20 ·ecs · log(2ce2α1)
α1εr

· ng
�

(b)
⩽ 2e2α1 · cn · exp

�

−10 log(2ce2α1)
�

(c)
⩽ n/2,

where we used in (a) that r = 6
6+ε implies 3α1

n · (1− r) = 3α1
n ·

ε
6+ε =

α1ε
n ·

r
2 and c ⩾ 1, in (b) that

g ⩾ 1, c ⩾ 1 and ecs ⩾ 1 and in (c) that c = 18 · 12. Since deterministically we have that V t1 ⩾ n, it
must be that 1

eE t1−1
t0
= 0, implying that there exists s ∈ [t0, t1) such that V s ⩽ cn⩽ eα1 cn.

We will now show that the potential V becomes small every Θ(ng) steps. The proof proceeds
similarly to the proof of Lemma 5.25.

Lemma 5.32. Consider the Qg,r0
process for any g ∈ [1, c6 log n] for c6 > 0 as defined in Eq. (5.22)

and any step r0 ⩾ 0. Then, for the potential V := V (α1, c4 g) with α1 as defined in Eq. (7.4), c4, c > 0
as defined in Lemma 5.21 and e∆s > 0 as defined in Eq. (5.28), it holds that for any step t0 ⩾ r0 and
t1 such that t0 < t1 ⩽ t0 + 2n log5 n,

Pr





⋂

t∈[t0,t1]

⋃

s∈[t,t+e∆s]

�

V s ⩽ e2α1 cn
	

�

�

�

�

�

�

Z r0 ,Ft0 , V t0 ⩽ cn



⩾ 1− n−9,

117



Proof. Analogously to the proof of Lemma 5.25, we begin by defining the event

fMt1
t0
=
�

for all t ∈ [t0, t1] there exists s ∈ [t, t + e∆s] such that V s ⩽ e2α1 cn
	

,

that is, if fMt1
t0

holds then we have that V s ⩽ e2α1 cn at least once every e∆s steps and so the claim
follows.

Note that if for some step j1 we have that V j1 ⩽ eα1 cn and for some j2 ⩾ j1 that V j2 > e2α1 cn,
then there must exist j ∈ ( j1, j2) such that V j ∈ (eα1 cn, e2α1 cn], since for every t ⩾ 0 it holds that
V t+1 ⩽ eα1 · V t (Lemma 5.28 (i)). Let t0 < τ1 < τ2 < · · · and t0 =: s0 < s1 < · · · be two interlaced
sequences defined recursively for i ⩾ 1 by

τi := inf{τ > si−1 : Vτ ∈ (eα1 cn, e2α1 cn]} and si := inf{s > τi : V s ⩽ eα1 cn}.

Thus we have
t0 = s0 < τ1 < s1 < τ2 < s2 < · · · ,

and since τi > τi−1 we have τt1−t0
⩾ t1− t0. Therefore, if the event ∩t1−t0

i=1 {si−τi ⩽ e∆s} holds, then
also fMt1

t0
holds.

Recall that by the strong stabilisation (Lemma 5.31) we have for any i = 1, 2, . . . , t1− t0 and any
τ= t0 + 1, . . . , t1,

Pr





⋃

t∈[τi ,τi+e∆s]

�

V t ⩽ eα1 cn
	

�

�

�

�

�

�

Z r0 ,Fτ, eα1 cn< Vτ ⩽ e2α1 cn,τi = τ



⩾ 1− n−11,

and by negating and the definition of si ,

Pr
�

si −τi > e∆s

�

� Z r0 ,Fτ, eα1 cn< Vτ ⩽ e2α1 cn,τi = τ
�

⩽ n−11.

Since the above bound holds for any i ⩾ 1 and Fτ, with τi = τ, it follows by the union bound over
all i = 1, 2, . . . , t1 − t0, as t1 − t0 ⩽ 2n log5 n,

Pr
h

¬fMt1
t0

�

�

� Z r0 ,Ft0 , V t0 ⩽ cn
i

⩽ (t1 − t0) · n−11 ⩽ n−9.

5.4.4 Completing the proof of Theorem 5.34

In this section, we will complete the proof of the base case of the layered induction used in Sec-
tion 7.4.1, using the stronger stabilisation for the V potential (see Lemma 5.31) and upper bounding
Ψ0 using V (see Lemma 5.29). We will first prove the result for the modified process and then relate
the results to the g-ADV-COMP setting.

Lemma 5.33. Consider the Qg,r0
process for any g ∈ [1, c6 log n] and any step r0 ⩾ −∆r − n log5 n,

where c6 > 0 is as defined in Eq. (5.22) and ∆r :=∆r(g) > 0 is as in Lemma 5.23. Further, let c > 0
be as defined in Lemma 5.21 and α1 > 0 as in Eq. (7.4), then for the constant C := 2e2α1 · c + 1 ⩾ 8
and the potential Ψ0 := Ψ0(α1, c5 g) with the constant integer c5 > 0 (to be defined in Eq. (5.36)), we
have that,

Pr





⋂

s∈[r0+∆r ,r0+∆r+n log5 n]

�

Ψs
0 ⩽ Cn

	

�

�

�

�

�

�

Z r0 ,Fr0



⩾ 1− n−8.

Proof. This proof proceeds similarly to that of Theorem 5.26 having a recovery and a stabilisation
phase to show that the potential V := V (α1, c4 g) stabilises at ⩽ eO(α1 g) · cn. By Lemma 5.29, this
implies that Ψ0 := Ψ0(α1, c5 g) stabilises at ⩽ Cn for sufficiently large constants c5, C > 0.
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For the recovery phase, we will use the potential function Λ := Λ(α, c4 g) defined in Eq. (5.3).
More specifically, we have

Pr





⋃

t∈[r0,r0+∆r ]

�

V t ⩽ cn
	

�

�

�

�

�

Z r0 ,Fr0





(a)
⩾ Pr





⋃

t∈[r0,r0+∆r ]

�

Λt ⩽ cn
	

�

�

�

�

�

Z r0 ,Fr0





(b)
⩾ Pr





⋃

t∈[r0,r0+∆r ]

�

Λt ⩽ cn
	

�

�

�

�

�

Fr0 , max
i∈[n]

�

�y r0
i

�

�⩽ c3 g log(ng)





(c)
⩾ 1− 3 · (ng)−12 ⩾ 1− n−11,

using in (a) that V t ⩽ Λt for any step t ⩾ 0, as V and Λ have the same form, but V has a smoothing
parameter α1 < α, in (b) recalling that Z r0 := {maxi∈[n]

�

�y r0
i

�

� ⩽ min{κ · (g + log n), c3 g log(ng)}}
for c3 ⩾ 2 the constant defined in Eq. (3.32) and in (c) applying Lemma 5.23 (i).

Therefore, for the stopping time τ := inf{t ⩾ r0 : V t ⩽ cn}, it holds that

Pr [τ⩽ r0 +∆r | Z r0 ,Fr0 ]⩾ 1− n−11. (5.35)

Consider any t0 ∈ [r0, r0 +∆r] (t0 will play the role of a concrete value of τ). By Lemma 5.32
(for t0 := t0 and t1 := r0 +∆r + n log5 n, since t1 − t0 ⩽ n log5 n+∆r ⩽ 2n log5 n), we have that

Pr





⋂

t∈[t0,r0+∆r+n log5 n]

⋃

s∈[t,t+e∆s]

�

V s ⩽ e2α1 cn
	

�

�

�

�

�

�

Z r0 ,Ft0 , V t0 ⩽ cn



⩾ 1− n−9.

When the above event holds, then for every t ∈ [t0, r0 +∆r + n log5 n], there exists s0 ∈ [t − e∆s, t]
and s1 ∈ [t, t + e∆s] such that V s0 ⩽ e2α1 cn and V s1 ⩽ e2α1 cn, using that for any t ∈ [t0, t0 + e∆s] we
can set s0 := t0 since by the conditioning V t0 ⩽ cn⩽ e2α1 cn. So, by Lemma 5.28 (ii) (for ĉ := e2α1 c
and T := e∆s), it follows that

Pr





⋂

t∈[t0,r0+∆r+n log5 n]

n

V t ⩽ eα1
e∆s
n · 2e2α1 cn

o

�

�

�

�

�

�

Z r0 ,Ft0 , V t0 ⩽ cn



⩾ 1− n−9.

Next, adjusting the range of the big intersection using that t0 ⩽ r0 +∆r , it follows that

Pr





⋂

t∈[r0+∆r ,r0+∆r+n log5 n]

n

V t ⩽ eα1
e∆s
n · 2e2α1 cn

o

�

�

�

�

�

�

Z r0 ,Ft0 , V t0 ⩽ cn



⩾ 1− n−9.

By Lemma 5.29 (for ĉ :=
�

e∆s
ng

�

), we conclude that for Ψ0 := Ψ0(α1, c5 g) with constant integer

c5 := 2 ·max

�

c4,

�

e∆s

ng

��

= 2 ·max

�

c4,

�

20 ·ecs · log(2ce2α1)
α1εr

��

, (5.36)

and for the constant C := 2e2α1 · c + 1, it holds that

Pr





⋂

t∈[r0+∆r ,r0+∆r+n log5 n]

�

Ψ t
0 ⩽ Cn

	

�

�

�

�

�

�

Z r0 ,Ft0 , V t0 ⩽ cn



⩾ 1− n−9. (5.37)
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Finally,

Pr





⋂

t∈[r0+∆r ,r0+∆r+n log5 n]

�

Ψ t
0 ⩽ Cn

	

�

�

�

�

�

�

Z r0 ,Fr0





⩾
r0+∆r
∑

t0=r0

Pr





⋂

t∈[r0+∆r ,r0+∆r+n log5 n]

�

Ψ t
0 ⩽ Cn

	

�

�

�

�

�

�

Z r0 ,Fr0 ,τ= t0



 · Pr [τ= t0 |Z r0 ,Fr0 ]

⩾
r0+∆r
∑

t0=r0

Pr





⋂

t∈[r0+∆r ,r0+∆r+n log5 n]

�

Ψ t
0 ⩽ Cn

	

�

�

�

�

�

�

Z r0 ,Ft0 , V t0 ⩽ cn



 · Pr [τ= t0 | Z r0 ,Fr0 ]

(5.37)
⩾

�

1− n−9
�

· Pr [τ⩽ r0 +∆r | Z r0 ,Fr0 ]
(5.35)
⩾

�

1− n−9
�

·
�

1− n−11
�

⩾ 1− n−8,

This concludes the claim for r0 ⩾ 0.
If r0 < 0, then deterministically τ = 0, since Vτ = n ⩽ cn. Hence, the rest of the proof follows

for an interval of length at most 2n log5 n.

Theorem 5.34 (Base case). Consider the g-ADV-COMP setting for any g ∈ [1, c6 log n], where c6 > 0
is as defined in Eq. (5.22). For constant C := 2e2α1 · c + 1⩾ 8 with α1 > 0 as defined in Eq. (7.4) and
c > 0 as in Lemma 5.21, and the potential Φ0 := Φ0(α2, c5 g) with α2 > 0 as in Eq. (7.5), and constant
integer c5 > 0 as in Eq. (5.36), we have that for any step m⩾ 0,

Pr





⋂

s∈[m−n log5 n,m]

�

Φs
0 ⩽ Cn

	



⩾ 1− n−4.

Proof. Let P be the original process in the g-ADV-COMP setting. Consider the modified process Qg,r0

for r0 := m− n log5 n−∆r where ∆r := Θ(ng · (log(ng))2) is as defined in Lemma 5.23. Let yQ be
its normalised load vector and ΨQ,0 be its Ψ0 potential function. Recall from Eq. (5.25) that the two
processes Qg,r0

and P agree at every step w.h.p., since m− r0 ⩽ 2n log5 n,

Pr





⋂

s∈[r0,m]

�

y s
Q = y s

	



⩾ 1− 2n−7. (5.38)

Taking the union bound of the conclusions in Theorem 5.26 and Theorem 3.21 (iii), we have that

Pr [Z r0 ] = Pr
�

max
i∈[n]

�

�y r0
i

�

�⩽min{κ · (g + log n), c3 g log(ng)}
�

⩾ 1− 3 · (ng)−9. (5.39)

By Lemma 5.33 we have that,

Pr





⋂

s∈[m−n log5 n,m]

¦

Ψs
Q,0 ⩽ Cn

©

�

�

�

�

�

�

Fr0 ,Z r0



⩾ 1− n−8.

By combining with Eq. (5.39),

Pr





⋂

s∈[m−n log5 n,m]

¦

Ψs
Q,0 ⩽ Cn

©



⩾
�

1− n−8
�

·
�

1− 3 · (ng)−9
�

⩾ 1− n−7.
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Taking the union bound with Eq. (5.38), we get that

Pr





⋂

s∈[r0,m]

�

y s
Q = y s

	

∩
⋂

s∈[m−n log5 n,m]

¦

Ψs
Q,0 ⩽ Cn

©



⩾ 1− n−7 − 2n−7 ⩾ 1− n−6.

When this event holds we have that Ψs
Q,0 = Ψ

s
0 for every step s ∈ [r0, m] and hence we can deduce

for the original process P that

Pr





⋂

s∈[m−n log5 n,m]

�

Ψs
0 ⩽ Cn

	



⩾ 1− n−6.

Finally, since α2 ⩽ α1, we have thatΦs
0 ⩽ Ψ

s
0 for any step s ⩾ 0 and hence, the conclusion follows.
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SUPER-EXPONENTIAL POTENTIALS

In this chapter, we will analyse super-exponential potential functions, i.e., exponential potentials
with smoothing parameters ⩾ 1. In Section 6.1, we define the specific form of super-exponential
potentials that we will be working with and give an overview of the theorems we prove. In Sec-
tion 6.2, we give two sufficient conditions for the expectation of a super-exponential potential to
satisfy a drop inequality over one step, and in Section 6.3, we prove the concentration theorem for
super-exponential potentials.

In Chapter 7, super-exponential potentials are used to analyse a large number of processes.
More specifically, a layered induction argument is applied over a (not-necessarily constant) number
of super-exponential potentials with increasing smoothing parameters and using the concentration
theorem at one layer to establish the sufficient condition for the next one. In [163], a single super-
exponential potential was used to analyse load balancing of tokens in graphs. In Section 7.5, we
prove similar concentration theorems for the b-BATCHED setting, where the proof is slightly more
involved.

6.1 Outline

We start by defining the specific form of super-exponential potentials that we will be using.

Definition 6.1. The super-exponential potential function with smoothing parameter φ ⩾ 1 and inte-
ger offset z := z(n)> 0 is defined for any step t ⩾ 0 as

Φt := Φt(φ, z) :=
n
∑

i=1

Φt
i :=

n
∑

i=1

eφ·(y
t
i −z)+ ,

where u+ =max{u, 0}.

Note that if for some step t ⩾ 0, we have that Φt =O(poly(n)), then

Gap(t) =O
�

z +
log n
φ

�

.

There are two differences in the form compared to the hyperbolic cosine potential Γ that we used
in Chapters 3 to 5: (i) there is no underloaded component, as w.h.p., its contribution would be
ω(n) for any d-SAMPLE process (with d =O(1))1 and (ii) there is the (. . .)+ operation which is not
essential, but simplifies some of the derivations.

However, the main difference is that for processes allocating one ball in each step, there exist
load vectors where the potential could increase in expectation, even when sufficiently large.2 We will
show that in each step where the probability to allocate to a bin with load at least z−1 is sufficiently
small, the potential function Φ drops in expectation over one step. More specifically, we require that
the following condition holds at step s ⩾ 0,

Ks := Ks
φ(q

s) :=
§

�

eqs
1, . . . ,eqs

|Bs
⩾z−1|

�

⪯
�

1
n
· e−φ , . . . ,

1
n
· e−φ

�ª

,

where Bs
⩾z−1 := {i ∈ [n] : y s

i ⩾ z − 1} and eqs is the sorted allocation vector used by the process at
step s.

1It follows by a coupon collector’s argument that the minimum load is w.h.p. t
n −Ω(log n), for sufficiently large t.

2An example of such a configuration for the TWO-CHOICE process is one where n−1 bins have normalised loads z+Ω(1)
and one bin is underloaded.
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In Chapter 7, for most applications we make use of the following simpler condition which implies
Ks,

eKs := eKs
φ(q

s) :=
§

∀i ∈ [n]: y s
i ⩾ z − 1 ⇒ qs

i ⩽
1
n
· e−φ

ª

.

Lemma 6.2 (General drop inequality). Consider any P = SEQUENTIAL(qs) process and any super-
exponential potential Φ := Φ(φ, z) with φ ∈ [4, n]. At any step s ⩾ 0, satisfying condition Ks :=
Ks
φ
(qs), we have that

E
�

Φs+1
�

� Fs,Ks
�

⩽ Φs ·
�

1−
1
n

�

+ 2.

We will try to establish that this condition Ks holds for a sufficiently long interval and then show
that in this interval the potential becomes small. In most of our applications in Chapter 7, this
condition will arise from the concentration of the hyperbolic cosine potential Γ or from a super-
exponential potential with smaller smoothing parameter.

Now we are ready to state the main theorem of this chapter.

Theorem 6.9 (Restated, page 129). Consider any P = SEQUENTIAL(qs) process for which there exist
super-exponential potential functions Φ1 := Φ1(φ1, z) and Φ2 := Φ2(φ2, z) with integer offset z :=
z(n) > 0 and smoothing parameters φ1,φ2 ∈ (0, (log n)/6] with φ2 ⩽

φ1
84 , such that they satisfy for

any step s ⩾ 0,

E
�

Φs+1
1

�

� Fs,Ks
�

⩽ Φs
1 ·
�

1−
1
n

�

+ 2, (6.1)

and

E
�

Φs+1
2

�

� Fs,Ks
�

⩽ Φs
2 ·
�

1−
1
n

�

+ 2, (6.2)

where Ks := Ks
φ1
(qs). Further, let P ⩾ n−4. Then, for any steps t ⩾ 0 and et ∈ [t, t + n log5 n], which

satisfy

Pr





�

Gap(t − 2n log4 n)⩽ log2 n
	

∩
⋂

s∈[t−2n log4 n,et]

Ks



⩾ 1− P, (6.3)

they must also satisfy

Pr





⋂

s∈[t,et]

�

Φs
2 ⩽ 8n

	



⩾ 1− (log8 n) · P.

The statement of this theorem concerns steps in [t − 2n log4 n,et] with et ∈ [t, t + n log5 n]. The
interval [t,et] is the stabilisation interval, i.e., the interval where we want to show that Φs

2 ⩽ 8n
for every s ∈ [t,et]. The interval [t − 2n log4 n, t] is the recovery interval where we will show that
w.h.p. Φ2 becomes O(n) at least once, provided we start with a “weak” O(log2 n) gap at step t −
2n log4 n. For both the recovery and stabilisation intervals we will condition on the event K holding
at every step.

For convenience, we define the event

Ht−2n log4 n :=
�

Gap(t − 2n log4 n)⩽ log2 n
	

.

Several applications of this theorem can be found throughout Chapter 7 and in particular in Sec-
tions 7.1 and 7.2.
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Dealing with negative indices. To avoid notational clutter in the statements and in the proofs, we
will be working with a modified process P ′ = SEQUENTIAL(eqt) which in negative time steps t < 0
performs round robin allocation, i.e., eqt = (0, . . . , 0, 1), otherwise follows P. Hence, for any t < 0,
we have that |y t

i | < 1 and so precondition Eq. (6.3) is trivially satisfied as z ⩾ 1. Further, for any
t < 0, we have that Φt

1 = Φ
t
2 = n (since z ⩾ 1) and hence preconditions Eq. (6.1) and Eq. (6.2) are

trivially satisfied.

6.2 General drop inequality for the expectation

We start by proving a weaker form of the above theorem, where we assume that the probability
bound holds in pointwise manner, i.e., using condition eKφ .

Lemma 6.3. Consider any P = SEQUENTIAL(qs) process and any super-exponential potential Φ :=
Φ(φ, z) with φ ∈ [4, n]. At any step s ⩾ 0 satisfying condition eKs := eKs

φ
(qs), we have that

E
�

Φs+1
�

� Fs, eKs
�

⩽ Φs ·
�

1−
1
n

�

+ 2.

Proof. We consider three cases for the contribution of a bin i ∈ [n]:
Case 1 [y s

i < z − 1]: The contribution of i will remain Φs+1
i = Φs

i = 1, even if a ball is allocated
to bin i. Hence,

E
�

Φs+1
i

�

� Fs, eKs
�

= Φs
i = Φ

s
i ·
�

1−
1
n

�

+
1
n

. (6.4)

Case 2 [y s
i ∈ [z − 1, z]]: By the condition eKs, the probability of allocating a ball to bin i with

y s
i ⩾ z − 1 is qs

i ⩽
1
n · e
−φ . Hence, the expected contribution of this bin is at most

E
�

Φs+1
i

�

� Fs, eKs
�

⩽ Φs
i · e

φ·(1−1/n) · qs
i +Φ

s
i · (1− qs

i )

⩽ Φs
i · e

φ·(1−1/n) · qs
i +Φ

s
i (6.5)

⩽ Φs
i · e

φ·(1−1/n) ·
1
n
· e−φ +Φs

i

⩽
1
n
+Φs

i = Φ
s
i ·
�

1−
1
n

�

+
2
n

,

using in the last equation that Φs
i = 1.

Case 3 [y s
i > z]: Again, by the condition eKs, the probability of allocating a ball to bin i with

y s
i > z is qs

i ⩽
1
n · e
−φ . Hence,

E
�

Φs+1
i

�

� Fs, eKs
� (a)
= Φs

i · e
φ·(1−1/n) · qs

i +Φ
s
i · e
−φ/n · (1− qs

i ) (6.6)

⩽ Φs
i · e

φ·(1−1/n) · qs
i +Φ

s
i · e
−φ/n

= Φs
i · e
−φ/n ·

�

1+ eφ · qs
i

�

(b)
⩽ Φs

i ·
�

1−
φ

2n

�

·
�

1+ eφ ·
1
n
· e−φ

�

(c)
⩽ Φs

i ·
�

1−
2
n

�

·
�

1+
1
n

�

⩽ Φs
i ·
�

1−
1
n

�

,

using in (a) that y s
i > z implies that y s

i ⩾ z+ 1
n since z is an integer, in (b) that eu ⩽ 1+ 1

2u (for any
−1.5⩽ u< 0) and that φ ⩽ n and in (c) that φ ⩾ 4.
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Aggregating over the three cases, we get the claim:

E
�

Φs+1
�

� Fs, eKs
�

=
n
∑

i=1

E
�

Φs+1
i

�

� Fs, eKs
�

⩽
n
∑

i=1

�

Φs
i ·
�

1−
1
n

�

+
2
n

�

= Φs ·
�

1−
1
n

�

+ 2.

Now, we turn to proving the stronger condition of the theorem, which assumes that the weaker
“majorisation” condition Ks holds.

Lemma 6.2 (Restated, page 123). Consider anyP = SEQUENTIAL(qs) process and any super-exponential
potential Φ := Φ(φ, z) with φ ∈ [4, n]. At any step s ⩾ 0, satisfying condition Ks := Ks

φ
(qs), we have

that

E
�

Φs+1
�

� Fs,Ks
�

⩽ Φs ·
�

1−
1
n

�

+ 2.

Proof. By combining the upper bounds Eq. (6.4), Eq. (6.5) and Eq. (6.6) from the three cases in the
proof of Lemma 6.3, we have that

E
�

Φs+1
�

�Fs,Ks
�

⩽
∑

i:y s
i<z−1

�

Φs
i ·
�

1−
1
n

�

+
1
n

�

+
∑

i:y s
i ∈[z−1,z]

Φs
i ·
�

eφ·(1−1/n) · qs
i + 1

�

+
∑

i:y s
i>z

Φs
i ·
�

eφ·(1−1/n) · qs
i + e−φ/n

�

(6.7)

Let Bs
⩾z−1 := {i : y s

i ⩾ z − 1} be the set of bins with normalised load at least z − 1. The term that
depends on y s is non-increasing over the loads of the bins in Bs

⩾z−1, and is given by

f (y s) :=
∑

i:y s
i⩾z−1

eφ(y
s
i−z)+ · eφ·(1−1/n) · qs

i .

Therefore, using Lemma B.2 for the vectors (eqt
1, . . . ,eqt

|Bt
⩾z−1|
) and

� 1
n · e
−φ , . . . , 1

n · e
−φ
�

, and the ma-

jorisation in condition Ks := Ks(qs), we have the upper bound of Eq. (6.7) is maximised when all
bins i ∈ B⩾z−1 have the same probability

qs
i =

1
n
· e−φ .

Hence, we can apply Lemma 6.3 to deduce that

E
�

Φs+1
�

� Fs,Ks
�

⩽ Φs ·
�

1−
1
n

�

+ 2.

6.3 Concentration

6.3.1 Proof outline of Theorem 6.9

We will now give a summary of the main technical steps in the proof of Theorem 6.9 (an illustration
of the key steps is shown in Fig. 6.1). The proof is similar to the proof of Theorem 4.1 for the con-
centration of the hyperbolic cosine potential, in the sense that we use two instances Φ1 := Φ1(φ1, z)
and Φ2 := Φ2(φ2, z) of the super-exponential potential function with φ2 ⩽ φ1/84, such that in steps
s ⩾ 0 when Φs

1 is small, then the change of Φs
2 is very small.
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Recovery. By the third precondition Eq. (6.3) of Theorem 6.9, we start with Gap(t − 2n log4 n) ⩽
log2 n, which implies that Φt−2n log4 n

1 ⩽ e
1
2 ·log4 n (Claim 6.4). Using the drop inequality for the po-

tential Φ1 (first precondition Eq. (6.1)), it follows that E[Φs
1 ]⩽ 6n, for any step s ∈ [t − n log4 n,et]

(Lemma 6.7). By using Markov’s inequality and a union bound, we can deduce that w.h.p. Φs
1 ⩽

6n12 for all steps s ∈ [t − n log4 n,et]. By a simple interplay between two potentials, this implies

Φ
t−n log4 n
2 ⩽ n7/6 (Lemma 6.5 (i)). Now using a drop inequality for the potential Φ2 (second pre-

condition Eq. (6.2)), guarantees that w.h.p. Φr0
2 ⩽ 6n for some single step r0 ∈ [t − n log4 n, t]

(Lemma 6.8).

Stabilisation. To obtain the stronger statement which holds for all steps s ∈ [t,et], we will use a
concentration inequality. The key point is that for any step r with Φr

1 ⩽ 6n12 the absolute difference

|Φr+1
2 − Φ

r
2| is at most n1/3, because φ2 ⩽

φ1
84 (by preconditions Eq. (6.1) and Eq. (6.2)). This is

crucial for applying the Azuma’s inequality for super-martingales (Lemma B.10) to Φ2 which yields
that Φs

2 ⩽ 8n for all steps s ∈ [t,et] using a smoothing argument (Claim 6.6).

t − 2n log4 n t − n log4 n t
et ⩽ t + n log5 n

Ht−2n log4 n and Ks for all s ∈ [t − 2n log4 n,et] w.h.p. (Third Precondition)

Φ
t−2n log4 n
1 ⩽ e

1
2 ·log4 n

E[ eΦs
1 ]⩽ 6n for all s ∈ [t − n log4 n,et]

eΦs
1 ⩽ 6n12 w.h.p. for all s ∈ [t − n log4 n,et]

Φ
t−n log4 n
2 ⩽ n7/6

∃r0 ∈ [t − n log4 n, t] : Φr0
2 ⩽ 6n w.h.p.

Φs
2 ⩽ 8n for all s ∈ [r0,et] w.h.p. (Conclusion)

Claim 6.4

Lemma 6.7

First Precondition

Markov & U.-Bound

Lemma 6.5 (i)

Lemma 6.8

Starting Point

Bounded Difference
(Lemma 6.5 (ii))

Drop inequality
(Second Precondition)

Completion of the proof of Theorem 6.9 (Section 6.3.3)

Figure 6.1: Outline for the proof of Theorem 6.9. Results in blue are given in Section 6.3.2, while
results in green are used in the completion of the proof in Section 6.3.3.

6.3.2 Deterministic relations between the potential functions

We collect several basic facts about the super-exponential potential functions Φ1 := Φ1(φ1, z) and
Φ2 := Φ2(φ2, z) satisfying the preconditions in Theorem 6.9.

We start with a simple upper bound on Φs
1 using a weak upper bound on the gap at step s.

Claim 6.4. For any step s ⩾ 0, where Gap(s)⩽ log2 n, we have that Φs
1 ⩽ e

1
2 ·log4 n.

Proof. Since φ1 ⩽ (log n)/6, we have that Φs
1 =

∑n
i=1 eφ1·(y s

i−z)+ ⩽ n · eφ1·log2 n ⩽ e
1
2 ·log4 n.

The next lemma is crucial for applying the concentration inequality, since the second statement
bounds the maximum additive change of Φs

2 (assuming Φs
1 is poly(n)):

Lemma 6.5. For any step s ⩾ 0, if Φs
1 ⩽ 6n12, then

(i) Φs
2 ⩽ n7/6,

(ii)
�

�Φs+1
2 −Φ

s
2

�

�⩽ n1/3.
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Proof. Consider an arbitrary step s ⩾ 0 with Φs
1 ⩽ 6n12. We start by upper bounding the normalised

load y s
i of any bin i ∈ [n],

y s
i ⩽ z +

log
�

Φs
1,i

�

φ1
⩽ z +

log
�

Φs
1

�

φ1
⩽ z +

log(6n12)
φ1

⩽ z +
14 log n
φ1

.

First statement. Now, we upper bound the contribution of any bin i ∈ [n] to Φs
2,

Φs
2,i = exp

�

φ2 ·
�

y s
i − z

�+�⩽ exp
�

14 ·φ2

φ1
· log n

�

⩽ n1/6, (6.8)

using that φ2 ⩽
φ1

6·14 . Hence, by aggregating over all bins,

Φs
2 ⩽ n · n1/6 = n7/6. (6.9)

Second statement. We will obtain lower and upper bounds for Φs+1
2 in terms of Φs

2. For the upper
bound, let i = is+1 ∈ [n] be the bin where the (s+ 1)-th ball is allocated, then

Φs+1
2 ⩽ Φ

s
2 +Φ

s
2,i · e

φ2 ⩽ Φs
2 + n1/6 · n1/6 = Φs

2 + n1/3,

using that Eq. (6.8) and φ2 ⩽ (log n)/6. For the lower bound, we pessimistically assume that all bin
loads decrease by 1/n in step s+ 1, so

Φs+1
2 ⩾ Φ

s
2 · e
−φ2/n

(a)
⩾ Φs

2 ·
�

1−
φ2

n

�

(b)
⩾ Φs

2 −
n · n1/6

n
· log n⩾ Φs

2 − n1/3,

using in (a) that eu ⩾ 1+ u (for any u) and in (b) that φ2 ⩽ log n and Φs
2 ⩽ n · n1/6 by Eq. (6.9).

Combining the two bounds we get the second statement.

The next claim is a simple “smoothness” argument showing that the potential cannot decrease
quickly within ⌈n/ log2 n⌉ steps. The derivation is elementary and relies on the fact that within this
time frame the average load changes by at most 2/ log2 n.

Claim 6.6. For any step s ⩾ 0 and any step r ∈ [s, s+ ⌈n/ log2 n⌉], we have that Φr
2 ⩾ 0.99 ·Φs

2.

Proof. The normalised load after r− s steps can decrease by at most r−s
n ⩽

2
log2 n

. Hence, for any bin

i ∈ [n],

Φr
2,i = eφ2·(y r

i −z)+ ⩾ eφ2·(y s
i−

r−s
n −z)+ ⩾ e

φ2·(y s
i−z)+−φ2·

2
log2 n = Φs

2,i · e
− 2φ2

log2 n ⩾ Φs
2,i · e

−o(1) ⩾ 0.99 ·Φs
2,i ,

for sufficiently large n, using that φ2 ⩽ (log n)/6. By aggregating over all bins, we get the claim.

Recovery Phase

In this section, we will show for an auxiliary process eP (to be defined below) that the potential
function Φ2 satisfies Φs

2 ⩽ 6n in at least one step s ∈ [t − n log4 n, t] w.h.p.
First, we show that for the original process P in the statement of Theorem 6.9, the potential

eΦs
1 := eΦs

1(t) := Φs
1 · 1∩r∈[t−2n log4 n,s]Kr∩Ht−2n log4 n (6.10)

is small in expectation for all steps s ⩾ t − n log4 n. Note that there is a “recovery time” until the
expectation becomes small, of at most n log4 n steps after the “weak” bound Gap(t − 2n log4 n) ⩽
log2 n which follows from the third precondition Eq. (6.3) in Theorem 6.9.

127



Lemma 6.7. Consider the potential eΦ1 := eΦ1(t) for any step t ⩾ 0. Then, for any step s ⩾ t − n log4 n,

E
�

eΦs
1

�

⩽ 6n.

Proof. By the precondition Eq. (6.1) of Theorem 6.9, for any step s ⩾ t − n log4 n,

E
�

Φs+1
1

�

� Fs,Ks
�

⩽ Φs
1 ·
�

1−
1
n

�

+ 2.

Next note that whenever ¬Ks holds, it follows deterministically that
�

eΦs
1 = eΦ

s+1
1 = 0

	

, and hence

E
�

eΦs+1
1

�

� Fs
�

⩽ eΦs
1 ·
�

1−
1
n

�

+ 2. (6.11)

We will now upper bound E
�

eΦs
1

�

� Ft−2n log4 n,Ht−2n log4 n
�

for any step s ⩾ t − n log4 n. When

Ht−2n log4 n holds, by Claim 6.4, it also follows that eΦt−2n log4 n
1 ⩽ Φt−2n log4 n

1 ⩽ e
1
2 ·log4 n. Hence ap-

plying Lemma B.1 (i) (for a = 1− 1
n and b = 2) using Eq. (6.11),

E
h

eΦs
1

�

�

� Ft−2n log4 n,Ht−2n log4 n
i

⩽ E
h

eΦs
1

�

�

� Ft−2n log4 n, eΦt−2n log4 n
1 ⩽ e

1
2 ·log4 n

i

⩽ e
1
2 ·log4 n ·

�

1−
1
n

�s−(t−2n log4 n)
+ 2n

(a)
⩽ e

1
2 ·log4 n ·

�

1−
1
n

�n log4 n

+ 2n

(b)
⩽ e

1
2 ·log4 n · e− log4 n + 2n⩽ 1+ 2n⩽ 6n,

using in (a) that s ⩾ t − n log4 n and in (b) that eu ⩾ 1+ u (for any u). Hence, the claim follows,

E
�

eΦs
1

�

= E
�

eΦs
1

�

� Ht−2n log4 n
�

· Pr
�

Ht−2n log4 n
�

+ 0 · Pr
�

¬Ht−2n log4 n
�

⩽ 6n.

The auxiliary process eP. Let P be the process in the statement of Theorem 6.9, define t1 :=
t−n log4 n and the stopping time σ := inf{s ⩾ t1 : {Φs

1 > 6n11}∪¬Ks}. Now we define the auxiliary
process ePt1

such that

• in steps s ∈ [0,σ) it follows the allocations of P, and

• in steps s ∈ [σ,∞) it allocates to the (currently) least loaded bin, which is a bin with nor-
malised load ⩽ 1⩽ z.

This way the process trivially satisfies Ks as it never allocates to a bin overloaded by more than 1,
and therefore it also satisfies the drop inequalities (Eq. (6.1) and Eq. (6.2)) for any step s ⩾ t1.
Furthermore, starting with Φt1

1 ⩽ 6n11, for any s ⩾ t1 it deterministically satisfies Φs
1 ⩽ 6n12, since

Φσ1 ⩽ 6n11 · eφ1 ⩽ 6n12 (as φ1 ⩽ (log n)/6) and for s ⩾ σ the potential does not increase.
Further, starting fromΦt1

1 ⩽ 6n11, we will also show that the other potential functionΦ2 w.h.p. be-
comes linear in at least one step in [t − n log4 n, t], by using Lemma 6.7.

Lemma 6.8 (Recovery). For any step t ⩾ 0 and the auxiliary process ePt−n log4 n, it holds that

Pr





⋃

s∈[t−n log4 n,t]

�

Φs
2 ⩽ 6n

	

�

�

�

�

�

�

Ft−n log4 n,Φt−n log4 n
1 ⩽ 6n11



⩾ 1− n−6.
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Proof. Fix any step t ⩾ 0 and let t1 := t−n log4 n be the starting point of the analysis. Recall that the
auxiliary process ePt1

satisfies Ks for any step s ⩾ t1. Further, for any s ⩾ t1, we define the “killed”
potential function

bΦs
2 := Φs

2 · 1∩r∈[t1,s]{Φr
2>6n}.

We will show that bΦ2 drops in expectation by a multiplicative factor in every step. We start by
showing for Φ2 that if Φs

2 > 6n, then it drops in expectation by a multiplicative factor. By the second
precondition Eq. (6.2) of Theorem 6.9,

E
�

Φs+1
2

�

� Φ
t1
1 ⩽ 6n11,Fs,Φs

2 > 6n
�

= E
�

Φs+1
2

�

� Φ
t1
1 ⩽ 6n11,Fs,Ks,Φs

2 > 6n
�

⩽ Φs
2 ·
�

1−
1
n

�

+ 2⩽ Φs
2 ·
�

1−
1

2n

�

− 6n ·
1

2n
+ 2⩽ Φs

2 ·
�

1−
1

2n

�

.

Whenever the event {Φs
2 ⩽ 6n} holds, it follows deterministically that

�

bΦs
2 = bΦ

s+1
2 = 0

	

. So, for the
potential bΦ2 we obtain the drop inequality (with one fewer condition),

E
�

bΦs+1
2

�

� Φ
t1
1 ⩽ 6n11,Fs

�

⩽ bΦs
2 ·
�

1−
1

2n

�

. (6.12)

Using Lemma 6.5 (i), Φt1
1 ⩽ 6n11 implies that bΦt1

2 ⩽ Φ
t1
2 ⩽ n7/6 and so inductively applying Eq. (6.12)

for n log4 n steps starting at t1,we have that

E
�

bΦt
2

�

� Ft1 ,Φt1
1 ⩽ 6n11

�

⩽ E
�

bΦt
2

�

� Ft1 , bΦt1
2 ⩽ n7/6

�

⩽ bΦt1
2 ·
�

1−
1

2n

�n log4 n

⩽ n7/6 · e−
1
2 log4 n ⩽ n−6,

for sufficiently large n, using that eu ⩾ 1+ u (for any u). Hence, by Markov’s inequality,

Pr
�

bΦt
2 ⩽ 1

�

� Ft1 ,Φt1
1 ⩽ 6n11

�

⩾ 1− n−6.

Since it deterministically holds that {Φt
2 ⩾ n} for any step t ⩾ 0, it follows that if {bΦt

2 ⩽ 1} holds,
then also {bΦt

2 = 0}. So, we conclude that 1∩r∈[t1,t]{Φr
2>6n} = 0 holds, i.e.,

Pr





⋃

r∈[t1,t]

�

Φr
2 ⩽ 6n

	

�

�

�

�

�

Ft1 ,Φt1
1 ⩽ 6n11



⩾ 1− n−6.

6.3.3 Completing the proof of Theorem 6.9

The proof of Theorem 6.9 shares some of the ideas from the proof of Theorem 4.1. However, there we
could more generously take a union bound over the entire time-interval to ensure that the potential
is indeed small everywhere with high probability. In some applications (see Section 7.2), we need
to apply Theorem 6.9 up to ω(1) times, which means that we cannot afford to lose a polynomial
factor in the error probability. To overcome this, we will partition the time-interval into consecutive
intervals of length ⌈n/ log2 n⌉. Then, we will prove that at the end of each such interval the potential
is small w.h.p., and finally use a simple smoothness argument (Claim 6.6) to show that the potential
is small w.h.p. in all steps.

Theorem 6.9 (Super-exponential potential concentration). Consider any P = SEQUENTIAL(qs)
process for which there exist super-exponential potential functions Φ1 := Φ1(φ1, z) and Φ2 := Φ2(φ2, z)
with integer offset z := z(n)> 0 and smoothing parameters φ1,φ2 ∈ (0, (log n)/6] with φ2 ⩽

φ1
84 , such

that they satisfy for any step s ⩾ 0,

E
�

Φs+1
1

�

� Fs,Ks
�

⩽ Φs
1 ·
�

1−
1
n

�

+ 2, (6.1)

129



and

E
�

Φs+1
2

�

� Fs,Ks
�

⩽ Φs
2 ·
�

1−
1
n

�

+ 2, (6.2)

where Ks := Ks
φ1
(qs). Further, let P ⩾ n−4. Then, for any steps t ⩾ 0 and et ∈ [t, t + n log5 n], which

satisfy

Pr





�

Gap(t − 2n log4 n)⩽ log2 n
	

∩
⋂

s∈[t−2n log4 n,et]

Ks



⩾ 1− P, (6.3)

they must also satisfy

Pr





⋂

s∈[t,et]

�

Φs
2 ⩽ 8n

	



⩾ 1− (log8 n) · P.

We will start by proving the following lemma for the auxiliary process ePt−n log4 n.

Lemma 6.10. Consider any step t ⩾ 0 and the auxiliary process ePt−n log4 n. For P ⩾ n−4 as defined in
Theorem 6.9, it holds that

Pr





⋂

s∈[t,et]

�

Φs
2 ⩽ 8n

	

�

�

�

�

�

Φ
t−n log4 n
1 ⩽ 6n11



⩾ 1−
1
4
· (log8 n) · P.

Proof. Our goal is to apply Azuma’s inequality to Φ2. However, there are two challenges: (i) we
cannot afford to take the union bound over all poly(n) steps and (ii) Φ2 is a super-martingale only
when it is sufficiently large. To deal with (i) we will apply Azuma’s inequality to sub-intervals of
length at most ⌈n/ log2 n⌉ and then use a smoothness argument (Claim 6.6) to deduce that Φ2 is
small in the steps in between. For (ii) we will define X s := X s(Φs

2) in a way to ensure that it is
super-martingale at every step and also satisfies the bounded difference inequality.

More specifically, consider an arbitrary step r ∈ [t − n log4 n, t] and partition the interval (r,et]
into

I1 := (r, r +∆], I2 = (r +∆, r + 2∆], . . . , Iℓ := (r + (ℓ− 1)∆,et],

where ∆ := ⌈n/ log2 n⌉ and ℓ :=
�

et−r
∆

�

⩽
� t+n log5 n−r

∆

�

⩽ 2 log7 n. In order to prove that Φ2 is at
most 8n in every step in (r,et], we will use our auxiliary lemmas (Section 6.3.2) and Azuma’s super-
martingale concentration inequality (Lemma B.10) to establish that Φ2 is at most 7n at each of the
steps r +∆, r + 2∆, . . . , r + (ℓ− 1)∆,et. Finally, by using a smoothness argument (Claim 6.6), we
will establish that Φ2 is at most 8n at all steps in (r,et], which is the conclusion of the theorem.

We define the auxiliary random variable X r+(i−1)∆
i :=max

¦

Φ
r+(i−1)∆
2 , 5n+ n1/3

©

for each inter-
val i ∈ [ℓ], and for any s ∈ (r + (i − 1)∆, r + i∆],

X s
i :=

¨

Φs
2 if there exists u ∈ [r + (i − 1)∆, s) such that Φu

2 ⩾ 5n,

5n+ n1/3 otherwise.

Note that whenever the first condition in the definition of X s
i is satisfied, it remains satisfied until

the end of the interval, i.e., until step r + i ·∆. Our next aim is to establish the preconditions of
Azuma’s inequality (Lemma B.10) for X s

i .
For convenience, we define t1 := t − n log4 n and the event

Z t1 := {Φt1
1 ⩽ 6n11}.
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Case 2(a) Case 2(c)Case 2(b)

5n

5n+ n1/3

s

t0 + (i − 1) ·∆ ρ ρ + 1 t0 + i ·∆

X s
i
Φs

2

Figure 6.2: Visualisation of three cases in the proof of Claim 6.11 for interval i ∈ [ℓ]. Note that as
long as Z t1 holds, then X s

i ⩾ Φ
s
2.

Claim 6.11. Fix any interval Ii for i ∈ [ℓ]. Then for the random variables X s
i , for any step s ∈ (r+(i−

1)∆, r + i∆], (i) it holds that

E
�

X s
i

�

�Z t1 ,Fs−1
�

⩽ X s−1
i ,

and (ii) it holds that
��

�X s
i − X s−1

i

�

�

�

� Z t1 ,Fs−1
�

⩽ 2n1/3.

Proof of Claim 6.11. Recall that by the definition of the auxiliary process in Section 6.3.2, condition-
ing on Z t1 , it satisfies {Φs−1

1 ⩽ 6n12} and Ks−1, for any s ∈ (r+(i−1)∆, r+i∆], since r+(i−1)∆⩾ t1.
By precondition Eq. (6.2), when {Φs−1

2 ⩾ 4n} also holds, we have that,

E
�

Φs
2

�

� Z t1 ,Fs−1,Φs−1
2 ⩾ 4n

�

= E
�

Φs
2

�

� Z t1 ,Fs−1,Ks−1,Φs−1
2 ⩾ 4n

�

⩽ Φs−1
2 ·

�

1−
1
n

�

+ 2⩽ Φs−1
2 − 4n ·

1
n
+ 2⩽ Φs−1

2 . (6.13)

Further, by Lemma 6.5 (ii), we also have that
��

�Φs
2 −Φ

s−1
2

�

�

�

� Z t1 ,Fs−1
�

⩽ n1/3. (6.14)

Case 1 [Φr+(i−1)∆
2 ⩾ 5n+ n1/3]: In this case X s−1

i = Φs−1
2 for all s ∈ (r + (i − 1)∆, r + i∆]. By

Claim 6.6, we also have Φs−1
2 ⩾ 0.99 · (5n+ n1/3)⩾ 4n (as ∆⩽ ⌈n/ log2 n⌉) and the two statements

follow by Eq. (6.13) and Eq. (6.14).
Case 2 [Φr+(i−1)∆

2 < 5n + n1/3]: Let ρ := inf{u ⩾ r + (i − 1)∆: Φu
2 ⩾ 5n}. We consider the

following three sub-cases (see Fig. 6.2):

• Case 2(a) [s− 1< ρ]: Here X s
i = X s−1

i = 5n+ n1/3, so the two statements hold trivially.

• Case 2(b) [s− 1= ρ]: We will first establish that

5n⩽ Φs−1
2 ⩽ 5n+ n1/3. (6.15)

The lower bound Φs−1
2 ⩾ 5n follows by definition of ρ. For the upper bound, we consider

the following two cases. If s − 1 = r + (i − 1)∆, then this follows by the assumption for
Case 2. Otherwise, we have that Φs−1

2 ⩾ 5n and Φs−2
2 < 5n. By Eq. (6.14), we obtain that

Φs−1
2 ⩽ Φ

s−2
2 + n1/3 < 5n+ n1/3.

Next, by definition, X s−1
i = 5n+ n1/3 and X s

i = Φ
s
2, so by Eq. (6.13),

E
�

X s
i

�

� Z t1 ,Fs−1
�

= E
�

Φs
2

�

� Z t1 ,Fs−1
�

⩽ Φs−1
2 < X s−1

i ,
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which establishes the first statement. For the second statement, we have
�

�X s
i − X s−1

i

�

�=
�

�Φs
2 − 5n− n1/3

�

�⩽
�

�Φs−1
2 − 5n− n1/3

�

�+
�

�Φs
2 −Φ

s−1
2

�

�⩽ 2n1/3.

using in the last inequality that Eq. (6.14) and Eq. (6.15).

• Case 2(c) [s − 1 > ρ]: Here, X s−1
i = Φs−1

2 and X s
i = Φ

s
2. Since Φρ2 ⩾ 5n, by Claim 6.6 (as

s−ρ ⩽ ⌈n/ log2 n⌉), we also have that

Φs−1
2 ⩾ 0.99 ·Φρ2 ⩾ 0.99 · 5n⩾ 4n,

and thus by Eq. (6.13), the first statement follows. The second statement follows by Eq. (6.14).
◊

Now we return to the proof of Lemma 6.10. By Claim 6.11, we have verified that X s
i satis-

fies the preconditions of Azuma’s inequality for any filtration Fs−1 where Z t1 holds. So, applying
Lemma B.10 for λ= n

2 log7 n
, N ⩽∆ and D = 2n1/3, we get for any i ∈ [ℓ],

Pr
h

X r+i∆
i ⩾ X r+(i−1)∆

i +λ
�

�

� Z t1 ,Fr
i

⩽ exp

�

−
n2/(4 log14 n)
2 ·∆ · (4n2/3)

�

⩽ P,

since ∆ ⩽ ⌈n/ log2 n⌉ and P ⩾ n−4. Taking the union bound over the at most 2 log7 n intervals
i ∈ [ℓ], it follows that

Pr





⋃

i∈[ℓ]

�

X r+i∆
i ⩾ X r

1 + i ·
n

2 log7 n

�

�

�

�

�

�

Z t1 ,Fr



⩽ (2 log7 n) · P ⩽
1
8
· (log8 n) · P.

Next, conditional on Z t1 ,Fr , {Φr
2 ⩽ 6n}, we have the following chain of inclusions:

⋂

i∈[ℓ]

�

X r+i∆
i ⩽ X r

1 + i ·
n

2 log7 n

�

(a)
⊆
⋂

i∈[ℓ]

�

X r+i∆
i ⩽ 6n+ n

	

(b)
=
⋂

i∈[ℓ]

�

Φr+i∆
2 ⩽ 7n

	

(c)
⊆

⋂

s∈[r,et]

§

Φs
2 ⩽

7
0.99
· n
ª

(d)
⊆

⋂

s∈[t,et]

�

Φs
2 ⩽ 8n

	

,

where (a) holds since i ⩽ ℓ⩽ 2 log7 n and X r
1 ⩽max

�

Φr
2, 5n+ n1/3

	

, (b) holds since Φr+i∆
2 ⩽ X r+i∆

i
(which follows from the definition of X i and Claim 6.11 (ii)), (c) holds by applying the smoothness
argument of Claim 6.6 to each interval i ∈ [ℓ], as the length of each interval is at most ⌈n/ log2 n⌉
and (d) holds since 8⩾ 7

0.99 and r ⩽ t. This implies that

Pr





⋂

s∈[t,et]

�

Φs
2 ⩽ 8n

	

�

�

�

�

�

Z t1 ,Fr ,Φr
2 ⩽ 6n



⩾ 1−
1
8
· (log8 n) · P. (6.16)

Next, define τ := inf{r ⩾ t1 : Φr
2 ⩽ 6n}. By Lemma 6.8,

Pr
�

τ⩽ t
�

�Z t1
�

⩾ Pr
�

τ⩽ t
�

�Ft1 ,Z t1
�

⩾ 1− n−6. (6.17)
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We get the conclusion for the ePt1
process, by combining this with Eq. (6.16) and Eq. (6.17),

Pr





⋂

s∈[t,et]

�

Φs
2 ⩽ 8n

	

�

�

�

�

�

Z t1



⩾
t
∑

r=t1

Pr





⋂

s∈[t,et]

�

Φs
2 ⩽ 8n

	

�

�

�

�

�

Z t1 ,Fr ,Φr
2 ⩽ 6n



 · Pr
�

τ= r | Z t1
�

(6.16)
⩾

�

1−
1
8
· (log8 n) · P

�

· Pr
�

τ⩽ t
�

� Z t1
�

(6.17)
⩾

�

1−
1
8
· (log8 n) · P

�

·
�

1− n−6
�

⩾ 1−
1
4
· (log8 n) · P.

We now return to the proof of Theorem 6.9 for the original process P.

Proof of Theorem 6.9. Let t1 := t−n log4 n. We start by showing that the processes P and ePt1
agree

with high probability in the interval [t1,et] (and so at every step s ∈ [t1,et] we have Φs
2 = Φ

s
ePt1 ,2

),

Pr





⋂

s∈[t1,et]

§

y s = y s
ePt1

ª



⩾ Pr





⋂

s∈[t−2n log4 n,et]

�

Φs
1 ⩽ 6n11

	

∩
⋂

s∈[t−2n log4 n,et]

Ks





(a)
⩾ Pr





⋂

s∈[t−2n log4 n,et]

�

eΦs
1 ⩽ 6n11

	

∩Ht−2n log4 n ∩
⋂

s∈[t−2n log4 n,et]

Ks





(b)
⩾ 1− n2 · n−11 − P

(c)
⩾ 1− 2P, (6.18)

using in (a) the definition of eΦ1 in Eq. (6.10), in (b) Lemma 6.7, Markov’s inequality and union
bound over et − t1 ⩽ n2 steps and precondition Eq. (6.3) and in (c) that P ⩾ n−4. Note that this also
implies that

Pr
h

Φ
t−n log4 n
1 ⩽ 6n11

i

⩾ 1− 2P. (6.19)

By Lemma 6.10, for the auxiliary process ePt1
, we have that

Pr





⋂

s∈[t,et]

§

Φs
ePt1 ,2
⩽ 8n

ª

�

�

�

�

�

Φ
t−n log4 n
1 ⩽ 6n11



⩾ 1−
1
4
· (log8 n) · P.

By combining with Eq. (6.19) (since by definition P and ePt1
agree in steps s ⩽ t1) we get,

Pr





⋂

s∈[t,et]

§

Φs
ePt1 ,2
⩽ 8n

ª



⩾
�

1−
1
4
· (log8 n) · P

�

· (1− 2P)⩾ 1−
3
4
· (log8 n) · P.

Finally, using Pr [A∩ B ] ⩾ Pr [A]− Pr [¬B ] with Eq. (6.18), we conclude that P and ePt1
agree in

all steps of the interval [t1,et] and so

Pr





⋂

s∈[t,et]

�

Φs
2 ⩽ 8n

	



⩾ 1−
3
4
· (log8 n) · P − 2P ⩾ 1− (log8 n) · P.
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APPLICATIONS

In this chapter, we derive gaps for several processes and settings using the tools we developed in the
previous chapters.

As a warm-up, in Section 7.1, we show two ways to obtain the O(
p

log n) gap for the 2-DENSE-
QUANTILE process with probability at least 1− o(1) in order to demonstrate the advantage of using
the concentration bounds of Chapters 4 and 6. In Section 7.1.1, we obtain the O(

p

log n) gap with
probability at least 1 − exp(−

p

log n), without using the concentration bounds. In Section 7.1.2,
we make use of these concentration bounds to obtain the same O(

p

log n) asymptotic bound with
probability at least 1− n−3. Usually, the smaller the gap we want to prove, the larger the difference
between the probability guarantee between these two techniques. Therefore, using the concentra-
tion bounds is crucial for several results in this chapter.

In Section 7.2, we make repeated use of the super-exponential potential concentration theorem
(Theorem 6.9) through a form of layered induction to analyse a number of processes including the k-
DENSE-QUANTILE, k-DENSE-THRESHOLD and QUANTILE(δ∗) processes. In Section 7.3, we generalise
the analysis of k-DENSE-QUANTILE to all processes in the k-RELAXED-QUANTILE family, which implies
bounds for the (1 + β)-process with β close to 1. Then, in Section 7.4, we analyse the g-ADV

setting for the TWO-CHOICE process for any g ⩽ log n and establish upper bounds for a number
of other settings including b-BATCHED, τ-DELAY and g-MYOPIC-COMP for the TWO-CHOICE process.
In Section 7.5, we prove tight bounds for a large family of processes in the b-BATCHED setting. In
Section 7.6, we collect results for TWO-CHOICE in the GRAPHICAL setting. Finally, in Section 7.7, we
outline how layered induction can be used to obtain tight bounds for the MEMORY process.

7.1 Two analyses for the 2-DENSE-QUANTILE process

In this section, we will show two ways to obtain the O(
p

log n) bound on the gap of the 2-DENSE-
QUANTILE process with different probability guarantees: (i) in Section 7.1.1 without using concen-
tration bounds and (ii) in Section 7.1.2 with concentration bounds, leading to stronger probability
guarantees. Recall that this process is the QUANTILE(δ1,δ2) process where δ1,δ2 are the rounded

up quantiles of eδ1 := e−
1
4 ·
p

log n and eδ2 := 1
2 respectively, so that eδ1 ⩽ δ1 ⩽ 2eδ1 and eδ2 ⩽ δ2.

7.1.1 Weak probability bounds for 2-DENSE-QUANTILE

In this section, we will present an analysis for the 2-DENSE-QUANTILE process for obtaining the

O(
p

log n) gap with probability at least 1 − e−
p

log n, without using the concentration bounds. In
fact, this approach extends to the k-DENSE-QUANTILE process for any constant k ⩾ 1 (with weaker
probability guarantees as k increases).

We start with the fact that the hyperbolic cosine potential is linear in expectation. This follows
because the 2-DENSE-QUANTILE process is majorised by the MEDIAN-QUANTILE process, which by
Lemma 3.5 with δ = 1/3, ε = 1/3 and C = 2 satisfies the preconditions of Theorem 3.2 for any
smoothing parameter γ ∈

�

0, 1
8·32·22

�

. Therefore, we obtain the following corollary.

Corollary 7.1. Consider the 2-DENSE-QUANTILE process and the hyperbolic cosine potential Γ := Γ (γ)
for any γ ∈

�

0, 1
8·32·22

�

. Then, there exists a constant c > 0, such that for any step t ⩾ 0,

E
�

Γ t
�

⩽ cn.
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Next, the main idea is to bound the number of bins with normalised load at least v with prob-
ability at least 1 − e−Θ(v), using Markov’s inequality. Note that as v gets smaller, the weaker the
probability guarantee that we obtain becomes weaker. As we cannot afford to take the union bound
over all n · polylog(n) steps, we apply this bound to polylog(n) steps at distance n apart and then
use the following smoothness claim (where for our case T = n).

Claim 7.2 (cf. Lemma 5.28). Consider the potential Γ := Γ (γ), any c > 0 and any step s ⩾ 0 for which
there exists T ⩾ 0 such that for some s0 ∈ [s − T, s] with Γ s0 ⩽ cn and s1 ∈ [s, s + T] with Γ s1 ⩽ cn.
Then, Γ s ⩽ eγ

T
n · 2cn.

Proof. From step s to s1, the load of any bin can decrease by at most T
n . Hence, we have that for any

bin i ∈ [n],
y s

i ⩽ y s1
i +

T
n

.

Similarly, from s0 to s the load of any bin can decrease by at most T
n , so

y s0
i ⩽ y s

i +
T
n
⇒ −y s

i ⩽ −y s0
i +

T
n

.

Combining the two, we get that

Γ s
i = eγy s

i + e−γy s
i ⩽ eγ

T
n ·
�

e−γy
s0
i + eγy

s1
i

�

.

By aggregating over all bins i ∈ [n], we get that

Γ s =
n
∑

i=1

Γ s
i ⩽

n
∑

i=1

eγ
T
n ·
�

e−γy
s0
i + eγy

s1
i

�

⩽ eγ
T
n · (Γ s0 + Γ s1)⩽ eγ

T
n · 2cn.

Now, we are ready to prove the upper bound on the gap.

Theorem 7.3. Consider the 2-DENSE-QUANTILE process. Then, there exists a constant κ > 0, such that
for any step m⩾ 0,

Pr
�

Gap(m)⩽ κ ·
Æ

log n
�

⩾ 1− e−
p

log n.

Proof. Consider the potential Γ := Γ (γ) for the smoothing parameter γ := 1
8·32·22 . By Corollary 7.1

and Markov’s inequality, for any step t ⩾ 0,

Pr
�

Γ t ⩽ cn · e2
p

log n
�

⩾ 1− e−2
p

log n.

Consider the steps

t0 := m− n log2 n, t1 := m− n(log2 n− 1), . . . , tlog2 n := m.

By the union bound over these at most log2 n+ 1⩽ 2 · log2 n steps, we have that

Pr





⋂

j∈{0}∪[log2 n]

¦

Γ t j ⩽ cn · e2
p

log n
©



⩾ 1− 2 · e−2
p

log n · log2 n.

By smoothness, Claim 7.2 with T = n, we have that for all steps in between, the potential is at most

2eγcn · e2
p

log n ⩽ 4cn · e2
p

log n (since γ < 1/2), so

Pr





⋂

t∈[m−n log2 n,m]

¦

Γ t ⩽ 4cn · e2
p

log n
©



⩾ 1− 2 · e−2
p

log n · log2 n. (7.1)
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Consider the super-exponential potential Φ := Φ(φ, z) with smoothing parameter φ := γ ·
p

log n
and offset z :=

�5
γ ·
p

log n
�

. Recall the condition

eKt =
§

∀i ∈ [n]: y t
i ⩾ z − 1 ⇒ qt

i ⩽
1
n
· e−φ

ª

,

under which, by Lemma 6.2, we have that

E
�

Φt+1
�

� Ft , eKt
�

⩽ Φt ·
�

1−
1
n

�

+ 2.

We will now show that when
�

Γ t ⩽ 4cn · e2
p

log n
	

holds, then the event eKt also holds. The number
of bins with load at least z − 1 is at most

4cn · e2
p

log n · e−γ·(z−1) ⩽ 4cn · e2
p

log n · e−γ·
5
γ ·
p

log n ⩽ n · e−
p

log n ⩽ neδ1 ⩽ nδ1.

Hence, all bins i ∈ [n] with load at least y t
i ⩾ z − 1 have Rankt(i)⩽ nδ1 and so

qt
i =

δ1

n
⩽

2eδ1

n
=

2
n
· e−

1
4 ·
p

log n ⩽
1
n
· e−

1
8 ·
p

log n ⩽
1
n
· e−φ ,

using in the last inequality that γ⩽ 1/8. Therefore, by Eq. (7.1), we have that

Pr





⋂

t∈[m−n log2 n,m]

eKt



⩾ 1− 2 · e−2
p

log n · log2 n. (7.2)

Further, when
�

Γ t0 ⩽ 4cn·e2
p

log n
	

holds, we also have that Gap(t0)⩽ K ·log n for some constant
K > 0. So for sufficiently large n

Φt0 ⩽ n · eγ
p

log n·K log n ⩽ e
1
2 ·log2 n.

Hence, by Eq. (7.1) and Eq. (7.2),

Pr



 {Gap(t0)⩽ K · log n} ∩
⋂

s∈[t0,m]

eKs



⩾ 1− 2 · e−2
p

log n · log2 n. (7.3)

By Lemma 6.2, when the event eKt holds, we have that

E
�

Φt+1
�

� Ft , eKt
�

⩽ Φt ·
�

1−
1
n

�

+ 2.

We define for any step t ⩾ t0,

eΦt := Φt · 1{Gap(t0)⩽K ·log n}∩
⋂

s∈[t0,t]
eKs .

When ¬eKt holds, then {eΦt = 0} and {eΦt+1 = 0}, and so eΦ satisfies unconditionally the drop inequal-
ity

E
�

eΦt+1
�

� Ft
�

⩽ eΦt ·
�

1−
1
n

�

+ 2.

Also, we may assume that Gap(t0) ⩽ K · log n and so eΦt0 ⩽ e
1
2 log2 n, otherwise eΦt = 0 for any step

t ⩾ t0. Hence, by Lemma B.1 with a = 1− 1
n and b = 2, we have that

E
�

eΦm
�

= E
�

eΦm
�

� Ft0 , eΦt0 ⩽ e
1
2 log2 n

�
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⩽
�

1−
1
n

�m−t0

· e
1
2 log2 n + 2n

⩽
�

1−
1
n

�n log2 n

· e
1
2 log2 n + 2n⩽ e− log2 n · e

1
2 log2 n + 2n⩽ 4n.

Hence, by Markov’s inequality we have that

Pr
�

eΦm ⩽ 4n2
�

⩾ 1− n−1.

Combining with Eq. (7.3) using the union bound, we get that

Pr
�

Φm ⩽ 4n2
�

⩾ Pr





�

eΦm ⩽ 4n2
	

∩ {Gap(t0)⩽ K · log n} ∩
⋂

s∈[t0,m]

eKs





⩾ 1− n−1 − 2 · e−2
p

log n · log2 n⩾ 1− e−
p

log n.

When
�

Φm ⩽ 4n2
	

holds, we have that

Gap(m)⩽ z +
log(4n2)

γ ·
p

log n
⩽
¡

5
γ
·
Æ

log n
¤

+
3
γ
·
Æ

log n.

Hence, for the constant κ := 9/γ, we get that

Pr
�

Gap(m)⩽ κ ·
Æ

log n
�

⩾ 1− e−
p

log n.

7.1.2 Strong probability bounds for 2-DENSE-QUANTILE

Again, we start with the fact that the hyperbolic cosine potential is linear in expectation. This follows
because the 2-DENSE-QUANTILE process is majorised by the MEDIAN-QUANTILE process, which by
Lemma 3.5 with δ = 1/3, ε = 1/3 and C = 2 satisfies the preconditions of Theorem 3.2 for any
smoothing parameter γ ∈

�

0, 1
8·32·22

�

.

Corollary 7.4. Consider the 2-DENSE-QUANTILE process and the hyperbolic cosine potential Γ := Γ (γ)
for any γ ∈

�

0, 1
8·32·22

�

. Then, there exist constants c1, c2 > 0, such that for any step t ⩾ 0,

E
�

Γ t+1
�

� Ft
�

⩽ Γ t ·
�

1−
c1γ

n

�

+ c2γ.

Then, by Theorem 4.1 with γ1 := 1
8·32·22 , γ2 := γ1

84 and κ= 6, we get the following corollary.

Corollary 7.5. Consider the 2-DENSE-QUANTILE process and the hyperbolic cosine potential Γ2 :=
Γ2(γ2). Then, there exists a constant c > 0 such that for any step t ⩾ 0

Pr
�

Γ t
2 ⩽ 3cn

�

⩾ 1− n−6.

We now define the super-exponential potential functions Φ1 := Φ1(φ1, z) and Φ2 := Φ2(φ2, z)
with φ1 := γ1

p

log n, φ2 := γ2
p

log n and offset z :=
� 3
γ2
·
p

log n
�

, so that z−1⩾ 2
γ2
·
p

log n. Also,

let eKt be the event associated with their drop in Theorem 6.9:

eKt := eKt
φ1

:=
§

∀i ∈ [n]: y t
i ⩾ z − 1 ⇒ qt

i ⩽
1
n
· e−γ1·
p

log n
ª

⊆ eKt
φ2

.

Lemma 7.6. For any step t ⩾ 0 such that Γ t
2 ⩽ 3cn, we have that eKt holds.
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Proof. Consider an arbitrary step t with Γ t
2 ⩽ 3cn. Then, in this step the number of bins with

normalised load at least z − 1 is at most

3cn · e−γ2·(z−1) ⩽ 3cn · e−γ2·
2
γ2
·
p

log n (a)⩽ n · e−
p

log n ⩽ neδ1 ⩽ nδ1,

using in (a) that
p

log n⩾ log(3c). So any bin i ∈ [n] with y t
i ⩾ z−1 has Rankt(i)⩽ nδ1 and hence

qt
i =

δ1

n
⩽

2eδ1

n
=

2
n
· e−

1
4 ·
p

log n
(a)
⩽

1
n
· e−

1
8 ·
p

log n
(b)
⩽

1
n
· e−γ1·
p

log n,

using in (a) that 1
8 ·
p

log n⩾ log2 and in (b) that γ1 ⩽
1
8 .

Now we are ready to upper bound the gap of 2-DENSE-QUANTILE at an arbitrary step m. Note
that compared to Theorem 7.3, the probability bound is stronger.

Theorem 7.7. Consider the 2-DENSE-QUANTILE process. Then, there exists a constant κ > 0, such that
for any step m⩾ 0,

Pr
�

Gap(m)⩽ κ ·
Æ

log n
�

⩾ 1− n−3.

Proof. By Corollary 7.5, taking the union bound over 2n log4 n⩽ n2 steps, we have that

Pr





⋂

t∈[m−2n log4 n,m]

�

Γ t
2 ⩽ 3cn

	



⩾ 1− n−4.

By Lemma 7.6, Γ t
2 ⩽ 3cn implies that eKt holds and Gap(t)⩽ log2 n, hence

Pr





�

Gap(m− 2n log4 n)⩽ log2 n
	

∩
⋂

t∈[m−2n log4 n,m]

eKt



⩾ 1− n−4,

and so by Theorem 6.9 for et := m, we get that

Pr
�

Φm
2 ⩽ 8n

�

⩾ 1−
(log n)8

n4
⩾ 1− n−3.

Finally, when
�

Φm
2 ⩽ 8n

	

holds, we have that

Gap(m)⩽ z +
log(8n)

γ2 ·
p

log n
⩽
¡

3
γ2
·
Æ

log n
¤

+
2
γ2
·
Æ

log n,

and for κ := 6/γ2, we conclude that

Pr
�

Gap(m)⩽ κ ·
Æ

log n
�

⩾ 1− n−3.

7.2 Layered induction over super-exponential potentials

In this section, we illustrate how to apply the concentration bounds (Theorem 4.1 and Theorem 6.9)
in order to obtain o(log n) gap bounds for k-DENSE-QUANTILE, k-DENSE-THRESHOLD, QUANTILE(δ∗)
and g-ADV(TWO-CHOICE).
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7.2.1 k-DENSE-QUANTILE process

Recall that the k-DENSE-QUANTILE process is the QUANTILE(δ1, . . . ,δk) process where δ j is the

rounded up (to the next multiple of 1/n) quantile of eδ j defined as:

eδ j :=

¨

1
2 if j = k,

e−
1
4 ·(log n)(k− j)/k

if 1⩽ j ⩽ k− 1.

t

⇝ Gap(m) = O(log n)

⇝ Gap(m) = O(2(log n)3/4)

⇝ Gap(m) = O(3(log n)2/4)

⇝ Gap(m) = O(4(log n)1/4)

m− 6n log4 n m− 4n log4 n m− 2n log4 n m

Φ1-recovery Φ1-stabilisation

Φ2-recovery Φ2-stabilisation

Φ3-recovery Φ3-stabilisation

Γt = O(n) ⇒ Kt
ϕ1

Φt
1 = O(n) ⇒ Kt

ϕ2

Φt
2 = O(n) ⇒ Kt

ϕ3

Γt

Φt
1 Φt

2 Φt
3

Figure 7.1: Layered induction for the k-DENSE-QUANTILE for k = 4, showing that when the potential
at layer j satisfies Φt

j =O(n), the the drop condition at layer j+1, i.e., Kt
φ j+1

is implied. Then, after

a recovery phase the potential Φ j+1 stabilises at O(n) and implies a tighter bound on the gap.

Similarly, to the 2-DENSE-QUANTILE process, the k-DENSE-QUANTILE process is majorised by the
MEDIAN-QUANTILE process, so by Lemma 3.5 it satisfies Theorem 3.2 with δ = 1/3, ε = 1/3 and
C = 2.

Corollary 7.8 (cf. Corollary 7.4). Consider the k-DENSE-QUANTILE process and the hyperbolic cosine
potential Γ := Γ (γ) for any γ ∈

�

0, 1
8·32·22

�

. Then, there exist constants c1, c2 > 0, such that for any step
t ⩾ 0,

E
�

Γ t+1
�

� Ft
�

⩽ Γ t ·
�

1−
c1γ

n

�

+ c2 · γ.

Then, by Theorem 4.1 with γ1 := 1
8·32·22 , γ2 := γ1

84 and κ= 6, we get the following corollary.

Corollary 7.9. Consider k-DENSE-QUANTILE process and the potential Γ2 := Γ (γ2). Then, there exists
a constant c > 0 such that for any step t ⩾ 0

Pr
�

Γ t
2 ⩽ 3cn

�

⩾ 1− n−6.

We will now analyse the k-DENSE-QUANTILE process for any 1⩽ k ⩽ kmax, where

kmax :=
¡

1
k′
· log log n

¤

and k′ := log log(max{3c, 8, 48}).

Note that since (log n)1/k ⩾ 4, eδ j ⩾ eδ1 ⩾ e−
1
4 ·log n = n−1/4 and so eδ j ⩽ δ j ⩽

1
n + eδ j ⩽ 2eδ j .
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We define the super-exponential potential functions Ψ j := Ψ j(ψ j , z j) for 1 ⩽ j ⩽ k − 1, with
smoothing parametersψ j := γ1 · (log n) j/k and offsets z j :=

� 3
γ2
· j · (log n)1/k

�

, so that z j−1⩾ 2
γ2
· j ·

(log n)1/k. Similarly we define Φ j := Φ j(φ j , z j) with a smoothing parameter of φ j := γ2 · (log n) j/k

and the same offset z j . Also, let eKt
φ j

be the event associated with their drop in Theorem 6.9. For

convenience we also define Φ0 := Φ0(γ2, 0), and then we have that Φt
0 ⩽ Γ

t
2 .

Lemma 7.10. Let C :=max{3c, 8} and consider the k-DENSE-QUANTILE process for any 1⩽ k ⩽ kmax.
For any 1⩽ j ⩽ k− 1 and any step t ⩾ 0 such that Φt

j−1 ⩽ Cn, we have that eKt
φ j

holds.

Proof. Consider an arbitrary step t with Φt
j−1 ⩽ Cn. Then, in this step the number of bins with load

at least z j − 1 is at most

Cne−γ2(log n)( j−1)/k·(z j−1−z j−1) ⩽ Cne−γ2(log n)( j−1)/k· 2
γ2
·(log n)1/k (a)⩽ ne−(log n) j/k ⩽ neδk− j ⩽ nδk− j ,

using in (a) that (log n)1/k ⩾ log C since k ⩽ kmax. So all bins i ∈ [n] with load at least z j − 1 have
Rankt(i)⩽ nδk− j and hence (recalling that δ0 = 0),

qt
i ⩽

δk− j−1 +δk− j

n
⩽

4eδk− j

n
=

4
n
· e−

1
4 ·(log n) j/k

(a)
⩽

1
n
· e−

1
8 ·(log n) j/k

(b)
⩽

1
n
· e−γ1(log n) j/k ,

using in (a) that (log n)1/k ⩾ 8 log 4, since k ⩽ kmax and in (b) that γ1 ⩽ 1/8.

Finally, we can perform a layered induction over these super-exponential potentials to deduce a
small gap at an arbitrary step m.

Theorem 7.11. Consider the k-DENSE-QUANTILE process for any 1 ⩽ k ⩽ kmax. Then, there exists a
constant κ > 0, such that for any step m⩾ 0,

Pr
�

Gap(m)⩽ κ · k · (log n)1/k
�

⩾ 1− n−3.

Proof. Let t j := m−n log5 n+2n j log4 n for 1⩽ j ⩽ k−1. By Corollary 7.9, taking the union bound
over m− t0 ⩽ n2 steps and using the fact that Φt

0 ⩽ Γ
t
2 ,

Pr





⋂

t∈[t0,m]

�

Φt
0 ⩽ 3cn

	



⩾ 1− n−4.

By Lemma 7.10, for each 1 ⩽ j ⩽ k − 1, Φt
j−1 ⩽ Cn (for C := max{3c, 8}) implies that eKt

φ j

holds and that Gap(t) ⩽ log2 n, and so by inductively applying Theorem 6.9 with starting point
t j := m− 2n(k− j) log4 n and et := m, we get that

Pr





⋂

t∈[t j−1,m]

eKt



⩾ Pr





⋂

t∈[t j−1,m]

¦

Φt
j−1 ⩽ 8n

©



⩾ 1−
(log n)8( j−1)

n4
,

implies that

Pr





⋂

t∈[t j ,m]

¦

Φt
j ⩽ 8n

©



⩾ 1−
(log n)8 j

n4
.

Hence, by induction we get that for j = k− 1,

Pr





⋂

t∈[tk−1,m]

�

Φt
k−1 ⩽ 8n

	



⩾ 1−
(log n)8(k−1)

n4
⩾ 1− n−3,
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using that k =O(log log n). Finally, if
�

Φm
k−1 ⩽ 8n

	

holds, then we have that

Gap(m)⩽ zk−1 +
log(8n)

γ2(log n)(k−1)/k
⩽
¡

3
γ2
· (k− 1) · (log n)1/k

¤

+
2
γ2
· (log n)1/k,

and hence for κ := 5/γ2 > 0, we get that

Pr
�

Gap(m)⩽ κ · k · (log n)1/k
�

⩾ 1− n−3.

7.2.2 k-DENSE-THRESHOLD process

The purpose of this section is to show that the layered induction used to analyse the k-DENSE-
QUANTILE process in Section 7.2.1, can also be used to analyse the k-DENSE-THRESHOLD process.
For space and time considerations, we state the base case as a conjecture (though it is quite likely
that the proof follows using the techniques for the strong stabilisation in the g-ADV setting, see
Theorem 5.34):

Conjecture 7.12. For any k-THRESHOLD process whose smallest threshold is t
n (or in fact any process

satisfying condition P3), there exist constants c > 0 and γ2 ∈ (0,1/4), such that for the hyperbolic
cosine potential Γ2 := Γ2(γ2), for any step t ⩾ 0,

Pr
�

Γ t
2 ⩽ 3cn

�

⩾ 1− n−6.

Now recall that the k-DENSE-THRESHOLD process has thresholds defined by

f t
j :=

¨

t
n if j = 1,
t
n +

 

3
γ2
· j · (log n)1/k

£

− 2 if 1⩽ j ⩽ k− 1.

We proceed similarly to Section 7.2.1 defining the super-exponential potential functions Φ j and
Ψ j , with the same offsets z j and smoothing parameters as in Section 7.2.1, for any 1⩽ j ⩽ k−1 and
1⩽ k ⩽ kmax. We now prove that when Φt

j−1 ⩽ 8n, we also have that eKt
j holds:

Lemma 7.13. Let C := max{3c, 8} and consider the k-DENSE-THRESHOLD process for any 1 ⩽ k ⩽
kmax. For any 1⩽ j ⩽ k− 1 and any step t ⩾ 0 such that Φt

j−1 ⩽ Cn, we have that eKt
j holds.

Proof. Consider an arbitrary step t with Φt
j−1 ⩽ Cn. Then, in this step the number of bins with load

at least f t
j is at most

nδt
f t
j
⩽ Cne−γ2(log n)( j−1)/k·( f t

j −t/n−z j−1) ⩽ Cne−γ2(log n)( j−1)/k· 2
γ2
·(log n)1/k (a)⩽ ne−(log n) j/k ,

using in (a) that (log n)1/k ⩾ log C since k ⩽ kmax. To allocate to a bin i ∈ [n] with y t
i ⩾ z j − 1 >

f t
j − t/n, we need to choose i and one bin k ∈ [n] with y t

k > f t
j − t/n, so

qt
i ⩽

2δ f t
j

n
⩽

2
n
· e−(log n) j/k ⩽

1
n
· e−γ1(log n) j/k ,

using that (log n)1/k ⩾ log2, since k ⩽ kmax and that γ1 ⩽ 1/2.

Theorem 7.14. Consider the k-DENSE-THRESHOLD process for any 1 ⩽ k ⩽ kmax. Then, there exists a
constant κ > 0, such that for any step m⩾ 0,

Pr
�

Gap(m)⩽ κ · k · (log n)1/k
�

⩾ 1− n−3.

Proof. The proof is the same as Theorem 7.11, as by Conjecture 7.12 and Lemma 7.13 we have the
same guarantees on the potentials Γ2 and Φ j .

141



7.2.3 QUANTILE(δ∗) process

In this section, we will analyse the QUANTILE(δ∗) process with δ∗ being the rounded up quan-

tile of eδ∗ = (log log n)2

log n , so eδ∗ ⩽ δ∗ ⩽ 2eδ∗. We start by proving that this process is majorised by
TIME-HOMOGENEOUS(p) process with a probability vector p having a bias at a constant δ. This
means that we can use Theorem 3.2 and Lemma 3.8 to obtain the following corollary.

Corollary 7.15. The QUANTILE(δ∗) process is majorised by TIME-HOMOGENEOUS(p) for

pi =

¨

1−ε
n if i ⩽ n/3,

1+eε
n otherwise,

for any i ∈ [n] and where ε= 2δ∗ and eε= δ∗.

By Lemma 3.5 it satisfies the preconditions of Theorem 3.2 for δ = 1/3, ε = 2δ∗ and C = 2, so
we get the following corollary.

Corollary 7.16. Consider the QUANTILE(δ∗) process and the potential Γ := Γ (γ) for any γ ∈
�

0, δ∗

8·3·22

�

.
Then, there exist constants c1, c2 > 0, such that for any step t ⩾ 0,

E
�

Γ t+1
�

� Ft
�

⩽ Γ t ·
�

1−
c1γδ

∗

n

�

+ c2γδ
∗.

By Theorem 4.1 for γ1 := δ∗

8·3·22 , γ2 := γ1
84 and for κ := 6, we get following lemma.

Lemma 7.17. Consider the QUANTILE(δ∗) process and the potential Γ2 := Γ2(γ2). Then, there exists a
constant c > 0, such that for any step t ⩾ 0,

Pr
�

Γ t
2 ⩽ 3cn

�

⩾ 1− n−6.

We now define the super-exponential potential Φ1 := Φ1(φ1, z)with smoothing parameterφ1 :=
γ1·log log n and offset z :=

� 3
γ2
· log n

log log n

�

, so that z−1⩾ 2
γ2
· log n

log log n . Similarly we defineΦ2 := Φ2(φ2, z)
with smoothing parameter φ2 := γ2 · log log n and the same offset z. We will now prove that in any
step t where Γ t

2 ⩽ 3cn, we also have that eKt := eKt
φ1

holds.

Lemma 7.18. Consider the QUANTILE(δ∗) process. For any step t ⩾ 0 where Γ t
2 ⩽ 3cn, we also have

that eKt holds.

Proof. Consider an arbitrary step t where Γ t
2 ⩽ 3cn holds. Then, the number of bins with normalised

load at least z − 1 is at most

3cn · e−γ2·δ∗·(z−1) ⩽ 3cne−2 log log n ⩽ n · e− log log n ⩽ n · e2 log log log n−log log n = neδ∗ ⩽ nδ∗.

So any bin i with y t
i ⩾ z − 1 has Rankt(i)⩽ nδ∗ and so

qt
i =

δ∗

n
⩽

2eδ∗

n
⩽

2
n
· e2 log log log n−log log n ⩽

1
n
· e−

1
2 log log n ⩽

1
n
· e−γ1 log log n,

since γ1 = o(1). Hence, eKt holds.

Finally, we are ready to prove the bound on the gap for QUANTILE(δ∗).

Theorem 7.19. Consider the QUANTILE(δ∗) process. There exists a constant κ > 0 such that for any
step m⩾ 0,

Pr
�

Gap(m)⩽ κ ·
log n

log log n

�

⩾ 1− n−3.
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Proof. By Lemma 7.17 and using the union bound over the 2n log4 n⩽ n2 steps, we have that

Pr





⋂

t∈[m−2n log4 n,m]

�

Γ t
2 ⩽ 3cn

	



⩾ 1− n−4.

By Lemma 7.18,
�

Γ t
2 ⩽ 3cn

	

implies that eKt holds and that Gap(t)⩽ log2 n, hence

Pr





�

Gap(m− 2n log4 n)⩽ log2 n
	

∩
⋂

t∈[m−2n log4 n,m]

eKt



⩾ 1− n−4.

So, by Theorem 6.9, we get that
Pr
�

Φm
2 ⩽ 8n

�

⩾ 1− n−3.

Finally, when
�

Φm
2 ⩽ 8n

	

, we have that

Gap(m)⩽ z +
log(8n)

γ2 · log log n
⩽
¡

3
γ2
·

log n
log log n

¤

+
2
γ2
·

log n
log log n

,

and so for the constant κ := 6/γ2 > 0,

Pr
�

Gap(m)⩽ κ ·
log n

log log n

�

⩾ 1− n−3.

7.3 k-RELAXED-QUANTILE condition

We now define the family of k-RELAXED-QUANTILEγ,ε processes for γ ⩾ 1 and ε ∈ (0,1), which
relaxes the definition of k-DENSE-QUANTILE = QUANTILE(δ1, . . . ,δk), with 1 ⩽ k ⩽ kmax. More
specifically for any step t ⩾ 0, the allocation vector qt satisfies the following: (i) conditions C1 for
δ = 1/3 and constant ε > 0, and C2 for some constant C > 1 and (ii) it holds that,

(eqt
1, . . . ,eqt

i )⪯























�

γ · δ1
n , . . . ,γ · δ1

n

�

for any 1⩽ i ⩽ δ1n,
�

γ · δ1+δ2
n , . . . ,γ · δ1+δ2

n

�

for any δ1n< i ⩽ δ2n,
...

�

γ · δk−1+δk
n , . . . ,γ · δk−1+δk

n

�

for any δk−1n< i ⩽ δkn.

Note that the k-DENSE-QUANTILE process falls into this class for γ= 1, ε= 1/3 and C > 1 (cf. Eq. (2.4)).

Theorem 7.20. Consider any k-RELAXED-QUANTILEγ,ε process for any 1⩽ k ⩽ kmax. Then, there exists
a constant κ > 0, such that for any step m⩾ 0,

Pr
�

Gap(m)⩽ κ · k · (log n)1/k
�

⩾ 1− n−3.

The proof of this theorem is omitted as it is similar to the proof of the k-DENSE-QUANTILE with
the base case following from the C1 condition and Corollary 3.6, and the rest of the analysis follows
with a smaller (by a constant factor) smoothing parameter.

7.3.1 A d-THINNING process

In this section, we use k-RELAXED-QUANTILE framework to prove bounds for general d-THINNING,
which are close to the lower bound in [77, Proposition 4.1].
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Lemma 7.21. Consider the d-THINNING process for 2⩽ d ⩽ kmax induced by the quantiles δd−1 . . . ,δ1,
given by δ j = e−

1
4 ·(log n)(d−1− j)/(d−1)

for 1⩽ j ⩽ d−2 and δd−1 = 1/3. Then, there exists a constant κ > 0
such that for any step m⩾ 0,

Pr
�

Gap(m)⩽ κ · (d − 1) · (log n)1/(d−1)
�

⩾ 1− n−2.

The definition of this process is such that as we take more samples, we are accepting more bins.

Proof. We will show that this d-THINNING process satisfies the (d − 1)-RELAXED-QUANTILEγ,ε condi-
tions with ε= 1/3 and γ= 1. Recall theδ1, . . . ,δd−1 in the definition of (d − 1)-RELAXED-QUANTILEγ,ε
and consider two cases for the i-th heaviest bin:

• Case 1 [i ⩽ nδ1]: We allocate to i ⩽ nδ1 if the first d − 1 samples are heavy and the last one
is equal to i. So,

eqi = δ1 ·δ2 · . . . ·δd−1 ·
1
n
⩽
δ1

n
.

• Case 2 [nδk < i ⩽ nδk+1, k < d − 1]: Let j1, . . . , jd be the sampled bins. The probability
of allocating to the i-th heaviest bin is if the first ℓ1 ⩾ k samples were heavy and then we
sampled i:

eqi =
1
n
·

d−1
∑

ℓ1= j

ℓ1
∏

ℓ2=1

Pr
�

jℓ2
⩽ n ·δℓ2

�

=
1
n
·δ1 · . . . ·δk · (1+δk+1 +δk+1 ·δk+2 + . . .+δk+1 · . . . ·δd−1)

⩽
1
n
·δ1 · . . . ·δk ·

�

1+δk+1 +δk+1 ·
1
3
+δk+1 ·

1
32
+ . . .

�

⩽
1
n
·δk ·

�

1+
3
2
δk+1

�

=
1
n
·
�

δk +
3
2
·δk ·δk+1

�

⩽
1
n
· (δk +δk+1),

using that δk ⩽ 1/3 for any k.

This verifies condition (ii) and for condition (i) we have that for any i ⩽ nδd−1

eqi ⩽
1
n
· (δd−2 +δd−1)⩽

2
3n

.

Hence, C1 is also satisfied for ε = 1/3. Since all bins i with Rankt(i) > n/3 have the same qt
i , it

follows that qt
i ⩽

3
2n , so condition C2 holds for C = 3/2. So, by Theorem 7.11, w.h.p. it has an

O((d − 1) · (log n)1/(d−1)) gap.

7.3.2 The (1+ β)-process with β close to 1

We will now prove a bound for the (1 + β)-proces for any β = 1 − e−
1
4 (log n)(k−1)/k

for integer k =
O(log log n), by showing that it is a k-RELAXED-QUANTILE3,β/3 process.

Lemma 7.22. Consider the (1 + β)-process with β ⩾ 1 − e−
1
4 (log n)(k−1)/k

= 1 − eδ1 for some integer
1⩽ k ⩽ kmax. Then, it is a k-RELAXED-QUANTILEγ,ε process with ε= β/3 and γ= 3.
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Proof. Let eqt := eq be the sorted allocation vector of the (1+β)-process, where β ⩾ 1− eδ1 for some
integer k ⩾ 1.

First, consider any 1⩽ j ⩽ k. Note that as eq is non-decreasing in i and β ⩾ 1−δ1 ⩾ 1−δ j , and
for any δ j−1n+ 1⩽ i ⩽ δ jn,

eqi

(a)
⩽ eqδ j n

(b)
= (1− β) ·

1
n
+ β ·

2n ·δ j − 1

n2

(c)
⩽ δ j ·

1
n
+ 1 · 2 ·δ j ·

1
n
= 3 ·δ j ·

1
n
⩽ 3 · (δ j−1 +δ j) ·

1
n

,

where (a) and (b) hold by definition of (1+β)-process, and inequality (c) uses β ⩾ 1− eδ1 ⩾ 1−δ1 ⩾
1−δ j .

Similar to the above, for ε := β
3 , we can upper bound

eqn/3 = (1− β) ·
1
n
+ β ·

2(n/3)− 1
n2

⩽
1
n
+ β ·

�

2
3n
−

1
n

�

=
1− 1

3β

n
.

Because eq is non-decreasing, it follows that it satisfies C1 with δ = 1/3 and ε= β
3 .

Using the above lemma and Theorem 7.20, we get the following upper bound.

Theorem 7.23. Consider the (1+β)-process with β ⩾ 1−e−
1
4 (log n)(k−1)/k

for some integer 1⩽ k ⩽ kmax.
Then, there exists a constant κ > 0 such that for any step m⩾ 0,

Pr
�

Gap(m)⩽ κ · k · (log n)1/k
�

⩾ 1− n−3.

By inverting the value of k in β = 1− e−
1
4 ·(log n)(k−1)/k

, we get that

(log n)1/k =
log n

−4 log(1− β)
, and k =

�

log
�

log n
−4 log(1− β)

��−1

· log log n.

Hence, if we set B = log n
−4 log(1−β) , we get an upper bound of O

� B
log B · log log n

�

bound, which matches

the lower bound in Lemma C.21 for any 1− β = Ω(e− logc n) with c = Ω
�

1
log log n

�

.

7.4 g-ADV setting for TWO-CHOICE with g ⩽ log n

7.4.1 Main setting

In this section, we will complete the proof of the O
� g

log g · log log n
�

upper bound for any g ⩽ log n
for TWO-CHOICE in the g-ADV setting. We do this by first proving the key lemma for the drop of
the super-exponential potentials (Lemma 7.24) and then complete the layered induction in Theo-
rem 7.25.

Let

α1 :=
1

6κ
⩽

1
6 · 18

, (7.4)

for κ⩾ 1
α = 18> 0 the constant in Eq. (5.19) in Lemma 5.25 and

α2 :=
α1

84
⩽

1
84 · 6 · 18

. (7.5)

We define the function
f (k) := (α1 log n)1/k = e

1
k ·log(α1 log n),
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which is monotone decreasing in k > 0, and for k = 1, f (1) = α1 log n. This implies that for every
1< g < α1 log n, there exists a unique integer k := k(g)⩾ 2 satisfying,

(α1 log n)1/k ⩽ g < (α1 log n)1/(k−1).

This definition implies that k = Θ
� log log n

log g

�

and that k =O(log log n), since g > 1.
Keeping in mind the previous inequality, we will be making the slightly stronger assumption for

g = Ω(1) (see Claim D.7) that

(α1 · log n)1/k ⩽ g <
�α2

4
· log n

�1/(k−1)
. (7.6)

For any g satisfying
�α2

4 · log n
�1/k ⩽ g < (α1 · log n)1/k, we will obtain the stated O

� g
log g · log log n

�

bound by analysing the eg-ADV-COMP setting for eg = (α1 · (log n))1/k > g, since

eg
log eg
⩽

eg
log g

=
eg
g
·

g
log g
⩽
�

4α1

α2

�1/k

·
g

log g
=O

�

g
log g

�

.

We will now define the super-exponential potential functions Φ0, . . . ,Φk−1. The base potential
function Φ0 is just an exponential potential (i.e., has a constant smoothing parameter) defined as

Φs
0 := Φs

0(α2, z0) :=
n
∑

i=1

Φs
0,i :=

n
∑

i=1

exp
�

α2 · (y s
i − z0)

+
�

, (7.7)

where α2 := α1
84 and z0 := c5 ·g for some sufficiently large constant integer c5 > 0 (which was defined

in Eq. (5.36) in Lemma 5.33). Further, we define for any integer 1⩽ j ⩽ k− 1,

Φs
j := Φs

j(α2 · (log n) · g j−k, z j) :=
n
∑

i=1

Φs
j,i :=

n
∑

i=1

exp
�

α2 · (log n) · g j−k · (y s
i − z j)

+
�

, (7.8)

where the offsets are given by

z j := c5 · g +
¡

4
α2

¤

· j · g. (7.9)

We further define

Ψ0 := Ψ0(α1, z0) :=
n
∑

i=1

Ψs
0,i :=

n
∑

i=1

exp
�

α1 · (y s
i − z0)

+
�

, (7.10)

and for 1⩽ j ⩽ k− 1,

Ψs
j := Ψs

j (α1 · (log n) · g j−k, z j) :=
n
∑

i=1

Ψs
j,i :=

n
∑

i=1

exp
�

α1 · (log n) · g j−k · (y s
i − z j)

+
�

. (7.11)

We are now ready to prove the key lemma for the layered induction.

Lemma 7.24. Consider the g-ADV-COMP setting for any g ∈ [log(2C),α1 log n], for the constant C ⩾ 8
defined in Theorem 5.34 and α1 > 0 defined in Eq. (7.4). Further, let k := k(g) ⩾ 2 be the unique
integer such that (α1 log n)1/k ⩽ g < (α1 log n)1/(k−1). Then, for any integer 1 ⩽ j ⩽ k − 1 and any
step s ⩾ 0, Φs

j−1 ⩽ Cn implies eKs
ψ j ,z j

.
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Proof. Consider an arbitrary step s with Φs
j−1 ⩽ Cn. Recall the definition of eKs

ψ j ,z j
,

eKs
ψ j ,z j
(qs) :=

§

∀i ∈ [n]: y s
i ⩾ z j − 1 ⇒ qs

i ⩽
1
n
· e−ψ j

ª

.

Thus, we want to bound the probability to allocate to a bin i ∈ [n] with load y s
i ⩾ z j−1. In order to

do this, we will bound the number of bins ℓ ∈ [n] for which the adversary can reverse the comparison
of i and ℓ, by bounding the ones with load y s

ℓ
⩾ z j − 1− g. Recall that z j := c5 · g +

� 4
α2

�

· j · g. In
the analysis below we make use of the following simple bound for 1⩽ j ⩽ k− 1,

z j − 1− g − z j−1 =
¡

4
α2

¤

· g − 1− g ⩾
3
α2
· g, (7.12)

using that α2 ⩽ 1/2. We consider the cases j = 1 and j > 1 separately as Φ0 has a slightly different
form than Φ j−1 for j > 1.

Case 1 [ j = 1]: The contribution of any bin ℓ ∈ [n] with load y s
ℓ
⩾ z1 − 1− g to Φs

0 is,

Φs
0,ℓ = eα2·(y s

ℓ
−z0)+ ⩾ eα2·(z1−1−g−z0)+

(7.12)
⩾ e3g .

Hence, when {Φs
0 ⩽ Cn} holds, the number of such bins is at most

Cn · e−3g = Cn · e−g · e−2g ⩽
n
2
· e−2g ,

using that g ⩾ log(2C). Hence, the probability of allocating a ball to a bin i ∈ [n] with y s
i ⩾ z1 − 1

is at most that of sampling i and a bin ℓ ∈ [n] with y s
ℓ
⩾ z1 − 1− g, i.e., at most

qs
i ⩽ 2 ·

1
n
·

1
2
· e−2g ⩽

1
n
· e−ψ1 ,

using that ψ1 := α1 · (log n) · g1−k ⩽ g, as g ⩾ (α1 log n)1/k.
Case 2 [ j > 1]: The contribution of any bin ℓ ∈ [n] with load y s

ℓ
⩾ z j − 1− g to Φs

j−1 is,

Φs
j−1,ℓ = eα2·(log n)·g j−1−k·(y s

ℓ
−z j−1)

(7.12)
⩾ eα2·(log n)·g j−1−k·( 3

α2
·g) = e3·(log n)·g j−k

.

Hence, when {Φs
j−1 ⩽ Cn} holds, the number of such bins is at most

Cn · e−3·(log n)·g j−k
⩽

n
2
· e−2·(log n)·g j−k

,

using that e−(log n)·g j−k
⩽ e−(log n)·g2−k

⩽ e−(log n)·g· 1
α1 log n ⩽ e− log(2C) = 1

2C , since j > 1, g ⩽ (α1 log n)1/(k−1),
g ⩾ log(2C) and α1 ⩽ 1.

Hence, the probability of allocating a ball to a bin i ∈ [n] with y s
i ⩾ z j − 1 is at most that of

sampling i and a bin ℓ ∈ [n] with y s
ℓ
⩾ z j − 1− g, i.e., at most

qs
i ⩽ 2 ·

1
n
·

1
2
· e−2·(log n)·g j−k

=
1
n
· e−2·(log n)·g j−k

⩽
1
n
· e−ψ j ,

recalling that ψ j := α1 · (log n) · g j−k for α1 ⩽ 1.
Combining the two cases, we conclude that the event eKs

ψ j ,z j
holds at step s.

Theorem 7.25. Consider the g-ADV-COMP setting for any g ∈ (1, log n]. Then, there exists a constant
eκ > 0 such that for any step m⩾ 0,

Pr
�

Gap(m)⩽ eκ ·
g

log g
· log log n

�

⩾ 1− n−3.
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Proof. Let gmin := max
�

log(2C), α2
4
p
α1

	

. We consider three cases depending on the value of 1 ⩽
g ⩽ log n:

Case 1 [min
�α2

4 , c6

	

· log n ⩽ g ⩽ log n]: (for c6 > 0 as defined in Eq. (5.22)) In this case, the
O(log n) upper bound follows by the O(g + log n) upper bound of Theorem 5.26.

Case 2 [1< g < gmin]: For 1< g ⩽ gmin, g is constant and the O(log log n) upper bound on the
gap will follow by considering the eg-ADV-COMP setting with eg = ⌈gmin⌉. This setting encompasses
g-ADV-COMP as eg ⩾ g and is analysed in Case 3.

Case 3 [gmin ⩽ g <min
�α2

4 , c6

	

· log n]: Recall that for any g < α1 log n, we defined the unique
integer k := k(g)⩾ 2 satisfying,

(α1 log n)1/k ⩽ g < (α1 log n)1/(k−1),

and as explained in Eq. (7.6), since g < α2
4 log n, we may assume that the following stronger condi-

tion holds

(α1 log n)1/k ⩽ g <
�α2

4
log n

�1/(k−1)
,

where the inequalities are valid using Claim D.7 and that g ⩾ α2
4
p
α1

.

Let t j := m − 2n(k − j) log4 n for any integer 0 ⩽ j ⩽ k − 1. We will proceed by induction on
the potential functions Φ j . The base case follows by applying Theorem 5.34 (using g ⩽ c6 log n and
t0 ⩾ m− n log5 n),

Pr





⋂

t∈[t0,m]

�

Φt
0 ⩽ Cn

	



⩾ 1− n−4. (7.13)

We will now prove the induction step.

Lemma 7.26 (Induction step). Consider the g-ADV-COMP setting for any g ⩾ max
�

log(2C), α2
4
p
α1

	

satisfying (α1 log n)1/k ⩽ g < (α2
4 log n)1/(k−1) for some integer k ⩾ 2, where C > 0 is the constant

defined in Theorem 5.34 and α1,α2 > 0 are defined in Eq. (7.4) and Eq. (7.5). Then, for any integer
1⩽ j ⩽ k− 1 and any step m⩾ 0, if it holds that

Pr





⋂

t∈[t j−1,m]

{Φt
j−1 ⩽ Cn}



⩾ 1−
(log n)8( j−1)

n4
,

then it also follows that

Pr





⋂

t∈[t j ,m]

{Φt
j ⩽ Cn}



⩾ 1−
(log n)8 j

n4
.

Proof of Lemma 7.26. Consider an arbitrary integer j with 1⩽ j ⩽ k− 1 and assume that

Pr





⋂

t∈[t j−1,m]

{Φt
j−1 ⩽ Cn}



⩾ 1−
(log n)8( j−1)

n4
.

By Lemma 7.24, we have that {Φt
j−1 ⩽ Cn} implies eKt

ψ j ,z j
. Furthermore, {Φt j−1

j−1 ⩽ Cn} also implies

{Gap(t j−1)⩽ log2 n}. Hence, it also holds that

Pr





�

Gap(t j−1)⩽ log2 n
	

∩
⋂

t∈[t j−1,m]

eKt
ψ j ,z j



⩾ 1−
(log n)8( j−1)

n4
. (7.14)
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Applying Lemma 6.2 for the potentials Φ j and Ψ j , since ψ j ⩾ φ j = α2 · (log n) · g j−k ⩾ α2 · (log n) ·
g1−k ⩾ 4 (as g < (α2

4 log n)1/(k−1)), for any step t ⩾ 0 it holds that

E
h

Φt+1
j

�

�

� Ft , eKt
ψ j ,z j

i

⩽ Φt
j ·
�

1−
1
n

�

+ 2, (7.15)

and

E
h

Ψ t+1
j

�

�

� Ft , eKt
ψ j ,z j

i

⩽ Ψ t
j ·
�

1−
1
n

�

+ 2. (7.16)

Hence, by Eq. (7.15), Eq. (7.16) and Eq. (7.14), the preconditions of Theorem 6.9 are satisfied for
starting step t j := m− 2n(k − j) · log4 n, P := (log n)8( j−1)/n4 and terminating step at et := m, and
so we conclude (since C ⩾ 8) that

Pr





⋂

t∈[t j ,m]

¦

Φt
j ⩽ Cn

©



⩾ 1−
(log n)8 j

n4
.

Returning to the proof of Theorem 7.25, inductively applying Lemma 7.26 for k − 1 times and
using Eq. (7.13) as a base case, we get that

Pr





⋂

t∈[tk−1,m]

�

Φt
k−1 ⩽ Cn

	



⩾ 1−
(log n)8(k−1)

n4
⩾ 1− n−3,

using in the last step that k = O(log log n). When {Φm
k−1 ⩽ Cn} occurs, the gap at step m cannot be

more than zk := c5 g +
� 4
α2

�

· k · g, since otherwise we would get a contradiction

Cn⩾ Φm
k−1 ⩾ exp

�

α2 · (log n) · g(k−1)−k · (zk − zk−1)
�

= exp
�

α2 · (log n) · g−1 ·
�  4
α2

£

· g
��

⩾ exp(4 · log n) = n4.

Hence, Gap(m)⩽ zk = c5 g +
� 4
α2

�

· k · g.
By the assumption on g, we have

g <
�α2

4
log n

�1/(k−1)
⇒ log g <

1
k− 1

· log
�α2

4
log n

�

⇒ k < 1+
log

�α2
4 log n

�

log g
,

using that g > 1. Since α2 > 0 and c5 > 0 are constants, we conclude that there exists a constant
eκ > 0 such that

Pr
�

Gap(m)⩽ eκ ·
g

log g
· log log n

�

⩾ 1− n−3.

In the above, we actually proved the following slightly stronger corollary, which we will use in
Section 7.4.3. This is based on the insight that, in order to prove the above gap bound at step m,
the only assumption on the steps [0, t0), with t0 := m− n log5 n−∆r , is that the coarse bound of
O(g log(ng)) on the difference between maximum and minimum load must hold at step t0 (see,
e.g., Lemma 5.23 and Theorem 5.34). While during the interval [t0, m] the process is required to be
an instance of g-ADV-COMP, in the interval [0, t0) the process can be arbitrary as long as the coarse
gap bound holds at step t0.

Corollary 7.27. Consider any g ∈ (1, log n], m ⩾ 0, t0 := m− n log5 n−∆r for ∆r := ∆r(g) > 0 as
defined in Lemma 5.23 and c3 > 0 the constant in Theorem 3.21. Further, consider a process which, in
steps [t0, m], is an instance of g-ADV-COMP setting. Then, there exists a constant eκ > 0, such that

Pr

�

Gap(m)⩽ eκ ·
g

log g
· log log n

�

�

�

�

Ft0 , max
i∈[n]

�

�y t0
i

�

�⩽ c3 g log(ng)

�

⩾ 1− n−3.
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7.4.2 Relaxed g-ADV setting

In order to analyse the τ-DELAY, b-BATCHED and probabilistic noisy settings, we study the relaxed
g1-ADV-COMP setting, where in most steps the adversary uses a g2≪ g1. To make this more specific,
consider an arbitrary instance of g1-ADV-COMP and define Dt as the set of pairs of bins (of unequal
load) whose comparison is reversed with non-zero probability by the adversary G t to allocate ball
t + 1,

Dt(Ft) :=
¦

(i, j) ∈ [n]× [n] : y t
i > y t

j ∧
�

G t(Ft , i, j, 1)> 0∨ G t(Ft , j, i, 2)> 0
�

©

,

and then define the largest load difference that could be reversed by the process at step t + 1,

g t(Ft) := max
(i, j)∈Dt (Ft )

�

�

�y t
i − y t

j

�

�

� .

This can be seen as the “effective g-bound” of the process in step t + 1. Note that g t ⩽ g1 holds
deterministically.

Lemma 7.28. Consider the g1-ADV-COMP setting for any g1 ∈ [1, n log n], and consider any g2 ∈
[1, log2 n]. If for every step t ⩾ 0, we have

Pr
�

g t ⩽ g2

�

⩾ 1− n−6,

then there exists a constant eκ > 0 such that for any step m⩾ 0,

Pr
�

Gap(m)⩽ eκ ·
g2

log g2
· log log n

�

⩾ 1− n−2.

Proof of Lemma 7.28. Let P be a process satisfying the preconditions in the statement and we will
define the auxiliary process ePt0

for some step t0 ⩾ 0 (to be specified below). Consider the stopping
time σ := inf{s ⩾ t0 : gs > g2}. Then, the auxiliary process ePt0

is defined so that

• in steps s ∈ [0,σ), it makes the same allocations as P, and

• in steps s ∈ [σ,∞), it makes the same allocations as the g2-BOUNDED process.

This way ePt0
is a g2-ADV-COMP process for all steps s ⩾ t0. Let ey be the normalised load vector for

ePt0
, then it follows by the precondition that w.h.p. the two processes agree for any interval [t0, m]

with m− t0 ⩽ n3, i.e.,

Pr





⋂

s∈[t0,m]

{y s = ey s}



⩾ Pr





⋂

s∈[t0,m]

{gs ⩽ g2}



⩾ 1− n−6 · n3 = 1− n−3. (7.17)

For m ⩽ n3, the upper bound follows directly by Theorem 7.25 for eP0 and taking the union
bound with Eq. (7.17), i.e., that eP0 agrees with P.

For m> n3, the analysis is slightly more challenging. We need to show that the process recovers
from the weak upper bound obtained from the g1-ADV-COMP setting. Let Γ := Γ (γ) be as defined
in Eq. (3.1) with γ := − log(1 − 1

17·32)/g2 for the ePt0
process (i.e., the ey load vector). Also, let

t0 := m− n3 and t1 := m− n log5 n−∆r where ∆r :=∆r(g2) = Θ(ng2(log(ng2))2) is the recovery
time defined in Lemma 5.23. In this analysis, we consider the following three phases (see Fig. 7.2):

• [0, t0]: The process P is an instance of the g1-ADV-COMP setting with g1 = n log n. Hence, by
Theorem 3.21, it follows that at step t0 w.h.p. Gap(t0) =O(n log2 n).

• (t0, t1]: The process P w.h.p. agrees with ePt0
which is a g2-ADV-COMP process. We will use

an analysis similar to that in Section 3.3 to prove that w.h.p. Gap(t1) =O(g2 log(ng2)).
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g1-ADV-COMP instance g2-ADV-COMP instance

0 t0 t1 m

Gap(t)

Phase 1 Phase 2 Phase 3

n log2 n

g2 log(ng2)

g2
log g2
· log log n

t

Γ drops in expectation Corollary 7.27

. . .

Figure 7.2: The three phases in the proof of Lemma 7.28.

• (t1, m]: The process P w.h.p. continues to agree with ePt0
which is a g2-ADV-COMP process and

so by Corollary 7.27 this implies that w.h.p. Gap(m) =O
� g2

log g2
· log log n

�

.

Phase 1 [0, t0]: Using Theorem 3.21 (iii) (for g := n log n) and for c3 > 0 being the constant
defined in Eq. (3.32), we have that,

Pr
�

max
i∈[n]

�

�

ey t0
i

�

�⩽ 3c3n log2 n
�

⩾ 1− n−14, (7.18)

using c3 g log(ng)⩽ c3n · log n · log(n2 · log n)⩽ 3c3n log2 n.
Phase 2 (t0, t1]: Let us now turn our attention to the interval (t0, t1], where ePt0

is a g2-ADV-
COMP process. So, by Theorem 3.21 (i) (for g := g2), there exists a constant c1 ⩾ 1, such that for
any step t ⩾ t0

E
�

Γ t+1
�

� Ft
�

⩽ Γ t ·
�

1−
γ

64n

�

+ c1.

At step t0, when {maxi∈[n] |ey
t0
i |⩽ 3c3n log2 n} holds, we also have that Γ t0 ⩽ 2n · e3γc3n log2 n. Hence,

applying Lemma B.1 (i) (with a = 1− γ
64n and b = c1), for step t1 we have

E

�

Γ t1

�

�

�

�

Ft0 , max
i∈[n]

�

�

ey t0
i

�

�⩽ 3c3n log2 n

�

⩽ E
h

Γ t1

�

�

�Ft0 , Γ t0 ⩽ 2n · e3γc3n log2 n
i

⩽ Γ t0 ·
�

1−
γ

64n

�t1−t0
+

64c1

γ
· n

(a)
⩽ 2n · e3γc3n log2 n · e−

γ
64n ·

1
2 n3
+

64c1

γ
· n

⩽
100c1

γ
· n.

using in (a) that eu ⩾ 1+ u and t1 − t0 ⩾
1
2 n3. By Markov’s inequality, we have that,

Pr

�

Γ t1 ⩽
100c1

γ
· n4

�

�

�

�

Ft0 ,max
i∈[n]

�

�

ey t0
i

�

�⩽ 3c3n log2 n

�

⩾ 1− n−3.

When the event
¦

Γ t1 ⩽ 100c1
γ · n

4
©

holds, it implies that

Gap(t1)⩽
1
γ
·
�

log
�

100c1

γ

�

+ 4 log n
�

(a)
=

c3 g2

16
·
�

O(1) + log
� c3 g2

16

�

+ 4 log n
�

⩽ c3 g2 log(ng2),
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using in (a) that c3 := 16
γg2

(defined in Eq. (3.32)). Therefore,

Pr

�

max
i∈[n]

�

�

ey t1
i

�

�⩽ c3 g2 log(ng2)

�

�

�

�

Ft0 ,max
i∈[n]

�

�

ey t0
i

�

�⩽ 3c3n log2 n

�

⩾ 1− n−3. (7.19)

Phase 3 (t1, m]: Now, we turn our attention to the steps in (t1, m], where ePt0
is again a g2-ADV-

COMP process. Therefore, applying Corollary 7.27 (for t0 := t1 = m− n log5 n−∆r and g := g2),
there exists a constant eκ > 0 such that

Pr

�

Gap
ePt0
(m)⩽ eκ ·

g2

log g2
· log log n

�

�

�

�

Ft1 ,max
i∈[n]

�

�

ey t1
i

�

�⩽ c3 g2 log(ng2)

�

⩾ 1− n−3. (7.20)

By combining Eq. (7.18), Eq. (7.19) and Eq. (7.20), we have that

Pr
�

Gap
ePt0
(m)⩽ eκ ·

g2

log g2
· log log n

�

⩾
�

1− n−14
�

·
�

1− n−3
�

·
�

1− n−3
�

⩾ 1− 3n−3.

Finally, by Eq. (7.17) we have that w.h.p. P and ePt0
agree in every step in [t0, m], so by taking the

union bound we conclude

Pr
�

GapP(m)⩽ eκ ·
g2

log g2
· log log n

�

⩾ 1− 3n−3 − n−3 ⩾ 1− n−2.

7.4.3 Applications

An upper bound for the probabilistic noise setting

Proposition 7.29. Consider the ρ-NOISY-COMP setting with ρ(δ) being any non-decreasing function
in δ with limδ→∞ρ(δ) = 1. For any n ∈ N, define δ∗ := δ∗(n) = min{δ ⩾ 1: ρ(δ) ⩾ 1 − n−4}1.
Then, there exists a constant κ > 0, such that for any step m⩾ 0,

Pr
�

max
i∈[n]

�

�ym
i

�

�⩽ κ ·δ∗ log(nδ∗)
�

⩾ 1− n−3.

Note that for the σ-NOISY-LOAD process where ρ(δ) has Gaussian tails (see Eq. (2.3)), we have
δ∗ = O(σ ·

p

log n). The choice of δ∗ in Proposition 7.29 ensures that in most steps, all possible
comparisons among bins with load difference greater than δ∗ will be correct, implying that the
process satisfies the condition of g-ADV-COMP with g = δ∗.

Proof. We will analyse the hyperbolic cosine potential Γ := Γ (γ) as defined in Eq. (3.1), with γ :=
− log(1− 1

17·32)/δ
∗. We first state a trivial upper bound on E

�

Γ t+1
�

� Ft
�

in terms of Γ t , which holds
deterministically for all steps t ⩾ 0 (cf. Lemma 5.28 (i)),

Γ t+1 =
n
∑

i=1

Γ t+1
i ⩽

n
∑

i=1

eγ · Γ t
i = eγ · Γ t ⩽ (1+ 2γ) · Γ t ,

using that eγ ⩽ 1+ 2γ for 0< γ⩽ 1.
We will now provide a better upper bound, exploiting that with high probability all possible

comparisons between bins that differ by at least δ∗ will be correct. Again, consider any step t ⩾ 0.
Let us assume that in step t, we first determine the outcome of the load comparisons among all n2

possible bin pairs. Only then we sample two bins, and allocate the ball following the pre-determined
outcome of the load comparison. For any two bins i1, i2 ∈ [n] with |x t

i1
− x t

i2
|⩾ δ∗, we have

ρ(|x t
i1
− x t

i2
|)⩾ ρ(δ∗)⩾ 1− n−4.

1Not to be confused with the optimal quantile in QUANTILE(δ∗).
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Hence by the union bound over all n2 pairs, we can conclude that with probability at least 1−n−2, all
comparisons among bin pairs with load difference at least δ∗ are correct. Let us denote this event by
G t , so Pr

�

G t
�

⩾ 1− n−2 for every step t ⩾ 0. Conditional on G t , the process in step t is an instance
of g-ADV-COMP with g = δ∗. Therefore, by Theorem 3.21 (i), there exists a constant c1 ⩾ 1, so that
the hyperbolic cosine potential satisfies

E
�

Γ t+1
�

� Ft ,G t
�

⩽ Γ t ·
�

1−
γ

64n

�

+ c1.

Now combining our two upper bounds on E
�

Γ t+1
�

� Ft
�

, we conclude

E
�

Γ t+1
�

� Ft
�

⩽ E
�

Γ t+1
�

� Ft ,G t
�

· Pr
�

G t
�

+ E
�

Γ t+1
�

� Ft
�

·
�

1− Pr
�

G t
��

(a)
⩽ E

�

Γ t+1
�

� Ft ,G t
�

·
�

1− n−2
�

+ E
�

Γ t+1
�

� Ft
�

· n−2

⩽
�

Γ t ·
�

1−
γ

64n

�

+ c1

�

·
�

1− n−2
�

+ (1+ 2γ) · Γ t · n−2

⩽ Γ t ·
�

1−
γ

64n

�

+ c1 − Γ t · n−2 + Γ t ·
γ

64n
· n−2 + Γ t · n−2 + Γ t · 2γ · n−2

⩽ Γ t ·
�

1−
γ

96n

�

+ c1,

using in (a) that Pr
�

G t
�

⩾ 1− n−2. So, using Lemma B.1 (ii) (with a = 1− γ
96n and b = c1) since

Γ 0 = 2n⩽ 100c1
γ · n, we get for any t ⩾ 0,

E
�

Γ t
�

⩽
100c1

γ
· n.

Using Markov’s inequality yields, Pr
�

Γ t >
100c1
γ · n

4
�

⩽ n−3. Now the claim follows, since the event
¦

Γ t ⩽ 100c1
γ · n

4
©

for γ= Θ
� 1
δ∗

�

, implies that

max
i∈[n]

�

�y t
i

�

�⩽
1
γ

log
�

100c1

γ
· n4

�

=O(δ∗ · log(nδ∗)).

Upper bounds for delay settings

In this section, we will prove tight upper bounds for the TWO-CHOICE process in the τ-DELAY and the
b-BATCHED settings for a range of values for the delay parameter τ and batch size b. In particular
for τ= n, we show:

Theorem 7.30. Consider the τ-DELAY setting with τ = n. Then, there exists a constant κ > 0 such
that for any step m⩾ 0,

Pr
�

Gap(m)⩽ κ ·
log n

log log n

�

⩾ 1− n−2.

This implies the same upper bound for the b-BATCHED setting for b = n, since it is an instance of
the τ-DELAY setting with τ = n. This bound improves the O(log n) bound in [28, Theorem 1] and
can be easily seen to be asymptotically tight due to the Ω

�

log n
log log n

�

lower bound for ONE-CHOICE with
n balls (Observation C.5).

We will analyse τ-DELAY using a more general approach which also works for other choices of the
delay parameter τ⩽ n log n. First note that τ-DELAY is an instance of g1-ADV-COMP with g1 := τ−1.
This follows since for all steps, a bin could sampled (and be allocated to) at most τ−1 times during
the last τ− 1 steps. However, for a typical execution we expect each bin to be incremented much
less frequently during the last τ− 1 steps, and thus the process is with high probability an instance
of g2-ADV-COMP for some g2≪ g1.

We will now use Lemma 7.28 to prove Theorem 7.30.
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Proof of Theorem 7.30. Any bin can be allocated to at most n−1 times during an interval of τ−1=
n− 1 steps, so an adversary with g1 = n− 1 who is also aware of the entire history of the process,
can simulate τ-DELAY at any step t, by using the allocation information in steps [t − n, t].

To obtain the bound for g2, note that in TWO-CHOICE, at each step two bins are sampled for
each ball. So in n− 1 steps of TWO-CHOICE, there are 2(n− 1) bins sampled using ONE-CHOICE. By
the properties of ONE-CHOICE (Corollary B.21), we have that for any consecutive n− 1 allocations,
with probability at least 1 − n−6 we sample (and allocate to) no bin more than 11 log n/ log log n
times. In such a sequence of bin samples, we can simulate τ-DELAY using g2-ADV-COMP with g2 =
11 log n/ log log n. Hence, for any step t ⩾ 0,

Pr
�

g t ⩽ g2

�

⩾ 1− n−6.

Since the precondition of Lemma 7.28 holds for g1 = n− 1 and g2 = 11 log n/ log log n, we get that
there exists a constant κ > 0, such that

Pr
�

Gap(m)⩽ κ ·
log n

log log n

�

⩾ 1− n−2.

The same argument also applies for any τ ∈ [n · e− logc n, n log n]. For ONE-CHOICE with 2τ
balls the gap is w.h.p. polylog(n) (e.g., see Lemma B.20) and so we can apply Lemma 7.28 with
g2 = polylog(n), to obtain the gap bound of

g2

log g2
· log log n= Θ(g2).

Corollary 7.31. There exists a constant κ > 0, such that the τ-DELAY setting with any τ ∈ [n ·
e− logc n, n log n], where c > 0 is any constant, for any step m⩾ 0, it holds that

Pr

�

Gap(m)⩽ κ ·
log n

log
�4n
τ · log n

�

�

⩾ 1− n−2.

Remark 7.32. A matching lower bound holds for the b-BATCHED setting for any batch size b ∈ [n ·
e− logc n, n log n]. This follows by the lower bound for ONE-CHOICE with b balls (e.g., see Lemma B.24)
which matches the gap of b-BATCHED in the first batch (Observation C.5).

Therefore, Corollary 7.31 and Remark 7.32 establish that w.h.p. Gap(m) = Θ
�

log n
log((4n/b)·log n)

�

for
the b-BATCHED setting for any b ∈ [n · e− logc n, n log n]. However, the following remark (which also
applies to the τ-DELAY setting), establishes that there are regions where the b-BATCHED setting has
an asymptotically worse gap than ONE-CHOICE with b balls.

Remark 7.33. For any τ (or b) being n1−ε for any constant ε ∈ (0, 1), the ONE-CHOICE process has
Gap(b) = O(1) w.h.p. (see Corollary B.22). Hence, by Lemma 7.28 with g2 = O(1), τ-DELAY has for
any step m ⩾ 0, Gap(m) = O(log log n) w.h.p., which is asymptotically tight by Observation C.7 for
m= n.

7.5 b-BATCHED setting: Tighter bounds

In Section 3.2.2, we proved an O
� b

n · log n
�

bound for processes satisfying conditions C1 and C2, and

in Section 3.2.3, we proved an O
�

q

b
n · log n

�

bound for processes satisfying conditions C1 and C3.
In this section, using an interplay between two potentials, we improve these bounds to O

� b
n + log n

�

and O
�

q

b
n · log n

�

respectively, which are asymptotically tight as we show in Appendix C.1. More
specifically, we prove the following two theorems with their direct corollaries for concrete processes.
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Theorem 7.39 (Restated, page 157). Consider any SEQUENTIAL(qt) process with qt satisfying con-
dition C1 for constant δ ∈ (0,1) and constant ε ∈ (0,1) as well as condition C2 for some constant
C > 1, at every step t ⩾ 0. Further, consider the WEIGHTED b-BATCHED setting with any n ⩽ b ⩽ n3

and weights from a FINITE-MGF(S) distribution with constant S ⩾ 1. Then, there exists a constant
κ := κ(δ,ε, C , S)> 0, such that for any step m⩾ 0 being a multiple of b,

Pr
�

max
i∈[n]

ym
i ⩽ κ ·

�

b
n
+ log n

��

⩾ 1− n−2.

Corollary 7.34. Consider the WEIGHTED b-BATCHED setting with any b ∈ [2n log n, n3] and weights
from a FINITE-MGF(S) distribution with constant S ⩾ 1. Then, for the TWO-CHOICE, the (1 + β)-
process and the QUANTILE(δ) process with constant δ > 0,β ∈ (0,1), we have that there exists a
constant κ := κ(S)> 0 such that for any step m⩾ 0 being a multiple of b,

Pr
�

max
i∈[n]

ym
i ⩽ κ ·

�

b
n
+ log n

��

⩾ 1− n−2.

Theorem 7.35. Consider the WEIGHTED b-BATCHED setting with any b ∈ [2n log n, n3] and weights
from a FINITE-MGF(S) distribution with constant S ⩾ 1. Further let ε =

p

(n/b) log n. Consider
any SEQUENTIAL(qt) process with probability allocation vector qt satisfying condition C1 for constant
δ ∈ (0,1) and ε as well as condition C3 for C = 1+ε, at every step t ⩾ 0. Then, there exists a constant
κ := κ(δ, S)> 0, such that for any step m⩾ 0 being a multiple of b,

Pr

�

max
i∈[n]

ym
i ⩽ κ ·

√

√ b
n
· log n

�

⩾ 1− n−2.

The following corollary gives concrete instances of processes that give asymptotically better
bounds for the b-BATCHED setting than TWO-CHOICE.

Corollary 7.36. Consider the WEIGHTED b-BATCHED setting with any b ∈ [2n log n, n3] and weights
from a FINITE-MGF(S) distribution with constant S ⩾ 1. Then, for the (1+β) and theη-MIXED(QUANTILE(1/2),
ONE-CHOICE) processes with β = η=

p

(n/b) · log n, we have that there exists a constant κ := κ(S)>
0 such that for any step m⩾ 0 being a multiple of b,

Pr

�

max
i∈[n]

ym
i ⩽ κ ·

√

√ b
n
· log n

�

⩾ 1− n−2.

The proofs of these two theorems (Theorems 7.35 and 7.39) are quite similar, so we only present
the details for Theorem 7.39 and refer the reader to [114] for the proof of Theorem 7.35.

7.5.1 Proof outline of Theorem 7.39

There are two key steps in the proof of Theorem 7.39:
Step 1: Similarly to the analysis in Chapter 4 and Chapter 6, we will use two instances of the

hyperbolic cosine potential, in order to show that it is concentrated at O(n). More specifically, we
will be using Γ1 := Γ1(γ1) (defined in Eq. (3.1)) with the smoothing parameter γ1 := εδ

40·C2·S2 ·
min

� 1
log n , n

b

	

and Γ2 := Γ2(γ2) with γ2 := γ1
8·30 , i.e., with a smoothing parameter which is a large

constant factor smaller than γ1. So, in particular Γ t
2 ⩽ Γ

t
1 at any step t ⩾ 0. Also, note that by varying

b ∈ [n, n log n], both smoothing factors do not change, but this will not affect the upper bound, as
we shall see below.

In the following lemma, proven in Appendix D.5, we show that w.h.p. Γ2 = O(n) for log3 n
consecutive batches.
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Lemma 7.37 (Restatement of Lemma D.8). Consider any process satisfying the conditions in Theo-
rem 7.39. Let ec := 2 · 8c

δ where c := c(δ) > 0 is the constant from Theorem 3.2. Then, for any step
t ⩾ 0 being a multiple of b,

Pr





⋂

j∈[0,log3 n]

¦

Γ
t+ j·b
2 ⩽ ec · n

©



⩾ 1− n−3.

The proof follows the usual interplay between the two hyperbolic cosine potentials, in that con-
ditioning on Γ t

1 = poly(n) implies that ∆Γ t+1
2 = O( n

b · n
1/4) (Lemma D.10 (ii)). This in turn allows

us to apply a bounded difference inequality to prove concentration for Γ2. In contrast to Chapter 4
and Section 6.3, here we need a slightly different concentration inequality Theorem B.12, as in a
single batch the load of a bin may change by a large amount (with small probability). The complete
proof is given in Appendix D.5.

Step 2: Consider an arbitrary step s = t + j · b where {Γ s
2 ⩽ ec · n} holds. Then, the number of

bins i with load y s
i at least z := 1

γ2
· log(ec/δ) = Θ(max{b/n, log n}) is at most ecn · e−γ2z = δn. With

this in mind, we define the following potential function for any step t ⩾ 0, which only takes into
account bins that are overloaded by at least z balls:

Λt := Λt(λ, z) :=
∑

i:y t
i ⩾z

Λt
i :=

∑

i:y t
i ⩾z

eλ·(y
t
i −z),

where λ :=min
�

ε
4CS , n log n

b

	

. This means that when {Γ s
2 ⩽ ec ·n} holds, the probability of allocating to

one of these bins is qs
i ⩽

1−ε
n , because of the condition C1. Hence, the potential drops in expectation

over one batch (Lemma 7.38) and this means that w.h.p.Λm = poly(n), which implies that Gap(m) =
O(z +λ−1 · log n) =O(b/n+ log n) gap.

7.5.2 Completing the proof of Theorem 7.39

We will now show that when Γ t
2 = O(n), the stronger potential function Λt drops in expectation.

This will allow us to prove that Λm = poly(n) and deduce that w.h.p. Gap(m) =O(b/n+ log n).

Lemma 7.38. Consider any process satisfying the conditions in Theorem 7.39. Let ec := 2 · 8c
δ where

c := c(δ)> 0 is the constant from Theorem 3.2. For any step t ⩾ 0 being a multiple of b,

E
�

Λt+b
�

�Ft , Γ t
2 ⩽ ec · n

�

⩽ Λt · e−
λε
2n ·b + n · e

Cλ
n ·b.

Proof. Consider an arbitrary step t ⩾ 0 being a multiple of b and consider a sorted labelling of the
bins. Assuming that {Γ t

2 ⩽ ec · n} holds, the number of bins with load y t
i ⩾ z is at most

ec · n · e−γ2·z = ec · n · e− log(ec/δ) = δ · n.

For any bin i ∈ [n] with y t
i ⩾ z, we get as in Eq. (3.18) (using that λ⩽ 1),

E
�

Λt+b
i

�

� Ft
�

⩽ Λt
i ·
�

1+
�

qt
i −

1
n

�

·λ+ 2 · qt
i · Sλ

2
�b

.

The upper bound on E
�

Λt+b
�

�Ft , Γ t
2 ⩽ ec · n

�

is maximised when qt
i =

1−ε
n , using Lemma B.2 since

there are at most δn such bins (i.e., i ⩽ δn). So,

∑

i:y t
i ⩾z

E
�

Λt+b
i

�

� Ft , Γ t
2 ⩽ ec · n

� (a)
⩽

∑

i:y t
i ⩾z

Λt
i ·
�

1−
λε

n
+ 2 · C · S ·

λ2

n

�b
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(b)
⩽

∑

i:y t
i ⩾z

Λt
i ·
�

1−
λε

2n

�b (c)
⩽

∑

i:y t
i ⩾z

Λt
i · e
− λε2n ·b,

using in (a) that qt
i ⩽

C
n , in (b) that λ⩽ ε

4CS and in (c) that 1+ v ⩽ ev for any v. For the rest of the
bins with i > δn,

∑

i:y t
i <z

E
�

Λt+b
i

�

� Ft
�

⩽
∑

i:y t
i <z

Λt
i ·
�

1+
�

qt
i −

1
n

�

·λ+ 2 · qt
i · Sλ

2
�b

(a)
⩽

∑

i:y t
i <z

Λt
i ·
�

1+
C
n
·λ−

1
n
·λ+ 2 ·

C
n
· Sλ2

�b

(b)
⩽

∑

i:y t
i <z

Λt
i ·
�

1+
Cλ
n

�b (c)
⩽

∑

i:y t
i <z

�

1+
Cλ
n

�b (d)
⩽

∑

i:y t
i <z

e
Cλ
n ·b,

using in (a) that qt
i ⩽

C
n , in (b) that λ ⩽ ε

4CS , in (c) that Λt
i ⩽ 1 (as there are at most δn bins with

normalised load at least z) and in (d) that 1+ v ⩽ ev for any v.
Aggregating the contributions over all bins,

E
�

Λt+b
�

�Ft , Γ t
2 ⩽ ec · n

�

⩽
∑

i:y t
i ⩾z

Λt
i · e
− λε2n ·b +

∑

i:y t
i <z

e
Cλ
n ·b ⩽ Λt · e−

λε
2n ·b + n · e

Cλ
n ·b.

Theorem 7.39. Consider any SEQUENTIAL(qt) process with qt satisfying condition C1 for constant δ ∈
(0,1) and constant ε ∈ (0,1) as well as condition C2 for some constant C > 1, at every step t ⩾
0. Further, consider the WEIGHTED b-BATCHED setting with any n ⩽ b ⩽ n3 and weights from a
FINITE-MGF(S) distribution with constant S ⩾ 1. Then, there exists a constant κ := κ(δ,ε, C , S) > 0,
such that for any step m⩾ 0 being a multiple of b,

Pr
�

max
i∈[n]

ym
i ⩽ κ ·

�

b
n
+ log n

��

⩾ 1− n−2.

Proof. Consider first the case when m ⩾ b · log3 n. Let t0 = m− b · log3 n. Let E t := {Γ t
2 ⩽ ec · n}.

Then using Lemma D.8,

Pr





⋂

j∈[0,log3 n]

E t0+ j·b



⩾ 1− n−3. (7.21)

We define the killed potential eΛ, with eΛt0 := Λt0 and for j > 0,

eΛt0+ j·b := Λt0+ j·b · 1∩s∈[0, j]E t0+s·b .

By Lemma 7.38 for t = t0 + j · b, we have that

E
�

eΛt0+( j+1)·b
�

� Ft0+ j·b,E t0+s·b �⩽ eΛt0+ j·b · e−
λε
2n ·b + n · e

Cλ
n ·b.

When E t0+ j·b does not hold, it follows deterministically that eΛt0+( j+1)·b = eΛt0+ j·b = 0. Hence, we
have the following unconditional drop inequality

E
�

eΛt0+( j+1)·b
�

� Ft0+ j·b �⩽ eΛt0+ j·b · e−
λε
2n ·b + n · e

Cλ
n ·b. (7.22)

Assuming E t0 holds, we have

max
i∈[n]

y t0
i ⩽

1
γ2
· (logec + log n)⩽

2
γ2
· log n,
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for sufficiently large n. Recalling that γ2 = Θ(λ · log n), there exists a constant κ1 > 0 such that

eΛt0 ⩽ n · eλ·y
t0
1 ⩽ eκ1 log2 n.

Applying Lemma B.1 to Eq. (7.22) with a := e−
λε
2n ·b and b := n · e

Cλ
n ·b for log3 n steps,

E
h

eΛm
�

�

� Ft0 , eΛt0 ⩽ eκ1 log2 n
i

⩽ eκ1 log2 n · alog3 n +
n · e

Cλ
n ·b

1− a

(a)
⩽ 1+ 1.5 · n · e

Cλ
n ·b ⩽ 2 · n · e

Cλ
n ·b

(b)
⩽ 2 · n1+κ2 .

(7.23)

using in (a) that λε2n · b = Ω(1) and a is a constant < 1 and in (b) that Cλ
n · b ⩽ κ2 · log n for some

constant κ2 > 0, since λ=min
�

ε
4CS , n log n

b

	

.
By Markov’s inequality, we have

Pr
h

eΛm ⩽ 2 · n4+κ2

�

�

�Ft0 , eΛt0 ⩽ eκ1 log2 n
i

⩾ 1− n−3.

Hence, by Eq. (7.21),

Pr
�

eΛm ⩽ 2 · n4+κ2
�

= Pr
�

eΛm ⩽ 2 · n4+κ2
�

� E t0
�

· Pr
�

E t0
�

⩾
�

1− n−3
�

·
�

1− n−3
�

⩾ 1− 2n−3.
(7.24)

Combining Eq. (7.21) and Eq. (7.24), we have

Pr
�

Λm ⩽ 2 · n4+κ2
�

⩾ Pr





�

eΛm ⩽ 2 · n4+κ2
	

∩
⋂

j∈[0,log3 n]

E t0+ j·b



⩾ 1− 2n−3 − n−3 ⩾ 1− n−2.

Finally, {Λm ⩽ 2 · n4+κ2} implies that

max
i∈[n]

ym
i ⩽ z +

log 2
λ
+

1
λ
· (4+κ2) · log n=O(b/n+ log n),

since λ=min
�

ε
4CS , n log n

b

	

= Θ(max{b/n, log n}), so the claim follows.
For the case when m< b · log3 n, note that eΛt0 ⩽ n deterministically, which is a stronger starting

point in Eq. (7.23) to prove that E[Λm ]⩽ 2 · n1+κ2 , which in turn implies the gap bound.

7.6 GRAPHICAL setting for TWO-CHOICE

7.6.1 GRAPHICAL in the WEIGHTED b-BATCHED setting

In [152], the authors proved bounds on the gap for the (1 + β)-process (in the setting without
batches) where balls are sampled from a FINITE-MGF(ζ) distribution with constant ζ > 0. Then,
they used a majorisation argument to deduce gap bounds for the GRAPHICAL setting for the TWO-
CHOICE process (from here onwards referred to just as GRAPHICAL). However, due to the involved
majorisation argument not working for weights, all results for graphical allocation in [152] assume
balls are unweighted. This lack of results for weighted graphical allocations is summarised as [152,
Open Question 1]. By leveraging the results in previous sections, we are able to fill this “gap”.

For a d-regular (and connected) graph G, let us define the conductance as:

φ(G) := min
S⊆V : 1⩽|S|⩽n/2

|E(S, V \ S)|
|S| · d

,

where |E(S, V \ S)| counts (once) the edges between the sets S and V \ S. We will call a family of
graphs an expander, if φ is at least a constant bounded below from 0 (as n→∞).
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Lemma 7.40. Consider GRAPHICAL on a d-regular graph with conductance φ. Then, in any step t ⩾ 0,
the sorted allocation vector eqt satisfies for all 1⩽ k ⩽ n/2,

k
∑

i=1

eqt
i ⩽ (1−φ) ·

k
n

,

and similarly, for any n/2+ 1⩽ k ⩽ n,

n
∑

i=k

eqt
i ⩾ (1+φ) ·

n− k+ 1
n

.

Further, maxi∈[n] eq
t
i ⩽

2
n . Thus, the vector eqt satisfies condition C1 with δ = 1/2, ε = φ and condition

C2 with C = 2.

The proof of this lemma closely follows [152, Proof of Theorem 3.2].

Proof. Fix any load vector x t in step t. Consider any 1 ⩽ k ⩽ n/2. Let Sk be the k bins with the
largest load. Hence in order to allocate a ball into Sk, both endpoints of the sampled edge must be
in Sk, and so

k
∑

i=1

qt
i =

2 · |E(Sk, Sk)|
2 · |E|

⩽
d · k−φ · d · k

n · d
= (1−φ) ·

k
n

,

where the inequality used that d·|Sk|= |E(Sk, V\Sk)|+2·|E(Sk, Sk)| and the definition of conductance
φ. Now, we will consider the suffix sums for n/2+1⩽ k ⩽ n. We start by upper bounding the prefix
sum up to k− 1,

k−1
∑

i=1

eqt
i ⩽
|Sk−1| · d − |V \ Sk−1| ·φ · d

nd
⩽
(k− 1) · d − (n− k+ 1) ·φ · d

nd
=
(k− 1)− (n− k+ 1) ·φ

n
,

where the inequality used our assumption that G has conductance φ. Therefore, we lower bound
the suffix sum by

n
∑

i=k

eqt
i = 1−

k−1
∑

i=1

eqt
i ⩾ 1−

(k− 1)− (n− k+ 1) ·φ
n

= (1+φ) ·
n− k+ 1

n
.

Hence, eqt satisfies condition C1 with ε= φ.
Finally, we also know that qt

i ⩽
d

d·n/2 =
2
n , for any bin i ∈ [n], since in the worst-case we allocate

a ball to bin i whenever one of its d incident edges are chosen.

The next result is for the non-batched GRAPHICAL setting.

Theorem 7.41. Consider GRAPHICAL on a d-regular graph with conductance φ > 0. Further, assume
that balls are sampled from a FINITE-MGF(S) distribution with S > 1. Then, there exists a constant
κ > 0 such that for any step m⩾ 0,

Pr
�

max
i∈[n]
|ym

i |⩽ κ · S ·
log n
φ

�

⩾ 1− n−2.

Proof. By Lemma 3.5, we have that for the potentials Φ := Φ(γ) and Ψ := Ψ(γ) with γ := φ
32S ,

E
�

∆Φt+1
i

�

� x t
�

⩽ Φt
i ·
�

�

qt
i −

1
n

�

· γ+ 4S ·
γ2

n

�

,
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and

E
�

∆Ψ t+1
i

�

� x t
�

⩽ Ψ t
i ·
�

�

1
n
− qt

i

�

· γ+ 4S ·
γ2

n

�

.

Hence, applying Theorem 3.2 for ε := φ, δ := 1/2, we get for the potential Γ := Γ (γ) and any step
m⩾ 0,

E [ Γm ]⩽
8c
δ
· n,

for some constant c := c(δ)> 0. Hence, by Markov’s inequality

Pr
�

Γm ⩽
8c
δ
· n3

�

⩾ 1− n−2.

The event {Γm ⩽ 8c
δ · n

3} implies that

max
i∈[n]
|ym

i |⩽ log
�

8c
δ

�

+ 3 ·
32S
φ
· log n=O

�

S ·
log n
φ

�

.

The next result is a Theorem 7.41 which applies for the b-BATCHED GRAPHICAL setting.

Theorem 7.42. Consider GRAPHICAL on a d-regular graph with conductance φ > 0. Further, consider
the batched setting with b ⩾ n and assume that balls are sampled from a FINITE-MGF(ζ) distribution
with constant ζ > 0. Then, there exists a constant κ := κ(ζ) > 0 such that it holds for any step m ⩾ 0
being a multiple of b,

Pr
�

max
i∈[n]
|ym

i |⩽ κ ·
b
n
·

log n
φ

�

⩾ 1− n−2.

Further, if the conductance φ is lower bounded by a constant > 0 (i.e., G is an expander), and n⩽ b ⩽
n3, then there exists a constant κ := κ(ζ)> 0 such that for any m⩾ 0 being a multiple of b,

Pr
�

ym
1 ⩽ κ ·

�

b
n
+ log n

��

⩾ 1− n−2.

Note that our first gap bound generalises [152, Theorem 3.2], which is a gap bound of O
� log n
φ

�

in the setting without batches and weights. Similarly, our second result extends the O(log n) bound
from [152] for expanders, and proves that the same gap bound applies in the WEIGHTED b-BATCHED

setting with any b =O(n log n).

Proof. The first result follows directly from Lemma 7.40 and Theorem 3.14. For the second result,
ε= φ is a constant > 0, and we can apply the refined gap bound from Theorem 7.39.

7.6.2 GRAPHICAL on dense expanders

We now analyse the GRAPHICAL setting on dense expander graphs. To this end, we first recall some
basic notation of spectral graph theory and expansion. For an undirected graph G, the normalised
Laplacian Matrix of G is an n× n-matrix defined by

L= I−D−1/2 ·A ·D1/2,

where I is the identity matrix, A is the adjacency matrix and D is the diagonal matrix where Du,u =
deg(u) for any vertex u ∈ V . Further, let λ1 ⩽ λ2 ⩽ · · · ⩽ λn be the n eigenvalues of L, and let
λ := maxi∈[2,n] |1−λi| be the spectral expansion of G. Further, for any set U ⊆ V define vol(U) :=
∑

v∈U deg(v). Note that for a d-regular graph, we have vol(U) = d · |U | and vol(V ) = dn.
We now recall the following (stronger) version of the Expander Mixing Lemma (cf. [52]):

160



Lemma 7.43 (Expander Mixing Lemma). For any subsets X , Y ⊆ V ,
�

�

�

�

|2E(X , Y )| −
vol(X ) · vol(Y )

vol(V )

�

�

�

�

⩽ λ ·

Æ

vol(X ) · vol(X ) · vol(Y ) · vol(Y )
vol(V )

,

where vol(X ) = vol(V \ X ).

In the following, we consider G to be a d-regular graph.

Proposition 7.44. Consider GRAPHICAL on a d-regular graph G with spectral expansion λ. Then, at
any step t ⩾ 0, the sorted allocation vector eqt satisfies the following three inequalities.

(i) For any 1⩽ k ⩽ λ · n,
k
∑

i=1

eqt
i ⩽ 2λ ·

k
n

.

(ii) For any λ · n⩽ k,
k
∑

i=1

eqt
i ⩽ 2 ·

�

k
n

�2

.

(iii) For any 1⩽ k ⩽ n,
k
∑

i=1

eqt
i ⩽

k
n
·
�

1− (1−λ) ·
n− k

n

�

.

Proof. First statement. Fix 1 ⩽ k ⩽ λ · n. and let Sk be the k bins with the largest load. Using
Lemma 7.43 for X = Y = Sk:

2|E(Sk, Sk)|⩽ d ·
|Sk| · |Sk|

n
+λ ·

d|Sk|(n− |Sk|)
n

⩽ d ·
|Sk| · |Sk|

n
+λd · |Sk|.

Since |Sk|⩽ λ · n, we conclude that

2|E(Sk, Sk)|⩽ 2λd · |Sk|.

Note that in GRAPHICAL, we allocate a ball to one of the k bins with the largest load if and only if we
sample an edge in E(Sk, Sk). Using this and the upper bound on |E(Sk, Sk)| from above, it follows
that

|Sk|
∑

i=1

eqt
i =

2|E(Sk, Sk)|
2|E|

⩽
2λd|Sk|

nd
= 2λ ·

|Sk|
n

.

Second statement. Consider now the case where λn⩽ |Sk|. Then,

2|E(Sk, Sk)|⩽ d ·
|Sk| · |Sk|

n
+λd ·

|Sk| · (n− |Sk|)
n

⩽ d ·
|Sk| · |Sk|

n
+ d ·
|Sk| · |Sk|

n
·

n− |Sk|
n
⩽ 2d ·

|Sk| · |Sk|
n

.

and therefore,
|Sk|
∑

i=1

eqt
i =

2|E(Sk, Sk)|
2|E|

⩽
2d · |Sk|·|Sk|

n

nd
= 2 ·

� |Sk|
n

�2

.

Third statement. Finally, consider the general case where 1⩽ |Sk|⩽ n. Then using Lemma 7.43,

2|E(Sk, Sk)|⩽ d ·
|Sk| · |Sk|

n
+λd ·

|Sk|(n− |Sk|)
n

= d · |Sk| ·
�

1− (1−λ) ·
n− |Sk|

n

�

.

and therefore,

|Sk|
∑

i=1

eqt
i =

2|E(Sk, Sk)|
2|E|

⩽
d|Sk| ·

�

1− (1−λ) · n−|Sk|
n

�

nd
=
|Sk|
n
·
�

1− (1−λ) ·
n− |Sk|

n

�

.
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Lemma 7.45. Consider GRAPHICAL on a d-regular graph G with spectral expansion λ⩽ e−
1
4 (log n)(k−1)/k

for some integer k ⩾ 2. Then, for any step t ⩾ 0, the process is a k-RELAXED-QUANTILEγ,ε process with
γ= 2 and ε= 1/12.

Proof. Consider the GRAPHICAL setting on the graph G defined in the statement. We will verify that
it is a k-RELAXED-QUANTILEγ,ε process.

We start by verifying that eqt satisfies the first condition of k-RELAXED-QUANTILEγ,ε, i.e., condition
C1 with δ = 1/3 and ε = 1/12. First, consider any prefix sum of the sorted allocation vector eqt for
any j ∈ [1, n/3]. Then by Proposition 7.44 (iii),

j
∑

i=1

eqt
i ⩽

j
n
·
�

1− (1−λ) ·
n− j

n

�

⩽
j
n
·
�

1− (1−λ) ·
2
3

�

.

Since by assumption λ⩽ 1/2, we have 1− (1−λ) · 2
3 ⩽ 1− 1/3= 1− 4ε for ε= 1/12.

Similarly, for any j ∈ [(2/3)n, n], then by Proposition 7.44 (iii),

n
∑

i= j

eqt
i =

�

1−
j
n

�

·
�

1+
j
n
· (1−λ)

�

⩾
�

1−
j
n

�

·
�

1+
2
3
· (1−λ)

�

,

and thus again, since λ⩽ 1/2, we have 1+ 2
3 · (1−λ)⩾ 1+ 4ε.

We will now verify the second condition of k-RELAXED-QUANTILEγ,ε. Let δ1, . . . ,δk be the k
quantiles in the condition. then, for any 1⩽ j ⩽ δ1n, it follows by Proposition 7.44 (i),

j
∑

i=1

eqt
i ⩽ 2λ ·

j
n
·⩽ 2λ ·

δ1

n
⩽ γ ·

δ1

n
,

since γ= 2 and λ⩽ 1/2. Therefore, for any 1⩽ j ⩽ δ1n,

(eqt
1, . . . ,eqt

j )⪯
�

γ ·
δ1

n
, . . . ,γ ·

δ1

n

�

.

Consider now any prefix sum over eqt , where j ⩽ δℓ+1n for any 1 ⩽ ℓ < k. Then. by Proposi-
tion 7.44 (ii), we have that

j
∑

i=1

eqt
i ⩽ 2 ·

�

j
n

�2

⩽ 2 ·
δℓ+1

n
· j ⩽ 2 ·

δℓ +δℓ+1

n
· j = γ ·

δℓ +δℓ+1

n
· j.

Therefore, for any j ⩽ δℓ+1n

(eqt
1, . . . ,eqt

j )⪯
�

γ ·
δℓ +δℓ+1

n
, . . . ,γ ·

δℓ +δℓ+1

n

�

.

This concludes the proof showing that eqt satisfies the k-RELAXED-QUANTILEγ,ε condition, for any
step t ⩾ 0.

Theorem 7.46. Consider GRAPHICAL on a d-regular graph G with spectral expansion λ⩽ 1/2. Further,
let k be the largest integer with 1⩽ k ⩽ kmax such that e−

1
4 (log n)(k−1)/k

⩾ eλ :=max{λ, e−
1
4 (log n)(kmax−1)/kmax }.

Then, there exists a constant κ > 0 such that for any step m⩾ 0,

Pr

�

Gap(m)⩽ κ · k ·
�

log n

log(1/eλ)

�(k+1)/k �

⩾ 1− n−3.

We will postpone the proof for the moment, and first state the following bound that follows
immediately from the theorem above when λ decays polynomially in n:
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Corollary 7.47 (Special case of Theorem 7.46). Consider GRAPHICAL on d-regular graph on G with
spectral expansion λ ⩽ n−c for some constant c > 0. Then there is a constant κ = κ(c) > 0 such that
for any m⩾ 1,

Pr [Gap(m)⩽ κ · log log n ]⩾ 1− n−3.

Note that λ ⩽ n−c1 captures a relaxed, multiplicative approximation of Ramanujan graphs (it is
in fact more relaxed than the existing notion “weakly Ramanujan”). Recently, [170] proved that for
any poly(n) ⩽ d ⩽ n/2, a random d-regular graph satisfies the constraint on λ with probability at
least 1− n−1.

Further, we remark that the above result in some sense extends one of the main results of [100]
which states that for any graph with degree n1/ log log n, graphical balanced allocation achieves a gap
of at most Θ(log log n) in the lightly loaded case (m = n). Our result above also refines a previous
result of [152] which states that for any expander graph, a gap bound of O(log n) holds (even in
the heavily-loaded case m ⩾ n). In conclusion, we see that the gap bound of O(log log n) extends
from the complete graph (which is the “original” TWO-CHOICE process) to other graphs, provided
we have a strong expansion and high density.

Proof of Theorem 7.46. By Lemma 7.45 the process is an instance of k-RELAXED-QUANTILEγ,ε for
γ = 2 and ε = 1/12. Therefore, by Theorem 7.20, it follows that there exists a constant κ > 0 such
that

Pr
�

Gap(m)⩽ κ · k · (log n)1/k
�

⩾ 1− n−3.

By assumption on k, we have

−
1
4
· (log n)(k−1)/k ⩾ log(eλ), (7.25)

but also, as k is chosen as large as possible,

−
1
4
· (log n)k/(k+1) ⩽ log(eλ).

Thus

(log n)1/k ⩽
�

log n

log(1/eλ)

�(k+1)/k

. (7.26)

Applying the gap bound of κ·k ·(log n)1/k from Theorem 7.20, and using 7.26 we get the conclusion.

7.7 MEMORY process

In this section, we state the main results for the MEMORY process. The proofs and omitted details
can be found in [118]. Our main result is an upper bound for the HETEROGENEOUS setting, demon-
strating that it performs better than TWO-CHOICE, for which the gap diverges even when a = 10 and
b = 10 [176].

Theorem 7.48 ([118, Theorem 1.1]). Consider the HETEROGENEOUS(MEMORY,S) process where S
is an (a, b)-biased sampling distribution, for arbitrary constants a, b ⩾ 1. Then, there exists a constant
κ := κ(a, b)> 0 such that for every step m⩾ 0,

Pr [Gap(m)⩽ κ · log log n ]⩾ 1− n−3.

163



For the case of the uniform sampling distribution, we get a matching lower bound by Theo-
rem C.26.

For the upper bound, the base case follows by the analysis of the RESET-MEMORY process. Then,
for the layered induction we proceed as we have done so far for the k-DENSE-QUANTILE and k-
DENSE-THRESHOLD process, but several modifications are needed. We outline these modifications
below, but for space reasons, we will not include all lemmas.

As a corollary of the analysis, we also get the following upper bound for the (1, 1, d)-RESET-
MEMORY process.

Theorem 7.49 ([118, Theorem 1.5]). Consider the (1,1, d)-RESET-MEMORY process for any constant
d ⩾ 1. Then, there exists a constant κ > 0, such that for any step m⩾ 0, we have that

Pr [Gap(m)⩽ κ · log n ]⩾ 1− n−3.

Full Potentials. We will be using layered induction over super-exponential potential functions,
similar to the one used in Section 7.2, but with some differences (see discussion below). We now
define the super-exponential potential functions for 1⩽ j ⩽ jmax − 1,

Ψ t
j :=

n
∑

i=1

Ψ t
j,i :=

n
∑

i=1

eα1·v j ·(y t
i −z j)+ , and Φt

j :=
n
∑

i=1

Φt
j,i :=

n
∑

i=1

eα2·v j ·(y t
i −z j)+ ,

where we set

z j :=
5v
α2
· j, v :=max{log(2C b), 36b}, C :=max{6c, 6}, jmax = logv

�α2

2v
log n

�

, (7.27)

and α1,α2, c > 0 are constants with α1 = 6 · 14 ·α2. Our aim is to prove that Φm
jmax−1 =O(n), which

implies that Gap(m) =O(log log n).

The folded process. In the j-th layer of the layered induction (for 1 ⩽ j ⩽ jmax − 1), we analyse
the following folded process of which MEMORY is an instance. For this, we group the steps into
consecutive rounds (of varying lengths), and refer to the s-th step within the round as substep s.
Further, we let y r,s

i be the normalised load of bin i after substep s of round r. Then, we define the
folded process as follows:

• For each round r ⩾ 0, sample bin i := i(r) ∈ [n] according to the sampling distribution S:

– Case A: If y r,0
i ⩾ z j−1 +

2v
α2

, then allocate one ball to an arbitrary bin ℓ with y r,0
ℓ
⩽ y r,0

i ,
and proceed to the next round.

– Case B: Otherwise, start a sequence of consecutive phases each consisting of v
α2

substeps
(that is, each phase k ⩾ 1 consists of substeps s ∈ [(k− 1) · v

α2
, k · v

α2
) within the current

round r). In each substep s, we sample one bin i = i(r, s) according to S and allocate
one ball to an arbitrary bin ℓ with y r,s

ℓ
⩽ z j−1 +

4v
α2

. At the end of each phase, we also
complete the round if either of the following two conditions hold:

* Condition 1: In none of the substeps s of the current phase did we sample a bin ℓ
with y r,s

ℓ
< z j−1 +

2v
α2

at the corresponding substep s.

* Condition 2: We have completed k j := ev j+1
· log3 n⩽ n1/7 phases.
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+
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Figure 7.3: The phases and rounds of the folded process. Brown lines indicate the first substep
within a phase in which a light bin was sampled (as can be seen in the second phase of round r +1,
this does not necessarily mean that this bin is going to be used for allocation or as a cache). As
shown, it is only possible to allocate to a bin with normalised load above z j−1 +

5v
α2

after a long
sequence of red rounds.

Partial potentials. For the recovery phase, i.e., showing that at some step s in an interval of n ·
polylog(n) length we have Φs ⩽ Cn, we will need larger drop rates for the potentials, so we will be
using the following potentials defined only over the heavy bins

Ψ̇ t
j :=

n
∑

i=1

Ψ̇ t
j,i :=

∑

i:y t
i ⩾z j

eα1·v j ·(y t
i −z j), and Φ̇t

j :=
n
∑

i=1

Φ̇t
j,i :=

∑

i:y t
i ⩾z j

eα2·v j ·(y t
i −z j),

for α1,α2, z j > 0 defined as above. In contrast to Φ j (and Ψ j) which are always ⩾ n (since each
bin contributes at least 1), Φ̇ j (and Ψ̇ j) could be as small as 0. Also, Φ̇t

j ⩽ Φ
t
j ⩽ Φ̇

t
j + n (and

Ψ̇ t
j ⩽ Ψ

t
j ⩽ Ψ̇

t
j + n).

Potentials over rounds. We also define versions of the Φ j and Ψ j potentials indexed by a round
r ⩾ 0 (note the starting step of the first round may not be equal to 0):

Ψ
r
j :=

n
∑

i=1

eα1·v j ·(y r,0
i −z j)+ , and Φ

r
j :=

n
∑

i=1

eα2·v j ·(y r,0
i −z j)+ .

Similarly, we define the partial potential functions over rounds

Ψ̈ r
j :=

∑

i:y t
i ⩾z j

eα1·v j ·(y r,0
i −z j), and Φ̈r

j :=
∑

i:y t
i ⩾z j

eα2·v j ·(y r,0
i −z j).

Differences to previous applications: These potentials are similar in form to the ones used in
Section 7.2 for k = Θ(log log n). However, the analysis is different as the potentials drop in expec-
tation only when considering a sufficiently long interval (e.g., the folded version of the process).
For example, starting from a state where the cache has load at least z j + 1, the potential Φ j will
increase in expectation over one step. Considering rounds consisting of several balls, introduces
several challenges:
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• Issue 1: In each round we could allocate as many as k j balls, which could be Ω(nε). This

would mean, that starting from a round r0 withΦr0 =O(e0.5 log3 n) and having a drop inequality
similar to that in Lemma 6.2, e.g.,

E
h

Φ
r+1
j

�

�

� Fr ,Φ
r
j−1 ⩽ Cn

i

⩽ Φ
r
j ·
�

1−
1
n

�

+ 2,

we may need Ω(n log3 n) rounds to prove that the potential becomes O(n) in expectation. In
these rounds, we could allocate Ω(n1+ε · log3 n) balls (k j in each round) and so the length of
the interval of the entire analysis would need to beω(n·polylog(n)). However, it would not be
possible to tolerate a poly(n) probability decrease in each layer, as we have jmax = Θ(log log n)
layers.

Solution: Define the potential function Φ̈ j over just the bins with normalised load at least z j .
For this potential function, we can show that:

E
h

Φ̈r+1
j

�

�

� Fr ,Φ
r
j−1 ⩽ 2Cn

i

⩽ Φ̈r
j ·
�

1−
ev j+1

n

�

+ e−v j
.

This means that starting from a round r0 with Φr0 = O(e0.5 log3 n), we need to wait only for
n · e−v j+1

· log3 n rounds, so at most n · log6 n steps, for the potential to become O(n).

• Issue 2: Unfortunately, for stabilisation, i.e., showing that Φs
j = O(n) for n · polylog(n) steps,

we cannot use the partial potential function Φ̈ j , as it could change byΩ(n1/3) in a single round.

Consider the case where there are n · e−v j
bins (for j = 1), whose load is z j +

k j
n . Then in a

single round, we could allocate k j balls only in light bins, so that the potential becomes 0.

Hence, the potential decreases by n ·e−v j
·eα2k j/n = Ω(n), for j = 1. This means that we can no

longer apply the concentration inequality, as the bounded difference condition is not strong
enough.

Solution: For this part of the analysis, we use the full potential Φ j and a stopping time to guar-
antee that the number of balls allocated at every application of the concentration inequality is
at most n/ log2 n. This allows us to apply the smoothness argument to argue that the potential
is O(n) in every step in the interval.
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Chapter 71/2: DP for balanced allocations

In this chapter, we show a simple application of dynamic programming to balanced allocations
processes and some of the insights that can be obtained for small values of n and m.

Exact probabilities. For any Markovian (meaning that pt(Ft) = p(x)) and index-independent
(meaning that p(x) = p(sorted(x))) process we can use the following forward dynamic program-
ming equations to compute the exact probability Qt(x) = Pr

�

x t = x
�

for each sorted load vector
x ,

Qt+1(sorted(x + ei)) += Qt(x) · pi(x), for all i ∈ [n],

and using that Q0(x) = 1x=0. Note that when computing Qt+1 we only need the values from Qt , so
we can use memoisation.

Having access to the exact probabilities means that we can plot the distribution of any function
f : Nn→ R of the load vector, such as the gap, minimum load, the ℓ2-norm of the load vector and so
on (see Fig. 7.5 and Table 7.4). In addition, we can compute for instance the expectation of these
quantities or other properties of these random variables.

Process/Parameters m= n= 10 m= n= 20 m= n= 30
ONE-CHOICE 2.748 3.231 3.492

(1+ β) for β = 1/2 2.369 2.699 2.913
MEDIAN-QUANTILE 2.260 2.542 2.743
MEAN-THINNING 2.242 2.550 2.763
QUANTILE(δ∗) 2.168 2.348 2.497
TWO-CHOICE 2.061 2.152 2.224

MEMORY 2.209 2.427 2.586

Table 7.4: Exact computation (to 4 significant figures) of E [Gap(m) ] for m= n and n ∈ {10,20, 30}
using dynamic programming.

This confirms the empirical observation in [136, Section 5] that for small values of n, TWO-
CHOICE has a smaller gap than MEMORY. We also confirm that is still the case for some values of
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Figure 7.5: Exact probability distribution for Gap(m) for various processes for m= n= 30.
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m⩾ n in Table 7.7.

Computing optimal parameters. Using a similar dynamic programming computation, we com-
pute the exact expected gap for the MEMORY∗ process, an optimal version of MEMORY which can
look at the entire load vector and also decide whether to allocate to a cache (and which one). In
particular, the first two columns in Table 7.8 show that it is not always optimal to allocate to the
cache, even if the process has exactly one cache. The third and fourth column shows the improve-
ment for two caches and raises the question whether the improvement is just in the lower order
terms or whether it leads to a gap that is o(log log n).

TWO-CHOICE (1,1)-MEMORY (1,2)-MEMORY (1,3)-MEMORY

10 2.061 2.209 2.053 1.996
20 2.152 2.427 2.168 2.066
30 2.224 2.586 2.266 2.119

Table 7.6: Exact computation of E [Gap(m) ] for m = n and n ∈ {10,20, 30} using dynamic pro-
gramming. The table shows that for small values of n, TWO-CHOICE is better than MEMORY with
d = 1, sometimes better than MEMORY with d = 2, but worse than MEMORY with d = 3.

m= n m= 2n m= 3n m= 4n
TWO-CHOICE (n= 10) 2.061 2.132 2.168 2.186
MEMORY (n= 10) 2.209 2.335 2.372 2.385
TWO-CHOICE (n= 15) 2.113 2.205 2.250 2.273
MEMORY (n= 15) 2.326 2.462 2.500 2.512

Table 7.7: Exact computation of E [Gap(m) ] for n ∈ {10, 15} and m ∈ {n, 2n, 3n, 4n} using dynamic
programming. As in Table 7.6, it confirms that TWO-CHOICE has a smaller expected gap than MEM-
ORY.

n (1,1)-MEMORY (1,1)-MEMORY∗ (1,2)-MEMORY∗

10 2.209 2.099 2.015
20 2.427 2.201 2.043
30 2.586 2.294 2.070

Table 7.8: Exact computation of E [Gap(m) ] for m = n and n ∈ {5, 10,15, 20,25, 30,35} using
dynamic programming. The table shows that for small values of n, TWO-CHOICE is better than
MEMORY∗ with one cache, but worse than MEMORY∗ with two caches.
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CONCLUSIONS

In summary, we introduced a set of techniques for analysing balanced allocation processes in the
heavily-loaded case. The techniques are summarised as follows: (i) a refined analysis for the ex-
pectation of the hyperbolic cosine potential (Chapter 3) and its concentration (Chapter 4), (ii) an
interplay between absolute value, quadratic and exponential potentials (Chapter 5), (iii) an anal-
ysis of super-exponential potentials in expectation and their concentration (Chapter 6) and (iv) a
layered induction over super-exponential potentials (Chapter 7). These techniques allowed us to
obtain asymptotically tight bounds for large families of processes and in a broad variety of settings,
including outdated, noisy and incomplete information (see Tables A.1 to A.4). These reveal several
insights into the balanced allocations problem, such as

• The characterisation of adversarial noise in the TWO-CHOICE process (Section 7.4.1). As a
corollary of this, we obtained bounds for TWO-CHOICE with random and delay noise (Sec-
tion 7.4.3).

• A phase transition in the b-BATCHED setting, where for batch size b ⩽ n log n, TWO-CHOICE is
asymptotically optimal among processes making a constant number of samples (Section 7.4.3);
and for b≫ n log n where instances of the (1+β)-process and QUANTILE(δ) processes have a
gap that improves that of TWO-CHOICE roughly quadratically (Section 7.5).

• Exploring various novel ways for obtaining balanced allocations, such as the “power of filling”
underloaded bins using processes like TWINNING and PACKING (Section 5.2.2), which also
achieve an O(log n) gap in sparse regular graphs, like cycles (Remark 2.20).

• Deriving gap bounds for the weighted GRAPHICAL setting making progress on [152, Open Prob-
lem 1], by extending their O(log n/φ) bound on the gap for regular expanders with conduc-
tance φ to hold in the presence of weights and even for the b-BATCHED setting (Section 7.6.1).
Further, we extend the results of [100] to prove sub-logarithmic gap bounds for expanders in
the heavily-loaded case (Section 7.6.2).

• For TWO-THINNING processes, we proved a lower bound that refutes [75, Problem 1.3] (see Ap-
pendix C.3). Following [76], we analysed more easily-realisable processes, namely QUANTILE(δ∗),
which asymptotically achieves this optimal gap and RELATIVE-THRESHOLD processes which are
within polyloglog(n) factors of the optimal. Then, we established a “power of two queries”
phenomenon for processes that use two samples and make more than one queries per sample
(Section 7.2.1). The generality of the analysis also gave us a near-tight bound on d-THINNING

processes with d ⩾ 2 (Section 7.3.1).

• Investigating the “power of MEMORY” when sampling with heterogeneous distributions of ar-
bitrary constant imbalance, and also demonstrating its robustness to resets (Section 7.7).

• In [116], we also used some of the lower bound techniques and the interplay between the
quadratic potential and number of empty bins, to resolve two conjectures in the Repeated
Balls-into-Bins setting [23].

There are several open questions remaining in the area of balanced allocations and various
interesting processes and settings to be explored. We think that a large number of processes and
settings can be analysed using these techniques and extensions thereof. A small set of these are the
following:
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• Establishing tight lower and upper bounds for d-THINNING, k-QUANTILE and k-THRESHOLD.
The result for the QUANTILE(δ∗) process hints that the bound for k-DENSE-QUANTILE process
need not be tight. As shown in [76] for k = 1, the optimal bounds may differ if the number of
balls m is known in advance. This raises the questions: (i) are there easily-realisable processes
that achieve the optimal bounds when m is known in advance and (ii) does this also extend
for k ⩾ 2?

• Establishing tight bounds for TWO-CHOICE in the GRAPHICAL setting for arbitrary graphs, like
cycles. This problem has also been stated as [152, Open Problem 2] and in related settings
in [23]. Another interesting direction is to design simpler processes that improve upon TWO-
CHOICE and are more easily-realisable than the ones in [20]. It may be of interest to explore
how some of the processes like MEAN-THINNING perform in the GRAPHICAL setting.

• Analysing other real-world processes in the outdated and noisy settings, such as the (k, d)-
CHOICE process [146]. It would also be interesting to explore more closely the connection
between the outdated setting and that of having multiple allocators, which is one of the main
motivations in real-world systems for studying settings with delayed information.

• There are several interesting questions regarding the MEMORY process. One possible direction
is to quantify the advantage of the optimal MEMORY strategy when M ⩾ 1 (it is not optimal
to allocate in the least loaded of the sampled and the cached bin) and whether this gives any
advantage over TWO-CHOICE in the presence of weights. Another could be to obtain tight
bounds for (a, b)-biased distributions for not necessarily constant a, b > 1.

• Analysing variants of the d-THINNING process which penalise the number of samples rejected
(and thus improve the sample efficiency), e.g., on the k-th sample you allocate k balls (or a
number of balls that is given by a non-decreasing function f (k)).

• Devising techniques for deriving bounds that are tight up to lower order terms for the various
settings considered.

• Analysing noisy settings where the noise parameters are dependent on the bins (i.e., are het-
erogeneous) and unknown, so they have to be learnt.
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upper bound for small β , 63
upper bound in BATCHED setting, 155
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definition, 88
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average load, 27
average-aware load comparison, 32
averaging transformation, 29
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d-CHOICE process
definition, 31
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average-aware load comparison, 32
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exponential potential function
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for the MEMORY process, 163

hyperbolic cosine potential function
concentration, 78
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independent weights case, 40
index-independent, 28
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definition, 48
upper bound, 140
upper bound for k = 2, 135, 138

k-DENSE-THRESHOLD process
definition, 46
upper bound, 141
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load comparison, 32
load probability preserving transformation, 28
load vector, 27
load-dependent weights case, 40
load-vector indistinguishable, 28
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Markovian processes, 28
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MEAN-BIASED processes
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definition, 50
upper bound, 90

MEAN-THINNING process
definition, 46
lower bound, 216
upper bound, 93
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definition, 49
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probability vector
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Condition C2, 37
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definition, 26

Quadratic potential
definition, 88
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definition, 48
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QUANTILE(δ∗), 142
RELAXED-QUANTILE condition, 143
uniform, 48
upper bound, 64
upper bound in BATCHED setting, 155

QUANTILE(δ∗)
definition, 142
upper bound, 142

RELATIVE-THRESHOLD processes
definition, 46
lower bound, 216
relation to MEAN-THINNING, 47

RELAXED-QUANTILE condition
definition, 143
upper bound, 143

RESET-MEMORY process
definition, 33
lower bound, 217
upper bound, 164

ρ-Noisy-Load
definition, 43
upper bound, 152

round, 34
ROUND-ROBIN process

definition, 30

sample-efficiency, 45
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Schur convex, 34
setting, 39
σ-Noisy-Load

definition, 44
lower bound, 207

sorted load vector, 28
sorted normalised load vector, 28
sorted probability allocation vector, 29
standard vectors, 26
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Super-exponential potential function
concentration, 123
definition, 122
expectation, 123

τ-DELAY setting
definition, 42
lower bound, 199
upper bound, 153, 154
visualisation, 15, 42

THRESHOLD processes
definition, 46
RELATIVE-THRESHOLD processes, 46
See also MEAN-THINNING, 46

TIME-HOMOGENEOUS processes
definition, 29
with random tie breaks, 29

total weight, 40
TWINNING process

definition, 49
lower bound, 216
upper bound, 93

with quantiles, 64
TWO-CHOICE process

definition with decision function, 30
definition with probability vector, 30
upper bound for batch size b ⩾ n log n,

155
upper bound for batch size b ⩽ n log n,

153, 154
TWO-THINNING processes

definition, 45
lower bound, 209
See also MEAN-THINNING, 45

underloaded, 27
underloaded bins, 28
uniform vector, 26
unweighted case, 27, 40

WEIGHTED setting
definition, 39
independent weights case, 40

zero vector, 26
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SUMMARY OF EXPLICIT BOUNDS

Process Range Lower bound Reference Upper bound Reference

TWO-CHOICE – Ω(log log n) [18, Thm 1.1] O(log log n) [29, Thm 2]

(1+ β) β ⩽ 1−Ω(1) Ω
� log n
β

�

[152, Sec 4] O
� log n
β +

log(1/β)
β

�

[152, Cor 2.12]

(1+ β) β ⩽ 1−Ω(1) – – O
� log n
β

�

Thm 3.7

(1+ β) β = 1− e−
1
4 (log n)1−1/k

for k ∈ [1, log log n] – – O
�

k · (log n)1/k
�

Thm 7.23

(1+ β) β = 1−Ω(e−
1
4 log1−1/k n) for 1− 1

k ∈ [Ω(1), 1) Ω
�

k · (log n)1/k
�

Lem C.21 – –

(1+ β) β = 1− poly(n−1) Ω(log log n) Obs C.7 O(log log n) Thm 7.23

MEMORY – Ω(log log n) Thm C.26 O(log log n) Thm 7.48

(1, 1,2)-RESET-MEMORY – Ω(log n) Lem C.27 O(log n) Thm 7.23

PACKING – Ω
� log n

log log n

�

[117, Thm 10.2] O(log n) [117, Thm 4.3]

TWINNING – Ω(log n) Cor C.24 O(log n) Cor 5.12

MEAN-THINNING – Ω(log n) Cor C.24 O(log n) Cor 5.12

RELATIVE-THRESHOLD( f (n)) f (n)⩾ 0 – – f (n) +O(log n) Cor 5.13

RELATIVE-THRESHOLD( f (n)) f (n)⩾ log n Ω( f (n)) Lem C.25 – –

TWO-THINNING( f t) – Ω
� log n

log log n

�

Thm C.15 – –

TWO-THINNING( f t) – – – O
� log n

log log n

�

[76, Thm 1]

QUANTILE(δ) – – – O
� log n
δ

�

Cor 3.9

QUANTILE(δ∗) δ∗ = (log log n)2

log n – – O
� log n

log log n

�

Thm 7.19

k-DENSE-QUANTILE k ∈ [1, log log n] – – O
�

k · (log n)1/k
�

Thm 7.11

k-DENSE-THRESHOLD k ∈ [1, log log n] – – O
�

k · (log n)1/k
�

Thm 7.14

d-THINNING – – – O
�

(d − 1) · (log n)1/(d−1)
�

Lem 7.21

d-THINNING – – – Ω
�

d ·
� d log n

log log n

�1/d�
[77, Prop 4.1]

Table A.1: Overview of the lower and upper bounds for different processes derived in previous
works (rows in Gray ) and in this work (rows in Green ). All upper bounds hold for all values of
m⩾ n w.h.p., while lower bounds may only hold for a suitable value of m w.h.p.. In all the above.
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Process Graphical Batch size Weights Gap bound Reference

TWO-CHOICE d-reg., conduct. φ – – O
� log n
φ

�

[152, Thm 3.2]

TWO-CHOICE d-reg., conduct. φ – random O
� log n
φ

�

Thm 7.41

TWO-CHOICE d-reg., conduct. φ b ⩾ n random O
�

b
n ·

log n
φ

�

Thm 7.42

TWO-CHOICE expander, d =O(1) b ∈ [n, n3] random O
�

b
n + log n

�

Thm 7.42

TWO-CHOICE
expander, spectral gap λ

e−
1
4 (log n)1−1/k

⩾ λ for k ∈ [1, log log n]
– – O

�

k · (log n)1/k
�

Thm 7.46

TWO-CHOICE
expander, spectral gap λ

λ= poly(n−1)
– – O(log log n) Cor 7.47

Table A.3: Overview of the gap bounds in previous works (rows in Gray ) and the gap bounds
derived in this work (rows in Green ) for graphical allocations. The upper bounds on the gap hold
for all values of m, while some of the lower bounds may only hold for certain m.

Setting Range Lower bound Reference Upper bound Reference

g-BOUNDED 1⩽ g – – O(g · log(ng)) [142]

g-ADV-COMP 1⩽ g – – O(g · log(ng)) Thm 3.21

g-ADV-COMP 1⩽ g – – O(g + log n) Thm 5.26

g-ADV-COMP 1< g ⩽ log n – – O
� g

log g · log log n
�

Thm 7.25

g-MYOPIC-COMP
log n

log log n ⩽ g Ω(g) Pro C.8 – –

g-MYOPIC-COMP 1< g ⩽ log n
log log n Ω

� g
log g · log log n

� Obs C.7
Thm C.9

– –

σ-NOISY-LOAD 1⩽ σ – – O
�

σ
p

log n · log(nσ)
�

Pro 7.29

σ-NOISY-LOAD 2 · (log n)−1/3 ⩽ σ Ω
�

min{1,σ} · (log n)1/3
�

Pro C.11 – –

σ-NOISY-LOAD 4⩽ σ Ω
�

min{σ4/5,σ2/5 ·
p

log n}
�

Pro C.11 – –

Table A.2: Overview of the lower and upper bounds for different noise settings for TWO-CHOICE

derived in previous works (rows in Gray ) and in this work (rows in Green ). All upper bounds hold
for all values of m ⩾ n w.h.p., while lower bounds may only hold for a suitable value of m w.h.p..
Recall that g-BOUNDED and g-MYOPIC-COMP can be simulated by g-ADV-COMP and (2g)-ADV-COMP,
respectively.
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Process Range Lower bound Reference Upper bound Reference

TWO-CHOICE b = n – – O(log n) [28, Thm 1]

b-BATCHED C1,C2 b ⩾ n – – O
�

b
n · log n

�

Thm 3.14

b-BATCHED C1,C2 b ∈ [n, n3] – – O
�

b
n + log n

�

Thm 7.39

b-BATCHED C1,C3 b ⩾ n log n – – O
�

q

b
n · log n

�

Cor 3.18

b-BATCHED C1,C3 b ⩾ n log n – – O
�

q

b
n · log n

�

Cor 7.36

(1+ β), β ⩽ 1−Ω(1) b ⩾ 1 Ω(log n) – – Prop C.2

TWO-CHOICE,
(1+ β), β = Ω(1)

b ⩾ n log n Ω( b
n ) – – Prop C.3

τ-DELAY(TWO-CHOICE) τ= n – – O
� log n

log log n

�

Thm 7.30

τ-DELAY(TWO-CHOICE) τ ∈ [n · e−(log n)c , n log n] – – O
�

log n
log((4n/τ) log n)

�

Rem 7.31

τ-DELAY(TWO-CHOICE) τ= n1−ε – – O(log log n) Rem 7.33

b-BATCHED(TWO-SAMPLE) b ⩾ n log n Ω(
q

b
n · log n) Obs C.5 – –

b-BATCHED(TWO-CHOICE) b = n Ω( log n
log log n ) Obs C.5 – –

b-BATCHED(TWO-CHOICE) b ∈ [n · e−(log n)c , n log n] Ω
�

log n
log((4n/b) log n)

�

[157, Thm 1] – –

b-BATCHED(TWO-CHOICE) b = n1−ε Ω(log log n) Obs C.7 – –

Table A.4: Overview of the gap bounds in previous works (rows in Gray ) and the gap bounds
derived in this work (rows in Green ). The upper bounds on the gap hold for all values of m, while
some of the lower bounds may only hold for certain m. The parameters c,ε can be any constant in
(0,1).
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TOOLS

B.1 Auxiliary lemmas

We begin with a simple lemma for a sequence of random variables whose expectation satisfies a
recurrence inequality.

Lemma B.1. Consider any sequence of random variables (X i)i∈N for which there exist 0 < a < 1 and
b > 0, such that every i ⩾ 1,

E
�

X i | X i−1
�

⩽ X i−1 · a+ b.

Then, (i) for every i ⩾ 0,

E
�

X i | X 0
�

⩽ X 0 · ai +
b

1− a
.

Further, (ii) if X 0 ⩽ b
1−a holds, then for every i ⩾ 0,

E
�

X i
�

⩽
b

1− a
.

Proof. First statement. We will prove by induction that for every i ∈ N,

E
�

X i | X 0
�

⩽ X 0 · ai + b ·
i−1
∑

j=0

a j .

For i = 0, E
�

X 0 | X 0
�

⩽ X 0. Assuming the induction hypothesis holds for some i ⩾ 0, then since
a > 0,

E
�

X i+1 | X 0
�

= E
�

E
�

X i+1 | X i
�

| X 0
�

⩽ E
�

X i | X 0
�

· a+ b

⩽

 

X 0 · ai + b ·
i−1
∑

j=0

a j

!

· a+ b

= X 0 · ai+1 + b ·
i
∑

j=0

a j .

The claims follows using that
∑i

j=0 a j ⩽
∑∞

j=0 a j = 1
1−a , for any a ∈ (0,1).

Second statement. We will prove this claim by induction. Then, assuming that E
�

X i
�

⩽ b
1−a

holds for i ⩾ 0, we have for i + 1

E
�

X i+1
�

= E
�

E
�

X i+1 | X i
� �

⩽ E
�

X i
�

· a+ b ⩽
b

1− a
· a+ b =

b
1− a

.

Next, we proceed with a standard fact, whose proof we give for completeness.

Lemma B.2. Let p, q ∈ Rn be two probability vectors such that p ⪰ q and c ∈ Rn be non-negative and
non-increasing. Then,

〈p, c〉⩾ 〈q, c〉.

Proof. We will consider a sequence of moves between p and q, which gradually moves probability
mass from lower to higher coordinates. Specifically, we define the following sequence:

r1 = (p1, p2, p3, p4, . . . , pn) = p
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r2 = (q1, p2 + (p1 − q1), p3, p4, . . . , pn)

r3 = (q1, q2, p3 + (p1 + p2 − q1 − q2), p4, . . . , pn)

r4 = (q1, q2, q3, p4 + (p1 + p2 + p3 − q1 − q2 − q3), . . . , pn)
...

rn =
�

q1, q2, q3, . . . , qn−1, pn +
n−1
∑

i=1

(pi − qi)
�

= q,

where in the last equation we used pn +
∑n−1

i=1 (pi − qi) = pn − pn + qn = qn.
For any 1 ⩽ k < n, since rk and rk+1 differ only in the k-th and (k + 1)-st coordinate, and

∑k
i=1(pi − qi)⩾ 0, we conclude it follows that

〈rk, c〉 − 〈rk+1, c〉⩾ rk
k ck + rk

k+1ck+1 − rk+1
k ck + rk+1

k+1 ck+1

= ck ·
�

�

pk +
k−1
∑

i=1

(pi − qi)
�

− qk

�

+ ck+1 ·
�

pk+1 −
�

pk+1 +
k
∑

i=1

(pi − qi)
�

�

= (ck − ck+1) ·
k
∑

i=1

(pi − qi)

⩾ 0.

Hence 〈p, c〉= 〈r1, c〉⩾ 〈r2, c〉⩾ · · ·⩾ 〈rn, c〉= 〈q, c〉.

Lemma B.3. The function f (z) = z · ek/z for k > 0, is decreasing for z ∈ (0, k].

Proof. By differentiating,

f ′(z) = ek/z − z · ek/z ·
k
z2
= ek/z ·

�

1−
k
z

�

.

For z ∈ (0, k), f ′(z)< 0, so f is decreasing.

B.2 Concentration inequalities

In this section, we state several well-known concentration inequalities.

Lemma B.4 (Multiplicative factor Chernoff Binomial Bound [137]). Let X 1, . . . , X n be independent
binary random variables with Pr

�

X i = 1
�

= p. Then,

Pr

� n
∑

i=1

X i ⩾ npe

�

⩽ e−np,

and

Pr

� n
∑

i=1

X i ⩽
np
e

�

⩽ e(
2
e−1)np.

Next we state a Chernoff bound for Poisson random variables.

Lemma B.5 (Theorem 5.4 from [138]). Let X ∼ Pois(λ), then for any 0< δ < 1,

Pr [X ⩽ (1−δ) ·λ ]⩽ e−λδ
2/2,

and
Pr [X ⩾ (1+δ) ·λ ]⩽ e−λδ

2/3.
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Theorem B.6 (Berry-Esseen [71]). Let X 1, . . . , X n be a sequence of i.i.d. random variables with mean
µ, variance σ2 and central moment ρ = E[ |X i − µ|3 ]. Then, there exists a constant C > 0 such that
for α ∈ R

�

�

�

�

�

Pr

� 1
n

∑n
i=1 X i −µ
σp
n

⩽ α

�

− eΦ(α)

�

�

�

�

�

⩽ C ·
ρ

σ3
p

n
,

where eΦ is the cumulative distribution of the standard normal distribution.

Lemma B.7 (Berry-Esseen for Poisson r.vs). Let X ∼ Po(m), where m ∈ N, then for any α ∈ R

�

�Pr
�

X ⩽ m+α
p

m
�

− eΦ(α)
�

�⩽ C ·
ρ

σ3
p

m
.

Proof. The sum of n independent Poisson r.vs. with parameters (ki)ni=1 is a Poisson r.v. with parame-
ter
∑n

i=1 ki (e.g. [138, Lemma 5.2]). Hence, we can write X as the sum of m r.vs. X i ∼ Po(1). Then,
applying Theorem B.6 gives,

�

�

�

�

�

�

Pr





∑n
i=1 X i

m −µ
σp
m

⩽ α



− eΦ(α)

�

�

�

�

�

�

=
�

�Pr
�

X ⩽ m+α
p

m
�

− eΦ(α)
�

�⩽ C ·
ρ

σ3
p

m
.

The next lemma is a standard Chernoff bound for sum of independent random variables whose
moment generating function is bounded.

Lemma B.8. Assume X 1, X 2, . . . , X k are independent samples from a distribution W, for which there is
a constant λ > 0 such that E [W ] = 1 and E[ eλW ]⩽ S. Then for X :=

∑k
i=1 X i , it holds for that

Pr [X ⩾ 2 log(S)/λ · k ]⩽ exp (− log(S) · k) .

Furthermore, for the special case k = 1, we have for any c > 0,

Pr
�

X 1 ⩾ 1/λ · (c · log(n) + log(S))
�

⩽ n−c .

Proof. Let t ∈ (0,λ] to be specified later. Then,

Pr [X ⩾ 2 log(S)/λ · k ] = Pr
�

etX ⩾ et·2 log(S)/λ·k �

⩽ E
�

etX
�

· exp (−t · 2 log(S)/λ · k)

=
�

E
�

etX 1
��k
· exp (−t · 2 log(S)/λ · k)

⩽
�

E[ eλX 1
]
�k·t/λ

· exp (−t · 2 log(S)/λ · k)

⩽ Sk·t/λ · exp (−t · 2 log(S)/λ · k)
= exp (k · (log(S) · t/λ− t · 2 log(S)/λ)) ,

where the second inequality is due to Jensen’s inequality. Choosing t = λ yields the claim.
For the second statement, for any c > 0,

Pr
�

X 1 ⩾ 1/λ · (c · log(n) + log(S))
�

⩽ Pr
�

eλX 1
⩾ e−c·log(n)−log(S)

�

⩽ E
�

eλW
�

· e−c·log(n)−log(S)

⩽ S · n−c ·
1
S
= n−c .
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B.3 Concentration inequalities for martingales

In this section, we state several well-known inequalities for martingales.

Lemma B.9 ([51, Theorems 6.1 & 6.5]). Consider a martingale X 0, . . . , X N with filtration F0, . . . ,FN

satisfying |X i − X i−1|⩽ M and Var
�

X i | Fi−1
�

⩽ σ2
i for any i ∈ [N], then for any λ > 0,

Pr
� �

�X N − E
�

X N
��

�⩾ λ
�

⩽ 2 · exp

�

−
λ2

2 · (
∑N

i=1σ
2
i +Mλ/3)

�

.

Lemma B.10 (Azuma’s Inequality for Super-Martingales [67, Problem 6.5]). Let X 0, . . . , X n be a
super-martingale satisfying |X i − X i−1|⩽ ci for any i ∈ [n], then for any λ > 0,

Pr
�

X n ⩾ X 0 +λ
�

⩽ exp

�

−
λ2

2 ·
∑n

i=1 c2
i

�

.

A concentration inequality with a bad event. Following [107], we will now give the definition
for strongly difference-bounded and then give the statement for a bounded differences inequality with
bad events.

Definition B.11 (Strongly difference-bounded – Definition 1.6 in [107]). Let Ω1, . . . ,ΩN be prob-
ability spaces. Let Ω =

∏N
k=1Ωk and let X be a random variable on Ω. We say that X is strongly

difference-bounded by (η1,η2,ξ) if the following holds: there is a “bad” subset B ⊆ Ω, where ξ =
Pr [ω ∈ B ]. If ω,ω′ ∈ Ω differ only in the k-th coordinate, and ω /∈ B, then

|X (ω)− X (ω′)|⩽ η2.

Furthermore, for any ω and ω′ differing only in the k-th coordinate,

|X (ω)− X (ω′)|⩽ η1.

Theorem B.12 (Theorem 3.3 in [107]). Let Ω1, . . . ,ΩN be probability spaces. Let Ω=
∏N

k=1Ωk, and
let X be a random variable on Ω which is strongly difference-bounded by (η1,η2,ξ). Let µ = E[X ].
Then for any λ > 0 and any γ1, . . . ,γN > 0,

Pr [X ⩾ µ+λ ]⩽ exp

�

−
λ2

2 ·
∑

k∈[N](η2 +η1γk)2

�

+ ξ ·
∑

k∈[N]

1
γk

.

B.4 Probabilistic inequalities

We start with showing that a random variable with bounded MGF also has bounded fourth moment.

Lemma B.13. Consider a random variable W with E
�

eλW
�

<∞ for some λ > 0. then

E
�

W 4
�

<

��

8
λ

�

· log
�

8
λ

��4

+ E
�

eλW
�

.

Proof. Let κ := (8/λ) · log(8/λ). Consider x ⩾max(0,κ) =: κ∗. Then

eλx/4 = eλx/8 · eλx/8 ⩾ elog(8/λ) · eλx/8 ⩾
8
λ
·
λx
8
= x ,

using that ez ⩾ z for any z. Hence,
eλx = (eλx/4)4 ⩾ x4.
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Hence, if px is the pdf of W , then

E
�

W 4
�

=

∫ ∞

x=0

x4 · px d x =

∫ κ∗

x=0

x4 · px d x +

∫ ∞

x=κ∗
x4 · px d x

⩽
∫ κ∗

x=0

κ4 · px d x +

∫ ∞

x=κ∗
eλx · px d x

⩽ κ4 ·
∫ ∞

x=0

px d x +

∫ ∞

x=0

eλx · px d x = κ4 + E
�

eλW
�

.

Lemma B.14. Consider any n ⩾ 2 and λ ⩾ 16 · log n. Let X 1, . . . , X n be independent Poisson random
variables with X i ∼ Pois(λ), and denote by for Y(n), Y(n−1) the smallest and second smallest of the X i ’s.
Then there exist constants κ1,κ2 > 0 such that,

Pr
�

Y(n−1) − Y(n) ⩾ κ1 ·
Æ

λ/ log n
�

⩾ κ2.

Proof. Let X ∼ Pois(λ), where λ := m/n⩾ 16 · log n. Let k ⩾ 0 be the minimal integer such that

Pr [Pois(λ)⩽ k ]⩾ n−1.

By Lemma B.5 for δ :=
p

4 ·λ−1 · log n, we have

Pr
�

X ⩽ λ−
Æ

4 ·λ · log n
�

⩽ e−λ·δ
2/2 = e−2 log n = n−2.

Hence it follows that k ⩾ λ− 2 ·
p

λ · log n. Next note that

Pr [Pois(λ) = k+ 1 ]
Pr [Pois(λ) = k ]

=
λ

k+ 1
, (B.1)

which, since k ⩾ 1
2λ (as λ⩾ 16 log n), also implies that

Pr [Pois(λ)⩽ k ]⩽ 2 · n−1.

Our next claim is that

Pr [Pois(λ) = k ]⩽ 2 · n−1 · 1/
Æ

λ/ log n.

We will now derive this claim. We have

2n−1 ⩾ Pr [Pois(λ)⩽ k ]

=
k
∑

j=0

Pr [Pois(λ) = j ]

(a)
=

k
∑

j=0

Pr [Pois(λ) = k ] ·
k−1
∏

i= j

i
λ

⩾
Æ

λ/ log n · Pr [Pois(λ) = k ] ·
�

k−
p
λ

λ

�

p
λ/ log n

(b)
⩾
Æ

λ/ log n · Pr [Pois(λ) = k ] ·
�

λ− 3
p

λ log n
λ

�

p
λ/ log n

=
Æ

λ/ log n · Pr [Pois(λ) = k ] ·
�

1−
3

p

λ/ log n

�

p
λ/ log n
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(c)
⩾
Æ

λ/ log n · Pr [Pois(λ) = k ] · c1,

for some constant c1 > 0, where in (a) we used Eq. (B.1) and in (b) we used that k ⩾ λ−2
p

λ log n,
and in (c) that λ⩾ 16 log n.

Next we wish to upper bound

Pr
�

Pois(λ)⩽ k+ c2 ·
Æ

λ/ log n
�

,

for some constant c2 > 0. Note that

Pr
�

Pois(λ)⩽ k+ c2 ·
Æ

λ/ log n
�

(a)
⩽ Pr [Pois(λ)⩽ k ] +

c2

p
λ/ log n
∑

i=1

λi

k · (k+ 1) · . . . · (k+ i − 1)
· Pr [Pois(λ) = k ]

⩽ 2n−1 + c2 ·
Æ

λ/ log n ·
λc2

p
λ/ log n

kc2

p
λ/ log n

· 2 · n−1 · 1/
Æ

λ/ log n

= 2n−1 + 2c2 ·
�

1−
1

c
p

λ · log n

�−c2

p
λ/ log n

· n−1

⩽ c3 · n−1, (B.2)

for another constant c3 > 0, where (a) is due to Eq. (B.1).
We now use the principle of deferred decisions when exposing the n independent Poisson vari-

ables with mean λ denoted by X 1, X 2, . . . , X n one by one. Let τ :=min{ j : X j ⩽ k}. With probability
1−(1−1/n)n ⩾ 1−1/e, we have τ < n. Conditional on that, Xτ+1, . . . , X n are still n−τ independent
Poisson variables with mean λ. Due to Eq. (B.2), the probability that all of the following Poisson
random variables are larger than k+ c2 ·

p

λ/ log n is at least

�

1− c3 · n−1
�τ ⩾

�

1− c3 · n−1
�n ⩾ c4,

where c4 > 0 is another constant.
Hence with probability at least (1− 1/e) · c4, we have a gap of at least c2 ·

p

λ/ log n between
Y(n−1) and Y(n).

B.5 Facts about the ONE-CHOICE process

In this section, we collect several facts about the ONE-CHOICE process. We first restate the so-called
Poisson approximation method.

Lemma B.15 ([138, Corollary 5.11]). Let (x T )i∈[n] be the load vector after T steps of ONE-CHOICE.
Further, let (ex T )i∈[n] be n independent Poisson random variables with parameterλ= T/n each. Further,
let E be any event which is determined by x T , and further assume that Pr [E ] is either monotonically
increasing in T or monotonically decreasing in T . Further, let eE be the corresponding event determined
by ex T . Then,

Pr [E ]⩽ 2 · Pr
�

eE
�

.

B.5.1 Maximum load: The m= cn log n balls case

The next standard result was also used in [152, Section 4] and is based on [157]. For convenience
of the reader, we give the self-contained proof for obtaining high probability bounds.
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Lemma B.16. Consider the ONE-CHOICE process for m= cn log n balls where c ⩾ 1/ log n. Then,

Pr
�

Gap(m)⩾
p

c
10
· log n

�

⩾ 1− n−2.

Proof. In order to use the Poisson Approximation [138, Chapter 5], let x̂1, x̂2, . . . , x̂n be n indepen-
dent Poisson random variables with parameter λ= m

n = c log n. Then,

Pr
�

x̂ i ⩾ λ+
p

c
10
· log n

�

⩾ Pr
�

x̂ i = λ+
p

c
10
· log n

�

= e−λ ·
λλ+

p
c

10 ·log n

(λ+
p

c
10 · log n)!

.

Using that z!⩽
p

2πz
� z

e

�z
e

1
12z for any integer z ⩾ 1,

Pr
�

x̂ i = λ+
p

c
10
· log n

�

⩾
1

4 ·
p

2πλ
· e−λ ·

 

eλ

λ+
p

c
10 · log n

!λ+
p

c
10 ·log n

⩾
1

4 ·
p

2πλ
· e
p

c
10 log n ·

�

1+
1

10
p

c

�−λ−
p

c
10 ·log n

⩾
1

4 ·
p

2πλ
· e
p

c
10 log n · e−

1
10
p

c ·(λ+
p

c
10 ·log n)

⩾
1

4 ·
p

2πλ
· e
p

c
10 log n− 1

10
p

cλ−
1

100 log n

⩾
1

4 ·
p

2πλ
· e−

1
100 log n

Since for any k ⩾ 0,

Pr [ x̂ i = k+ 1 ]
Pr [ x̂ i = k ]

=
λ

k+ 1
,

we conclude that

Pr
�

x̂ i ⩾ λ+
p

c
10
· log n

�

⩾

p
λ−1
∑

k=0

Pr
�

x̂ i = λ+
p

c
10
· log n+ k

�

⩾
p

λ · Pr
�

x̂ i = λ+
p

c
10
· log n+

p

λ

�

⩾
p

λ · Pr
�

x̂ i = λ+
p

c
10
· log n

�

·

p
λ

∏

k=1

 

λ

λ+
p

c
10 · log n+ k

!

⩾
p

λ ·
1

4 ·
p

2πλ
· e−

1
100 log n ·

 

λ

λ+
p

c
10 · log n+

p
λ

!

p
λ

⩾
p

λ ·
1

4 ·
p

2πλ
· e−

1
100 log n ·

�

1+
1

5
p

c

�−
p
λ

⩾
p

λ ·
1

4 ·
p

2πλ
· e−

1
100 log n · e−

1
5

p
log n

⩾ e−
1
99 log n = n−1/99,

where the last inequality holds for sufficiently large n. Hence,

Pr

� n
⋃

i=1

§

x̂ i ⩾ λ+
p

c
10
· log n

ª

�

⩾ 1−
�

1− n−1/99
�n
⩾ 1− n−3.
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Hence for eE :=
¦

maxi∈[n] x̂ i ⩾ λ+
p

c
10 · log n

©

, we have Pr
�

¬eE
�

⩽ n−3. Note that eE is a monotone

event under adding balls, and thus with E :=
¦

Gap(m)⩾ λ+
p

c
10 · log n

©

, we have by [138, Corollary
5.11])

Pr [¬E ]⩽ 2 · Pr
�

¬eE
�

⩽ 2 · n−3 ⩽ n−2.

B.5.2 Maximum load: The very lightly-loaded case

The following facts about the (very) lightly-loaded region of ONE-CHOICE, follow from the concen-
tration inequalities stated before. The results by Raab and Steger [157] do not cover the region
m ≪ n/polylog(n), do not provide an estimate for the number of balls with height at least k and
also the bounds are not derived for at least 1− n−c probability.

Lemma B.17. Consider the ONE-CHOICE process with m = n
logc n balls into n bins, where c > 0 is an

arbitrary constant. Then, for any constant α > 0 and for sufficiently large n,

Pr
�

Gap(m)>
1

c + 1
·

log n
log log n

�

⩾ 1−
2
nα

.

Proof. We will bound the probability of event E , that the maximum load is less than M = 1
c+1 ·

log n/ log log n. The maximum load is a function that is increasing with the number of balls.
The technique of Poissonisation [3, Theorem 12] states that for ONE-CHOICE, the probability of

a monotonically increasing event (in this case E) is bounded by twice the probability that the event
holds for independent Poisson r.vs. in place of the load r.vs.

We define E ′ to be the event that the maximum load is less than M , for n Poisson r.vs. Thus,
Pr [E ]⩽ 2 ·Pr

�

E ′
�

. We bound Pr
�

E ′
�

by bounding the probability that no bin has load exactly M .
We want

Pr
�

E ′
�

⩽



1−
e−

1
logc n

�

1
logc n

�M

M !





n

⩽ exp



−n
e−

1
logc n

�

1
logc n

�M

M !



⩽
1
nα

.

This is equivalent to showing that

−n
e−

1
logc n

�

1
logc n

�M

M !
< −α log n⇐⇒ log n−

1
logc n

−Mc log log n− log M !> log (α log n)

⇐⇒ log n− log (α log n)−
1

logc n
> Mc log log n+ log M !.

Using Stirling’s upper bound [79, Equation 9.1],

Mc log log n+ log M !< Mc log log n+M(log M − 1) + log M

= M(c log log n− log (c + 1) + log log n− log log log n− 1) + log M

= M(c + 1) log log n− C M −M log log log n+ log M

= log n− C M −M log log log n+ log M

< log n− log (α log n)−
1

logc n
,

for sufficiently large n, since log (α log n) + 1
logc n = o(M log log log n − M) for any constant α > 0.

Hence, we get the desired lower bound.

We now extend Lemma B.17 to a case with fewer balls.
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Lemma B.18. (cf. Lemma B.17) Consider the ONE-CHOICE process with m = n
eu logc n (for constants

0 < c < 1 and u > 0) balls into n bins. Then, for any constant k > 0 with u · k < 1, for any constant
α > 0 and for sufficiently large n,

Pr
�

Gap(m)⩾ k · (log n)1−c
�

⩾ 1−
2
nα

.

Proof. We define E and E ′ as in Lemma B.17. We bound Pr
�

E ′
�

by bounding the probability that
no bin has load exactly M = k · (log n)1−c . We claim

Pr
�

E ′
�

⩽

 

1−
e−e−u logc n �

e−u logc n
�M

M !

!n

⩽ exp

 

−n
e−e−u logc n �

e−u logc n
�M

M !

!

<
1
nα

,

which is equivalent to showing that

−n
e−e−u logc n �

e−u logc n
�M

M !
< −α log n⇔ log n− e−u logc n −Mu logc n− log M !> log (α log n)

⇔ log n− log (α log n)− e−u logc n > Mu logc n+ log M !.

Using Stirling’s upper bound [79, Equation 9.1],

Mu logc n+ log M !< Mu logc n+M(log M − 1) + log M

= M(u logc n+ log k+ (1− c) log log n− 1) + log M

= ku · log n+M(log k+ (1− c) log log n− 1) + log M

< log n− log (α log n)− e−u logc n,

for sufficiently large n, since log (α log n) + e−u logc n + M(log k + (1 − c) log log n − 1) + log M =
o((1−u · k) log n) for any constant α > 0 and u · k < 1. Hence, we get the desired lower bound.

We use the following well known results for ONE-CHOICE.

Lemma B.19. Consider the ONE-CHOICE process, for any α > 0, any bin i ∈ [n], and any step m⩾ 0,

E[ eαxm
i ]⩽ e

m
n ·(e

α−1).

Proof. We will proceed inductively to show that E[ eαxm
i ] ⩽ e

m
n ·(e

α−1). The base case follows since
E[ eαx0

i ] = 1 ⩽ 1. For m ⩾ 1, let Zm
i indicate whether the m-th ball was allocated to bin i ∈ [n] and

assume that E[ eαxm−1
i ]⩽ e

m−1
n ·(e

α−1) holds, then

E
�

eαxm
i
�

= E
�

eα(Z
m
i +xm−1

i )
�

= E
�

eαZm
i
�

· E
�

eαxm−1
i

�

=
�1

n
· eα +

�

1−
1
n

�

· e0
�

· E
�

eαxm−1
i

�

=
�

1+
1
n
· (eα − 1)

�

· E
�

eαxm−1
i

�

(a)
⩽ e

1
n ·(e

α−1) · E
�

eαxm−1
i

�

⩽ e
1
n ·(e

α−1) · e
m−1

n ·(e
α−1) = e

m
n ·(e

α−1).

using in (a) that 1+ u⩽ eu (for any u).

We now proceed to obtain an upper bound for the maximum load of ONE-CHOICE for any m ⩽
2n log n. As we will show in Lemma B.23, this bound is asymptotically tight.

Lemma B.20 (cf. [3, Lemma 14]). Consider the ONE-CHOICE process for any m⩽ 2n log n. Then,

Pr

�

max
i∈[n]

xm
i ⩽ 11 ·

log n

log(4n
m · log n)

�

⩾ 1− n−6.
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Proof. Using Lemma B.19, for the given m and α = log(4n
m · log n) > 0, we have that for any bin

i ∈ [n],
E[ eαxm

i ]⩽ e
m
n ·e

log( 4n
m ·log n)

= n4.

Hence, by Markov’s inequality,
Pr
�

eαxm
i ⩽ n11

�

⩾ 1− n−7.

When this event holds, we have

xm
i ⩽

1
α
· log(n11)⩽ 11 ·

log n

log(4n
m · log n)

.

By taking the union bound over all bins i ∈ [n], we get the claim.

For m=O(n), this recovers the well-known O
� log n

log log n

�

bound.

Corollary B.21 (cf. [138, Chapter 5]). Consider the ONE-CHOICE process for m= 2n. Then,

Pr
�

max
i∈[n]

xm
i ⩽ 11 ·

log n
log log n

�

⩾ 1− n−6.

For m=O(n1−ε) for some constant ε ∈ (0,1), this shows that Gap(m) =O(1).

Corollary B.22. Consider the ONE-CHOICE process with m= 2n1−ε for any constant ε ∈ (0,1). Then,

Pr
�

max
i∈[n]

xm
i ⩽

11
ε

�

⩾ 1− n−6.

In the following lemma, we prove that the ONE-CHOICE bound obtained in Lemma B.20 is asymp-
totically tight.

Lemma B.23 (cf. Lemma 14 in [3]). Consider the ONE-CHOICE process with m⩽ n log n. Then, there
exists a constant κ > 0, such that

Pr

�

max
i∈[n]

xm
i ⩾

1
4
·

log n

log(4n
m · log n)

�

⩾ 1− n−1.

Proof. We will bound the probability of event E , that the maximum load is less than M = 1
4 ·

log n
log( 4n

m ·log n)
. Clearly, the probability of the event E is monotonically increasing in the number of

balls (while keeping M fixed).
Following Lemma B.15, it suffices to bound the probability of the event eE which is that the

maximum value of n independent Poisson random variables with parameter λ = m
n is less than M .

We want to show that

Pr
�

eE
�

⩽

 

1−
e−

m
n
�m

n

�M

M !

!n

⩽ exp

 

−n ·
e−m/n

�m
n

�M

M !

!

< n−1.

This is equivalent to showing that

−n ·
e−m/n

�m
n

�M

M !
< − log n⇐⇒ log n−

m
n
+M · log

�m
n

�

− log M !> log log n

⇐⇒ log n+M · log
�m

n

�

>
m
n
+ log M !+ log log n.

Using log M !⩽ M · (log M − 1) + log M (e.g., in [79, Equation 9.1]), we deduce that

m
n
+M ·

�

log M − 1− log
�m

n

��

+ log M + log log n
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<
3
4
· log n+

log n

4 · log
�

4n log n
m

� ·
�

log log n− log
�

4 · log
�

4n log n
m

��

− log
�m

n

�

�

=
3
4
· log n+

log n

4 · log
�

4n log n
m

� ·
�

log
�

4n log n
m

�

− log
�

16 · log
�

4n log n
m

���

⩽
3
4
· log n+

log n

4 · log
�

4n log n
m

� · log
�

4n log n
m

�

=
3
4
· log n+

1
4
· log n= log n,

for sufficiently large n and using that log
�4n log n

m

�

> 0 as m ⩽ n log n. Hence, we get the desired
lower bound.

Combining with Lemma B.16, we also get the asymptotically tight bound on the gap

Lemma B.24 (cf. [3, Lemma 14]). Consider the ONE-CHOICE process with m ⩽ n log n. Then, there
exists a constant κ > 0, such that

Pr

�

Gap(m)⩾ κ ·
log n

log
�4n

m · log n
�

�

⩾ 1− n−1.

Proof. For sufficiently small constant C ∈ (0, 1), for any m⩽ Cn log n we have that

1
4
·

log n

log
�4n

m · log n
� ⩾ 2 ·

m
n

,

and hence the conclusion follows by Lemma B.23 for κ = 1
8 . For m > Cn log n, the stated bound

follows from Lemma B.16.

B.5.3 Number of bins above a certain load

Lemma B.25. Consider the ONE-CHOICE process for m= n log2 n. With probability at least 1−o(n−2),
there are at least cn log n balls with at least m

n +
a
2 log n height for a = 0.4 and c = 0.25.

Proof. Consider the event E that the number of balls with load above a
2 log n is at most 1

5 log n.
Since E is monotonically increasing in the number of balls, its probability is bounded by twice the
probability of the event occurring for independent Poisson random variables [3, Theorem 12].

By Berry-Esseen inequality for Poisson random variables (Lemma B.7), for sufficiently large n
and since ε= (log n)−4,

�

�Pr [Y ⩾ a ]− eΦ(a)
�

�⩽ ε⇒ eΦ(a)− ε⩽ Pr
�

X ⩾ log2 n+ a log n
�

⩽ eΦ(a) + ε.

For a = 0.4, we get eΦ(a) ⩽ 0.35. Let X i := 1(Yi ⩾ log2 n + a log n) and let X :=
∑n

i=1 X i , then
X is a Binomial distribution with p ⩽ 0.35. Using the lower tail Chernoff bound for the Binomial
distribution (Lemma B.4),

Pr

� n
∑

i=1

X i ⩽
np
e

�

⩽ e−Ω(n).

For sufficiently large n, the RHS can be made o(1/n2), hence there are at least np/e bins with load
at least m

n + a log n w. p. 1 − o(1/n2). This means that w.h.p. at least np/e · a log n = npa
e log n ⩽

0.26 · n log n balls have height m
n +

a
2 log n= m

n + 0.4 log n.
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Lemma B.26. (cf. Lemma B.25) Consider the ONE-CHOICE process with m= Kn
p

log n−O(Kn
p

log n·
e−
p

log n) balls, for K = 1/10. Then, with probability at least 1 − n−4, there are at least 1
20 ·

e−0.21
p

log nn
p

log n balls with height at least 3
20 ·

p

log n.

Proof. Let C := 1
20 and note that m = K(1 − o(1))n

p

log n. Using Poissonisation [3, Theorem
12], the probability that the statement of the lemma does not hold is upper bounded by twice the
probability for the corresponding event with n independent Poisson random variables X1, X2, . . . , Xn
with parameter λ = m

n = K(1 − o(1))
p

log n. For a single Poisson random variable X , we lower
bound the probability that X ⩾ u for u= (K + 2 · C)

p

log n,

Pr [X ⩾ u ]⩾ Pr [X = u ] =
e−λλu

u!
⩾

e−λλu

eu(u/e)u
= e−λ+u−1−log u

�

λ

u

�u

⩾ exp
�

(K + 2 · C)
Æ

log n · log
�

K(1− o(1))
K + 2 · C

��

⩾ exp (−0.8(K + 2 · C)
Æ

log n)> exp (−0.2
Æ

log n),

where the penultimate inequality used log
�

K(1−o(1))
(K+2·C)

�

> −0.8. Using Lemma B.4, this implies that

w.p. 1− n−4 at least ne−0.20
p

log n−1 ⩾ ne−0.21
p

log n bins have load at least (K + 2 · C)
p

log n, so at

least e−0.21
p

log n · Cn
p

log n balls have height at least (K + C)
p

log n.
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LOWER BOUNDS

In this chapter, we prove lower bounds for various of the processes and settings analysed in the
previous chapters. More specifically, in Appendix C.1, we prove lower bounds for settings with
outdated information. In Appendix C.2, we prove lower bounds for settings with adversarial and
random noise. Next, in Appendix C.3, we prove lower bounds for TWO-THINNING processes. Finally,
in Appendix C.5, we prove lower bounds for MEAN-BIASED processes.

We employ the following set of techniques:

• Use of coupling and majorisation with a ONE-CHOICE process (e.g., Observation C.7, Theo-
rem C.15 and Lemma C.27). To analyse the ONE-CHOICE process, we often employ Poissoni-
sation (see Appendix B.5).

• Use of upper bounds on (exponential) potential functions to bound the number of bins with a
normalised load in a given range (e.g., Theorem C.26).

• Use of layered induction (e.g., Theorem C.9 and Theorem C.26), in a spirit similar to [18], but
with significant modifications.

C.1 Lower bounds for settings with outdated information

For the lower bounds we always assume that balls are unweighted (or equivalently, have unit
weight).

We will now establish an interesting behaviour for a family of processes (including (1+β) with
constant β ∈ (0, 1) and QUANTILE(δ)with constant δ ∈ (0,1)), that in the b-BATCHED setting for any
b ∈ [n, n log n], the gap isΘ(log n). We do this by proving a matching lower bound for Theorem 7.39.

We recall the following result which assumes no batching, i.e., balls are allocated sequentially
using perfect knowledge about the bin loads.

Lemma C.1. Consider any SEQUENTIAL(qt) process (in the unweighted setting) with allocation vector
qt satisfying mini∈[n] q

t
i ⩾

C
n for some constant C > 0 at every step t ⩾ 0. Then, for m= C

16 n log n,

Pr
�

Gap(m)⩾
C
16
· log n

�

⩾ 1− 2n−2.

Proof. The proof follows via a coupling with ONE-CHOICE. Since mini∈[n] q
t
i ⩾

C
n at every step t ⩾ 0,

by a Chernoff bound, with probability at least 1− n−ω(1) we have that at least C2

4·16 · n log n balls are
allocated using ONE-CHOICE. Hence, by Lemma B.16, we get that

Pr

�

max
i∈[n]

ym
i ⩾

�

C2

4 · 16
+

√

√ C2

4 · 16

�

· log n

�

⩾ 1− 2n−2.

Since m= C
16 n log n, we conclude that that

Pr
�

Gap(m)⩾
C
16
· log n

�

⩾ 1− 2n−2.

By majorisation, it follows that any TIME-HOMOGENEOUS(p) process with a non-decreasing prob-
ability vector p has a worse gap in the b-BATCHED setting with b > 1 than for b = 1.
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Proposition C.2. Consider any TIME-HOMOGENEOUS(p) process with non-decreasing probability vector
p satisfying mini∈[n] pi ⩾

C
n for some constant C > 0, in the (unweighted) b-BATCHED setting for any

b ⩾ 1. Then, for m= C
16 · n log n,

Pr
�

Gap(m)⩾
C
16
· log n

�

⩾ 1− 2n−2.

Note that this statement applies to the (1+β)-process for constant β ∈ (0,1) and QUANTILE(δ)
for constant δ ∈ (0, 1), but it does not apply to TWO-CHOICE.

Proof. Consider the process P = TIME-HOMOGENEOUS(p). Recall that Q = b-BATCHED(P) is by
definition a SEQUENTIAL(qt) process with qt = qt(Ft) being a permutation of p. Since p is non-
decreasing, it follows that eqt ⪰ p.

By applying majorisation (Theorem 2.5) for processes P and Q, for the first m steps, we get that
there is a coupling such that the sorted load vector eym

Q majorizes eym
P , and in particular,

(eym
Q )1 ⩾ (ey

m
P )1 ⇒ GapQ(m)⩾ GapP(m).

Hence the statement of the lemma follows by Lemma C.1.

Now, we turn our attention to proving lower bounds for the same family of processes when the
batch size is b ⩾ n log n. This lower bound follows just by looking at the load of the bin i with
probability q0

i ⩾
C
n in the first batch.

Proposition C.3. Consider any TIME-HOMOGENEOUS(p) process with p satisfying maxi∈[n] pi ⩾
C
n for

some C > 1, in the (unweighted) b-BATCHED setting with b ⩾ n log n. Then, for γ :=min(C − 1, 0.5),
any bin j = argmaxi∈[n] pi satisfies

Pr
�

y b
j ⩾

γ

4
·

b
n

�

⩾ 1− n−γ
2/8.

Proof. For convenience, let us define γ := min(C − 1, 0.5), so γ ∈ (0, 1/2). Note that during the
first batch consisting of b ⩾ n log n balls, the load vector is never updated and all balls are allocated
using the same probability vector p. Hence each ball will be allocated to some bin i with probability
at least C

n , independently. Let X := x b
i =

∑b
j=1 X j , where the X j ’s are independent Bernoulli random

variables with E
�

X j

�

⩾ 1+γ
n . Hence E [X ] ⩾ b · 1+γ

n . Using the following Chernoff bound, which
states that for any λ > 0,

Pr [X ⩽ (1−λ) · E [X ] ]⩽ exp
�

−λ2/2 · E [X ]
�

.

Picking λ= γ/2 implies

Pr
�

x b
i ⩽ (1− γ/2) · (1+ γ) ·

b
n

�

⩽ exp

�

−
γ2

8
·

b
n

�

⩽ n−γ
2/8,

where the last inequality used our assumption that b ⩾ n log n. If x b
i ⩾ (1− γ/2) · (1+ γ) ·

b
n , then

this implies for the normalised load,

y b
j = x b

i −
b
n
⩾
γ

2
·

b
n
−
γ2

2
·

b
n
⩾
γ

4
·

b
n

,

where the last inequality used γ⩽ 1/2.

Unlike Proposition C.2, Proposition C.3 can be applied to TWO-CHOICE and any d-CHOICE process
with d =O(1).
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Herd phenomenon. For b ⩾ n log n, this Ω
� b

n

�

lower bound establishes a sharp contrast between
TWO-CHOICE and the (1 + β) process, as the later for β =

Æ n
b ·log n can achieve the asymptotically

optimal O
�
q

b
n ·log n

�

gap as shown in Section 7.5. It also demonstrates that increasing d in d-CHOICE

does not necessarily help, a phenomenon which had been observed by Mitzenmacher [134] but not
rigorously proven (to the best of our knowledge).

Observation C.4. Consider any d-SAMPLE process with d = O(1) which uses random tie breaking, in
the b-BATCHED setting with any b ⩾ n log n, and assume all balls have unit weight. Then, we have that

Pr

�

Gap(b)⩾
1
10
·

√

√ b
n
· log n

�

⩾ 1− n−2.

Proof. In the first batch, any such process behaves exactly like ONE-CHOICE. Hence the result follows
immediately from a known lower bound for ONE-CHOICE for b balls into n bins by Lemma B.16.

The same Ω(
q

b
n ·log n) lower bound was shown in [114, Theorem 5.2] to also hold for any process

and at any batch (not just in the first one).

Small batch sizes. For small batch sizes n ·e− logc n ⩽ b ⩽ n log n with c =O(1), we have that TWO-
CHOICE is optimal among all TWO-SAMPLE (or in fact any d-SAMPLE process with d = O(1)). This
follows from the upper bound in Corollary 7.31 and the lower bound that follows from ONE-CHOICE

in the first batch (e.g., Lemma B.17).

Observation C.5. Consider any d-SAMPLE process with d = O(1) and random tie breaking, in the
b-BATCHED setting with any b ∈ [n · elogc n, n log n] with any constant c > 0, and assume all balls have
unit weight. Then, we have that

Pr

�

Gap(b)⩾ κ ·
log n

log
�4n

b · log n
�

�

⩾ 1− n−1.

Proof. During the allocation of the first batch consisting of b balls, the load information of all bins
is never updated, i.e., their load “estimate” equals zero. Hence in these first n steps, as ties are
broken randomly, b-BATCHED behaves exactly like ONE-CHOICE. Hence, by Lemma B.24 there exists
a constant κ > 0,

Pr

�

Gap(b)⩾ κ ·
log n

log
�4n

b · log n
�

�

⩾ 1− n−1.

Random tie-breaking. Let us remark that in the proof of Proposition C.3, we assumed that the
allocation process uses the same probability vector and bin labelling in all steps of the same batch. In
particular, this analysis does not apply to TWO-CHOICE with random tie-breaking. However, TWO-
CHOICE with random tie-breaking will allocate all balls in the first batch following ONE-CHOICE.
Exploiting this, we can then prove that by the end of the batch, there is a unique bin which attains
the minimum load if b = Ω(n log n), which means for the second batch we can apply Proposition C.3,
and conclude that a lower bound of Ω

� b
n

�

holds with constant probability > 0.
We will make use of the following property of n independent Poisson random variables, which

is proven in Appendix B.4:

Lemma B.14 (Restated, page 191). Consider any n ⩾ 2 and λ ⩾ 16 · log n. Let X 1, . . . , X n be
independent Poisson random variables with X i ∼ Pois(λ), and denote by for Y(n), Y(n−1) the smallest
and second smallest of the X i ’s. Then there exist constants κ1,κ2 > 0 such that,

Pr
�

Y(n−1) − Y(n) ⩾ κ1 ·
Æ

λ/ log n
�

⩾ κ2.
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Using this we can now derive the lower bound for allocation processes with random tie-breaking.

Lemma C.6. Consider a TIME-HOMOGENEOUS(p) process with probability vector p and random tie-
breaking, such that pn ⩾

C
n for some constant C ∈ (1,1.5] in the (unweighted) b-BATCHED setting with

b ⩾ 384
(C−1)2 n log n. Then, there exists a constant κ := κ(C)> 0, such that

Pr
�

Gap(2b)⩾
C − 1

8
·

b
n

�

⩾ κ.

Proof. Initially, all bins have load 0, so the first b balls will be allocated using ONE-CHOICE. In order
to use the Poisson Approximation Method [138, Theorem 5.6], let eX1, eX2, . . . , eXn be n independent
Poisson distributed random variables with rate λ = (b − 4 ·

p
b)/n. By Lemma B.8, the sum Sn :=

∑n
i=1

eX i is in the range [b−8
p

b, b], with probability at least 1−o(1). By Lemma B.14, we have that
with at least constant κ2 > 0 probability, the difference between the smallest and second smallest
bin is at least κ1 ·

p

λ/ log n, for some constant κ1 > 0.
Consider now the allocation of the remaining b − Sn ⩽ 8

p
b balls. The average load of a bin

through these balls is 8
p

b/n. Using Markov’s inequality, the smallest bin does not receive more
than 16

p
b/n additional balls with probability at least 1/2.

Since κ1 ·
p

λ/ log n ⩾ κ1 ·
p

0.5 · b/n · 1/ log n ⩾ 16
p

b/n we can conclude that there is still a
unique minimally loaded bin after the allocation of all b balls. Further, by using a Chernoff bound
for ONE-CHOICE, it follows that

Pr
�

y b
n ⩽ b/n−

Æ

6 · b/n log n
�

⩾ 1− n−2.

Taking the union bound, we conclude that at the end of the first batch, the following holds:

Pr
�

y b
n ∈

�

−
Æ

6 · b/n log n, y b
n−1 − 1

��

⩾ κ1 ·
1
2
− o(1)− n−2. (C.1)

Conditioning on y b
n ⩽ y b

n−1 − 1, we have epn(x b)⩾ pn ⩾
C
n . For simplicity, let us fix label n to be the

index of the bin with smallest load at time b. Applying Proposition C.3 to the allocations made in
the second batch to bin n, we conclude that there is a constant γ > 0 such that

Pr

�

x2b
n − x b

n ⩾
�

1+
γ

4

�

·
b
n

�

�

�

�

y b
n ∈

�

−
Æ

6 · b/n log n, y b
n−1 − 1

�

�

⩾ 1− n−γ
2/8. (C.2)

Both events in Eq. (C.1) and Eq. (C.2) hold with probability at least κ1 ·
1
3 , and in this case,

x2b
n = x b

n + x2b
n − x b

n

⩾
b
n
−
Æ

6 · b/n log n+
�

1+
C − 1

4

�

·
b
n

⩾
2b
n
−
Æ

6 · b/n log n+
C − 1

4
·

b
n

(a)
⩾

2b
n
+

C − 1
8
·

b
n

,

where we have used in (a) that if b ⩾ 384
(C−1)2 n log n then,

C − 1
4
·

b
n
⩾ 2 ·

Æ

6 · b/n log n ⇔ b ⩾
384

(C − 1)2
· n log n.

Hence Gap(2b)⩾ C−1
8 ·

b
n .
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C.2 Lower bounds in noisy settings

In this section, we will state and prove lower bounds on the gap of TWO-CHOICE in various noisy
settings. Recall that the g-BOUNDED and g-MYOPIC-COMP processes are specific instances of the
g-ADV-COMP setting. Our main result is for g-MYOPIC-COMP, where we will prove a lower bound
of Ω(g + g

log g · log log n), which matches the upper bounds in Sections 5.3 and 7.4.1 for all g ⩾ 0
(Corollary C.10). Table C.1 gives a summary of the results.

Process Range Lower Bound Reference

Any g-ADV-COMP 0⩽ g log2 log n+Ω(1) Obs C.7

g-MYOPIC-COMP 2⩽ g Ω(g) Prop C.8

g-MYOPIC-COMP 10⩽ g ⩽ 1
8 ·

log n
log log n Ω

� g
log g · log log n

�

Thm C.9

σ-NOISY-LOAD 2 · (log n)−1/3 ⩽ σ Ω(min{1,σ} · (log n)1/3) Prop C.11

σ-NOISY-LOAD 32⩽ σ Ω(min{σ4/5,σ2/5 ·
p

log n}) Prop C.11

Table C.1: Overview of the lower bounds for different noise settings. All of these hold for a particular
value of m with high probability.

We start with a simple lower bound which follows immediately by majorisation with the TWO-
CHOICE process without noise. This lower bound holds regardless of which strategy the adversary
uses.

Observation C.7. There exists a constant κ > 0 such that for any g ⩾ 0 and any instance of the
g-ADV-COMP setting,

Pr
�

Gap(n)⩾ log2 log n− κ
�

⩾ 1− n−1.

Proof. For the TWO-CHOICE process without noise, it was shown in [18, Theorem 3.3] that there
exists a constant κ > 0 such that Pr

�

Gap(n)⩾ log2 log n− κ
�

⩾ 1− n−1.
At any step t ⩾ 0, the probability allocation vector p of TWO-CHOICE without noise is majorised

the probability allocation vector qt of any instance of TWO-CHOICE in the g-ADV-COMP setting, as qt

is formed by p and possibly reallocating some probability mass from light to heavy bins. Hence, the
lower bound follows by majorisation (see Theorem 2.5).

We proceed by analysing the g-MYOPIC-COMP process by coupling its allocations with that of a
ONE-CHOICE process.

Proposition C.8. Consider the g-MYOPIC-COMP process. Then, (i) for any g ∈ [2, 6 log n] and for
m= 1

2 · ng, it holds that

Pr
�

Gap(m)⩾
1
35
· g
�

⩾ 1− n−2.

Further, (ii) for any g ⩾ 6 log n and for m= ng2/(32 log n),

Pr
�

Gap(m)⩾
1

60
· g
�

⩾ 1− 2n−2.

Recall that for g = Ω(polylog(n)), our upper bound on the gap is

O
�

g +
g

log g
· log log n

�

=O(g).

This means that the lower bound in Proposition C.8 is matching for those g. For smaller values of
g, a stronger lower bound will be presented in Theorem C.9.
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Proof. First statement. Consider g-MYOPIC-COMP with m= 1
2 ·ng balls and define the stopping time

τ := inf{t ⩾ 0: maxi∈[n] x t
i ⩾ g}. Note that τ⩽ m implies there is a bin j with xτj ⩾ g, and hence

Gap(m)⩾ xm
j −

m
n
⩾ xτj −

1
2

g ⩾ g −
1
2

g >
1

35
g.

Let us now assume τ > m. In that case, all bins have an absolute load in [0, g] and are therefore
indistinguishable. Hence during steps 1,2, . . . , m, the g-MYOPIC-COMP process behaves exactly like
ONE-CHOICE.

By Lemma B.16 (for c := 1
2 ·

g
log n ⩾

1
log n since g ⩾ 2) it holds for ONE-CHOICE that,

Pr
�

Gap(m)⩾
1

10
p

2
·
Æ

g · log n
�

⩾ 1− n−2,

which, as g · log n⩾ 1
6 g2, implies that

Pr
�

Gap(m)⩾
1
35
· g
�

⩾ 1− n−2.

Second statement. We will first prove for the g-MYOPIC-COMP process that w. p. 1− o(n−1) for any
step 1⩽ t ⩽ m and any bin i ∈ [n], it holds that |y t

i |⩽
g
2 . To this end, fix any bin i ∈ [n] and define

for any 1 ⩽ t ⩽ m, Z t = Z t(i) :=
∑t

j=1(Yj −
1
n), where the Yj ’s are independent Bernoulli variables

with parameter 1/n each. Clearly, Z t forms a martingale, and E
�

Z t
�

= 0 for all 1⩽ t ⩽ m. Further,
let τ := inf{t ⩾ 1: |Z t |> g

2 }. Then Z t∧τ is also martingale. Further, we have

Var
�

Z t+1 | Z t
�

=
1
n
·
�

1−
1
n

�

⩽
1
n
=: σ2.

Also |Z t+1 − Z t |⩽ 1=: M . Hence by a martingale inequality Lemma B.9,

Pr
� �

�Zm∧τ
�

�⩾ λ
�

⩽ 2 · exp

�

−
λ2

2(
∑m

i=1σ
2 +Mλ/3)

�

,

with λ= g
2 ,

Pr
h

|Zm∧τ|⩾
g
2

i

⩽ 2 · exp

�

−
g2

8(m · 1
n +

g
6 )

�

= 2 · exp

 

−
g2

8 · ( g2

32 log n +
g
6 )

!

⩽ 2n−3,

where the last inequality holds since 8 ·
�

g2

32 log n +
g
6

�

⩽ 8 ·
�

g2

32 log n +
g2

32 log n

�

= g2

2 log n , using that
g ⩾ 6 log n.

If the event |Zm∧τ|⩽ g
2 (or equivalently τ > m) occurs, then this implies that bin i deviates from

the average load by at most g
2 in all steps 1,2, . . . , m. By the union bound, this holds with probability

1−2n−2 for all n bins. Consequently, the g-MYOPIC-COMP process behaves exactly like ONE-CHOICE

until time m with probability 1− 2n−2.

By Lemma B.16 (for c := g2

32 log2 n
) it holds for ONE-CHOICE that,

Pr
�

Gap(m)⩾
g

10 ·
p

32

�

⩾ 1− n−2.

The claim follows by taking the union bound and using that g
10·
p

32
⩾ g

60 .
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Theorem C.9. Consider the g-MYOPIC-COMP process for any g ∈ [10, 1
8 ·

log n
log log n]. Then, there exists

ℓ := ℓ(g, n) (defined in Eq. (C.3)), such that for m= n · ℓ, it holds that

Pr
�

Gap(m)⩾
1
8
·

g
log g
· log log n

�

⩾ 1− n−ω(1).

The proof of this lower bound is similar to the method used by Azar, Broder, Karlin and Upfal [18]
to prove the Ω(log log n) lower bound for TWO-CHOICE without noise, in the sense that it follows a
layered induction approach, but some additional care is needed. For example, the induction step
size in the load is g and not 1, and the outcome of a load comparison depends on the load difference.

Proof. In the proof we will divide the allocation of m= n · ℓ balls into ℓ consecutive phases, each of
which lasts for n steps, where

ℓ :=

�

log(1
8 log n/ log g)

log g

�

. (C.3)

First, we verify that ℓ⩾ 1,

ℓ=

�

log(1
8 log n/ log g)

log g

�

(a)
⩾

�

log(1
8 log n/ log g)

log(1
8 log n/ log n)

�

(b)
⩾

�

log(1
8 log n/ log n)

log(1
8 log n/ log n)

�

= 1,

where (a) used that g ⩽ 1
8 log n/ log log n and (b) that g ⩽ log n.

Next we define for any k = 1,2, . . . ,ℓ the following event:

Ek :=
§
�

�

�

�

i ∈ [n]: xk·n
i ⩾ k · g

	

�

�

�⩾ n · g−
∑k

j=1 g j
ª

.

The main goal of this proof is to show that Eℓ occurs with high probability. Assuming for the moment
that Eℓ indeed occurs, let us verify that the lower bound on the gap follows. First, note that Eℓ implies
the existence of a bin i ∈ [n] with xm

i ⩾ ℓ · g and thus Gap(m) ⩾ xm
i −

m
n ⩾ ℓ · g − ℓ = ℓ · (g − 1),

since by the choice of ℓ=
j

log( 1
8 log n/ log g)

log g

k

,

g−
∑k

j=1 g j (a)
⩾ g−4gℓ ⩾ g−

1
2 log n/ log g = n−1/2, (C.4)

where in (a) we used that for any g ⩾ 2,

k
∑

j=1

g j ⩽ 2
ℓ
∑

j=0

g j = 2 ·
gℓ+1 − 1

g − 1
⩽ 2 ·

gℓ+1

1
2 g
= 4gℓ. (C.5)

Thus n · g−
∑k

j=1 g j
⩾ 1. Secondly, we verify that ℓ · (g − 1) = Ω

� g
log g · log log n

�

,

ℓ · (g − 1)
(a)
⩾

1
4
·

log(1
8 log n/ log g)

log g
· g

=
1
4
·

log(1/8) + log log n− log log g
log g

· g

(b)
⩾

1
8
·

log log n
log g

· g, (C.6)

where (a) holds since ⌊u⌋⩾ u/2 for u⩾ 1 (as ℓ⩾ 1) and g−1⩾ g/2, since g ⩾ 2, and (b) holds since
for sufficiently large n, (1/4) · log log n⩾ − log(1/8) and (1/4) · log log n⩾ log log g as g ⩽ log n.
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In order to establish that Eℓ occurs w. p. 1− o(n−1), we will proceed by induction and prove that
for any k ⩾ 1, with εk := n−ω(1) and E0 := Ω,

Pr [Ek | Ek−1 ]⩾ 1− εk.

Induction Base (k = 1). Here we consider the allocation of the first n balls into n bins. We are
interested in the number of bins which reach load level g during that phase. Note that as long as
the loads of both sampled bins are smaller than g, the allocation follows that of ONE-CHOICE; if one
of the bins has a load which is already larger than g, then the load difference may force the process
to place a ball in the lighter of the two bins. In the following, we will (pessimistically) assume that
the allocation of all n balls follows ONE-CHOICE.

Instead of the original ONE-CHOICE process which produces a load vector (xn
i )i∈[n], we consider

the Poisson Approximation (Lemma B.15) and analyse the load vector (exn
i )i∈[n], where the exn

i , i ∈ [n]
are independent Poisson random variables with mean n/n= 1. Clearly, for any i ∈ [n],

Pr
�

exn
i ⩾ g

�

⩾ Pr
�

exn
i = g

�

= e−1 ·
1g

g!
⩾ 2 · g−g ,

using in the last inequality Stirling’s approximation (e.g. [138, Lemma 5.8]) and g ⩾ 5,

g!⩽ e · g ·
� g

e

�g
=

e−1

2
· g g ·

�

2e2 g
eg

�

⩽
e−1

2
· g g .

Let Y :=
�

�

�

i ∈ [n]: exn
i ⩾ g

	�

�. Then E [Y ]⩾ 2n · g−g . By a standard Chernoff Bound,

Pr
�

Y ⩽ n · g−g
�

⩽ Pr
�

Y ⩽
1
2
· E [Y ]

�

⩽ exp
�

−
1
8
· E [Y ]

�

⩽ n−ω(1),

where we have used g−g ⩾ g−4gℓ ⩾ n−1/2, due to Eq. (C.4). Hence by the Poisson Approximation
(Lemma B.15), Pr [E1 ]⩾ 1− 2 · n−ω(1) = 1− n−ω(1).

Induction Step (k− 1 −→ k, k ⩾ 2). For the induction step, we analyse phase k = 2, . . . ,ℓ and

we will lower bound Pr [Ek | Ek−1 ]. Assuming Ek−1 occurs, there are at least n· g−
∑k−1

j=1 g j
bins whose

load is at least (k− 1) · g at the beginning of phase k. Let us call such a set of bins Bk−1, which can
be assumed to satisfy with equality:

|Bk−1|= n · g−
∑k−1

j=1 g j
. (C.7)

Next note that whenever we sample two bins i1, i2 from Bk−1, we allocate the ball to a random bin
among {i1, i2} if both bins have not reached load level k · g. Therefore, in order to lower bound the
number of bins in Bk−1 which reach load level k · g by the end of phase k, we may pessimistically
assume that if two bins in Bk−1 are sampled, the ball will be always placed in a randomly sampled
bin. Note that the probability that a ball will be allocated into the set Bk−1 is lower bounded by
� |Bk−1|

n

�2
. Let Z denote the number of balls allocated to Bk−1 in phase k. Then E [ Z ] ⩾ n ·

�

|Bk−1|
n

�2
.

Using a Chernoff Bound for em := 2
3 · n ·

�

|Bk−1|
n

�2
,

Pr [ Z ⩽ em ]⩽ Pr
�

Z ⩽
2
3
· E [ Z ]

�

⩽ exp
�

−
1

18
· E [ Z ]

�

⩽ n−ω(1),

where we used that

E [ Z ]⩾ n · g−2
∑k−1

j=1 g j (a)
⩾ n · g−2gk (b)

⩾ n · n−1/2,

using in (a) that for any integer g ⩾ 2,
∑k−1

j=1 g j ⩽ gk−1
g−1 ⩽ gk, and in (b) that k ⩽ ℓ and the property

of ℓ in Eq. (C.4).
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Conditioning on this event, in phase k we have a ONE-CHOICE process with em balls into en :=
|Bk−1| bins, which w.l.o.g. will be labelled 1, 2, . . . , en. Again, we apply the Poisson approximation
and define (ex em)i∈[en] as en independent Poisson random variables with mean λ given by

λ :=
em
en
=

2
3 · n ·

�

|Bk−1|
n

�2

|Bk−1|
=

2
3
·
|Bk−1|

n
=

2
3
· g−

∑k−1
j=1 g j

,

using Eq. (C.7). With that, it follows for any bin i ∈ Bk−1,

Pr [ ex i ⩾ g ]⩾ Pr [ ex i = g ] = e−λ ·
λg

g!

(a)
⩾ e−1 ·

�2
3 · g
−
∑k−1

j=1 g j�g

g!

(b)
⩾ 2 · g−

∑k
j=1 g j

,

using in (a) that λ⩽ 1 and in (b) Stirling’s approximation (e.g. [138, Lemma 5.8]) and that g ⩾ 10,

g!⩽ e · g ·
� g

e

�g
=

e−1

2
·
�

2
3

�g

· g g ·
�

2e2 g ·
�

3
2e

�g�

⩽
e−1

2
·
�

2
3

�g

· g g .

Let Y := |{i ∈ [en]: ex i ⩾ g}|. Then E [Y ]⩾ 2en · g−
∑k

j=1 g j
. Thus by a Chernoff Bound,

Pr
h

Y ⩽ en · g−
∑k

j=1 g j
i

⩽ Pr
�

Y ⩽
1
2
· E [Y ]

�

⩽ exp
�

−
1
8
· E [Y ]

�

⩽ n−ω(1),

where we used that

E [Y ]⩾ 2en · g−
∑k

j=1 g j
= 2n · g−

∑k−1
j=1 g j
· g−

∑k
j=1 g j
⩾ 2n · g−2

∑k
j=1 g j (C.5)
⩾ 2n · g−4gk (a)

⩾ 2n1/2,

where in (a) we used k ⩽ ℓ and Eq. (C.4). Thus by the union bound and Poisson Approximation,
Pr [Ek | Ek−1 ]⩾ 1− n−ω(1) − 2 · n−ω(1) = 1− n−ω(1), which completes the induction.

Finally, by a simple union bound,

Pr [Eℓ ]⩾ 1−
ℓ
∑

k=1

Pr [¬Ek | Ek−1 ]⩾ 1− ℓ · n−ω(1) ⩾ 1− n−ω(1).

As verified in Eq. (C.6), Eℓ implies Gap(m)⩾ 1
8 ·

g
log g · log log n, and therefore the proof is complete.

Combining Observation C.7, Proposition C.8 and Theorem C.9, we get:

Corollary C.10. Consider the g-MYOPIC-COMP process for any g ⩾ 1. Then, there exists an m :=
m(g)⩾ 0, such that

Pr
�

Gap(m) = Ω
�

g +
g

log g
· log log n

��

⩾ 1− n−1.

We proceed with two lower bounds for the σ-NOISY-LOAD process.

Proposition C.11. Consider the σ-NOISY-LOAD process with ρ(δ) := 1− 1
2 · exp

�

−(δ/σ)2
�

for some
(not necessarily constant) σ > 0. Then, (i) for any σ ⩾ 2 · (log n)−1/3,

Pr
�

Gap(n)⩾min
§

1
8
· (log n)1/3,

1
2
σ · (log n)1/3

ª�

⩾ 1− 2n−1.

Further, (ii) for any σ ⩾ 32, it holds for m= 1
2σ

4/5 · n,

Pr
�

Gap(m)⩾min
§

1
2
σ4/5,

1
30
σ2/5 ·

Æ

log n
ª�

⩾ 1− 2n−2.
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Proof. First statement. Let τ := inf{t ⩾ 1: maxi∈[n] x t
i ⩾ σ · (log n)1/3}. If τ⩽ n, then

Gap(n)⩾ xn
i −

n
n
⩾ xτi − 1⩾ σ · (log n)1/3 − 1⩾

1
2
σ · (log n)1/3.

Consider now the case τ > n. For any step t ⩽ τ, we will perform a “sub-sampling” of the correct
comparison in (possibly) two stages as follows. Let i1 = i t

1 and i2 = i t
2 be the two sampled bins, and

δ be their load difference. Let Z1 ∼ Ber(1− exp(−(δ/σ)2)) and Z2 ∼ Ber(1/2) be two independent
random variables, which can be thought as the outcome of two biased coin flips that will be used
to determine whether the load comparison is correct. If Z1 = 1, then the comparison is correct
(regardless of what Z2 is). However, if Z1 = 0, then the comparison is correct if and only if Z2 = 1.
Overall, the probability of a correct comparison (if δ > 0) is equal to

Pr [ Z1 = 1 ] + Pr [ Z1 = 0 ] · Pr [ Z2 = 1 | Z1 = 0 ] = 1− exp
�

−(δ/σ)2
�

+ exp
�

−(δ/σ)2
�

·
1
2

= 1−
1
2

exp
�

−(δ/σ)2
�

.

Further, conditional on Z1 = 0, the ball will be placed in a random bin among {i1, i2}. Hence
as long as t ⩽ τ, we can couple the allocation of each ball by g-MYOPIC-COMP to an allocation by
ONE-CHOICE with probability at least exp(−(δ/σ)2) ⩾ exp(−(log n)2/3). Using a Chernoff bound,
with probability 1− n−ω(1), we we can couple the allocation of at least n/2 · exp(−(log n)2/3) balls
out of the first n balls with that of ONE-CHOICE. Consequently, using Lemma B.23 the maximum
load (and gap) is at least 1

8(log n)1/3 with probability at least 1− n−1. Combining the two cases we
get the claim.

Second Statement. Consider anyσ ⩾ 32 and define the stopping timeτ := inf{t ⩾ 1: maxi∈[n] x t
i ⩾

σ4/5}. Let m := 1
2σ

4/5 · n. If τ⩽ m, then there is a bin i ∈ [n] with xτi ⩾ σ
4/5, and

Gap(m)⩾ xm
i −

m
n
⩾ xτi −

1
2
σ4/5 ⩾

1
2
σ4/5.

Otherwise, in each step until m, the load difference between any two sampled bins is at most σ4/5,
and therefore each ball is coupled with the allocation of a ONE-CHOICE process with probability at
least exp

�

− (σ4/5/σ)2
�

⩾ 1− 1
σ2/5 .

Let X be the number of ONE-CHOICE allocations in the first m steps. Using the following standard
Chernoff bound,

Pr [X ⩾ (1−δ) · E [X ] ]⩾ 1− e−
1
2δ

2·E[X ],

with δ = 1
σ2/5 ⩽ 1 (since σ ⩾ 1) and E [X ]⩾

�

1− 1
σ2/5

�

·m, we get that

Pr
�

X ⩾
1
2

�

1− 2 ·
1
σ2/5

�

·σ4/5 · n
�

⩾ 1− e−
1
2δ

2·E[X ] ⩾ 1− n−ω(1).

Therefore, using Lemma B.16 (for c := 1
2 ·
�

1− 2 · 1
σ2/5

�

·σ4/5 · 1
log n ⩾

1
log n), we get that

Gap(m)⩾
1

10
·

√

√1
2

�

1−
2
σ2/5

�

·σ4/5 · log n+
1
2

�

1−
1
σ2/5

�

·σ4/5 −
m
n

=
1

10
·

√

√1
2

�

1−
2
σ2/5

�

·σ4/5 · log n+
1
2

�

1−
1
σ2/5

�

·σ4/5 −
1
2
σ4/5

=
1

10
·

√

√1
2

�

1−
2
σ2/5

�

·σ4/5 · log n−
1
2
σ2/5

(a)
⩾

1
20
σ2/5 ·

Æ

log n−
1
2
·σ2/5

⩾
1

30
σ2/5 ·

Æ

log n,

using in (a) that σ ⩾ 32. So, combining the two cases we get the claim.
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C.3 Lower bounds for TWO-THINNING processes

Now, we turn our attention to proving lower bounds for TWO-THINNING. In the lightly-loaded case
(i.e., m= n), [75] proved an upper bound of (2+ o(1)) · (

p

2 log n/ log log n) on the maximum load
for a uniform THRESHOLD ( f )-process with f =

p

2 log n/ log log n ([77] extended this to d > 2).
They also proved that this strategy is asymptotically optimal. In [75, Problem 1.3], the authors
suggest that the O(

p

log n/ log log n) bound on the gap extends to the heavily-loaded case. Here we
will disprove this, establishing a slightly larger lower bound of Ω(

p

log n) (Theorem C.20). We also
derive additional lower bounds (Theorem C.15 and Corollary C.16) that demonstrate that any QUAN-
TILE or THRESHOLD process will “frequently” attain a gap which is even as large asΩ(log n/ log log n).
These demonstrate that the QUANTILE(δ∗) process is asymptotically optimal.

Let us describe the intuition behind this bound in case of uniform quantiles, neglecting some
technicalities. Consider QUANTILE(δ) and the equivalent TWO-THINNING instance where a ball is
placed in the first bin if its load is among the (1−δ) · n lightest bins, and otherwise it is placed in a
new (second) bin chosen uniformly at random (Lemma 2.19). We have two cases:

Case 1: We choose most times a “large” δ. Then we allocate approximately m · δ balls to
their second bin choice which is uniform over all n bins. This will lead to a behaviour close to
ONE-CHOICE (Lemma C.12).

Case 2: We choose most times a “small” δ. Then we allocate approximately m · (1− δ) balls
with the first bin choice, which is a ONE-CHOICE process over the n · (1− δ) lightest bins. As
we establish in Lemma C.13, for small δ there are simply “too many” light bins that will reach
a high load level, so the process is again close to ONE-CHOICE.

Lemma C.12 (Restated, page 212). For any QUANTILE(δt) (or THRESHOLD( f t)) process,

Pr

�

max
t∈[1,n log2 n]

Gap(t)⩾
1
8
·

log n
log log n

�

⩾ 1− o(n−2).

In fact, as shown in Corollary C.16, this lower bound holds for a significant proportion of time-
steps. We also show a lower bound for fixed m, which is derived in a similar way as Theorem C.15,
but with a different parameterisation of “large” and “small” quantiles:

Lemma C.12 (Restated, page 214). For any adaptive QUANTILE(δt) (or THRESHOLD( f t)) process,
with m= 1

10 · n
p

log n balls, it holds that

Pr
�

Gap(m)⩾
1

20

Æ

log n
�

⩾ 1− o(n−2).

C.3.1 Preliminaries

Let us first formalise the intuition of the lower bound. Recall that we will analyse the adaptive case,
which means that the quantiles at each step t may depend on the full history of the process Ft . We
also remind the reader that any adaptive THRESHOLD( f t) process can be simulated by QUANTILE(δt)
(Lemma D.1), which is why we will do the analysis below for QUANTILE(δt) only.

The next lemma proves that if within n consecutive allocations a large quantile is used too often,
then QUANTILE(δ) restricted to the heavy loaded bins generates a high maximum load, similar to
ONE-CHOICE.

Lemma C.12. Consider any QUANTILE(δt) process during the time-interval [t, t+n). If QUANTILE(δt)
allocates at least n/(log n)2 balls with a quantile larger than (log n)−2 in [t, t + n), then

Pr
�

Gap(t + n)⩾
1
8

log n
log log n

�

⩾ 1− o(n−4).
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Proof. Assume there are at least n/(log n)2 allocations with quantile larger than (log n)−2. Then,
using Lemma B.4, w. p. at least 1 − o(n−4), at least 1

e
n

log2 n
· 1

log2 n
⩾ n

log5 n
balls are thrown using

ONE-CHOICE.
Consider now the load configuration before the batch, i.e. the next n balls are allocated. If

Gap(t) ⩾ log n, then Gap(t + n) ⩾ 1
8 log n/ log log n, as a load can decrease by at most 1 in n steps.

So we can assume Gap(t) < log n. Let B be the set of bins whose load is at least the average load
at time t, then |B| ⩾ n/ log n. Using Lemma B.4, w. p. at least 1− o(n−4) the batch will allocate at
least n/(log n)6 balls to the bins of B. Hence, by Lemma B.17, at least one bin in B will increase its
load by an additive factor of 1

7 log n/ log log n w. p. at least 1− o(n−4). Since the average load only
increases by one during the batch, there will be a gap of 1

8 log n/ log log n w.h.p., and our claim is
established.

The next lemma implies that if for most allocations the largest quantile is too small, then the
allocations on the lightest bins follows that of ONE-CHOICE, and we end up with a high maximum
load.

Lemma C.13. Consider any QUANTILE(δt) process with m = n log2 n balls that allocates at most n
balls with a quantile larger than (log n)−2. Then,

Pr [Gap(m)⩾ 0.2 log n ]⩾ 1− o(n−2).

The proof of this lemma is similar to Lemma C.12, but a bit more complex. We define a coupling
between the QUANTILE(δt) process and the ONE-CHOICE process. We couple the allocation of balls
whose first sample is among the (1 − δt) · n-lightest bins with a ONE-CHOICE process. The balls
whose first sample is among the δt · n-heaviest bins are allocated differently, and cause our process
to diverge from an original ONE-CHOICE process. However, we prove that the number of different
allocations is too small to change the order of the gap.

Proof. We will use the following coupling between the allocations of QUANTILE(δt) and ONE-CHOICE.
At each step t ∈ [1, n log2 n], we first sample a bin index j ∈ [n] uniformly at random. In the ONE-
CHOICE process, we place the ball in the j-th most loaded bin. In the QUANTILE process:

1. If j > δt · n, we place the ball in the j-th most loaded bin (of QUANTILE), and we say that the
processes agree.

2. If j ⩽ δt · n, we sample another bin index ej ∈ [n] uniformly at random and place the ball in
the ej-th most loaded bin (of QUANTILE).

Let y s and zs be the sorted load vectors of ONE-CHOICE and the QUANTILE process respectively at step
s ⩾ 0. Further, let L(s) := dℓ1

(y s, zs) be the ℓ1-distance between these vectors. Note that L(0) = 0.
If in a step both processes place a ball in the j-th most loaded bin, using a simple coupling argument
(see Lemma C.14 below for details) it follows that

L(t + 1)⩽ L(t).

Otherwise, if in a step the processes place a ball in a different bin, since only two positions in the
load vectors can increase by one, then

L(t + 1)⩽ L(t) + 2.

Hence by induction over s, if k is the number of steps for which the processes disagree, then

L(n log2 n)⩽ 2 · k.

We will next show an upper bound on k, which in turn implies an upper bound on L(n log2 n).
First, for each of the at most n steps t ∈ [1, n log2 n] for which δt ⩾ (log n)−2, we (pessimistically) as-
sume that the two processes always disagree. Secondly, for the at most n log2 n steps t ∈ [1, n log2 n]
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with δt ⩽ (log n)−2, using a Chernoff bound (Lemma B.4), we have w. p. 1 − o(n−2) in at most
(n log2 n) · (log n)−2 · e = ne of these steps s, the case that j ⩽ δs · n, i.e., the two processes disagree.
Now if this event occurs,

k ⩽ n · 1+ n · e ⩽ 2n · e ⇒ L(n log2 n)⩽ 4n · e.

By Lemma B.25, there are constants a = 0.4, c = 0.25 such that with probability 1− o(n−2), the
ONE-CHOICE load vector yn log2 n has at least 0.25n log n balls with height at least 0.2 log n. However,
any load vector which has no balls at height 0.2 log n must have a ℓ1-distance of at least 0.25n log n to
yn log2 n, and thus we conclude by the union bound that Gap(n log2 n)⩾ a

2 log n holds with probability
1− 2o(n−2).

Lemma C.14. Let ey1 and ey2 be two non-increasing sorted load vectors. Consider the sorted vectors
ey1 + ei and ey2 + ei after incrementing the value at index i. Then, dℓ1

(ey1, ey2)⩾ dℓ1
(ey1 + ei , ey2 + ei).

Proof. If the items being updated end up both in the same indices (after sorting), then their ℓ1
distance remains unchanged.

Let u := ey1i and v := ey2i for the updated index i in the (old) sorted load vector. To obtain the
new sorted load vector, we have to search in both ey1 and ey2 from right to left for the leftmost entry
being equal to u and being equal to v, respectively, and then increment these values. Then, there
are the following three cases to consider (in bold is the value to be updated):

Case 1 u < v: Let v < w1 ⩽ . . . ⩽ wk, where wk is the matching value for u + 1 in z, then
wk > v⇒ wk ⩾ u+ 2

ey1 . . . u . . . u u . . . u . . .

ey2 . . . wk . . . w1 v . . . v . . .

→ ey1 + ei . . . u+ 1 . . . u u . . . u . . .

ey2 + ei . . . wk . . . w1 v + 1 . . . v . . .

︸︷︷︸

−1
︸︷︷︸

+1

Case 2 u< v: Let u< w1 ⩽ . . .⩽ wk, where wk is the matching value for v + 1 in y

ey1 . . . wk . . . w1 u . . . u . . .

ey2 . . . v . . . v v . . . v . . .

→ ey1 + ei . . . wk . . . w1 u+ 1 . . . u . . .

ey2 + ei . . . v + 1 . . . v v . . . v . . .

︸︷︷︸

⩽1
︸︷︷︸

−1

Case 3 u= v: Let u< w1 ⩽ . . .⩽ wk, where wk is the matching value for u+ 1 in z

ey1 . . . wk . . . w1 u . . . u . . .

ey2 . . . u . . . u u . . . u . . .

→ ey1 + ei . . . wk . . . w1 u+ 1 . . . u . . .

ey2 + ei . . . u+ 1 . . . u u . . . u . . .

︸︷︷︸

−1
︸︷︷︸

+1

C.3.2 Lower bound for a range of values

With Lemmas C.12 and C.13 proven in the previous subsection, we can now derive a lower bound
for any QUANTILE(δt) (or THRESHOLD( f t)) process, establishing Theorem C.15. After the proof, we
also state two simple consequences that follow immediately from this result.
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Theorem C.15. For any QUANTILE(δt) (or THRESHOLD( f t)) process,

Pr

�

max
t∈[1,n log2 n]

Gap(t)⩾
1
8
·

log n
log log n

�

⩾ 1− o(n−2).

Proof. Since any adaptive THRESHOLD( f t) can be simulated by an adaptive QUANTILE(δt) process
(see Lemma D.1), it suffices to prove the claim for adaptive QUANTILE(δt) processes. We will allow
the adversary to run two processes, and then choose one that achieves a gap of < 1

8 log n/ log log n
(if such exists):

• Process P1. The adversary has to allocate m = n log2 n balls into n bins. The adversary wins
if for all steps t ∈ [m], Gap(t) < 1

8 log n/ log log n, and, Condition K1, at least n out of the m
quantiles are larger than (log n)−2.

• Process P2. The adversary has to allocate m = n log2 n balls into n bins. The adversary wins
if Gap(m) < 1

8 log n/ log log n and, Condition K2, at least m − n = n log2 n − n out of the m
quantiles are at most (log n)−2.

Note that the conditions K1 and K2 form a disjoint partition. We will prove that the adversary
cannot win any of the two games with probability greater than n−2. Now recall the original process,
the one we would like to analyse:

• Process P3 (adaptive QUANTILE(δt)). The adversary has to allocate m = n log2 n balls into
bins at each step. The adversary wins if Gap(t)< 1

8 log n/ log log n for all t ∈ [m].

We will show below that Pr [adversary wins P1 ] = o(n−2) and Pr [adversary wins P2 ] = o(n−2),
and these bounds hold for the best possible strategies an adversary can use in each game, respec-
tively. Assuming that these bounds hold and by noticing that exactly one of K1 and K2 must hold
for P3,

Pr [P3 wins ] = Pr [P3 wins,K1 ] + Pr [P3 wins,K2 ]⩽ Pr [P1 wins ] + Pr [P2 wins ]⩽ o(n−2).

Analysis of Process 1: Let Et be the event that (i) QUANTILE allocates at least n/(log n)2 balls
with a quantile larger than (log n)−2 in the interval [t, t+n), and (ii) Gap(t+n)< 1

8 log n/ log log n.
Note that this is the negation of Lemma C.12, so by union bound over 1⩽ t ⩽ m− n,

Pr

�m−n
⋃

t=1

Et

�

⩽ n log2 n · o(n−4) = o(n−2).

Note that if none of the Et for 1⩽ t ⩽ m− n occur, then the adversary allocates at most n/(log n)2 ·
(log n)2 ⩾ n out of the m balls with a quantile at least (log n)−2. Therefore,

Pr [adversary wins P1 ]⩽ o(n−2).

Analysis of Process 2: The analysis of P2 follows directly by Lemma C.13.

Let us also observe a slightly stronger statement which follows directly from Theorem C.15:

Corollary C.16. For any QUANTILE(δt) process, it holds that,

Pr





⋃

t∈[1,n log2 n]

(

min
s∈
�

t,t+ 1
16 n log n

log log n

�

Gap(s)⩾
1
16
·

log n
log log n

)



⩾ 1− n−2.

Proof of Corollary C.16. If there is a step t for which Gap(t)⩾ 1
8 · log n/ log log n, then for any s with

t ⩽ s ⩽ t+ 1
16 ·log n/ log log n, Gap(s)⩾ Gap(t)−(s− t)/n⩾ 1

16 ·log n/ log log n. Hence the statement
follows from Theorem C.15.
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In other words, the corollary states that forΩ(n log n/ log log n) (consecutive) steps in [1,Θ(n log2 n)],
the gap is Ω(log n/ log log n). This is in contrast to the behaviour of the process QUANTILE(δ1,δ2),
for which our result in Section 7.1.2 implies that with high probability the gap is always below
O(
p

log n) during any time-interval of the same length.
For uniform QUANTILE(δ), we are always running either process P1 or P2, so the following

strengthened version of Theorem C.15 holds:

Corollary C.17. For any uniform QUANTILE(δ) process for m= n log2 n balls,

Pr
�

Gap(m)⩾
1
8
·

log n
log log n

�

⩾ 1− o(n−2).

Proof. Since δ is fixed, in the proof of Theorem C.15, we are always running either process P1 or P2.
For process P1, Em−n holds w.p. 1− o(n−4), so there is an Ω(log n/ log log n) gap at m. For process
P2, there is an Ω(log n/ log log n) gap at m w.p. 1− o(n−2). Hence, in both cases the gap at step m
is Ω(log n/ log log n) w.p. 1− o(n−2).

C.3.3 Lower bound for fixed m= Θ(n
p

log n)

We now prove a version of Theorem C.15 that establishes a lower bound of Ω(
p

log n) on the gap for
a fixed value m. It follows the same proof as Theorem C.15 except that the parameters are different:

(i) m = Θ(n
p

log n) and (ii) Condition K1 is defined as having at least m · e−
p

log n out of the m

quantiles being at least e−
p

log n. Lemma C.18 is the modified Lemma C.12 and Lemma C.19 is the
modified Lemma C.13.

Lemma C.18. Consider any adaptive QUANTILE(δt) process during the time-interval [t, t + n). If the
process allocates at least n/e

p
log n balls with a quantile larger than e−

p
log n in [t, t + n), then

Pr
�

Gap(t + n)⩾
1
5

Æ

log n
�

⩾ 1− o(n−4).

Proof. Assume there are at least n/e
p

log n allocations with quantile larger than e−
p

log n. Then, using
Lemma B.4, w. p. at least 1 − o(n−4), at least 1

e
n

e
p

log n
· 1

e
p

log n
⩾ n

e3
p

log n
balls are thrown using ONE-

CHOICE.
Consider now the load configuration before the batch is allocated. If Gap(t) ⩾ 1

4

p

log n, then
Gap(t + n) ⩾ 1

5

p

log n, as a load can decrease by at most 1 in n steps. So we can assume Gap(t) <
1
4

p

log n. Let B be the set of bins whose load is at least the average load at time t, then |B| ⩾
n/(1

4

p

log n). Using Lemma B.4, w. p. at least 1 − o(n−4) the batch will allocate at least n/(e ·
e3
p

log n · (1
4

p

log n)) ⩾ n/e4
p

log n balls to the bins of B. Hence, using Lemma B.18 with c = 1/2,
u = 4 and k = 2

9 at least one bin in B will increase its load by an additive factor of 2
9

p

log n w. p. at
least 1− o(n−4). Since the average load only increases by one during the batch, we have created a
gap of 2

9

p

log n− 1> 1
5

p

log n, and our claim is established.

Lemma C.19. Consider any adaptive QUANTILE(δt) process with m = 1
10 n

p

log n balls that allocates

at most n balls with a quantile larger than e−
p

log n, then

Pr
�

Gap(m)⩾
1

20

Æ

log n
�

⩾ 1− o(n−2).

Proof. Let C = 1/20 and K = 1/10. We will use the same coupling as in the proof of Lemma C.13.
We now obtain an upper bound on the number of steps k where the two processes disagree, which
in turn implies an upper bound on L(m). First, for each of the at most n steps t ∈ [1, m] for which

δt ⩾ e−
p

log n, we (pessimistically) assume that the two processes always disagree. Secondly, for the
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at most m steps t ∈ [1, m] with δt ⩽ e−
p

log n, using a Chernoff bound (Lemma B.4), we have w. p.

1− o(n−2) in at most e · (Kn
p

log n) · e−
p

log n of these steps s the case that j ⩽ δs · n, i.e., the two
processes disagree. Now if this event occurs,

k ⩽ n · 1+ n · e ⩽ 2n · e ⇒ L(Kn
Æ

log n)⩽ 4 · e · (Kn
Æ

log n) · e−
p

log n.

By Lemma B.26, with probability 1− o(n−2), the ONE-CHOICE load vector yKn
p

log n has at least

e−0.21
p

log n · Cn
p

log n balls with at least (K + C) ·
p

log n height. However, any load vector which

has no balls at height (K + C) ·
p

log n must have a ℓ1-distance of at least e−0.21
p

log n · Cn
p

log n ·
K ·
p

log n > L(m) to yKn
p

log n, and thus we conclude by the union bound that Gap(Kn
p

log n) ⩾
C
p

log n holds with probability 1− 2o(n−2).

Theorem C.20. For any adaptive QUANTILE(δt) (or THRESHOLD( f t)) process, with m= 1
10 · n

p

log n
balls, it holds that

Pr
�

Gap(m)⩾
1

20

Æ

log n
�

⩾ 1− o(n−2).

Proof. Let K = 1/10. Since any adaptive THRESHOLD( f t) can be simulated by an adaptive QUANTILE(δt)
process (see Lemma D.1), it suffices to prove the claim for adaptive QUANTILE(δt) processes. We
will allow the adversary to run two processes, and then choose one that achieves a gap smaller than
C
p

log n (if such exists):

• Process P1. The adversary has to allocate m = Kn
p

log n balls into n bins. The adversary

wins if for step m, Gap(m) < C
p

log n, and, Condition K1, at least (Kn
p

log n) · e−
p

log n out

of the m quantiles are larger than e−
p

log n.

• Process P2. The adversary has to allocate m = Kn
p

log n balls into n bins. The adversary

wins if for step m, Gap(m) < C
p

log n and, Condition K2, at least m− (Kn
p

log n) · e−
p

log n

out of the m quantiles are at most e−
p

log n.

We will prove that the adversary cannot win any of the two games with probability greater than
n−2. Now recall the original process, the one we would like to analyse:

• Process P3 (adaptive QUANTILE(δt)). The adversary has to allocate m= Kn
p

log n balls into
bins using one adaptive query at each step. The adversary wins if Gap(m)< C

p

log n.

Again, we will show below that Pr [adversary wins P1 ] = o(n−2) and Pr [adversary wins P2 ] =
o(n−2), and these bounds imply that Pr [P3 wins ] = o(n−2). We now turn to the analysis of P1 and
P2:

Analysis of Process 1: Let Et be the event that (i) QUANTILE allocates at least n · e−
p

log n balls

with a quantile at least e−
p

log n in the interval [t, t + n], and (ii) Gap(t + n) ⩽ 1
5

p

log n. Note that
this is the negation of Lemma C.18, so by union bound over 1⩽ t ⩽ m− n,

Pr

�m−n
⋃

t=1

Et

�

⩽ K · n
Æ

log n · o(n−4) = o(n−2).

Note that if none of the Et for 1 ⩽ t ⩽ m− n occur, then we either have Gap(t) ⩾ 1
5

p

log n at some
time t ⩽ m (implying Gap(m) ⩾ (1

5 −
1

10)
p

log n ⩾ 1
20

p

log n), or the adversary allocates less than
n

e
p

log n
· K
p

log n out of the m balls with a quantile at least e−
p

log n. Therefore,

Pr [adversary wins P1 ] = o(n−2).

Analysis of Process 2: The analysis of P2 follows directly by Lemma C.19.
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C.4 Lower bound for (1+ β)-process with large β

In this section, we prove a simple bound for the (1+β)-process which matches our upper bound in
Theorem 7.23 up to multiplicative constants for any 1− β = Ω(e− logc n).

Lemma C.21. Consider the (1+β)-process with 1−β = e−
1
4 ·logc n for any c ∈

� 1
log log n , 1

�

. Then, there
exists m := m(β) and a constant κ > 0 such that

Pr
�

Gap(m)⩾ κ ·
log n

− log(1− β)

�

⩾ 1− o(1).

Proof. Consider m := 1
10 ·n log1−c n balls. Then, by a Chernoff bound with probability at least 1−o(1)

we have that at least 1
10(1− β) ·m balls are allocated using ONE-CHOICE. Hence, by Lemma B.23,

Pr






max
i∈[n]

xm
i ⩾

1
4
·

log n

log
�

4 logc n
1

102 ·(1−β)

�






⩾ 1− o(1).

The expression for the maximum load is given by

1
4
·

log n

log
�

4 logc n
1

102 ·(1−β)

� =
1
4
·

log n

log
�

400 · (log n) · e
1
4 logc n

� ⩾
1
4
·

log n
2 logc n

=
1
8
· log1−c n,

using that e
1
4 logc n ⩾ 400 logc n for any c = Ω

� 1
log log n

�

. Hence, subtracting the average, we get the
conclusion

1
8
· log1−c n−

1
10
· log1−c n⩾

1
40
· log1−c n= Ω

�

log n
− log(1− β)

�

.

C.5 Lower bounds for MEAN-BIASED processes

We shall now define a new condition for allocation processes which is satisfied for many natural
processes, including TWINNING, MEAN-THINNING, and (1+ β) with constant β .

• Condition P4: for any ε > 0 there exists a constant 0 < k3 ⩽ 1 such that for all steps t ⩾ 0
with δt ∈ (ε, 1− ε) and all bins i ∈ [n] we have

qt
i ⩾

k3

n
.

So essentially this condition implies that in any step t where the mean quantile δt is in (ε, 1− ε),
there is at least a Ω(1/n)-probability of allocating to each bin.

We shall now observe that

• For the MEAN-THINNING process, the probability of allocating to an overloaded bin i ∈ [n] is
qt

i =
δt

n . Thus condition P4 is satisfied with k3 := ε.

• For the TWINNING process, we have qt
i =

1
n . So P4 is satisfied with k3 := 1.

• The (1+ β)-process has qt
i =

1−β
n +

β(2i−1)
n2 >

1−β
n , satisfying P4 with k3 := 1− β .

The next claim shows that for many steps the mean quantile is not at the extremes.
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Claim C.22. Consider any MEAN-BIASED process. For any m= Θ(n log n) and ε > 0, let Gm
1 := Gm

1 (ε)
be the number of steps s ∈ [1, m] with δs ∈ (ε, 1− ε). Then, there exists some ε > 0 and a constant
κ := κ(ε)> 0 such that

Pr
�

Gm
1 ⩾ κ ·m

�

⩾ 1− 2 · n−12.

Proof. By applying Lemma 5.7 for t0 = 0, (where Λ0 = n), we get that there exists a constant C > 0
such that ∆t ⩽ C · n for a constant fraction of the rounds t in the range [1, m] with probability at
least 1− n−12. The claim then follows by applying Lemma 5.5 at each of these rounds.

Lemma C.23. Consider any MEAN-BIASED process satisfying condition P4. Let k := k3κ/1000 where
k3 is specified by P4 and κ is given by Claim C.22. Then

Pr [Gap(k · n log n)⩾ w−k · log n ]⩾ 1− n−1.

Proof. Let m= k·n log n and let qt be the allocation vector of the process at step t ⩾ 0. By Claim C.22
w.h.p. there exists some constants ε > 0 and κ > 0 such that there are at least κm rounds s ∈ [0, m]
with δs ∈ (ε, 1− ε). Denote this set of rounds by S and observe that by condition P4, for any s ∈ S
and i ∈ [n] we have qs

i ⩾ k3/n.
Observe that we can couple the location of the balls allocated as rounds in S to locations under

a ONE-CHOICE process as follows: before each round s ∈ S we sample an independent Bernoulli
random variable Xs ∼ Ber(k3) with success probability k3. If Xs = 1 then we allocate the ball(s)
to a uniformly random bin. Otherwise, if Xs = 0 we allocate the ball(s) to the i-th loaded bin with
probability (qs

i − k3/n)/(1− k3). If we let X =
∑

s∈S Xs then it follows that, conditional on |S|⩾ κm
we have X > k3κm/2 w.h.p. by the Chernoff bound. It follows that w.h.p. at least (k3κk/2) · n log n
balls are allocated according to the ONE-CHOICE protocol.

By Lemma B.16, when cn log n balls are allocated using ONE-CHOICE, for any constant c > 0,
then with probability at least 1− n−2, the max load is at least (c +

p
c/10) log n. Thus if we choose

k = k3κ/(800w2
−), since each ball has weight at least 1 and at most w−, we have

Gap(m)
log n

⩾
k3κk

2
+

1
10

√

√k3κk
2
−w−k ⩾

1
10

√

√k3κk
2
−w−k = w−k,

with probability 1− n−1 by taking the union bound of these three events.

Hence, we can deduce from the lemma above by recalling that MEAN-THINNING, TWINNING and
(1+ β) all satisfy P4 and either the conditions P2 and W3, or, W2 and P3:

Corollary C.24. For either the MEAN-THINNING, TWINNING or (1+β)-processes, there exist a constant
k > 0 (different for each process) such that

Pr [Gap(k · n log n)⩾ k · log n ]⩾ 1− n−1.

Finally, we prove a tight lower bound for any RELATIVE-THRESHOLD( f (n)) process with f (n) ⩾
log n.

Lemma C.25. Consider any RELATIVE-THRESHOLD( f (n)) process with f (n) ⩾ log n, then for m :=
100n·( f (n))2

log n

Pr





⋃

t∈[0,m]

{Gap(t)⩾ f (n)}



⩾ 1− n−1.

Proof. Since f (n)⩾ log n, it follows that m⩾ n log n. We also define the stopping time

τ := inf{t ⩾ 0 : Gap(t)⩾ f (n)}.
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Clearly, if τ⩽ m, then there is a step t in [0, m] with Gap(t)⩾ f (n). Otherwise, in these m steps we
are always allocating to the first sample and so we can couple the allocations to that of a ONE-CHOICE

process (call it P). By Lemma B.16, we have that

Pr
�

GapP(m)⩾
1
10
·
s

m
n
· log n= f (n)

�

⩾ 1− n−1.

Hence,

Pr





⋃

t∈[0,m]

{Gap(t)⩾ f (n)}



⩾ Pr
�

GapP(m)⩾
1
10
·
s

m
n
· log n= f (n)

�

⩾ 1− n−1.

C.6 Lower bounds for MEMORY process

In this section, we state the lower bounds for the MEMORY processes. The omitted details and
complete proofs can be found in [118].

Theorem C.26 ([118, Theorem 1.2]). Consider the MEMORY process (with the uniform sampling
distribution). Then, there is a constant κ > 0 such that for every step m⩾ n,

Pr [Gap(m)⩾ κ · log log n ]⩾ 1− n−1.

On a high level, the proof of this theorem follows the layered induction argument used by [18]
to lower bound the gap of TWO-CHOICE in the lightly-loaded case. However, for the MEMORY process
in the heavily loaded case, we require some additional arguments to bootstrap the induction and
also deal with the correlations between the bins.

We also state a simple lower bound for the (1, 1, d)-RESET-MEMORY process.

Lemma C.27. For the (1,1, d)-RESET-MEMORY process with constant d > 0 and m = 1
400d n log n, we

have that

Pr
�

Gap(m)⩾
1

400d
· log n

�

⩾ 1− n−2.

Proof. In (1, 1, d)-RESET-MEMORY, every d steps the cache is reset and so the ball is allocated using
ONE-CHOICE. Hence, in m steps, there are m/d balls allocated using ONE-CHOICE. By Lemma B.16,
we get

Pr
�

max
i∈[n]

ym
i ⩾

�

1
400d2

+
1

200d

�

· log n
�

⩾ 1− n−2.

Therefore, by definition of m= 1
400d n log n,

Pr
�

Gap(m)⩾
1

400d
· log n

�

⩾ 1− n−2.
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OMITTED PROOFS

D.1 Relation between THRESHOLD and QUANTILE processes

Lemma D.1. Any THRESHOLD( f t
1 , . . . , f t

k ) process can be simulated by a QUANTILE(δt
1, . . . ,δt

k) process.

Proof. Consider an arbitrary time step t ⩾ 0. Since the process is adaptive, we are allowed to
determine the value of δt

j by looking at the load distribution x t . We want to choose δt
j , such that

comparing the rank i ⩽ δt
j n gives the same answer as f t

j ⩽ x t
i for every i ∈ [n]. This can be achieved

by choosing δt
j to be the largest possible quantile such that y t

δt
j ·n
⩽ f t

j (t). This way any i ⩽ δt
j n

will have x t
i ⩽ δ

t
j and these will be the only such i’s by construction. Hence, at each time step the

probability vectors of QUANTILE(δt
1, . . . ,δt

k) and THRESHOLD( f t
1 , . . . , f t

k ) will be the same.

Lemma D.2. For any QUANTILE(δt
1, . . . ,δt

k) process, there exist thresholds f t
1 , . . . , f t

k and probability
vector (β t

1, . . . ,β t
k) such that (β t

1, . . . ,β t
k)−MIXED(THRESHOLD( f t

1 ), . . . , THRESHOLD( f t
k )).

In other words, there is a reduction from QUANTILE to adaptive THRESHOLD, but the THRESHOLD

process must have the ability to randomise between different instances of THRESHOLD.

Proof. Let us first prove the claim for k = 1, that is, QUANTILE(δ) can be simulated by an adaptive
randomised threshold process with one threshold. Since we only analyse one time-step t, we will
for simplicity omit this dependency and write δ = δt .

Let δ1 be the quantile where the values equal to yn·δ start and δ2, where they end (so δ1 ⩽
δ ⩽ δ2). Sampling between a threshold of yn·δ and yn·δ + 1 with probability α ∈ [0,1] inter-
polates between the QUANTILE(δ1) and QUANTILE(δ2). Let p1 and p2 be the probability vectors
for QUANTILE(δ1) and QUANTILE(δ2), then the probability vector q for this adaptive randomised
threshold process is given by,

qi = α · p1
i + (1−α) · p

2
i .

At i ⩽ n ·δ1 ⩽ n ·δ2, we have,

qi = α ·
δ1

n
+ (1−α) ·

δ2

n
.

We pick α= δ2−δ
δ2−δ1 ∈ [0, 1] so that qi =

δ
n for i ⩽ n ·δ1. Then for i ⩾ n ·δ2 ⩾ n ·δ1, we get

qi = α ·
1+δ1

n
+ (1−α) ·

1+δ2

n
=
α+ (1−α)

n
+
α ·δ1 + (1−α) ·δ2

n
=

1+δ
n

,

by the choice of α. So at the indices i ∈ [n] \ (δ1n,δ2n] agree with QUANTILE(δ).
At the indices n · δ1 < i ⩽ n · δ2, the probability is shared between bins with the same load, so

the effect is indistinguishable (see Fig. D.1), in terms of the resulting load vectors.
We will extend this idea to k > 1 quantiles, by replacing each quantile δ j with a mixture of two

thresholds yn·δ j
and yn·δ j

+ 1 with probability α j . For this, we define δ1
j and δ2

j with δ2
j ⩾ δ j ⩾ δ1

j
to be the left and right quantiles for the values of yn·δ j

.
To argue that there exist coefficients α j such that the two processes are equivalent, we start

with the probability vector q of the QUANTILE(δ1, . . . ,δk) process. For each j ∈ [k], construct the
probability vector q j which agrees with q at all i ⩽ n · δ j , except possibly for values equal to yn·δ j

.
For these values at i ⩽ δ j · n, we will ensure that the processes have the same aggregate probability,
so the effect on these bins will be indistinguishable.
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𝛿2/𝑛

𝛿2 10

𝛿1/𝑛

𝛿1

(1 + 𝛿1)/𝑛
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𝛿/𝑛

(1 + 𝛿)/𝑛

(1 + 𝛿2)/𝑛

𝛿

QUANTILE(𝛿1)
QUANTILE(𝛿2)
QUANTILE(𝛿)
THRESHOLD

All bins have load 𝑦𝑛⋅𝛿

Figure D.1: The ONE-THRESHOLD process which uses a threshold of yn·δ probability α and
yn·δ + 1 with probability 1 − α, corresponds to mixing the probability vectors of QUANTILE(δ1)
and QUANTILE(δ2). The resulting probability vector differs from QUANTILE(δ) only in the region
(n · δ1, n · δ2], where by design all bins have load yn·δ. Hence, the effect of the two processes is
indistinguishable.

In each step we create probability vectors p1 j and p2 j , by adding quantiles δ1
j and δ2

j respectively

to q j−1. These affect only the values of the entries in (n · δ j−1, n · δ j+1]. As in the one query case,

we choose α j :=
δ2

j−δ j

δ2
j−δ

1
j

such that, for i ∈ (n ·δ j−1, n ·δ1
j ]

q j
i = α j ·

�

δ j−1 +δ1
j

n

�

+ (1−α j) ·

�

δ j−1 +δ2
j

n

�

=
δ j−1

n
+α j ·

δ1
j

n
+ (1−α j) ·

δ2
j

n
=
δ j−1 +δ j

n
= qi ,

and for i ∈ (n ·δ2
j , n ·δ j+1],

q j
i = α j ·

�

δ1
j +δ j+1

n

�

+ (1−α j) ·

�

δ2
j +δ j+1

n

�

=
δ j+1

n
+
α jδ

1
j + (1−α j)δ2

j

n
=
δ j−1 +δ j

n
= qi .

The linear weighting preserves the following property: Let B be a set of bins, then if
∑

b∈B p1 j
b =

∑

b∈B p2 j
b then

∑

b∈B q j
b =

∑

b∈B p1 j
b =

∑

b∈B p2 j
b . This implies that:

1. If p1 j
i = p2 j

i , then q j
i = p1 j

i = p2 j
i .

2. Let Bx be the set of bins in [1,δ j−1 · n] with equal load x . By the inductive argument, in q j

the probability of allocating a ball to x will be the same as in that of q.

Hence, this ensures that each step extends the agreement of probability vector q j and q to each bin
i ∈ [1,δ j+1 · n]. The only possible exceptions are bins with equal load, where the probability mass
is just rearranged among them. Hence, qk will be equivalent to q for the given load vector.

Lemma D.3. Any QUANTILE(δ1, . . . ,δk) process can be simulated by an adaptive (and randomised)
(2k)-THINNING process.

Proof. We may assume that QUANTILE (δ1, . . . ,δk) will process 2k queries one by one, and alternate
between the two bins. First, send the largest quantile to bin i1, then send the largest to bin i2, then
send the second largest to bin i1, etc. and stop as soon as you receive a negative answer. Therefore,
for ease of notation, let us set γi := δk−i for i ∈ [k].
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Further, let i1 and i2 be two chosen bins, and ei be the bin where the ball is finally placed. Note
that

Pr
�

Rankt(ei)⩽ n · γ j

�

= γ j · γ j .

since ei ∈ {i1, i2} will be of rank at least n ·γ j if and only if both bins i1 and i2 satisfy Rankt(i1)⩽ n ·γ j
and Rankt(i2)⩽ n · γ j; and those bins are chosen independently.

On the other hand, consider now an adaptive (2k)-THINNING process with increasing load thresh-
olds f1 ⩽ f2 ⩽ . . . ⩽ f2k and 2k bin choices i1, i2, . . . , i2k, which are chosen uniformly and indepen-
dently at random. Each load threshold f j applied to bin i j will be randomised so that it simulates a
QUANTILE (γ⌊( j−1)/2⌋) see (Lemma D.2). Further, let i be the final bin of this allocation process.

First, the bin iℓ in iteration ℓ will not be accepted with probability

Pr
�

Rankt(iℓ)⩽ n · γ1+⌊ℓ/2⌋
�

= γ1+⌊ℓ/2⌋,

and using the independence of the first 2 j sampled different bins, we obtain

Pr
�

Rankt(i)⩽ n · γ j

�

=
2 j
∏

ℓ=1

Pr
�

Rankt(iℓ)⩽ n · γ1+⌊ℓ/2⌋
�

= γ1 · γ1 · γ2 · γ2 · . . . · γ j · γ j ⩽ γ j · γ j ⩽ Pr
�

Rankt(ei)⩽ n · γ j

�

.

D.2 WEIGHTED setting

Lemma D.4. There exists S := S(ζ) ⩾ max{1,1/ζ}, such that for any α ∈ (0,min{ζ/2,1}) and any
κ ∈ [−1,1],

E
�

eα·κ·W
�

⩽ 1+α ·κ+ Sα2 ·κ2.

Proof. This proof closely follows the argument in [152, Lemma 2.1]. Let M(z) = E
�

ezW �

, then
using Taylor’s Theorem (mean value form remainder), for any z ∈ [−α,α] there exists ξ ∈ [−α,α]
such that

M(z) = M(0) +M ′(0) · z +M ′′(ξ) ·
1
2
· z2 = 1+ z +M ′′(ξ) ·

1
2
· z2.

By the assumptions on α and ζ,

M ′′(ξ) = E[W2eξW ]
(a)
⩽
Æ

E[W4 ] · E[ e2ξW ]
(b)
⩽

1
2
·
�

E[W4 ] + E[ e2ξW ]
�

(c)
⩽

1
2
·
�

�

8
ζ
· log

�

8
ζ

��4

+ E[ eζW ] + E[ eζW ]

�

.

where (a) uses the Cauchy-Schwartz inequality |E [X · Y ] |⩽
p

E [X 2 ]E [Y 2 ] for random variables
X and Y , (b) uses a mean inequality, and (c) uses Lemma B.13. Now defining

S := 2 ·max

�

�

8
ζ
· log

�8
ζ

�

�4

, 2 · E[ eζW ], 1/2

�

,

and choosing z := κ ·α, the lemma follows.

D.3 MEAN-BIASED processes

Lemma D.5. For any constant η > 0, the (1+η)-process is a MEAN-BIASED process.
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Proof. Let qt be the allocation vector of (1+η) with parameter η ∈ (0,1); that is, with probability
η it performs MEAN-THINNING, otherwise ONE-CHOICE. Then for any i ∈ B t

+,

qt
i = (1−η) ·

1
n
+η ·

δt

n
=

1
n
−
η · (1−δt)

n
.

Similarly, for any i ∈ B t
−,

qt
i = (1−η) ·

1
n
+η ·

1+δt

n
=

1
n
+
η ·δt

n
.

Thus for k1 = k2 = η ∈ (0, 1), the (1+η) process satisfies P3 and W2.

Lemma D.6. For any constant β ∈ (0,1], the (1+η)-process with η= β majorizes (1+β)-process at
each step.

Proof. We will show that for any step t ⩾ 0 and for any load vector, the (1+η) for η= β allocation
vector majorizes the allocation vector of (1+β)-process. So, by Theorem 2.5, the claim will follow.

Recall that the (1+ β) allocation vector pt is given by,

pt
i = pi = (1− β) ·

1
n
+
β(2i − 1)

n2
.

The sorted allocation vector eqt for the (1+ η) process is non-decreasing and uniform over B t
− and

B t
+, so majorization follows immediately once we prove that

|B t
+|
∑

i=1

pi ⩽
|B t
+|
∑

i=1

eqt
i .

For the allocation vector p we have,

δt n
∑

i=1

pi =
δt n
∑

i=1

(1− β) ·
1
n
+
δt n
∑

i=1

β(2i − 1)
n2

= (1− β) ·δt +
β(δt · n)2

n2
= δt − β · (δt − (δt)2).

Similarly, for the allocation vector eqt we have,

δt n
∑

i=1

eqt
i =

δt n
∑

i=1

1
n
−
δt n
∑

i=1

β(1−δt)
n

= δt − β · (δt − (δt)2).

D.4 g-ADV setting

Claim D.7. Consider α1,α2 > 0 as defined in Eq. (7.4) and Eq. (7.5) respectively. Then, for any
g ⩾ α2

4
p
α1

and k := k(g) ⩾ 2 being the unique integer such that (α1 log n)1/k < g ⩽ (α1 log n)1/(k−1),
it holds that

(α1 · (log n))1/k ⩽
�α2

4
· (log n)

�1/(k−1)
.

Proof. Let R := α2
4
p
α1
=
p
α1

4·84 ⩽ 1 (using that α2 =
α1
84 and α1 ⩽ 1). By rearranging the target

inequality,
�α2

4
· (log n)

�1/(k−1)
· (α1 · (log n))−1/k = exp

�

1
k− 1

· log
�α2

4
log n

�

−
1
k
· log(α1 log n)

�

(a)
⩾ exp

�

1
k− 1

·
�

log R+
1
k
· log log n

��

(b)
⩾ exp

�

1
k− 1

· (log R− log R)
�

= 1.

using in (a) that −1
k logα1 ⩾ −

1
2(k−1) logα1 and in (b) that k ⩽ 1

− log R · log log n since g ⩾ R−1.
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D.5 Concentration for the b-BATCHED setting

In this chapter, we prove that the hyperbolic cosine potential concentrates at O(n) for a large family
of processes in the b-BATCHED setting for n ⩽ b ⩽ n3. In particular, we complete the proof of the
following lemma stated in Section 7.5, which is essential for getting the O

� b
n + log n

�

bound on the
gap (Theorem 7.39).

Recall that in Theorem 7.39, we considered the WEIGHTED b-BATCHED setting with any n⩽ b ⩽
n3 and weights from a FINITE-MGF(ζ, S) distribution with constant ζ, S ⩾ 1, for any SEQUENTIAL(qt)
process with qt satisfying condition C1 for constant δ ∈ (0, 1) and constant ε ∈ (0,1) as well as
condition C2 for some constant C > 1, at every step t ⩾ 0.

Lemma D.8. Consider any process satisfying the conditions in Theorem 7.39. Let ec := 2 · 8c
δ where

c := c(δ)> 0 is the constant from Theorem 3.2. Then, for any step t ⩾ 0 being a multiple of b,

Pr





⋂

j∈[0,log3 n]

¦

Γ
t+ j·b
2 ⩽ ec · n

©



⩾ 1− n−3.

The proof of this lemma is similar to the proof of Theorem 4.1 in Chapter 4, in that we use the
interplay between two instances of the hyperbolic cosine potential Γ1 := Γ1(γ1) and Γ2 := Γ2(γ2)
with smoothing parameter γ2 being a large constant factor smaller than γ1. More specifically, we
will be working with γ1 := εδ

40·C2·S2 ·min
� 1

log n , n
b

	

and γ2 := γ1
8·30 .

The rest of this chapter is organised as follows. In Appendix D.5.1, we establish some basic
properties for the potentials Γ1 and Γ2 and in Appendix D.5.2 we use these to show that w.h.p. Γ t

2 =
O(n) for at least log3 n batches, and complete the proof of Lemma D.8.

D.5.1 Preliminaries

We define the following event, for any step t ⩾ 0

Ht :=
§

wt ⩽
15
ζ
· log n

ª

,

which means that the weight of the ball sampled in step t is O(log n) (since by assumption ζ > 0 is
constant).

Lemma D.9. Consider any FINITE-MGF(ζ) distribution W with constant ζ > 0. Then, for any steps
t0 ⩾ 0 and t1 ∈ [t0, t0 + n3 log3 n], we have that

Pr





⋂

s∈[t0,t1]

Hs



⩾ 1− n−10

Proof. Consider an arbitrary step s ∈ [t0, t1]. Since ws is sampled according to W with E[ eζW ]<∞,
by Lemma B.8, we have that

Pr
�

ws >
15
ζ
· log n

�

⩽ n−14.

By taking the union bound over the interval [t0, t1] and since t1− t0 ⩽ n4, we get the conclusion.

We will now show that when Γ t
1 = poly(n) and Ht holds, then ∆Γ t+1

2 is small.

Lemma D.10. Consider any process satisfying the conditions in Lemma D.8 and any step t ⩾ 0, such
that Γ t

1 ⩽ 2ec · n26 and Ht holds. Then, we have that

(i) Γ t
2 ⩽ n5/4,
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(ii)
�

�Γ t+1
2 − Γ t

2

�

�⩽
n
b
· n1/4.

Further, let bx t be the load vector obtained by moving the t-th ball of the load vector x t to some other
bin, then

(iii) Γ t
1 (bx

t)⩽ 2 · Γ t
1 (x

t).

Proof. Consider any step t ⩾ 0, such that Γ t
1 ⩽ 2ec · n26 and Ht holds. We start by bounding the load

of any bin. For any bin i ∈ [n],

Γ t
1 ⩽ 2ec · n26⇒ eγ1·y t

i + e−γ1·y t
i ⩽ ec · n26⇒ y t

i ⩽
27
γ1

log n ∧ −y t
i ⩽

27
γ1

log n, (D.1)

where in the second implication we used log(2ec) + 26
γ1

log n⩽ 27
γ1

log n, for sufficiently large n.
First statement. Using Eq. (D.1), we can bound the contribution of any bin i ∈ [n] to Γ t

2 as
follows,

Γ t
2i ⩽ eγ2 y t

i + e−γ2 y t
i ⩽ 2 · eγ2·

27
γ1

log n ⩽ 2 · n1/8, (D.2)

using that γ2 := γ1
8·30 . By aggregating, we get the first claim Γ t

1 =
∑n

i=1 Γ
t
1i ⩽ 2 · n · n1/8 ⩽ n5/4.

Second statement. Consider the change for the bin j ∈ [n] where the ball was allocated. Since

γ2 <
1

40·S·log n and S > 1
ζ , we have γ2 ·

15
ζ · log n ⩽ 1 and so by a Taylor estimate, eγ2·

15
ζ ·log n ⩽

1+ 2 · γ2 ·
15
ζ · log n. If j ∈ [n] is an overloaded bin (y t

j ⩾ 0), then
�

�

�∆Γ t+1
2 j

�

�

�⩽ Γ t
2 j · e

γ2·
15
ζ ·log n − Γ t

2 j ⩽ Γ
t
2 j ·
�

1+ γ2 ·
30
ζ
· log n

�

− Γ t
2 j = Γ

t
2 j · γ2 ·

30
ζ
· log n⩽

n
b
· n1/8 · log n,

using Eq. (D.2) and γ2 ⩽
εδ

40·C2·S2 · n
b . Similarly, if j is underloaded (y t

j < 0), then
�

�

�∆Γ t+1
2 j

�

�

�⩽ Γ t
2 j − Γ

t
2 j · e

−γ2·
15
ζ ·log n ⩽ Γ t

2 j − Γ
t
2 j ·
�

1− γ2 ·
30
ζ
· log n

�

= Γ t
2 j · γ2 ·

30
ζ
· log n⩽

n
b
· n1/8 · log n.

The contribution of the rest of the bins is due to the change in the average load. In particular,
for any overloaded bin i ∈ [n] \ { j},
�

�∆Γ t+1
2i

�

�⩽ Γ t
2i · e

γ2·
15
ζ ·

log n
n − Γ t

2i ⩽ Γ
t
2i ·
�

1+ 2 · γ2 ·
15
ζ
·

log n
n

�

− Γ t
2i = Γ

t
2i · γ2 ·

30
ζ
·

log n
n
⩽

1
b
· log n · n1/8.

Similarly, for an underloaded bin i ∈ [n] \ { j},
�

�∆Γ t+1
2i

�

�⩽ Γ t
2i − Γ

t
2i · e

−γ2·
15
ζ ·

log n
n ⩽ Γ t

2i − Γ
t
2i ·
�

1− 2 · γ2 ·
15
ζ
·

log n
n

�

= Γ t
2i · γ2 ·

30
ζ
·

log n
n
⩽

1
b
· log n · n1/8.

Hence, aggregating over all bins
�

�∆Γ t+1
2

�

�⩽
�

�

�∆Γ t+1
2 j

�

�

�+
∑

i∈[n]\{ j}

�

�∆Γ t+1
2i

�

�⩽ 2 ·
n
b
· n1/8 · log n+ n ·

1
b
· log n · n1/8 ⩽

n
b
· n1/4,

for sufficiently large n.
Third statement. Let i, j ∈ [n] be the differing bins between x t and bx t . Then since Ht holds,

wt ⩽ 15
ζ · log n, so for any bin i ∈ [n]

Γ1i(bx
t)⩽ eγwt

· Γ t
1i(x

t)⩽ 2 · Γ t
1i(x

t),

since γ < 1
40·S·log n and S > 1/ζ. Similarly, for bin j,

Γ1 j(bx
t)⩽ eγwt

· Γ t
1 j(x

t)⩽ 2 · Γ t
1 j(x

t).

Hence,

Γ t
1 (bx

t) =
n
∑

k=1

Γ t
1k(bx

t)⩽
n
∑

k=1

2 · Γ t
1k(x

t) = 2 · Γ t
1 (x

t).
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Next, we will show that E[ Γ2 ] =O(n) and that when Γ2 is sufficiently large, it drops in expecta-
tion over the next batch.

Lemma D.11. Consider any process satisfying the conditions in Lemma D.8. Then, for any step t ⩾ 0
being a multiple of b,

(i) E[ Γ t
1 ]⩽

ec
2
· n, and (ii) E[ Γ t

2 ]⩽
ec
2
· n.

Further, there exists a constant ec1 := ec1(ε,δ)> 0 such that

(iii) E
h

Γ t+b
2

�

�

� Ft , Γ t
2 ⩾ ec · n

i

⩽ Γ t
2 ·
�

1−
ec1

log n

�

,

and
(iv) E

h

Γ t+b
2

�

�

� Ft , Γ t
2 ⩽ ec · n

i

⩽ ec · n−
n

log2 n
.

Proof. First/Second statement. The statements follow immediately by Lemma 3.13 and Theorem 3.2,
by setting ec := 16c/δ, since c := c(δ)> 0.

Also, using Lemma 3.13 and Theorem 3.2 for smoothing parameter γ2, we get that for any t ⩾ 0,

E
�

Γ t+b
2

�

� Ft
�

⩽ Γ t
2 ·
�

1− b ·
εδ

8n
· γ2

�

+ b · cγ2ε. (D.3)

Third statement. Letec3 := 1
2 ·b·

εδ
8n ·γ2 ⩾ ec1/ log n, for some constantec1 > 0 since γ2 = Θ(min{n/b, 1/ log n})

and ε > 0 is constant. When Γ t
2 ⩾ ec · n, then Eq. (D.3) yields,

E
h

Γ t+b
2

�

�

�Ft , Γ t
2 ⩾ ec · n

i

⩽ Γ t
2 ·
�

1− 2 ·ec3

�

+ b · cγ2ε

⩽ Γ t
2 −ec3 · Γ t

2 +
�

b · cγ2ε−ec3 · Γ t
2

�

⩽ Γ t
2 −ec3 · Γ t

2 +
�

b · cγ2ε−
1
2
· b ·

εδ

8n
· γ2 ·

16c
δ
· n
�

⩽
�

1−
ec1

log n

�

· Γ t
2 .

Fourth statement. Similarly, when Γ t
1 < ec · n, Eq. (D.3) yields,

E
h

Γ t+b
2

�

�

�Ft , Γ t
2 < ec · n

i

⩽ ec · n ·
�

1− 2 ·ec3

�

+ b · cγ2ε

= ec · n−ec ·ec3 · n+
�

b · cγ2ε−ec ·ec3 · n
�

⩽ ec · n−
ec ·ec1

log n
· n⩽ ec · n−

n

log2 n
.

In the next lemma, we show that w.h.p. Γ1 is poly(n) for every step in an interval of length
2b log3 n.

Lemma D.12. Let ec := 2 · 8c
δ be the constant defined in Lemma D.11. For any n ⩽ b ⩽ n3 and for any

step t ⩾ 0 being a multiple of b,

Pr





⋂

s∈[t,t+2 log3 n]

�

Γ s
1 ⩽ ec · n

26
	



⩾ 1− n−10.
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Proof. We will start by bounding Γ s
1 at steps s being a multiple of b. Using Lemma D.11 (i), Markov’s

inequality and the union bound, we have for any t ⩾ 0,

Pr





⋂

s∈[0,2 log3 n]

�

Γ t+s·b
1 ⩽ ec · n12

	



⩾ 1−
2 log3 n

n11
. (D.4)

Given that Γ t+s·b
1 ⩽ ec · n12, we will upper bound Γ t+s·b+r

1 for any r ∈ [0, b). To this end, recalling
that Γ t+s·b+r

1i := Φt+s·b+r
1i +Ψ t+s·b+r

1i , we will upper bound for each bin i ∈ [n] the terms Φt+s·b+r
1i and

Ψ t+s·b+r
1i separately. Proceeding using Eq. (3.18) in Lemma 3.13 (since γ1 ⩽ 1 and p satisfies C2),

E
�

Φt+s·b+r
1i

�

� Ft+s·b �⩽ Φt+s·b
1i ·

�

1+
Cγ1

n
+ 2 ·

C
n
· Sγ2

1

�r

(a)
⩽ Φt+s·b

1i ·
�

1+
2Cγ1

n

�r

⩽ Φt+s·b
1i · e2γ1C · rn ⩽ Φt+s·b

1i · e2γ1C · bn
(b)
⩽ 2 ·Φt+s·b

1i ,

using in (a) that γ1 ⩽
εδ

40·C2·S2 ⩽ 2
S and in (b) that γ1 ⩽

εδ
40·C2·S2 · nb ⩽

1
4C ·

n
b . Similarly, using Eq. (3.20)

in Lemma 3.13,

E
�

Ψ t+s·b+r
1i

�

� Ft+s·b �⩽ Ψ t+s·b
1i ·

�

1+
Cγ1

n
+ 2 ·

C
n
· Sγ2

1

�r

(a)
⩽ Ψ t+s·b

1i ·
�

1+
2Cγ1

n

�r

⩽ Ψ t+s·b
1i · e2γC · rn ⩽ Ψ t+s·b

1i · e2γC · bn
(b)
⩽ 2 ·Ψ t+s·b

1i ,

using in (a) that γ1 ⩽
εδ

40·C2·S2 ⩽ 2
S and in (b) that γ1 ⩽

εδ
40·C2·S2 · n

b ⩽
1

4C ·
n
b . Hence, aggregating over

the bins,
E
�

Γ t+s·b+r
1

�

� Ft+s·b, Γ t+s·b
1

�

⩽ 2 · Γ t+s·b
1 .

Applying Markov’s inequality, for any r ∈ [0, b),

Pr
�

Γ t+s·b+r
1 ⩽ n14 · Γ t+s·b

1

�

⩾ 1− 2 · n−14.

Hence, by a union bound over the 2b · log3 n⩽ 2 · n3 · log3 n possible rounds for s ∈ [0,2 log3 n] and
r ∈ [0, b),

Pr





⋂

r∈[0,b]

⋂

s∈[0,2 log3 n]

�

Γ t+s·b+r
1 ⩽ n14 · Γ t+s·b

1

	



⩾ 1− 2 · n−14 · 2b log3 n⩾ 1−
1
2
· n−10. (D.5)

Finally, taking the union bound of Eq. (D.4) and Eq. (D.5), we conclude
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We will now show that w.h.p. there is a step every b log3 n steps, such that the exponential
potential Γ2 becomes O(n). We call this the recovery phase.

Lemma D.13 (Recovery). Let ec := 2 · 8c
δ be the constant defined in Lemma D.11. For any step t ⩾ 0

being a multiple of b,

Pr





⋃

s∈[0,log3 n]

�

Γ t+s·b
2 ⩽ ec · n

	



⩾ 1− 2 · n−8.

Proof. By Lemma D.11 (ii), using Markov’s inequality at step t being a multiple of b, we have

Pr
�

Γ t
2 ⩽ ec · n

9
�

⩾ 1− n−8. (D.6)

We will be assuming Γ t
2 ⩽ ec · n

9. By Lemma D.11 (iii), there exists a constant ec1 > 0 such that for
any step r ⩾ 0, then

E
�

Γ r+1
2

�

� Fr , Γ r
2 > ec · n

�

⩽ Γ r
2 ·
�

1−
ec1

log n

�

.

In order to prove that Γ2 is small in some s ∈ [0, b log3 n], we define the “killed” potential function
for any r ∈ [0, log3 n],

bΓ t+r·b
2 := Γ t+r·b

2 · 1⋂
s∈[0,r]{Γ

t+s·b
2 >ec·n}.

Note that bΓ t+r·b
2 ⩽ Γ t+r·b

2 and that
�

bΓ t+r·b
2 = 0

	

implies that
�

bΓ t+r·b+1
2 = 0

	

. Hence, the bΓ potential
satisfies unconditionally the drop inequality of Lemma D.11 (iii), that is,

E
h

bΓ
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� Ft+r·b,bΓ t+r·b
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log n
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.

Inductively applying this for log3 n batches, and since ec1 := ec1(ε,δ)> 0 is a constant,
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�log3 n
⩽ e−ec1·log2 n ·ec · n9 < n−7.

So by Markov’s inequality,
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t+(log3 n)·b
2 < n
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⩾ 1− n−8

By union bound with Eq. (D.6),
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< n−8 + n−8 = 1− 2 · n−8.

Due to the definition of Γ2, at any step t ⩾ 0, deterministically Γ t
2 ⩾ 2n. So, we conclude that w.p. at

least 1− 2 · n−8, we have that bΓ t+(log3 n)·b
2 = 0 or equivalently the event

¬
⋂

s∈[0,log3 n]

�

Γ t+s·b
2 > ec · n

	

,

holds, which implies the conclusion.
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D.5.2 Completing the proof of Lemma D.8

We are now ready to prove Lemma D.8, using a method of bounded differences with a bad event
Theorem B.12 ([107, Theorem 3.3]).

Consider any process satisfying the conditions in Theorem 7.39. Let ec := 2· 8c
δ where c := c(δ)>

0 is the constant from Theorem 3.2. Then, for any step t ⩾ 0 being a multiple of b,
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Proof. Our starting point is to apply Lemma D.13, which proves that there is at least one step t+ρ ·
b ∈ [t − b log3 n, t] with ρ ∈ [− log3 n, 0] such that the potential Γ2 is small,
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Note that if t < b · log3 n, then deterministically Γ 0
2 = 2n⩽ ec · n (which corresponds to ρ = −t/b).

We are now going to apply the concentration inequality Theorem B.12 to each of the batches
starting at t +ρ · b, . . . , t + (log3 n) · b and show that the potential remains ⩽ ec · n at the last step of
each batch. In particular, we will show that for any er ∈ [ρ, log3 n], for r = t + b ·er,
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2 > ec · n
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� Fr , Γ r
2 ⩽ ec · n
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⩽ 3 · n−4.

We will show this by applying Theorem B.12 for all steps of the batch [r, r + b]. We define the
good event

Gr := G r+b
r :=

⋂

s∈[r,r+b]

��

Γ s
1 ⩽ ec · n
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∩Hs
�

,

and Br := (Gr)c the bad event. Using a union bound over Lemma D.9 and Lemma D.12,
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Consider any u ∈ [r, r + b]. Further, we define the slightly weaker good event,

eGu
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and the “killed” potential,
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r
.

We will show that the sequence bΓ r
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r is strongly difference-bounded by
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n5/4, n
b ·n

1/4, 2·n−10
�

(Definition B.11).
Let ω ∈ [n]b be an allocation vector encoding the allocations made in [r, r + b]. Let ω′ be an

allocating vector resulting from ω by changing one arbitrary allocation. It follows that,
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where in the last inequality we used Lemma D.10 (i) that for any eω ∈ eG r+b
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We will now derive a refined bound by additionally assuming that ω ∈ Gr . Then, for any u ∈
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where the first inequality is by Lemma D.10 (iii). Henceω′ ∈ eG r+b
r , so 1

eG r+b
r (ω′) = 1 and bΓ r+b

r (ω′) =
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Within a single batch all allocations are independent, so we apply Theorem B.12, choosing γk :=
1
b and N := b, which states that for any λ > 0 and µ := E
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By union bound of Eq. (D.7) and Eq. (D.8),
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where in the last inequality we have used Eq. (D.9) and the fact ρ ⩾ − log3 n. So,
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Note that for any ρ ∈ [− log3 n, 0], we have that Aρ ∩K
log3 n
ρ ⊆A. Hence we conclude by the union

bound of Eq. (D.10) and Eq. (D.11), that
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EXPERIMENTS
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Figure E.1: The Gap(m) for n ∈ {104, 5 · 104, 105} and m = n2 for noisy settings of TWO-CHOICE

and for various processes in the b-BATCHED setting (25 repetitions).
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