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Abstract

Motion quality models for
real-time adaptive rendering

Akshay Jindal

The demand for compute power and transmission bandwidth is growing rapidly as the
display technologies progress towards higher spatial resolutions and frame rates, more bits
per pixel (HDR), and multiple views required for 3D displays. Advancement in real-time
rendering has also made shading incredibly complex. However, GPUs are still limited in
processing capabilities and often have to work at a fraction of their available bandwidth
due to hardware constraints.

In this dissertation, I build upon the observation that the human visual system has a
limited capability to perceive images of high spatial and temporal frequency, and hence
it is unnecessary to strive to meet these computational demands. I propose to model
the spatio-temporal limitations of the visual system, specifically the perception of image
artefacts under motion, and exploit them to improve the quality of rendering.

I present four main contributions: First, I demonstrate the potential of existing motion
quality models in improving rendering quality under restricted bandwidths. This validation
is done using an eye tracker through psychophysical experiments involving complex motion
on a G-Sync display. Second, I note that the current models of motion quality ignore the
effect of displayed content and cannot take advantage of recent shading technologies such
as variable-rate shading which allows for more flexible control of local shading resolution.
To this end, I develop a new content-dependent model of motion quality and calibrate it
through psychophysical experiments on a wide range of content, display configurations,
and velocities. Third, I propose a new rendering algorithm that utilises such models to
calculate the optimal refresh rate and local shading resolution given the allowed bandwidth.
Finally, I present a novel high dynamic range multi-focal stereo display that will serve as
an experimental apparatus for next-generation of perceptual experiments by enabling us
to study the interplay of these factors in achieving perceptual realism.
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Glossary

cpd cycles-per-degree.

cpt cycles-per-texel.

CSF contrast sensitivity function.

FoV field of view.

HDR high-dynamic-range.

HMD head mounted display.

HVS human visual system.

JND just-noticeable-difference.

PBR physically-based rendering.

ppd pixels-per-degree.

RSB real scene box.

SPEM smooth pursuit eye motion.

VDP visible difference predictor.

VR virtual reality.

VRR variable refresh rate.

VRS variable-rate shading.





Chapter 1

Introduction

1.1 Motivation

One of the ongoing challenges in physically-based computer graphics rendering is the
creation of virtual scenes that would be in every detail indistinguishable from the real
world. To this end, we have seen advances in both real-time rendering as well as display
technologies. There is a strong trend towards increasing resolution, refresh rates, higher
bit-depths and dynamic range in modern displays. The increasing adoption of 3D displays
has further pushed these factors to their limits due to their requirements of larger field of
view (FoV) and multiple viewpoints. Parallel to the development in display technologies,
GPUs have also grown in computational power, enabling previously unachievable effects
such as real-time global illumination and accurate motion blur rendering. Shaders have
grown in complexity and are capable of achieving photo-realistic shading through their
use of physically-based rendering (PBR) materials.

However, increasing the fidelity in one respect usually comes at the cost of another.
For example, VR headsets have to use simple shaders to achieve desired frame rate and
resolution and mobile devices need to limit their brightness to satisfy power budgets.
This trade-off is partially dictated by display design constraints (FoV, mobility, etc.) and
partially by available GPU bandwidth. If we were to take an “ideal” VR display that has
8K resolution, 120 Hz refresh rate, 12 bits per colour channel, and 6 focal planes for each
eye, we will require a bandwidth of 573 GB/s. In comparison, even the most powerful
GPUs today support rendering only up to 17 GB/s. Achieving the required rendering
bandwidth is out of reach even for the next few generations of GPUs.

Fortunately, we do not need to strive to achieve such high fidelity because human visual
system (HVS) has several limitations. Consider visual information as a spatio-temporal
signal. As this signal goes through our visual system, it loses information due to the
imperfections in eye’s optics. It is then received and sampled by a limited number of rods
and cones distributed non-uniformly on our retina. The signal is subsequently encoded by
our optical neurons and transmitted to the visual cortex where it is processed at multiple
levels with limited attention. Such limitations, if modelled accurately, can be exploited to
optimise graphics pipelines and display designs.

In this dissertation, I build upon the idea of perceptually-motivated rendering and
propose visual models and rendering algorithms derived from spatio-temporal limitations
of the visual system. These models are motivated by the introduction of adaptive rendering
systems such as variable-rate shading and adaptive-sync displays and strive to optimise the
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rendering quality under restricted computational budgets. I also present a novel display
that combines multiple realism cues simultaneously at a high fidelity, thereby enabling
a new set of perceptual experiments which will study the interplay of these factors on
perceived realism.

1.2 Hypothesis

The central thesis of this work is that rendering pipelines can be optimised for quality by
exploiting the spatial and temporal limitations of HVS. Thus, it is necessary to develop
models of these limitations that parameterise the display, rendering and visual systems to
predict perceived quality in actionable units such as JND. It is also necessary to design
rendering strategies that utilise such models to reduce the computational complexity or
improve rendering quality. Finally, it is crucial to further improve our understanding of
the limitations of HVS by building novel displays that enable perceptual experiments on
previously unstudied factors.

1.3 Structure

The following chapter briefly discusses models and limitations of the visual system, spatio-
temporal artefacts on modern displays, fundamentals of subjective quality assessment
and recent adaptive rendering technologies. Chapter 3 describes existing adaptive refresh
rate and resolution rendering strategies and validates them in complex motion scenarios
through psychophysical experiments. Chapter 4 surveys all existing studies on motion
quality, identifies the gaps in the existing literature and introduces a new dataset tailored
for variable-rate shading (VRS) artefacts. Chapter 5 focuses on building a content-aware
model of motion quality, and Chapter 6 shows how this model can be used to maximise
rendering quality under restricted bandwidth. Chapter 7 introduces a novel high dynamic
range multi-focal stereo display and compares different image-based rendering strategies
on this display.

In Chapters 3, 6 and 7, I also briefly present results obtained by my collaborators
to better contextualise my work. In each of these chapters, the introduction will clearly
highlight my contribution.

1.4 Publications and talks

Publications

1. Gyorgy Denes, Akshay Jindal, Aliaksei Mikhailiuk, and Rafa l K. Mantiuk. “A
perceptual model of motion quality for rendering with adaptive refresh-rate and
resolution.” ACM Transactions on Graphics (Proc. of SIGGRAPH 2020) 39, no. 4
(2020): 133-1.

Contribution: Designed and conducted a psychophysical experiment to evaluate
the proposed rendering method against existing work in complex motion scenarios.
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2. Akshay Jindal, Krzysztof Wolski, Rafa l K. Mantiuk, and Karol Myszkowski. ”Per-
ceptual Model for Adaptive Local Shading and Refresh Rate” ACM Transactions on
Graphics ( Proc. of SIGGRAPH Asia 2021) 40, no. 6 (2021): 280.

Contribution: Ran a psychophysical study on quality of image artefacts under
motion, developed a content-adaptive model of judder, aliasing and blur, and de-
signed and validated a rendering algorithm for determining optimal refresh rate and
local shading resolution.

3. Fangcheng Zhong, Akshay Jindal, Özgür Yöntem, Param Hanji, Simon Watt and
Rafal Mantiuk. “Reproducing Reality with a High-Dynamic-Range Multi-Focal
Stereo Display.” ACM Transactions on Graphics (Proc. of SIGGRAPH Asia 2021),
Vol. 40, No. 6. (2021) pp. 241.

Contribution: Implemented a real-time light field rendering pipeline for the HDR-
MFS display and automated the control of the real scene box.

4. Akshay Jindal, Fangcheng Zhong, Özgür Yöntem, Marek Wernikowski,Param
Hanji, and Rafal Mantiuk.“Perceptual Evaluation of Image-based Rendering Meth-
ods on High-Dynamic-Range Stereo Display” [In preparation].

Contribution: Implemented 3 image-based rendering methods on our novel display
and performed a quantitative and qualitative comparison through a psychophysical
experiment.

5. Jingyu Liu, Akshay Jindal, Claire Mantel, Søren Forchhammer, and Rafa l Mantiuk
(2022).“How bright should a virtual object be to appear opaque in optical see-through
AR?”. IEEE International Symposium on Mixed and Augmented Reality (ISMAR),
2022.

Contribution: Implemented the lumigraph rendering method used in the psychophys-
ical experiment.

Talks

1. “Evolution of foveated rendering techniques”. Rainbow Lab Machine Learning
Reading Club, 4 June 2021.

2. “Perceptually motivated variable-rate shading”. Huawei Computer Graphics and
GPU Architecture Seminar., 8 July 2021.

3. “Perceptual model for adaptive local shading and refresh rate”. Facebook Reality
Labs, 5 November 2021; RealVision Autumn Event, 27 September 2021; Henry
Morten Graphics Forum, NVIDIA, 2 February 2022.

Awards

1. Runner-up in the High-Performance Graphics 2022 Student Competition.
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2. Best Pitch Award in Entrepreneurship in Technical Science Summer School, Helsingør,
Denmark (August, 2019).
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Chapter 2

Background

The field of perceptual graphics is concerned with the optimisation of graphics and display
systems while considering the final consumer of the output of these systems: the human
eye. This requires a thorough understanding of how the human visual system works
and how it can be described with tractable computational models. It also requires an
understanding of current hardware limitations and experimental methodologies that can
map the effect of these limitations on perceived quality. Moreover, it benefits to have the
knowledge of the latest display and GPU technologies that can utilise these computational
models of HVS to reduce the quality degradation caused by hardware limitations. Since
this dissertation heavily relies on these principles, this chapter aims to provide a quick start
guide to the readers on the working of the human visual system, spatio-temporal artefacts
of modern displays, subjective quality assessment methods, adaptive-sync displays, and
variable rate shading technique offered by recent GPUs. It then concludes with some
examples of existing literature which have successfully used these principles to reduce the
computational bandwidth or to improve the quality of graphics systems.

2.1 Human visual system

Our visual system constitutes our sensory organs (eyes) and parts of the central nervous
system (retina, optic nerve, and visual cortex). It gives us the ability to detect light and
interpret the world around us. The insight into its working is a crucial tool to have if we
were to design optimal displays and rendering algorithms. Though this topic is not usually
considered in traditional computer graphics, it is well-studied both physiologically and
behaviourally in vision science. While there are many ways to classify and study the visual
system, in this section, I follow the taxonomy used by Wandell [1995] to provide a broad
overview of different stages of HVS: encoding (transformation of light into neural signals),
representation (organisation of neural pathways), and interpretation (inference of scene
properties from neural image). This section is meant as a quick introduction to readers
unfamiliar with the workings of the human visual system. For more in-depth coverage
of the topic, I refer the readers to the seminal textbook on vision science Foundations of
Vision [Wandell, 1995].
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Figure 2.1: Encoding. The incoming light is focused by the eye’s optics onto the retina,
where it is non-uniformly sampled by rods and cones. Images adapted from [Mikrora,
2019, Schmitz, 2016, Lofgren et al., 2017, Wandell, 1995]

2.1.1 Encoding

The first stage of the visual system involves encoding incoming light by the eye. The
process involves focusing the light through optical elements in the eye onto the retina
consisting of light-sensitive elements called photoreceptors that convert the light into neural
signals. The encoding stage imposes fundamental limits on our visual perception, effects
of which can be found in the later stages of HVS. The following text will describe the
functioning of the eye’s optics and the structure of its retina.

Optics Following Figure 2.1 from right to left, light enters the eye through the cornea.
The cornea bends the light to help the eye focus and is responsible for 2/3 of the eye’s
optical power [Sridhar, 2018]. Some of this light is blocked by the pupil (similar to a
camera’s aperture), and the pupil’s size is controlled by the iris (coloured part of the eye),
thereby controlling the amount of light entering the eye. The pupil can make a difference
of up to 1 log unit of intensity. Though reducing the pupil size can reduce the chance of
rays deviating from their path and increase image sharpness, it also reduces the amount of
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energy available to activate photoreceptors on the retina and may introduce additional
blur due to diffraction. Next, light passes through the lens. The lens and the cornea help
to focus light correctly on the retina. Objects at different depths get focused at different
distances behind the lens. These distances can be calculated as a function of the power of
the lens using Lensmaker’s equation. When we view faraway objects, the lens + cornea
power is roughly 60 diopters. To focus on nearby objects, the ciliary muscles attached to
the lens change its shape to increase its power and this process is known as accommodation.
Another thing to note is that different wavelengths of light may also be focused at different
distances leading to chromatic aberration. The empty chambers between lens and cornea
and between lens and retina are filled with fluid substances called aqueous humor and
vitreous humor, respectively. They help provide nutrients to different eye components and
maintain its structure. They have refractive properties similar to that of water.

When the light hits the retina, some of it is reflected back. This escaping light can be
captured using an ophthalmoscope to image the retina and thus measure the response of
the eye’s optical system. Experiments using this procedure [Campbell and Gubisch, 1966]
have determined that the eye’s optical system can be well modelled as a shift-invariant
linear system. This finding has a very practical implication: if we measure an eye’s response
to a point source of light, say, a single pixel, we can calculate the complete 2D image
projected on the retina through a simple convolution operation. The measured response
is called the point spread function (PSF) of the eye. It is usually a circularly symmetric
function but defects in eyes such as astigmatism can change that. When represented in
terms of spatial frequency, the same function is called optical transfer function (OTF).
OTF is a complex value function which describes the scale and phase shift the optical
system induces to each spatial frequency. A plot of the magnitude of our eye’s OTF (called
modulation transfer function) is provided in Figure 2.1(b). As seen in the plot, our eye’s
optics does not respond equally to all frequencies and act as a low pass filter with a cut-off
frequency of around 60 cycles-per-degree (cpd).

Retina The light entering through the eye is projected onto the photosensitive layer
on the inner wall of the eye called the retina. This layer is covered with special neurons
called photoreceptors that convert light into electro-chemical neural signals. There are
two fundamentally different types of photoreceptors: rods and cones. Rods are activated
at low illumination (scotopic light levels), while cones require higher light levels (photopic
light level). Intensities at which both are active are called mesopic light levels. The cones
are responsible for colour vision and can be further divided into three sub-types of L-, M-,
and S-cones depending on the range of wavelengths they are sensitive to (Figure 2.1(c)).
The spatial arrangement and the density of rods and cones vary widely over the retina
and is an important factor to study as it determines how the retinal image is sampled
and passed on to the subsequent stages of the visual system. There are approximately
5 million cones and 120 million rods in each eye. Rods are present in high density, but
many rods converge onto a single neuron and thus have very poor visual acuity but high
sensitivity. The region of highest visual acuity on the retina lies in its centre and is called
the fovea. The fovea has no rods but a high concentration of cones. The cones are tightly
packed in the fovea and form a regular pattern that allows them to sample image signals
up to 60 cpd accurately. The cone density (and the visual acuity) drops rapidly as we
move away from the fovea and intermix with rods in a random manner. This irregularity
helps replace aliasing resulting from a low sampling rate with visually insignificant noise
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[Yellott Jr, 1982].

2.1.2 Representation

When light hits the photoreceptors, it starts a series of chain reaction that carries informa-
tion from the retina through a collection of different neurons called visual streams to the
visual cortex, the part of the human brain dedicated to visual processing. Visual stream
operates in parallel, and each stream specialises in analysing different aspects of the retinal
image. The segregation of streams starts with rods and cones in the retina and continues
into the cortical areas. Hundreds of rods connect directly to a single bipolar cell, which
connects to retinal ganglion cells in the outermost layer of the retina. In contrast, very few
cones converge onto one retinal ganglion cell. This organisation of neurons allows the rod
pathway to be more sensitive to light at the cost of reduced acuity and the cone pathway to
have higher acuity but lower sensitivity. Information is also passed laterally between retinal
neurons through horizontal and amacrine cells. This complicated communication structure
between retinal neurons is responsible for a significant portion of visual processing. It
leads to the formation of complex receptive fields such as centre-surround or on-off fields,
which allows the cells to adjust their sensitivity to edges, colour, and motion.

Signals from retinal ganglion cells are collected and carried by the optic nerve to the
lateral geniculate nucleus(LGN) in the thalamus (Figure 2.2). Within this pathway, two
well-studied streams include parvocellular and magnocellular pathways. The parvocellular
pathway connects ganglion cells to the upper layers of the LGN (P layers), containing
neurons with small cell bodies. They respond to colour, fine details, and still or slow-
moving objects. Magnocellular pathways connect ganglion cells to two deeper layers of the
LGN (M layers) comprising of neurons with larger cell bodies which respond to objects in
motion. These layers connects to different areas of the primary visual cortex, also called
ventral area V1. Neurons in the visual cortex are more complex than retinal neurons and
respond asymmetrically to different edge orientations, motion directions, and binocular
disparity. Roles of different neurons are also non-uniformly distributed, with 30% of
the primary visual cortex responsible for the central 5◦ of the visual field. At the same
time, the periphery is under-represented [Horton and Hoyt, 1991]. Neural representation
becomes increasingly more complex as the information flows from the primary visual cortex
through a visual hierarchy in V2, V3, V4, V5 and the visual association cortex via the
dorsal and ventral streams. The neurons in the dorsal stream are involved in interpreting
spatial information such as the location and motion of the objects. In contrast, neurons
in the ventral stream help determine object characteristics such as colour and shape. It
should be noted that the visual system does not create new streams as the visual task or
imaging condition changes. The visual neurons instead change their sensitivity to light
stimulation in response to imaging conditions by a process called visual adaptation. One
of the most salient example of this phenomenon is luminance adaptation which decreases
(or increases) the light sensitivity of individual neurons in the visual pathway in response
to increasing (or decreasing) illumination levels. This extends the sensing abilities of our
eyes to nine orders of magnitude, allowing us to clearly see both a dark starry sky and
a bright sun. Change in sensitivity of the visual pathway aims to achieve a constant
representation of image contrast instead of absolute light levels. Image contrast is the
ratio of local intensity and the mean image intensity. Preserving image contrast improves
our ability to distinguish objects in both very bright and dark environments.
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Figure 2.2: Representation. Information from the retina is carried to different parts of the
visual cortex by various visual streams. Image from [Livingstone and Hubel, 1988]

Contrast sensitivity function The activity of all the neurons in the HVS can be
summarised by an abstract psychophysical construct called a neural image. A neural image
contains all the information available to an observer after all the neural transformations
have been applied to the real image. Knowledge of the neural transformations and the
corresponding neural image can help us optimise how we store and display visual media.
One way to determine these neural transformations is to measure the responses of all
individual neurons and the connections between them. This is obviously an extremely
invasive and impractical procedure. An alternate, more practical approach is to study the
behaviour of the visual system when presented with detection and discrimination tasks on
spatio-temporal contrast patterns. The results from these experiments are used to develop
models of contrast sensitivity called contrast sensitivity functions (CSFs) that predict the
magnitude of contrast necessary to detect a pattern described by the parameters of the
CSF. A CSF is a high dimensional function because our perception depends on several
factors such as the pattern’s spatial and temporal frequency, size, colour, eccentricity,
background luminance, and orientation. Figure 2.3 plots contrast sensitivity (reciprocal of
contrast threshold) w.r.t. to some of these parameters. Notice how the predictions of CSF
closely match the anatomy of the visual system. Our sensitivity to high spatial frequencies
is drastically reduced (Figure 2.3(a)), similar to the MTF of our lens (Figure 2.1(b)).
Similarly, our sensitivity rapidly goes down with increasing eccentricity (Figure 2.3(c))
matching the distribution of cones on our retina (Figure 2.1(c)). This decrease in sensitivity
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Figure 2.3: Five dimensions of a contrast sensitivity function [Mantiuk et al., 2021]. When
not varying, the parameters were set to ρ = 3 cpd, ω = 3 Hz, L = 100 cd/m2, eccentricity
= 0 deg, and stimulus radius = 1 deg.

with eccentricity is reversed by increasing the stimulus’s size, similar to how a higher
number of neurons in the visual cortex results in improved image quality (called cortical
magnification [Horton and Hoyt, 1991]). CSF also predicts our sensitivity to temporally-
varying (flickering) stimuli (Figure 2.3(b)). The points at which the lines in the plot
intersect with the x-axis (temporal frequency) are known as critical flicker frequency, and
the flickering light source starts appearing to be completely steady at those points. Such
measurements from the CSF are instrumental in choosing the spatial resolution and refresh
rate while designing displays.

Given any real image, CSF can be used to find the corresponding neural image assuming
a shift-invariant zero phase shift mapping between the two. Note that we do not have
any mechanism to measure the neural image, but only the input threshold stimulus and
observer’s detection threshold. Since detection is a result of increasing or decreasing
neurons’ firing rate pooled over the entire neural image, we need to apply a static non-
linearity to the neural image that ignores the sign of neural responses and incorporates
responses from different neurons. The exact nature of this non-linearity is a contested
topic, but popular choices include sum of squares, sum of absolute values, and Minkowski
norm. Due to their relative simplicity, CSFs have found many applications in image and
video quality metrics [Mantiuk et al., 2021, Andersson et al., 2020], tonemapping [Mantiuk
et al., 2008], video compression [Zeng et al., 2002], foveated rendering [Tursun et al., 2019],
3D level-of-detail [Luebke and Hallen, 2001], and other areas of computer graphics.

2.1.3 Interpretation

Once the visual system has built its neural representation, the next step is to use the
limited information available to infer/interpret the properties of real-world objects, such as
their colour, shape, motion, and depth. The secondary visual cortex and visual association
cortex are the parts of the brain believed to be responsible for this inference process. The
exact algorithms behind these inferences are still largely unknown and an active area of
study. I will briefly describe some leading theories on colour and motion perception as an
example.
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Figure 2.4: Space-time-oriented receptive fields facilitate motion detection by responding
asymmetrically to different object velocities and directions. Image source: [Wandell, 1995,
Chapter 10]

Colour Object colour is a psychological construct. We see colours by comparing the
relative absorption rates of L, M, and S cones in response to light reflected from the object.
The reflected light L(λ) depends on both the illumination spectrum (I(λ)) and object’s
surface reflectance (R(λ)):

L(λ) = I(λ)R(λ) (2.1)

Hence, colour perception is a process of estimating R(λ). However, this problem is under-
determined as infinitely many combinations of I(λ) and R(λ) can generate the same L(λ).
Furthermore, the spectrum L(λ) is subsequently sampled with only three types of cones,
each with a narrow wavelength response. This adds to the problem because different
L(λ) can result in the same cone responses (also called metamerism). Fortunately, not
all solutions to this inference problem are equally likely, and hence our visual system
can develop priors about this probability distribution to constrain the solution set. For
instance, the spectrum of daylight, the most common light source in most of the earth’s
history, does not change widely and unpredictably with time and location [Judd et al.,
1964]. This makes it possible to draw accurate inferences about surface reflectance using
low dimensional linear models.

Motion Just like colour, motion perception is also an inference problem. Our visual
system needs to estimate the relative velocity of an object w.r.t. its surroundings from
the two time-varying retinal images. Neurons in the cortical areas with oriented space-
time receptive fields are shown to be particularly useful for this task [McLean et al.,
1994]. Figure 2.4 demonstrates this idea where space-time-oriented receptive fields respond
differently to the velocity and direction of a moving edge. A centre-surround receptive field
is represented using three ellipses where the light area represents the excitatory region,
and the dark area represents the inhibitory region. In the first case, the moving line and
the receptive field share a common orientation generating a large response. In the second
case, they are not well-aligned, leading to a reduced response. An array of such neurons
can be used to infer the motion field of a dynamic image, in fact, the same ideas form the
founding principles of early optical flow methods [Horn and Schunck, 1981].
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The motion in the retinal image is not just generated by object movement; it can also
arise from eye movements. Once the interpretation is complete, our brain sends feedback
signals to move our eye (or head). The type of eye movements can be broadly divided into
the following categories [Purves et al., 2001]:

• Saccades are rapid, ballistic eye movements used to change the point of fixation. They
can reach velocities of up to 900 deg/s. Our sensitivity to low-frequency light-dark
contrast patterns is strongly reduced during saccades due to neural factors called
saccadic suppression.

• Smooth pursuit eye movements (SPEM) are much slower voluntary eye movements
(0.15 deg/s to 80 deg/s) designed to track moving stimulus and keep it stabilised on
the fovea. Inconsistencies between SPEM and the motion of the tracked object can
create unstable retinal images and lead to a blurry image. The inconsistencies are
higher for unpredictable (non-smooth) motion paths and higher velocities.

• Vestibulo-ocular movements compensate for head movements by stabilising our eyes
w.r.t. external world.

• Vergence movements adjust the rotation of each eye to align their fovea with stimuli
located at different depths. Unlike other eye movements, vergence induces motion in
the opposite direction in both eyes.

The visual system combines the information about eye movements with the estimated
motion field from the retinal images to improve its prediction accuracy.

While the HVS works well in perceiving real motion, we can also perceive motion even
when none occurs. One important example of such illusory motion is apparent motion: a
sensation of continuous motion when presented with a sequence of still images. All modern
display systems use apparent motion to recreate a sense of motion while displaying videos
and animation. But to create an illusion of smooth motion, we need to ensure that the
temporal sampling rate of these displays exceeds the HVS detection capabilities [Watson,
2013] or else the observers may end up seeing objectionable motion artefacts (more in
Section 2.2).

Colour and motion perception discussed above are just two examples of many object
characteristics our visual system aims to infer from the neural image: shape, size, depth,
shadows, occlusions, and textures. All these separate inferences are integrated into a single
holistic explanation for the perceived scene. Developing a computational theory for such
integration mechanisms continues to be an active challenge in vision science.

2.2 Motion artefacts

Real-time rendering of animated content is prone to various artefacts due to software
and hardware limitations. Working with frame rates lower than display refresh rates can
give rise to screen tearing or stuttering artefacts. Asymmetric pixel transition time of
LCD panels leads to trailing artefacts. Response time compensation used to mitigate
trailing may lead to coronas (glowing edges) [Jokinen and Nivala, 2017]. Blur is perceived
whenever a tracked object has a non-zero retinal velocity. This can happen either due to
the sample and hold nature of some display technologies (hold-type blur) or imperfect
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eye motion when tracking an object [Denes et al., 2020]. One way to reduce blur is to
reduce the amount of time a signal is displayed every frame (aka persistence), but this can
lead to flicker if the display’s refresh rate is lower than the critical fusion frequency of the
HVS and also from a lower accuracy of saccadic eye motion [Goettker et al., 2020]. Low
refresh rates also lead to judder/non-continuous motion perception. On low persistence
displays, such as HMDs or projectors with butterfly shutters, ghosting/false-edges is a
common artefact that occurs when the image of a moving object is displayed multiple
times at the same location [Scott Murdison et al., 2019]. Finally, the visibility of these
artefacts also depends on the displayed content. When the display’s spatial and temporal
sampling frequency is lower than that of the displayed signal, we see aliasing artefacts
which are a common occurrence in real-time graphics. Since it is difficult to demonstrate
spatio-temporal artefacts with images, I have prepared a video simulation1.

The artefact visibility can be suppressed by actively modifying image content. For
example, increasing motion blur by means of rendering [Sung et al., 2002, Navarro et al.,
2011] or longer camera exposure [Fuchs et al., 2010] can reduce aliasing, ghosting and flicker
[Stengel et al., 2015, Hoffman et al., 2011]. However, the methods that alter the content
are not considered in this work. Artefact suppression can also be achieved by hardware
adjustments such as syncing display refresh rate with the frame rate of an application
(adaptive-sync), or over-driving liquid crystals to reduce their response time [Feng, 2006].
Unfortunately, achieving an artefact-free motion rendering is often an impossible task
due to the current display limitations and usually involves trading off between different
artefacts. One way to predict the visibility of these artefacts is through window of visibility
analysis [Watson, 2013]. Figure 2.5 provides an example of how displaying a continuously
moving checkerboard on a display can give rise to aliases in the frequency domain due
to the limited spatial and temporal sampling rate of a display. If the aliases lie inside
the spatial and temporal limits of human vision called window of visibility (denoted by a
diamond), it can lead to visible artefacts such as blur, judder, and flicker. In Chapter 4,
I will discuss several other factors that also affect the perception of these artefacts and
motion quality.

2.3 Subjective quality assessment

The presence of artefacts in images or videos degrades the quality of the user experience.
Since these artefacts are often unavoidable due to hardware or software restrictions, it
is helpful to quantify the quality degradation caused by different artefacts. Such data
can help us choose between different devices (such as 4K display vs 240 Hz display) or
different algorithms (such as JPEG quality level). It can also help us better understand
the limitations of such devices/algorithms and facilitate the development of better systems.
One way to quantify the effect of these artefacts on perceived quality is to run subjective
quality assessment experiments where human observers provide their opinion about the
perceived quality of a collection of distorted images or videos. Two common protocols for
such experiments are direct rating and pairwise comparisons.

Directing rating methods, such as mean opinion score, tasks observers with assigning a
score to each condition (e.g. images) on a Likert or a cardinal scale. Though direct rating
methods might appear to be a good measurement of perceptual attributes, they suffer

1https://www.cl.cam.ac.uk/research/rainbow/projects/alsarr/motion_quality/motion_

artifacts.mp4
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Figure 2.5: Analysing a moving 1D checkerboard signal rendered on a 25 Hz, 50 ppd
display. Top row is in spatio-temporal domain. Bottom row is corresponding frequency
spectrum. Diamond shape represents the window of visibility. Both rendering with a
limited spatial resolution buffer and displaying the image on display with a finite refresh
rate leads to creation of aliases in the frequency domain (perceived as judder and flicker)
and loss of high-frequency information (perceived as blur). The above figures do not
consider SPEM.

from a major limitation. Even after carefully training the participants, the scale used by
each participant can substantially vary between the participants or sometimes even within
the same participant if participating on different days.

Pairwise comparison methods instead ask the observers to rank a set of conditions.
This is a much simpler task that non-experts can perform with little training. These
methods have been shown to have less variance in the experimental results and also a
shorter experiment time than direct rating [Mantiuk et al., 2012]. However, mapping the
results from such experiments to a practical scale could be quite complex. Figure 2.6
provides an example of a typical image quality assessment experiment using a pairwise
comparison protocol. Participants are shown a pair of images at a time from a large set of
distorted images and asked to pick the image with better quality (i.e. the image closer to
its respective distortion-free reference image). The participant’s answer is then stored in a
comparison matrix C, where each entry Cij denotes the number of times the participant
picked image i over image j. Thus the probability of image i being picked over image j is
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Figure 2.6: Subjective scaling of three image artefacts onto a JND scale

given by:

pij =
Cij

Cij + Cji

(2.2)

Note that due to the subjective nature of the experiment, this data tends to be noisy. To
account for this, the protocol uses the Thurstone Case V observer model. This model
assumes that participants made their selections by assigning a single quality value to each
image, and this quality is a random variable following a normal distribution with same
inter- and intra-observer variance. The probability of the population picking image A over
image B P (A > B) can then be mapped to a corresponding quality difference (qA − qB)
using an inverse cumulative normal distribution. The variance of this distribution is set
such that the P (A > B) = 0.75 is equal to qA − qB = 1 [JND]. JND units are more
meaningful than direct ratings because they describe the practical significance of the
difference in quality. Finally, the quality of each image is then estimated using maximum
likelihood estimation, which picks the quality scores that maximise the probability of
observing our data (C). More details on pairwise comparison experiments can be found in
[Perez-Ortiz and Mantiuk, 2017].

Objective quality metrics are computational models that aim to predict the quality
difference between two images without any user input. The results from subjective
experiments provide a means to test such objective metrics. In Chapter 4, I conduct a
pairwise comparison experiment to quantify the effect of motion artefacts on quality and
in Chapter 5, I present an objective metric of motion quality trained and tested on the
results of this experiment.

2.4 Adaptive-sync displays and Variable rate shading

While the objective quality metrics allow us to develop new rendering algorithms that
can trade-off between different artefacts to deliver the best quality, the hardware these
algorithms run on must have a flexible mechanism to support the adaptive nature of such
algorithms. In this section, I will discuss two such technologies which I will use to test the
rendering algorithms developed in this dissertation.

Adaptive-sync displays A typical graphics-display pipeline consists of two raster
buffers: a front buffer that is shown on the display, and a back buffer that the GPU draws
into. When the GPU finishes drawing, the two buffers are swapped. Pixels are copied
row-by-row (or column-or-column) from the front buffer to the display. If the swap were
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Figure 2.7: Display sync strategies. No synchronisation between rendering and display
scan can lead to tearing artefacts. Synchronisation can introduce stuttering artefacts.
Adaptive sync technologies eliminate both of these artefacts.

to happen before the display scan is complete, it would result in an image on the display
which is made up of more than one frame. To avoid such tearing artefacts, it is possible
to synchronise buffer swaps with display scan (called V-Sync); however, this may pause
the GPU till the scan is complete resulting in decreased performance and input lag. Also,
if the GPU frame rate is even slightly less than the display’s refresh rate, V-Sync will end
up repeating frames leading to stuttering or judder artefacts. Adaptive-sync displays such
as G-Sync (NVIDIA) or Free-Sync (AMD) eliminate these artefacts by updating their
refresh rate to match the rate of frame generation. They can achieve an arbitrary refresh
rate (within display capabilities) and thus can help in saving power for static scenes and
reducing lag. An illustration of the three techniques can be found in Figure 2.7.

Variable rate shading VRS [Nvidia, 2018] or coarse pixel shading [Vaidyanathan
et al., 2014] are recent technologies available on the latest GPUs. VRS decouples shading
and visibility calculations to provide flexible control over shading. By rasterizing at full
resolution but shading at a lower resolution, the technique reduces pixel shading load while
preserving edges and visibility of objects. Unlike their predecessors, Multi-Resolution
Shading and Lens-Matched Shading [Kraemer, 2018], which optimise shading workload to
match VR optics, VRS allows for much more granular control, where every 16× 16 tile of
pixels can have a different shading rate. The current specification offers seven different
shading rates (1 × 1, 1 × 2, ..., 4 × 4), including non-uniform shading resolution along
horizontal and vertical dimensions. Since VRS only executes the fragment shader a few
times per multiple raster pixels and broadcasts the same shaded value to the neighbouring
pixels, the artefacts generated by VRS on the surface of each object are the same as
upsampling with a box filter. In Chapter 4, I will discuss how the visibility of these
artefacts depends on several factors such as luminance, refresh rate, velocity, and content,
by using VRS to control the resolution of the stimuli.
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Figure 2.8: Variable rate shading allows visibility calculation at a full resolution and
shading calculation at a lower resolution. Image from [Yang et al., 2019].

2.5 Perceptually-optimised rendering

In the above sections, we discussed how modern graphics and display pipelines suffer
from certain limitations which can introduce unwanted artefacts in the images. We also
discussed how an image presented by the display first goes through certain optical and
neural transformations before it is finally perceived and how we can build computational
models of vision trained through subjective experiments to predict the visibility of artefacts
or quality of images. The field of research that utilises the estimates of the final neural
image and adapts the rendering algorithms (or displays) to save computational bandwidth
or improve quality is known as perceptually-optimised rendering. Though sparsely discussed
in traditional graphics research, the idea of using our perceptual limitations to improve
rendering is not new. Some of these concepts are so integrated into our daily usage of
technology that we barely even think about it. Examples include displays using metamerism
to reproduce real-world colours, cinemas presenting animations at a 24 Hz refresh rate to
induce apparent motion, and lossy image and video compression assigning low bit-rates to
higher spatial frequencies.

Perceptual optimisation has also found success in computer graphics scene simplification.
To reduce flickering artefacts that pop up during level-of-detail (LOD) transition, transitions
can be restricted to peripheral vision [Luebke et al., 2003] or to when the object is in
motion [Clark, 1976]. In both scenarios, the acuity of the visual system is reduced, and
observers are less likely to notice the popping artefacts. It is also possible to design LOD
algorithms that analyse mesh and textures using higher-order models of vision to identify
the most salient mesh features and preserve them during simplification [Lee et al., 2005,
Yang et al., 2016]. While these methods attempt to maintain perceptual similarity between
full and reduced resolution meshes, a higher saving can be achieved if we instead attempt
to maintain the same impression of the scene appearance [Ramanarayanan et al., 2007].

27



Similar models of perception have also been employed to accelerate rendering. Myszkowski
[1998] used perceptually-based visible difference predictor (VDP) to decide the stopping
conditions of progressive Monte-carlo rendering. Walter et al. [2002] devised a method to
pre-compute the masking ability of textures using aspects of JPEG image compression
and used it to adaptively sample light paths, achieving a speed-up of up to 15 times
compared to a traditional non-adaptive path tracer. Farrugia and Péroche [2004] gave
another perceptually-based progressive rendering solution that accounted for eye adapta-
tion. Saliency models have also served as a good metric for adaptive sampling. Longhurst
et al. [2006] came up with a rasterization-ray tracing hybrid where they calculated saliency
maps from the output of rasterization and used it to guide the distribution of ray-traced
samples. Cater et al. [2003] utilised HVS’s property of inattentional blindness by combin-
ing predetermined task maps with spatio-temporal CSF and used them to guide a hybrid
image-based and ray traced progressive renderer. Myszkowski [2002] proposed a temporal
extension of the VDP called Animation Quality Metric Algorithm (AQM) to decrease
the quality of moving objects in dynamic scenes. Lo et al. [2010] exploited the human
binocular fusing ability to significantly reduce the resolution of one of the image pairs
while retaining an overall high perceptual quality in a stereo ray-tracer.

It is possible to achieve further gains in performance if we also account for the properties
of the display in addition to HVS. For instance, optics in VR headsets “squeezes” the
displayed image, and some of the peripheral pixels never make it to the eye. Lens-Matched
Shading [Kraemer, 2018] aims to avoid rendering these excess pixels and can achieve up to
50% reduction in shading throughput. VR headsets also suffer from low spatial resolution
but have high refresh rates. [Didyk et al., 2010, Lee and Didyk, 2018] provide a method
that exploits the retinal integration latency and high refresh rate of the display to improve
the apparent display resolution for moving images. With recent adaptive-sync displays, it
is also possible to control the trade-off between spatial and temporal resolution [Debattista
et al., 2018]. If the displays are fitted with measurement devices such as eye trackers,
it is possible to further optimise the rendering by matching the reduced sensitivity in
peripheral vision [Tursun et al., 2019, Patney et al., 2016].

Similar to the above approaches, the rendering algorithm I propose in Chapter 6
optimises quality of rendering by accounting for several display, GPU, and perceptual
factors.
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Chapter 3

Motion adaptive refresh rate and
resolution

3.1 Introduction

Growing spatio-temporal resolution of displays, time-shared nature of cloud gaming, and
power-constrained mobile devices often give rise to scenarios where a GPU has to work
under a limited performance or transmission budget. The current solution is to fix either
the refresh rate or the spatial resolution and dynamically vary the other variable [Unreal,
2021, Unity, 2021]. However, this is a sub-optimal strategy for rendering scenes with
varying velocities. With the introduction of adaptive-sync displays that dynamically control
the display’s refresh rate, we can choose the best trade-off between spatial resolution
(sharpness of image) and temporal resolution (smoothness of motion) for a given content.
Determining this trade-off requires modelling the perceived quality of the image under
motion.

To determine this optimal trade-off, Debattista et al. [2018] conducted psychophysical
experiments that studied the perceived quality for different resolution and refresh rate
ratios across various computational budgets. Then, they fit a cubic polynomial to their
data to predict this optimal trade-off for arbitrary budgets. However, their model does not
account for any scene parameters such as image content or object velocity and reduces
to the traditional constant refresh rate and resolution rendering once the computational
budget is fixed. Denes et al. [2020] (my collaborators) extended this idea to also account
for scene motion by measuring the perceived quality of motion for a wide range of refresh
rates and velocities of motion through extensive subjective experiments. They proposed
a white-box visual model that predicts this quality by accounting for two major motion
artefacts: judder and blur. This model enabled us to develop a motion-adaptive refresh
rate and resolution (MARRR) rendering method that can optimally choose every frame’s
refresh rate and resolution in real-time.

In this chapter, I will compare MARRR against [Debattista et al., 2018] and traditional
constant resolution and refresh rate techniques under complex motion scenarios through a
subjective study. This will help us validate the utility of such motion-adaptive techniques
in real-time graphics and identify their limitations. I will start by briefly introducing
the motion quality model developed by Gyuri Denes in Section 3.2 because Chapter 5
of this dissertation builds upon his work. Following that, the chapter will focus on my
contribution: the application of this model to real-time graphics (Section 3.3) and its
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Figure 3.1: Schematic diagram of the visual model of blur and judder.

psychophysical validation (Section 3.4).
This chapter is based on the work published in the SIGGRAPH 2020 article: A

perceptual model of motion quality for adaptive refresh rate and resolution.

3.2 Background: Visual model of blur and judder

Section 2.2 discussed how modern displays are prone to various artefacts when displaying
motion. When rendering on traditional LCDs, two of the most common artefacts are blur
and judder. In this section, I present the visual model proposed by Gyuri Denes, which
predicts the quality degradation caused by these two artefacts by analysing the display’s
resolution, refresh rate, tracked object velocity and movement type. Later in Section 3.3
and Section 3.4, I will show how it can be integrated with game engines to adaptively
control refresh rate and resolution and how such rendering outperforms traditional constant
refresh rate-resolution rendering methods.

Formally, the quality difference between two displays A and B using different refresh
rates and resolutions can be defined as:

∆Q(. . .) = ∆Q(ωA, ρA, ωB, ρB, v, τ), (3.1)

where ωA and ωB are the refresh rate in Hz of the display A and B, respectively, ρA and ρB
are their respective resolutions in pixels-per-degree (ppd), v is the velocity of the tracked
object and τ is the predictability of motion by smooth pursuit eye motion (SPEM) (binary:
predictable or unpredictable) (Section 2.1.3). The quality difference (∆Q) is defined in
Just-noticeable-difference (JND) units (Section 2.3).

The quality (∆Q) can be approximated as a weighted sum of three components:

∆Q(. . .) =wP ∆QP(ωA, ρA, ωB, ρB, v, τ)+

wO ∆QO(ρA, ρB)+

wJ ∆QJ(ωA, ωB, v, τ),

(3.2)

quality degradation caused by blur parallel to motion direction (QP), by blur orthogonal to
motion caused by reduction of display resolution (QO) and by judder/non-smooth motion
(QJ). The pipeline of the model can be found in Figure 3.1. Next, I will explain how each
of these components can be estimated.

Hold-type and eye-motion blur When our eyes undergo SPEM to track an object, it
moves in a continuous trajectory. However, an LCD presents motion in a discrete manner,
i.e. a sequence of images, each shown for a finite duration of time. This leads to smearing
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Figure 3.2: Motion parallel and orthogonal blur

of the image on the retina and is perceived as blur. The amount of blur can be modelled
as a box filter of width:

bD =
v

ω
[deg]. (3.3)

Furthermore, the tracking of our eyes is imperfect, which leads to additional blurring.
The error in tracking depends on the predictability of motion. The eye-motion blur can
also be modelled with a box filter of width

bE = pa v + pb [deg], (3.4)

where pa and pb are constant coefficients fitted on psychophysical data and their values
are different for predictable and unpredictable motion.

Spatial resolution blur Assuming the use of a bilinear filter to upsample images in
real-time graphics, the blur due to reduced spatial resolution can be modelled with a
triangle filter of average width :

bR =
1

ρ
[deg]. (3.5)

Motion parallel and orthogonal blur The combination of the three types of blurs
can be simplified by approximating them with Gaussian filters of the following standard
deviations:

σD =
v

πf
, σE =

pav + pb
π

, and σR =

√
2bR
π

. (3.6)

Since eye-motion blur and hold-type blur only blur the image in the direction of motion,
while lowering spatial resolution blurs the image in all directions (Figure 3.2), they need
to be combined into motion parallel blur (σP) and orthogonal blur(σO)

σP =
√
σ2
E + σ2

D + σ2
R and σO = σR . (3.7)
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Energy to quality The reduction in perceived quality due to blur can be calculated in
JND units by calculating the loss of energy caused by blur. Let’s assume the worst-case
scenario of a moving infinitely thin line (unit impulse), which contains uniform energy
across all spatial frequencies. When this line is convolved with Gaussian blur kernel
of standard deviation σ, it results in a Gaussian signal given by exp (−2π2φ2

iσ
2) in the

Fourier domain. This blur signal can then be transformed into the final perceived signal
by modulating the Fourier coefficients with the spatial contrast sensitivity function (CSF)
(Section 2.1.2). The overall energy of the blur signal (called blur energy) is calculated by
sampling a range of frequencies as

Eb(σ) =
∑

i

(
CSF(φi) exp (−2π2φ2

iσ
2)

m̃t,b

)βb

, (3.8)

where CSF is Barten’s CSF model with the recommended standard observer parameters
and the background luminance of 100 cd/m2 [Barten, 2003], φi = {1, 2, . . . , 64} [cpd] are
a range of spatial frequencies to be sampled, m̃t,b is the threshold parameter, and βb
is the power parameter of the model. They both are obtained by fitting the model to
psychophysical data.

The difference in blur energies between display A and B can then be interpreted as
quality differences

∆QP = EP(σA
P )− Eb(σB

P),

∆QO = EP(σA
O)− Eb(σB

O),
(3.9)

Judder When continuous motion is reproduced on low refresh rate displays, it appears
non-smooth or juddery. The visibility of the judder can be estimated by examining the
aliasing copies of the signal in the frequency domain. As shown in Figure 3.3, for a signal
of velocity v, the first aliasing copy is located at temporal frequency equal to refresh rate
(ω) and spatial frequency

φ =
ω

v
. (3.10)

Similar to blur, the energy of the alias can be calculated as

Ej(ω, v) =

(
stCSF(φ, ω)

m̃t,j

)βJ

, (3.11)

where stCSF is truncated low-pass Kelly’s spatio-temporal CSF [Kelly, 1979], βJ is the
power parameter for judder, and m̃t,j is the threshold for judder. Finally, the quality
difference due to judder can be expressed as

∆QJ = Ej(ωA, v)− Ej(ωB, v) . (3.12)

Model calibration The model parameters were fitted on data captured through psy-
chophysical experiments that measured the combined effect of blur and judder on quality
as well as the effect of both artefacts individually. The value of each free parameter can
be found in Table 3.1.
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Figure 3.3: Spatia-temporal sampling of a continuous signal leads to creation of aliasing
copies in frequency domain (left). Our sensitivity to these replicas can be captured by
truncated low-pass Kelly’s spatio-temporal CSF (right).

wJ wP wO m̃t,b βB βJ
2.218677 1.472819 1.472819 383.5854 1.83564 2.5747

pa pb m̃t,j

Predictable 0.001648 0.079818 218.712
Unpredictable 0.004978 0.176820 165.779

Table 3.1: Fitted parameters of MARRR
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Figure 3.4: Precomputed LUT of optimal refresh rate and resolution for different GPU
bandwidths and velocities.

3.3 Rendering with adaptive refresh rate and resolu-

tion

Bottlenecks in the graphics pipeline, such as limited transmission bandwidth or power
constraints, often require an application to compromise spatial resolution or refresh rate.
The traditional solution to this problem of constrained rendering is to either fix the
resolution and vary the refresh rate in accordance with the allowed budget or vice versa.
However, in these solutions, the resolution-refresh rate trade-off is determined once during
initialisation for a given budget and stays the same throughout the application regardless
of scene content. With the introduction of adaptive-sync displays such as G-Sync and
Free-Sync technologies, which are capable of driving a display at an arbitrary refresh rate
without introducing tearing artefacts, the constant refresh rate and resolution rendering
become a sub-optimal strategy. We can use the visual model introduced in the previous
section to find the refresh rate and resolution configuration that maximises the perceived
quality for a fixed rendering budget. This can be expressed as the following optimisation
problem:

arg max
ω,ρ

∆Q(ω, ρ, ωR, ρR, v, τ) s.t. ω ρ ψx ψy ≤ B ∧ ω ≤ ωR ∧ ρ ≤ ρR, (3.13)

where B is the rendering budget in pixels-per-second and ψx and ψy are the display’s
horizontal and vertical viewing angles, respectively. All quality calculations are done
relative to quality at the maximum refresh rate (ωR) and maximum resolution (ρR) of the
display. The rest of the parameters are the same as Eq. (3.1). Since the quality depends
on object’s current velocity, the optimal refresh rate and resolution can vary for every
frame.

This optimisation problem can be solved with an exhaustive search as the allowed
refresh rates are a limited number of integer values. To minimise the overhead of solving
this optimisation in real-time rendering, we can precompute the optimal configuration for
a range of eye velocities and bandwidths and store them as a LUT (Figure 3.4).

This method can now be easily integrated with any game engine. Before rendering
a frame, we can estimate the user’s gaze velocity using an eye-tracker and scene motion.
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This velocity, along with our allowed bandwidth, can be used to sample the LUT and
calculate the refresh rate and resolution for the current frame. The desired resolution
is achieved by resizing the viewport using bilinear interpolation. The refresh rate of
the display, unfortunately, cannot be set directly because adaptive-sync displays work
by predicting desired refresh rate. The adaptive-sync chip on the display analyses the
frequency of incoming data packets to guess the application’s frame rate and then matches
the display refresh rate to it. Hence to set the display refresh rate to the desired value, we
need to precisely control the application’s frame rate. This can be done by using coroutines
that wait for the rendering to finish and then throttle the main thread to free the CPU
resources until the desired frame duration is achieved. The entire process is summarised
in Figure 3.5.

FPS 
Throttle

Gaze velocity

Render

LUT

Calculate 
optimal FPS

and 
resolution

Set viewport
resolution

Update game
stateStart

Figure 3.5: MARRR pipeline in Unity3D game engine.

3.4 Psychophysical validation

To validate the applicability of our model in complex motion scenarios, I built a sandbox
video game running the MARRR algorithm and ran a preference experiment to compare
with fixed refresh rate and resolution rendering, including [Debattista et al., 2018]’s model
for selecting refresh rate.

Setup This experiment used a pairwise comparison design where the conditions were
played on a single G-sync capable ASUS display (PG279Q). Users had the freedom to
toggle between the two conditions but did not know which condition was which. I built
the video game in Unity3D, which ran on an ASUS monitor with an Eyelink II eye-tracker
sampling the gaze location at 500 Hz (pupil-only mode). In each trial, the two conditions
showed the same 3D scene and the same fixed bandwidth (1/3-rd of maximum available
bandwidth: 1/3 × maximum resolution (2560×1440 pixels) × maximum refresh rate (165
Hz) = 203 MP/s) but one with MARRR and the other with a constant resolution and
refresh rate. MARRR assumed predictable motion and controlled the optimal refresh
rate (from 50 Hz to 165 Hz) frame-by-frame by querying a pre-computed lookup table.
Refresh rates chosen for constant resolution and refresh rate were 30 Hz, 60 Hz and 120 Hz
to mimic conventional gaming hardware and 75 Hz and 90 Hz as predicted by Debattista
et al. [2018] experimental data and their model, respectively. Two different values were
picked from [Debattista et al., 2018] because their model predictions did not match with
their experimental data for the chosen bandwidth.
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Figure 3.6: Viking village stimulus used in the experiment with FPS camera (top) and
RTS camera (bottom). © Unity Technologies

RTS

FPS
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Figure 3.7: Results of validation experiment in a video game setting showing the percentage
of participants picking the proposed adaptive MARRR algorithm over standard constant-
resolution-and-constant-refresh-rate rendering. Error bars denote 95% confidence interval.
∗ denotes statistical significance (p-value < 0.05 with the null hypothesis of random choice).
MARRR consistently performed better across all conditions except at FPS-60Hz, where
the results are not statistically significant. I believe the latter could be due to sample size
and participants’ habituation to FPS gaming at 60Hz.

Stimuli For video game content, I used the Viking Village scene from Unity. I added
two camera modes to this 3D environment: (1) FPS mode, where players could explore the
scene and interact with objects, such as collecting coins and shooting enemies, similar to a
typical first-person shooter-style video game (Figure 3.6-top). (2) RTS mode, where the
players could explore the scene from a bird’s eye view, similar to a simulator and real-time
strategy style video games (Figure 3.6-bottom). The trials were randomised with an equal
number of FPS and RTS conditions.

Estimating velocity To estimate target object velocity for our model in real-time, I
used the gaze velocity averaged over 17 samples as reported by the EyeLink SDK. When
there was no camera movement, this velocity was prone to be noisy (likely due to ocular
drifts or microsaccades [Alekseevsky, 2022]). Hence, when there was no mouse or keyboard
interaction, I instead reverted to screen-space object velocities at the gaze location as
reported by the game engine.

Participants and procedure 17 people (aged 20-40) volunteered to participate in the
experiment. All had a normal or corrected-to-normal vision. In each trial, participants
were asked to explore the 3D scene in both rendering conditions and choose the one with
overall better visual quality. The order of the comparisons was randomised. Each observer
completed 40 comparisons. All participants reported only casual gaming experience
(playing only a few times a month) with little-to-no exposure to high-refresh-rate monitors.

Results The results of this experiment indicate an overall preference for MARRR
compared to the fixed refresh rate and resolution rendering (Figure 3.7). At the chosen
bandwidth, the difference in preference is particularly large for 30 Hz. The difference is
significant but less pronounced for comparisons with 60 and 120 Hz. I believe this could
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have been caused by scene’s complexity with many factors such as aliasing, participants’
habituation to certain refresh rates, and eye-tracking noise affecting the results. Also, there
is a higher preference for MARRR in the RTS setting than FPS in all configurations except
120 Hz. The results show a clear preference over [Debattista et al., 2018] predictions (75
and 90 Hz), suggesting the importance of accounting for content velocity during rendering.

3.5 Limitations

The results of the above methods demonstrate the potential of adaptive refresh rate
rendering algorithms. However, this method has a few limitations. The underlying visual
model is too conservative as it disregards scene content and thus cannot be combined
with content-aware methods [Pellacini, 2005]. The model, though designed to generalise
across displays, was only calibrated on high-persistence LCDs of standard brightness. This
limits its applicability to VR headsets and HDR displays. Being a content-independent
model, it does not account for spatio-temporal aliasing artefacts arising from dynamic
resolution. The lack of content awareness also excludes the use of recent adaptive shading
frameworks such as VRS. Another limitation of the proposed rendering method is that it
ideally requires fine control of the display’s refresh rate, which is not possible with current
Adaptive-Sync displays as they rely on a prediction model as explained in Section 2.4.
A direct interface to communicate the desired refresh rate to display could reduce the
latency in our method.

3.6 Summary

With displays demand for transmission bandwidth surpassing GPU capabilities, it is
necessary to adaptively control the quality of rendering. In this chapter, I introduced a
visual model proposed by my colleague that predicts the perceived quality by analysing
judder and blur motion artefacts. I showed how this model could be integrated with 3D
game engines to select every frame’s optimal refresh rate and resolution adaptively. I then
compared the proposed motion-adaptive rendering method to an empirical model and
the traditional constant resolution-refresh rate method in a subjective study. The results
showed a significant preference for the proposed method in all tested scenarios making a
strong case for including quality of motion considerations in rendering methods. Finally, I
identified several limitations of the proposed work that need to be solved to fully realise
the potential of adaptive rendering pipelines.

38



Chapter 4

Motion quality dataset

4.1 Introduction

In Chapter 3, we discussed an application of a motion quality model to real-time rendering,
which significantly improved visual quality. Though this model indicates the promise of
motion-adaptive rendering, it has certain limitations. It assumes no content information
and does not account for aliasing artefacts commonly found in real-time rendering. To
develop a new visual model that overcomes these limitations, it is necessary to understand
what and how display and content parameters affect the perception of these artefacts. This
knowledge can be built through psychophysical experiments, and the resulting datasets
can be used to develop, calibrate and validate visual models.

In this chapter, I first survey the psychophysical studies on the perception of motion
artefacts conducted in the last two decades (Section 4.2). Through this survey, I identify
the major factors that affect motion quality and areas that require more study. I then
conduct a subjective quality experiment to fill these gaps in research. The experiment
measures the perceived loss of quality due to shading rate reduction under a large range
of display refresh rates, resolutions, display persistence, luminance, contrast, and content
velocity (Section 4.3). A subset of these identified datasets and the new dataset will be
used to calibrate a new visual model in Chapter 5.

This chapter is based on the work published in the SIGGRAPH Asia 2021 article:
Perceptual Model for Adaptive Local Shading and Refresh Rate.

4.2 A survey of factors affecting perception of motion

artefacts

Section 2.2 discussed a range of artefacts that arise when we display a motion signal
due to hardware and software limitations. They include judder, blur, aliasing, flicker,
ghosting and more. The degree of visibility of these artefacts and their subsequent effect
on perceived visual quality depends on multiple display and content-related factors and
has been extensively studied by various works. I will now summarise some of the most
well-studied factors.

Refresh rate and velocity: There is a consensus among multiple studies examining a
wide range of refresh rates and velocities (refer to Table 4.1) that higher refresh rates are

39



Figure 4.1: Results from Mackin et al. [2016] experiment demonstrating that increase in
quality from increasing refresh rate plateaus after a point which depends on object velocity
(left) and refresh rate required to achieve artefact free results (critical frame rate) grows
linearly with stimulus velocity (right).

required to maintain the quality at higher velocities of motion (Figure 4.1). Mackin et al.
[2016] report that even for a simple stimulus, it can take up to 600 Hz (depending upon
the velocity) to achieve an artefact-free motion. However, observers found the motion
artefacts beyond 300 Hz to be tolerable. They also noticed that temporal aliasing artefacts
(judder and ghosting) contribute more to motion quality impairment than hold-type blur.
In another study, Kuroki et al. [2007] measured motion quality up to a refresh rate
of 480 Hz and found that the quality improves rapidly with increasing refresh rate but
saturates after 240 Hz for natural images. Similar trends were also reported by Wilcox et al.
[2015], Chapiro et al. [2019], Denes et al. [2020]. Similar to temporal aliasing, the visibility
of flicker decreases with increasing refresh rate. These trends stay mostly the same for
stereoscopic presentation [Hoffman et al., 2011]. However, unlike temporal aliasing, flicker
can be detectable up to 500 Hz during saccadic eye motion [Davis et al., 2015].

Persistence: Also known as duty-ratio or shutter angle, is the fraction of the frame
duration the image is displayed. A substantial difference in judderness can be perceived
between shutter angles that differ by a large amount [Daly et al., 2015]. Furthermore,
it is necessary to lower persistence to significantly reduce the hold-type blur inherent to
LCDs as simply increasing the refresh rate is not effective [Sluyterman, 2006]. In fact,
LCD panels with strobing backlights [Feng, 2006] are becoming increasingly common
in head mounted displays (HMDs) and gaming monitors [Rejhon, 2017]. Unfortunately,
psychophysical studies on the range of persistence used in these devices are quite limited
(refer to Table 4.1).

Luminance and contrast: The models of contrast sensitivity [Barten, 2003] predict
that the HVS is more sensitive to higher luminance and contrast, and thus, one would
expect a similar trend for visibility of motion artefacts. Larimer et al. [2001] verified this
in their study where they measured the effect of luminance, contrast, and refresh rate

40



150 500 1000 3500

Luminance (cd/m2)

600

650

700

750

800

850

C
ri
ti
ca

l
F
ra

m
e

R
at

e(
H

z)

Figure 4.2: Mackin et al. [2016] experiment result confirms that critical frame rate grows
non-linearly with stimulus luminance.

on judder and flicker up to 100 cd/m2 and found luminance to be the dominant variable.
Roberts and Wilkins [2013] noted that the visibility of flicker on a square-wave signal
increases with increasing Michelson contrast, and Daly et al. [2015] reported similar
degradation of overall motion quality with increasing contrast. Since most of these studies
were done on displays with standard dynamic range, Mackin et al. [2016] measured
the visibility of judder and ghosting as a function of luminance for up to 3200 cd/m2.
They found this relationship to be non-linear (in agreement with CSFs), with displays of
3200 cd/m2 requiring a 30% higher refresh rate than displays at 150 cd/m2 (Figure 4.2).

Resolution and spatial frequency: Visibility of blur is linearly dependent on the
logarithm of the averaged spatial frequency of an image [Kuroki et al., 2007], with observers
showing a slightly higher preference for higher spatial frequency content [Navarro et al.,
2011, Daly et al., 2015]. The content resolution has also shown to be an important factor
for rendering on variable refresh rate displays, with viewers picking higher refresh rates
for low computational budgets and higher resolution for higher budgets [Debattista et al.,
2018]. Reducing the resolution in rendering results in blur and aliasing artefacts, but how
our sensitivity to these artefacts changes with velocity is still not well studied (Table 4.1).
This gap in research is particularly important to address because most adaptive rendering
algorithms involve dynamically varying screen resolution.

Other factors: While there is also some evidence of effect of motion direction [Daly
et al., 2015], motion predictability [Denes et al., 2020], colour [Daly et al., 2015] and the
type of eye motion (saccades and SPEM) [Roberts and Wilkins, 2013] on motion quality, I
do not explore them in this dissertation. This is done partially to reduce the dimensionality
of the problem and partially because it is difficult to accurately measure some of these
dimensions with sufficiently low latency required for real-time rendering.

I summarise the above discussion in Table 4.1 and report the range of each parameter
measured in the existing work and the types of motion artefacts studied. I find the studies
of persistence and resolution to be particularly lacking as they do not cover the ranges
commonly found in VR and mobile devices. Furthermore, spatio-temporal aliasing artefacts
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due to low-resolution rendering are also not well considered in these works. Lastly, most of
these studies used oversimplified stimuli such as lines and boxes that may not generalise
well to complex image content. I attempt to fill these gaps in knowledge by conducting
a psychophysical study on multiple display setups and more realistic texture content, as
described in Section 4.3. In the first column of Table 4.1. I mark all datasets, including
mine, that I will use to calibrate and validate my motion quality model in Chapter 5.
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Figure 4.3: Experiment Setup. A chinrest was used to keep viewer’s head at a fixed
position.

4.3 VRS motion quality experiment

As discussed in the previous section, the impact of resolution, persistence and spatio-
temporal aliasing on motion quality is not well-studied. To fill these gaps in understanding,
I conduct a quality assessment experiment on a high refresh-rate display. In this experiment,
I focus on shading resolution rather than raster resolution to explore how the quality
degradation caused by VRS is affected by the above factors. Results are later used to
calibrate my metric of judder, aliasing, and blur (Chapter 5).

Setup To study the effect of shading rate reduction on motion quality, observers were
shown side-by-side two animations at different shading rates and textures on two separate
displays (Figure 4.3). The experiment was divided into three blocks, each with a different
configuration, simulating different display devices (Table 4.2). For the first two blocks, I
used a pair of ASUS ROG Swift PG279Q 27” WQHD displays as they were capable of
showing a wide range of refresh rates and luminance. For the last block, which studied
low persistence, I simulated two virtual displays in a VR headset (Valve Index). I was
unable to use the low persistence mode (ULMB) provided by the ASUS display as it led
to excessive ghosting caused by strobe cross-talk [Rejhon, 2017]. The ASUS displays were
calibrated with JETI Specbos 1211-2 spectroradiometer to achieve an accurate luminance
reproduction and placed side-by-side to facilitate the comparison of horizontal motion.
The experiment was designed in Unity3D, and I used VRS offered by Nvidia RTX 2080Ti
for the shading rate reduction. I ensured that the experiment time did not exceed 30
minutes to prevent observer fatigue.

Stimuli Based on previous work detailed in Section 4.2, I identified the following factors
to have the highest effect on the quality of motion: refresh rate, persistence, resolution,
luminance, contrast, object velocity, and shading rate. Due to the high dimensionality of
this problem, I restricted the experiment to three blocks (regions of the space) according
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Table 4.2: Range of conditions tested in each block. The same 4 textures (Checkerboard,
Noise, Grass, and Gradient ) processed to the correct luminance and contrast were used
for all blocks.

Refresh
Rate
(Hz)

Persis-
tence

Velocity
(deg/s)

Resolution
(ppd)

Mean
Luminance
( cd/m2)

Michelson
Contrast

Device

Block-PC 144 1 0, 10, 30 50 150 .7, .8, .9 ASUS

Block-Mobile 60 1 3, 10, 20 90 75 .7, .8, .9 ASUS

Block-VR 144 0.052 10, 45, 75 13 2.5 .7, .8, .9 Valve Index

to what I believe to be the typical rendering configurations of our target application,
namely, PC, mobile, and VR real-time rendering. The exact details of the range of each
tested dimension can be found in Table 4.2. The resolution was varied by changing
the viewing distance or scaling the viewport. For content, I used textured 3D models
of simple shapes (cube, cone, sphere, cylinder, and capsule) and two popular, more
complex models (Stanford bunny and Utah teapot). I used 4 textures: checkerboard,
linear-gradient, salt-and-pepper noise, and grass, as shown in Figure 4.4. The textures
and contrast were chosen to bring out the most common spatial and temporal artefacts
associated with shading rate reduction and to include a wide range of variations in spatial
frequency content. The textures were pre-processed to produce the selected luminance
and contrast levels for each block. 2× supersampling anti-aliasing (SSAA) was used only
in VR (Block-VR) to compensate for low PPD and to reduce artefacts’ visibility. All the
models moved horizontally at the same velocity. The velocities in each block were selected
to be representative of common velocities in real-time graphics on respective displays. A
small rotational velocity (≤2 deg/s) was added to each model randomly so that all parts
of the model were visible over the experiment. Since there was no vertical motion in our
stimulus, we used the only possible combination of available shading rates that would keep
the vertical rate constant while varying the horizontal shading rate between {1× 2, 2× 2,
4× 2}1. The experiment was divided into 3 separate sessions, one for each block.

Procedure 13 participants aged 21–40, 4 females and 9 males with normal or corrected-
to-normal vision, participated in the experiment. The experiment used a pairwise compar-
ison protocol for quality assessment. In each trial, the participants were presented with
two moving stimuli at different shading rates and potentially different textures. They had
an option to see the reference stimuli rendered at the original resolution (VRS 1×1) by
pressing and holding the space bar. A short blank of 0.5 s was shown before switching
between test and reference animations so that the participants could not use temporal
flicker to detect the presence of artefacts. Participants were then asked to pick the stimulus
closer to its respective reference (stimulus with fewer artefacts). Before the experiment, all
participants were briefed in a short training session where I highlighted the motion artefacts
caused by VRS. Since we were limited to a relatively small number of participants due to
COVID-19 restrictions, I collected more data from each participant to reduce confidence
intervals. Each participant performed 120 comparisons for each of the three blocks (4680
comparisons across all participants). The order of comparisons was determined using

1A shading rate of ×N means 1/N shading resolution
2From manufacturer’s website.
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(a) Textures used in the experiment (top row) and their counterparts
rendered using a lower shading rate (bottom row). The VRS was sim-
ulated and exaggerated using nearest neighbour downsampling in the
above illustration.

(b) Horizontally moving and slowly rotating 3D models, rendered with
the checkerboard texture, that were shown in the experiment.

Figure 4.4: Textures and objects used in the experiment.

ASAP, an active sampling method [Mikhailiuk et al., 2020] to maximise the information
gained through each trial.

Results The pairwise comparison results from this experiment were mapped to a Just-
Noticeable-Difference (JND) scale based on Thurstone Case V assumptions [Perez-Ortiz
and Mantiuk, 2017]. A quality difference of 1 JND means that 75% of the population will
pick one condition over another. Since the original formulation of the Thurstone Case V
assumption does not allow for the computation of confidence intervals, bootstrapping was
used to compute them. The results are reported in Figure 4.5. The shading rate of 1×2
was assigned as the 0 JND condition, and other data points are presented relative to it.
The shapes of the plots are consistent with previous studies with quality impairment (∆Q)
due to reduced shading resolution decreasing with increasing velocity. However, this effect
is not as prominent in VR (Block-VR). This can be explained by hold-type blur increasing
with velocity and masking the spatio-temporal aliasing caused by reduced shading rate.
Since VR has minimal hold-type blur because of its low persistence, the VRS artefacts
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continue to be visible even at high velocities. Another important observation is that quality
may degrade non-linearly with shading resolution and the shape of this curve varies widely
between different textures, with artefacts in gradient rarely visible and artefacts in noise
almost always visible. From these results, I confirm that the motion quality depends on a
wide range of display and content-related factors. In the next chapter, I will describe how
these results can be explained by a novel visual model of motion quality.
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Figure 4.5: Results of VRS motion quality experiment 1 scaled to JND units.

4.4 Summary

To develop better models of motion quality, it is essential to understand how the perception
of motion artefacts inherent to modern displays is affected by the different display and
content parameters. In this chapter, I surveyed studies on the perception of motion
artefacts and identified the following factors to have a significant effect on quality: display
refresh rate, object velocity, display persistence, adaptation luminance, image contrast,
display resolution and image spatial frequency content. I found the current studies on
aliasing artefacts and the effect of persistence and resolution to be lacking. This was
addressed by conducting a new subjective study that measured the loss in perceived
quality due to shading rate reduction on a wide range of factors identified previously.
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The experiment showed that this loss in quality decreases with velocity and varies widely
between different textures and displays. These results imply an opportunity to save
bandwidth in VRS rendering systems where the shading rate of regions with high velocities
can be reduced without any change in quality.
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Chapter 5

CaMoJAB: Content-adaptive model
of judder, aliasing and blur

5.1 Introduction

When a continuous motion signal is recreated on a display, it can lead to different kinds of
motion artefacts (Section 2.2). In traditional rendering, judder, aliasing, and blur are the
most prominent of these motion artefacts. Understanding how these artefacts affect the
visual quality of rendering is necessary. In Chapter 4, we discussed how the perception
of these artefacts depends on several content and display factors; however, all existing
metrics of motion quality only model a subset of these factors. In this chapter, I propose a
new visual model that builds upon MARRR (explained in Section 3.2) and accounts for all
relevant factors affecting motion quality in a content-adaptive manner. The model is tuned
to account for distortions resulting from reduced shading rate to facilitate optimisation of
VRS rendering but is designed in a white-box fashion to be easily extendable to different
graphics pipelines. It isolates various spatial and temporal distortions resulting from the
discrete nature of rendering and display systems and measures their impact on perceived
quality using spatio-temporal contrast sensitivity functions of the visual system. The
model is shown to explain the experimental data from the previous chapter and several
other datasets with only a few fitted parameters.

I begin by discussing the state-of-the-art in modelling motion quality in Section 5.2.
Then I introduce my model in Section 5.3, followed by its calibration, validation, predictions
and ablation in the rest of the chapter.

This chapter is based on the work published in the SIGGRAPH Asia 2021 arti-
cle:Perceptual Model for Adaptive Local Shading and Refresh Rate.

5.2 Related Work: Models of motion quality

Motion quality metrics aim to predict the visibility of motion artefacts given content and
display information as input. Such models can then be used for various motion-adaptive
rendering applications. Primarily, there are two main approaches to modelling quality:
black-box and white-box metrics. Black-box metrics [Chapiro et al., 2019, Debattista
et al., 2018] explain the data by fitting an arbitrary function and typically perform well
within the dataset’s domain but cannot extrapolate beyond it. White-box metrics, on the
other hand, rely on psychophysical models and are better at extrapolating the predictions.
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I focus on white-box metrics as I aim to build a metric that generalises to a wide range of
display technologies and content.

Denes et al. [2020] proposed a white-box metric MARRR (Section 3.2) that models
motion quality as a weighted sum of the quality of individual motion artefacts. The metric
makes a simplifying assumption that motion artefacts are independent of each other which
fails for content-adaptive scenarios where blur and spatio-temporal aliasing from rendering
are often inter-dependent. Hoffman et al. [2011] analyse the frequency spectra of a moving
line to predict the visibility of motion artefacts; however, it is unknown if such predictions
will extend well to supra-threshold appearance. Both the metrics ignore the impact of
content on motion quality.

Yang et al. [2019] derive a metric for full, half and quarter shading resolution using an
l2-norm of each tile with the previous frame in image-space modulated with a function of
velocity. Though they account for the effect of content, they fail to account for several
important perceptual and display factors that affect motion quality. Perceptual video
quality metrics such as FovVideoVDP [Mantiuk et al., 2021] are also designed to be content
and motion-aware, but their complexity precludes real-time rendering.

Furthermore, most existing models only consider a small subset of motion artefacts.
One artefact that is rarely considered is temporal and spatial aliasing due to rendering
(Table 4.1). Motion artefacts are often inseparable, and studying them in isolation does
not translate well to practical applications. Aliasing due to rendering is also particularly
important for our model as it is one of the most common artefacts resulting from the
shading rate reduction. The summary of the discussed metrics can be found in Table 5.1.
My proposed metric accounts for all the important factors described in Section 4.2 and
outperforms the above models, as demonstrated in Section 5.6.

Table 5.1: Models of motion quality and the parameters they account for.

Motion Quality
Metrics

Refresh
Rate

Resolution Persistence Velocity Luminance
Content-

aware
Hoffman et al. [2011] Yes No Yes Yes No No
Debattista et al. [2018] Yes Yes No No No No
NAS Yang et al. [2019] No Yes No Yes Yes Yes
Chapiro et al. [2019] Yes No No Yes Yes No
MARRR Denes et al. [2020] Yes Yes Yes Yes No No
CaMoJAB (ours) Yes Yes Yes Yes Yes Yes

5.3 A content-adaptive model of motion quality

My goal is to design a motion quality model that, given a display configuration and
an image, can predict how the quality will change with display refresh rate, shading
resolution, display persistence, and image velocity. I aim to make this model as simple as
possible for real-time usage while covering a wide range of display parameters and motion
artefacts. The texture content is a major factor influencing quality degradation due to
VRS (Section 4.3); however, most existing perceptual models ignore the effect of content
on motion quality. Therefore, I also aim to make this model content-adaptive.

In this section, I develop a motion quality model by studying the evolution of a
continuous motion signal and how it goes through various spatial and temporal distortions
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due to the discrete nature of rendering and display systems. I focus on the distortion
that VRS introduces to the mapped texture and assume that the distortion due to a
lower resolution of shading (e.g. specular reflections) is negligible. The following analysis
assumes SPEM and tracking on object, and does not consider changes in image content
over time (e.g. moving transparent object). I define the motion quality q as a negate of
the weighted sum of spatial distortions (ds) and temporal distortions (dt) and show that
such a definition correlates well with the experimental results:

q(t(u, v), ν,DDD) =− ws · ds (t(u, v), ν,DDD) +

− wt · dt (t(u, v), ν,DDD) ,
(5.1)

where t(u, v) is the mean luminance (in cd/m2) of the image at u, v coordinates, ν is the
velocity of the texture movement on the screen in deg/s, and DDD is a display configuration
parameterised as:

DDD = {ω̂, p, ρ̂, rx, ry}, (5.2)

where ω̂ is the temporal Nyquist frequency of the display in Hz (half of display’s refresh
rate), p is the persistence (or duty-ratio) of the display (0 < p≤ 1), ρ̂ is the spatial
Nyquist frequency of the display in cpd (half of display’s spatial resolution in ppd), and
rx, ry ∈ Q+ | (0 < rx, ry≤1) are the shading resolution in x and y directions, respectively.
The unit of q is JND.

This model is partially inspired by Watson’s analysis of capture and display systems
[Watson, 2013] and Denes et al.’s content-independent motion quality model (Section 3.2).
However, I focus on understanding the effect of texture content on motion quality to
enhance and guide VRS in real-time graphics. For the rest of this dissertation, I will refer
to my model as CaMoJAB , a content-adaptive model of judder, aliasing, and blur.

5.3.1 Spatial distortion model

In a typical VRS rendering pipeline, a texture goes through several stages before it is
displayed (Figure 5.1). The texture is first quantised and stored as a mipmap. Next,
during the texture look up, a mipmap level is selected according to the texel-to-pixel
projection [Segal and Akeley, 2022, Section 8.14] and the shading resolution specified by
VRS. The image is then displayed on the screen for a portion of the frame duration, which
depends on the display persistence. If the object is in motion and is tracked by our gaze
(SPEM), it may introduce hold-type or eye motion blur. All the above stages add different
kinds of spatial distortions to the signal, resulting in a loss of quality. We will now analyse
each of these steps in detail in the frequency domain (Figure 5.2).

Frequency domain analysis Analysing a visual signal in the frequency domain is
a useful technique as it facilitates understanding sampling and filtering operations as
well as allows for the use of various psychophysical models that are based on spatial
frequency theory. Hence, I transform a given 2D texture t(u, v) moving with a velocity ν
in a horizontal direction into its frequency domain representation T (τu, τv) using Discrete
Fourier transform.

T (τu, τv) = F{t(u, v)} [cycles/texel] , (5.3)

where τu and τv are the spatial frequencies in cycles-per-texel (cpt) corresponding to u
and v direction, respectively. Though we will assume horizontal velocity in our model, I
explain how it can be extended to arbitrary velocity in Section 6.3.3.
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Variable rate shading VRS executes the pixel shader once per multiple pixels and
replicates the calculated colour to all those pixels. The shading typically involves a texture
look-up operation on the mipmap of the underlying albedo/diffuse texture. Mipmapping
[Williams, 1983] is the most popular antialiasing method for textures. A mipmap is a
pyramid structure created by low-pass filtering and downsampling to half the resolution
of each fine level to create a coarser level. The common filters used for this purpose are
box, Gaussian, Lanczos, and Kaiser [Akenine-Möller et al., 2019, Section 6.2.2]. In the
following discussion, I assume a box filter as it is one of the most commonly used filters
and yet is also known to be one of the worst possible filters because it unnecessarily blurs
low frequencies while retaining some high frequencies that cause aliasing [Akenine-Möller
et al., 2019]. For every shaded pixel, the area of the pixel is projected onto the texture.
The projected area may include 1 or more texels. The level of detail to sample from is
then selected in such a way that the ratio of pixel-to-texel area is close to 1:1. Most
modern shading languages provide a function to calculate and query this value (such as
textureQueryLod() in GLSL). Since VRS enlarges the pixel area, it results in the selection
of a coarser mipmap level. Let l be the mipmap level selected when rendering at full
shading resolution such that l = 0 is the highest (finest) resolution level. The width of the
box filter at a lower shading resolution can be approximated as:

bm =
2l

min(rx, ry)

[
texel

pixel

]
. (5.4)

The symbols used in this equation are defined in Eq. (5.2). By taking the minimum of
the two shading resolutions, I assume isotropic filtering, but it is trivial to extend it to
support anisotropic filtering. I will use upper case symbols to denote functions in the
Fourier domain. The Fourier transform of our box filter gives:

Bm(τu, τv; bm) = sinc(bmτu) · sinc(bmτv) . (5.5)

However, using a sinc(·) function introduces non-monotonicity in the model predictions
making it unsuitable for optimisation problems (example in Appendix B). To mitigate
this, I approximate sinc(·) with a Lorentzian function L(·) of half-width σm:

L(τ ; σm) =
σ2
m

σ2
m + 4τ 2

, (5.6)

σm =
π

2bm
. (5.7)

I found Lorentzian function to be a good approximation of sinc(·) as it preserves the high
frequencies similar to sinc(·), unlike the Gaussian approximation used by Denes et al.
[2020] (refer to Figure 5.3).

The texture at a mipmap level l is therefore affected by a low-pass filter as follows:

T ′(τu, τv) = T (τu, τv) · Bm(τu, τv; bm) , (5.8)

Bm(τu, τv; bm) ≈ L(τu; σm) · L(τv; σm) . (5.9)

Since we will now operate in screen-space, I map the mipmapped texture T ′(τu, τv) to
a screen space image I (ρx, ρy):

I (ρx, ρy) = T ′(τu 2 ρ̂ bm , τv 2 ρ̂ bm) [cycles/deg] , (5.10)
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where ρx and ρy are spatial frequencies in cpd.
VRS repeats the above texture look-up operation for all the “coarse” pixels (large

VRS pixels). This is same as downsampling the filtered signal I (ρx, ρy) by convolving it
with a sampling function S(ρx, ρy). The sampling function is a sequence of impulses at an
interval of 2 ρ̂ rx and 2 ρ̂ ry in x and y directions, respectively. It can be represented using
a Dirac comb function X(·):

S(ρx, ρy) = X

(
ρx

2 ρ̂ rx

)
X

(
ρy

2 ρ̂ ry

)
. (5.11)

In my implementation of S(ρx, ρy), I only considered the first two impulses to limit the
discontinuities introduced by the function (more details in Appendix B).

A display cannot render spatial frequencies higher than its Nyquist frequency. Hence,
we can clip the high frequencies by multiplying the resultant signal with a rectangular
function R(·):

I ′(ρx, ρy) = (I (ρx, ρy) ∗ S (ρx, ρy)) ·R (ρx, ρy) , (5.12)

where the rectangular function is defined as:

R(ρx, ρy) = Π

(
ρx

2 ρ̂ rx

)
Π

(
ρy

2 ρ̂ ry

)
, (5.13)

and Π(·) is a rectangular function1.
The above process is illustrated in Figure 5.2 which analyses a moving box in the

frequency domain. VRS picks coarse mipmap levels that act as a low-pass filter resulting
in loss of energy. The filtered signal is then downsampled through a convolution with
S(ρx, ρy) that results in the creation of replicas (aliases) of the spectrum at multiples
of the sampling interval. It is followed by multiplication with R(ρx, ρy) which results in
downsampling blur. If the bandwidth of the spectrum I is larger than display’s effective
Nyquist frequency (ρ̂ rx, ρ̂ ry), higher frequencies fold onto lower frequencies and cause
spatial aliasing.

1The rectangular function is equal to 1 in (−0.5, 0.5), 0.5 at -0.5 and 0.5 and 0 otherwise.
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Eye motion blur When the rendered image moves on the screen, our eyes undergo
SPEM to track it. The motion of our eyes is continuous, however, an LCD presents the
image at discrete moments in time (frames). This leads to smearing of the image on the
retina and is known as hold-type blur. The hold-type blur can be reduced by reducing the
time for which the frame is displayed (persistence). I follow the same practice as Denes
et al. and approximate hold-type blur with a box filter of width:

bh =
ν p

2 ω̂
[deg] , (5.14)

where the parameters are the same in Eq. (5.2). The display persistence p ∈ [0, 1] accounts
for shorter integration time on low persistence displays which reduces hold-type blur.
Denes et al. showed that when our eye undergoes SPEM, its tracking is imperfect. Our
eyes often over- or under-estimate the object’s location, which leads to additional blurring.
The degree of blurring is proportional to the object velocity. It can also be modelled with
a box filter of width:

be = (ca ν + cb) · p [deg] , (5.15)

where ca = 0.001648 and cb = 0.079818 are the coefficients reported in their work.
The blur due to the hold-type blur and imperfect eye motion is modelled the same

way as the loss of resolution due to VRS and mipmapping, using Lorentzian functions in
the frequency domain (approximations of sinc filter):

Bh(ρx, ρy) = L(ρx; σh), (5.16)

Be(ρx, ρy) = L(ρx; σe), (5.17)

where σh = π/2bh and σe = π/2be.
Note that the blurring due to eye motion is different from the blurring introduced in the

previous stages (Eq. (5.9)). It is directional in nature and only happens parallel to object
motion, unlike blurring due to mipmapping and downsampling which is omnidirectional.

The final distorted signal reaching our retina can be calculated as

I ′′(ρx, ρy) = I ′(ρx, ρy) · Bh(ρx, ρy) · Be(ρx, ρy) . (5.18)

Contrast sensitivity and energy pooling To find the sensitivity of HVS to various
distortions, we can modulate the signal with the spatio-temporal CSF S(ρ, ω, La, r). For
a given spatial frequency ρ, temporal frequency ω, adaptation luminance La, and stimulus
radius r, the CSF specifies sensitivity, i.e., the reciprocal of minimum contrast threshold
visible to an average observer. For my model, I use the CSF defined by Mantiuk et al.
[2021] because it accounts for all three required dimensions together and is fitted to data
up to 10 000 cd/m2.

Finally, we can compute the overall visual energy Es of the distorted signal by modu-
lating it with the CSF and integrating over the entire spectrum:

Es(I
′′) =

ρ̂∫

0

ρ̂∫

0

∣∣∣I ′′(ρx, ρy)S
(√

ρ2x + ρ2y, ω, La, r
)∣∣∣

β

dρxdρy, (5.19)

where ω is the temporal frequency, assumed to be 0, β is the power parameter of the
model and is fitted to the psychophysical data in Section 5.4. I set the temporal frequency
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ω to 0 as we consider the stimulus that is stabilised on the retina and includes blur due
to motion. I set the stimulus radius r to 1

5

◦
(the reciprocal of peak frequency). The

adaptation luminance La is approximated as the mean luminance of the considered image
part (VRS block). The CSF-normalised energy Es can be linearly mapped to a JND scale,
as shown by Denes et al. [2020].

Given a reference signal with no distortion

Iref(ρx, ρy) = T (2ρ̂ τu , 2ρ̂ τv) [cycles/deg] , (5.20)

I define the total spatial distortion (ds in Eq. (5.1)) as the visual energy difference2 between
the reference signal and the distorted signal:

ds = Es(I
ref)− Es(I

′′). (5.21)

5.3.2 Temporal distortion model

When a continuous motion signal is sampled and displayed at discrete time intervals, the
motion appears to be jerky or juddery. As discussed in Section 4.2, the amount of judder
increases with velocity and decreases with increasing refresh rate. This phenomenon can
be explained by analysing the signal in the frequency domain [Watson, 2013].

I model the temporal judder (non-smooth motion) similarly to MARRR (Section 3.2)
but in a content-adaptive manner. Temporal sampling creates replicas (aliases) of the
signal in the frequency domain, each separated by the display’s refresh rate, 2 ω̂ (see
Figure 5.4). If the temporal bandwidth of the signal exceeds the Nyquist frequency of the
display (ω̂), the replica will overlap with the original signal and distort it. The temporal
frequency of the first replica is 2 ω̂ [Smith et al., 1997, Chapter 3], and the shift in its
spatial frequency can be calculated as:

ρA =
2ω̂

ν

[
cycles

deg

]
. (5.22)

We can safely ignore the vertical spatial frequency ρy as we assumed the vertical velocity to
be 0, so there is no temporal distortion. The total temporal distortion (dt in Eq. (5.1)) can
then be approximated as the CSF-normalised visual energy in the region of the replicated
spectrum that is less than the spatial Nyquist frequency of the display (ρ̂):

dt =

ρ̂∫

0

ρ̂∫

0

∣∣∣I ′(ρx − ρA, ρy)S
(√

ρ2x + ρ2y, 2ω̂, La, r
)∣∣∣

β

dρx dρy , (5.23)

Similar to Eq. (5.19), I approximate adaptation luminance La as the mean luminance of
the considered image part (VRS block) and set the stimulus radius r to 1

5
.

5.4 Model calibration

To determine the free parameter β and the relative weights of the spatial and temporal dis-
tortions ws and wt, I use the psychophysical data from my VRS motion quality Experiment

2Different from Watson and Ahumada’s [2011] visible contrast energy (ViCE). I found the above
formulation to be more robust to numerical inaccuracies. More details in Appendix B and Appendix A.
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Figure 5.4: Temporal distortion of the signal due to low refresh rate.

1 (Section 4.3) in addition to Experiment 1 and 3 from Denes et al. [2020]. The experiment
by Denes et al. measured supra-threshold motion quality through moving checkerboards
at different refresh rates and velocities on a full persistence LCD and no-reference pairwise
comparisons. The two datasets use the same JND scale and together include a wide
range of display settings and all three artefacts, i.e., motion blur, downsampling artefacts,
and judder (refer to Table 4.1 for the exact range of factors tested). The values of the
parameters are determined by minimising the root-mean-squared error between the model
predictions and the results of the experiments. The fitted parameter values (RMSE = 0.53)
are reported in Table 5.2, and the results are plotted in Figures 5.5a and 5.5b. CaMoJAB
correctly predicts the reduction in quality differences with increasing velocity and success-
fully captures the relationship between different textures across all three configurations.
An ablation study analysing the contribution of each of the CaMoJAB’s component can
be found in Section 5.7.

Table 5.2: Model parameters

ws wt β
3.69 2.9 0.36

5.5 Model results

I provide a visualisation of CaMoJAB predictions for the moving grass texture at different
velocities, refresh rates, and shading resolutions in Figure 5.6. The first plot predicts
that as the velocity (in deg/s) increases, the difference in quality between high and low
shading resolution decreases. This is consistent with our observations in the experiment
(Section 4.3). The second plot predicts that at lower velocities, observers prefer higher
shading resolution over refresh rate and the trend reverses as the velocity increases. This
is consistent with the findings of Denes et al. [2020]. These model predictions hold high
practical significance as they can be used to drive real-time rendering on performance
adaptive hardware such as variable refresh rate (VRR) displays or VRR compatible cloud
gaming [Colenbrander, 2021] and VRS GPUs. I describe and implement one such strategy
in a complex motion setting in Chapter 6. Finally, CaMoJAB also provides an opportunity
to study the interplay between luminance and persistence (Figure 5.7) for rendering on the
upcoming variable persistence-variable refresh rate displays [Verbeure et al., 2017, Hekstra
et al., 2008].
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(a) VRS Experiment results and CaMoJAB predictions scaled to JND units.
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(b) CaMoJAB predictions on Denes et al. [2020]’s Experiment 1.

Figure 5.5: VRS motion quality experiment results and CaMoJAB predictions. CaMoJAB
was calibrated together on all the results reported in (a) and (b) and is capable of capturing
the correct trends. MARRR being a content-independent model, is unable to capture the
difference in quality due to texture in (a). NAS does not account for display factors and
thus fails to predict the change in quality due to refresh rate in (b).
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Figure 5.6: CaMoJAB predictions for a moving grass texture on a 150 cd/m2 and full
persistence 60 ppd display. Although shading resolution is plotted as a continuous variable,
in practice, only a small set of resolutions are available.

5.6 Comparison and validation

For a comparative study, I picked two state-of-the-art models [Denes et al., 2020] and
[Yang et al., 2019]. It should be noted that neither of these models (or any other model to
my knowledge) is designed to predict our kind of data. [Denes et al., 2020] is a perceptually
based model derived through extensive psychophysical experiments, however, it is content-
independent. [Yang et al., 2019] though content dependent, does not take display and
viewing conditions into consideration. Furthermore, it is designed for a specific task to
give quality scores for only full, half, and quarter shading resolution and not a continuous
scale. For a fair comparison, both models were linearly fitted to our data. As can be seen
from the quantitative comparison in Table 5.3, CaMoJAB predicts the trends significantly
better than the other two models across all datasets. For a more extensive comparison,
please refer to Appendix C.

To further validate and verify the generalizability of CaMoJAB, I test its performance
on motion quality datasets from [Mackin et al., 2016] and ITU-R recommendations [Series,
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Figure 5.7: Luminance-persistence trade-off for a 60 Hz animation on a 60 ppd display.
The motion artifacts in such animation are more noticeable at high luminance and for
longer display persistence.

Table 5.3: MARRR, NAS, and CaMoJAB (Ours) performance on motion quality datasets.
All models were linearly fitted to each dataset. Numbers denote the RMSE values. I
report RMSE corresponding to a moving checkerboard for the ITU dataset as they did
not report the stimulus used.

Block-
PC

Block-
Mobile

Block-
VR

MARRR
Exp. 1

MARRR
Exp. 3

Mackin et al.
2016

ITU-R FPS
Series [2020]

ITU-R PPD
Series [2020]

CaMoJAB (ours) 0.74 0.57 0.53 0.38 0.03 0.42 0.28 0.69
MARRR 1.82 1.55 1.14 0.55 0.04 0.55 0.15 0.25
NAS 1.41 1.1 1.23 3.12 0.21 1.04 1.09 1.19

2020]. The experiment by Mackin et al. used the mean opinion score methodology to study
motion quality of real-continuous motion of rotating lines on a low persistence display
(simulated via strobing lights on a printed paper). The experiments in ITU-R [Series,
2020] use natural videos as stimuli, and their results form the basis of presently in-force
ITU recommendations.

I linearly scaled our model to fit their data and bring the predictions to the same
perceptual scale (Figure 5.8). I report the goodness of fit (RMSE) for a moving checkerboard
in Table 5.3. The results show that CaMoJAB also generalises well to more complex
stimuli.

Figure 5.8: CaMoJAB’s validation on [Mackin et al., 2016] and ITU-R [Series, 2020]. It
generalises well to complex stimuli such as natural videos and real scenes.
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Table 5.4: Ablation Study. Ximplies if the component was enabled. Numbers denote the
RMSE values for each configuration.

{Bm,
S,R}

{Bh,
Be} dt

Block-
PC

Block-
Mobile

Block-
VR

MARRR
Exp. 1

MARRR
Exp. 3

Total

X 2.31 1.75 1.19 0.53 0.02 1.42
X 2.31 1.75 1.19 0.55 0.21 1.43

X 1.25 1.22 0.63 3.11 0.21 2.11
X X 0.73 0.56 0.53 0.6 0.21 0.6
X X 1.19 0.98 0.55 0.5 0.05 0.79

X X 2.31 1.75 1.2 0.37 0.05 1.41
X X X 0.74 0.57 0.53 0.38 0.03 0.53

5.7 Ablation study

To understand the contribution of each component of my model, I perform an ablation study.
I isolate three main components of CaMoJAB: VRS blur and downsampling (Bm, S, R), eye-
motion blur (Bh, Be), and temporal distortion model (dt). I disable different combinations
of the three components at a time and refit the model to the data. The goodness of fit
(RMSE) is reported in Table 5.4. The results indicate that each component provides a poor
fit to the data in isolation. Eye-motion blur and temporal distortion model are integral in
explaining the motion quality in Denes et al. [2020] data but fail to capture the effect of
shading resolution on motion quality, i.e., Block-PC, Block-Mobile, and Block-VR. VRS
blur and downsampling, and eye-motion blur are crucial and sufficient in explaining the
results of my experiment. This is because the test and the reference conditions only varied
in resolution, making the temporal distortion negligible compared to spatial distortion
(dreft − dtestt ≪ drefs − dtests ) for this data. Similarly, the temporal distortion model is
sufficient to predict Denes et al. [2020] Exp. 3 results because this experiment ensured
equal spatial distortion between reference and stimulus conditions in their experiment. As
seen from the “Total” column of Table 5.4 that reports the aggregated RMSE values for
all datasets together, we get the best fit when all three components are enabled.

5.8 Limitations

The CaMoJAB metric accounts for most relevant factors of motion quality, including
texture content, on-screen velocities, luminance, effective resolution, and display persistence.
However, it does not model contrast masking [Legge and Foley, 1980, Watson and Solomon,
1997], degradation of colour, foveation [Tursun et al., 2019] or saliency. Those limitations
are partially dictated by the scarcity of available data and partially by the real-time
requirement of our application. The complexity of contrast masking would make the
metric too costly for a real-time application, and foveation would require eye tracking.
Also, CaMoJAB does not account for individual variations and instead models the average
observer. Modelling individual variations would require much more measurements from each
participant. CaMoJAB assumes the observed texture to be constant and thus precludes
dynamic effects such as transparency, specular reflections, shadows, and procedural textures.
We will see in the next chapter how the model still performs well in complex settings
despite these limitations.
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5.9 Summary

As our understanding of HVS improves, so do our models of its limitations. In this chapter,
I proposed a more complete model of three prominent motion artefacts: judder, aliasing,
and blur. The model evaluates how the three artefacts are affected by several content
and display parameters such as refresh rate, resolution, persistence, luminance, shading
rate, velocity, and spatial frequency, and how they are masked by hold-type blur, eye
motion blur, and, limited spatio-temporal sensitivity of the visual system. The model is
shown to outperform current state-of-the-art and explain multiple datasets with only a
few fitted parameters. The results of the model provide a promising avenue to optimise
visual quality in various graphics and display pipelines.
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Chapter 6

ALSaRR: Adaptive local shading
and refresh rate

6.1 Introduction

Shading is one of the most computationally expensive parts of the rendering pipeline, yet
the demand for shading computations is growing significantly with the increase in both the
resolution and refresh rate of displays. Even the most powerful GPUs cannot meet these
demands and are limited by their computational power and bandwidth. Furthermore,
with the growing popularity of mobile gaming, which needs to operate under a limited
power budget, and GPU-sharing cloud gaming [Yadav and Annappa, 2017], rendering often
needs to operate at a fraction of the maximum GPU capacity. To address this challenge,
all popular GPU manufacturers have introduced a more flexible shading mechanism
called VRS in their next-gen chipsets (Section 2.4). VRS enables the control of shading
resolution within each 16×16 image tile while retaining visibility computation at the
native resolution. VRS has been used to exploit the limits of the HVS by intelligently
distributing the shading budget based on foveation [Tursun et al., 2019], scene content
and motion [Yang et al., 2019], or depth-of-field [Intel, 2019]. All these works propose a
dynamic quality control mechanism that allocates the rendering budget to those aspects
of an image or animation that have the highest impact on the overall quality. In this
chapter, I propose to control both the VRS state map and the refresh rate based on all
major factors affecting image quality: texture content, on-screen velocities, luminance,
effective resolution, and display persistence. Owing to VRS that allows for local control
of resolution, I extend the MARRR rendering method proposed in Chapter 3 using my
CaMoJAB metric (from Chapter 5) to further optimise visual quality without the need for
eye tracking. Unlike the aforementioned existing works, which control VRS to avoid any
visual loss regardless of the per-frame rendering cost, my goal is to find the best trade-off
of spatio-temporal resolution under a limited rendering budget.

I start by discussing existing work on motion-adaptive and fixed-bandwidth rendering
in Section 6.2. I then introduce my adaptive local shading and refresh rate rendering
method in Section 6.3, followed by instructions on how to implement it in real-time game
engines (Section 6.4). The method is then validated in a subjective study in Section 6.5,
and finally, I discuss the limitations and future work in Section 6.6.

This chapter is based on the work published in SIGGRAPH Asia 2021 article: Perceptual
Model for Adaptive Local Shading and Refresh Rate. The results presented in this chapter
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include both my work and that of my collaborator Krzysztof Wolski. While I developed
the proposed rendering method and its prototype in MATLAB, Krzysztof wrote its parallel
implementation for GPU and built the validation experiment in Unity3D. I then collected
and analysed the data from the experiment.

6.2 Related Work

6.2.1 Motion adaptive rendering

Offline rendering algorithms can make use of visual models for adaptive sampling. Ray
tracers can be developed to directly synthesise an image in the frequency domain [Bolin
and Meyer, 1995] which makes it easier to modulate them with models of visual masking
[Ferwerda et al., 1997]. Visible difference predictors could be used to determine the stopping
conditions of progressive Monte-Carlo rendering [Myszkowski, 1998] or further degrade the
quality of moving objects [Myszkowski et al., 1999, Yee et al., 2001, Navarro et al., 2011].
Other high-level visual models such as crowding [Jarabo et al., 2012], attention [Cater
et al., 2003] and saliency maps [Longhurst et al., 2006] have also been successfully used in
decreasing the computational cost of path tracers. An extensive survey on perceptually
accelerated sampling can be found in [Weier et al., 2017]. The above techniques do not
account for display aspects and involve computationally expensive quality metrics making
them unsuitable for real-time rendering.

Locally adaptive real-time shading is a relatively new area as the traditional rasterization
frameworks did not allow for a sub-image level of control until recently. The primary focus
of these developments has been on rendering for VR with the goal of either matching the
non-uniform pixel distribution of HMDs [Pohl et al., 2015] or exploiting the reduction
of visual acuity with eccentricity [Tursun et al., 2019]. The recent introduction of VRS
allowed for controlling the shading rates of each 16×16 pixel tiles, enabling a plethora
of optimisations. Vaidyanathan et al. [2012] analysed motion and defocus blur in the
frequency domain to adaptively control the shading rate, and Yang et al. [2019] developed
a similar framework better suited for VRS hardware. Drobot [2020] extends this idea to
all platforms through their software-based implementation of VRS. Schmid et al. [2019]
describe how ray-tracing of reflections can be done in a fashion similar to VRS by varying
the number of ray samples for each 8×8 pixel tile. Most of the above techniques are not
perceptually motivated, and their main focus has been on reducing the rendering cost
while yielding visually equivalent output. I argue that the goal of obtaining no visual loss
is an impractical target for real-time rendering, as producing high-quality results may
require a much larger computational budget than available. In contrast to those works,
my aim is to deliver the minimum degradation of quality under a constrained rendering
budget.

6.2.2 Fixed-bandwidth rendering

Fixed-bandwidth rendering involves the optimal distribution of rendering resources without
exceeding a fixed rendering budget given in pixels/sec. This can be done by either trading
off between resolution and refresh rate (Chapter 3, [Debattista et al., 2018, Denes et al.,
2020]) or by fixing the refresh rate and dynamically changing the resolution [Unreal, 2021,
Unity, 2021]. All of these works control the global resolution of a frame, and extending
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them to locally adapt the resolution is non-trivial.
The problem of maximising quality for a given bandwidth is well studied in the

rate-distortion theory but the common solutions involve coding tree units and dynamic
programming [Ortega and Ramchandran, 1998] not suitable for real-time rendering. My
proposed optimisation is similar to Li et al. [2017], who found the optimal trade-off
between delay, power, and rate-distortion in dynamic adaptive streaming applications
by formulating it as an integer linear programming problem and providing a greedy
approximation. I develop a similar quality optimisation scheme more suited for VRS and
propose a parallel implementation on GPU that meets the demands of real-time rendering.

6.3 ALSaRR rendering algorithm

Modern graphics engines require dynamic quality control that adapts rendering parameters
(resolution, refresh rate, level of detail, and others) to the available resources (GPU frame-
budget, power). This becomes especially important for mobile devices with high-resolution
and refresh rate displays, but also in time-sharing cloud rendering, used for streaming of
games. Current solutions in popular game engines typically involve dynamic resolution
scaling of the entire frame to meet these constraints [Unreal, 2021, Unity, 2021]. This
is a sub-optimal approach, as better quality can be obtained by (a) adaptively selecting
the best combination of resolution and refresh rate (Section 3.3) and (b) adjusting the
resolution locally, using VRS. In this section, I describe my Adaptive Local Shading and
Refresh Rate (ALSaRR) algorithm that uses my motion quality metric to determine the
optimal distribution of shading rate and refresh rate under a given bandwidth constraint.

An overview of ALSaRR can be found in Figure 6.1. It takes as input the allowed
bandwidth B in pixels per second and several auxiliary buffers rendered at the resolution
of the VRS map: motion vectors, texture IDs, mipmap levels and luminance. The pooled
motion vectors and the bandwidth B are used to determine the best frame rate for the
current frame. Then, the maps are fed to the CaMoJAB to compute for each VRS block
the ratios of quality to bandwidth for all possible shading rates. A greedy knapsack solver
then uses the ratios to find the distribution of shading rates that maximise the quality at
the given budget. In the following sections, I describe each step in detail and how they
can be implemented in a real-time game engine.

6.3.1 Auxiliary buffers

Our quality metric requires the knowledge of texture, the mapping of texels to fragments,
luminance, and velocity of the pixels rendered on the screen. For that purpose, we render
into a G-buffer: texture IDs, MIP map level, motion vectors, and luminance at the
resolution of the VRS map (width/16 × height/16 pixels). As rendering luminance would
require additional shading, which we want to avoid, we use the previously rendered frame
(without reprojection) to approximate luminance. The previous frame is first subsampled,
then converted to grayscale luma, from luma to linear absolute luminance values, and
scaled according to the display peak luminance.
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6.3.2 Optimal refresh rate

Adaptive-sync displays allow us to choose arbitrary refresh rates, which let us either
improve the smoothness of motion or spatial resolution, depending on the velocity of
motion. Similar to MARRR, I express this as an optimisation problem:

arg max
ω∗,rx,ry

q (I, vframe, ω̂, p, ρ̂, rx, ry)

s.t. ω∗Rx rxRy ry = B ∧ rx = ry ∧ ω∗ ∈ Z+ ∧ ω∗≤ωmax,
(6.1)

where q is the quality function defined in Eq. (5.1), Rx and Ry are the horizontal and vertical
display resolution in pixels, ω∗ is the optimal refresh rate of the display (optimisation
parameter) such that the temporal Nyquist frequency ω̂ = ω∗

2
, ωmax is the maximum

refresh rate of the display, and B is the fixed budget in pixels-per-second. As the refresh
rate is global for the frame, I take the entire screen-space image (I) as a proxy for the
image being tracked and pool the motion buffer to compute the average velocity of the
frame (vframe) in deg/s. The rest of the parameters are the same as in Eq. (5.2).

Once we have the optimal refresh rate ω∗, we can calculate the maximum allowable
shading budget of the given frame as

bframe =
B

ω∗
[pixels]. (6.2)

Since solving the optimisation for every frame is too expensive for real-time rendering,
I precompute the best combinations using the first frame and store them as a 1D LUT of
velocity vs refresh rate (and resolution).

6.3.3 Optimal shading rates

This section describes how to obtain an optimal VRS map under a limited shading budget
bframe.

Problem formulation A screen-space image can be divided into N 16× 16 pixel VRS
tiles (TTT j, j = 1, . . . , N).

We want to assign to each tile TTT j a bandwidth (BBBjk) and a quality (QQQjk) corresponding
to kth shading rate from the set of all available shading rates RRR (Figure 6.2).

RRR = {4× 4, 4× 2, . . . , 1× 1} (6.3)

such that for RRRk = m× n. The bandwidth can be calculated as

BBBjk =
256

m · n [pixels]. (6.4)

Since our motion quality model assumes unidirectional motion, we calculate the quality
in the x and y directions separately using the quality function from Eq. (5.1), so that

qx(TTT j,DDD,RRRk) = q

(
TTT j, ν

x
j , ω̂, p, ρ̂,

1

m
,

1

n

)
[JND],

qy(TTT j,DDD,RRRk) = q

(
TTT ⊤

j , ν
y
j , ω̂, p, ρ̂,

1

n
,

1

m

)
[JND],

(6.5)
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Figure 6.2: Problem formulation for optimal shading rates. Given N VRS tiles each
with multiple possible (bandwidth, quality) pairs, we want to select bandwidths that
maximises the total quality but does not exceed shading budget (bframe). The problem
shares similarities with knapsack problem.

where νxj and νyj are the minimum velocity in the tile j along x or y (the most conservative
assumption). The rest of the parameters are the same as in Eq. (5.2). We define the total
quality of the tile as the mean of qx and qy

QQQjk =

(
qx(·) + qy(·)

2

)
[JND]. (6.6)

Finally, given the maximum allowable bandwidth per frame bframe, we need to select the
shading rate k for each tile TTT j to find

arg max
BBBjk

N∑

j=1

QQQjk subject to
N∑

j=1

BBBjk < bframe (6.7)

Dynamic programming solution The optimal solution to the above knapsack problem
can be found using dynamic programming. For each j∈1..N and each c between 0 and B
I define a subproblem as follows: QQQ(j, c) is the maximum quality possible when only tiles 1
to j are considered, and the maximum bandwidth is at most c. Our goal is to compute
QQQ(N, bframe). Note that, unlike the traditional 0-1 knapsack problem, we cannot skip any
tile but only vary its bandwidth and quality by selecting its shading rate.

We start with trivial cases and work our way up. The trivial cases are “no tiles” and
“total bandwidth 0”. In the first case, the maximum quality is 0. The second case is
impossible because of our constraint of not skipping any tile. I denote the quality in such
cases as −∞.

QQQ(0, c) = 0 ∀ c and QQQ(j, 0) = −∞ ∀ j (6.8)

Consider next the case j > 0 and c > 0. To find QQQ(j, c), we iterate over all possible
shading rates. For the kth shading rate of tile j, the maximum achievable quality is
QQQ(j− 1, c−BBBjk) +QQQjk, because we obtain a quality of QQQjk for the given tile, and must use
an optimal solution for the first j − 1 tiles under the constraint that the total bandwidth
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is at most c−BBBjk. Of course, this is only feasible if c ≥ BBBjk. I summarise this discussion
in the following recurrence for QQQ(j, c).

QQQ(j, c) =





0, if j = 0

−∞, if c = 0

max{(QQQjk +QQQ(j − 1, c−BBBjk)

∀ k = 1, ..., |RRR|}, if j ≥ 1 and BBBjk ≤ c

−∞ if j ≥ 1 and BBBjk > c

(6.9)

For ease of implementation of the memoisation cache, I add another shading rate φ to
our setRRR with quality −∞ and bandwidth 0 to ensure we never skip a tile. This algorithm
has a time complexity of Θ(N · bframe · |RRR|) and space complexity of Θ(N · bframe)

Though this approach provides the optimal solution, it is too slow for real-time scenarios
on standard gaming setups. Hence I provide another approximate but fast greedy solution.

Greedy solution The above optimal dynamic programming algorithm is not suitable
for real-time rendering (alone N = 8100 and bframe = 267 000 for a FullHD resolution).
Instead, I solve the problem using an approximated greedy solver [Kellerer et al., 2004,
Section 2.1], which has the time complexity of Θ(N · |RRR|) and the space complexity of
Θ(N · |RRR|). The algorithm finds near-optimal allocation of shading rates based on the
quality predictions. Its pseudocode can be found in Algorithm 1.

Let VVV be a vector of N elements storing the current shading rate for each tile j in VVV j .
We initialise VVV with the index of the lowest bandwidth shading rate, VVV j = 1 ∀ j ∈ [1, N ],
and subtract the cost of rendering at that rate from the current frame bandwidth budget,
b. Next, we calculate all possible ratios of quality to bandwidth for each tile, RRRjk = QQQjk/BBBjk,
and sort them in non-increasing order. The first element in the sorted list will give the
tile and shading rate that increases the quality at the least cost (bandwidth). Next, we
greedily pick (j, k) pairs from the head of the sorted list and update the current frame
budget, b = b−BBBjk +BBBjVVV j

and shading rate of jth tile, VVV j = k. The steps are repeated
until the remaining budget becomes 0.

To ensure that the near-optimal solution is sufficient, I compared the results of the
greedy algorithm with the accurate solution. Although the theoretical error in the estimated
near-optimal solution can be up to 50% of the optimal objective function value, I found in
an empirical comparison of the two methods that in practice, the greedy method has the
expected error of less than 1% while having orders of magnitude lower time and space
complexity. I compared both solutions in a practical video-game scenario by extracting per-
frame luminance, motion, and material data from a 6-sec video (360 frames) of gameplay
in the Sci-fi Market scene1. Both the greedy and dynamic programming methods were
implemented in MATLAB and were run offline on each frame on a budget of 25% (of
FullHD 60 Hz) to calculate their mean performance.

As seen from the results in Table 6.1 and Figure 6.3, the greedy method is a good ap-
proximation of the optimal dynamic programming solution and gives real-time performance
making it ideal for our application.

1https://assetstore.unity.com/packages/essentials/tutorial-projects/

adventure-sample-game-76216
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Algorithm 1: Greedy solution for the modified knapsack problem.

Result: near-optimal shading rate of each tile
b←− bframe

for j = 1 to N ; // For each tile

do
VVV j ←− 1 ; // Shading rate 4×4
b ←− b - BBBj1 ; // Update remaining bandwidth

for k = 2 to |RRR| ; // For each shading rate

do

RRRjk ←− QQQjk

BBBjk
; // Calculate ratios

end

end
sort(RRR) ; // From the highest to the lowest

while b > 0 do
(j,k) ←− RRR.pop() ; // Pick the highest ratio

b ←− b - BBBjk + BBBjVVV j
; // Update the bandwidth

VVV j ←− k ; // Update the shading rate

end

Table 6.1: Empirical comparison of Knapsack solutions. Error is defined as 100 - percentage
of the optimal solution (Solution 1).

Solution 1
(Dynamic Programming)

Solution 2
(Greedy Approach)

Mean Error
(per frame)

0 % 0.95% (±0.26%)

Mean Time
(per frame)

19000ms (±900ms) 13ms (±0.8ms)
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Figure 6.3: Sample VRS maps produced by greedy and dynamic programming method.
Greedy method appears to be a good approximation of the optimal solution.
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6.4 Real-time implementation

To reduce the performance overhead of our method, the quality predictions of CaMoJAB
(Eq. (5.1)) are precomputed for every texture, mipmap level, and shading rate and stored
as polynomials of the form:

qi,j,k(ν, f, L) = (W0 +W1ν +W2f +W3ν
2 +W4νf +W5f

2)

· (W6L
3 +W7L

2 +W8L+W9),
(6.10)

where i is the texture index, j is the MIP map level, k is the shading rate, ν is velocity, f
is the refresh rate of the current frame (2 ω̂), L is the logarithmic luminance of the tile,
and W0,...,9 are the coefficients of the polynomial, stored separately for each (i, j, k) triplet
(Figure 6.4).

Our real-time implementation follows Algorithm 1 and computes the ratios of quality
to bandwidth for each tile and each possible shading rate. Those ratios are sorted in a
non-increasing order (the best quality-to-shading rate first) using a bitonic sort, as this
algorithm can utilise the parallelism of the GPU.

The velocity of eye motion without eye-tracking In a typical animation, multiple
objects can move on the screen in different directions with different velocities, and the
eye could follow any of them. For that reason, the MARRR method required an eye
tracker to determine the actual velocity of the eye motion relative to the screen. However,
because we control the shading rate locally, we can make a conservative assumption that
the eyes could follow each of the 16×16 tiles. This lets us use a different velocity of eye
motion for each tile instead of a global velocity per frame, as done in MARRR. Because
the distortions are the most visible when the object is followed, we get the worst-case
estimate of the quality degradation due to the reduced shading rate. This gives us an
important practical advantage over MARRR as eye tracking is still rare in most real-time
graphics applications..

Implementation details To test our method on realistic scenes of sufficient complexity,
we implemented a native plugin for Unity. The plugin modifies the default forward
rendering pipeline by allowing for a custom VRS map. VRS is enabled only for the
fragment shader stage and is disabled for the post-processing pass, as that would introduce
reduced shading at the pixel level and shade fragments across the edges.

Performance We measured the performance of ALSaRR on a GeForce RTX 2080Ti
graphics card using built-in Unity profiler. Our implementation utilises parallelism of GPU
and requires, on average, 1.3 ms to process the frame of resolution 1920× 1080 pixels. It
also requires approximately additional 100 MBs of VRAM to store intermediate data. The
processing time is independent of the rendered content and does not include preprocessing
(fitting of the polynomials, Eq. (6.10)). We did not attempt to implement the method
on a mobile GPU, but we expect the efficient implementation on mobile architectures
may require further performance optimisations, such as computing VRS maps at a lower
resolution and upsampling them.
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Figure 6.4: A polynomial is fitted for every texture, mipmap level, and shading rate on
CaMoJAB predictions. The figure provides a preview of how the chosen polynomial well
approximates quality variation of 1× 1 shading rate across different velocities, refresh rate,
and luminance.
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6.5 Psychophysical validation

In this section, I report on a pairwise-comparison preference experiment, which compared
our ALSaRR method against constant-refresh-rate-resolution and MARRR. The experiment
simulated video game scenarios, all implemented in Unity 3D and rendered with one of
the compared methods.

Stimuli For the experiment, we used three 3D scenes acquired from the Unity Asset
store (Figure 6.5). We prepared 4 different camera motion scenarios for every scene. One
of them emulated a first- or third-person game, giving participants the ability to control
the camera with the mouse and keyboard. The remaining scenarios contained predefined
motion paths of different camera velocities. Each scene was rendered using one of the three
compared methods: ALSaRR, constant-refresh-rate-resolution, and MARRR (Chapter 3).
We used several combinations of shading and refresh rates for the constant-refresh-rate-
resolution method, each with a fixed budget of 6.25% or 12.5% pixels of the full bandwidth
(1920×1080 @ 120 Hz). We used a lower resolution than the native resolution of the display
(2560×1440) because we noted in the pilot experiments that participants have difficulty
distinguishing between the conditions at higher resolutions (on a 27” monitor seen from
75 cm). MARRR method originally required an eye tracker to determine the velocity of
eye motion (relative to the screen). However, for closer comparison, we made the same
simplifying assumption as we did for the selection of refresh rate in our method and
estimated the eye motion velocity as the average velocity within the entire frame (pooled
from the motion buffer).

The rendered scenes were shown on the same monitor used in Experiment 1 (Section 4.3).

Procedure The experiment consisted of pairwise comparisons between the three com-
pared rendering methods. In each trial, one of the conditions was our method, and the
other condition was either a constant-resolution-refresh-rate or MARRR. The order of
the scenes and the compared methods was randomised. The camera motion scenario was
randomly selected for each trial as a full factorial design was infeasible within a reasonable
time budget.

The participants could press the space bar to toggle between two compared rendering
methods. They had to choose the method with overall better visual quality by pressing
the Enter key while the preferred rendering mode was active. The question shown to
the observers was: “Which of the two methods has higher visual quality (i.e. smooth
motion and sharp image)?”. Each observer performed 108 comparisons (3 scenes × 6
budgets/rendering methods × 6 repetitions). The experiment was split into 2 sessions
lasting 30 minutes to prevent observer fatigue.

Participants and procedure 12 participants (aged 24-41) with normal or corrected-
to-normal vision participated in the experiment. They were compensated for their time.

2https://assetstore.unity.com/packages/essentials/tutorial-projects/

adventure-sample-game-76216
3https://learn.unity.com/project/john-lemon-s-haunted-jaunt-3d-beginner
4https://assetstore.unity.com/packages/3d/environments/urban/

sally-s-country-home-33123
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Figure 6.5: Preview of the scenes selected for validation experiment. The SciFi Market
scene2 (top) and John Lemon’s Haunted Jaunt scene3 (bottom) have been released as
learning materials by Unity. The Sally’s Country House scene4 (middle) created by Gabro
Media has been acquired from Unity Asset Store.

77



Results The results of the validation experiment, visualised in Figure 6.6, show a
clear preference for our ALSaRR method compared to fixed resolution rendering and
MARRR. The difference is significant across all tested conditions (binomial test with the
null hypothesis of random guess). As expected, the improvement due to adaptive rendering
decreases as the bandwidth increases because the differences between the conditions become
less noticeable. MARRR performed better than fixed-frame-rate at a higher budget of
12.5%, but worse at 6.25%. It should be noted, however, that our fixed-rate conditions
used reduced shading rate instead of bilinear upsampling used in MARRR. This may
indicate that reducing the shading rate may produce better visual results than upsampling
from a lower resolution when the rendering budget is low. The lack of eye-tracking could
also negatively affect the performance of MARRR.

The per-scene results, shown in Figure 6.6(b), suggest the performance gain of our
method was the smallest for the “Scifi market” scene. After closer inspection, we noted
that the scene contained a large number of hard shadows, which resulted in aliased edges
for our method. This is because our current implementation of ALSaRR relies on the
information from textures rather than rendered fragments and, therefore, ignores local
shading (with the exception of mean luminance). This problem is difficult to mitigate in
real-time rendering as the decision on shading rate must be made before local shading is
computed.

6.6 Limitations

One of the important advantages of ALSaRR over foveated rendering [Tursun et al.,
2019] and MARRR is that it does not require eye tracking. However, to eliminate the
dependency on eye tracking, we had to make a conservative assumption that the eye
can follow movement in every VRS tile. If the gaze location was known to us, we could
potentially further improve the predictions and therefore allocation of the rendering budget.
ALSaRR could also be combined with foveated rendering for further gains in quality.

Practical considerations for ALSaRR Our ALSaRR method can control real-time
rendering with an acceptable overhead because we can precompute the quality predictions
for all textures, mipmap levels, and shading rates. The main shortcoming of this approach is
that our CaMoJAB quality metric is unaware of the shading in the final image, for example,
when a tile contains a shadow boundary. A few such failure cases are demonstrated in
Figure 6.7, where ALSaRR assigns non-optimal shading rates due to the lack of correct
frequency information. The examples shown in the figure include (1) reflections, (2)
procedural particle systems and (3) transparent objects. Some game engines may not
support rendering motion vectors for transparent materials, further exacerbating the
problem. It should be noted that ALSaRR uses diffuse textures as a proxy for object
frequency information. Though this served as a good approximation for our tested scenes, it
may not hold true for more complex materials. These issues can be addressed to an extent
by precomputing the worst-case scenario shading and then using that for our precomputed
quality functions. We could also use the approach from NAS [Yang et al., 2019] and directly
analyse the frequency information by reprojecting the previous frame. This approach,
however, relies on the assumption that the previous frame has been rendered with sufficient
quality, and it also adds a substantial overhead of reading and processing full-resolution
frames.
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(a) Results of Experiment 2, aggregated across all scenes
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(b) Results of Experiment 2 for each scene

Figure 6.6: Results of the validation experiment showing percentage of participants picking
our method over MARRR and constant-refresh-rate-resolution rendering. Error bars in
(a) denote 95% confidence interval. The numbers in (b) are the probabilities of selecting
ALSaRR as better than the alternative method.

79



1

3
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2

Figure 6.7: Examples of fail cases: because ALSaRR relies on textures rather than shaded
pixels, it assigns low shading rates to mirror reflections (1) and transparent ghost (2); high
shading rate to fire particles (3).
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Our current implementation of ALSaRR operates on the rendering budget expressed
in pixels per second, while most applications are limited instead by the power of GPU
cycles. This is not a fundamental limitation of our method, as it can work with the budget
expressed in any units as long as there exists a model that can predict such units from the
VRS rates.

6.7 Summary

There is a shift in real-time graphics from rendering with a fixed resolution and refresh
rate to a more adaptive approach, in which we control spatio-temporal resolution in order
to maximise the quality under a given rendering budget. VRS and adaptive refresh-
rate monitors provide an opportunity for such fine control, which becomes particularly
important as the increasing resolution and refresh rate of displays places a high demand on
the GPU, especially on mobile devices. In this chapter, I described the ALSaRR method
that takes advantage of the limitations of the visual system to reallocate the rendering
budget to the most vital part of the spatio-temporal domain. ALSaRR easily integrates
into common rasterization pipelines with minimal overhead using GPU parallelism. A
subjective study with a wide variety of content and motion validated that ALSaRR
provides better visual quality than existing adaptive and traditional constant resolution
methods for the same bandwidth.
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Chapter 7

HDRMFS: High-Dynamic-Range
Multi-Focal Stereo Display

7.1 Introduction

The end goal of computer graphics has always been to render images that are spatially
and temporally indistinguishable from real-world 3D scenes. However, the discrete nature
of capture, display, and graphics systems is bound to introduce certain image artefacts not
present in the real world. As discussed in Chapter 4, several studies have been conducted
to discover the bounds for the display and graphics parameters (such as refresh rate and
resolution), where these artefacts become invisible. Unfortunately, there are three major
problems in all these studies:

1. The range of the parameters studied is often limited and quite lacking when compared
to the real world. For e.g., the display used in our motion quality experiment in
Section 4.3 has a dynamic range of 3 orders of magnitude, while the real world can
have up to 14 orders of magnitude.

2. Only a small subset of realism cues are presented at a given time even though the
final image we perceive is a combination of all cues. The results obtained in such
cases might vary significantly when the same factors are studied together with other
cues. For e.g. motion and banding artefacts not visible on SDR displays can become
visible on HDR displays [Chapiro et al., 2019, Kim et al., 2020] or perception of
depth from binocular disparity may vary when motion parallax is introduced [Hartle
and Wilcox, 2021]. The integrating nature of HVS also raises the possibility that
small differences to the real world in a single cue may be masked when other cues
are provided at sufficient quality.

3. The reference image/video provided for the experimental task is presented on the
same display-graphics system and so is also prone to similar artefacts. Alternatively,
no reference is provided, and participants are asked to use their mental model of the
scene, which introduces individual variations between their quality scales.

The main reason behind the above problems is the limited capabilities of common con-
sumer displays. These displays are designed to be affordable or serve specific applications,
so they optimise their parameters accordingly within cost constraints (For e.g. high spatial
resolution of TVs but high refresh rate for VR headsets). Their design constraints make it
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challenging to recreate multiple cues at a sufficient fidelity required for psychophysical
experiments. Another reason behind these problems is that most experimental setups do
not provide any mechanism to compare displayed image side by side to a real 3D scene
which could be argued to be the best benchmark for perceptual realism: when displayed
content is perceptually indistinguishable from the real-world 3D scene.

In this chapter, I show how these issues can be overcome by building a novel display
apparatus that combines multiple realism cues at a high fidelity: spatial resolution (at
least 85 ppd at a viewing distance of 490 mm, refresh rate of 60 Hz, correct binocular
disparity, peak luminance of up to 3000 cd/m2 and dark level below 0.01 cd/m2, a range of
focal depth for each eye (1.18 to 2.04 diopters), and a colour gamut of BT.709. It uses
special optics similar to see-through AR displays which allows it to compare the presented
image with a small scene inside a box of size 370 mm × 260 mm × 360 mm (width ×
height × depth). Building this display required a complex combination of multiple display
technologies, optics, a 3D scene acquisitions pipeline and a practical rendering system that
can deliver all these cues at high fidelity in real-time.

I begin this chapter with a short discussion on candidate display designs and ren-
dering methods that could potentially be used to achieve our goal (Section 7.2). I then
briefly describe the display and scene capture pipelines (Section 7.3) which were built by
my collaborators Fangcheng Zhong, Özgür Yöntem, Param Hanji, and Rafal Mantiuk.
Then, I dive into my contribution: the pose estimation (Section 7.4.1) and rendering
pipeline (Section 7.5) that offers three image-based rendering methods with widely different
scene representations. I then compare these methods in Section 7.6, both in terms of
computational performance and objective image quality, to demonstrate their strengths
and weaknesses for different scenarios. Finally, in Section 7.7, I briefly describe various
(previously impossible) psychophysical experiments that have been conducted on this
display.

This chapter is based on the work published in SIGGRAPH Asia 2021 article: Repro-
ducing Reality with a High-Dynamic-Range Multi-Focal Stereo Display

7.2 Related Work

7.2.1 Computational 3D Displays

To display an image that is perceptually similar to the real scene, it is necessary to
reproduce several realism cues on a display: high dynamic range, spatial and temporal
resolution, binocular disparity, accommodation, motion parallax, field-of-view, and colour.
Computational displays are an emerging class of displays that attempt to reproduce a
subset of these through a combination of optics, display technology, and computation.
Examples include high dynamic range displays which achieve a large range of contrast and
luminance by replacing the backlights in conventional LCDs with programmable LEDs or
a projector [Seetzen et al., 2004b] , or light field displays [Wetzstein et al., 2012, Lanman
et al., 2011] which generalizes parallax barriers to recreate the light field of the real scene
(though often at the cost of spatial resolution). Wearable displays with stereo vision are
also growing in popularity. They provide a strong depth cue by showing two different
images to both eyes, either by using separate displays for the two eyes or using shutter
glasses and polarisation filters [Hainich and Bimber, 2016]. Such displays often suffer
from vergence-accommodation conflict as they use a single focal plane and thus cannot
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reproduce focal (or accommodation) cues. This can be resolved by adding multiple focal
planes [Akeley et al., 2004b] or using varifocal displays [Oculus, 2020].

For our display, we aim to maximise the visual quality of displayed images by delivering
the following dimensions at a high fidelity: physical luminance, dynamic range, colour
gamut, and binocular and focal depth cues. To enable the study of the interplay of
these factors, we want to deliver these capabilities all together with a sufficient quality
instead of maximising a single one. To achieve this, we combine ideas from several display
architectures (Section 7.3) and provide an end-to-end pipeline consisting of 3D scene
acquisition, display, and rendering. Our display pipeline is shown to achieve such a
high fidelity rendering in psychophysical experiments that the presented images are often
confused with physical 3D objects.

7.2.2 Photorealistic rendering

Over the last few decades, rendering has made large strides in achieving photorealistic
results. It has been successfully adopted in several areas, including entertainment [Chris-
tensen and Jarosz, 2016], simulation [NIVIDA, 2021], and tourism [Snavely et al., 2006].
This success can be primarily attributed to three major rendering paradigms: path trac-
ing (IBR), rasterization with physically-based shading and image-based rendering. Path
tracing works by tracing millions of light paths, which gives accurate results but is often
very slow to compute (minutes to hours per frame). Rasterization with physically-based
shading is quite fast and is widely adopted in modern video games, but it requires a lot
of artist hours modelling scene materials and ad-hoc approximation of physical effects
such as global illumination, which may not generalise well to different scenes. In contrast,
IBR combines 3D reconstruction techniques from computer vision with computer graphics
rendering techniques to generate novel views from a set of captured scene images.

Since its first appearance in the early 90s [Chen and Williams, 1993, McMillan and
Bishop, 1995], IBR remains the dominant technique for reproducing novel views of real
scenes. Its high-quality results, ease of integration, good performance and generalizability
across complex scenes make it an ideal candidate for 3D displays aiming for perceptual
realism. Many IBR methods have been proposed in the last three decades and can be
roughly arranged on a scale of how much 3D information they require. They may assume
no 3D information and only work with pure sampled ray-based representations such as
light fields [Levoy and Hanrahan, 1996, Isaksen et al., 2000]. Or have a discrete scene
representation such as layered depth images or sprites with depth [Shade et al., 1998,
Szeliski and Golland, 1998], which sidesteps rasterization and uses efficient image warping.
Other approaches require more explicit geometry of the 3D scene, such as Lumigraph
[Gortler et al., 1996], surface light fields [Wood et al., 2000] and view-dependent texture
mapping [Debevec et al., 1996] which maps the images to a single global 3D mesh of the
scene. The parts of images to be mapped to different parts of the mesh are chosen based
on the distance between images and the target viewpoint. The scene geometry can also be
varied for each view which may help in better capturing local non-rigid effects such as
specular motion [Overbeck et al., 2018, Szeliski, 2021].

More recently, the introduction of deep neural networks into both 3D reconstruction
and image-based rendering pipelines has achieved previously unachievable results such as
reconstruction of fine geometry and complex reflections. DNNs can be used to learn parts
of traditional IBR pipelines such as learning per-pixel blending weights [Hedman et al.,
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Figure 7.1: A spectrum of image-based rendering methods based on how much geometric
information is assumed by the method. Methods/representations on the left only work
with images while representations on the right require detailed geometry. Deep learning
based methods span across the entire spectrum ranging from learning weights of traditional
representations or a completely novel representation.

2018, Flynn et al., 2016], or learn an intermediate scene representation like multi-plane
images [Zhou et al., 2018, Li et al., 2020, Wizadwongsa et al., 2021] or voxel grids [Sitzmann
et al., 2019a, Lombardi et al., 2019] which can be used to generate novel views using
traditional rendering techniques, or learn a 3D scene parameterised as a continuous function
using multi-layered perceptrons (commonly know as implicit neural representations or
coordinate-based representations)[Sitzmann et al., 2019b, Mildenhall et al., 2020, Niemeyer
et al., 2020]. A comprehensive survey of all such neural rendering methods can be found
in [Tewari et al., 2020].

In this work, I will implement and analyse 3 different IBR methods on our display:
Dynamically reparameterised lightfield [Isaksen et al., 2000], Lumigraph implemented as
view-dependent texture mapping on global scene geometry [Debevec et al., 1996, Gortler
et al., 1996], and NeX, a neural multi-plane images method [Wizadwongsa et al., 2021].
The methods were chosen to be representative of broader categories on the IBR spectrum
(Figure 7.1) and thus cover a wide range of usage scenarios. We also required our chosen
methods to support HDR images and run in real-time, which excluded NeRF and its
variants from our available options.

7.3 Display apparatus

A photograph of our display apparatus can be found in Figure 7.2. The apparatus has
three main components:

• a Wheatstone stereoscope with four high-dynamic-range displays (two for each eye)
at two focal depths

• a Real Scene Box (RSB) in front of the observer containing a small-scale lightable
physical scene that is seen through a pair of beam-splitters
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Figure 7.2: The front view of the display.

• a 1D horizontal camera gantry capable of capturing dense light fields of the RSB

The RSB can be rotated to face the camera rig to capture its light field. The light field is
rendered on the display and is spatially superimposed on the real scene when the RSB is
facing the observer. The lights in RSB are software controlled and can be turned on and
off to instantly switch between the real or the displayed scene. Figure 7.3 provides the
schema of the display apparatus.

I describe each component in more detail below.

HDR displays Our HDR display is a projector-based dual modulation display following
a design similar to [Seetzen et al., 2004a]. All four HDR displays are built using an IPS
LCD panel from iPad3 (9.7” 2048×1536) with its backlight replaced with a DLP projector
(Acer P1276) with its colour wheel removed. The display can reach a peak luminance of at
least 3000 cd/m2 and a black level of less than 0.01 cd/m2. The LCD and projector were
geometrically aligned by capturing images of a point grid displayed separately on each
display and then using homography to align the two grids. The same grid of points was
also used to estimate the point spread function of the projector. The HDR display was
colour calibrated using a spectroradiometer (Specbos 1211). The effective bit-depth of
both displays was elevated to 10 bits by spatio-temporal dithering and bit-stealing (only
DLP).

Focal planes and optics To deliver correct focal cues to our eyes, we chose a multi-
focal display design [Akeley et al., 2004a] with two images shown at the same distance as
near and far planes of the RSB (490 mm (2.04 D) and 850 mm (1.18 D), respectively).
The two HDR displays for each eye are stacked vertically along with an arrangement
of beam-splitters and first surface mirrors that allow for a horizontal light path with a
virtual image forming in the RSB (Figure 7.3). We chose this display design over refractive
[MacKenzie et al., 2010] or varifocal [Chang et al., 2018] optics to minimise aberrations and
retain the dynamic range. However, multi-focal displays are very sensitive to misalignment
in head position. To mitigate this, we used a chinrest to reduce head movement and a
head tracker based on Purkinje image tracking [Guestrin and Eizenman, 2006]. Note that
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Figure 7.3: Schematic of the high-dynamic-range multi-focal stereo display apparatus.
The beam splitters creates two virtual images per eye (green and blue dashed lines inside
the real-scene box) overlapping with the physical scene in the real-scene box. The red,
green, and purple lines depict the light paths from the displays and the physical scene to
the eyes. The box can be rotated to face the camera gantry to facilitate the light field
capture of the physical scene.
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Figure 7.4: A photo and schematic of the real-scene box.

the HDR displays are placed on aluminium strut profiles and can be moved to adjust the
distance between the two virtual planes.

Real scene box The real-scene box has inner dimensions of 370 mm × 260 mm ×
360 mm (width × height × depth), exceeding the field-of-view of LCDs such that the
side walls of the box are never visible to the observer. The box is made from black
acrylic with the back wall coated with Vantablack. Having such high light absorption
materials surrounding the real scene ensures that only the object of interest is visible to the
observer. This is a necessary condition for experiments testing perceptual realism, where
we want observers to only use cues from object appearance to distinguish between real and
virtual scenes (Section 7.7). The ceiling of the box was fitted with a 16 × 16 RGB LED
array and colour calibrated using a spectroradiometer (Specbos 1211) and fitted with a
gain-gamma-offset model. The back wall was also fitted with four point-shaped calibration
LEDs at known locations to help us register the lightfield camera’s and observer’s eyes’
pose and locations (more on this in Section 7.4.1). The box sits on a rotatable platform
which allows it to either face the observer for viewing or face the camera for lightfield
capture. A CAD drawing and a photo of the RSB are shown in Figure 7.4.

A comprehensive discussion of the display apparatus can be found in our paper [Zhong
et al., 2021].

7.4 HDR Lightfield acquisition

Before we start rendering on our display, we first need to capture a real scene at a sufficient
quality in a format that can be used to render the scene from the observer’s viewpoint. We
capture a horizontal light field of the RSB consisting of 7360 × 4912 pixels resolution HDR
exposure stack using a Sony α7R3 mirror-less camera with a Sony SEL prime lens (focal
length 55 mm) mounted on a motorised camera gantry at a distance similar to viewpoint
(550 mm from the far plane of real-scene box). The gantry has a baseline of 167 mm with
an accuracy of 5 µm. Each exposure stack is demosaiced [Menon et al., 2006], and merged
into a 16-bit HDR image [Hanji et al., 2020]. The merged HDR images are then colour
calibrated to the Rec.709 space as used by our display.
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Figure 7.5: A gantry mounted with a DSLR camera is used to capture lightfield of the
real scene

7.4.1 Camera pose estimation

To render the light field of a scene or learn some representation of it, it is necessary to
determine certain characteristics of the camera for captured image. I assume a pinhole
camera model and describe how I calculated the intrinsic and extrinsic characteristics of
the camera.

Intrinsic camera matrix estimation The intrinsic camera matrix describes the geo-
metric properties of a camera, i.e., its focal length, principal point offset and axis skew. It
maps the 3D camera coordinate to 2D homogeneous image coordinates. To estimate this
matrix, we can first print a checkerboard pattern of known dimensions and take photos
of this pattern from different views (Figure 7.6). Then we can detect the checkerboard
points in the captured images, solve for camera intrinsic and extrinsic matrices in closed
form [Zhang, 2000], and adjust the matrices to account for non-linear lens distortion using
numerical optimisation [Heikkila and Silvén, 1997]. I used the implementation available
in the MATLAB CV toolbox for all three steps. Since we will use the same camera to
capture all the subsequent light fields, the 3× 3 intrinsic matrix of the data camera (KD)
will remain constant.

Extrinsic camera matrix estimation The extrinsic camera matrix describes the
camera’s pose, i.e. its location and what direction it is pointing. It has two components
(rotation and translation) and can be represented by a 3x4 matrix. An extrinsic matrix
can be easily calculated in closed form if we know the intrinsic matrix and have at least 4
points in world space and their corresponding pixel coordinates. For this, at each light
field camera position, we capture an additional image of 4 LEDs placed on the far wall of
the RSB (Figure 7.7). I again used the MATLAB CV toolbox to calculate the extrinsic
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Figure 7.6: A printed checkerboard with known dimensions is used to calculate the camera’s
intrinsic matrix.

camera matrix (En
D) for each light field image. It should be noted that in practice, known

patterns are usually not available, and camera pose is determined through more error-prone
methods such as structure-from-motion or odometry. These errors propagate to rendering
and can degrade the visual quality of the displayed image. Hence it is crucial to only
proceed further once the reprojection error is sufficiently low.

Image cropping With the current configuration of the capture setup, a large part of
each captured image consists of just black (background) pixels. Hence cropping each
image to its respective region of interest can help us save memory. I determine this region
of interest by finding the smallest axis-aligned bounding box (AABB) containing all the
non-zero pixels for each image and then fitting another AABB over AABBs of all the
images together. All images are cropped according to this AABB. Cropping an image
changes the intrinsic matrix of the camera. This change is captured by a simple translation
of the camera’s principal point offset by the pixel coordinate of the top-left corner of the
AABB in the original image. Note that further savings in memory can be achieved by
having a separate AABB for each image (and thus a separate intrinsic matrix), but I chose
to have a single AABB for simplicity.

7.5 Rendering for HDRMFS display

Since one of our goals for this display is to enable the study of perceptual realism, we need
to render the scene on each HDR display with the highest quality possible. We discussed
a range of photorealistic image-based rendering methods in Section 7.2.2 that can deliver
such quality. However, our display design imposes certain challenges on the rendering
method:

1. The rendering should be real-time (preferably higher than the LCD refresh rate of
60 Hz).

2. The renderer should be able to process and generate high resolution and HDR images
for novel viewpoints without introducing noticeable artefacts (such as blur, noise,
and distortion).
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Figure 7.7: RSB coordinate system and camera pose estimation. We define a coordinate
system with the bottom-left corner of RSB’s back wall as origin, XYZ-axes corresponding
to the RGB arrows in the illustration, and units in millimetre. Four LEDs (L1 . . . L4)
are place on the back wall at known positions and are used to calculate the camera pose
by solving a system of linear equations formed with their corresponding pixel positions
(P1 . . . P4). The size of the LED’s are exaggerated for illustration, in practice, they are
<1 mm in diameter
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3. The rendering method should either take or automatically infer scene depth informa-
tion to deliver correct depth cues.

I picked three rendering methods satisfying the above requirements with widely different
scene representations, allowing them to capture many usage scenarios. They include:

1. Dynamically reparamterised light field rendering: A homography-based light field
rendering method with minimal pre-processing requirements and a very low compu-
tational overhead [Isaksen et al., 2000]. However, it can only deliver correct depth
cues for planar objects as it does not contain depth information.

2. Lumigraph: A lumigraph implemented as view-dependent texture mapping on a
single global 3D mesh [Debevec et al., 1996, Gortler et al., 1996]. This method
utilises the fast rasterization pipeline of modern GPUs and can deliver correct depth
cues. However, the 3D scene must be composed of simple shapes or known geometry.

3. NeX rendering: A learning-based multi-plane image with neural basis expansion
[Wizadwongsa et al., 2021]. The planes in its representation can be aligned with the
RSB to deliver correct depth cues and the method is capable of learning scenes with
arbitrary geometry and shading. However, it requires hours of training to learn a
suitable scene representation.

Figure 7.8 summarises the pre-processing steps required by each method to transform
the lightfield into a format suitable for rendering. In the following sections, I will describe
each method, its pre-processing steps, and its implementation in more detail.

7.5.1 Rendering method 1: Dynamically reparamterised light
field rendering

IBR has many applications ranging from free-viewpoint rendering which can be used for
view interpolation or generating stereo pairs, relighting, and focus adjustment. Depending
on the target application and device, there could be restrictions on available computing
budget and latency. These restrictions often exclude the use of IBR methods requiring
expensive pre-processing such as 3D reconstruction or training a neural network. In such
cases, it is necessary to generate new views without any information about the scene. Light
fields are a generalisation of all such rendering methods which parameterise the scene as
a 4D function of camera position and orientation (we can drop one dimension from the
plenoptic function assuming the radiance of a light ray remains constant in free space). The
scene images can be treated as samples of this function, and rendering from new viewpoints
can be generated by interpolating between these samples. Isaksen et al. [2000] proposed
an alternative reparameterisation of light fields called “Dynamically reparamterised light
fields (DRLF)” that allows for focus readjustment and achieves real-time rates by utilising
multi-texturing and homography.

Given images from N co-planar data cameras Cn
D, DRLF aims to render the light field

from a virtual camera CV. It assumes all cameras to be pin-hole cameras and a focal
plane F for the virtual camera. To reduce aliasing, contributions of each data camera are
modulated with an aperture function An. Every pixel p

(i,j)
V on the virtual camera can then
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Figure 7.9: DRLF rendering method. Pixel p
(i,j)
V on CV is projected on the focal plane F

using the inverse of its projection matrix. The point on the focal plane is projected to all
data cameras Cn

D to derive its colour. If the focal plane lies on the object surface (blue

dot), all data cameras will have the same value (p
n(s,t)
D ) and the point will appear sharp,

otherwise the image will appear blurry (green lines).

be mapped to a corresponding pixel p
n(s,t)
D on each data camera using a transformation

matrix.

p
(i,j)
V =

N∑

n=1

An
(
w

(i,j)
A

)
· pn(s,t)D , (7.1)

p
n(s,t)
D = KDPDE

n
D(KVPVEV)−1p

(i,j)
V , (7.2)

where K is the intrinsic matrix of the camera, P is the projection matrix, E is the extrinsic
matrix and subscripts V and D represent virtual and data camera, respectively. w

(i,j)
A is

the projection of p
(i,j)
V onto the aperture plane in world space. The intrinsic and extrinsic

matrices of the data cameras are the same as described in Section 7.4.1. To make the
intrinsic and projection matrices of the virtual camera invertible and handle arbitrary
focal planes, they are modified to be of the form

KVPV =




fx s 0 x0
0 fy 0 y0
0 0 1 0
0 0 1 0







1 0 0 0
0 1 0 0
nc
x nc

y nc
z −N c · wc

F

0 0 1 0


 , (7.3)

where, (fx, fy) is the focal length, s is the axis skew, (x0, y0) is the principal point offset,
[nc

x, n
c
y, n

c
z] is the focal plane normal N , wF is the position of the focal plane in 3D world

space, and the superscript c represent that the focal plane is defined in camera coordinate
system (Figure 7.9).
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Implementation I implemented this rendering method in OpenGL and GLSL. The
method only takes the cropped images and cropping-adjusted camera matrices as input
and does not require any pre-processing. The images from all the data cameras are stored
in an Array Texture. The transformation matrices are calculated once during initialisation
and passed to the shaders. For each fragment, I calculated its colour by solving Eq. (7.1).
I used a box filter as the aperture function (nearest-neighbour strategy) for all cameras
to prevent ghosting artefacts in the results. If we iterate through all data cameras for
every pixel (for e.g., to create depth of field effect), the complexity of this algorithm grows
linearly with the number of data cameras for a given display.

7.5.2 Rendering method 2: Lumigraph implemented as view-
dependent texture mapping

Using a single focal plane to represent our scene might work if the scene is mostly planar;
however, it will be error-prone if the scene has a large disparity. To handle such cases, it
is necessary to have information about the scene’s geometry. Lumigraph is an extension
of light field that projects the light rays on a geometry proxy of the scene. The more
accurate this proxy is, the fewer errors in the rendered image. However, generating this
geometry proxy from images (also called 3D reconstruction) is still an open problem. Since
3D reconstruction is not a focus of this work, we either use objects of known shapes (like
spheres or cubes), or generate high-quality proxy meshes of the scene using laser scanning
and derive their correct coordinate transformations using differentiable rasterization as
described below.

Proxy mesh registration The proxy mesh of the scene needs to be translated, rotated,
and scaled in the RSB coordinate system to perfectly overlap with the real object inside
the box. To find this transformation, we first estimate the object’s silhouette in each
light field image. Since the object’s background is uniformly black in our setup, a simple
threshold-based method is sufficient to extract the silhouette.The grab cut algorithm
[Rother et al., 2004] might be more suitable for complex objects such as refractive material
or a very dark surface. The silhouettes along with the proxy mesh and camera poses
are then passed to a differentiable rasterizer (SoftRas [Liu et al., 2019]) implemented
in Pytorch3D [Ravi et al., 2020] to determine the spatial transformation for the mesh
that minimises the error between rendered mesh silhouettes and extracted silhouettes. I
used full resolution images for this step, however, the process can be accelerated by using
cropped images and camera poses.Once the mesh is transformed into the correct position,
I generate its UV coordinates by reprojecting mesh vertices onto cropped lightfield images
using cropping-corrected camera matrices.

Implementation We now have a single mesh with multiple UV maps corresponding
to each view. We can render this mesh from the virtual camera CV using the traditional
OpenGL pipeline and calculate the colour of each pixel through simple texture look
operations in the fragment shader. The mesh is stored in OpenGL Array Buffer with
multi-texturing enabled. The method is implemented as a 2-pass OpenGL rendering. In
the first pass, I render the mesh N times using UV coordinates of a different data camera
each time and store the rendered results in a 2D Array Texture. In the second pass, I
calculate the final pixel colour by modulating each rendered image with the aperture
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Figure 7.10: The object silhouette is extracted from each light field image (blue plant) and
a proxy mesh is provided to Pytorch3D’s differentiable rasterizer. An optimal 3D transform
for the mesh is found such that the rendered silhouette (white plant) perfectly overlaps
with extracted silhouette. Once we know the correct mesh coordinates, we can texture
map them to each light field image using its extrinsic matrix (En

D) and cropping-corrected
intrinsic matrix (K ′

D).

function and summing them together (similar to Eq. (7.1)). In addition to the number of
data cameras, the time complexity of this method also grows with the number of triangles
in the proxy mesh.

7.5.3 Rendering method 3: NeX

In cases where a good quality geometry proxy of the scene is not readily available, the
3D information of the scene can be learned using neural networks. Such neural rendering
methods can learn an intermediate representation of the scene during training and use this
representation for rendering novel views in real-time. One such successful representation
is multi-plane images consisting of D planar images of dimensions H ×W × 4 where the
last channel is the RGB and alpha transparency value. The images are scaled and placed
equidistantly along a reference camera frustum. New views (Î) can be rendered from this
RGBα MPI by transforming each plane to the target camera view via homography and
composting them together:

Î =
D∑

d=1

W (cd) ·W (αd)
D∏

i=d+1

(1−W (αi)) , (7.4)

where, cd and αd are the colour and alpha image of the d’th layer, and W is the homography
warping function that warps each image to the target view. The above rendering equation
is differentiable, allowing the MPI to be learned through a neural network.

Though this approach gives good results, it assumes Lambertian surfaces and cannot
handle view-dependent effects. To overcome this, NeX proposed by Wizadwongsa et al.
[2021], models each pixel as a function of viewing direction:

Cp (v) = kp0 +
N∑

n=1

kpn Hn (v) , (7.5)
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Figure 7.11: NeX overview as provided by [Wizadwongsa et al., 2021]. The colour of each
pixel on each plane is a combination of base RGB k0, transparency α, and view-dependent
neural basis coefficients knHn(v).

where p is the pixel, v = (vx, vy, vz) is the viewing direction, and C : R3 → R3 is 3D
mapping function from v to pixel colour. Unlike traditional MPI which only stores the
RGB value for each pixel in each planar image, NeX stores the base RGB value (k0) and
N additional reflectance parameters (k1, k2, · · · , kN) such that kpn ∈ R3. Each reflectance
parameter has a corresponding basis function Hn(v) : R3 → R3, which is shared across all
pixels.

The parameters α, k1, · · · , kn are learned using the MLP Fθ, the global basis functions
H1, H2, · · · , HN are learned using another MLP Gφ, and k0 is optimized explicitly as a
learnable parameter with a total variation regularizer (T) in the image reconstruction loss
(L(· · · )):

Fθ : (x)→ (α, k1, k2, · · · , kN) , (7.6)

Gφ : (v)→ (H1, H2, · · · , HN) , (7.7)

L

(
Îi, Ii

)
=
∥∥∥Îi − Ii

∥∥∥
2

+ ω
∥∥∥∇Îi −∇Ii

∥∥∥
1

+ γT(k0), (7.8)

where θ and φ are the network parameters, x = (x, y, d) is the pixel location (x,y) at

plane d, Îi and Ii are the reconstructed image-reference image pairs, and ω and γ are
model hyperparameters. In my implementation, I used the same architecture and hyper-
parameters as described in their original publication (Figure 7.11).

Real-time implementation For learning Eq. (7.6) and Eq. (7.7), I use the Pytorch
implementation provided by the authors. Using the loss function in Eq. (7.8) directly on
linear HDR colour values does not give good results because such values are non-linearly
related to our perception of visible differences. I adapt the code to support our HDR
images by encoding them with PU21 [Azimi et al., 2021] to convert absolute HDR linear
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Figure 7.12: RSB with a detachable transparent plane with red markers. Users are asked
to mark the pixels on all 4 displays (blue and yellow planes) corresponding to the 4 crosses
and 4 LEDs on the back wall. This correspondence is used to calculate the transformation
matrices for each display.

colour values into approximately perceptually uniform (PU) values. The encoded cropped
HDR images and cropping-corrected camera matrices from Section 7.4.1 are passed to
the Pytorch implementation. Once the training is complete, Fθ and Gφ are densely
sampled and stored as a LUT in the form of 16-bit floating-point RGBA HDR textures. I
then procedurally generate a triangle mesh made up of D planes with size and location
corresponding to the MPI planes. The planes in this mesh are then texture mapped to
the HDR LUT, and the mesh is rendered back to front from the virtual camera CV. The
final colour of the pixel is calculated in the fragment shader by looking up the values of
kp0, kpn, and Hn in the HDR LUT/texture and solving Eq. (7.5). The time complexity of
this method only grows with the number of MPI layers and number of basis.

7.5.4 Eye calibration and multi-focal rendering

The rendering methods discussed above provide a way to render the RSB scene from an
arbitrary viewpoint. In our setup, we need to render from the viewpoint of the user’s
eyes. Hence, for both eyes, we need to calculate the intrinsic and extrinsic transformation
matrices corresponding to near and far displays. We ask every user to perform a calibration
step. A detachable transparent plane with 4 red crosses at known positions is attached to
the near plane of the RSB, and the 4 LEDs on the back wall are switched on (Figure 7.12).
The users are then shown virtual crosses on each display and are asked to align them with
the real crosses/LEDs. Using the positions of the 8 real points and their corresponding
pixels on each display, we determine a 3×4 projection matrix for each display using
the direct linear transformation (DLT) approach [Hartley and Zisserman, 2003]. The
projection matrix is further decomposed into an intrinsic and extrinsic matrix using RQ
decomposition [Simek, 2012]. The two matrices define the virtual camera in the above
rendering methods and generate physically correct views for all displays. To deliver correct
focal cues, the rendering on the near and far displays are filtered using linear depth filtering
in the diopter space [Akeley et al., 2004a].
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Figure 7.13: 3D scenes used for comparing different IBR methods

7.6 Benchmarking rendering methods

The rendering methods I have implemented for our display have very different representa-
tions. It is crucial to understand their strengths and weakness to decide which method to
use for a given experiment. This section compares the three methods on synthetic scenes of
varying geometry and material complexity. I choose to use synthetic images instead of real
images to discard the effect of inaccuracies from pose estimation and 3D reconstruction.

Synthetic scenes A total of 4 scenes (2 geometries × 2 materials) were used for
comparison (Figure 7.13). The geometries used were a sphere mesh (2 800 vertices and 960
triangles) and a plant mesh (254 244 vertices and 84 748 triangles). The sphere mesh was
chosen to represent a simple scene with smoothly changing disparity and no occlusions.
In contrast, the plant mesh was chosen to create a challenging scene with a high triangle
count, thin edges, disocclusions and discontinuous disparity. The meshes were mapped to
two materials: a Lambertian material with a low-frequency gradient image as its diffuse
component and a specular material (Phong shading) with a high-frequency checkerboard
as its diffuse component. Most IBR methods assume Lambertian surfaces in their scene
representation and specular surfaces continue to be an ongoing challenge in this field of
research. I created a scale-accurate digital twin of the RSB and light field capture setup in
the Unity3D game engine and used it to generate light field images and accurate camera
poses.
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Experiment setup I rendered 20 images of 2160×1440 resolution and 16-bit per channel
(linear RGB) with a total baseline of 100 mm for all 4 scenes. The images were divided
into two sets of 10 images: the even number images were fed to the rendering methods
for novel view synthesis and the odd images were kept aside for validation. Accurate
object silhouettes and camera matrices for each image were extracted from unity and
were used to generate lumigraph (Section 7.5.2) and NeX MPI LUTs (Section 7.5.3). The
MATLAB/OpenGL implementations of the three methods was used to generate new views
from the perspective of validation images to facilitate objective quality evaluation. The
computational performance of each method was also measured over 1000 frames on a
i7-8700 CPU @ 3.20GHz, 32GB RAM and an RTX 2080Ti GPU with V-Sync disabled.
Since existing quality metrics only support the evaluation of a single view, I restricted this
experiment to a single display, but I expect the computational cost to grow linearly with
each display. In addition to the validation poses, 60 Hz videos of the rendering results
were also generated and are available on the project web page1.

Results The three methods have different computational requirements. The DRLF
method is computationally the simplest method with the highest average FPS and lowest
VRAM requirements (Figure 7.16). The lumigraph method is close second both in terms of
performance and memory requirements. The memory required by its mesh representation
is negligible compared to HDR images. There is also no noticeable effect of the number of
triangles between sphere and plant scene, indicating that mesh size is not a bottleneck
on modern GPUs. NeX is the slowest method and also the most memory intensive (20
times more memory). However, it should be noted that my implementation used 72
layers and 6 sub-layers in the NeX MPI representation (as suggested by the authors).
A hyper-parameter sweep for a trade-off between quality and performance could prove
helpful here but may not be practical as every training session required approximately
8 hours to converge. Also, I found one of the biggest bottlenecks in NeX’s performance to
be the texture-lookup operation on MPI LUTs (15360×3680 16-bit RGBA textures). An
implementation that makes better use of the GPU memory architecture might improve
performance.

The artefacts induced by the three methods are also quite different. DRLF works well
on the simple sphere but blurs the regions away from the focal plane in other scenes. This
is visible as blurred textures, or missing thin triangles (Figure 7.14). Lumigraph renders
sharp textures in all scenes but maps incorrect textures near thin edges (disocclusions)
(Figure 7.15a). Since lumigraph uses the rasterization of a mesh, the geometry edges
can also suffer from aliasing artefacts. In both methods, these artefacts become more
prominent in videos and appear as distracting flickering near thin edges or juddery specular
highlight. NeX works well on both thin edges and specular highlights but gravely affects
the texture appearance of checkerboard material (the width of the checkerboard squares
appears to change in the video). Also, NeX induces unnatural halos around the object
when the rendering viewpoint is far from MPI’s reference pose (Figure 7.15b).

To quantify the quality of each method, I compared their renderings for validation
poses against the validation images using 3 popular objective quality metrics: PSNR,
SSIM, and HDR-VDP-3. Since PSNR and SSIM were designed for SDR images, the HDR
images were first encoded using PU21 transform Azimi et al. [2021]. HDR-VDP-3 assumed
a linear RGB colour space and a 45 ppd angular resolution. The plots in (Figure 7.16)

1https://www.cl.cam.ac.uk/research/rainbow/projects/hdrmfs/rendering_methods/
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Figure 7.14: DRLF artefacts. The focal plane was set to the center of the object. Points
near the focal plane appear sharper while points further away appear distorted. (Rendered
results in blue boxes and ground truth in yellow boxes)

show the quality results averaged over 10 validation images, and the error bars show
the standard deviation. Additionally, I also run a blind video quality assessment metric
MDTVSFA [Li et al., 2021] on the videos recorded for each method. MDTVSFA is one
of the leading metrics on MSU Video Quality Metrics Benchmark 2022 [Vatolin et al.,
2022]. Overall, the lumigraph rendering method is consistently rated to be of the highest
quality in all 4 scenes. However, there is not much consensus on the rating and ranking
of the methods across 4 metrics. Lumigraph and DRLF have similar quality (low std.
deviation) across all 10 validation images (except DRLF for SP) (Figure 7.13), but NeX
have a higher variance due to artefacts in images far from the reference pose. Since the
metrics I used are some of the most popularly used metrics in IBR evaluation, it is crucial
to understand which of these metrics best relate to human ratings. Note that none of
these metrics were designed for IBR artefacts, and most of them do not account for HDR
or temporal artefacts such as judder and flicker. Though not part of this dissertation, I’m
preparing a subjective study to compare the 3 methods on our HDR-MFS display in terms
of perceptual realism and evaluate the performance of existing objective quality metrics.

7.7 Experiments conducted on HDRMFS display

Since its completion, our display pipeline has facilitated two (previously impossible)
psychophysical studies and will continue to be a platform for the next generation of
perceptual realism experiments. I will briefly describe them next.
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(a) Lumigraph artefacts (b) NeX artefacts

Figure 7.15: Lumigraph suffers from texture ghosting in areas of disocclusion. NeX causes
changes in texture appearance and adds unnatural halos around object when the camera
is far away from the reference pose. (Rendered results in blue boxes and ground truth in
yellow boxes).
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Figure 7.16: Performance and qualitative comparison of the three rendering methods. NeX
is the most computationally expensive method among the three tested methods. There is
not much agreement in the results of the four tested quality metrics.
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Visual Turing test My collaborators Zhong et al. [2021] conducted a study to determine
if the participants could distinguish between real and virtual objects displayed by our
system (also known as the visual Turing test). Another goal of this study was to test
the sensitivity of HVS to degradation of contrast in the presence of all other realism
cues. A wooden sphere was used as the stimuli and Lumigraph as the rendering method.
The experiment followed a three-interval-forced-choice (3IFC) methodology where in each
trial, participants were shown 3 intervals in which two were real and one virtual or two
virtual and one real. Participants were asked to pick the interval that appeared different
from the other two. Results indicated the probability of detecting the difference between
real and virtual objects to be 0.44. The degradation of contrast by 20% increased the
probability of detection to 0.56. The experiment shows a promising avenue for scaling
different distortions (in colour, disparity, and focus) in terms of their effect on perceptual
realism.

Transparency in AR My collaborator Liu et al. [2022] conducted a study on our
display to find the minimum brightness required for a virtual image to appear completely
opaque in an optical see through augmented reality display. In the experiment, the back
wall of the real scene box was covered with a checkerboard pattern and participants were
shown a virtual square with noise texture on either near or far display using lumigraph
rendering. The frequency and contrast of noise, focal depth (near or far plane), and
luminance of the RSB were varied in each trial. The participants were asked to adjust the
luminance of the square to the smallest brightness at which the square appears opaque and
the background does not show up on the square. The results of the experiment show that
it takes up to 2 orders of magnitude more brightness than background luminance to render
the foreground completely opaque. The contrast of the virtual object and the amount of
defocus blur also impacted this value significantly. These results can help facilitate the
development of new AR displays.

7.8 Summary

Continually improving our understanding of the limits of the human visual system is one
of the core ideas behind perceptual graphics research. One path to this is to build new
display architectures that enable the study of previously unstudied factors. In this chapter,
I presented a novel end-to-end capture-display system that combines several realism cues
such as high dynamic range, binocular disparity, colour, focal depth, and resolution at
high fidelity. I implemented three different image-based rendering methods adapted to
the requirements of our display. A qualitative assessment of their results revealed that
the performance of the state-of-the-art image quality metrics on reconstruction artefacts
remains to be improved. Since its completion, the display has facilitated two previously
impossible psychophysical studies while several more are under preparation.
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Chapter 8

Conclusion

The main goal of this work was to demonstrate how the knowledge of our visual system’s
spatial and temporal limitations can significantly improve the quality and performance
of image synthesis. It is becoming increasingly necessary to exploit these limitations as
displays and consumers’ computational demands grow and GPUs transmission and power
bandwidth struggle to keep up. In this dissertation, I proposed a visual model that can
predict how the perceived quality of rendered content changes under motion w.r.t. content
and display parameters. I developed new rendering algorithms that can utilise such models
to optimise quality under constrained bandwidth. I also presented a novel display that
has and will continue to enable a new set of psychophysical experiments on previously
unstudied factors.

8.1 Contributions

The main contributions of my dissertation are as follows:

Review of motion-adaptive rendering and motion psychophysics In Chapter 3,
I compared a state-of-the-art motion-adaptive rendering strategy with traditional constant
resolution methods in a preference study involving realistic motion scenarios. This study
demonstrated how adding motion quality consideration to rendering can significantly
boost the quality of experience. The study also identified several limitations in existing
approaches. In Chapter 4, I conducted an extensive literature review on psychophysical
studies on motion quality to identify its relationship to different content and display factors.
I also conducted a psychophysical experiment to fill in some research gaps I identified
through this review, specifically, the effect of display persistence, resolution, and aliasing
on quality.

CaMoJAB: Content-adaptive model of judder, aliasing and blur In Chapter 5,
I showed how frequency domain analysis of different steps of rendering and display pipeline
can be combined with spatio-temporal contrast sensitivity functions to estimate the
quality of motion for three prominent motion artefacts: judder, aliasing, and blur. The
model accounts for several display and content parameters such as refresh rate, resolution,
persistence, luminance, velocity, shading rate, and spatial frequency. It was trained and
tested on several datasets with only a few fitted parameters and significantly outperforms
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state-of-the-art metrics. This work has received interest from several industry partners
who develop VRS-enabled GPUs.

ALSaRR: Adaptive local shading and refresh rate While perceptual models like
CaMoJAB readily lend themselves to optimising rendering performance and quality, it
is not always straightforward to integrate them with real-time rendering methods. In
Chapter 6, I proposed a novel rendering method that uses a visual model to distribute
the shading budget to the most important parts of the spatio-temporal domain. It
formulates the distribution of shading samples and refresh rate as an optimisation problem
of maximising quality for a fixed computational bandwidth and solves it using an optimal
dynamic programming solution as well as a fast greedy approximation. The method
has been integrated with the Unity3D game engine as a plugin and has been shown to
out-perform existing adaptive and traditional constant resolution methods on various
scenes and multiple bandwidths.

HDRMFS: High-Dynamic-Range Multi-Focal Stereo Display Psychophysical
experiments are usually not conducted using real objects but rather images presented on
a display device. Displays have inherent limitations, such as a limited range of parameters
to be studied or the inability to present multiple perceptual cues together. In Chapter 7, I
helped build a novel display that combines multiple realism cues such as high dynamic
range, binocular disparity, focal depth, colour, and resolution at a high fidelity to enable
previously impossible perceptual experiments. I built a light field rendering system adapted
to this display which offers three rendering algorithms depending on the performance
requirements and the amount of depth information available of the 3D scene. A qualitative
analysis of the three rendering methods found little agreement between different objective
quality metrics, indicating a need for further studies in this direction. Since its conception,
the display and rendering system has already enabled two experiments, and more are in
progress.

8.2 Future work

Building computational models of the human visual system is an incredibly complex
problem. While CaMoJAB metric made strides toward modelling most relevant factors
of motion quality, it does not model contrast masking [Legge and Foley, 1980, Watson
and Solomon, 1997], degradation of colour, foveation [Tursun et al., 2019] or saliency.
Those limitations are partially dictated by the scarcity of available data, and partially
by the real-time requirement of applications. The complexity of contrast masking would
make the metric too costly for a real-time application, and foveation would require eye
tracking. However, motion in peripheral vision is known to strongly mask changes in object
appearance [Suchow and Alvarez, 2011] and can potentially increase the computational
savings of existing foveated rendering methods. This work also does not account for
individual variations but models the average observer. Modelling individual variations
would require much more measurements from each participant. In Chapter 7, we saw
how computationally demanding neural rendering methods such as NeX are. It remains
an open question: What is the best way to incorporate perceptual priors into neural
representations and algorithms? Another exciting direction is using perceptual models to
accelerate path tracing as dedicated chips for tracing rays become increasingly common in
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modern GPUs. While the flexible nature of path tracing greatly facilitates perceptually
uniform distribution of ray samples in screen-space, it remains to be seen how the use of
perceptual models can be moved to path space for faster variance reduction. Finally, I
would like to point out that perceptually optimising rendering would be impossible if the
underlying hardware were not flexible enough to accommodate it. Giving developers more
control of the hardware, such as spatially varying refresh rate or persistence, will provide
an opportunity to further improve pixel quality and reduce computational cost.
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Appendix A

Downsampling distortions

One of the most common use cases of image quality metrics in computer graphics is as a loss
function in an optimisation problem such as image enhancement or restoration algorithms.
When the loss function satisfies certain mathematical properties like monotonicity and
differentiability, it enables the optimisation to converge onto a good solution. However,
I found that when it comes to measuring the quality of images resampled using nearest
neighbour interpolation (a common operation in computer graphics), existing quality
metrics do not satisfy the aforementioned properties. An example can be found in
Figure A.1, which plots quality predictions from several popular quality metrics for two
images that have been downsampled to a lower resolution for a range of scaling factors.
All metrics except CaMoJAB give non-smooth and non-monotonic predictions, making
it hard for most optimisation methods to converge to a globally optimal solution. While
CaMoJAB cannot guarantee differentiability due to the use of Dirac delta function in
Eq. (5.11), it can be proven that CaMoJAB predictions monotonically decrease with
decreasing image resolution.

Proposition: CaMoJAB’s predicted quality always decreases with decreasing image
resolution

Proof. We can safely ignore the temporal distortion component (dt) of CaMoJAB
because we are only considering stationary images. The spatial distortion (ds = Es(I

ref)−
Es(I

′′)) component, as defined in Eq. (5.21), is the difference in visual energy (powered
summation) of the reference image and the low resolution distorted image. Since a reference
image can be arbitrarily defined as any higher resolution version of the distorted image,
we can prove the proposition by showing that ds is always ≥ 0.

Let us consider the frequency spectrum of a 1D reference image after a discrete Fourier
transform

Aref = {a0, a1, · · · , aN} (A.1)

where ai represents the amplitude of the ith frequency, N corresponds to the Nyquist
frequency, and {· · · } denote a finite sequence. I only consider the positive frequencies but
the following analysis can be trivially extended to negative frequencies as the signal is
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1000 x 1000

100 x 100

Figure A.1: Image quality predictions on downsampling image artefacts. All metrics
except CaMoJAB behaves in a non-smooth and non-monotonic manner

symmetric in both directions. The visual energy of this signal is defined as

E(Aref) =
N∑

i=0

|ai|β (A.2)

where β is the power parameter fitted to experimental data (Section 5.4). The distorted
image is derived from the reference image using only two types of operations: blurring
(Eq. (5.8), Eq. (5.18)) and downsampling (Eq. (5.12)). Let us see how both of these
operations result in a loss of energy.

Since a blur operation is a multiplication with a normalised filter in the frequency
domain, the amplitude spectrum of a blurred signal will be

Ablur = {a′0, a′1, · · · , a′N} | a′i ≤ ai. (A.3)
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Figure A.2: Consider for example a 30 cpd (= N) signal displayed on a 40 ppd display.
The maximum frequency the display can present (called the cut-off frequency) is 20 cpd
(=M).

The energy of the blurred signal is

E(Ablur) =
N∑

i=0

|ai|
′β (A.4)

It is trivial to see that E(Aref)− E(Ablur) ≥ 0.
Now, let’s look at downsampling. Sampling at a frequency less than the two times the

Nyquist frequency of Aref i.e. 2N will lead to a replica of the signal to fold onto itself as
illustrated in Figure A.2.

Since the folding is symmetric, the downsampled signal will be

Adown = {a0, a1, · · · , a2M−N−1, (a2M−N + aN), (a2M−N+1 + aN−1), · · · , aM} (A.5)

The energy of the downsampled and reference signal is given by

E(Adown) = |a0|β + |a1|β + · · ·+ |a2M−N−1|β + (|a2M−N + aN |)β + · · ·+ |aM |β (A.6)

E(Aref) = |a0|β + |a1|β + · · ·+ |a2M−N−1|β + |a2M−N |β + · · ·+ |aN |β (A.7)

Subtracting and rearranging,

E(Aref)− E(Adown) =
((
|a2M−N |β + |aN |β

)
− (|a2M−N + aN |)β

)
+

((
|a2M−N+1|β + |aN−1|β

)
− (|a2M−N+1 + aN−1|)β

)
+ · · ·

(A.8)

It can be shown that (
∑
|xi|)γ ≤

∑
|xi|γ ∀ γ ∈ [0, 1] (Proof in the following paragraph.)

Hence, E(Aref)− E(Adown) ≥ 0.
Since the distorted image is derived by downsampling or blurring the reference image,

and both of these operations result in a loss of energy, the energy of the reference image is
always greater than the energy of the distorted image. Therefore, CaMoJAB’s predicted
quality monotonically decreases with decreasing image resolution.
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Lemma: (
∑n

i=0 |x|)
γ ≤∑n

i=0 |x|
γ ∀ γ ∈ [0, 1]

Proof. Let λ =
∑n

i=0 |xi|. When λ = 0, all xi = 0 and the inequality trivially holds.
For λ > 0, let’s define

yi = |xi|
λ

.

∵ yi ∈ [0, 1] and γ ∈ [0, 1] ⇒ yγi ≥ yi

Together with
∑n

i=0 yi = 1, we get

∑n

i=0 |xi|
γ = λγ

∑n

i=0 y
γ
i ≥ λγ

∑n

i=0 yi = λγ = (
∑n

i=0 |xi|)
γ
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Appendix B

Approximations in CaMoJAB

While developing CaMoJAB in Chapter 5, I made a few approximations in different stages
considering its application to real-time rendering. In this chapter, I provide some additional
results to motivate those choices.

Using Lorentzian to approximate sinc blur filter In Eq. (5.8) and Eq. (5.16), we
model mipmap and eye-motion blur using box filters in spatial domain. The Fourier
transform of a box filter is a sinc function. I proposed to instead model blur with
Lorentzian function which is monotonic and well approximates sinc function (Figure 5.3).
The motivation behind this approximation was the application of CaMoJAB to solve the
optimisation problem defined in Eq. (6.1) which determines the optimal refresh rate for
a given velocity and image. Figure B.1 provides an example optimisation solution on
John Lemon’s Haunted Jaunt scene (Figure 6.5) with the blur filter modelled both as a
sinc and Lorentzian function. Sinc gives unstable non-monotonic predictions which can
result in unpleasant motion artefacts in practice. In comparison, using Lorentzian always
gives monotonic results. The sharp transitions in refresh rate are usually not noticeable in
practice because of the predictive nature of G-Sync (Section 2.4) which act as a smoothing
operation.
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Figure B.1: Optimal refresh rate for haunted house scene with blur filter modelled as
either Lorentzian or sinc. Using Lorentzian leads to more stable optimisation. The sharp
transitions are due to integer refresh rates and low number of velocity sample points.
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Figure B.2: Number of impulses in Dirac comb (downsampling operation) does not have a
large effect on CaMoJAB performance.

Number of modelled aliases vs fitting error VRS downsamples the texture images
which can be represented by a Dirac comb function (impulse train) in Fourier domain. A
Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of
sampling frequency. Convolution with Dirac comb creates replicas of the signal (called
aliases) at each impulse location. In practice, we can only use finite number of impulses
while modelling Dirac comb. I found the number of replicas to not have much effect on
CaMoJAB’s prediction error (Figure B.2) on the calibration dataset (Section 5.4) and
hence chose to use only the first two replicas to reduce the performance overhead and
discontinuities introduced by this function.

Visual difference energy vs difference of visual energy A common practice to
determine the perceived quality of a distorted signal is to calculate the difference between
the CSF-normalised reference and distorted signal and take its energy as measure quality
[Watson, 2000]. Another approach was proposed by Denes et al. [2020] where they show
that the difference in visual energies of reference and distorted signals also make for a
good measure of perceived quality. In CaMoJAB, I used the latter as I noticed in practice
it gives stable and smoother results and satisfies some useful properties as described in
Appendix A. Figure B.3 provides some example predictions of the model when trained with
visual difference energy (VDE: ds = Es(I

ref − I ′′)) vs. visual energy difference (CaMoJAB:
ds = Es(I

ref)− Es(I
′′)). While the results from both approaches follow the same general

trends, VDE results are non-smooth and non-monotonic.
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Figure B.3: Comparison of visual difference energy (VDE, bottom row) and visual energy
difference (CaMoJAB, top row). The latter leads to more stable predictions.
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Appendix C

Motion quality models: Additional
Comparison

Here I provide additional plots for NAS and MARRR performance on our Experiment 1
data (Section 4.3) in Figure C.2 and Mackin et al. [2016] dataset in Figure C.1. MARRR,
a perceptually motivated but content-independent model, fails to predict the change in
quality due to texture in Experiment 1, but performs well on Mackin et al.’s dataset.
While NAS predicts different quality for different textures in Experiment 1 and correctly
captures the reduction in artefacts visibility with velocity, it does not predict the correct
trend between the textures. It also cannot capture changes in quality due to the refresh
rate in Mackin et al.’s dataset.
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Figure C.1: NAS and MARRRR predictions on Mackin et al. [2016] data
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Figure C.2: NAS and MARRR predictions on our Experiment 1 results. Both models were
linearly fitted to the data for fair comparison. MARRR is content independent and hence
fails to capture change in quality dues to texture. NAS doesn’t capture the correct trend
between textures. Also, it can only predict quality for half and quarter shading resolution.

132


	Introduction
	Motivation
	Hypothesis
	Structure
	Publications and talks

	Background
	Human visual system
	Encoding
	Representation
	Interpretation

	Motion artefacts
	Subjective quality assessment
	Adaptive-sync displays and Variable rate shading
	Perceptually-optimised rendering

	Motion adaptive refresh rate and resolution
	Introduction
	Background: Visual model of blur and judder
	Rendering with adaptive refresh rate and resolution
	Psychophysical validation
	Limitations
	Summary

	Motion quality dataset
	Introduction
	A survey of factors affecting perception of motion artefacts
	VRS motion quality experiment
	Summary

	CaMoJAB: Content-adaptive model of judder, aliasing and blur
	Introduction
	Related Work: Models of motion quality
	A content-adaptive model of motion quality
	Spatial distortion model
	Temporal distortion model

	Model calibration
	Model results
	Comparison and validation
	Ablation study
	Limitations
	Summary

	ALSaRR: Adaptive local shading and refresh rate
	Introduction
	Related Work
	Motion adaptive rendering
	Fixed-bandwidth rendering

	ALSaRR rendering algorithm
	Auxiliary buffers
	Optimal refresh rate
	Optimal shading rates

	Real-time implementation
	Psychophysical validation
	Limitations
	Summary

	HDRMFS: High-Dynamic-Range Multi-Focal Stereo Display
	Introduction
	Related Work
	Computational 3D Displays
	Photorealistic rendering

	Display apparatus
	HDR Lightfield acquisition
	Camera pose estimation

	Rendering for HDRMFS display
	Rendering method 1: Dynamically reparamterised light field rendering
	Rendering method 2: Lumigraph implemented as view-dependent texture mapping
	Rendering method 3: NeX
	Eye calibration and multi-focal rendering

	Benchmarking rendering methods
	Experiments conducted on HDRMFS display
	Summary

	Conclusion
	Contributions
	Future work

	References
	Downsampling distortions
	Approximations in CaMoJAB
	Motion quality models: Additional Comparison

