Technical Report A

Number 988

Computer Laboratory

CHERI C semantics as an
extension of the ISO C17 standard

Vadim Zaliva, Kayvan Memarian,
Ricardo Almeida, Jessica Clarke, Brooks Davis,
Alex Richardson, David Chisnall,

Brian Campbell, Ian Stark,

Robert N. M. Watson, Peter Sewell

October 2023

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/


https://www.cl.cam.ac.uk/

© 2023 Vadim Zaliva, Kayvan Memarian, Ricardo Almeida,
Jessica Clarke, Brooks Davis, Alex Richardson, David Chisnall,
Brian Campbell, Ian Stark, Robert N. M. Watson, Peter Sewell,
SRI International

This work was supported by the UK Industrial Strategy
Challenge Fund (ISCF) under the Digital Security by Design
(DSbD) Programme, to deliver a DSbDtech enabled digital
platform (grant 105694).

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No
789108, ERC AdG ELVER).

Distribution Statement A: Approved for public release;
distribution is unlimited. This work was supported by the
Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL), under contracts
HR0011-22-C-0110 (“ETC”) and HR0011-23-C-0031
(“MTSS”). The views, opinions, and/or findings contained

in this report are those of the authors and should not be
interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/lwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-988


https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-988

Abstract

This document provides a specification for CHERI C, adhering to the style, con-
ventions, and terminology found in the ISO C17 standard. Alongside the ISO/TEC
9899:2018 standard text and the “A Provenance-aware Memory Object Model for
C” draft specification, it offers a comprehensive specification of the CHERI C lan-
guage.

1 CHERI C prose semantics

Our CHERI C semantics prose adheres to the language, style, and terminology found
within the ISO text. Instead of presenting it as an extensive list of modifications to
the standard text, we have opted to describe the CHERI-specific aspects of the seman-
tics through a series of sections with bullet points. Consequently, the complete CHERI
C semantics definition comprises the ISO text [2] and the PNVI-ae-udi memory object
model [1], along with the CHERI supplement, with this text taking precedence in cases
of disagreement.

1.1 Capabilities

In the CHERI C language, we will use an architecture-neutral definition of abstract ca-
pabilities. Where it is allowed, the ISA-specific implementation details of the abstract
capabilities will be designated as implementation-defined behaviour. An abstract capabil-
ity is a data structure which consists of a set of fields. Those relevant to this specification
are the address, bounds interval, validity tag, object type, and set of boolean permissions.
Informally speaking, a capability allows to access the memory location designated by its
address, but only if the address (and the rest of the footprint of the access) is within the
bounds. The type of allowed access (e.g. read or write) is described by the permissions.
Access is granted only if the capability’s tag is true. Normal, non-privileged, code can-
not set the capability tag, but could clear it. See [3] for a more detailed introduction to
CHERI capabilities.

In the abstract C machine in addition to the standard capability fields each capability
value is associated with a ghost state. It consists of two boolean flags. The first one,
tag_unspecified, denotes that the given capability tag may be non-deterministically true
or false. The second flag in the ghost state is called bounds_unspecified and if set, it
means that capability bounds are not known.

A special null capability constant is always untagged, has empty permissions, bounds
covering all abstract address space, and has the address of zero.

The implementation-defined capability encoding might not permit some combinations
of capability addresses and bounds to be encoded. An attempt to set a capability address
field with such non-representable value will result in a capability which will have the new
address set and tag_unspecified and bounds_unspecified both set to true in the ghost state.
It is guaranteed, however, that all addresses within the capability bounds and one byte
past the upper bound are representable’.

1.2 Types

The following C types are either introduced in CHERI C or differ from their definition in
ISO C.

!Capability invalidation caused by non-representable values could not arise in well-defined pointer
arithmetic but can happen when manipulating (u) intptr_t values.




1.2.1 ptraddr_t type

This is a new integer type representing an abstract address as defined in N3005 [1]
(1) This is the type of the address field of a capability.
(2) It is unsigned.
(3) It is not a pointer type and cannot be used directly to reference objects.

1.2.2 Pointer types

In the CHERI C abstract machine, a pointer value is a capability. The address field of
this capability holds the abstract address (or one-past) of the object it points to or 0 for
a null pointer.

(1) The object representation of pointer values is implementation defined.

(2) The null pointer constant corresponds to null capability constant.

(3) A null pointer is any pointer with the abstract address (the capability’s address
field) 0.

(4) The capabilities representing function pointers must be sealed by setting an ap-
propriate object type (see [3] for further details on sealed capabilities).

(5) Any modification of a function pointer’s address or its capability fields via CHERI
intrinsics will set the tag_unspecified flag to to true in the corresponding capability ghost
state.

1.2.3 intptr_t and uintptr_t types

As in ISO C, these are signed and unsigned integer types respectively, with the property
that any valid pointer to void could be converted to either of these types and back and will
compare ezactly equal (see Section 1.3 for a definition of ezact equality) to the original.
Additionally, it will have the same provenance as the original. These two types together
with all pointer types are collectively referred to as capability types.

The values of these types are capabilities, whose integer value is the value of the
address field of the capability. Internally, the address field has an unsigned integer type
ptraddr_t which is used unchanged in case of uintptr_t or interpreted as a signed integer
of the same width in case of intptr_t.

(1) The object representations of these types and their storage size reported by
sizeof are implementation defined.

(2) The width of these types is not guaranteed to be the same as their storage size
in bits.

(3) The width of these types must be the same as the width of ptraddr_t.

(4) No other standard integer type shall have a higher integer conversion rank than
intptr_t and uintptr_t.2

(5) The equality operators == and !=, and relational operators <, > <= >= com-
pare intptr_t and uintptr_t as integer values, and do not take into account additional
capability fields.

(6) Converting values of these types to other integer types is performed using stan-
dard integer conversions. The capability meta-information will be lost.

(7) Converting values of other integer types to values of these types is performed by
first converting to ptraddr_t value using standard integer conversions and then assigning
this value to a copy of the null capability.

2From that follows that no other signed integer type shall have greater precision than intptr_t and
no other unsigned integer type shall have greater precision than than uintptr_t.

4



(8) Reading values of these types using byte input/output functions (e.g. fread,
fscanf) or sscanf is allowed. However, converting the resulting value to a pointer will
always result in an untagged pointer.

(9) Direct manipulation of the representation bytes of an intptr_t will set
tag_unspecified flag to to true in the corresponding capability ghost state.

(10) Per PNVI-ae-udi, provenance is not tracked through values of intptr_t and
uintptr_t types. When converted to pointers, the provenance will be reconstructed, if
possible.

Arithmetic operations (e.g. unary ~ and binary +), when one or both of the operands
has intptr_t or uintptr_t type, is performed as follows:

1. The operation is performed on address fields of operands.

2. The resulting intptr_t or uintptr_t object is a capability, derived from one of
the operands and assigned the arithmetic result of the operation. If the result
of the operation is non-representable in combination with the derived capability
bounds, the resulting capability will have the new value set in the address field and
tag_unspecified and bounds_unspecified flags both set to true in the ghost state.

3. If only one of the operands is capability-carrying, the derivation algorithm will use
it.

4. If both operands are capability-carrying, the derivation algorithm will use the one
on the left-hand side.

If the capability in a (u) intptr_t value is sealed any modification of its address as the
result of arithmetic operations will set tag_unspecified to true in the ghost state and
any other modification via CHERI intrinsics will clear the tag.

1.3 Pointer comparison
1.3.1 Standard pointer equality

Pointers are equal (per ==) if their abstract addresses (the address fields of their respective
capabilities) are the same. Thus pointers may compare as equal even when some of their
capability fields differ.

1.3.2 Exact pointer equality

Additionally, the ezxact equality is defined, and implemented by cheri_is_equal_exact in-
trinsics. According to it, the two pointer objects are equal if object representations and
tags of their corresponding capabilities match. If any of the flags in the ghost state is
true for either of the capabilities being compared, the exact equality intrinsic will return
an unspecified boolean value.

1.3.3 Relational operators

Relational operators (<, >, >=, <=) between pointers are only defined when the two pointers
have the same provenance. They are defined by the relative position of the abstract
addresses [1].



1.4 Conversion between integers and pointers

All capability types (intptr_t, uintptr_t, and pointer types) share the same representa-
tion and conversion between them leaves the underlying capability unchanged.
The rules for conversion between pointers and other integer types are described below.

1.4.1 Pointer to integer

The address field of the pointer capability is converted to the target integer type. If the
result cannot be represented in the integer type, the behaviour is undefined.

1.4.2 Integer to pointer

The integer is wrapped to fit ptraddr_t by repeatedly adding or subtracting one more than
the maximum value that can be represented in ptraddr_t until the value is in the range
of the ptraddr_t. Then, the pointer is constructed from the null capability, assigning its
address to the wrapped number.

It should be noted that the resulting capability will have the tag cleared and the
resulting pointer cannot be dereferenced. The provenance of the resulting pointer will be
recovered following the PNVI-ae-udi rules. If the value of the integer is 0, the result of
this conversion will be a null pointer.

1.5 Pointer arithmetic
1.5.1 Pointer addition and subtraction

When an expression that has an integer type is added to or subtracted from a pointer, the
result has the type of the pointer operand. The resulting value is calculated as follows:
(1) The arithmetic operation is performed on ptraddr_t address fields following the
pointer addition rules of ISO C [2].
(2) If the resulting address is not within (or one-past) the storage instance the be-
haviour is undefined.
(3) The resulting pointer value is constructed by taking a capability value of the
pointer operand and setting its address field to the result of the arithmetic operation.
(4) The provenance of the pointer operand will be preserved in the result.

1.5.2 Pointer difference

(1) Pointer difference is only defined for pointers with the same provenance and
within the same array.

(2) The implementation-defined type of the result, ptrdiff_t, is not capability-
carrying signed integer type.

1.6 Pointer synthesis

While there are several ways to modify existing pointers and derive new ones from them,
there are very few ways to construct a pointer from scratch (commonly referred to as
“pointer synthesis”).

(1) An attempt to read a pointer using byte input/output functions (e.g. fread,
fscanf) will always result in a pointer which is untagged.

(2) An attempt to construct a pointer using sscanf will also result in a pointer which
is untagged.



(3) The result of modifying the representation bytes of a pointer is implementation-
defined and could result in a trap representation. If it does not, it is guaranteed that the
resulting pointer value will have tag_unspecified flag set to true in the ghost state.

(4) The unary & operator applied to a function designator returns tagged, sealed
function pointer.

(5) The unary & operator applied to lvalue that designates an object returns a pointer
whose capability is tagged, the address is the virtual address of the object, and the bounds
do not exceed the ones the storage instance for this object.

(6) The unary & operator applied to lvalue that designates an object with non-
pointer type that is const-qualified returns a pointer whose capability does not have
write permissions®.

1.7 Alignment of objects

All capability objects must be properly aligned. The alignment value is implementation-
defined.

An implementation-defined capability encoding may impose an additional optional
alignment requirement on the objects holding capabilities. For example, an additional
alignment may be required to have exact object bounds encoded in a capability (as used
in Section 1.9). This additional alignment may be larger than the standard alignment,
and larger than the one of max_align_t type.

1.8 Pointer validity

In this section, we will briefly explore subtleties of the relation between pointer virtual
address, storage instance, object size and location, pointer provenance, and capability
bounds.

To recall, from [1], in the abstract C machine each object is in a storage instance. Its
footprint cannot cross the instance boundaries. The provenance of a pointer is an ID of a
storage instance (or empty). Additionally, in CHERI C the capabilities which represent
pointers have bounds. By construction, such bounds never exceed storage instance bounds
(but could be narrower or narrowed later via a call to the intrinsics). Finally, capabilities
have a tag and a ghost state.

A walid pointer is a pointer which points to a live object (or one-past), has a prove-
nance of a storage instance which include this address, has the address within bounds
(or one-past), has bounds within the address range of the storage instance, is properly
aligned for the type of object it points to, and has the tag is true. Additionally, both
tag_unspecified and bounds_unspecified flags in the ghost state should be false.

A dereferenceable pointer definition is similar to valid pointer’s, except it does not
allow one-past values. A dereferenceable pointer could be dereferenced but the intended
use (read, write or function call) may or may not succeed depending on permissions.

An untagged pointer is a pointer with the tag cleared or tag_unspecified is true.
Dereferencing an untagged pointer is an undefined behaviour.

Pointers constructed using integer-to-pointer casts (per Section 1.4.2), pointer synthe-
sis (described in Section 1.6) are either dereferenceable or untagged.

Pointer arithmetic (as specified in Section 1.5.1) on valid and untagged pointers will
produce either valid or untagged pointers or could result in an undefined behaviour.

3Pointers to const-qualified types do not guarantee that their values will not have write permissions.
For example if char* was cast to const char* the resulting pointer will have write permissions.

7



However, converting a valid pointer to intptr_t or uintptr_t, performing arithmetic
operations, and then converting it back to a pointer type could result in a pointer which
is neither valid nor untagged. This pointer may have the address pointing outside one-
past of its bounds and may have empty provenance. We will call such pointer an out
of bounds pointer or OOB pointer. Dereferencing an OOB pointer is an undefined
behaviour.

1.9 Memory allocator

Memory allocation mechanisms in C include an object allocator, which allocates objects
with static or automatic storage durations such as global and local variables, and a heap
allocator, which is used by functions like malloc, calloc, realloc, and aligned_alloc to
allocate memory regions. They are commonly referred to as an allocator.

(1) For any addressable storage instance created by the allocator, it should be pos-
sible to create a capability which has exact bounds matching instance memory footprint
and an address for any address within this instance and one byte past it. This means that
the implementation-dependent capability encoding may impose additional alignment of
the region starting address and padding requirements.

(2) The content of regions returned by malloc are unspecified. If they contain any
capabilities, their tags are also unspecified (via tag_unspecified in the ghost state).

(3) realloc must preserve all complete capabilities (including their tags) in the con-
tent of the original object. That means it must use a capability-friendly copy as byte-copy
will clear tags of all stored capabilities.

(4) The content and tags of the newly allocated (not copied from the old one) region
returned by realloc is unspecified.

(5) If the argument of realloc or free is not ezactly equal to a pointer earlier returned
by a memory allocation function the behaviour is undefined.

(6) calloc clears tags if they were set and leaves them unspecified if they weren’t.

(7) free is not required to clear tags.

(8) The full set of permissions returned by the heap allocator (e.g. by malloc) is
implementation-specific but it must include: read and write, and must not include exec
permissions.

1.10 Intrinsics

There are special built-in intrinsic functions for accessing and manipulating fields of ca-
pability values. These functions, defined in the cheriintrin.h header, can be used on
any capability type without additional type casts.

Intrinsics which retrieve capability fields accept any capability type. Because of this
special type handling, it is not possible to write a C function declaration for them. For
example, the cheri_address_get intrinsic will accept any pointer type with any qualifier,
as well as intptr_t and uintptr_t. In Listing 1 for illustration purposes, we provide fake
declarations for these functions using void* type for the capability parameter.

Intrinsics that modify capability fields, in addition to accepting any capability type
as an argument, also return a capability value of the same type. In other words,
their return type is derived from the type of their capability argument. For example,
cheri_address_set when called with void* will have the return type of void* and when
called with uintptr_t will have the return type of intptr_t. Again, for illustration pur-
poses in our fake declarations for these functions, we will use void* return type.



ptraddr_t cheri_address_get (const void *);

void *cheri_address_set (const void *, ptraddr_t);
ptraddr_t cheri_base_get (const void x*);

size_t cheri_length_get (const voidx*);

size_t cheri_offset_get(const void *);

void *cheri_offset_set(const void *, size_t)

void *cheri_tag_clear (const void *);

bool cheri_tag_get(const void *);

bool cheri_is_valid(const void *);

bool cheri_is_invalid(const void x*);

bool cheri_is_equal_exact(const void *, const void *);
bool cheri_is_subset (const void *, const void x*);

size_t cheri_representable_length(size_t);

size_t cheri_representable_alignment_mask(size_t)
void *cheri_bounds_set (const void *, size_t);

void *cheri_bounds_set_exact (const void *, size_t);

cheri_otype_t cheri_type_get(const void x*);
bool cheri_is_sealed(const void x*);

bool cheri_is_sentry(const void *);

bool cheri_is_unsealed(const void x*);

void *cheri_sentry_create (const void x*);
void *cheri_seal (const void *, void *);
void *cheri_unseal (const void *, void x*);

void *cheri_cap_build(x, y);
void *cheri_seal_conditionally(const void *, const void *);
void *cheri_type_copy(const void *, const void x);

size_t cheri_perms_get (const void *);
void *cheri_perms_and(const void *, size_t);
void #*cheri_perms_clear (const void *, size_t);

Listing 1: C prototypes of CHERI intrinsics

It should be noted that cheri_offset_get, cheri_base_get, and cheri_length_get
will return an unspecified value of appropriate type if bounds_unspecified flag was set in
the ghost state of the argument.

Similarly, cheri_tag_get will return an unspecified boolean value if tag_unspecified
was set.

Finally cheri_is_equal_exact will return an unspecified boolean value if either of
bounds_unspecified or tag_unspecified flags were set for either of the arguments.

1.11 Standard library

The following functions from the standard library have additional requirements with
CHERI:



malloc, calloc, realloc, aligned_alloc, and free - see Section 1.9

memcpy and memmove must preserve tags and ghost state of values of capability types,
but only if both source and destination addresses of such values are properly aligned
(see Section 1.7).

gsort must preserve tags of values of capability types but only if both the original
and the final (sorted) addresses of such values are properly aligned (see Section 1.7).

10



References

[1] Jens Gustedt, Peter Sewell, Kayvan Memarian, Victor BF Gomes, and Martin Uecker.
A Provenance-aware Memory Object Model for C, 2022. Working draft ISO Technical
Specification T'S6010.

[2] ISO WG14. Programming languages — C, ISO /TEC 9899:2018 edition, July 2018.

[3] Robert N. M. Watson, Simon W. Moore, Peter Sewell, and Peter G. Neumann. An In-
troduction to CHERI. Technical Report UCAM-CL-TR-941, University of Cambridge,
Computer Laboratory, September 2019.

11



