
Technical Report
Number 974

Computer Laboratory

UCAM-CL-TR-974
ISSN 1476-2986

Dynamic analysis for
concurrency optimisation

Indigo J. D. Orton

August 2022

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

https://www.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 2022 Indigo J. D. Orton

This technical report is based on a dissertation submitted
October 2021 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Hughes Hall.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

Abstract

Dynamic Analysis for Concurrency Optimisation

Indigo Jay Dennis Orton

Modern software engineering is, broadly, a continuous activity – many pieces of industrial
software are constantly developed, they are never “finished”. This process of constant
improvement necessitates small, incremental changes to ensure stability and maintainability
of the software and its codebase. This includes incremental changes to improve performance.
In this thesis I focus on improvements to the efficiency of concurrency usage, at a source-
code level, within a piece of software. These improvements are challenging to identify
and implement as concurrency and performance behaviour is only exhibited at runtime,
thus requiring dynamic analysis, whilst making incremental changes requires static source-
code patches. This challenge is compounded as a codebase evolves, as the efficiency of
various concurrency uses may change – an instance of concurrency that was previously
beneficial may become inefficient due to the evolution of the software. I present an
automatic-program-analysis methodology to identify potential performance improvements,
estimate their quantitative effect, and generate static source-code patches to implement
them. Using a proof-of-concept implementation, I present evaluations that demonstrate
the methodology’s efficacy.

Multicore processors are the default for modern computers and leveraging this concur-
rency is a key aspect of modern software. Effective use of concurrency can significantly
improve software performance, though the inverse is also true – ineffective use can impair
software performance. However, as the saying goes “concurrency is hard”; it is fundamen-
tally difficult to statically reason about, let alone optimise. Indeed, many of its properties,
especially those related to performance, are only exhibited at runtime.

In this thesis I explore the use of dynamic analysis for concurrency optimisation. I
argue this field is under-explored, yet represents a substantial opportunity for improving
software performance. A key challenge within this field, and one that extends beyond
concurrency, is the generation of static changes (e.g. source-code changes) from dynamic
analysis. The gap between the static and dynamic domains is well studied in terms of
using static analysis to improve dynamic analysis efficiency and using dynamic analysis to
confirm static analysis hypothesises (e.g. race-condition detection), however, I argue the
gap is understudied when transitioning from the dynamic to the static domain.

Acknowledgements

Thank you to Alan Mycroft, my supervisor, for being an indefatigable guide and source of
encouragement throughout. In particular, I want to acknowledge that this thesis has only
been possible as Alan decided to take on an excitable Australian during his transition
away from full-time academia. My life has been enriched by the experience, the topic, and
the supervisor. With a mind to Alan’s perennially reoccurring advice to be concise, I’ll tie
this up quickly.

Thank you to my family for their support and unfailingly good humour, especially
throughout these pandemic times. It is still debated just how important cryptic crosswords
are to a good thesis, but we’ve left no space for regret.

Thank you to my friends, near and far, for the many distractions and happy procrasti-
nations.

Dankie Christine vir alles. Lewe is beter met jou. Lewe is voller met jou.

To my parents, Barb and Tim.
For life, genes, and curiosity.

Contents

1 Introduction 13
1.1 Thesis structure . 17
1.2 Thesis contextualisation . 18

1.2.1 Thesis statement . 18
1.2.2 Running scenario . 19

1.3 Findings . 21
1.4 Published material . 21

2 Technical background 23
2.1 Program analysis . 23

2.1.1 Static analysis . 24
2.1.2 Dynamic analysis . 25
2.1.3 Combining static and dynamic analysis 26

2.2 Dynamic analysis for static optimisation 26
2.3 Tracing, sampling, and dynamic data . 27
2.4 Concurrency models . 28

2.4.1 Abstract concurrency model . 29
2.4.2 Java 8 implementation and background 32
2.4.3 Related concurrency models . 32

2.5 Java and the JVM . 37
2.6 Experimental environment . 37

2.6.1 Acme – Real-world evaluation target 38

3 Execution Tracer 41
3.1 Introduction . 41

3.1.1 Target overhead . 44
3.2 Trace-log . 45
3.3 Sparse tracing . 45
3.4 Tracer . 48

3.4.1 Lockless buffer exchange protocol 49
3.4.1.1 Algorithmic specification 51

3.5 Evaluation . 55
3.6 Related work . 59
3.7 Conclusion . 62

4 Identifying Concurrency Improvements with Dynamic Analysis 63
4.1 Introduction . 63
4.2 Method . 67

4.2.1 Dynamic context . 68
4.2.2 Task groups . 68
4.2.3 Optimisations . 70
4.2.4 Estimation . 73

4.2.4.1 Soundness . 75
4.2.4.2 Trace-DAG construction 75
4.2.4.3 Optimisation graph-edits 77
4.2.4.4 Trace-DAG to Trace-log derivation 79
4.2.4.5 Sleep estimation . 79

4.2.5 Improvement performance effect . 82
4.2.6 Multiple improvements . 84
4.2.7 Measuring and Selecting Improvements 84

4.3 Evaluation . 85
4.3.1 Micro-benchmarks . 86
4.3.2 Estimation Accuracy . 92
4.3.3 Estimation consistency . 95
4.3.4 Suggested Improvements . 98

4.4 Related work . 100
4.4.1 Performance prediction . 100
4.4.2 Concurrency analysis . 101

4.5 Discussion . 103
4.5.1 Sleep estimation and full trace-logs 103
4.5.2 Human refactoring . 103
4.5.3 Is this an artefact of Java’s thread implementation? 104
4.5.4 Could better implementation/developer practice avoid these problems?104

4.6 Conclusion . 104

5 Source-Code Patches from Dynamic Analysis 107
5.1 Introduction . 107
5.2 Running example . 110
5.3 Method . 111

5.3.1 Abstract Program Graph . 112
5.3.2 Dynamic-Static Mapper . 121
5.3.3 Change Transformation Functions 123
5.3.4 Rendering Source Code . 124

5.4 Real-world complexity . 125
5.5 Application to real-world . 127
5.6 Related work . 128
5.7 Discussion . 128
5.8 Conclusion . 131

6 Tracing Overhead and Observer Effects 133
6.1 Introduction . 133
6.2 Uniformity in Tracing . 135
6.3 Experimental Method . 136

6.3.1 Configurable overhead . 136
6.3.2 Concurrency-performance analyser 136

6.4 Experimental results . 137
6.4.1 Configurations . 137
6.4.2 Metrics . 138
6.4.3 Experiments . 139
6.4.4 Limitations . 144

6.5 Related work . 144
6.6 Discussion . 145

6.6.1 Functional effects of overhead . 145
6.6.2 Practical effects of overhead on developers 145

6.7 Conclusion . 146

7 Discussion 147
7.1 Runtime and language generalisation . 147
7.2 Concurrency model generalisation . 148
7.3 Simplicity and optimality; cost and benefit 149
7.4 Estimation is good, so long as its accurate 150
7.5 Analysis at the developer’s abstraction . 150
7.6 Reversing the pipeline . 151
7.7 The challenges of the real world . 151

8 Conclusion 153
8.1 An exciting world . 154

Bibliography 155

Chapter 1

Introduction

Concurrency is integral to modern software performance and optimisation. The decline
of Moore’s Law [114, 111, 34], or more specifically the decline of exponential single-core
performance increases, has forced software to better utilise multicore processors. This
proliferation of concurrency [34] has, naturally, caused a proliferation of concurrency-based
inefficiencies – we tripped over ourselves in our excitement about the promised land
of concurrent systems. These inefficiencies waste processing power and can defeat the
original purpose of introducing concurrency, improving performance. In fact, in many
cases, removing certain instances of concurrency can improve overall program performance
(by freeing system resources for other use).

Optimising concurrency usage, to deal with these inefficiencies, is non-trivial as concur-
rent behaviour can be unintuitive and statically non-obvious [34] – reading the code will
not necessarily provide a useful intuition of what occurs at runtime in a concurrent system,
unlike sequential code which is more straightforward. Importantly, many properties of con-
current behaviour and software performance are only exhibited at runtime, making static
analysis [75] (manual or automated) insufficient. For example, how long one concurrent
operation takes to execute, and therefore how long another operation waits for its result,
is not statically determinable (outside of trivial cases such as explicit sleep operations).

In this thesis I am interested in investigating the use of dynamic analysis [75] for
statically optimising programs, for example, by generating static code patches. This is a
broad topic that encompasses existing examples, such as Just-In-Time (JIT) compilation [5,
51], and many as yet undeveloped potential optimisations. Unlike JIT compilers, I am
interested specifically in source-level static optimisations that can be applied during
development.

However, static optimisations is a broad topic so I take a narrower perspective to
explore a sub-field that can be instructive for the broader topic. Specifically, I explore the
use of dynamic analysis for concurrency optimisation, an interesting sub-field of dynamic
analysis for static optimisation. Concurrency performance optimisation is well suited to
dynamic analysis given both concurrency behaviour and performance are only exhibited
at runtime. I argue that this field is understudied, despite its substantial opportunity for
improving software performance.

An aspect of this field, that extends beyond it to the broader topic of dynamic analysis
for static optimisation, is the generation of static changes (e.g. source-code patches) from
dynamic analysis. The gap between the static and dynamic domains is well studied in terms
of using static analysis to improve dynamic analysis efficiency and using dynamic analysis
to confirm static analysis hypothesises (such as in race-condition detection [17, 16, 64]).

13

I argue, though, that the gap is understudied when starting with dynamic analysis and
transitioning to the static domain.

A particular example I focus on in this thesis is the use of dynamic analysis, based
on execution traces, to identify and remove inefficient uses of concurrency. In effect, this
optimisation aims to reduce the amount of time threads spend sleeping by removing
unnecessary, and inefficient, concurrency. Sleeping threads consume resources without
progressing the computation of the program (Urma et al. [121] Section 15.2.3) and can
have more severe adverse effects in certain circumstances (such as deadlock via thread
starvation). To investigate dynamic analysis for concurrency optimisation, and this
example in particular, I undertake the theoretical development of a practical technique
called Dynamic-Trace Refactoring for Static Optimisation (DTRSO) and develop a proof-
of-concept implementation to evaluate it in the real-world.

A key idea of DTRSO is to estimate the performance effects of possible optimisations,
rather than attempting to identify potentially inefficient source-code patterns. Identifying
a potentially inefficient pattern is not especially useful as it is unclear whether modifying
the code will improve or degrade performance. Whereas, by accurately estimating the
performance effect of a change to some code, we can rationally decide whether to make
the change or not. This contrasts with bug-detection analysis [9, 57, 23, 58] in which it is,
sometimes, acceptable to identify potential bugs that should be fixed to avoid that bug
ever occurring; identifying changes that could only potentially improve performance is not
much use. Furthermore, false positives in bug-detection program analysis are significant
barriers to adoption [19] and it appears likely that this effect would be similar, if not more
significant, for performance program analysis (benchmarking a program before and after
implementing a suggested change is a significant cost to a developer1).

DTRSO centres on dynamic analysis of execution traces, to accurately estimate the
effect of potential optimisations (Chapter 4), and then bridging the dynamic-to-static
divide to generate static source-code patches (Chapter 5). The core methodological tool is
the refactoring of traces to approximate the trace that the program would generate given
some change. This is done by converting the trace into a graph, which encodes constraints
and costs (as time delays between events), and then modifying edges in the graph to
approximate a change (see Section 4.2.4). This allows estimation of potential changes
without re-executing the program and results in highly accurate estimation of performance.
DTRSO has three stages (illustrated in Fig. 1.1): tracing (Quilt – Chapter 3), analysis
(Rehype – Chapter 4), and patch generation (Scopda – Chapter 5). I have developed
an implementation2 of DTRSO to enable investigation of the various research questions
addressed in this thesis.

This thesis makes four contributions, the three individual components of DTRSO and
an analysis of the effect of tracing overhead on program behaviour and program analysis.
The three DTRSO components are: the low-overhead tracer; concurrency performance
analyser that refactors traces to identify improvements and accurately estimate their
effects; and a tool to generate static source-code patches for dynamic-analysis-specified
improvements. The fourth contribution is an analysis of tracing overhead, its natural
observer effect, and how this affects the traces collected and analysis performed using

1Consider the cost of executing a long-running program, multiple times, before and after making a
change to assess the change’s performance effect(s). Then consider the cost of doing that for each change
in an arbitrarily large tree of possible changes.

2The implementation is approx. 65 000 lines of Rust code.

14

IN

Target program

IN

Trace-config

Instrument program

Execute
instrumented program

Tracer

Trace-log

Trace-log
to

Trace-DAG

Trace-DAG

Estimate changes

Improvement
specifications

APG

Convert to APG

Map
improvement specification

to static location

Modify APG to
implement change

Render APG
to source

OUT

Map of improvements’ stats
to git-diff style

source-code patches

Quilt
(Chapter 3)

Rehype
(Chapter 4)

Scopda
(Chapter 5)

User selects and applies
source-code patches

Figure 1.1: A high-level overview of the three stages of DTRSO : Quilt , Rehype, and
Scopda. This diagram is reproduced in each of the three chapters presenting stages. The
Trace-DAG (Trace Directed Acyclic Graph) is a core data structure of Rehype (Chapter 4).
The APG (Abstract Program Graph) is the core data structure of Scopda (Chapter 5).

15

those traces.

Concurrency model

DTRSO focuses on task-based concurrency using thread pools and the removal of wait-
limited tasks. Task-based concurrency is a broadly used concurrency pattern and is
supported by many languages (an increasing number of languages natively support it
using the async/await terminology). There are three key components in this concurrency
model:

Tasks are units of work that may return some value. These can be thought of as a pair
of a function and a set of values to be passed as arguments to the function.

Threads are logical workers that can execute functions. We will specifically deal with
logical, and expensive to create, threads (e.g. Java’s thread model), as opposed to
hardware threads or lightweight thread-style tools such as co-routines.

Thread pools are utilities that schedule tasks to be executed by a thread. Thread pools
manage a collection of threads that are reused to execute multiple tasks (as opposed
to generating a new thread for every task, as threads are expensive to create). In
most cases, thread pools have a limited number of threads.

This model is described, along with related concurrency models, at more length in
Section 2.4.

Source-level changes and correctness

DTRSO does not automatically apply optimisations, instead it generates source-code
patches that a developer can trivially apply (e.g. using git apply [14]). Small source-code
changes can have a significant performance impact but present a greater potential risk if
applied without knowledge of the broader system. DTRSO generates source-code changes
to enable larger performance improvements, but this means that it cannot provide strong
guarantees of correctness as guaranteeing the effect of such changes to concurrency is very
challenging, or impossible. This is in contrast to many program optimisations, such as
those in optimising compilers [1], that provide strong guarantees of correctness (that the
program will generate the same result with or without the optimisation) but in doing so
constrain the scope of their improvements. DTRSO assumes that a developer will consider
the correctness of any source-code changes, before incorporating them, just as they would
for changes they wrote. It is worth noting that all suggested changes are sound given the
program adheres to the assumed concurrency model of purely task-based coordination (set
out in Section 2.4). Though, many real-world programs will only loosely adhere to this
model – for example, many real-world programs will use shared resources for logging, or
other small ways – and hence a developer check is important.

Further to correctness guarantees, as DTRSO uses execution traces to identify im-
provements, it is also important that the traces are representative of normal executions.
This requires inputs and an execution environment that are representative of normal usage
of the program. Without a representative trace the suggested changes may not, in fact,
improve the program performance, regardless of their behavioural correctness. The effect
of (un)representative traces is considered in Chapter 4.

16

int example(ExecutorService executorService) {
Future<Integer> result = executorService.submit(() -> {

// Some work.

});
int other; // Initialised by <other work>

/* <other work> */

return result.get() + other;

}

Figure 1.2: Simplified Java example of a potentially inefficient concurrency pattern
(in Java 8 ExecutorService.submit is the standard way of running some code in the
background). If <other work> takes a long time, then the use of a background task makes
sense as it is parallelising work. However, if it does not take a long time, then the program
may end up using two threads where one would suffice (one thread doing the work and
one thread waiting for the other to finish).

Concurrency interconnectedness

Small changes to concurrency, such as inlining a task (executing a task sequentially
instead of submitting it to a thread pool), can have significant effects on performance.
As concurrent operations naturally interact with the rest of the system, modifying or
removing them can have significant knock-on effects on other concurrent components. This
is one of the key challenges in accurately estimating the effect of a change to concurrency.

Motivating concurrency example

Wait-limited tasks represent an inefficient use of concurrency within the target task-based
concurrency model (more detail in Section 2.4). They are tasks that spend the majority of
their execution waiting for other tasks’ results. In the simple case this might be a task that
immediately spawns another task and waits on it. Wait-limited tasks are inefficient [121]
because they consume a thread (and its associated resources) without progressing the
program’s computation3. This is especially problematic in thread pools with limited
numbers of threads as the thread pool can reach saturation (all threads being used), either
throttling performance (both throughput and potentially execution speed) or, potentially,
causing a deadlock.

For example, Fig. 1.2 provides an example of Java code that may, or may not, be an
inefficient use of concurrency, depending on how long the <other work> block takes to
execute. If it takes a long time, then the use of concurrency may be very beneficial by
parallelising long-lived work. However, if it does not take a long time, then the program
may end up using two threads where one would do.

1.1 Thesis structure

This thesis is structured around four core research chapters (Chapters 3, 4, 5, and 6).

3Other concurrency models, such as Fork-Join, address aspects of this problem by having threads
execute other tasks while awaiting a task’s result. However, these models are not always desirable, as
discussed in Section 2.4.

17

Chapter 2 provides general technical background, such as a description of the concurrency
model investigated in this thesis, and describes a program, Acme, used for evaluation
in later chapters.

Chapter 3 describes the Quilt execution tracer that acts as the foundation of DTRSO .
Quilt generates a trace-log which is then used by Rehype to identify improvements
(as shown in Fig. 1.1).

Chapter 4 describes Rehype, the core concurrency-performance analyser. Rehype takes
in trace-logs, estimates the effects of potential optimisations to identify improvements,
and produces improvement specifications that are used by Scopda (see Fig. 1.1).

Chapter 5 describes Scopda, a set of methods and a tool for generating static source-code
patches (git-diff style patches) from improvement specifications generated by Rehype.

Chapter 6 investigates the observer effect inherent in tracing overhead. First describ-
ing the theoretical aspects of this overhead, such as non-uniformity, and then by
performing experiments with Quilt and Rehype to demonstrate the effects in the
real-world.

Chapter 7 discusses points of interest, theoretical nuances that do not fit within the
research chapters, potential uses of the research, and areas for further investigation.

Chapter 8 concludes the thesis by summarising and highlighting the key ideas.

Chapters 3, 4, and 5 describe the components that form my implementation of DTRSO .
In doing so, they also each address research questions specific to their respective stages.
For example, Chapter 4 considers the ability to accurately estimate performance effects of
concurrency changes and the limitations of execution trace refactoring, while Chapter 5
addresses bridging the dynamic-to-static gap, a gap regularly bridged in the other direction
(discussed in Chapter 2).

1.2 Thesis contextualisation

This thesis aims to address a fundamentally practical problem, how to improve software
performance by improving concurrency usage, and in doing so tackles a number of theoret-
ical challenges, such as bridging the dynamic-to-static gap (Chapter 5). This problem, and
decisions made in this thesis, is best understood within the context of the thesis statement
(Section 1.2.1). I give a bit more colour and intuition to this statement via an imaginary
scenario (Section 1.2.2) which aims to provide a concrete setting for decisions throughout
the thesis.

1.2.1 Thesis statement

The rationale of much of the work within this thesis can be captured in the thesis statement
from the beginning of the abstract. This statement is referenced throughout the thesis.
For simplicity, I reproduce it here:

18

Modern software engineering is, broadly, a continuous activity – many pieces of industrial
software are constantly developed, they are never “finished”. This process of constant
improvement necessitates small, incremental changes to ensure stability and maintainability
of the software and its codebase. This includes incremental changes to improve performance.
In this thesis I focus on improvements to the efficiency of concurrency usage, at a source-
code level, within a piece of software. These improvements are challenging to identify
and implement as concurrency and performance behaviour is only exhibited at runtime,
thus requiring dynamic analysis, whilst making incremental changes requires static source-
code patches. This challenge is compounded as a codebase evolves, as the efficiency of
various concurrency uses may change – an instance of concurrency that was previously
beneficial may become inefficient due to the evolution of the software. I present an
automatic-program-analysis methodology to identify potential performance improvements,
estimate their quantitative effect, and generate static source-code patches to implement
them. Using a proof-of-concept implementation, I present evaluations that demonstrate
the methodology’s efficacy.

1.2.2 Running scenario

To provide contextualisation and intuition for various decisions made throughout this
thesis and its overall motivation, I describe an imaginary industrial scenario below. The
narrative of the scenario is updated in each relevant chapter to position the chapter’s
content within the intended industrial context.

Our imaginary scenario centres on a software engineer, called Banjo, working on a large
piece of industrial software, called Paterson. Banjo works at a large technology company,
with hundreds of engineers, which develops Paterson. Paterson is complex, comprised of
tens of millions of lines of code, and runs across multiple servers in the cloud.

We begin with Banjo being assigned to improve Paterson’s performance, particularly
the throughput of its web-request handling. Web server logs indicate that the speed of
request handling by a server degrades as more simultaneous requests are made to the
server. However, initial performance profiling indicates that the servers still have more
compute and memory capacity available when this degradation begins.

Banjo knows that the web-request handling component uses task-based concurrency
extensively and, furthermore, that this can be inefficient in some circumstances. Impor-
tantly, this could, Banjo hypothesises, lead to an artificial resource saturation where all
threads in Paterson’s thread pool are being used, limiting compute capacity, even though
the hardware has not been fully saturated. Banjo performs more profiling to record the
state of the thread pool across time. This profiling shows that the thread pool is, indeed,
becoming fully saturated (i.e. there are no threads available for new tasks) just before
performance begins to degrade.

Now Banjo has a hypothesis, and some initial evidence, that thread pool saturation
is limiting throughput. However, it seems odd to Banjo that, despite the thread pool
being saturated, the CPU is not 100% utilised. Because the number of threads in the pool
is greater than the number of cores, Nc, the CPU should be fully utilised if at least Nc

threads are active. Given the CPU is not fully utilised, the number of active threads at
any point in time must, therefore, be less than Nc. The remaining occupied threads, at
that point in time, must be asleep.

The key question for Banjo, then, is how to stop the thread pool from saturating before

19

hardware resources are saturated (CPU and memory, primarily)? There are three general
options:

1. increase the thread pool size until the active threads saturate the hardware before
all threads are occupied;

2. reduce the number of occupied threads that are sleeping;

3. or change the underlying thread pool implementation to mitigate the impact of
thread saturation (e.g. using a fork-join thread pool, see Chapter 2).

The first option would be a short-term solution, though, it has negatives as well, such
as increased memory usage, resource contention, and context switching. However, the
inefficient thread usage will continue to be an issue, assuming the distribution of active
threads to sleeping threads remains consistent, as more threads will be used for the tasks
that spend time sleeping. The second option has the dual benefits of providing a longer
term solution and being possible with localised incremental changes, but it requires more
effort than increasing the thread pool size. The third option can be good in instances
where it is possible (e.g. small projects), though modifying the semantics of a core structure
within a large and/or complex codebase is risky and can have unintended consequences
(such as introducing new bugs). As noted in the thesis statement, complex industrial
software requires small incremental changes4, and so this third option is not viable for
Banjo5.

Weighing these options, Banjo concludes that the safest route is to reduce the number
of occupied threads that are sleeping, thus reducing the rate of thread pool saturation.
Banjo concludes that this will only require small incremental changes that can be easily
reviewed and approved by their colleagues (an essential attribute). Furthermore, each
change’s effects can be easily measured and are constrained to their local area within the
software.

To summarise, Banjo is trying to improve the performance of Paterson, a large complex
codebase that uses task-based concurrency. Banjo has identified thread pool saturation as a
potential area for improvement and has decided to reduce the number of threads spending
unnecessary time sleeping, to reduce the saturation rate on the thread pool, without
affecting the speed of the software more generally. This is a particularly attractive approach
as it can be performed in small incremental changes without introducing significant risk
or disruption to the broader group of software engineers working on Paterson.

The key challenge for Banjo is identifying which parts of the source-code to modify
and how. This thesis presents an approach to automatically identifying and quantifying
potential changes, and generating the relevant source-code patches.

The narrative instalments included at the start of each contribution chapter chronicle
Banjo’s requirements and use of DTRSO at each stage of their work on improving Paterson’s
performance.

4There may be instances where incremental is not possible, but those are the exceptions.
5 To further illustrate this point, imagine if you asked an engineer to try and improve the performance

of some software and they responded with the suggestion of changing the semantics of a core component.
Such a suggestion would, in most cases, be a change of inappropriate magnitude for the problem being
addressed.

20

1.3 Findings

Using DTRSO , developed across Chapters 3, 4, and 5, I demonstrate that:

1. Removing certain instances of concurrency can improve overall system performance.
Many such uses of concurrency may have originally been positive (improving perfor-
mance when first implemented) but, due to subsequent changes, become inefficient.

2. Such performance inefficiencies can be consistently and automatically identified.

3. It is possible to accurately estimate the performance effect of source-code changes in
a concurrent system.

4. Static source-code patches can be generated from dynamic analysis data; additionally
cases of source-code patch ambiguity, where it is unclear how to implement a change,
can be systematically identified and rectified.

5. Tracing that introduces too much overhead can disrupt concurrent behaviour and,
as a result, invalidate subsequent analyses of the trace. Though, without tracing
sufficient aspects of a program it is impossible to effectively identify inefficiencies.

Practically, I also use the DTRSO implementation and apply it to a (large) real-
world, industrial server program. Implementing the suggested improvements doubles the
theoretical throughput of the server API, by improving its concurrency efficiency.

These findings are early steps within the field of Dynamic Analysis for Concurrency
Optimisation. There are many, likely more interesting, ideas to be developed and discoveries
to be made in this field. I hope that the community will take a keener interest in this
field, and the broader field of Dynamic Analysis for Static Optimisation, in the future and
develop tools for improving software in new and better ways.

1.4 Published material

Aspects of this thesis have been published at peer-reviewed venues in three papers:

• Parts of Chapter 3 and the key ideas of Chapter 4 were presented at FTfJP’21
(Formal Techniques for Java-like Programs) [81].

• The key ideas underlying Chapter 5 were also presented at FTfJP’21 [82].

• The key ideas of Chapter 6 (along with relevant aspects of Chapter 3) were presented
at MPLR’21 (Managed Programming Languages & Runtimes) [80].

21

22

Chapter 2

Technical background

This chapter aims to provide a general technical basis for the rest of this thesis and
a reference point for certain components that are reused throughout the thesis (such
as the target evaluation program, Acme). We discuss the general field of program
analysis [75] in Section 2.1, the differences between static and dynamic analysis, and
the challenges of combining them. In Section 2.2 we delve deeper into dynamic analysis
for static optimisation, and then more specifically into dynamic analysis for concurrency
optimisation. We review tracing, sampling, and execution control techniques for capturing
dynamic data in Section 2.3. I describe the concurrency model that DTRSO (Dynamic-
Trace Refactoring for Static Optimisation) focuses on and review some related models
(Section 2.4). Though there are many potential concurrency models, and optimising each of
them would be useful, I focus on a single model (task-based concurrency using thread-pool
scheduling) in this thesis. In Section 2.5 we briefly review Java and the Java Virtual
Machine (JVM) as the DTRSO implementation I develop in this thesis is designed for
Java programs. Finally, I give a quick overview of Acme in Section 2.6.1, an industrial
server program used for evaluation in later chapters.

2.1 Program analysis

There are two broad categories of program analysis, static analysis and dynamic anal-
ysis [75]. Static analysis uses the static program information (e.g. the program code),
while dynamic analysis uses information regarding the operation of the program (e.g.
execution traces). Most methods that work with source code can technically be classed
as static analysis, even if they do not perform extensive analysis. As such, all compilers
are essentially forms of static analysis, though compilers differ in the sophistication of
their analyses. Whereas, dynamic analysis is less pervasive as it is a post-hoc (that is,
it operates given some execution of the program) and thus there are greater barriers to
usage.

In this thesis I use the term “analysis” to refer to both analysis and transformation
Static analysis is a highly developed field used by every compiler [1, 22]. Dynamic

analysis, on the other hand, is less developed and used in specialised cases. Dynamic
analysis is useful as it has different properties to static analysis, in particular, it can use
precise information regarding an execution of a particular program with a particular set
of inputs, whereas static analysis works with complete, but imprecise, information.

23

2.1.1 Static analysis

Static analysis operates on static program representations, such as the program source
code. It is a highly developed area of program analysis and is used in every compiler.
Technically, any algorithm or method using static program information could be considered
static analysis – it is a broad term. Static analysis is used to prevent bugs at compile-time
(e.g. with type-checking [88]), improve performance with optimising compilers [1], and
warn against bad code patterns [48], among many other uses. It is particularly effective
as, in many cases, it can be applied with little overhead in terms of developer effort as it
runs directly on code.

Examples of static analysis include:

Data-flow analysis used to determine the different sets of calculated values and their
usages (see Section 1.3 of Nielson et al. [75]). This can be useful when checking
program correctness (e.g. during type checking) and optimising programs.

Control-flow analysis used to determine the possible routes through a program based
on the control-flow statements, such as if/else statements (see Section 5.1 of
Nielson et al. [75]). This can be used to determine unreachable code fragments,
among many other uses.

Class-hierarchy analysis used to determine the possible classes of a value (see Snelting
and Tip [104]). This is important when analysing object-oriented programs to
determine which implementation(s) of a function will be called from a particular
invocation.

Type checking is used to prevent bugs by ensuring that values adhere to the defined
types (see Pierce [88]).

While examples of static transformations include:

Function inlining is a performance optimisation that inlines the code from a function
in cases where the overhead of invoking another function is more than the overhead
of inlining its contents at every call-site (see Chapter 12 of Aho et al. [1]).

Expression simplification is another performance optimisation that simplifies expres-
sions that include redundancies (see Chapter 9 of Aho et al. [1]). For example, a
variable that has a constant value (which can be identified using data-flow analysis)
can be replaced with the constant value itself, removing the need to load the variable’s
value when performing the expression.

As noted previously, static analysis has complete, but imprecise, information about the
program it is analysing. This means that it can operate based on all possible executions
and edge cases in a program, but cannot determine whether they will occur or not (without
actually, or effectively, executing the program). The root issue is that many problems are
undecidable given complete but imprecise information, such as the halting problem, which
limits the extent to which static analysis can be applied. However, the use of complete
information does allow static analysis to perform guarantee-based optimisations, where the
analyser guarantees that the program behaviour will not be affected by a given optimisation.
Such guarantees are essential to optimising compilers that perform optimisations without
checking with the developer.

24

2.1.2 Dynamic analysis

Dynamic analysis operates on program execution information, such as execution traces. It
is less developed compared to static analysis as, I argue, it has a greater barrier to use
and development in that it requires executing a program (in some form) before analysing
the result. Furthermore, the types of problems it is suitable for is more restricted given
its incomplete, but precise, information. Dynamic analysis is used to detect security
issues [123], concurrency bugs [17], and optimise performance [105], among other uses. It
is particularly well suited to concurrency analysis and performance analysis as both are
exhibited at runtime and such analysis requires precise information.

One of the most common usages of dynamic analysis is Just-In-Time optimising
compilers [5, 51] (referred to simply as JIT). In a simple form, a managed runtime, such as
the JVM [59], will contain a JIT compiler will that uses dynamic analysis to identify “hot”
code paths (those invoked frequently) and will compile pieces of non-native code to native
code. The non-native code may be interpreted source code in some cases or, in many
cases, a bytecode that is executed by the runtime. Compiling to native code provides a
significant performance boost, but is not desirable for all code paths. It may be impossible
to compile certain code paths in certain dynamically typed languages (e.g. Python [122])
to native code as value types may vary across different invocations of the code paths.
Moreover, many code paths will not be executed enough to warrant compilation to native
code (that is, compiling to native code would hinder performance more than having the
native version would help). Hence the use of dynamic analysis to determine which code
paths should be compiled.

Another form of dynamic analysis is profile-guided optimisation [63, 87], whereby
performance profiles are gathered for a program by executing it numerous times. These
profiles are then used by a compiler optimisation when determining how to optimise
different components of the program. Specifically, the profiles provide execution frequency
information for the different components (e.g. different functions) allowing the optimiser
to use more precise information during optimisation, rather than heuristics.

In contrast to static analysis, dynamic analysis has precise, but incomplete, information.
That is, for the information is uses, the information is precise as it relates to an exact
execution of the program. However, it is incomplete as it represents only the execution
that occurred, not all possible executions. This makes it effective for certain types of
analysis, such as, again, concurrency and performance analysis where precise information
is essential and complete information is not always necessary or helpful. However, this
property also introduces a key constraint of all dynamic analyses, they are only as good
as the data they use is representative. If the data is captured for an execution that is
not representative of normal executions (e.g. because it is based on unusual input to
the program), then the analysis may not be useful for the program in the general case.
Furthermore, the use of incomplete informations means that dynamic analysis, unlike
static analysis, cannot directly provide guarantee-based optimisations. Instead, it must
either be augmented with static analysis to provide the guarantee, or use a separate safety
mechanism, such as using the developer as an “oracle” or inserting runtime checks (e.g.
as used by some JIT compilers to ensure assumptions made during optimisation hold at
runtime).

25

2.1.3 Combining static and dynamic analysis

The combination of static and dynamic analysis is less common and presents its own
interesting challenges. Some program analysers, such as JIT compilers, may use both
static and dynamic analysis without combining static and dynamic analysis. For example,
a JIT may use dynamic analysis to identify which interpreted functions to compile to
native code and then use static analysis as part of that compilation process. However,
such use of both types of analysis does not necessarily involve combining them.

Combining static and dynamic analysis involves using both in a discrete task, or
using the output of one as a direct and essential input to the other. For example, a
common approach in concurrency race-condition (a form of concurrency bug) detection
analysis [17, 16, 64] is to identify potential race-conditions using static analysis (e.g. based
on lock overlaps) and then verify them using dynamic analysis (e.g. by strategically slowing
the program during execution to trigger the race-condition). The process of combining
both types of analysis presents its own challenges that are related to, but also somewhat
independent of, each form of analysis. In a general sense, these challenges relate to the
translation between the static and dynamic domains.

These challenges are, in some cases, straightforward when going from the static
domain to the dynamic domain. For example, controlling execution based on some
static analysis [57] is a fairly direct translation. However, while some translations from
the dynamic domain to the static domain are straightforward (such as profile-guided
optimisation, discussed above), other translations from dynamic to static are significantly
more challenging, as we shall see in Chapter 5.

2.2 Dynamic analysis for static optimisation

This thesis explores the field of Dynamic Analysis for Concurrency Optimisation, a
sub-field of Dynamic Analysis for Static Optimisation. While JIT and profile-guided
optimisation are both closely related, I argue they slightly orthogonal to Dynamic Analysis
for Static Optimisation, as I define it. Specifically, they use dynamic analysis in a
fairly straightforward manner to assist static optimisers by providing execution frequency
information. Whereas, I argue a key attribute of methods within this field is the use
of dynamic analysis as the root of the optimisation and static analysis as a tool for
implementing an optimisation. In this way the methods are dynamic-driven, rather than
dynamic-assisted. This distinction is important only insofar as it delineates the challenges
faced in the field. I argue a primary challenge for methods in this field is bridging the
dynamic-to-static domain gap, whereas in JIT and profile-guided optimisation methods
the static analysis uses the dynamic data without significant challenge.

I argue that concurrency optimisation is an understudied sub-field, but that it is a
particularly suitable target for dynamic analysis as concurrency behaviour and performance
are both only exhibited at runtime and precise information is important for effective
optimisation. In this thesis I specifically focus on optimisation via reduction of concurrency,
which raises the questions “why do people overuse concurrency?” and “is this common?”
The simple answer is: it is rarely obvious that concurrency is overused until dynamic
analysis is performed. Even then it may be that overuse of concurrency does not impede
performance until significant load is applied to the system (when system resources will
be pushed to their limits). Furthermore, it may be the case that when certain instances

26

of concurrency were first added they were beneficial but, through the evolution of the
software, they have since become impediments to performance.

2.3 Tracing, sampling, and dynamic data

Dynamic analysis relies on data captured during the execution of a program. There are
three high-level techniques for capturing dynamic data: sampling (sometimes referred to
as profiling, though profiling is a broader concept), tracing, and execution control. In this
thesis we focus primarily on tracing (Quilt in Chapter 3 is a tracing method). We briefly
review all three techniques here.

Sampling (aka profiling) is, arguably, the most commonly used method for analysing
the performance of a program. Sampling based tools capture frequent snapshots of
information about a program’s execution. For example, the popular Linux perf tool [60]
stops a process some number of times per second and snapshots data such as current call
stack on threads, memory usage, and hardware counters (e.g. CPU instruction counts).
The rate at which a sampler snapshots information is called its frequency and is measured
in hertz (e.g. a frequency of 1KHz means capturing 1,000 snapshots per second, or 1
snapshot every millisecond). The rate of sampling is a key driver of overhead introduced
by a sampler – the less a sampler stops a program, the less overhead it will introduce. As
such, many samplers’ frequency can be configured, enabling them to be used in a variety of
environments that might otherwise be untenable (e.g. running a sampler in a production
environment can be acceptable if the sampling rate is low enough as to keep overhead
below some threshold). Samplers are useful as a general tool as they are easy to use,
straightforward to interpret, broadly available, and have good support from other tools
(e.g. Flame Graphs [30] are a popular visualisation for numerous samplers). For further
reading, Oaks [78] provides an introduction to performance analysis and profiling in Java
(particularly Chapter 3), while Hofer et al. [38] and Nisbet et al. [76] provide further
discussion on sampling specifically within Java applications from a research perspective.

Tracing involves recording events every time they happen. For example, recording an
event every time a lock is acquired, a network request is made, or an exception is thrown.
Which events are of interest, and thus captured, is determined by what analysis is to be
performed on the trace. The tracer in this thesis, Quilt, captures concurrency related events
and function entry and exit events. Whereas, Castor [66] captures non-deterministic events
(such as disk operations) to enable Record & Replay, Hofer et al.[39] record lock-based
events to enable lock contention analysis, and Lengauer et al. [56] record memory-related
data to enable analysis of memory performance issues. Where sampling aims to capture
snapshots of a program to provide indicators useful for performance analysis, tracing aims
to capture all occurrences of certain events (almost always a more limited set of events
than sampling). Both techniques are valuable in different circumstances.

Execution control involves taking control of a program and managing the execution
of the program to enable deeper analysis (e.g. debugging). This is a significantly more
heavyweight technique (i.e. its overhead is generally far more substantial than sampling
and tracing), but targets very different use cases. For example, Valgrind [74] enables

27

analysis of a program’s memory usage by tracking all memory allocated, freed, and used.
This enables tools built on Valgrind to automatically identify bugs, but it involves a
significant overhead cost (between 400% and 10,000% overhead [74]). LLDB [62], on the
other hand, takes control of a program’s execution to enable manual debugging (e.g. by
stopping execution at defined breakpoints).

In summary, the three techniques can be thought of broadly on a continuous spectrum,
with sampling at one end, execution control at the other, and tracing somewhere in the
middle. Sampling provides low-cost indicators as to what a program is doing, though, it
is limited by only providing snapshots. Tracing has a higher cost in terms of overhead
(as a general rule, though not always) but provides full information about the events
it captures (e.g. if tracing lock acquisition, a user or analyser can be confident that all
lock acquisitions are recorded, whereas with sampling no such confidence is possible).
Execution control tools have a much higher overhead, but enable online control of what
a program does – where tracing provides a record of what happened, these tools enable
analysis as “it happens”.

2.4 Concurrency models

Concurrency is the decomposition of a program into multiple components that may be
executed in an arbitrary order [53]. Concurrency and parallelism are commonly substituted
as synonyms, however, there is an important distinction: concurrency is concerned with
how a program is logically decomposed into multiple parts, whilst parallelism is concerned
with executing multiple operations at one time. Naturally, these concepts are closely
connected as concurrent components may be executed in parallel (and, indeed, this is
the practical aim of concurrency in many programming languages and runtimes). In this
thesis we are interested specifically in concurrency, not parallelism, though we assume the
concurrent programs being considered are executed with some level of parallelism1.

There are multiple models of concurrency – i.e. multiple ways to decompose a program
into components. A key high-level delineation of concurrency models is whether they
perform communication by synchronisation or synchronisation by communication. Task-
based concurrency is an example of the former approach, synchronisation occurs when a
task waits on the result of another task and, in a pure form of task-based concurrency,
this is the only avenue for concurrent operations to communicate. Another example of
communication by synchronisation is the use of shared global variables to communicate;
two threads may perform concurrent operations and update a shared global variable
(protected by a guard (e.g. a mutex)), upon which they synchronise, to communicate. A
good example of synchronisation by communication is the actor model [35] in which a
set of concurrent “actors” independently perform computations and then asynchronously
communicate by passing messages to each other. In this model, actors are not allowed to
synchronise on shared global variables and instead must interact only by message passing.
This removes the need for shared locks, which can be a source of inefficiency in concurrent
processing.

Though there are many forms of concurrency, in this thesis we will focus on a particular

1This is important as it affects assumptions we make about concurrent programs (e.g. that tasks
executing in parallel affect each other by consuming the same resources). Whereas, if we were concerned
with concurrent program that executed without parallelism, we would presumably be less interested in
shared resources and more interested in time sharing on the single execution thread (i.e. task scheduling).

28

model, task-based concurrency. In this model of concurrency, a program is decomposed
into a set of tasks that take some input and produce some output. Tasks may, themselves,
generate a set of sub-tasks during their execution. Task-based concurrency does not define
how tasks should be executed. Though, in this thesis we focus on a model whereby tasks
are submitted to a thread pool which then executes tasks on a thread from its managed
“pool” of threads.

In this section, I first describe the abstract concurrency model we assume (i.e. that
programs must adhere to) for the rest of the thesis and provide requisite background on
Java 8’s concurrency utilities that enable this model. I then discuss other similar and
relevant concurrency models, specifically Fork-Join and Coroutines, and how they relate
to this thesis.

2.4.1 Abstract concurrency model

The key restriction of this thesis’s target concurrency model is that a program’s concurrent
communication must be solely based on tasks (i.e. no additional shared-memory-based
communication). Non-functional operations such as logging (i.e. operations that do not
affect the result of the program) are exempt from this restriction.

Tasks

Tasks are concurrent constructs that represent a function to be executed and store the
result from the function when it completes. When some code attempts to access the result
of a task it will sleep until the task has completed (i.e. the task has computed its result),
thus performing synchronisation within task-based concurrency. A task within the target
concurrency model conforms to the following restrictions:

• A task is “practically functional”, that is, it is given all arguments required to
execute the function and returns a single result, which is unaffected by which thread
executes it or precisely when it is executed.

• While a task may have side effects (e.g. caching results or general logging), its side
effects are expected to be irrelevant to the core functional result of the task.

• Similarly, tasks do not rely on/communicate via mutable global variables.

• A task may recursively create other tasks.

• A task may access, and wait for, the results of other tasks.

• A task is not functionally affected by execution context such as which thread it
executes on, or how it is executed.

• A task is considered to be constructed when it is given to a thread pool to execute.

There are five operations in a task’s life-cycle2 (the full set of life-cycle operators is detailed
in Section 3.2):

Task Constructed – occurs when the task is first constructed.

2For the purpose of this work we assume tasks are not cancelled.

29

Task Execution began – occurs when a thread begins executing the body of the task.

Task Result set/execution finished – occurs when the execution of the task finishes and
the task result is set.

Task Result get began – occurs at the start of the access to the result of the task. If the
task has not finished executing when another thread access its result, the accessing
thread will sleep until the result is ready.

Task Result get finished – occurs at the end of the access to the result of the task.

Every task is assigned a unique task-id at construction. Some trace data reference task-ids
to associate some types of events with specific tasks.

Thread pools

Thread pools contain a fixed number of worker threads and a queue of tasks to execute.
Thread pools reuse threads to execute multiple tasks (it is much cheaper to coordinate
threads than it is to create a new thread for each task). We assume that all threads in a
thread pool are solely used for executing tasks. Threads exist in one of three states:

Active: the thread is awake and executing a task.

Waiting : the thread is sleeping because it is executing a task which is waiting for the
result of some other task (see result get began above).

Unoccupied : the thread is sleeping while waiting to be assigned a new task.

Threads tell their containing thread pool when they can execute a new task (transition to
the unoccupied state). The thread pool assigns new tasks to available threads. As there is
a limited pool of threads, threads are reused to execute tasks.

To maximise throughput programs should have most threads active most of the time.
While waiting a thread is consuming system resources while not actively progressing its
current task. While unoccupied the thread may consume some system resources (e.g.
memory while waiting for a task to execute), but is available to be used. When a thread
finishes executing a task it transitions to the unoccupied state, even if another task is
immediately available to execute (in this case the thread may immediately transition back
to active if it is assigned to execute the task).

In this thesis threads refer to the source-code-level logical threads. Each thread is
assigned a unique thread-id that trace data reference to connect events to the thread
they occurred on. Although threads may be executed on different physical CPU cores,
depending on the operating system scheduler, this is below the level of detail we are
concerned with in this thesis.

Combinators

Within the subject of concurrency3, a combinator is a declarative construct or operation
that orchestrates tasks. For example, tasks A and B could be chained by passing the

3The term “combinator” was originally termed for “SKI combinator calculus” [103] and was subsequently
adopted for use in concurrency. In this thesis we are only concerned with the concurrency version.

30

// Some processing functions.

Future<Step1Result> step1();

Future<Step2Result> step2(Step1Result param);

// The orchestration function.

Future<Step2Result> twoStepProcess() {
return asyncTask(() -> {

Step1Result s1Result = step1().waitForResult();

Step2Result s2Result = step2(s1Result).waitForResult();

return s2Result;

});
}

(a) Java-esque pseudo-code that orchestrates two tasks using waits.

// step1() and step2() ...

// The orchestration function.

Future<Step2Result> twoStepProcessCombinator() {
return Combinator

.chainResultFrom(() -> step1())

.into(s1Result -> step2(s1Result));

}

(b) A combinator version of the code. This version requires one less thread as it does not need
one to orchestrate the tasks.

Figure 2.1: An example of task orchestration using wait-based programming and combina-
tors.

output of task A as a parameter to task B. Task B would only be scheduled to execute
after task A completes. The benefit of combinators is that they enable this orchestration
to be declared before task execution, rather than requiring other orchestration code.
Theoretically, perfect use of combinators would result in wait-free concurrency. However,
one reason combinators are not ubiquitous is that they are less intuitive and ergonomic
than the more straightforward orchestration code alternative [121] (this is discussed further
in Section 7.3).

As an example, Fig. 2.1a contains Java-esque pseudo-code that uses imperative orches-
tration, while Fig. 2.1b shows the combinator version of the code. In the non-combinator
version, the function twoStepProcess requires an extra thread to orchestrate the two tasks
from step1() and step2(), which already use their own threads. The code examples have
the same result, except the combinator version does not require the orchestration thread,
so the whole process uses only one thread.

These examples demonstrate a key conceptual and performance disconnect in task-based
concurrency: while the operation waitForResult() (named .get() in many implemen-
tations) is central to the conceptual use of futures (and thus tasks), it is the source of
sleep-blocked threads in thread pools (i.e. waiting threads). To optimise performance,
thread-pool-based code should never invoke waitForResult() directly, unless it is highly
likely that the waited-for task is complete (so waitForResult() causes no delay). Using
the combinator approach alleviates this issue for developers as the scheduler chains tasks,
invoking waitForResult() only when the result is immediately available (and thus will not
sleep). Realistically, in many cases some code will need to invoke waitForResult() on the
combinator future, but this is true regardless and the reduction of in-task waitForResult()

31

invocations can improve resource-usage efficiency. See Wojciechowski [124] for a further
discussion on combinators as declarative orchestration tools.

2.4.2 Java 8 implementation and background

In this thesis I address Java 8 in particular as it remains the most widely used version of
Java. According to JetBrains’4 Annual Developer Ecosystem Survey, which is based on
over 30,000 survey responses, in 2019 Java 8 was used by 83% of respondents that indicated
that use some form of Java [46] (when this research began) and 73% in 2021 [47] (the
latest results as of writing). Furthermore, large software projects, such as Paterson in our
running scenario (Section 1.2.2), are more likely to be on older versions of runtimes (e.g.
Java 8). Changing the underlying runtime can be costly from a development perspective
(e.g. time-consuming) and comes with a level of risk due to the nature of changing a
foundational component of the software.

I describe Java 8’s standard task concurrency utilities as a general background, non-
standard Java concurrency frameworks may also be applicable. For further documentation
and reading, see the Java 8 java.util.concurrent package documentation [42].

The core of task-based concurrency programming is the concept of a future. A future
represents a value that will be available at some point, but not necessarily immediately.
For example, the return value of a task. Java 8 includes the Future interface with various
implementations depending on task implementation. A simple task implementation is
the FutureTask class. FutureTask implements the functionality for executing a task and
storing its result, as well as implementing the Future interface for accessing, and waiting
for, the result. Another implementation of the Future interface, that I use in this thesis, is
CompletableFuture which implements combinator pattern utilities. See Urma et al. [121]
for more information on CompletableFutures and combinators in Java 8.

Tasks are created by submitting some executable code, via the Runnable or Callable

interfaces, to an ExecutorService via the ExecutorService.submit() function which re-
turns a Future. ExecutorService is the generic concurrency execution interface in Java 8.
An example of a task submitted via an ExecutorService is given in Fig. 2.2.

The standard implementation of a task in the Java 8 concurrency utilities is FutureTask.
The general pattern in thread pool implementations of ExecutorService (e.g. ThreadPool-
Executor) is to create a FutureTask with the given Runnable or Callable, push the Future-

Task to the task queue, and return the FutureTask to the caller of ExecutorService.submit()
(as the Future return value). When a worker thread receives the FutureTask to execute,
the thread calls FutureTask.run() which executes the Runnable/Callable.

Life-cycle events as Java operations The task life-cycle operations, described above,
correspond to FutureTask functions as given in Table 2.1.

2.4.3 Related concurrency models

Though this thesis focuses on classical thread-pools, other concurrency models address
aspects of (in)efficiency. In this section we will consider two models closely related to

4JetBrains is the maker of a range of popular development tools, including the Integrated Development
Environment (IDE) IntelliJ IDEA [41] and the JVM-based language Kotlin [2].

32

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

import java.util.concurrent.Future;

public class ExecutorServiceExample {
static void main(String[] args) throws Exception {

// Create a thread pool executor service with 8 threads.

ExecutorService es = Executors.newFixedThreadPool(8);

Future<?> runnable = es.submit(() -> {
// No return value.

System.out.println("Hello task");

});
Future<String> callable = es.submit(() -> {

// Return some value.

return "Hello world";

});

// Wait until the runnable is executed. Will print "Hello task".

runnable.get();

// Print the result of the callable task, after waiting for the

// task to execute. Will print "Hello world".

System.out.println(callable.get());

// Output:

// > Hello task

// > Hello world

}
}

Figure 2.2: An example Java program that creates two tasks using the ExecutorService

and Future interface, and the Executors utility for creating a thread pool ExecutorService
with 8 threads.

33

Life-cycle operation Java function

Task construction FutureTask.init()

Execution start start of FutureTask.run()

Result set FutureTask.set() and variants
Result get start start of FutureTask.get() and variants

Result get completion end of FutureTask.get() and variants

Table 2.1: Mapping of task life-cycle operations to Java FutureTask functions.

our target model, Fork-Join [55] and Coroutines [107]. Both models support task-based
concurrency and aim, in part, to address the inefficiency of sleeping threads [121].

It is worth noting that unnecessary concurrency (here in the form of creating unnecessary
sub-tasks) is worth removing, regardless of the underlying concurrency model, as all forms
of concurrency add some amount of overhead. Though, some concurrency models aim
to minimise this overhead by using lightweight concurrency primitives so that redundant
concurrency has a lesser impact.

When considering related concurrency models, it is also important to take into account
that each concurrency model has its pros and cons, none is a perfect solution, and that
changing the concurrency model of a piece of software is risky. Changing concurrency
models introduces a risk of performance degradation (e.g. via new worst-case behaviour)
or even the introduction of new bugs. For example, when a large video game, Fallout
3 [86], was released a significant number of players experienced unexpected crashes. It
was discovered that the crashes were due to a concurrency bug. Specifically, the game
was developed and tested on machines with 4-core processors and when run on 8-core
processors an error could occur and crash the program. Users fixed this bug by limiting the
number of cores the program could access [85]. Though an isolated case, this demonstrates
the risks and fragility inherent in concurrency and modern software. In short, changing
the underlying concurrency model to improve concurrency efficiency would not fit within
the bounds of a small, incremental change (even if the code change itself were small) – as
emphasised in the thesis statement (Section 1.2.1).

Furthermore, it is valuable to have the programmer decide how to fix an issue or
improve performance, so though changing the underlying concurrency model may be viable
in some instances, it is not necessarily the best course of action. Providing the programmer
this choice, and informing them of the effects of making a change, is a key motivation of
this thesis.

Section 7.2 discusses how the methods underlying DTRSO may generalise to concur-
rency models beyond than the target concurrency model.

Fork-Join

Fork-Join is a task-based concurrency model based on work-stealing [26, 15, 55, 94]. It
aims to improve efficiency by multiplexing tasks across a pool of workers (a worker is
a thread within the Fork-Join thread pool) and, most relevantly for this thesis, having
workers execute queued tasks while waiting for sub-tasks to finish execution, instead of
sleeping. This is one method to address the issue that sleeping threads is harmful (see
Section 15.2.3 of [121]).

While this model may initially appear to resolve the same inefficiency of sleeping

34

that underlies the motivating example of this thesis (Chapter 1), there are a number of
reasons why it may not be an appropriate solution (including in situations such as our
imaginary scenario, introduced in Section 1.2.2). First, as with all concurrency models,
it has drawbacks. The most significant drawback for our motivating example, and our
imaginary scenario, is that it has a bad worst-case for latency-sensitive tasks (discussed
below). Second, as stated above, modifying the underlying concurrency semantics of an
existing program introduces risk, which in many cases will be unacceptable for the benefits
achievable.

Fork-Join semantics overview To understand how Fork-Join’s worst-case differs from
classical thread-pool scheduling, and why it can be bad for latency-sensitive tasks, we
must first understand the core of how Fork-Join works5. A Fork-Join system manages
a pool of workers (in Java, each worker operates on its own thread) and receives task
submissions, just as a classical thread-pool does. A task may create sub-tasks (referred to
as “forking” a task) to perform concurrent processing. When a sub-task is created, it is
added to the task queue of the worker executing the parent task. When the result of a
sub-task is required by its parent task it is “joined”. The semantics of “joining” is the
key point of interest for us. If the sub-task is not being executed, the worker can begin
immediately executing it. However, if the sub-task is being executed by another worker
and is not yet complete, the worker attempts to find other work to do. The worker will
first prefer to execute tasks from its own task queue. If its task queue is empty, it will
attempt to steal a task from another worker’s task queue. Only if there are no tasks in
any workers’ task queue, will the worker sleep.

Worst-case The semantics of “joining” is where Fork-Join’s worst-case differs from that
of a classical thread-pool. In a classical thread-pool, when “joining” a sub-task, a thread
will sleep until the sub-task is complete, and then immediately continue execution of its
current task6. This means that a task in a classic thread-pool is only dependent on its
explicit sub-task dependencies (as defined by the programmer in the code) – once the
sub-task completes, the parent task may continue immediately. However, in a Fork-Join
system a task’s continuation may become dependent on an arbitrary graph of other tasks,
defined at runtime. To make this concept more concrete, imagine a worker, w, executing
a task, a, when a attempts to join a sub-task, b, which is being executed on a different
worker, w steals another task, x, and begins executing it. Now task a may not continue
until task x completes7. In the code, a will have an explicit dependency on b defined by
the programmer, however, the dependency on x is determined at runtime by the Fork-Join
scheduling. Task x can be any arbitrary task and may depend on further sub-tasks. This
pattern can repeat indefinitely, creating an arbitrary graph of dependencies for a.

Thus the worst-case for a task in a Fork-Join system is arbitrarily bad. Whereas, the
worst-case for a task in a classical thread-pool is sequential execution of all sub-tasks,
assuming the thread-pool is configured to schedule tasks on their submitting threads if all
threads are currently busy, known as the Caller Runs Policy in Java [43]. Of course, a

5This is a high-level description of the core of Fork-Join, for a more in-depth description see Lea [55].
6Modulo OS-level scheduling of thread execution.
7This could be alleviated with continuation stealing, whereby, in this scenario, task a is placed on a

“to-be-continued” queue and then executed by a worker (including workers that did not begin the execution
of the task) when its dependency (task b) is ready. However, this is not implemented by Java’s Fork-Join
framework, and comes with its over trade-offs (e.g. context switching costs).

35

classical thread-pool may also deadlock if thread starvation occurs and the thread-pool
policy is to queue all tasks regardless of the state of threads in the pool.

Trade-off Fork-Join thereby trades higher thread utilisation under normal circumstances
for an arbitrarily bad worst-case. This trade-off makes sense for certain workloads, but not
for others. For example, in a large computational workload where the Fork-Join system
is used to compute one result (e.g. a large simulation), the greater thread utilisation is
desirable and the worst-case is acceptable as all tasks must complete before the overall
result is ready. Whereas, in a latency sensitive system, such as the running scenario
(Section 1.2.2) where web requests should be completed as fast as possible so they can be
returned to the client, the worst-case is less acceptable as it could lead to long, unpredictable
delays based on task scheduling.

Coroutines

Coroutines are a lightweight concurrency primitive generally implemented at the lan-
guage/runtime level [107]. They can have a similar conceptual design as task-based
concurrency, in that they are commonly represented as a function invocation with some
set of arguments. Though, they do not necessarily follow the Promise/Future pattern.
Their key benefit is their lightweight nature, enabling runtimes to swap their stacks on
and off OS threads cheaply. This makes them well suited to I/O bound programs as an
I/O operation can block a coroutine, which can then be swapped off a thread, instead of
blocking a whole thread.

As an example of a coroutine-based8 concurrency framework, a key selling point
of the Go [28] language is their “Goroutines” which are lightweight coroutines that
make it easy for programmers to implement concurrent systems. However, Go does not
use the Promise/Future pattern and instead emphasises the use of “synchronisation by
communication” via its “channel” data type (which enables two concurrent operations
to send messages across a channel) which has inbuilt language support, including special
syntax to make it more ergonomic. Much of this design is based off Hoare’s seminal work
on Communicating Sequential Processes [36].

Other implementations do enable task-based concurrency with the Promise/Future
pattern. For example, Kotlin [2], a JVM-based language, uses coroutines as the core
concurrency construct [24], and C++ 20 introduced support for coroutines [12]. In C++’s
implementation, a coroutine is a function which can be suspended and resumed (a synonym
for continuation), without blocking a thread. C++ does this by storing, and restoring,
the stack information required to resume the coroutine, when the coroutine is suspended.
The framework supports the Promise/Future pattern with the co await keyword, which
suspends the containing coroutine until the awaited coroutine returns (or yields) a value.
This is conceptually similar to Java’s Future.get(), though without the thread-blocking
semantics.

Addressing thread sleeps Coroutine-based concurrency systems are designed to avoid
blocking threads by making it relatively cheap (in terms of overhead) to swap coroutines
on and off underlying threads. In some ways this is conceptually similar to a Fork-Join

8Or “coroutine-inspired”, depending on how strictly you define coroutines.

36

framework with the addition of continuation stealing, meaning the worst-case behaviour
described above does not apply.

Due to their benefits, especially their relatively cheap performance cost and ergonomics
which make them easy to adopt, coroutines are becoming an increasingly popular form
of concurrency (as evidenced by their inclusion in new languages, such as Kotlin, and
recent inclusion in existing languages, such as C++). However, other concurrency models,
including Fork-Join and classical thread-pools, continue to be widely used and have benefits
of their own (e.g. less context switching can improve performance). Furthermore, it would
be a significant undertaking to modify a large codebase to use coroutines9, along with
the risks of changing the underlying concurrency semantics described above. So though
modern coroutine frameworks are promising options, especially for new software projects,
they do not provide a solution within the incremental change approach described in the
thesis statement (Section 1.2.1).

2.5 Java and the JVM

The DTRSO implementation I develop in this thesis targets Java and the JVM, so at
times Java and its semantics are relevant to understanding aspects of DTRSO .

As a brief review, Java is a statically typed, object-oriented programming language
that is executed in a managed runtime called the Java Virtual Machine (JVM). Java is first
compiled into JVM Bytecode and packaged as “class files”. These class files are loaded
dynamically by the JVM at runtime during “class loading” – when a class’s contents is
required (e.g. to invoke a method defined by the class) its class file is loaded. The JVM
executes JVM Bytecode using a stack machine and provides managed runtime utilities
such as garbage collection-based memory management and dynamic exception handling.
The JVM also provides a JIT compiler to optimise frequently executed code paths by
compiling JVM Bytecode to native code during runtime. As the JVM uses JVM Bytecode,
rather than Java directly, there are a number of other languages that are designed to be
executed on the JVM (including Scala [79], Groovy [32], and Kotlin [2], among others).

The standard JVM threading model uses logical threads that correlate to OS logical
threads. This means they are relatively heavyweight (when compared to coroutine-based
systems such as Golang [28]) and as such thread-pool based concurrency is a common
pattern.

The JVM is a useful target for DTRSO given its type safety, its use of heavyweight
logical threads, its support for task-based concurrency in the standard library, and its
dynamic class loading enables relatively straightforward instrumentation for tracing.

2.6 Experimental environment

All experiments in this thesis were run on a Linux benchmarking machine with specifications:
Intel Core i7-8700 CPU @ 3.20GHz, 32GB RAM, Clear Linux OS [21] 34630. Intel
TurboBoost was disabled, the CPU scaling governor parameter was set to performance,
and hyper-threading was enabled as it provides a more realistic basis for concurrency
analysis. Software: Java OpenJDK 1.8.0 292, Rust 1.50.0-nightly (Quilt , the tracer

9Not to mention the codebase must be written in a language that supports coroutines.

37

introduced in Chapter 3, is implemented in Rust). Experiments were run using Docker [68]
containers10, Docker version 20.10.6.

2.6.1 Acme – Real-world evaluation target

Throughout this thesis I use a real-world industrial API server, which I refer to as
Acme, to evaluate methods and perform experiments. Acme provides an analogue of the
Paterson software from our running scenario (Section 1.2.2). Use of a real-world system for
evaluations and experiments is essential to demonstrating that the problems and questions
I investigate exist in the real-world and the methods I describe are effective at addressing
them. Acme has a number of specific benefits as an evaluation system:

• It conforms to the target concurrency model, as described in Section 2.4.

• It has been in production use for approximately 5 years at the time of writing.

• It has extensive automatic test coverage, allowing us to confirm that no changes to
its source-code affect functional program behaviour.

• It is actively maintained and developed, as per the thesis statement (Section 1.2.1),
so it is not a legacy system that has been discarded due to design faults.

Technical properties

To give a better sense of the standard operation of Acme, I detail its technical properties
such that the reader may have a general sense of the software.

At a high-level, Acme is the server “backend” for a user-facing application. Its
operations range from cryptographic authentication and database reads and updates, to
image processing and data streaming.

Its workload at any given time is defined by the API requests made to its “endpoints”
(including, for example, user registration, image upload, loading of data analytics, etc).
Though each endpoint performs a unique function (in the product sense), they broadly
perform similar underlying technical operations. Indeed, most of the functionality of Acme
is implemented in classes and libraries used by multiple endpoints (i.e. many endpoints will
invoke similar call-trees). For example, all endpoints that require authentication will invoke
a shared checkAuthenticationHeaders() function which will perform some cryptographic
and database operations to ensure the request is appropriately authenticated. Moreover,
all endpoints follow the same high-level pattern of: receive request, create tasks on the
thread-pool, compute the request response (using the results of the tasks), and return the
response to the client.

Thus the key behaviour of Acme, for the purpose of this thesis, is defined by the tasks
performed on the thread pool. The general groupings of these tasks are:

• I/O-bound tasks include:

– Database queries, which require a network request.

10Docker containers simplify benchmark environment management and consistency. On Linux, Docker
containers have been shown to have negligible impact on CPU and memory speeds [25] (unlike virtual
machines).

38

– Remote service requests (e.g. sending notifications, sending automated emails,
integrating with third-party API services, enqueuing items on a distributed
queue, etc), which also require a network request.

• Compute-bound tasks include:

– Server-side javascript execution.

– Computation of domain-specific analytics.

– Cryptographic operations (e.g. secure password hashing with Bcrypt [92] and
encryption of data blobs).

– Graph traversal.

– Image processing (e.g. resizing, compressing, reformatting, etc).

• Tasks that are a mix of computation and I/O include:

– System synchronisation tasks (e.g. translating events from a distributed cluster
into client-consumable data and then streaming that data to connected clients).

– Coordination tasks which primarily start sub-tasks and combine their results.
These tasks may also perform computation of their own.

Some endpoints are I/O bound (e.g. those that primarily perform a series of database
queries) whilst others are computationally bound (e.g. those that perform image processing).
Most endpoints, though, are a mix of I/O and computational work. Similarly, most
endpoints generate between 10 and 100 tasks during their execution, though some outlier
endpoints may generate more (e.g. analytics tasks that perform a large number of database
requests).

Evaluation properties

While using a proprietary system for experiments and evaluations reduces transparency
of the results, I believe it is worthwhile for the improved efficacy of the experiments
and evaluations. In particular, in this thesis we are interested in evolving large existing
systems to improve performance (as per the thesis statement, Section 1.2.1), in this
context Acme can be thought of as an analogue of Paterson from our running scenario
(Section 1.2.2). Moreover, as stressed in the introduction, this thesis focuses on the
“theoretical development of a practical technique”. By “theoretical development” I mean
that the key contributions are the methods and their theoretical underpinnings, not the
quantitative evaluations. Whilst “practical development” means that those methods must
be demonstrated to be truly practical, efficacious, through evaluations (quantitative and
qualitative).

A key metric we focus on in evaluations is throughput, improvements in throughput
demonstrate a clear improvement due to an optimisation. It is worth understanding
the difference between throughput and latency. Latency is the time between asking for
something and receiving the answer. Throughput, on the other hand, is the amount of work
that can be processed by the system while under load. Thus, an increase in throughput
means the system can process more items of work in a given time while under load, though
the latency of each item may not necessarily change. In the case of Acme, throughput
relates the number of API requests that can be processed concurrently (which is bounded
by system resources and, in particular, the size of the thread pool).

39

40

Chapter 3

Execution Tracer

The first component of DTRSO is the execution tracer, Quilt , described in this chapter.
Quilt instruments a program and records its execution as a trace-log, which is then used
by Rehype (Chapter 4) to identify improvements. Chapter 6 further augments the tracer
to investigate the effects of tracing-overhead on program concurrency behaviour.

Narrative instalment

In our imaginary scenario (Section 1.2.2), Banjo has decided that, to improve Paterson’s
performance, they will reduce the number of threads spending unnecessary time sleeping
(thereby reducing the thread pool saturation rate). Banjo must first determine what code
these threads are executing that is causing them to spend so much time sleeping. To
understand what Paterson’s concurrency and performance behaviour is, Banjo must use
dynamic analysis, as both forms of behaviour are exhibited at runtime. This requires
capturing runtime data while executing Paterson. To do this in a controlled manner, Banjo
executes an artificial workload on Paterson, while tracing Paterson using Quilt .

Quilt will generate data (a trace-log) that will then be analysed in the next chapter to
identify and quantify potential improvements to Paterson’s performance.

3.1 Introduction

Capturing high quality data is essential to enabling high quality program analysis. Captur-
ing it relies on identifying the right data for the analysis to be performed and, in the case
of performance analysis it, capturing it without significantly impacting the performance
and execution of the target program. As we will see in Chapter 6, tracing introduces
overhead and therefore, naturally, has an observer effect (the act of tracing perturbs the
program being traced and thus the trace data captured). Thus, to perform accurate
program analysis in this domain requires a low-overhead tracer (Quilt ’s target overhead is
discussed in Section 3.1.1).

In this chapter, I present a low-overhead tracer, Quilt (Quiet User-space-Instrumenting
Lockless-Tracer), that instruments Java programs at runtime, captures program behaviour
events, and writes those events to disk as a trace-log. The tracer takes as input a trace-
config which describes which aspects of the program to trace. During instrumentation
the tracer intercepts the JVM class-loading pipeline and modifies class bytecode inline to
insert tracing code. Performing instrumentation at runtime allows the tracer to instrument

41

all (JVM bytecode) functions, not just those available as source code. The tracing code
calls an in-process utility which records the traced events to disk. To minimise the impact
of tracing overhead, the tracer (Section 3.4) uses a novel lockless algorithm to record
events without blocking the target program’s threads. This algorithm trades memory for
locklessness – it uses more memory (in the form of per-thread buffers) to enable lockless
tracing and thereby avoid blocking threads.

The trace-log (Section 3.2) contains a sequence of events (such as function entry and
exit, task lifecycle, and thread pool administration events) to represent program behaviour.
The events captured are designed to enable tracing concurrent execution across thread
boundaries and, equally importantly, also provide enough program detail to determine,
in subsequent analysis, which part of the source code must be modified to implement
a suggested change. Knowing all of the times a program’s execution crossed thread
boundaries is not especially helpful if you do not know which source code caused it.

The events captured trade specificity for lower instrumentation and tracing overhead.
For example, it traces function entry and exit events instead of call-site events. This
means that the call-sites must be derived during analysis, which is not always possible.
However, the performance impact is substantial as, firstly, far fewer locations need to be
instrumented, and secondly, there are fewer unique locations to be tracked so each event
can be stored with fewer bits. Since the tracer instruments the program during runtime,
the performance of instrumentation is relevant to the overhead of the tracer. Similarly,
the tracer does not capture all possible events (i.e. it generates sparse traces), instead it
captures events as defined by the trace-config, which are intended to enable subsequent
analysis to generate useful results while minimising the tracing performed. Capturing
sparse traces introduces difficulties in subsequent analysis phases as they have less precise
data to work with. We discuss these issues further in Section 3.3.

While some other tracing approaches specifically capture “non-deterministic” events
(e.g. filesystem IO) to enable record & replay systems (e.g. Castor by Mashtizadeh et
al. [66]), such an approach is not suitable for the performance analysis we consider in this
thesis. With regards to performance, all events are naturally non-deterministic. Indeed,
even simple functions may take varying amounts of time to execute given the same input,
as the broader system environment may be different. This is especially true for concurrent
programs as performance of one thread is directly affected by the resource usage of other
threads1. So tracing even otherwise deterministic events becomes important to accurately
analysing the performance effects of potential changes.

Managed runtimes, and the JVM in particular, make it significantly easier to instrument
and trace programs in a fast and safe way. Though native programs can be similarly
instrumented, there is less available tooling and it is easier to introduce errors and
inefficiencies. In particular, managed runtimes enable runtime instrumentation (e.g. during
class loading), provide debug symbols (e.g. function signatures) by default, and (almost)
automatically integrate inserted tracing code (e.g. JVM bytecode) into existing error
handling and JIT compilation. Moreover, instrumentation tools can take advantage of
greater runtime information (e.g. program state) to decide when and how to instrument
and trace code.

Experimental results (Section 3.5) demonstrate the tracer introduces low overhead (in

1Of course, a sceptic could argue that other processes could also be affecting such variations, which is
true. However, we must accept such potential disturbances to traced data as a natural part of real-world
environments.

42

IN

Target program

IN

Trace-config

Instrument program

Execute
instrumented program

Tracer

Trace-log

Trace-log
to

Trace-DAG

Trace-DAG

Estimate changes

Improvement
specifications

APG

Convert to APG

Map
improvement specification

to static location

Modify APG to
implement change

Render APG
to source

OUT

Map of improvements’ stats
to git-diff style

source-code patches

Quilt
(Chapter 3)

Rehype
(Chapter 4)

Scopda
(Chapter 5)

User selects and applies
source-code patches

Figure 3.1: High-level overview of where Quilt exists within DTRSO . Quilt takes in a
trace-config and the target program, instruments the program, executes the program while
tracing it, and generates a trace-log which is used by Rehype (Chapter 4).

43

Tool Overhead range (magnitudes) Source

Sampling profilers Overhead for 1KHz sampling

Hofer et al. 1 – 10% [37]
perf 1 – 10% [76]

SPS & ISPS 1 – 10% [38]
tgp 1 – 10% [96]

jvmti 10 – 100% [38]
Tracers

Nisbet et al.’s bcc-based thread tracer 1 – 10% [76]
Hofer et al.’s lock tracer 1 – 10% [39]
Castor (record & replay) 1 – 10% [66]

Intel-PIN 10 – 10,000% [6]
Execution control

Valgrind 100 – 10,000% [74]

Table 3.1: Overhead order-of-magnitude ranges for various runtime data capture tools,
including samplers, tracers, and execution control tools. This table does not intend to
comprehensibly report on all existing tools, but rather give a general perspective on the
orders of magnitude of overhead incurred by a variety of tools.

the order magnitude range of 1 – 10%). Finally, I position this chapter’s work among
related work in Section 3.6 and conclude in Section 3.7.

3.1.1 Target overhead

A key aim of Quilt is to incur as little overhead as possible during tracing. As we will
see in Chapter 6, overhead has a direct impact on the quality of subsequent analysis, as
overhead can distort the behaviour of a program. Quilt aims to incur overhead in the
order of magnitude range of 1 – 10% of the wall-clock time of a program (though this is a
limited indicator of overhead, as discussed in Chapter 6). To put this range in context,
Table 3.1 lists a number of existing tools and the order of magnitudes of their overhead
(according to existing literature).

As with all tracers, the amount of overhead Quilt incurs is dependent on the amount
of data (i.e. events, in the case of Quilt) captured and the rate at which it is captured.
Therefore, the two primary levers for controlling overhead are the overhead per-event
and the number of events captured. While Quilt can be configured to capture fewer
events and thus reduce overhead (see Section 3.5), there is a necessary minimum set of
events required to enable subsequent analysis by Rehype (Chapter 4). Hence, minimising
per-event overhead is a key aim of the methods and optimisations in Quilt .

44

3.2 Trace-log

The trace-log is a series of events captured during tracing. It is the primary output of the
tracer and is the primary input to the analyser (Chapter 4).

There are three categories of events: function, task life-cycle, and thread pool events.
All events are listed in Table 3.2.

All events contain a type byte, a nanosecond timestamp of their occurrence, and the
thread-id (see Section 2.4) of the thread they occurred on2. The function and task events
have extra associated data:

Function: events also contain the id of the method they occurred in. Method ids
correspond to a method-index file generated during instrumentation, however, this is
largely an implementation detail.

Task life-cycle: events also contain the task-id of the task they relate to (recall from
Section 2.4, task-ids are assigned at task construction and are unique within a
trace-log).

Thread-pool: events have no auxiliary data.

A C-style definition of the event data is given in Fig. 3.2
While the start of a task’s execution is explicitly traced (TkExeStart), the end of a

task’s execution is recorded as the setting of the result of the task (TkResSet) in the
task data structure (e.g. a FutureTask). This is because the concurrent users of the task
(i.e. threads emitting TkResGetStart/TkResGetEnd events) wait for the result of the task,
not for the full completion of execution. Thus recording the event that enables other
threads to continue their work is relevant to concurrency analysis, while recording the
completion of execution is not (though they may, in some cases (e.g. FutureTask), be
effectively the same).

When a thread finishes executing a task it will always emit a ThreadWait event. This
occurs irrespective of whether a another task is available to execute as the thread pool
only assigns tasks to threads that are in the unoccupied state.

We assume a form of sequential consistency: that events executed by a single thread
appear in event order, and with strictly increasing timestamps, in the trace-log ; events
from separate threads may interleave in the trace-log, not necessarily in timestamp order,
but events can be re-ordered in post-processing to not interleave or to be interleaving and
sorted in timestamp order. Furthermore, events of different types may interleave in the
trace-log.

3.3 Sparse tracing

An important consideration of the tracer is its sparse tracing approach. While sparse
tracing is a natural aspect of real-world tracers, it significantly affects subsequent analysis
and introduces non-trivial complexity.

To understand the effects of sparse tracing, it is useful to first understand the alternative,
full tracing. A simple definition of full tracing, for our purposes, is tracing that generates a

2These fields are the logical fields of each event. In practice trace-log size is optimised by storing pages
of events from threads with one thread id per page.

45

Event Location

Function events Events inserted into methods defined by the trace-config. Aux-
iliary data is a ‘method id’ – a unique identifier of the method
the event occurred in.

FnStart First bytecode instruction in a method.
FnEnd Bytecode instruction immediately before return instructions

in a method.
FnCatch Bytecode instruction at the start of catch blocks in a method.

Task life-cycle events Events specially inserted into task class(es)
(java.util.concurrent.FutureTask). Auxiliary data is
a ‘task id’ – a unique identifier for each instance of a task,
this is assigned to a task during construction.

TkCtor In the constructor of the task class. This event is also an-
notated, during processing, with the stack of active traced
functions on the thread it occurs on. This is used when
outputting suggested source changes. See Section 4.2.3.

TkExeStart At the beginning of the task class execution method.
TkResSet At the start of the task class result set. This event also signals

the end of the task’s execution.
TkResGetStart At the beginning of the task class get result method(s).

TkResGetEnd At the end of the task class get result method(s).

Thread pool events Events specially inserted into thread pool worker thread
class(es) (java.util.concurrent.ThreadPoolExecutor). No
auxiliary data.

ThreadWait When a thread in a thread pool enters the unoccupied state.
This will occur when a thread is initially constructed and
when the thread finishes executing a task.

ThreadStart When a thread is assigned a task to execute (i.e. the thread
transitions state from unoccupied to active).

Table 3.2: Listing of all event types traced by Rehype.

46

struct Event {
// The type of event (e.g. FnStart, FnEnd, etc).

enum EventType type;

// The nanosecond time when the event occurred.

uint64 timestamp;

// The id of the thread that this event occurred on.

uint32 thread_id;

union {
// Function events contain an id of the method they occurred in.

uint32 function_event_method_id;

// Task life-cycle events contain the per-instance id of the task

// they relate to.

uint32 task_id;

// Thread pool events do not contain extra data.

} aux_data;

}

Figure 3.2: A C-style definition of the data for each event.

47

void caller(boolean x) {
if (x) {

callee1();

callee2(3);

} else {
callee2(5);

}
}

Figure 3.3: Example of function that calls another function (callee2) in two separate
caller-contexts. As the present tracer does not capture call-site information, this can lead
to an ambiguity in trace-logs that subsequent analysis must deal with.

“trace that captures the exact operations performed, and their timing, such that subsequent
analysis has full information about how the program executed”. Note the difference
between “how” the program executed and “what” the program executed. The latter can
be achieved using record/replay systems and recording just non-deterministic events, the
former requires tracing the behaviour of the program during execution.

Technically, pure full tracing would involve tracing every CPU instruction. Pure full
tracing, though, provides an unnecessary level of detail; moving up the OS stack, tracing
every branch and language-level instruction could be considered full tracing. While having
full tracing would make some aspects of analysis fairly straightforward, as there is no
uncertainty, it would introduce far too much overhead, to the point that subsequent
analysis would be invalid due to tracing distorting the program behaviour (Chapter 6).

As such, it is practically necessary to limit what aspects of the program are tracked,
resulting in sparse tracing. Sparse traces are simply traces that do not capture full
information about the execution of the program. For example, the present tracer does not
capture branch statements or parameter values. Similarly, it does not track call-sites, but
rather function entry and exit events.

Not capturing call-site information limits the function events’ caller-context. Specifically,
they cannot disambiguate multiple call-sites with in a function invoking another function.
For example, in Fig. 3.3 the caller function calls callee2 in two separate caller-contexts.
If some analysis needed to differentiate between these caller-contexts (e.g. to make a
change to one call but not the other, such as changing the parameter value), it would have
to derive such information from the broader context (e.g. whether the trace contains a call
to the callee1 function immediately before a call to callee2). This is effectively what
the analyser in Chapter 4 and the source code patch generator in Chapter 5 have to do.

It is clear, then, that sparse traces is a trade-off between tracing overhead and analysis
complexity. Due to the significant impact of tracing overhead, this is a trade-off we accept.
Though it is worth being aware of the effects of such a trade off.

3.4 Tracer

Quilt is an execution tracer that takes in a trace-config and generates a trace-log. The trace-
config specifies which functions of the target program should be traced. Quilt generates
function and concurrency framework events (e.g. task-spawn events). The vast majority
of events generated are function-entry and -exit events. These contain a nanosecond

48

time-stamp, a function identifier, and id for the thread that the event occurred on.
Quilt consists of two primary components, the instrumenter and the tracer. The

instrumenter inserts tracing code based on a trace-config. The tracer is an in-process
utility that receives calls from tracing code and records corresponding events on disk as a
trace-log.

The instrumenter intercepts class loading within the JVM (Fig. 3.4a) and modifies class
bytecode to insert tracing code (Fig. 3.4b). For each class file intercepted, the instrumenter
checks whether any method should be instrumented according to the trace-config. Each
such method is then registered with a method-index, which maps method signatures to
unique method IDs (which are stored in the trace-log), and then the method’s bytecode is
rewritten to include the tracing code (calls to the in-process tracer’s functions). Finally,
the class file is reconstructed with the updated bytecode and returned to the JVM class
loading process. The instrumenter’s architecture and instrumentation process is illustrated
in Fig. 3.4. An example of a generic method’s bytecode pre- and post-instrumentation
is given in Fig. 3.5. For specialised instrumentation, such as task-lifecycle tracing code,
event-specific logic is used to determine where to insert the appropriate instructions within
the target method (e.g. variations of ExecutorService.submit). Such specialised logic
exists within the same overall process described above.

The tracer is designed for minimal overhead. It prioritises minimising time spent on
the target program’s worker threads. To achieve this, it uses a client-server architecture
with a single server and one client for each JVM thread. The clients generate logs of
per-thread events and the server writes these to disk on a background thread. Logs are
transferred using a novel lockless buffer exchange protocol, to ensure the target program’s
worker threads do not block due to tracing.

3.4.1 Lockless buffer exchange protocol

The key purpose of this protocol is to avoid blocking operations on the traced program’s
working threads. This means that all IO operations must be performed on a background
thread (hence the server performing all IO operations). The protocol also aims to minimise
memory usage.

Here we provide a high-level description and intuition for the protocol, Section 3.4.1.1
provides a more concrete specification of the protocol. Fig. 3.6 visually illustrates the
client and server as state-machines and Fig. 3.7 provides an example sequence diagram.

Each client uses two buffers, the active and inactive buffers. Each buffer has a boolean
flag that indicates whether the client or the server has control of the buffer. The active
buffer is always controlled by its containing client. Clients write new events to their active
buffer. When a client’s active buffer fills, the client attempts to swap its active and inactive
buffers. If a client controls its inactive buffer, the buffers are swapped and the client sets
the new inactive buffer to be controlled by the server. However, if a client’s inactive buffer
is controlled by the server when its active buffer fills, the client will expand its active
buffer (using standard buffer expansion, i.e. doubling the buffer capacity). This expansion
step does not require locking as the server will never access the active buffer directly.

The server runs a periodic loop checking for client inactive buffers flagged as controlled
by the server, when it finds one, it writes the buffer to disk. The server uses two further
techniques to minimise occurrences of clients expanding their active buffers. First, the
server can request specific clients swap their buffers before their active buffer reaches

49

Class file contains methods
to instrument?

Trace
Config

Rewrite class file
bytecode

Pass through
original class file

Y
es

Instrumentation agent

JVM Class loading

O
n

cla
ss

fi
le

lo
a

d

JVM class file

N
o

Final JVM class file

JV
M

fi
n

a
li
se

cl
a

ss
lo

a
d

in
g

(a) A high-level overview of how the instrumentation fits within JVM class loading. The
instrumentation agent intercepts JVM class file during class loading, checks if it contains any
methods that should be instrumented according to the trace-config, if it does the agent rewrites
the class file and passes it on to the next stage in class loading, if the class file does not contain
any such methods, it is passed to the next stage directly.

Should instrument
method?

Trace
Config

Register
methodY

es

Method index Maps method ID to signature for analysis

Signature Method ID

Rewrite
method

Method
Bytecode & ID

N
o

Pass through
original bytecode

Updated
Bytecode

Methods
bytecodes

IN

Class file

For each
method

Updated methods
bytecodes

OUT

Updated class fileInstrumentation process

(b) An overview of the instrumentation process applied to class files that contain methods to be
instrumented. Each method is first tested against the trace-config to determine if it should be
instrumented. If it should be instrumented, it is first registered with the method index, which
returns a unique method ID. Then, using this ID, the method bytecode is rewritten to include
the tracing code. The rewritten bytecode is then combined with the other methods’ bytecode to
generate the final output class file.

Figure 3.4: A high-level overview of how Quilt instruments programs during execution by
intercepting JVM class loading.

50

0 aload_0

1 invokevirtual #1

4 ifnonnull 7

5 aload_1

6 areturn

7 aload_0

8 areturn

+ 0 ldc_w <n>

+ 3 invokestatic #<tracer start function>

6 aload_0

7 invokevirtual #1

10 ifnonnull 19

11 aload_1

+ 12 ldc_w <n>

+ 15 invokestatic #<tracer stop function>

18 areturn

19 aload_0

+ 20 ldc_w <n>

+ 23 invokestatic #<tracer stop function>

26 areturn

Figure 3.5: An example of a simple method’s bytecode before and after instrumentation.
The instrumenter inserts a call to the tracer start function (an invokestatic instruction)
at the beginning of the bytecode and one call to the tracer stop function before each return
instruction. Each call instruction is preceded by an ldc w instruction which pushes the
unique method id to the top of the stack.

capacity. When a client generates an event, it checks its swap-request flag, if set, the client
immediately swaps its buffers. Second, the server has an additional interchange buffer
which is exchanged3 with a client in place of its inactive buffer when the server takes the
inactive buffer. This enables clients to swap their buffers, even if the server is still writing
their inactive buffer to disk.

3.4.1.1 Algorithmic specification

Given the intuition given above, we now turn to a concrete algorithmic specification of
the protocol. This subsection aims to provide a reference for deeper understanding and
implementations. However, it does not introduce new concepts or intuition and so may be
skipped without hindering understanding of subsequent content.

The protocol consists of three data structures, client, server, and lockless-buffer (LB),
and two algorithms, client-side (Alg. 1) and server-side (Alg. 2). The data structures
contain:

Client : A triple: {boolean: requestSwapFlag, LB: activeBuffer, LB: inactiveBuffer}.

Server : A pair: {list of clients : clients, LB: interchangeBuffer}.

Lockless-buffer : A pair: {heap pointer: dataBuffer, control state: controlFlag}.
The controlFlag indicates whether the LB is ready to be used by the client or the
server with the values CLIENT CONTROL and SERVER CONTROL, respectively.

Clients and servers pass control of LBs via the LB’s control-flag but never attempt to
take control, enabling the lockless exchange. Clients always have control of at least one of
their associated LBs.

When a client receives an event it will try to store it in its activeBuffer. If it is full,
the client checks if the inactiveBuffer is in CLIENT CONTROL state. If so, the client sets its

3Swapping refers to the client swapping its active and inactive buffers, while exchanging refers to the
server exchanging its interchange buffer with a client’s inactive buffer.

51

A
Inactive controlled

by client

Start

Will active
overflow?

Is the
swap-flag true?

Â

Swap buffers
and set swap-flag

to false.

B

Inactive
controlled
by server

Will active
overflow?

Configured
to expand?

Ĉ

Expand active
and write event

D̂

Drop/ignore
event

On
write

No

Yes

No Yes

On
write

Yes

No

Yes

No

λ
(triggered by server on F)

Client

(a) A state-machine representation of the client within the lockless buffer exchange protocol. The
client begins in state A with two empty buffers, active and inactive. Each time a trace event is
received, the client checks whether writing the event will cause the active buffer to overflow. If it
will, or if the client’s swap-flag is true, the client swaps its buffers and sets the swap-flag to false
(Â) and moves to state B. When a trace event occurs while the client is in state B, the same
overflow check is performed, except that when true, the active buffer must be expanded, or the
event must be dropped, and the client remains in state B. Finally, the client returns to state A
when the server triggers the λ edge by exchanging buffers with the client.

E
Ready to

process client

Start

If a client
is in state B

Ĥ
Set swap-flag

to true for
one client

F̂
Exchange buffers

and trigger λ

Ĝ
Write to disk

and clear interchange

Yes

No

Server

(b) A state-machine representation of the server within the lockless buffer exchange protocol.
The server runs a continuous loop checking for a client whose inactive buffer is set to server
control. When one is found, it exchanges the buffers, triggers the λ state edge to move the client
back to A, writes the filled client buffer to disk, clears the buffer (as it becomes the server’s new
interchange buffer), and resets. If no client is ready, the server sets the swap-flag on one client to
request it prematurely swaps its buffers, allowing the server to perform under more consistent
load.

Figure 3.6: Illustrations of the lockless buffer exchange protocol client and server as state
machines.

52

Threads Clients

Active
buffer

Inactive
buffer

1-to-1
mapping

Server

Interchange
buffer

disk

Trace-log

A E

Trace event

Trace event

(Â) Swap buffers

B

(F̂) Exchange buffers
(triggers λ client state change)

A

(Ĝ) Write

and clear buffer

E

Threads continue to
send trace events to clients.
F̂ occurs on the server’s
thread, not the client’s.

The server waits for
a client to enter state B.

Figure 3.7: An example timeline of the lockless buffer exchange protocol. A thread traces
events to a client, which then swaps its buffers. The server then exchanges buffers with the
client (triggering the λ state change), then writes the buffer to disk, and clears the buffer.
The dashed circles indicate the current state of the client/server (see the state-machines
in Fig. 3.6).

53

Algorithm 1: The client-side algorithm for the LBSP. Executes when an event
occurs in the traced code.
1 Function swapBuffers(c: Client) is

/* Set the first buffer to SERVER CONTROL so the server will

clear it. */

2 c.activeBuffer.flag ←− SERVER CONTROL;
3 temp ←− c.inactiveBuffer ;
4 c.inactiveBuffer ←− c.activeBuffer ;
5 c.activeBuffer ←− c.inactiveBuffer ;

6 end

Data: c; /* Thread-specific client. */

Input: e; /* Event to trace. */

/* Check if the server has requested this client swap its buffers.

*/

7 if c.requestSwapFlag is true AND c.activeBuffer is not empty then
8 swapBuffers(c);
9 end

/* If the first buffer has reached capacity try to swap it with the

second buffer. If the second buffer is SERVER CONTROL expand the

first buffer. */

10 if c.activeBuffer.length + sizeof(e) > c.activeBuffer.capacity then
11 if c.inactiveBuffer.flag is CLIENT CONTROL then
12 swapBuffers(c);
13 end
14 else
15 expand c.activeBuffer to a minimum size of c.activeBuffer.length +

sizeof(e);

16 end

17 end

18 write e to end of c.activeBuffer ;

54

activeBuffer to SERVER CONTROL and makes is inactiveBuffer the activeBuffer. Other-
wise, if the inactiveBuffer is in SERVER CONTROL, the client will expand its activeBuffer.
Finally, the client writes the event to its activeBuffer. This is described in Alg. 1 lines
10 to 18.

The server operates a continuous worker loop in a dedicated background thread. Each
iteration the server checks for a client with an LB in SERVER CONTROL state. If found, the
server takes the LB and gives the client the server’s interchangeBuffer (i.e. the “buffer
swap”). The server then writes the contents of the LB to disk, sets the LB’s flag to
CLIENT CONTROL, and moves to the next iteration of the worker loop. This is described in
Alg. 2 lines 2 to 12.

If multiple clients set buffers to SERVER CONTROL at the same time, a backlog can develop.
This can lead to clients expanding their activeBuffers as they reach capacity before the
server has processed the backlog.

To avoid backlogs, the server actively seeks work. If on an iteration the server does
not find an LB in SERVER CONTROL, it locklessly requests a client to pre-emptively change
buffers (i.e. before its activeBuffer fills) (Alg. 2 lines 13 – 18). This work seeking approach
smooths the server workload, avoiding backlogs, reducing buffer expansions, reducing
tracing overhead.

The initial LB buffer size is set by a parameter in the trace-config. It can be beneficial
to tune it to minimise both buffer size and buffer expansions.

3.5 Evaluation

We evaluate tracer overhead against Acme, an industrial Java server-backend API ap-
plication (Section 2.6.1; Acme is also used in evaluations of DTRSO in later chapters),
and the Dacapo benchmark suite by Blackburn et al. [8] (specifically, the Lusearch bench-
mark). As discussed in Section 3.1.1, Quilt ’s overhead is determined by the number of
events captured and the per-event overhead incurred in tracing those events. The Acme
evaluation provides a realistic assessment of the number of events captured and overhead
introduced for normal analysis (we use the same trace-config used for generating suggested
source changes in the following results sections). The Dacapo benchmark provides an
evaluation target for testing the overhead at the limits (i.e. testing the per-event overhead
by tracing a large number of events). For the Dacapo benchmark we use two trace-configs,
one that traces all Java functions (including standard library functions; generating over
600,000,000 events), and one that traces only functions relevant to the benchmark (i.e.
Lucene package functions). The latter enables us to evaluate Quilt ’s normal overhead
on an open benchmark. As with other chapters, these experiments were run on a Linux
benchmarking machine described in Section 2.6.

We evaluate tracer overhead as user-time clock and wall clock overhead. The user-time
clock duration of an execution is the amount of processor time used by the execution.
This captures the effect of tracing in multiple threads, whereas wall clock duration can
lessen the apparent overhead if concurrency is effectively used. Moreover, the effect of
the tracer’s memory usage can be captured, imperfectly, via user-time clock overhead as
any cache or paging issues caused by the tracer’s memory usage will be reflected in the
user-time clock overhead. This holistic approach to calculating overhead also ensures the
effect of the buffer-server is incorporated into overhead (as it takes processor time, parallel
to the target program’s execution).

55

Algorithm 2: The server-side algorithm for the LBSP.

Input: ClientList ; /* A list of clients. */

Input: interchangeBuffer ; /* A Lockless Buffer. */

1 while true do primary loop
2 foreach c in ClientList do
3 if c.inactiveBuffer.flag is SERVER CONTROL then

/* Exchange buffers with c. */

4 temp ←− c.inactiveBuffer ;
5 c.inactiveBuffer ←− interchangeBuffer ;

/* At this point c can use its inactiveBuffer when its

activeBuffer reaches capacity. */

6 interchangeBuffer ←− temp;
7 write interchangeBuffer to trace-log on disk;
8 interchangeBuffer.flag ←− CLIENT CONTROL;

/* Move processed clients to the back of the list. */

9 move c to back of ClientList ;
10 continue primary loop;

11 end

12 end
/* No clients’ inactiveBuffer was SERVER CONTROL so the server

requests a client swap its buffers when it next receives an

event (i.e. the server seeks work). */

13 foreach c in ClientList do
14 if c.requestSwapFlag is false then
15 c.requestSwapFlag ←− true;

/* Sensible implementations will implement a sleeping

back-off to conserve resources. Clients will not swap

their buffers immediately. */

16 break;

17 end

18 end

19 end

56

Program # Events traced
Mean per-event
overhead (ns)

Acme ∼ 750, 000 ∼ 1500
Dacapo – Lusearch ∼ 630, 000, 000 ∼ 100

Table 3.3: The overhead incurred by the tracer on executions of Acme and Dacapo’s
Lusearch benchmark Blackburn et al. [8]. Overhead times are user-time clock durations.
These results indicate the low per-event overhead incurred by Rehype, with a mean
per-event overhead of ∼ 100 nanoseconds on Dacapo. The mean per-event overhead is
calculated as the total overhead divided by the number of events traced. As such, the cost
incorporates the base overhead introduced by Rehype (e.g. during setup on the tracer).
The per-event overhead reported for Acme is higher as the number of events is lower,
reducing the amortisation of Rehype’s base (i.e. setup) overhead.

We evaluate two key metrics of tracer overhead: mean per-event overhead and total
overhead. Mean per-event overhead is calculated as the total overhead divided by the
number of events in the trace-log. That is, the per-event overhead, p, for an execution is
given by:

pe =
de − bavg

ce
(3.1)

where de is the duration of the execution e, bavg is the average duration of the base program
(program without tracing), and ce is the number of events in the resulting trace-log. This
method of calculating the per-event overhead means that it includes all forms of overhead,
including base overhead unaffected by the number of events traced, as such the per-event
overhead is an overestimate of the actual average individual cost of an event.

Per-event overhead

To evaluate the per-event overhead I perform 100 executions of the Acme test case and
Dacapo Lusearch benchmark (using the trace-config that records all Java functions), with
tracing, and average the results. Table 3.3 contains the mean per-event overhead, total
overhead, and number of events traced for both the Acme and Dacapo evaluations. The
Acme execution captures ∼ 750, 000 events and has a mean per-event overhead of ∼ 1500
nanoseconds. The Dacapo execution captures ∼ 630, 000, 000 events and has a mean
per-event overhead of ∼ 100 nanoseconds. The events do not take longer to trace in
the Acme execution, rather the base overhead (i.e. initial setup of the tracer) is simply
amortised across fewer events. The Dacapo mean per-event overhead is more accurate to
the true per-event cost as the base overhead is amortised across more events.

To put these numbers in a more intuitive, though informal, context; given the per-event
overhead calculated here, Quilt can trace up to ten million events in one second of user-time
(based on ∼ 100 nanoseconds per event). Of course, this will not necessarily correlate
to one second of wall-clock overhead. However, as a rough rule-of-thumb based on these
numbers, if Quilt traces less than one million events per-second its overhead should be
less than 100% (user-time overhead). In most cases, Quilt will not need to trace close to
one million events per second, if properly configured to capture only the relevant events.
Naturally these informal calculations are dependent upon the execution environment.

57

Tracer baseline Tracer standard Tracer optimised Dacapo traced
80%

100%

120%

140%

N
or

m
al

is
ed

d
u
ra

ti
on

User-time clock
Wall clock

Figure 3.8: The average user-time and wall clock execution durations of Acme with various
trace configurations and Dacapo Lusearch benchmark with a single trace configuration,
averaged across 100 executions, normalised to the execution duration of the program
untraced (user-time is normalised to untraced user-time and wall-clock to untraced wall-
clock). The key takeaway is that the overhead falls in the target 1 – 10% overhead
magnitude range, noted in Section 3.1.1. The error bars represent the standard deviation
across the 100 executions.

Total overhead

To evaluate the total overhead incurred by Quilt , we trace Acme using three different tracer
configurations, a baseline, standard, and optimised, and Dacapo’s Lusearch benchmark
with one configuration. The Acme standard configuration is the configuration used in
the previous experiment and is the configuration used in evaluations of Rehype’s analysis
(Chapter 4). The baseline configuration captures only the core concurrency events (e.g. task
lifetime and thread pool events) and is useful for understanding the base overhead incurred
by Quilt during setup, as opposed to the overhead incurred by tracing many events. The
optimised configuration is similar to the standard configuration, except it traces fewer
events – still enough for Rehype to perform its analysis, but excluding some high frequency,
uninformative, events. The trace configuration used for the Dacapo benchmark captures
most Lucene functions (the relevant part of the benchmark), excluding a selection of
uninformative high frequency functions (e.g. readByte functions which get called at a very
high rate, but do not provide any relevant information for analysis).

In this experiment we perform 100 executions of Dacapo and Acme with each con-
figuration and then average the user-time and wall-clock execution durations for each
configuration. Fig. 3.8 illustrates the overhead based on the user-time and wall-clock exe-
cution durations for each configuration normalised to their respective untraced execution
durations. The base overhead (incurred during Quilt ’s initialisation) is dominated by the
run-time instrumentation (incurred as a Java Agent is used to instrument Java programs).
Other components of the base overhead include trace client and buffer-server initialisation,
and final flushing of the buffers at the end of the execution. This base overhead is mostly
captured in user-time overhead as it is performed on a background thread, this is why
the baseline Acme configuration has a larger difference between user-time and wall-clock
overhead than the other configurations. The other configurations trace more events, which

58

incurs overhead on the program’s working threads, thereby slowing down the execution
and hence affecting wall-clock overhead more. The low per-event overhead can be seen in
the difference between the standard and optimised configurations. The optimised Acme
configuration captures ∼ 125, 000 events compared to ∼ 750, 000 captured by the standard
configuration, yet this does not significantly change the overhead.

As seen in Fig. 3.8, Quilt ’s overhead does fall in the 1% – 10% order of magnitude
range, given a sensible tracing configuration, as targeted in Section 3.1.1. This places it in
a similar range as other existing tracers and profilers. Importantly, the intention of Quilt is
not to achieve lower overhead that other tracers, but rather to achieve low overhead while
tracing the events necessary for the analysis that interests us in this thesis (i.e. analysis
performed by Rehype).

3.6 Related work

Dynamic analysis is based on data representing the behaviour or state of a program, or
underlying hardware, during execution of the program. There are various types of data
used for dynamic analysis, approaches to capturing these data, and uses for these data.
Quilt captures user-space (application) execution traces by instrumenting application code.
Other data types include hardware counters (such as CPU and memory usage), stack trace
snapshots, program branch tracing, data flow tracing, system call traces, instruction traces,
key event logs, and communication traces. Approaches to capturing these data during
execution include instrumentation based tracing (including instrumentation of source
code, intermediate representations, and binary), system probes, sampling, and framework
tracing. Dynamic analyses – uses of these data – include automatic performance analysis,
performance profiling for manual performance tuning, automatic bug detection, execution
control and replay tools, post-hoc error analysis and reproduction, and program usage
analytics.

Though there are three key dimensions, data type, capture approach, and usage,
their interactions (dynamic analysis methods) are more prescriptive (e.g. execution replay
methods will not use user space sampling as the data is insufficient). As such, I discuss the
related work in five categories: execution tracing, sampling, data flow, execution control,
and, more broadly, tools that treat overhead as a first-class problem.

Execution tracing occurs continuously and logs all events that are traced, for user-space
tracing this generally means function invocations or specific significant abstract execu-
tion events (e.g. event-bus communication events). Execution tracing also encompasses
instruction tracing (e.g. Intel PIN [40]), kernel tracing (syscall tracing, e.g. Kprobes [50]),
application tracing (e.g. Zhang et al. [126]), distributed systems tracing (e.g. Briand et
al. [11]), and probe based tracing that spans multiple levels (e.g. DTrace [31]).

Zhang et al.’s Panappticon [126] is a useful contrast to Quilt within the application
tracing space. Panappticon traces concurrency events in Android applications for post-hoc
analysis of user transactions. They define user transactions as the operations that occur in
an app due to some user interaction, such as tapping a button, and end when some final
result is presented to the user. They trace processing across threads at the application,
system, and kernel levels and analyse resulting traces for adverse performance effects
(e.g. identifying background work that should be deferred until after the user transaction
work). Zhang et al. perform light weight tracing to generate minimal data as the tracing

59

occurs on device and is then transmitted over a network to a processing server. While
Panappticon and Quilt both perform concurrency tracing their differences are illustrative of
variations in data and usage. Quilt constrains its tracing to application tracing while also
tracing function invocations to enable realistic estimation of traces. Whereas, Panappticon
traces span system and kernel events as well, but are constrained to concurrency events
that enable it to calculate exact user transaction durations. In both cases exact series of
events are important, but the types of events in the traces differ.

Instruction and kernel tracing methods are useful for low-level, in many cases manual,
program analysis. Instruction tracing requires execution control (as Intel PIN [40] does)
or compile-time instrumentation. Kernel tracing, on the other hand, is commonly imple-
mented using probe-based approaches such as Kprobes [50] and DTrace [31]. Probes are
used as, in most cases, the operating system is already compiled (whereas compile-time
instrumentation works for most software that a developer is compiling) and they have
support for probes given it is a common tool. Kernel system call (syscall) tracing can
be valuable when identifying causes of significant performance degradation. Specifically,
a program’s interaction with the underlying operating system, as opposed to user-space
program logic, is an indicator of the amount of memory, disk, and network I/O occurring.
Thus methods that take the kernel tracing approach can identify key performance impacts
while maintaining low tracing overhead as the volume of events can be significantly reduced
compared to tracing user-space function invocations.

Sampling methods (also variously known as performance-, CPU-, and memory-profiling),
such as Java VisualVM [45] and Linux perf [60], stop the execution of a program at a
specified frequency (e.g. every 100 milliseconds) and capture a snapshot of the state of the
execution. Application samplers such as Java VisualVM capture data such as execution
stack traces, while system samplers such as Linux perf capture hardware counters such
as CPU cycles and cache misses. Sampling can be performed with lower overhead than
tracing and its purpose is quite different. Sampling does not provide a concrete series of
events, but rather an approximation of the execution based on the captured snapshots. For
example, the duration of a function can be approximated based on consecutive samples it
appears in. Moreover, a function’s impact on program performance can be approximated
by its regularity in samples. These approximations are used to generate a high-level
profile of program performance (epitomised by Gregg’s Flame Graphs [30], which provide
a visualisation of program stack traces and their durations based on samples).

Sampling methods and Quilt address different tasks. Sampled data would not be
suitable for constructing and reordering trace-logs as the operations and key events are not
captured. Conversely, the amount of data captured by Quilt is demonstrably unnecessary
for generating program performance profiles, such as flame graphs, for manual analysis by
developers.

Data flow tracing captures usage and movement of memory throughout a program’s
execution. Data flow analysis can identify potential concurrency bugs and general pro-
gramming bugs, such as use-after-free. This type of analysis is particularly powerful from
the perspective that a program’s behaviour is reflected by its data modifications, rather
than actions between modifications. As Nethercote & Mycroft [73] put it, “this captures
the essence of the program’s computation, and ignores uninteresting book-keeping details.”
Data flow analysis is useful for automatic optimisers where full knowledge of data usage is

60

important. For example, when providing safety guarantees for components of programs,
identifying potential optimisations, or providing insight into a program’s operation by
summarising the program’s effects as its data flow.

Another form of data flow tracing is distributed data flow tracing in distributed
systems processing (e.g. Wu [125] traces MPI [20] communications to analyse application
performance). This type of trace can be used to optimise HPC applications where efficient
data flow between nodes in a cluster is key to overall system performance.

Execution control tools span much of the spectrum between low-level and high-level
analysis. For example, interactive debugging tools, such as Valgrind [74], control a
program’s execution so developers can inspect the state of a program at various points
in time. Whereas execution replay methods, such as Pobee et al. [90, 89], use execution
control to reproduce behaviour observed in concurrent programs that might otherwise
be impossible to exactly reproduce. McDonald & Egan [67] use execution replay of C
programs in education to help students understand program operation.

Overhead as a first-class problem Mashtizadeh et al. [66] present Castor (a record/-
replay system) and Payer et al. [84] present memTrace (a memory tracing system), both are
examples of systems that treat overhead as a first-class problem. Both leverage OS
and hardware acceleration to achieve low overhead. For example, Payer et al. trace 32-bit
code in 64-bit architectures, allowing memTrace to use an additional 232 memory addresses
beyond those that are used by the target program, as well as the extra registers available in
x86 64 (over x86), meaning that the tracer and program operate on disjoint registers and
memory regions. Castor, along with numerous hardware acceleration techniques, achieves
low-overhead by being selective in what it records. Specifically, they only record sources
of non-determinism (such as system calls). This is a key difference between Castor and
Quilt ; Quilt must record even deterministic events (e.g. function entry and exit) to capture
enough performance information to accurately estimate the effect of changes and enough
program information to identify sensible source-level changes.

Overhead of tools

Finally, it is worth considering the various amounts of overhead different tools incur and
where Quilt sits on this spectrum.

Dynamic capture tools vary in the patterns and volumes of overhead incurred. At
one end are profiling tools (e.g. perf [60] and Flight Recorder [44]), which perform
low-overhead periodic sampling to provide a rough snapshot of program performance
behaviour; incurring small amounts of periodic overhead. At the other end are execution
control systems (e.g. PIN [40]) that run programs in a managed environment and intercept
CPU instructions; incurring large amounts of overhead constantly, though recording more
detailed events to generate traces approximating “full traces”. In between there are: 1)
kernel instrumentation tools (e.g. DTrace [31] and BPFs [29]) which insert probes in the
Linux kernel to trace kernel events; 2) high-level tracing tools (e.g. Ruby Tracer [98])
which incur greater overhead to provide a simpler developer interface; and 3) dynamic
instrumentation tools (e.g. Valgrind [74]) that incur high overhead (nullgrind, a minimal
Valgrind configuration, has been reported [84] to incur more than 5x overhead on average)
but provide a fine-grained tool for analysis of program behaviour, similar to execution

61

control systems. In terms of overhead, Quilt exists between kernel instrumentation tools
and high-level tracing tools, it traces more information than kernel tools, but is significantly
more optimised than high-level tracers.

A key enabler of this optimisation is Quilt ’s relatively constrained instrumentation
options. Where other tools, such as DTrace and eBPF, provide generic instrumentation
aspect-oriented-programming, Quilt only supports instrumenting specific aspects and
provides no logic based instrumentation definition (such as a aspect API), instead using a
relatively plain (fast to parse and interpret) configuration specification. This optimisation
is one benefit of tight coupling between tracing and analysis, the tracer can be optimised to
capture only the data for the specific analysis, even though such data may be insufficient
for other analyses.

3.7 Conclusion

In this chapter I have introduced a low-overhead tracer that acts as the basis for the rest of
the thesis’ work. The tracer takes in a trace-config, instruments Java programs at runtime,
and generates a trace-log which is used by the analyser in the next chapter to identify
possible performance improvements. A key aim of the tracer design is minimal overhead
as tracing introduces an observer effect that can affect the validity of subsequent analysis
if overhead is too high (see Chapter 6).

To achieve low-overhead tracing the tracer uses a novel lockless buffer exchange protocol,
ensuring no blocking operations are performed on the target program’s worker threads.
This protocol uses a client-server architecture in which there is one client for each thread,
which captures all events on that thread, and one overall server that writes events to disk
on a background thread. Furthermore, the tracer trades data precision for performance by
generating sparse traces and capturing function entry and exit events instead of call-site
events. This trace sparsity increases the complexity of subsequent analysis tools (as they
have to derive details from sparse information), but is essential for low-overhead tracing.

The tracer introduces wall-clock duration overhead in the order of magnitude range
of 1 – 10%, which is similar to existing tracers and profilers. The amount of overhead is
primarily driven by the number of events captured. Each event incurs overhead in the
order of hundreds of nanoseconds, on average.

62

Chapter 4

Identifying Concurrency
Improvements with Dynamic
Analysis

Having captured a trace-log, the next step is to analyse it and identify changes that can
improve program performance. In this chapter I discuss an approach to analysis that
involves estimating effects of changes to identify improvements, and describe Rehype, an
analyser that uses this approach to identify performance improvements based on reducing
concurrency. This analysis is performed purely in the dynamic domain, it does not
directly deal with statically implementing the identified changes, though static viability is
considered in the analysis. Instead, Rehype generates improvement specifications which
provide the dynamic domain information necessary to implement the static change. The
actual patch generation is discussed in Chapter 5.

Narrative instalment

In our imaginary scenario (Section 1.2.2), Banjo has executed an artificial workload on
Paterson and captured a trace-log with Quilt . Now, using the trace-log, Banjo must
identify which tasks are causing threads to spend significant amounts of time sleeping.
Banjo does this by running Rehype on the trace-log, which will generate a list of potential
changes and estimations of their effects on performance (both thread usage and wall-clock
execution duration). Banjo will then be able to select the changes with the greatest
positive impact and implement them as localised incremental changes to the source-code.

4.1 Introduction

In this chapter I address inefficient use of task-based concurrency within existing Java
programs that use thread pools to schedule task execution. Task-based concurrency
(Section 2.4) simplifies parallelising programs as it is conceptually and logistically straight-
forward. It is widely used in industrial software. Despite the increasing popularity of
reactive programming, task-based concurrency remains a prevalent approach to concur-
rency within Java 8 (and beyond). Moreover, over the past decade numerous languages
(including versions of Rust, C#, Dart, Python, Hack, JavaScript, Scala, and C++) have
added support for the async/await concurrency pattern – in some cases this pattern is

63

the core concurrency approach for the language. The async/await pattern is task-based
concurrency, indeed in many languages and runtimes it is a syntactically sugared version
of futures.

Inefficient task patterns are easy to fall into and regularly occur in industrial software.
A common inefficient pattern is wait-limited tasks. Wait-limited tasks do little computation
and instead spend the majority of their execution waiting on other tasks to finish. This is
inefficient because a waiting task consumes system resources (e.g. a Java thread) without
progressing the program’s computation. In a server handling multiple requests, this
performance loss manifests as a reduction in throughput ; it often has no visible effect
on either wall-clock or CPU time taken for a solitary request. The cause is clogging of
system-wide thread pools. For example, consider a thread pool of eight worker threads with
four physical CPU cores; if seven threads are waiting for another task to complete, while
only one thread is doing work, then only one core is being used, thus achieving a quarter
of the potential performance. The seven waiting threads remain idle, consuming system
resources (memory), even while other tasks may be queued in the thread pool, waiting
to be executed. In this scenario, refactoring wait-limited tasks can improve performance
(for metrics of throughput and wall-clock time, but not classically-accounted CPU time)
by freeing threads for other tasks. While these inefficiencies may be resolved by using a
different concurrency model (e.g. reactive programming), such refactoring is impractical
for large programs, and may introduce other issues. Incremental refactoring reduces risk,
while prioritising refactorings improves return on investment – performance benefit per
unit developer time.

In many cases there are relatively low-cost solutions (i.e. minimal, localised, source-code
improvements) to these inefficient patterns. For example, wait-limited tasks can be either
inlined or replaced with combinators (e.g. CompletableFuture in Java 8). The two primary
inhibitors to improving concurrency use are the difficulties in identifying inefficient tasks
and prioritising improvements. Identifying inefficient concurrency patterns statically is
difficult as, by their nature, concurrency and performance patterns emerge at runtime.
Prioritising improvements is important in industrial contexts where there are limited
developer resources and substantial amounts of source code.

In this chapter I introduce and evaluate Rehype, a system that performs automatic
analysis on runtime execution traces (trace-logs generated by Quilt), identifies instances of
inefficient concurrency patterns, and suggests potential localised source-code improvements.
It estimates the effect of each suggested improvement on the program’s performance as
a set of metrics, without re-executing the program. A developer can then sort and select
suggested improvements, based on the metrics, to optimise for their desired performance
attributes. Rehype produces improvement specifications which define how to implement
an improvement; it does not generate source-code patches.

While Rehype operates solely on dynamic data, in the form of trace-logs, I give a static
code example of an improvement (Fig. 4.5) to provide intuition (noting that the absence
of branching and looping in the example hides various issues). Importantly, Rehype aims
to suggest only statically implementable improvements. If multiple tasks are spawned with
identical dynamic context (functions active on the stack) – perhaps due to a source-code
loop construct – then they must be treated consistently by the analyser (e.g. they must
all be inlined, or none of them). I accordingly distinguish the idea of optimisation, such as
Rehype’s convert-to-inline, from its instances (here called improvements) which are concrete
modifications of trace-logs. For the case above, the improvement might be expressed as

64

IN

Target program

IN

Trace-config

Instrument program

Execute
instrumented program

Tracer

Trace-log

Trace-log
to

Trace-DAG

Trace-DAG

Estimate changes

Improvement
specifications

APG

Convert to APG

Map
improvement specification

to static location

Modify APG to
implement change

Render APG
to source

OUT

Map of improvements’ stats
to git-diff style

source-code patches

Quilt
(Chapter 3)

Rehype
(Chapter 4)

Scopda
(Chapter 5)

User selects and applies
source-code patches

Figure 4.1: High-level overview of where Rehype exists within DTRSO . Rehype takes in
the trace-log generated by Quilt , converts it to a trace-DAG for processing, and estimates
a set of changes as improvement specifications which are then used by Scopda (Chapter 5).

65

“inline every task spawned at dynamic context X”.
A key idea is that Rehype identifies improvements by estimating the performance effects

of implementing them. This estimation is performed by manipulating a trace-log. It occurs
offline and does not require re-executing the program. Using an estimation-based approach
enables Rehype to identify improvements in programs of varying complexity and for a
variety of patterns, as it does not detect specific patterns, but tests specific improvements.
This approach is well suited to concurrency performance optimisation as it can test the
effect of implementing multiple interfering improvements. Rehype can accurately estimate
the effects of changes to concurrency (see Section 4.3.2) as the trace-log contains task
life-cycle events that define the inter-thread concurrent dependencies, allowing Rehype to
account for the concurrent behaviour.

Implementing a combination of improvements suggested by Rehype for Acme (Sec-
tion 2.6.1), a large real-world server program, more than doubled its request processing
throughput (Section 4.3). While there is a lot of hype around increasing concurrency,
Rehype’s results show that reducing concurrency can significantly improve throughput in
resource constrained programs, such as application back-end servers.

Structure of Rehype

Rehype takes a trace log1 generated by Quilt and produces a list of suggested improvement
specifications for the program along with their predicted performance effects. The trace-log
events record the behaviour of the program via function call events and the inter-thread
concurrent dependencies via concurrent construct events (e.g. task lifetime events for task-
based concurrency). Inter-thread concurrent dependencies occur when one thread must
wait for another thread to reach some point (e.g. completing a Java FutureTask) before
continuing. These events enable Rehype to re-order traces to estimate the performance
effect of different potential changes by moving events while maintaining the inter-thread
dependencies.

Target concurrency model refresh

Recall from Section 2.4, in this thesis we focus on a task-based concurrency model
using thread-pool scheduling (discussion on other related models, such as Fork-Join,
is in Section 2.4.3). As a quick refresher, tasks are concurrent constructs that enable
scheduling the execution of a function (here called the task-body function) with some
parameters. Rehype specifically analyses a future-based model of tasks, whereby spawning
a task generates a future representing the return value of the task. When the task’s
result is retrieved from the future, the call blocks until the task has finished (providing
synchronisation). Rehype assumes2 that concurrent communication occurs solely at task

1In my implementation, the trace log is first pre-processed by a separate trace processor, but this is not
conceptually important.

2Unfortunately, it is not possible to determine automatically whether a Java program adheres strictly to
this concurrency model. While it is possible to check instances of the model being broken (e.g. clear usage
of shared memory for coordination), proving the inverse (that the model is adhered to) is undecidable due
to the aliasing problem (objects may be aliased and used between multiple tasks in non-obvious ways).
However, new type systems, such as Rust’s ownership system, may go some of the way towards enabling
better model adherence checking.

66

spawn and on retrieving future-based results3. Thus, in essence, tasks present a pure-
functional interface with the exception of operations that do not affect the result of the
program, such as logging.

Intuitively, the mental model is of tasks corresponding to pure functions that are called
and eventually return a single result (via a future). Specifically a task’s logical behaviour
(modulo memory locations, etc) is determined by its parameters. In practice, tasks will
rarely be true pure functions, they may depend on, and mutate, some external state (such
as a database). However, the key is that such state dependence is not relied upon for
inter-task communication (i.e. a task does not rely on another, concurrently executing,
task having edited that state).

Thread pools contain a fixed number of worker threads and a queue of tasks to execute.
We assume that all threads in a thread pool are solely used for executing tasks. In this
thesis, threads refer to the source-code-level logical threads. Although threads may be
executed on various physical CPU cores, depending on the operating system scheduler,
this is below the level of detail considered in this thesis.

Threads exist in one of three states: 1) active when executing a task; 2) waiting
when asleep waiting for the result of another task; and 3) unoccupied when waiting to be
assigned a task by the thread pool. To maximise performance, programs should have most
threads active most of the time. While waiting, a thread is consuming system resources
but not actively progressing its current task. An unoccupied thread is available for use
and consumes fewer system resources.

4.2 Method

Rehype takes a trace-log and generates a list of suggested improvements and their estimated
affect on throughput; Section 4.2.3 details the three optimisations we consider. For the
purpose of this chapter, throughput is represented as a combination of execution duration
and per-nanosecond thread usage – number of threads in each of the three work states,
active, waiting, and unoccupied. Rehype individually estimates the effect of each possible
optimisation for every task and then estimates the combined effect of sets of compatible
improvements.

Rehype estimates the effects of potential changes, rather than attempting to detect
potentially inefficient concurrency patterns. In some instances a change may improve
throughput, in others it may degrade throughput. Rehype’s estimation algorithm predicts
whether a change improves or degrades throughput. All three optimisations Rehype con-
siders relate to the concurrency of execution of tasks. Importantly, these optimisations do
not affect the program’s functionality, provided the program adheres to the “all concurrent
communication occurs through tasks (i.e. futures)” model explained in Section 2.4.

Rehype individually estimates the effect of each possible optimisation for every task
and then estimates the combined effect of sets of compatible changes (instances of optimi-
sations).

3As an indicator, of the 938 196 Java files that import ExecutorService on GitHub (see introduction),
216 714 also contain the synchronized keyword, suggesting, though not confirming, that they do not
adhere to this pure task model.

67

static void main(String[] args) {
example();

otherExample();

}

static void example() {
spawn();

}

static void otherExample() {
spawn();

}

static void spawn() {
// Assume executorService is available.

executorService.submit(/* ... */);

}

(a) Example program that would generate two tasks with different, but similar, dynamic contexts.

example() task: [main, example, spawn, ExecutorService.submit, FutureTask.<init>]

otherExample() task: [main, otherExample, spawn, ExecutorService.submit, FutureTask.<init>]

(b) The spawn dynamic-contexts of the tasks that would be generated by executing the code in
Fig. 4.2a.

Figure 4.2: An example program and the spawn dynamic-contexts that would be generated
for its tasks.

4.2.1 Dynamic context

Tasks are defined by the dynamic contexts of their spawn and execution events. The
dynamic context is defined by the function events surrounding the task event. For example,
the dynamic context for a spawn event is defined by the active call-stack when the event
occurred. The active call-stack is calculated as the FnStart events before the TkCtor

event, that do not have matching FnEnd events. However, the dynamic context for the
TkExeStart event is defined as the function invocation tree occurring after the event
(i.e. what code was executed by the task). Of course, this means that the contexts have
different structures, the spawn context is a list while the execution context is a tree.

For example, in Fig. 4.2a two tasks will be spawned, one through the example function
and the other through the otherExample function. Their spawn dynamic contexts would
resemble the lists shown in Fig. 4.2b.

Whereas, the function in Fig. 4.3a would generate two tasks with identical spawn
dynamic contexts, but different execution dynamic contexts. Their execution dynamic
contexts would resemble Fig. 4.3b.

4.2.2 Task groups

Task groups are used to ensure change estimations are statically valid. Task groups are
constructed to represent all tasks created by a particular piece of code, such that changing

68

static void start() {
executorService.submit(() -> example());

executorService.submit(() -> otherExample());

}

(a) Example program that would generate two tasks with identical spawn dynamic contexts, but
different execution dynamic contexts.

example() task: {Future.run(): { lambda1: { example(): { ... }}}}
otherExample() task: {Future.run(): { lambda2: { otherExample(): { ... }}}}

(b) The execution dynamic-contexts of the tasks that would be generated by executing the code
in Fig. 4.3a. The tasks’ spawn dynamic-contexts would be the same. Recall that these are trees.

Figure 4.3: An example program and the execution dynamic-contexts that would be
generated if it were executed.

[spawn, ExecutorService.submit, FutureTask.<init>]

Figure 4.4: A partial spawn dynamic-context that the tasks from Fig. 4.2a can be group
by.

the code to implement an optimisation would affect all of the tasks within the group.
This means that, when estimating a change, the optimisation must be applied to all tasks
within a task group, otherwise it would be estimating a change that could not be statically
made. Of course, a task group could contain a single task if that piece of code were run
just once.

Task groups are constructed based on shared dynamic contexts, including partial
dynamic contexts. For example, the two tasks in Fig. 4.3a could be grouped as they share
the same spawn dynamic context. Also, the two tasks from Fig. 4.2a can be grouped as,
though they have different complete spawn dynamic contexts, they share a partial spawn
dynamic context, shown in Fig. 4.4. Similarly, if the example function from Fig. 4.2a
were executed in a loop, it would generate multiple tasks that share a complete dynamic
context and would form a task group (though they are executed at different times, they
would have the same dynamic contexts).

The full set of task groups for the tasks in a trace is generated by recursively separating
task groups, creating a tree of task groups. The root of each tree is defined by the minimal
partial dynamic-context such that it captures the most tasks it can (there may be multiple
trees if some tasks do not share any partial dynamic context). Then, for each task group
in the tree, split it into two task groups by increasing the specificity of the parent task
group’s dynamic context. An example of increasing specificity is increasing the length of
the spawn dynamic-context until the spawn dynamic-contexts differ. How to split a task
group is determined by which increase in specificity (as, normally, multiple will be possible)
best separates the contained tasks (defined as the most even split of tasks). Tasks may be

69

contained by multiple task groups (i.e. task groups are not necessarily disjoint), as there
may be multiple ways to group tasks.

4.2.3 Optimisations

Rehype considers three optimisations: convert-to-inline, hoist-branch, and convert-to-
combinator. The optimisations convert some concurrently executed tasks in a program to
execute immediately at spawn (i.e. inline). The optimisations differ on how the source
change would be implemented and thus which tasks are changed. Selectively removing
concurrency can reduce the number of threads waiting, improving performance by freeing
them to be used by other tasks. The optimisations differ on how the source code would be
changed and thus which tasks are affected.

Convert-to-inline

In the convert-to-inline optimisation, Rehype estimates the effect of executing the task
immediately on construction (on its constructing thread), instead of spawning a task to be
executed on a separate thread. Note that the thread-pool model implies that the thread
which executed the task necessarily differs from the thread which constructed it4.

For example, in Fig. 4.5, pre-change queryAge() invokes queryDatabase() and immedi-
ately waits on the returned Future. Thus, for the duration of the task two threads are
occupied, one purely for waiting. The convert-to-inline optimisation improves performance
by reducing the number of occupied threads without affecting execution duration (or even
reducing it depending on the task scheduling overhead). After the change the top-level
task function, queryDatabase(), becomes synchronous5, improving throughput (and thus
performance) by reducing thread usage without affecting execution duration.

A subtlety is that multiple tasks may be spawned at the same dynamic context and
would thus all be affected by the same code change. To account for this, the convert-
to-inline optimisation is estimated for the set of tasks spawned at the same dynamic
context.

Hoist-branch

The convert-to-inline optimisation can be somewhat of a blunt instrument given its
all-or-nothing approach. The hoist-branch optimisation extends the convert-to-inline
optimisation by identifying a subset of the tasks that can be inlined without affecting the
other tasks. For example, when one subset of tasks performs extensive work, suitable for a
task, and another subset returns quickly, it can be beneficial to inline only the latter subset.
In the simple form, this difference in execution may be caused by an if-then-else (or
switch) statement. The optimisation can be practically implemented by hoisting (moving)
the if-then-else statement out of the task execution and to the task spawn code. Such
cases of divergent executions can be identified in program traces based on the execution

4Tasks that are submitted to a thread-pool and immediately executed on the submitting thread due
to a thread-pool implementation policy (e.g. ThreadPoolExecutor.CallerRunsPolicy() [43]) are
ignored by Rehype.

5In this example we assume queryDatabase() is only called by queryAge(). In practice the refactor
may take the form of a new function, such as queryDatabaseNoTask(), so the original method signature
remains for all other usages.

70

class AgeQuerier {
private final ExecutorService executorService;

// ... constructor creating executor service ...

private Future<DatabaseRecord> queryDatabase(String id) {
return executorService.submit(() -> {

DatabaseRecord queryResult = /* ... perform some database query ... */;

return queryResult;

});
}

int queryAge(String id) {
// Usages that immediately wait on the result of the task are simplified.

DatabaseRecord result = queryDatabase(id).get();

// Return the age inner value of the record.

return result.getAge();

}
}

Figure 4.5: Example of the convert-to-inline optimisation applied to an inefficient task. Be-
fore the change, queryAge() calls and immediately waits for the result of queryDatabase(),
effectively executing the task synchronously while requiring two threads. The change
makes the task synchronous by removing the executorService.submit() call and returning
the value directly, instead of inside a Future.

dynamic contexts of the tasks (whereas convert-to-inline is purely based on the task-
spawn dynamic context); when there is a hoist-able branching statement, the execution
dynamic contexts of the subsets of tasks will differ (i.e. there will be two task groups that
share a spawn dynamic context, but have different execution dynamic contexts). The
dynamic estimation of inlining a subset of tasks is the same as convert-to-inline, hence
the optimisation is an extension of convert-to-inline. In fact, from a purely dynamic
perspective, the optimisation could be called convert-subset-to-inline, however, the term
hoist-branch better matches the practical change a developer would implement.

While there are more complex causes of branching, such as dynamic dispatch, the
difference between task execution paths is similar whether due to a simple if-then-else

or a more complex branching mechanism. As such, Rehype treats them similarly, though
the static implementation may be more complex.

Rehype’s traces do not explicitly identify branching statements, instead the existence
of a branching statement is inferred from the difference in task execution dynamic con-
texts. For example, in Fig. 4.6, pre-change, the existence of the branching statement
(if (cached.isPresent())) is inferred from multiple tasks sharing the spawn dynamic
context [getValue] with some including queryRemoteData() in their execution dynamic
contexts (when the value is not cached), and others not including the events (when the
value is cached). As such, Rehype outputs the dynamic context information (i.e. task
spawn contexts and the various in execution contexts) to identify the branching statement
to be hoisted, but cannot explicitly identify the statement (e.g. with a file & line number).
As FnStart/FnEnd only contain a reference to the function invoked, not to the call-site,
Rehype cannot directly disambiguate between two calls to a function from the same caller
function (i.e. the caller-context is limited, see Section 3.3).

Fig. 4.6 is an example of a source change hoisting a branch out of a task execution
to improve throughput. A task, getValue(), checks a fast local cache and returns the

71

class CachedDatabaseQuerier {
private final ExecutorService executorService;

// ... constructor creating executor service ...

Optional<DatabaseRecord> getCached(String id) {
// ... check fast local cache

}

DatabaseRecord queryRemoteDatabase(String id) {
DatabaseRecord result = /* query some remote database */;

return result;

}

Future<DatabaseRecord> getValue(String id) {
Optional<DatabaseRecord> cached = getCached(id);

// Check if value is cached without using concurrency.

if (cached.isPresent()) {
// To keep the API consistent the cached branch returns a future that

// is immediately resolved.

CompletableFuture<DatabaseRecord> immediate = new CompletableFuture<>();

immediate.complete(cached.get());

return immediate;

} else {
return executorService.submit(() -> {

Optional<DatabaseRecord> cached = getCached(id);

// Check if value is cached.

if (cached.isPresent()) {
return cached.get();

} else {
return queryRemoteDatabase(id);

}
});
}
}

}

Figure 4.6: Example of a source change to hoist a branching statement from task execution
to stop inefficient occurrences being concurrent. Specifically, in getValue(), if the value is
cached using concurrency is inefficient, however, if the value is not cached, concurrency
is beneficial. This source change hoists the branch statement (if (cached.isPresent()))
out of execution so concurrency is only used if the value is not cached.

value from the cache if present, otherwise it queries a remote database. When the value
is cached the task is fast enough that inlining it would not significantly affect execution
duration and would reduce thread usage, improving throughput. However, when the value
is not cached the task involves network I/O and so inlining the task would negatively
affect throughput. Applying convert-to-inline would be insufficient as both cases would be
inlined (i.e. the network I/O would be inlined). Instead, the branch can be hoisted so the
cache is checked before the task is placed on a thread. Thus only the instances when the
task is cached are inlined.

Convert-to-combinator

In Java, concurrency combinators can encode task scheduling and coordination (e.g. passing
the result of one task as an argument to another task). Perfect use of combinators can
result in sleep-free task concurrency as no thread ever waits for a task to finish (Section 2.4).

72

static Future<DatabaseRecord> parallelSum(ExecutorService es) {
return es.submit(() -> {

Future<Integer> first = es.submit(Example::longOperation1);

Future<Integer> second = es.submit(Example::longOperation2);

return first.get() + second.get();

});
CompletableFuture<Integer> first = CompletableFuture.supplyAsync(

Example::longOperation1, es);

CompletableFuture<Integer> second = CompletableFuture.supplyAsync(

Example::longOperation2, es);

return second.thenCombine(first, (f, s) -> f + s);

}

Figure 4.7: Example of the convert-to-combinator optimisation.

Instead of some code, x, waiting on a thread to use a task’s result, a combinator represents
x as a task-body function to be executed when the task result is ready.

Combinators are not as intuitive or straightforward to use as they require designing the
task scheduling explicitly, instead of programming sequentially and relying on futures to
determine synchronisation (whereby scheduling is handled by imperative code and threads
waiting). Moreover, combinators are not always easy to practically retrofit to existing
code.

The convert-to-combinator optimisation replaces coordinator tasks, tasks that primarily
exist to coordinate other tasks, with combinators. This frees a thread to be used by other
tasks. The optimisation determines the scheduling of the tasks spawned by the coordinator
task and encodes it in a combinator (specifically a CompletableFuture in Java 8). Fig. 4.7
illustrates the optimisation in a simple parallel summation example.

A subtlety is that Rehype does not detect coordinator tasks, rather it estimates the
effect of converting each applicable task (those that create and wait for another “sub-task”)
to a combinator. This embodies the key idea of Rehype: “identify improvements by
estimating the performance effects of implementing them” key idea.

4.2.4 Estimation

To estimate the performance effects of changes, Rehype6 re-orders events from a trace-log
to produce a new trace-log which approximates a trace-log (modulo exact nanosecond
timings encoded as ' below) that would be generated by re-executing the original program
after applying the suggested change(s). Rehype aims to generate a realistic trace-log that
is as accurate as possible to the actual log the program would generate.

More concretely, assume some given program p0 and suggested source-level changes, δ,
for it. Now write program pδ for the resulting program and let JpK stand for the trace-log
obtained by executing program p on some fixed given data. Then Rehype’s estimation
method is a function βδ on trace-logs such that:

βδ Jp0K ' JpδK (4.1)

In other words the source-code change δ is reflected as a trace-log change βδ.
We implement β using a trace-DAG (directed acyclic graph) of the trace-log. A trace-

DAG is a structured representation of a trace-log. This makes reordering events simpler

6It not only analyses but also transforms!

73

in the structured trace-DAG as edits are made by moving edges and the effects of edits
on the rest of the trace are automatically propagated to affected events. The high-level
process of βδ is: transform trace-log into a trace-DAG, apply δ changes to the trace-DAG,
and transform the trace-DAG back into a trace-log.

Where a trace-log has absolute values per-event, a trace-DAG has relative values
on edges or inherited via edges. The use of relative values, instead of absolute values,
significantly simplifies editing traces. For example, in a trace-log each event has an
absolute timestamp. By contrast in a trace-DAG temporal information is stored as
durations (relative timings) and used to label edges. (Vertices in a trace-DAG have no
explicit timing information, but absolute timings of vertices can be calculated from the
constraints imposed by time edge durations.)

More formally, a trace-DAG is a triple (V,EΘ, Eτ) where V is a set of vertices (one for
each event in the trace log) and EΘ, Eτ are sets of directed dependency edges (respectively
thread edges and time edges). By construction trace-DAGs are acyclic. There are two
types of edges: thread edges and time edges. The former are unlabelled and chain together
successive events executed by a single thread;7 the latter are labelled with durations
which express a minimum delay between two events. Two vertices connected by a thread
edge are always connected by a time edge as well. Though, this condition is not strictly
bidirectional, two vertices not connected by a thread edge may still be connected by a
time edge. This occurs between specific task life-cycle events associated with the same
task. The two edge types in more detail are:

Thread edge (EΘ): encodes which thread a node occurs on and the order of events in
the thread. Given an edge (v, w), the event for w occurs immediately after the event
for v and occurs on the same thread. Every vertex has exactly one incoming and one
outgoing thread edge, with the exception of the first and last events on a thread.

In diagrams I draw thread edges as a double arc.

Time edge (Eτ): encodes the time delta between vertices with a nanosecond duration
label. Given an edge (v, w, d), where d is the nanosecond duration label, the event
corresponding to vertex w must happen at least d nanoseconds after v. This constraint
means that if a trace-log is derived from a trace-DAG (see Section 4.2.4.4) without
the trace-DAG being changed, the derived trace-log events will be exactly the same
as the original trace-log that the trace-DAG was created from. However, edits made
to the trace-DAG (see Section 4.2.4.3) may produce graphs in which these constraints
need to be treated as inequalities.

Vertices may have any number of incoming and outgoing time edges. If a vertex has
multiple incoming time edges, then re-creating its associated trace-log timestamp
needs to satisfy the duration constraints of all its incoming edges (see Section 4.2.4.4).

Time edges between vertices on different threads enforce inter-thread “happens-
before” constraints by using a zero duration edge label. For example, a TkCtor event
vertex will have outgoing time edges to every other task-event vertex for that task
with the exception of transitively redundant time edges.

In diagrams I draw time edges as a single arc with duration d written alongside.

7These events may represent actions of distinct tasks, but due to the thread-pool model all events
corresponding to a single task occur contiguously on this chain.

74

Trace-DAGs are transitively irreducible. That is, given edges v0 → v1 and v1 → v2,
no edge v0 → v2 exists. Transitive irreducibility is necessary so edits to the graph behave
as expected with regards to vertex order. For example, given a graph with five vertices
{v0, v1, v2, v3, w} and edges v0 → v1 → v2 → v3, an edit to the graph can “move” v1 and
its descendant vertices to a new parent, w, by removing the edge v0 → v1 and adding the
edge w → v1. Performing such an edit in a transitively irreducible graph has well defined
outcomes (v1, v2, and v3 become descendants of w and not v0). However, such edits have
undefined behaviour if the graph is transitively reducible (e.g. if v0 → v2 existed then v2

and v3 would be descendants of both v0 and w). Moreover, trace-DAGs are conceptually
transitively irreducible as each vertex only depends on the immediate preceding vertices.

4.2.4.1 Soundness

Rehype’s re-ordering of the trace-log is sound, given adherence to the task concurrency
model described in Section 2.4. That is, the re-ordered trace-log reflects the trace-log the
program would generate given the immediate execution of the task-body function. Recall
that the concurrency model assumes solely future-based concurrent communication. In
particular, tasks intuitively correspond to (externally) pure functions and their behaviour is
determined by their parameters. Thus, a task will behave the same whether it is executed
immediately (as a direct call to the task-body function) or scheduled on a thread-pool;
therefore re-ordering of task execution events in a trace-log is sound.

4.2.4.2 Trace-DAG construction

The trace-DAG is a triple of (V,EΘ, Eτ). Initially the trace-DAG contains one vertex
for each event in the trace-log. For implementation efficiency some vertices can merged8.
Merging vertices for efficiency does not change the conceptual formulation or function of
the trace-DAG. As such the rest of this chapter assumes no merging of vertices.

The edges in a graph are derived from four rules for related events, they are: the first
and last events on a thread are connected (with both edges and time edges of duration
zero) to special thread start and end vertices; two consecutive events on a thread; TkCtor
events and all other events associated with the same task; and TkResSet events and
TkResGetEnd events associated with the same task. While explicit thread start and end
events are unnecessary in trace-logs (and thus do not exist), it is convenient to insert
special thread start and end vertices in the trace-DAG to simplify graph edit operations.
Specifically, graph edit rules (Section 4.2.4.3) assume all vertices being edited have at least
one preceding and succeeding vertex. The special thread start vertices also initialise the
absolute thread id values which are inherited by normal vertices through the thread edges.

Formally, let L = JpK, the trace-log captured from an execution of the program p with
data as before. For any thread θ, write Lθ as the list of ordered events occurring on the
thread and write Lθi as the ith event in the thread (ranging from 0 to n− 1, where n is the
number of events in the thread). Let start(θ) and end(θ) be the special thread start and
end vertices, respectively, for thread θ. Assume a mapping from event to vertex φ such
that φ(e) is the vertex for e and its inverse mapping ψ. Write events as data structures
per the definition in Fig. 3.2 (Section 3.2) – i.e. for event e, e.timestamp is the nanosecond

8We merge vertices whose corresponding events are function events and are contiguous (i.e. the events
form a block of code). This is similar to basic blocks in compilers.

75

timestamp for the event e). Then the edge construction rules are9:

Rule 1: Given the first and last events on a thread θ, Lθ0 and Lθn−1, respectively, add:

EΘ : (start(θ), φ(Lθ0)) (4.2)

Eτ : (start(θ), φ(Lθ0), 0) (4.3)

EΘ : (φ(Lθn−1), end(θ)) (4.4)

Eτ : (φ(Lθn−1), end(θ), 0) (4.5)

Rule 2: Given two consecutive events on a thread, Lθi and Lθi+1, for the thread θ, add:

EΘ : (φ(Lθi), φ(Lθi+1)) (4.6)

Eτ : (φ(Lθi), φ(Lθi+1), Lθi+1.timestamp − Lθi .timestamp) (4.7)

Rule 3: Given a TkCtor event eTkCtor, for every other event associated with the same
task eTk∗, add:

Eτ : (φ(eTkCtor), φ(eTk∗), 0) (4.8)

Two events e, e′, are associated with the same task if e.task id = e′.task id .

Rule 4: Given a TkResSet event eTkResSet, for every TkResGetEnd event associated with
the same task eTkResGetEnd, add:

Eτ : (φ(eTkResSet), φ(eTkResGetEnd), 0) (4.9)

Refer to Table 3.2 in Section 3.2 for the definition of all task life-cycle events.
Recall, the duration labels in rules 3 and 4 are zero as they are concurrent “happens-

before” constraints. Practically, such concurrent constraint edges only affect timestamps
when a trace-DAG is edited such that the destination of the edge would otherwise occur
before the origin.

Trace-DAGs must be transitively irreducible, as such we only record immediate depen-
dencies (non-transitive edges), as is common in dependency graph construction. Thread
edges are naturally non-transitive as there is only ever at most one incoming and one
outgoing thread edge from a vertex. For time-edges transitive irreducibility is an extra
constraint applied to rules 3 and 4, i.e. if a path exists between vertices v and w, do not add
a new time edge (v, w, d). In my implementation I generate edges based on rules 1 and 2,
then rules 3 and 4 where both events are not from the same thread (i.e. already transitively
connected), and finally perform transitive reduction to remove transitively redundant
inter-thread edges. Though in many cases there are no inter-thread transitively reducible
edges, they can occur in some task usage patterns. Performing transitive reduction as a
final step is more efficient than checking, on every edge insertion, transitive connectedness
between vertices not on the same thread.

9While the notation (v, w) ∈ E is more common for rule-based construction of sets, I use the E : (v, w)
notation as it is more consistent with the graph grammar used for editing graphs in Section 4.2.4.3.

76

4.2.4.3 Optimisation graph-edits

Optimisations are estimated by editing the trace-DAG. All three optimisations described,
convert-to-inline, convert-to-combinator, and hoist-branch, are based on the same core
graph edit: moving the execution events of a task to the position of its TkCtor event.
The execution events for a task are all events on the task’s execution thread between
TkExeStart and TkResSet, inclusive (i.e. all events in the thread edge path between
TkExeStart and TkResSet). The execution events replace the TkCtor vertex.

Convert-to-inline applies this edit to the given task.

Convert-to-combinator applies it to all immediate owned-sub-tasks of the given task.
Immediate owned-sub-tasks are tasks that are created and used in the same task
(i.e. TkCtor and TkResGetStart events both occur in the task’s execution).

To express this more formally, first define v
Θ∗

=⇒ v′ to mean that there is a thread-

edge path from v to v′ (i.e.
Θ∗

=⇒ is the transitive closure of thread edges seen as a
relation). Also, we extend the vTkCtor notation so that vTkCtor(x) means that vertex
v corresponds to a TkCtor event whose task id is x. Then task y is an immediate
owned-sub-task of task x if there are vertices v1, . . . v4 such that

v
TkExeStart(x)
1

Θ∗
=⇒ v

TkCtor(y)
2

Θ∗
=⇒ v

TkResGetStart(y)
3

Θ∗
=⇒ v

TkResSet(x)
4

Hoist-branch applies the edit to a specific subset of tasks spawned with a common
dynamic context, where the subset share an execution dynamic context.

As the scope of a task’s execution is the vertices between the TkExeStart vertex
and the TkResSet vertex, moving the execution of a task is implemented by redirecting
edges between task event vertices. The edges terminating at the TkExeStart vertex and
originating from the TkResSet vertex are stitched together, removing the task execution
from its current thread. Edges terminating at the TkCtor vertex are directed to the
TkExeStart vertex and edges originating at the TkCtor vertex are moved to originate
from the TkResSet vertex, inserting the task execution into the task’s construction thread.

Formally, given a task to edit and its associated vertices vTkCtor, vTkExeStart, and
vTkResSet. Write the replacement of edge(s) X with edge y as X 7→ y. Using this graph
notation, the graph edit for inlining a task’s execution is:

Stitch execution thread, removing task execution from the thread:

EΘ : (s, vTkExeStart), (vTkResSet, w) 7→ (s, w) (4.10)

Eτ : (s, vTkExeStart, d1), (vTkResSet, w, d2) 7→ (s, w, d1 + d2) (4.11)

Insert task execution into construction thread:

EΘ : (s, vTkCtor) 7→ (s, vTkExeStart)

(vTkCtor, w) 7→ (vTkResSet, w)

(4.12)

Eτ : (s, vTkCtor, d) 7→ (s, vTkExeStart, d)

(vTkCtor, w, d) 7→ (vTkResSet, w, d)

(4.13)

Note, this edit removes vTkCtor from the graph as it is redundant post edit. This algorithm
is illustrated in Fig. 4.8.

77

Before After

Execution
thread

e1

vTkExeStart

e2

e3

e4

vTkResSet

e5

Construction
thread

e6

vTkCtor

e7

d1

d6

d2

d3

d4

d5

d7

d8

0

Execution
thread

e1

e5

Construction
thread

e6

vTkExeStart

e2

e3

e4

vTkResSet

e7

d1 + d6

d3

d4

d7

d2

d5

d8

Event Vertex

en

Thread EdgeTarget Task Vertex

vTk∗

Time Edge

d

Figure 4.8: Graph edit operation to inline task execution. See text for description and
formalisation (Eq. 4.10-4.13) of edit.

78

4.2.4.4 Trace-DAG to Trace-log derivation

To derive a trace-log from a trace-DAG, events are created for most vertices in the graph
and written, in thread operation order (defined by thread edges), into the new trace-log.
Events are not created for graph helper vertices (start(θ) and end(θ)) or vertices associated
with tasks that have been inlined (e.g. vTkExeStart). An event created for a vertex, v, takes
the event type and auxiliary data from the vertex’s corresponding original event, ψ(v),
and uses the thread id and timestamp calculated for the vertex by the trace-DAG. Thread
ids are calculated by following the thread edge paths from the special thread start vertices,
start(θ). Absolute timestamps are calculated by propagating the relative durations on time
edges through the graph. The timestamp for the event created for vertex w is calculated
by:

T (w) = max
(v,w,d)∈Eτ

T (v) + d (4.14)

thereby satisfying all inequality time constraints. To improve estimation accuracy when
trace-DAGs have been edited, the duration of thread sleep operations is adjusted by
modifying duration labels on specific related time-edges before calculating the absolute
timestamps, this is discussed in Section 4.2.4.5.

Formally, to derive a trace-log, define a function, σ(v, θ), that gives an event for the
vertex v on thread θ for the new trace-log :

σ(v, θ) = Event {
type = ψ(v).type,

aux data = ψ(v).aux data,

timestamp = T (v),

thread id = θ

}

(4.15)

Recall that ψ is the mapping from vertex to event and T returns the calculated absolute
timestamp for a vertex. Refer to Fig. 3.2 for the definition of the event data structure.

Let L = L(G) be the trace-log derived from the trace-DAG G. Then L is the concatenation
of the per-thread trace-logs for all threads present in G. The threads present G are given
by the special thread start and end vertices (recall the vertices start(θ) and end(θ) from
Section 4.2.4.2). Write Lθ as the per-thread trace-log for thread θ. For simplicity I employ
a set-constructor-like notation for defining the ordered sequence of events in a per-thread
trace-log. Using this notation, each per-thread trace-log is given by:

Lθ = (σ(v0, θ), . . . , σ(vn−1, θ) | (start(θ), v0) ∈ EΘ,

(vi, vi+1) ∈ EΘ,

(vn−1, end(θ)) ∈ EΘ)

(4.16)

4.2.4.5 Sleep estimation

There are two types of sleeps in Rehype’s target execution model10: a worker thread waiting
to be assigned a task to execute and some code waiting for the result of a task to be set

10A program may also include other types of sleeps, however, Rehype will not estimate an updated sleep
duration for those sleeps.

79

so it can be retrieved. In a trace-DAG these sleeps end when a specific corresponding
concurrent event occurs (task-created and result-set, respectively). This concurrent event
determines the earliest-sleep-completion-time (ESCT). When a trace-DAG is edited the
ESCT for sleeps may change. Thus to accurately estimate the updated trace-log the
duration of the sleeps must be updated to match the ESCT. If the ESCT is before the
start time of the sleep, the sleep will have a zero-duration and all events within the sleep
(e.g. function events for Object.wait()) occur immediately after the sleep start event with
the same absolute timestamp.

Accurately estimating the duration of sleeps requires its own step in the graph to
log transformation as the normal time-edges in the trace-DAG are not able to calculate
the ESCT. The normal time-edges calculate forward time durations, however, the ESCT
requires calculating backward through the time-edges. This process of calculating backward
through the time-edges is easiest to understand via an example.

Fig. 4.9 illustrates a trace-DAG sub-graph containing the vertices and edges of a sleep
operation and the event it waits for. The sleep operation in the figure is a thread pool
worker thread waiting for the next task it executes to be created. In the graph v1 is the
start of the sleep operation (ThreadWait), v2 and v3 are the FnStart and FnEnd events
for a wait() invocation, respectively, v4 is the end of the sleep operation (ThreadStart),
v5 is the FnStart of FutureTask.run(), v6 is the TkExeStart, and w2 is the TkCtor (w1

is irrelevant and simply illustrates a prior event on the same thread as w2). w2 is the event
that the sleep operation waits for. All vx vertices occur on the same thread while w2 is on
a separate thread. The ESCT is the timestamp of v4 such that v6 executes immediately
after w2 (i.e. v6’s earliest possible timestamp while still satisfying all incoming time-edge
constraints). Thus, in the example in Fig. 4.9, the ESCT, ε, is:

ε = max(T (v1), T (w2) + 0− d5 − d4)

where T (v) returns the absolute timestamp calculated for vertex v. To adjust the duration
of the sleep, the edges within the sleep operation (i.e. d1, d2, d3) are scaled to the ESCT
based sleep duration:

r =
ε− T (v1)

d1 + d2 + d3

d′1 = rd1

d′2 = rd2

d′3 = rd3

To perform this sleep estimation for every sleep in a trace-DAG, sleep sub-graphs are
identified. A sub-graph consists of the sleep start (v1 from the example), sleep end (v4),
concurrent receiver (v6), and concurrent trigger (w2) vertices, and the paths of vertices
and edges between them.

Concretely, assume a subset of all vertices V start that contains all sleep start vertices
and a subset V θ that contains the vertices on the thread θ. Then, a sleep-path – the
sequence of vertices between sleep start and concurrent receiver vertices, inclusive – on a

80

v1

v2

v3

v4

v5

v6 w2

w1

d1d′1

d2d′2

d3d′3

d4

d5 d6

0

ESCT vertex

Sleep start

ThreadWait

Sleep end

ThreadStart

Future.run()

FnStart

TkExeStart

wait()

FnStart/FnEnd

Figure 4.9: Illustration of a sub-graph containing the vertices and edges in a simple sleep
operation. Blue edges are the original time-edges, green edges are the adjusted sleep
time-edges (which replace their original counterparts). See the text for explanation of
sleep estimation based on this sub-graph.

81

thread θ is given by (using the sequence notation from Eq. 4.16):

(v1, . . . , vn | v1 ∈ V θ ∩ V start,

vi ∈ V θ,

(vi, vi+1) ∈ Eτ ,

∃w ∈ (V − V θ) ((w, vn, d) ∈ Eτ))

(4.17)

The final vertex in the path, vn the concurrent receiver, is the first vertex to have an
incoming time-edge from a vertex on another thread (via the (w, vn, d) edge). The ESCT,
ε, is calculated as:

ε = T (w)−
(vi,vi+1,d)∈Eτ∑
vend≤vi<vn

d (4.18)

where vend is the sleep end vertex on the path and w is the concurrent trigger in the
sub-graph, identified as:

w | (w, vn, d) ∈ Eτ , w ∈ (V − V θ) (4.19)

Finally, scale each time edge between the sleep operation vertices:

|s| =

(vi,vi+1,d)∈Eτ∑
v1≤vi<vend

d (4.20)

r =
ε− T (v1)

|s|
(4.21)

(vi, vi+1, d) 7→ (vi, vi+1, rd) | v1 ≤ vi < vend (4.22)

here |s| is the original sleep duration and r is the ratio between the original and estimated
sleep durations. Recall the graph notation, x 7→ y | condition, replaces the edge(s) x with
a new edge y, for every x that satisfies the condition (in this case, every edge connecting
vertices between v1 and vend).

4.2.5 Improvement performance effect

Given the ability to estimate the effect of a change, we can automatically identify which
changes have positive effects on program performance. Rehype implements a metric
function µ that calculates a set of performance metrics for a program given a trace-log. A
proposed change δ is beneficial if:

µ(βδ JpK) > µ JpK (4.23)

Recall βδ JpK is the estimate trace-log for δ that has been reordered to approximate the
trace-log that would generated if the change were implemented. The apparent benefit of δ
is technically constrained to the execution of the program with the input used to generate
JpK. The actual benefit to the program more broadly is dependent on how representative
the input is of all inputs the program processes.

The performance metrics calculated for trace-logs are listed in Table 4.1. There are two
categories of metrics: time-series and aggregate. Time-series metrics are calculated per-
nanosecond. Aggregate metrics are derived from the time-series metrics, with the exception

82

Metric Description

Time-series metrics Time-series data calculated per-nanosecond.

Active threads Number of thread pool threads in the active state.
Waiting threads Number of thread pool threads in the waiting state.
Unoccupied threads Number of thread pool threads in the unoccupied state.

Aggregate metrics Aggregate metrics across the whole trace-log. These metrics are
used for determining change benefit.

Average threads
utilised

Average number of threads in active or waiting state at each
nanosecond. This metric determines how concurrent the pro-
gram is and is an indicator to program throughput (e.g. how
many requests could a server concurrently handle).

Max threads utilised Maximum number of threads in active or waiting state at one
time.

Average threads wait-
ing

Average number of threads in waiting state at each nanosecond.
This metric indicates how inefficient the program’s concurrency
is.

Max threads waiting Maximum number of threads in waiting state at one time.
Indicates the largest bottleneck effect in the program.

Execution duration Time between the first and last event in the trace-log.

Table 4.1: Performance metrics calculated for trace-logs. Metrics are used to determine
how beneficial changes are.

83

of the duration metric. Time-series metrics can be plotted to illustrate the behaviour
of the program across time (e.g. bottlenecks). Aggregate metrics enable comparison of
trace-logs. This comparison is the basis of determining the benefit of a change.

The performance effect of a change is the delta of performance metrics between the
pre- and post-change trace-logs. The estimate effect is thus the difference between the
pre-change and estimate trace-logs. The accuracy of estimation is the difference between
the estimate trace-log and the post-change trace-log.

To sort a list of changes based on performance benefit Rehype calculates a single
aggregate-benefit metric11. Aggregate-benefit is the sum of all aggregate metrics’ normalised
difference from the original. More formally, the aggregate-benefit of a change δ is:

aδ =
∑

(e, b)∈(µ(βδJpK), µ(JpK))

b− e
b

(4.24)

where e is a performance metric in the estimate trace-log and b is its corresponding pair in
the pre-change JpK trace-log.

4.2.6 Multiple improvements

Having described the analyser for estimating a single improvement, I now extend it to
sets of improvements. Changes to a program’s concurrency naturally interfere with each
other. This means that the estimated effects of multiple improvements are not summative,
that is, the effect of implementing them together is not equal to the sum of the effects of
implementing them individually. As such, the final step of Rehype is to estimate the effect
of each combination of improvements δ, to accurately estimate their overall effect. This
can result in a combinatorial explosion of 2n possible combinations, for n improvements.

Given the potential size of the combinatorial space, it is important to limit the space as
much as possible and search it in a sensible manner. To limit the space, Rehype identifies
sets of mutually exclusive improvements. To search the remaining space, Rehype uses a
form of hill-climbing to more efficiently identify the most beneficial combinations. This
hill-climbing optimises for a particular composite metric (Section 4.2.7) that minimises
thread usage and execution duration, to maximise throughput.

Two improvements are mutually exclusive if they would require conflicting trace-log
changes (and hence they would require conflicting source-level changes). In essence an
improvement defines “do X to tasks Y”, such as “do convert-to-inline to tasks A, B, and C”.
As an example, two mutually exclusive improvements might be: “do convert-to-combinator
to tasks A and B” and “do convert-to-inline to tasks B and C”. These improvements
require different operations be applied to the same tasks (in this case, B), and are thus
mutually exclusive.

Efficient methods for searching combinatorial space is a well established area of
research and, in future work, I plan to investigate how these can be better leveraged in
the improvement combinatorial space.

4.2.7 Measuring and Selecting Improvements

Rehype calculates various metrics from a trace-log for program p; these can be used to
compare the original trace-log JpK with the trace-log βδ JpK incorporating the improvements

11Developers can also sort based on the individual metrics depending on their performance targets.

84

δ and with the trace-log JpδK from executing the modified program pδ. Metrics include
time-series metrics which give a separate value for each timestamp (e.g. number of threads
in each state – active, waiting, and unoccupied) and aggregate metrics (e.g. wall-clock
execution duration and summary statistics (e.g. mean, max)) derived from time-series
metrics.

The thread-usage metric values can be plotted to aid identifying bottlenecks and spikes
in concurrent thread usage. The aggregate metrics can be used individually or collectively
to sort and select improvements, or combinations of improvements, that best optimise for
the improvements the developer seeks. In the simplest case, sets of improvements along
with their associated metric values can be inserted into a spreadsheet for the developer to
analyse. Derived metrics can usefully combine multiple metrics into a new metric. For
example, squaring and averaging a set of metric values can weight greater single-metric
improvements more significantly.

4.3 Evaluation

Rehype analyses trace-logs captured by Quilt to generate a list of suggested improvements.
It provides the estimated throughput effect for each improvement.

In this section I perform a number of experiments to evaluate Rehype’s estimations.
First, I present micro-benchmark-based experiments to illustrate the bounds of Rehype’s
estimation, then an evaluation of the accuracy of throughput estimations, an evaluation of
the consistency of estimations, and, finally, an evaluation of the throughput improvements
achieved by implementing suggested improvements in an industrial application back-end
server, Acme. The results demonstrate the effectiveness of Rehype for large real-world
systems, the potential and validity of estimating executions based on previous executions for
concurrency performance analysis, and the significant throughput improvements achievable
by reducing concurrency.

I evaluate Rehype on a proprietary application back-end server, Acme (described in
Section 2.6.1), which is an analogue for the Paterson software in our running scenario, as
well as performing micro-benchmark based experiments to illustrate the best-case and
worst-case boundaries of Rehype. Acme has extensive automatic test coverage (including
unit tests and integration tests), allowing us to confirm that the improvements do not affect
functional program behaviour (program outputs). In each of the presented evaluations,
I execute an artificial workload that interacts with a series of endpoints within Acme
(simulating user registration and initial user interactions). This provides a clean trace of
the concurrent behaviour being analysed. There is slight variability in the performance
of Acme across repeated executions in the evaluations. This is due to the inherent non-
determinism, with regards to performance, in concurrent programs and the variability of
performance of systems Acme depends on, such as its SQL database system.

In these evaluations I report duration and thread usage performance metrics (both
from estimates and real executions) and concurrent profiles. The concurrent profile of an
execution is its thread usage at each point in time. Multiple executions of a program should
have close to identical concurrent profiles. Slight variations are to be expected given the
non-determinism of concurrent programs. Profiles are calculated to nanosecond accuracy
based on trace-logs. When comparing concurrent profiles we normalise them based on the
execution’s duration so execution speed differences do not distort the comparison when
profiles are overlaid in figures.

85

As with other chapters, these experiments were run on a Linux benchmarking machine
described in Section 2.6.

4.3.1 Micro-benchmarks

I present two micro-benchmark-based evaluations of Rehype’s estimation, pathological best-
and worst-case scenarios, to illustrate its bounds and limitations. Both micro-benchmarks
are small programs that execute a recursive function that submits a new task on each
invocation. The best-case benchmark illustrates a case where the concurrency is redundant
and Rehype’s estimation can be highly accurate. The worst-case benchmark illustrates
the limitation that Rehype depends on a representative execution to generate accurate
estimations. In the worst-case we construct a scenario where Rehype suggests a change,
given one trace-log, that is pathologically bad when the benchmark is executed with
different arguments.

The code for the best- and worst-case benchmarks is identical, the relevant recursive
function is shown in Fig. 4.10. The difference between the best- and worst-case benchmarks
is the value given for the delay parameter. In the code, we have a fixed-size thread pool
and a recursive function that has two parameters depth and delay. The depth parameter
is used to limit the recursion, it is initialised to a value such that, once all tasks are created,
all threads in the thread pool will be used (i.e. it will be saturated, but not over saturated).
The delay parameter is used to insert a sleep, of d milliseconds where d is the value of
delay, between the recursive call and the wait on the recursive value, this is to simulate
some long-running computation.

The efficiency of the concurrency within the benchmarks is determined by the delay

parameter. If delay is zero (or very close to zero) each recursion will, effectively, start
a task which starts a sub-task (via recursion) and immediately waits for the sub-task
to complete. This is the pathological best-case for Rehype as the concurrency is highly
inefficient and so estimating and suggesting a synchronisation of the tasks is accurate and
straightforward (the synchronised version of the code is provided in Fig. 4.10b). However,
if delay is some non-trivial value above zero, then each task will be starting a sub-task
(via recursion) and then performing some computation concurrently (the sleep simulates
some long-running computation) before waiting for the result of the sub-task. In this case,
synchronising the tasks would be bad as the computations (the sleeps) performed in each
task would become sequential instead of concurrent. Thus, the pathological worst-case for
Rehype is performing estimation based on a trace-log of an execution with delay equal to
zero (or very close to zero) and then having the program executed with a delay of some
larger value. In fact, the (in)accuracy of Rehype’s estimation will be directly proportional
to the value of delay – the greater the value the more significant the effect of synchronising
the tasks and thus the worse the accuracy of the estimation.

Note that in each micro-benchmark evaluation, there will be at least one thread that is
waiting for most of the execution. This is the main thread that invokes the first iteration
of the recursive function.

All benchmarks were executed 100 times and all figures in this section illustrate averages
(mean and standard deviation) over those 100 executions, with the exception of concurrent
profiles which illustrate a single run. The concurrent profiles naturally illustrate a single
execution and are very similar across all 100 executions.

86

// An executor service that is used in each invocation of ‘recursive’.

ExecutorService executorService = Executors.newFixedThreadPool(10);

// The core recursive function executed in the micro-benchmarks.

// The function will recurse until ‘depth == 0’.

// The first invocation will receive ‘depth == 9’ so 10 tasks will be running concurrently

// (i.e. the thread pool will be fully saturated, but not over saturated).

Future<Integer> recursive(int depth, int delay) {
// Submit a new task to the thread pool.

return executorService.submit(() -> {
// When ‘depth == 0’ the recursion has reached its limit.

if (depth == 0) {
// Sleep to simulate some long running computation.

Thread.sleep(100);

return ((Integer) new Random().nextInt()).hashCode();

} else {
// ‘depth != 0’ so perform recursion with ‘depth - 1’.

Future<Integer> result = recursive(depth - 1, delay);

// Sleep for ‘delay’ milliseconds -- simulating some computation.

// In the best-case scenario the delay is always zero (i.e. does not sleep).

Thread.sleep(delay);

// Wait for the sub-recursion to finish and return its value.

return result.get();

}
});

}

(a) The concurrent (original) version of the recursive function.

// An executor service that is used in each invocation of ‘recursive’.

ExecutorService executorService = Executors.newFixedThreadPool(10);

// The core recursive function executed in the micro-benchmarks.

// The function will recurse until ‘depth == 0’.

// The first invocation will receive ‘depth == 9’ so 10 tasks will be running concurrently

// (i.e. the thread pool will be fully saturated, but not over saturated).

Integer recursive(int depth, int delay) {
// When ‘depth == 0’ the recursion has reached its limit.

if (depth == 0) {
// Sleep to simulate some long running computation.

Thread.sleep(100);

return ((Integer) new Random().nextInt()).hashCode();

} else {
// ‘depth != 0’ so perform recursion with ‘depth - 1’.

Integer result = recursive(depth - 1, delay);

// Sleep for ‘delay’ milliseconds -- simulating some computation.

// In the best-case scenario the delay is always zero (i.e. does not sleep).

Thread.sleep(delay);

return result;

}
}

(b) The synchronised version of the recursive function.

Figure 4.10: The two versions of the recursive function used in the micro-benchmarks
(written in Java).

87

Best Case

In the best-case benchmark, Rehype correctly suggests inlining the task created in the
recursive function as there is no parallel computation, so it is effectively just n− 1 threads
sleeping while waiting for 1 thread to do some computation, where n is the number of
threads in the thread pool.

Fig. 4.11 illustrates the concurrent profiles of the best-case benchmark, including the
base execution which is analysed by Rehype to generate the estimate execution, and finally
the synchronised execution which is generated by executing the benchmark with the
synchronised version of the code (i.e. using the code from Fig. 4.10b instead of Fig. 4.10a).
Unlike the aggregate statistics given in other figures, these concurrent profiles represent
individual executions (as noted above). Fig. 4.11a illustrates the usage of occupied threads
while Fig. 4.11b illustrates the waiting threads. These concurrent profiles show the recursive
function starting multiple tasks (each on its own thread), performing some computation
(i.e. the Thread.sleep(100); instruction), and then finishing each task until it returns
to the base number of threads. As expected, the figures mirror each other (though the
waiting threads are always 1 less than the occupied threads) since each task, except the one
from the final recursion, starts a new task and immediately waits. In this benchmark, the
estimate is very accurate and so the concurrent profiles for the estimate and synchronised
executions overlap entirely (at the perceptible level, of course the raw data differs very
slightly).

Fig. 4.12 illustrates the aggregate metrics for the best-case benchmark, with all metrics
normalised against the base case value. These metrics reflect the accuracy of Rehype’s
estimation at an aggregate level. Unsurprisingly for a “best-case benchmark” the accuracy
is near perfect (with minor inaccuracy on the execution duration, which is to be expected
given the inherent, minor, variability between executions).

Worst Case

In the worst-case benchmark, Rehype suggests inlining the task(s) created in the recursive
function as there is no parallel computation in the base execution (that estimation is
performed on) – this is the same as in the best-case benchmark. However, in the worst-case
benchmark, we execute the synchronised program with a different delay argument such
that each task performs computation for some non-trivial amount of time (simulated
by a Thread.sleep() call, see Fig. 4.10). This means that the base execution is an
unrepresentative run, causing the estimation to be inaccurate (proportional to the delay

argument).
To illustrate the behaviour in this micro-benchmark, this evaluation has three parts:

1. Illustration of the behaviour of the micro-benchmark given varying delay argument
values.

2. Evaluation of the estimation when using the same, non-zero, delay value in both the
base and synchronised executions (i.e. when estimation is based on a representative
execution).

3. Evaluation of the estimation when using different delay values in base and synchro-
nised executions, specifically a zero delay for the base and a 100 millisecond delay
for the synchronised execution (i.e. when estimation is based on an unrepresentative
execution).

88

0% 20% 40% 60% 80% 100%
0

2

4

6

8

10

12

Normalised execution progress

#
oc

cu
pi

ed
th

re
ad

s
Base Estimate Synchronised

(a) The concurrent profile of occupied threads
(i.e. all threads processing a task, waiting or
active).

0% 20% 40% 60% 80% 100%
0

2

4

6

8

10

12

Normalised execution progress

#
w

ai
ti

n
g

th
re

ad
s

(b) The concurrent profile of waiting threads.
This profile mirrors the profile of occupied
threads (Fig. 4.11a), minus 1 (i.e. the active
thread). This shows that there is, effectively,
only one thread actively working at any one
time, in the base execution.

Figure 4.11: Concurrent profiles of the base, estimate, and synchronised executions
(normalised for execution duration) for the best-case benchmark. This figure illustrates
the estimation’s accuracy at an operational level – the estimate and synchronised thread
usage lines overlap entirely (at the perceptible level; they have very small variations in
raw data). The space either side of the spike in thread usage is simply a sleep on the main
thread of the benchmark, which is inserted to make the concurrent profile more intuitive
(without the sleep the thread count lines would go up and down on the edge of the figure,
making it difficult to read).

1. Micro-benchmark behaviour. The behaviour of the micro-benchmark is deter-
mined by the delay parameter. The greater the value the more computation each task
performs (simulated by a Thread.sleep() call). Fig. 4.13 illustrates concurrent profiles of
executions of the micro-benchmark program’s concurrent version (see Fig. 4.10a), given
varying delay argument values (no delay, 10 milliseconds delay, 50 milliseconds delay,
100 milliseconds delay, and 1000 milliseconds delay). The concurrent profiles illustrate
the number of waiting threads, as opposed to occupied threads, to illustrate the relative
concurrent efficiency (the less time threads spend waiting the better). The profiles show
that as the value of the delay argument increases, the proportion of the program the
threads spend waiting decreases. Fig. 4.14 shows the aggregate metrics (as seen in Fig. 4.12)
for the benchmark when executed with each of the delay configurations.

2. Representative execution estimation. Given a non-zero (or very close to zero)
delay argument value, Rehype will correctly estimate that synchronising the recursive tasks
would significantly hinder performance as it would make the long running computations,
that are done in parallel in the base execution, sequential. Fig. 4.15 illustrates this by
comparing the execution durations the base, estimate, and synchronised executions, when

89

Execution Duration

Waitin
g Threads Max

Waitin
g Threads Mean

Occupied Threads Max

Occupied Threads Mean

0%

20%

40%

60%

80%

100%
100% 100% 100% 100% 100%99.05%

9.09%

16.76% 16.67%

28.76%

97.08%

9.09%

16.76% 16.67%

28.73%

%
o
f

b
a
se

Base Estimate Synchronised

Figure 4.12: Aggregate metrics for base, estimate, and synchronised executions of the
best-case benchmark, normalised to the base case. Recall that occupied threads are all
threads that are currently processing a task, whether active or asleep. Error bars represent
the standard deviation across runs (the standard deviations are very small, as is expected
for micro-benchmarks, hence the error bars are hard to see).

the base and synchronised executions are given the same delay argument value (it includes
the five delay values as above, no delay and delays for 10 milliseconds, 50 milliseconds, 100
milliseconds, and 1000 milliseconds). The key result shown in this figure is that Rehype
will correctly estimate that performing the synchronisation of the tasks is bad, when given
a trace-log of a representative execution. In this case, a representative execution is one
with a delay argument suitably greater than zero. As shown in the figure, even given a
delay of 10 milliseconds Rehype correctly estimates that the synchronisation would be
detrimental to performance (i.e. it is suitably representative of executions given a delay

greater than zero).

3. Unrepresentative execution estimation. Evaluation 2. (Fig. 4.15) demonstrated
the effect of a representative execution on Rehype’s ability to accurately and correctly12

estimate the effect of a change. This evaluation, illustrated in Fig. 4.16, extends upon
this by showing how, within the micro-benchmark, the accuracy of estimation based on
an unrepresentative execution (i.e. one using a delay of zero) is inversely proportional
to the value of the delay argument. The figure compares the aggregate metrics of
an unrepresentative base execution, an estimation based on it, and executions of the
synchronised program (Fig. 4.10a) given various delay values.

12In this context, accuracy can be thought of as a continuous value, while correctness is a boolean –
either an estimate is correct or it is incorrect. If Rehype suggests a change would be beneficial or
detrimental and it is (based on implementing the change and executing the program again), then it can
be considered “correct”. Whereas, if Rehype suggests a change is beneficial or detrimental and it is not, it
can be considered “incorrect”. However, the accuracy of an estimation can vary substantially whilst the

90

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

2

4

6

8

10

12

Normalised execution progress

#
w

ai
ti

n
g

th
re

ad
s

No delay Delay 10ms Delay 50ms Delay 100ms
Delay 1000ms

Figure 4.13: Concurrent profiles of waiting threads in the micro-benchmark’s concurrent
version (see Fig. 4.10a) when executed with five different delay argument values. In the
“No delay” execution, each task recursively creates a sub-task and then immediately waits
for it, the deepest task then sleeps for 100 milliseconds and the remainder wait for it
to be finished (hence the table-like pattern). In the “Delay x ms” executions, each task
creates its sub-task and then sleeps for x milliseconds, before waiting for its sub-task. In
the “Delay 10ms” and “Delay 50ms” executions, the recursive tasks each sleep for the
set number of milliseconds (based on delay) and then wait for approximately 100 − d
milliseconds for the deepest task (which always sleeps for 100 milliseconds, Fig. 4.10a) to
finish, where d is delay. In the “Delay 100ms” execution, the recursive tasks only briefly
wait near the end of the execution as all of the tasks should finish at approximately the
same time (the extra waiting time is due to the delay between submitting a task to the
thread pool and it being executed). Finally, in the “Delay 1000ms” execution, the waiting
is determined by the same task submission to execution delay, but is very short relative
to the overall execution time. Recall that concurrent profiles represent thread usage over
normalised execution progress, hence the difference in shape at the start of the execution
(all of the executions have a short setup period, this period simply appears shorter for
“Delay 1000ms” as the execution’s overall duration is longer).

91

Execution Duration

Waitin
g Threads Max

Waitin
g Threads Mean

Occupied Threads Max

Occupied Threads Mean

0%

200%

400%

600%

800%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
2
.6
7
%

1
0
0
%

1
0
0
%

1
0
0
.0
2
%

1
0
0
%

6
3
.6
2
%

1
0
0
%

1
0
0
%

9
9
.9
7
%

1
0
0
%

2
7
.2
5
% 1
0
0
%

9
9
.9
9
%

5
3
2
.3
9
%

1
0
0
%

3
2
.2
4
% 1
0
0
% 1
4
7
.3
4
%

%
o
f

“
N

o
d

el
a
y
”

No delay Delay 10ms Delay 50ms Delay 100ms Delay 1000ms

Figure 4.14: Aggregate metrics for executions with varying delay argument values. The
metrics are normalised to the “No delay” execution. There are two interesting aspects to
this figure: first, the mean number of waiting threads decreases as the delay increases, as
threads are waiting for less time; and second, the execution duration does not significantly
change until the delay exceeds 100 milliseconds as that is the time the final recursive task
waits for (it is a constant, see Fig. 4.10a). Error bars represent the standard deviation
across runs (the standard deviations are very small, as is expected for micro-benchmarks,
hence the error bars are hard to see).

Summary

These micro-benchmark evaluations demonstrate the bounds of Rehype’s estimation, the
necessity of trace-logs from representative executions, and provided an introduction into
the key metrics and visualisations used in the remainder of this chapter. As Fig. 4.15
and Fig. 4.16 illustrated, performing estimation on an unrepresentative execution leads
to inaccurate, and potentially incorrect, estimations. However, given a representative
execution, Rehype is able to correctly and accurately estimate the effects of potential
changes. In the next experiments, we will look at Rehype’s ability to estimate change
effects in a non-trivial program.

4.3.2 Estimation Accuracy

Estimation accuracy can be assessed based on an execution’s concurrent profile and an
execution’s high-level concurrency performance metrics. Concurrent profiles can provide
insight into the effects of improvements throughout an execution and validate the accuracy
of the estimator. While high-level performance metrics provide clear indicators of change
value that can be compared between changes and also demonstrate the benefit of a change
for the cost-benefit of a developer implementing a change.

correctness remains unchanged.

92

Delay 0ms Delay 10ms Delay 50ms Delay 100ms Delay 1000ms

0%

200%

400%

600%

800%

100% 100% 100% 100% 100%99.05%

142.77%

315.86%

532.5%

831.79%

97.08%

140.95%

314.01%

530.68%

831.43%
%

o
f

b
a
se

Base Estimate Synchronised

Figure 4.15: Execution duration for base, estimate, and synchronised executions of the
worst-case micro-benchmark, given five different delay argument values. The values are
normalised to the base execution duration, for each delay value configuration. This figure
illustrates Rehype’s ability to estimate slowdowns due to synchronisation, when given a
representative execution. In this experiment, we use the same delay value for the base
and the synchronised executions, so it is exactly representative. However, the key point is
that Rehype would suggest not making the synchronisation change in all cases except the
“Delay 0ms” case. So, for example, “Delay 10ms” is suitably representative so as to make
Rehype suggest not making the change, even though the slowdown is not as significant as
the “Delay 1000ms” execution. Error bars represent the standard deviation across runs
(the standard deviations are very small, as is expected for micro-benchmarks, hence the
error bars are hard to see).

Given a set of changes, comparing the concurrent profiles of an estimated trace-log
of the changes and a real trace-log from an execution of the program after implementing
the changes demonstrates the accuracy of estimation across the execution of a program.
Concurrent profiles also provide insight into the areas within executions that changes
affect. For example, a change might affect the start up process and not the main body of
operations in the program.

The changes evaluated in this section are convert-to-inline and convert-to-combinator
changes made to a cryptography module of Acme (used to encrypt and decrypt data,
and hash passwords). The artificial Acme workload used for evaluation contains multiple
requests to varying endpoints.

Fig. 4.17 illustrates three concurrent profiles of Acme, a base execution, an estimation
of changes from the base trace-log, and an execution of Acme with the changes implemented.
The key aspects of the comparison to note are:

1. The estimated and actual-change profiles are very similar, including specific variations
in profile from the base profile.

2. They have a slight temporal displacement at the start of their respective executions.
Temporal displacements such as this are affected by the approximate nature of
estimations and the non-determinism of concurrent programs’ performance.

93

Execution Duration

Waitin
g Threads Max

Waitin
g Threads Mean

Occupied Threads Max

Occupied Threads Mean

0%

1,000%

2,000%

3,000%

4,000%

5,000%

6,000%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
9
.0
5
%

9
.0
9
%

1
6
.7
6
%

1
6
.6
7
%

2
8
.7
6
%

9
7
.0
8
%

9
.0
9
%

1
6
.7
6
%

1
6
.6
7
%

2
8
.7
3
%

1
4
0
.9
4
%

9
.0
9
%

1
6
.7
7
%

1
6
.6
7
%

2
8
.7
4
%

3
1
4
.0
8
%

9
.0
9
%

1
6
.7
7
%

1
6
.6
7
%

2
8
.7
6
%5
3
0
.5
%

9
.0
9
%

1
6
.7
8
%

1
6
.6
7
%

2
8
.7
7
%

4
,4
2
6
.4
9
%

9
.0
9
%

1
6
.7
8
%

1
6
.6
7
%

2
8
.7
8
%

%
o
f

b
a
se

Base Estimate Sync - delay 0ms Sync - delay 10ms

Sync - delay 50ms Sync - delay 100ms Sync - delay 1000ms

Figure 4.16: Aggregate metrics comparing the base execution with zero delay, an estimate
based on that execution, and executions of the synchronised program (Fig. 4.10a) given
various delay argument values. This figure shows that as the value of the delay argument
increases, the accuracy of the estimation decreases proportionally (as the distance between
the estimate values and the actual values increases). In this micro-benchmark it is most
evident in the “Execution Duration” metric (the thread usage metrics remain essentially
constant given the simplicity of the program). Error bars represent the standard deviation
across runs (the standard deviations are very small, as is expected for micro-benchmarks,
hence the error bars are hard to see).

3. The estimated profile matches the actual-change profile with regards to which stage
of an execution it differs from the base profile (and thus accurately identifying where
changes affect the profile).

In Fig. 4.17 the top (dashed) magnified circle highlights the estimated profile matching
the actual-change profile at the effect of a change (as the base profile differs, it is clear the
difference is due to a change). While the bottom (red) dotted magnified circle highlights
an area unaffected by the changes, where all three profiles have a similar shape. The
bottom (red) dotted magnified circle also demonstrates the second point, the estimated
and actual-change profiles have a slight time offset. In these profiles, it appears the
actual-change execution is faster at the beginning and slows down near the end. The
profiles realign near the end of the executions, around 90% complete, as outlined by the
grey dotted box. Finally, the estimated profile matches the actual-change profile with
regards to where the changes’ effects are reflected. Specifically, the changes are primarily
reflected near the start of the execution, such as in the top (green) dashed magnified circle.
This is expected as the changes are to a cryptographic module which is used primarily at
the start of the request processing when the various sensitive data (e.g. passwords) are

94

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

2

4

6

8

10

12

14

Normalised execution progress

#
th

re
ad

s

Base
Estimated

Actual-change

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

2

4

6

8

10

12

14

Normalised execution progress

#
th

re
ad

s

Base
Estimated

Actual-change

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

2

4

6

8

10

12

14

Normalised execution progress

#
th

re
ad

s

Base
Estimated

Actual-change

Figure 4.17: Thread usage profile over the duration of base, estimated, and actual-change
executions (normalised for execution duration). This figure illustrates the estimation’s
accuracy at an operational level (the estimated and actual-change thread usage lines mirror
each other’s shape, though slightly temporally displaced).

hashed during the user registration request.
Fig. 4.18 contains aggregate thread usage metrics for each of the executions, base,

estimated, and actual-change. These metrics demonstrate that the estimated execution has
very similar aggregate concurrency properties to the actual-change execution. The max
number of active and waiting threads used in both executions are the same. The average
thread usage is similar between the executions. Indeed, the estimated execution slightly
underestimates the efficiency improvement achieved by the changes. It overestimates
the average number of waiting threads and underestimates the average number of active
threads. In total it overestimates the number of threads used by the program post-changes.

The efficiency improvement demonstrated in Fig. 4.18 is achieved with few, relatively
minor, changes. These changes are useful for evaluating the accuracy of the estimator with
regards to aggregate metrics. That being said, the improvements are modest in comparison
to those achieved by implementing a larger set of changes, as described in the next section.

4.3.3 Estimation consistency

Now we turn to evaluating the consistency of Rehype’s estimation on a large piece of
software, Acme. In this evaluation, I present Rehype’s estimation of changes for Acme
across multiple, varied, workloads. This relates to the previous accuracy experiment by
demonstrating the estimations evaluated in that experiment are, indeed, representative of
estimations on Acme given other workloads.

This evaluation compares Rehype’s change estimates across 50 workloads. Each
workload performs a random series of 50 requests against an Acme server. Each workload

95

Active Thread Max

Active Thread Mean

Waitin
g Thread Max

Waitin
g Thread Mean

Occupied Thread Max

Occupied Thread Mean

2

4

6

8

10

12

14

8

1.34

10

2.4

13

3.73

6

1.36

9

2.11

12

3.46

6

1.4

9

1.98

12

3.38

#
T

h
re

a
d

s

Base Estimated Actual-change

Figure 4.18: Thread usage metric comparison between a base run, an estimation of
suggested changes, and a run with the changes implemented. This figure demonstrates the
accuracy of the estimation with regards to aggregate metrics. Greater similarity between
the dotted orange and purple striped bars is better. Execution duration is not included as
it does not change significantly and is based on a different unit (time not thread count).
Moreover, thread usage is more informative from an accuracy perspective, as it relates to
the accurate estimation of thread usage throughout the execution of a program.

also inserts random delays (between 0 and 1,000 milliseconds) between requests. By
performing a random series of requests in each workload, we can observe a variety of paths
through Acme’s code.

Fig. 4.19 illustrates Rehype’s estimation consistency across the workloads in two charts.
The first, Fig. 4.19a, is a histogram that shows how many changes were identified across
workloads. The two points of interest are that there were 287 changes commonly identified
in all 50 workloads, and that there is a long tail of changes identified in subsets of workloads,
including 1, 311 changes only identified by a single workload (i.e. not commonly identified
by two separate workloads). This long tail of changes is to be expected as a change
can be defined by a highly specific13 task group (see Section 4.2.2). The second chart,
Fig. 4.19b, is a heatmap that illustrates the estimate improvement14 (as the aggregate
benefit, see Eq. 4.24) for each change within each workload. This shows the consistency of
improvement estimates across workloads (as vertical stripes within the heatmap), and the
tendency of some workloads to estimate a bigger improvement than others (as horizontal
stripes within the heatmap). The heatmap only includes changes that were identified by
40 or more workloads to reduce noise in the figure15. While each change is estimated the
improve performance slightly (up to ∼ 10%), the significant improvements are achieved by
combining changes (Section 4.3.4).

13At some level of specificity, it likely becomes nonsensical to implement (e.g. a change defined by a 50
function-long call stack). Whilst I do not address this question in this thesis, it is interesting to consider
how we might identify such changes and exclude them from results from tools similar to Rehype.

14Whilst the heatmap shows all changes as being estimated to be positive, this is primarily an artefact
of Acme. As shown in Section 4.3.1, Rehype does estimate negative results.

15As the number of workloads identifying a change decreases, the heatmap becomes visually dominated
by black cells (which represent a workload that does not identify the change).

96

0 5 10 15 20 25 30 35 40 45 50

0

200

400

600

800

1,000

1,200

1,400

of workloads estimating the same change

#
o
f

ch
a
n

g
es

(a) Histogram of the number of changes that were identified by a given number of workloads.
For example, 287 changes were identified by all 50 workloads, while 1, 311 changes were only
identified by a single workload (not the same workload). The large number of changes identified
by few workloads (e.g. 30 or less) reflects the level of specificity at which Rehype may define a
change (i.e. how detailed the dynamic context is for the change).

(b) A heatmap of improvement estimation made by each workload for each change. The
improvement value is the aggregate benefit calculated for each change by each workload (see
Eq. 4.24). This heatmap only includes changes that were identified by 40 or more workloads (the
fewer workloads that identify a change, the less interesting the change is to us for this figure). A
black cell indicates that the workload did not identify the change.

Figure 4.19: Experimental results from running 50 workloads and estimating changes
based on the workloads.

97

Limitations It is important to note that these results only include changes that Rehype
could estimate, it does not include all possible changes to Acme. There are many reasons
why Rehype may not be able to generate an estimate for a change, including the code
not being executed, the graph of tasks making it impossible to estimate the effect of
inlining a task, or simply a bug in my implementation Rehype. As such, these results
do not, necessarily, indicate that Acme’s concurrency usage is quite as inefficient as the
figures may suggest, but rather that Rehype is able to identify a substantial number of
potential improvements. Moreover, many changes will be subsets of other changes. For
example, given a concurrent task, it may be possible to directly inline it, convert it to
a combinator, or hoist numerous branches from its execution body, all of which would
constitute individual change estimates (and, therefore, a unique change in Fig. 4.19).

4.3.4 Suggested Improvements

I evaluate the performance improvement achievable by implementing a combination of
suggested changes for a program. I trace and analyse an artificial workload on Acme that
is representative of general concurrency usage in Acme.

Rehype identifies 190 potential changes. Of these, 59 changes are “purely positive” (the
estimate effect improves all metrics considered). Estimating the effect of 10,000 random
source-change combinations, we identify a combination of 19 improvements that provide
the greatest estimate aggregate benefit (see Eq. 4.24).

Implementing the 19 improvements we more than double the average throughput of
the endpoints. That is, twice as many requests to the endpoints included in the artificial
workload could be processed within the same time period. The relative changes in thread
usage and execution duration are given in Fig. 4.20.

Importantly, the effective throughput (the throughput observed in the production
environment) increase may be even greater given the substantial decrease in maximum
thread usage. Maximum thread usage is the total number of threads used concurrently by
the request at any time point. This is especially relevant to effective throughput as thread
pools have a limited number of threads16. If, or when, the thread pool limit is reached,
request execution can significantly slow as new tasks must be executed synchronously
until another thread is available. Thread pool limits can be reached quickly if multiple
requests spike in thread usage at the same time. For example, Acme uses a single thread
pool with 20 threads to service all requests. The artificial workload evaluated caused
Acme to have a maximum thread usage of 13 threads before the suggested-changes were
implemented, post-changes it uses a maximum of 5 threads. Thus, post-changes, Acme’s
thread pool can service 4 parallel requests hitting their maximum thread usage at the
same time without exceeding its thread limit, while pre-change the thread limit would be
exceeded by 2 parallel requests.

I report execution duration17 and three sets of average and maximum thread usage
metrics to demonstrate the throughput benefits and concurrency efficiency improvements.
The relevance of each metric reported in Fig. 4.20 is as follows:

16Excluding infinitely expandable thread pools which are impractical in many production systems as
they can consume too much of the system’s resources, potentially crashing the program.

17Execution duration is reported as Rehype treats the trace-log as a single unit. Furthermore, the
execution duration provides a single measure of the effect of changes over all aspects of Acme that were
executed – thus providing an indicator of the overall effect of a change (from a speed perspective).

98

Execution Duration

Thread Usage Average

Thread Usage Max

Active Thread Usage Average

Active Thread Usage Max

Waitin
g Thread Usage Average

Waitin
g Thread Usage Max

0%

20%

40%

60%

80%

100%

120%

Base value

111.87

38.46
43.24

83.33
87.42

33.33

15.52

%
o
f

b
a
se

Actual-change

Figure 4.20: Performance improvement achieved by implementing improvements suggested
by Rehype on Acme (lower is better). Values are relative to the base run of the program.
While the duration increases slightly, the thread usage decreases dramatically, improving
throughput, and the number of waiting threads decreases even more, indicating significantly
improved concurrency usage efficiency. The result is that the program’s concurrency is
significantly more efficient and the program has substantially increased throughput.

Execution duration: execution duration should ideally not be substantially increased.
However, it is unlikely that the changes Rehype suggests will significantly decrease
execution duration, but rather leave it mostly unchanged while improving the other
metrics. Furthermore, execution duration and, to a lesser extent, the thread usage
metrics vary between executions given the non-determinism of concurrent programs
with regards to performance.

Average and maximum threads: average thread usage (for each thread metric reported) is
the general resource consumption of the program and thus the most direct indicator
of effective throughput. Maximum thread usage, however, represents the worst case
affect on throughput as it is the largest affect on thread pool limits (as discussed
above, if the thread pool limit is exceeded it can have disproportionately negative
affects on throughput).

Total thread usage: the total thread usage metrics provide the overall affect on throughput
from the concurrency usage. Combined with execution duration, these metrics
indicate the throughput achievable.

Active and waiting thread usage: these metrics indicate the efficiency of the concurrency
usage within the program, as opposed to the general affect on throughput. As
the number of waiting threads increase, the efficiency of concurrency decreases.
Conversely, as the number of active threads increase, the efficiency of concurrency
increases. In a “perfectly efficient” program there would be no waiting threads and
thus the active thread metrics would be equal to the total thread metrics.

99

4.4 Related work

To the best of my knowledge there is no existing work that detects concurrency focused
changes and estimates their performance effects. I discuss related work in two primary
categories:

Performance prediction – methods for predicting the performance of programs given some
change (source change or environmental change). This area relates to the estimation
of source change performance effect.

Concurrency analysis – the various tasks and approaches within the concurrency analysis
space, including both static and dynamic analysis methods. This relates to the
complexities of analysing concurrency.

4.4.1 Performance prediction

Predicting the performance of a program given some change, be that a source change
or modification of execution environment (e.g. data centre configuration), enables the
developer to make informed decisions regarding the change before committing resources to
the change. Rehype differs from existing methods as it identifies specific source changes and
estimates their affect on program performance, whereas existing methods either predict
the potential for performance improvement in a program [116] or predict performance a
program given a new environment or configuration [110, 105, 93]. Furthermore, Rehype
uses a single execution of the target program to estimate performance of many different
changes, where existing methods either re-execute the program with slight variations [116]
or attempt to create a model of the program behaviour for performance [93].

Performance prediction methods exist on a spectrum of specificity. The spectrum
ranges from executing the real program with slight modifications, to machine learning
models that regress performance based on environmental parameters. The specificity
of prediction also correlates with the type of output and required level of developer
knowledge. Output types range from low-level specific source changes to high-level system
configurations. Required developer knowledge ranges from in-depth knowledge about
the performance characteristics of the program and specific functions, to a high-level,
threshold, understanding of the program that enables configuring the program. At the
low-level specific end of the spectrum there are low-level performance engineering tools
that enable developers to predict the effect of some change or optimisation on broader
program performance, without having to implement the actual change(s). At the other end
of the spectrum are machine learning methods for estimating the resource requirements
of cloud software. I discuss three methods that illustrate the spectrum: first, simulating
a function-level optimisation; second, simulating the performance of a whole program
using a skeleton; and third, modelling a parallel program’s performance based on its
communication paradigm.

Dynamic performance stubs, introduced by Trapp [116], inserts a stub in place of a
component of a program (e.g. a function or set of functions). To enable the program
to operate with a stub, the stub returns outputs mapped from inputs (based on a
recording of the functional outputs of the original component). The stub is parameterised
with performance characteristics such as CPU [120, 117, 119], memory [118], and cache
usage [116]. The parameters are tuned to simulate the function’s performance given
different levels of optimisation a developer may implement. The program is run for each set

100

of parameters to find the optimisation bounds of a component. The optimisation bound is
the point at which further optimisations of some component do not improve the broader
application’s performance. By identifying the optimisation bounds of a component Trapp
et al. suggest developers can better evaluate the cost-benefit of some optimisation and
also identify “hidden” bottlenecks (i.e. bottlenecks that become apparent once an earlier
bottleneck is optimised).

Such simulation approaches based on performance parameters (e.g. memory usage)
provide an idealised view of the optimisation and do not inform how such an optimisation
might be achieved. Tools based on this approach can be useful for performance engineers
with a deep understanding of their target system, a relevant but niché domain. However,
they are not as applicable to general performance optimisations implemented by general
developers.

Where simulation approaches re-execute programs, constraining their ability to test
many parameter sets, and test performance parameters, Rehype estimates concrete changes
without re-executing the program. However, the two approaches have different target
uses and audiences. Simulation-based tools are useful for manual investigation of specific
optimisation opportunities. Rehype’s refactor-based estimation approach is useful for
automatic detection and testing of concrete changes across a whole application.

Sodhi et al. [105] describe performance skeletons, “synthetically generated short running
program(s) whose execution time always reflects the performance of the application it
represents” [105]. Performance skeletons are used to predict the performance a program
in a new environment (e.g. system configuration, data centre cluster, etc). Skeletons
are automatically generated based on execution traces of the target program. Skeletons
capture the performance behaviour of a program by utilising system resources (CPU,
memory, disk IO, and network IO) in relative proportion to the target program. Sodhi et
al. [105] report performance prediction accuracy of up to 95% using skeletons that execute
for 5 to 10 seconds.

At a higher level, some methods model the communication mechanism of a program,
such as MPI [20], to model the performance and behaviour of a program given a new envi-
ronment or configuration. From message-based systems comprised of multiple decoupled
components [93] to tightly coupled parallel scientific applications on high-performance-
computing clusters (HPCs) that use defined communication frameworks such as MPI
for parallelisation [125]. Tarvo & Reiss [112] go further, instrumenting lock and queue
operations to further model the parallel behaviour of multi-threaded programs. These
approaches have the advantage of clearly defined operations and structural frameworks to
automatically construct models from. However, these approaches are also constrained in
their level of insight into the program. They are useful for performance prediction given
a new configuration where the communication primitives are the most affected (such as
cluster allocation). But predicting the affect of a change in the program is harder.

4.4.2 Concurrency analysis

Most program analysis research focusing on concurrency addresses concurrency-based
bugs such as race conditions [58, 9, 16], deadlocks [9], and the more general thread-
safety-violations [57, 17]. Concurrency bugs, by their nature, are difficult to manually
detect, reproduce, and resolve. Within this space approaches range from static analysis and
symbolic interpretation, dynamic analysis and targeted program-modification (e.g. inserting

101

sleep instructions), through to automatic generation of tests that are executed many times
attempting to trigger a bug.

Though bug detection is not directly related to my present work on performance, by
reviewing this area I aim to illustrate a number of the key challenges in concurrency
analysis more generally and how existing work addresses these challenges. While static
analysis is quite distinct from dynamic performance analysis, such research provides insight
into the broader nature of concurrency. Dynamic analysis techniques, on the other hand,
are more closely related and can be useful comparisons with regards to data considered
and analysis techniques.

Many approaches to concurrent program analysis either do not scale well, miss significant
instances, report false positives, or a combination thereof. These issues arise due to the
central challenge of concurrency analysis, non-determinism of behaviour. Static analysis
techniques for identifying relations such as points-to or happens-before are constrained by
the complexity of detecting these relationships in large programs. Static analysis approaches
based on thread interleaving must address the challenge of a massive combinatorial space
of potential interleavings. In contrast, dynamic analysis based approaches require multiple
executions of the program to trigger potential bugs. Static analysis tools can generally
detect bugs faster, though they report false positives, while dynamic analysis tools are
slower but generally do not report false positives [49].

Li et al. [58] describe SWORD, a static analysis method for detecting data races
across whole programs. The key contribution is scaling static analysis to large programs.
They combine points-to and happens-before analysis to detect races while achieving
speed by focusing on typical race patterns and excluding utilities, such as incremental
analysis, that can impair scalability. Bläser [9] describes a static analysis method that
takes inspiration from dynamic analysis by performing “randomised bounded concrete
concurrent interpretation” to identify potential data races and deadlocks efficiently. They
optimise for efficiency as it enables the analysis to be used during development. Bounded
the interpretation is key given the combinatorial explosion of potential concurrent execution
pathways.

Li et al. [57] present a dynamic analysis method, TSVD, for detecting thread-safety
violations. Specifically, they trace thread-unsafe methods, rather than synchronisation
operations, to identify potential violations. To verify violations they inject delays to
encourage the violations to be triggered. Chen et al. [16] use dynamic analysis to identify
potential data races in device drivers by tracing driver and variable accesses. Their
detection is based on inconsistent lock protection, whereby the same resource is accessed
with varying sets of locks throughout the program. Similarly Cai et al. [13] use dynamic
analysis to identify concurrent events that could be reversed in a different execution
and thus cause concurrency errors. Specifically they detect use-after-free, null-pointer-
dereference, and double-free errors. Deng et al. [23] describe a coverage metric to guide
detection of concurrent bugs using existing detectors. They attempt to make detection
more efficient by identifying overlapping, in terms of coverage, executions caused by inputs.

One approach to combining static and dynamic analysis is to identify potential errors
with static analysis and then verify these errors with dynamic analysis. For example,
Zhang et al. [127] use static analysis to identify potential failure and propagation locations,
and then use dynamic analysis to identify the triggers for these failures and verify the
errors. This reverses the standard bug process of initial bug trigger, propagation of the
error through the system, and finally a system failure caused by the bug.

102

Test generation A general approach to concurrency bug detection is automatic test
generation, whereby the method uses some strategy to generate automated tests to (hope-
fully) trigger the intended concurrency bug(s). Generated tests are then run repeatedly
until they discover a concurrency bug or hit some threshold (e.g. execution time). Test gen-
eration strategies include: random, sequential-test-based, and coverage-based. The random
strategy selects methods at random to call in concurrent threads [77, 91]. Sequential-
test-based strategies combine multiple existing sequential tests into a single concurrent
test [101, 100, 102]. Coverage-based strategies generate tests to invoke as much of the
target concurrent code as reasonably possible [109, 113]. Some methods combine these
strategies; Choudhary et al. [17] use a novel test coverage metric to guide a random test
generation strategy. The key limitation of test generation for concurrency bug detection, is
that it requires an unbounded number of executions of the program. For small programs,
or sub-components of a program, this is feasible, however, for larger systems multiple
re-executions may be prohibitively costly. More broadly, fuzzing [71] is a technique for
testing a program by automatically generating novel inputs (pseudo-randomly or with
some guiding, such as by instrumentation [69]). Fuzzing has traditionally been used to
identify inputs that cause a program to crash [71] or to identify security-holes [69].

Execution replay A slightly different space in concurrency analysis is execution re-
play [90] whereby the program is instrumented to record key events so that the exact
execution can be replayed. Execution replay is useful for investigating both bugs and
performance issues. They are especially applicable for analysis of bugs and issues that
occur in production systems where reproducing the bug may otherwise be impossible18.

4.5 Discussion

4.5.1 Sleep estimation and full trace-logs

The sleep estimation step of the trace-DAG to trace-log transformation (Section 4.2.4.5) is
necessary to generate realistic trace-logs. The step would be unnecessary if the trace-DAG
were simplified to a concurrent constraint graph. That is, a graph where all vertices that
are not related to concurrent dependencies are removed. However, to retain all function
events from the original trace-log, so the estimated trace-log is realistic, these extra steps
are required. Realistic trace-logs can account rationally for scheduling overheads and
behaviour. Moreover, retaining full information about an execution (functions invoked,
function order, etc) provides useful data for analysis, both automatic and potentially
manual.

4.5.2 Human refactoring

The changes Rehype suggests are designed to be implementable by humans as refactorings
that have clear implications (why they are beneficial), as opposed to the effective but hard
to understand optimisations a compiler might make. In some cases it can be better to
trade a small amount of performance for a cleaner refactoring. For example, in Fig. 4.6
the changed code uses an CompletableFuture to wrap and immediately available value so

18For example the input that triggered the bug may be sensitive to the user and as such inaccessible.

103

the return value does not have to be changed (which would require further refactoring).
Though this is not optimal for performance (as it involves wrapping the return value in
another data structure at runtime), it is easier for a human to implement as it does not
require propagating the change through the rest of the codebase and is negligible from a
performance perspective (as the cost of wrapping the value in the future is minimal).

Though Chapter 5 presents a method for automatically generating source-code patches,
this trade-off is still relevant. Given a generated patch, a developer must (or, at least,
should) still understand what the change is doing and determine whether it will have
any unintended side-effects. If a change is too complex, the potential for error in the
change is much greater (so is the risk that the developer will not use the change due to
the complexity).

4.5.3 Is this an artefact of Java’s thread implementation?

Theoretically, wait-limited tasks are problematic regardless of the implementation. In
practice, runtimes that have lightweight threading systems (such as Go’s) are impacted
less by this problem than heavyweight thread systems (such as Java) that use operating
system threads. If threads are “infinitely” scalable, then using some threads simply to
wait is not necessarily problematic. Of course, lightweight threading systems introduce
other issues, such as the scheduling overhead inherent in managing thousands of “threads”
and potentially losing some CPU pre-emption benefits.

4.5.4 Could better implementation/developer practice avoid these
problems?

Yes; as discussed in Section 2.4, perfect use of combinators can result in wait-free task
concurrency. However, wait-limited tasks are a real problem that exist in industrial
programs today; it seems likely they will continue to be a problem in the future given
the relative complexity of using combinators. Fundamentally, more-complex concurrency
constructs can achieve better performance, but simpler constructs are more accessible and
regularly used by developers. Improving the performance of these simpler constructs (such
as by removing wait-limited tasks), can have a significant impact on real-world concurrency
usage. In an ideal world, developers would be able to program using simpler constructs and
achieve performance close to that achievable with more-complex constructs (or even convert
to using the more-complex constructs where useful, as Rehype’s convert-to-combinator
optimisation does).

4.6 Conclusion

This chapter has introduced Rehype, a concurrency performance analysis system that
uses execution-trace analysis to propose source-level optimisations and estimate their
performance effects. Rehype takes a trace-log generated by Quilt and transforms it into a
trace-DAG, performs edits to reflect a source optimisation, derives a trace-log from the
edited trace-DAG, and compares the performance-metric values of the estimated trace-log
against the original. I evaluated Rehype on a substantial industrial API server and found
the estimation to be highly accurate. Furthermore, improvements suggested by Rehype
more than doubled the server’s potential throughput.

104

Significantly, the trace-log estimated by Rehype for a combination of changes closely
matches real trace-logs of executions of the program after implementing the changes, both
in nanosecond accurate thread usage (illustrated as concurrent profiles) and in aggregate
metrics, demonstrating the estimation method generates accurate and realistic trace-logs.

The key idea of this approach is to estimate quantifiable performance effects to identify
improvements, instead of detecting potentially inefficient patterns. Furthermore, the trace
reordering approach can be used to estimate the effect of changes without re-executing the
program. While I have focused on task-based concurrency optimisations for Java programs
in this chapter, the approach should be applicable to other languages and optimisations.

Future Work

I want to highlight three interesting topics for future work in this area: further per-
change analysis, efficient selection of change combinations, and analysing more concurrency
models. Beyond these topics there is broad potential for the application of the presented
estimation approach for a variety of dynamic analysis tasks such as concurrency bug
detection, function-optimisation performance prediction, and general program performance
debugging.

Further per-change analysis

Source changes can have positive effects for a particular execution (i.e. analysed trace)
while having negative effects for other executions. Currently Rehype estimates the effect
of changes for a given trace and relies on the developer to assess the broader effects of
the changes. Future work could perform further analysis for each change and quantify
the trace specificity of a change (similar to over fitting in machine learning), among other
per-change analyses, providing more useful suggestions and rankings of changes.

Source-change combination selection

Identifying the optimal combination of changes using a brute-force space search is in-
tractable given the size of the combinatorial space. Rehype’s current pseudo-random
approach can identify valuable combinations, but is not sophisticated or consistent in
finding such combinations. Future work could develop a space search method that is more
directed in its approach to combination testing.

More concurrency models

Rehype is currently limited to task-based concurrency using thread-pool scheduling. This
constrains its applicability to a subset of potential programs. Future work could implement
analysis of other concurrency models and thus expand the set of potential programs, both
to those that do not use tasks as well as programs that use a variety of concurrency models.
Analysing the parallel use of multiple concurrency models within a single program also
presents an interesting challenge.

105

106

Chapter 5

Source-Code Patches from Dynamic
Analysis

Having identified improvements for a program’s concurrency performance using Rehype, the
next step is to translate the dynamic-data based improvement specifications into concrete,
static source-code patches. In this chapter I discuss the challenges involved in bridging
this dynamic-to-static gap and describe a system, Scopda, for generating source-code
patches. These are git-diff style patches that can be trivially, and automatically, applied to
a codebase, thus completing the capture-analyse-edit cycle. Scopda is the final component
of DTRSO .

Narrative instalment

In our imaginary scenario (Section 1.2.2), Banjo has executed an artificial workload
on Paterson, analysed the result with Rehype, and now has a list of changes and their
estimated effects on Paterson’s performance (both thread usage and wall-clock execution
duration). Banjo has selected a number of beneficial changes and now needs to implement
these changes as small, incremental source-code patches. However, as Rehype operates
purely in the dynamic domain (see Chapter 4), it defines the changes using their dynamic
contexts – essentially call-stacks. Determining which piece of code to change based on
call-stacks is not obvious, especially in a large codebase. Instead of attempting to do this
manually, Banjo uses Scopda to generate git-diff-style patches for each of their selected
changes. Having run Scopda, Banjo can implement the changes as simply as executing the
git [14] command git apply change.diff where change.diff is generated by Scopda.

Banjo can now push these changes to Paterson’s codebase repository as patches for
review, along with statistics demonstrating the value of the change (either from Rehype’s
estimations or by rerunning the artificial workload with the changes applied to Paterson).

This concludes the narrative scenario; Banjo has, using DTRSO , analysed Paterson
and implemented a number of incremental changes to improve its performance.

5.1 Introduction

Dynamic analysis can identify improvements for programs that cannot be identified using
static analysis. In particular, dynamic analysis is well suited to identifying improvements
in performance and concurrency, and especially concurrency performance. However,

107

implementing these improvements is non-trivial as the data they use and emit are not
directly connected to the static program structure. This barrier to implementation reduces
the utility and adoption of such dynamic analyses.

Recall that Rehype generates improvement specifications, based on trace data, that can
point a developer towards a source-code change to be made, but leaves interpreting the
specification to implement the change to the developer. This interpretation is non-trivial
and open to errors.

Scopda automatically generates concrete source-code patches for the improvements
identified by Rehype (Section 5.3). A patch is the git-style diff between the source code
pre- and post-change. Scopda maps the dynamic-domain improvement specifications into
the static domain and then generates source-code patches to implement them. While
there is a single, generalised method for dynamic-to-static mapping, Scopda implements a
specialised change transformation function (CTF) for each optimisation.

An improvement specification consists of an optimisation type, a caller-path, and a
callee-tree. The optimisation type determines the appropriate CTF, while the caller-path
and callee-tree determine1 the specification’s dynamic context. The dynamic context
approximates where the improvement should be made. Caller-paths and callee-trees are
structured sets of function invocations. For a given invocation, the caller-path is the series
of invocations that contain it, and the callee-tree contains the invocations it triggers.

To implement an improvement, the dynamic context must be mapped into a static
location. A static location is a specific location within the source code (e.g. a function call).
In the main example in this chapter (Section 5.2) the mapping is one-to-one, however,
in more complex situations a dynamic context may map to multiple static locations (see
Section 5.3.2). Scopda explores execution paths in the program to map dynamic contexts
to static locations. This exploration is performed on an abstract program graph (APG),
a novel static program representation I introduce that contains inter-procedural control
flow and local data flow. After calculating the static locations, Scopda performs graph
transformations on the APG to implement the improvement and renders the modified
APG as source code.

Dynamic-to-static mapping is non-trivial as it has to match sparse dynamic traces
(caller-paths and callee-trees) to concrete static locations. The dynamic traces are sparse
as Rehype only traces a subset of the program’s functions (the tracked functions) and does
not trace sub-function information (e.g. branches). This sparse tracing is necessary to
limit the tracing overhead (see Section 3.3).

To enable the exploration of all execution paths in an APG, it must represent the entire
program. As many components of a program will be pre-compiled .jar libraries (both the
Java standard library and third party libraries), Scopda supports generating APGs from
both Java source code and JVM bytecode. The APG is fundamentally language agnostic
and a single APG may contain subgraphs generated from multiple formats. For each
supported input format, Scopda defines a language interface which converts the format to
APG subgraphs and, for some formats (i.e. source code but not bytecode), renders APG
subgraphs back into the source format.

Section 5.4 explores language features beyond those used in the running example (e.g.
conditional control flow, inheritance, and unstructured JVM bytecode). Most features are
naturally handled by the semantic lowering involved in generating an APG. However,

1Intuitively the dynamic context is exactly the caller-path but since the caller-path traces entry points,
rather than call sites, information from the callee-tree can refine it.

108

IN

Target program

IN

Trace-config

Instrument program

Execute
instrumented program

Tracer

Trace-log

Trace-log
to

Trace-DAG

Trace-DAG

Estimate changes

Improvement
specifications

APG

Convert to APG

Map
improvement specification

to static location

Modify APG to
implement change

Render APG
to source

OUT

Map of improvements’ stats
to git-diff style

source-code patches

Quilt
(Chapter 3)

Rehype
(Chapter 4)

Scopda
(Chapter 5)

User selects and applies
source-code patches

Figure 5.1: High-level overview of where Scopda exists within DTRSO . Scopda converts
the target program to an Abstract Program Graph (APG) and uses it to map improvement
specifications, generated by Rehype, to static locations, then modifies the APG, renders
it back to source code, and generates a set of git-diff style source-code patches and their
corresponding improvement statistics.

109

some unstructured patterns in JVM bytecode cannot be represented in structured formats
such as the APG. Scopda handles such patterns at the per-function level using a grey box
(a simplified representation) approach, whereby precision is sacrificed while preserving
safety.

To validate Scopda’s approach in the real-world, I apply it to improvement specifications
generated by Rehype for a large real-world Java program (c. 500kLoC). Scopda successfully
generates (sensible) source-code patches for each of the nineteen improvements suggested
by Rehype in Section 4.3.4 (the Scopda generated patches are discussed in Section 5.5).

The contributions of this chapter are:

1. A method for generating concrete source-code patches based on improvements
identified using dynamic analysis and specified with dynamic-domain data.

2. A method for mapping dynamic traces to nodes in a static code graph.

3. A new static program representation, the abstract program graph, that enables:
dynamic-to-static mapping, reflecting edits made on the graph back into the original
source code, and supporting multiple source formats (e.g. Java source code and JVM
bytecode) within a single graph.

Finally, Section 5.6 positions this work among related work, Section 5.7 discusses
technical choices and points of interest further, and Section 5.8 concludes the chapter.

5.2 Running example

In this chapter we concentrate on the “convert-to-inline” optimisation – where Rehype
suggests inlining a spawned task to improve a program’s concurrency performance (an
example is given in Fig. 5.2) – as it is the most straightforward optimisation, allowing
us to focus on the complexities of bridging the dynamic-to-static gap, rather than the
complexities of the optimisation. The convert-to-inline optimisation can be applied to
certain concurrent tasks to improve resource usage efficiency, see Chapter 4 for more
details. Rehype specifies the task to be inlined using the caller-path for the task-spawn
invocation and the callee-tree of the task execution. The caller-path and callee-tree will
not be contiguous on a thread in most instances (i.e. the callee-tree will not be rooted
at the end of the caller-path), as the callee-tree will be invoked from a separate thread.
Scopda identifies the specific task-spawn static location, and derives additional patch
points, and generates a source-code patch encapsulating the improvement. Patch points
are source-code locations that are concomitant with the static location (e.g. usages of
the Future variable the task-spawn function returns). If the task-spawn static location is
ambiguous, Scopda can:

1. generate multiple patches, one for each static location (the user can choose which to
apply);

2. report the ambiguity as an error; and/or

3. generate a new Rehype trace-config that, when used for a new program execution,
will capture trace data sufficient to disambiguate the static location in future uses of
Scopda.

110

Fig. 5.2a shows, in JSON format, the improvement specification generated by Rehype
(simplified2 for readability), and Fig. 5.2b shows a source-code patch to implement the
improvement. In this example calculateNumber() contains the task-spawn call and
queryDatabase() is the task-body function. The task framework consists of the spawning
function ExecutorService.submit() and the root task execution function Future.run()

(these are the standard task concurrency utilities in Java 8, see the java.util.concurrent
package documentation [42]). The first invocation in the calleeTree is Future.run() as
it is the first (tracked) function called by the thread that executes the task. It, in turn,
calls queryDatabase via the callback (e.g. a Java Runnable) given when spawning the
task. Given the improvement specification, Scopda identifies (Fig. 5.2b)

• (static-location) the es.submit() call at line 2 as the task-spawn call to modify;

• (patch-point) the task-body function queryDatabase; and

• (patch-point) the databaseResult.get() call at line 5 as a use of the task result
that should also be modified (as it uses Future.get() to wait for the task result).

The modified source-code calls the task-body function directly at line 2, updates the
returned variable’s type, and removes the Future.get() call, instead using the variable
directly, at line 5.

Determining the benefit of the convert-to-inline optimisation (i.e. identifying it as an
improvement) in this example requires dynamic analysis. It is unclear from a purely static
perspective whether the elided code (line 3 of Fig. 5.2b) performs significant work or not.
In the former case we should retain queryDatabase as a task, but in the latter we should
inline the spawn as a direct call. By contrast, dynamic analysis can determine how much
work the elided code performs and thus whether inlining queryDatabase is beneficial.

5.3 Method

Scopda contains three primary components (illustrated in Fig. 5.3): a language interface,
dynamic-static mapper, and change transformation functions. The language interface
(LI) generates APGs from source-code (and JVM bytecode) and renders APGs back into
source-code. The dynamic-static mapper (DSM) takes a dynamic context and an APG
and returns the corresponding set of static locations – in effect, nodes in the APG. A
change transformation function (CTF) takes an APG and static locations as input and
transforms the APG to implement the improvement. One CTF is implemented for each
optimisation. The appropriate CTF to use is determined by the optimisation type in the
improvement specification. The Scopda process is thus:

step 1: (LI) generate the APG;

step 2: (DSM) map dynamic contexts to static locations;

step 3: (CTF) transform the APG for the improvement;

step 4: (LI) render the transformed APG back into source-code; and

2 Specifically, method names are not qualified by type signature or containing class, and interface

names such as Future are treated as if they were class names.

111

{
"optimisationType": "convertToInline",

"callerPath": ["main", "calculateNumber", "ExecutorService.submit"],

"calleeTree": {
"function": "Future.run",

"children": [

{ "function": "queryDatabase", "children": [] }
]

}
}

(a) A JSON-format improvement specification.

1: static int calculateNumber(ExecutorService es) {
2:- Future<Integer> databaseResult = es.submit(

ThisClass::queryDatabase);

2:+ int databaseResult = queryDatabase();

3: // ... elided code ...

4: int otherValue = other();

5:- return databaseResult.get() + otherValue;

5:+ return databaseResult + otherValue;

6: }
7:

8: static int queryDatabase() { /* ... */ }
9: static int other() { /* ... */ }

(b) Source-code patch generated by Scopda.

Rehype: “Execution tracing for the program above has suggested performance gains from: inlining the task that is
spawned at the dynamic context corresponding to the "callerPath" that, when executed, invokes the "calleeTree".”
Scopda: “Suggested patch is: calling queryDatabase directly from calculateNumber, instead of spawning a task for
it; concomitantly when calling queryDatabase directly, the result is an int and does not require a .get() call to get
the value.”

Figure 5.2: Informal explanation of an example “convert-to-inline” improvement proposed
by Rehype (a) and implemented by Scopda (b).

step 5: generate a patch (a git-style diff) by comparing the rendered source-code to the
original.

5.3.1 Abstract Program Graph

An APG is a unified graph structure containing a program’s inter-procedural control flow
and local data flow as well as structural (AST-like) information. It has 4 node types
(function, variable, operation, and branch) and 15 edge types. It is edge-centric – most
semantic details are encoded by the edges. A key property is that it can be rendered back
to the unique input AST that generated it, and hence back into the original source-code
(modulo white space and spurious bracketing).

The APG contains the semantic information of an AST, its call graph, and its control
flow graph. While existing representations, such as graph-overlays [95], contain equivalent
information and are equally effective for query and analysis, Scopda also needs to modify
code for patch generation; the APG’s unified design is better suited to transformation as
it does not need to coordinate the transformation of multiple overlays.

112

Dynamic dataStatic data

S
co
p
d
a

Original
source code

and bytecode

Execution
trace

Rehype

Improvement
specificationAPG

Dynamic-Static
mapper

Static
locations

Change
transformation

function

Optimisation type – selects CTF

Modified
APG

Source-code
patch

(final output)

Language interface

Figure 5.3: High-level structure of Scopda. Arrows indicate information flow.

Design principles

The APG design prioritises simplicity of analysis and transformation over simplicity of
APG-to-source-code rendering. This priority takes form as a guiding principle: maintain a
narrow interface while retaining full expressiveness of (Java) programs. An example of the
narrow interface is the simple control flow constructs: standard control flow is described
with branch nodes and <goto> and <returns> edges, while exceptional control flow is
represented via <on-exception-goto> edges (effectively a catch statement).

Representation lowering

When generating an APG (Scopda step 1), a series of lowering transformations are applied
to normalise source-code representation:

• Local variables are represented in Single Static Assignment (SSA) [97] form (SSA
φ-functions are represented as independent variable nodes with <ssa-predecessor>

edges to their SSA versions).

• Unnamed variables use A-Normal Form [99] (ANF).

• Non-local variable accesses become calls to intrinsics. An intrinsic is a function
node representing a language-specific operation, such as accessing an object field
or referencing a method. Intrinsics provide a unified approach to various language
features and make shared memory access explicit, without affecting the semantics of
the program.

• Operators are also converted into intrinsics (e.g. the plus operator in the running
example becomes an Intrinsic::Add function node in Fig. 5.5).

113

• All functions are represented statically (i.e. ‘this’ parameters are explicit).

• Function and variable symbols are resolved (e.g. <calls> edges terminate at function
nodes which are also the root of the function implementation graph).

Program behaviour and representation

To understand the APG representation of program behaviour, it is easiest to imagine an
interpreter executing the program based on the APG representation. So, for example,
when the interpreter executes an operation node, it may take one action (e.g. calling a
function) defined by that operation node (which is to say, operation nodes only define a
single action per node). We’ll use Fig. 5.4, which contains Java code examples and their
corresponding APG representations, to understand various behaviours.

Statements and expressions Fig. 5.4a illustrates a simple statement that invokes a
function (using the <calls> edge), generateNumber, and assigns its return value to the
variable x (using <generates>). Here there is one operation node for the statement, it has
one action (calling a function), it generates a variable, and it passes no input arguments.
Fig. 5.4b is an expression that passes a single argument (using <used-by1>) to a function.
Some edges, such as <used-by>, use the form <edgen>, where n is a numeric label that
defines a local ordering of the edges of that type originating at the same node. For example,
if an operation calls a function and passes two arguments, the first argument will be
linked with <used-by1> and the second by <used-by2>. Finally, operation nodes can be
nested using the <containsn> edge. In Fig. 5.4c the result of a call to one function is
immediately used as the argument to another function. As noted above, the APG uses
ANF, so unnamed values (anonymous variables) are still explicitly denoted with their own
variable node. In this example the call to generateNumber generates an anon variable
which is then passed to consumeNumber.

Order of operation is determined by the operation node hierarchy. Operation nodes
are executed depth-first and are ordered according to the <containsn> edges. So in
Fig. 5.4c, when the interpreter reaches the consumeNumber operation node, it first continues
on to the generateNumber operation, executes it first, and then “unwinds” and executes
the consumeNumber operation. Similarly, in Fig. 5.4d, when the interpreter reaches the
first operation node, it continues across the <contains1> edge first, then across the
<contains2> edge. As noted above, operation nodes may define a single action or no
action, in which case they merely act as a structuring tool. The possible actions are:

• Call a function – using the <calls> edge.

• Branch through a branch node – <branches>.

• Move control – <go-to> and <on-exception-go-to>.

• Return out of a function (similar to moving control, except passes value(s) along
with control) – <returns>.

114

Functions use the <body> edge to define a first operation, under which the whole body
of the function will be nested. As shown in Fig. 5.4d, each top-level statement in a function
becomes an immediate child of the body operation node. Fig. 5.4e illustrates function
parameters and function resolution. Function parameters are simply variable nodes linked
via a <paramn> edge. As noted above, all functions and variables are fully resolved, which
means that any edge terminating at a function (e.g. <calls>), terminates at the function
node that then defines that function’s content. In this example, the two calls to the function
second (one from first and one recursive) are represented by <calls> terminating at the
second function node. Full resolution means that our conceptual interpreter can follow
the <calls> edge, then the <body> edge, and continue executing operations as normal –
there is no need for extra context switching or consulting with external lookup tables.

Branching is defined using the branch node and the <branches> and <branch-optionn>

edges. Fig. 5.4f illustrates a simple if statement branching. An important choice in
the APG design is for an arbitrary number of branch “options”. As the APG is not
intended to be executed directly, but rather for analysis and modification, branches do
not need to differentiate between “true” and “false” options (or any other form). Instead,
analysers simply need to know when the control-flow of a program splits. So, when our
conceptual interpreter reaches the operation node that <branches> to the branch node,
the interpreter crosses both <branch-optionn> edges simultaneously. In practice these
branching points act as “mutually exclusive operations” dividers, so an analyser can state
that “the program has to take one, and only one, option (control-flow path)”.

Loops are implemented as a branching operation containing two branch options, one
branch’s last operation will have a <go-to> edge back to the branch operation and the
other branch will have no action/operation (so instead control will simply unwind out
of the loop branch operation) – representing the end of the loop. This is illustrated in
Fig. 5.4g, where a Java for-loop is illustrated as an APG. For-loops are slightly more
complex to represent as they require the loop, an initialising step, a condition check step,
and an increment step. This example also illustrates the APG’s SSA representation –
<ssa-predecessor> edges – and how they are represented in recursive structures (in the
example, the increment step both uses the SSA φ version of the counter variable i and
generates an SSA predecessor of that φ variable).

Exception handling is represented using two edges: <on-exception-go-to> and
<caught-paramn>. An example is given in Fig. 5.4h. The <caught-paramn> edge works
in the same way as the <paramn> edge, except that it originates from an operation node
instead of a function node. If an operation is the origin of a <on-exception-go-to> edge
and an exception occurs during that operation’s execution (including execution of the
operations contained by it), the control will move to the operation the edge terminates
at (similar to how the Java catch expression works). If no exception is thrown, then the
edge is never crossed. However, the APG does not define a native way for throwing an
exception. The APG does not need a throw capability, as it is not executed. Instead,
similar to the branching logic, the relevant information for an analyser is that control-flow
could go to the exception handler at any point during the operation’s execution. So, for
example using Fig. 5.4h, given a trace-log contained events to the effect “entered, inner,
entered except, exited except”, an analyser can reconcile the trace-log with the APG as

115

the APG indicates that the control-flow can switch to the catch expression at any point
during the try expression’s execution.

Language-specific annotations

While the APG defines a narrow interface and retains full semantic expressiveness, rendering
back into the input AST may require language-specific information. LIs annotate nodes
with this language-specific information during APG construction. For example, the Java
LI annotates branch nodes to indicate the type of branch statement (e.g. if, for, while).
These annotations are opaque to the rest of Scopda, but are associated with all copies of a
node (CTFs may duplicate nodes).

SSA calculation

Where possible, as with SSA, Scopda performs APG construction steps in a language
agnostic way (i.e. purely on the APG), allowing various language interfaces to use the same
implementation. Scopda implements an algorithm based on Braun et al.’s [10] efficient
SSA calculation algorithm, though adjusted to operate on the graph format.

Scopda first constructs a DAG (directed acyclic graph) of basic blocks of operation
nodes within a function. Though the basic-block calculation method is APG specific,
the fundamentals are the same as other basic-block calculation methods. Each block is
annotated with a map, from variable name to variable node, that contains the nodes for
named variable generated within the block (this includes variables reassigned within the
block as they are represented with new variable nodes). Then blocks are processed in
reverse breadth-first order.

Within each block, each operation node’s arguments (variables linked via <used-byn>

connections) are processed to determine if there are multiple possible sources for that
variable. If the variable node is generated within the same basic block as the operation
node, then there are no other possible sources. However, if the variable node is generated
within a previous basic block, then it is possible that a variable with the same name could
have been generated in a different basic block and thus require an SSA φ variable to be
placed in front of them. To find other possible valid variable nodes, Scopda traverses back
through the basic-block DAG until a variable node with the same name is found for every
path through the DAG.

The fact an operation node is linked to a single variable node, while multiple variable
nodes may be valid arguments is an artefact of the APG construction process. During
construction variable names are mapped to the latest variable nodes to be generated with
that name, which means that when an operation node is generated for an expression
using that variable name, it is only linked to a single variable node, even if there are
multiple possible variable nodes matching that name. This approach is intentional as there
are many ways this could occur and it is significant simpler to have a single SSA pass
at the end of APG construction, instead of attempting to continuously update the SSA
connections throughout APG construction.

Full example

Fig. 5.5 illustrates the APG for the calculateNumber method from Fig. 5.2 (pre- and
post-change). The operation nodes (circles) resemble an AST statement and expression

116

Function Operation Variable Branch

Structural Control flow Data flow

int x = generateNumber();

var x<generates>

func generateNumber

<calls>

(a) Variable assignment and function invoca-
tion example. Variables are assigned using the
<generates> edge.

consumeNumber(x);

var x <used-by1>

func consumeNumber

<calls>

(b) Example of an expression invoking a func-
tion with an argument. Arguments to expres-
sions are indicated with a <used-byn> edge,
where n indicates the argument order.

consumeNumber(generateNumber());

func consumeNumber
<calls>

func generateNumber

<calls>

anon
<generates>

<
c
o
n
t
a
i
n
s
1
>

<used-by
1 >

(c) Operation nodes are nested using the
<containsn> edge type, where n indicates
the order of operation. In this nested
expression, the parent operation (calling
consumeNumber) contains the child operation
(calling generateNumber). The child opera-
tion generates an anonymous variable which is
then used by the parent operation. Recall that
operations are “executed” depth-first, so the
child “executes” before the parent.

static void top() {
first();

second();

}

func top
<body>

<contains1>

func first

<calls>

<contains2>

func second

<calls>

(d) Functions have a root “body” operation
node, indicated by the <body> edge. Blocks
of statements are represented by an operation
node (such as the body node) that contains
multiple nested operations (just as nested ex-
pressions do). The order of statements is indi-
cated by the order labels on the <contains>

edges.

Figure 5.4: Java code examples and their corresponding APG representations. Colours
are used purely as visual aides for the reader. All examples assume static functions (i.e.
they ignore the this argument). (Cont.)

117

static void first(int x) {
second(x);

}
static void second(int x) {

second(x);

}

func first

var x

<
p
a
r
a
m
1
>

<body>

<
c
o
n
t
a
i
n
s
1
>

<used-by1>

func second

var x

<
p
a
r
a
m
1
>

<body>

<
c
o
n
t
a
i
n
s
1
>

<used-by1>

<calls>

calls

(e) Function parameters are indicated by
<paramn> edges (with n being the order label).
Parameters are then used as any other variable,
with the <used-by> edge. Edges terminating
at a function node (e.g. <calls>) always ter-
minate on the function node that is then the
root of the function definition (i.e. all function
usages are fully resolved).

if (x) {
first();

} else {
second();

}

var x <used-by1>

<branches>

<contains1>

func first

<calls>

<contains1>

func second

<calls>

<branch-option1> <branch-option2>

(f) Branching is represented using a
branch node and the <branches> and
<branch-optionn> edges. Again, n provides
an ordering of branch “options”, though the
order is only relevant to language interfaces
(for APG to source-code rendering).

Figure 5.4: Java code examples and their corresponding APG representations. Colours
are used purely as visual aides for the reader. All examples assume static functions (i.e.
they ignore the this argument). (Cont.)

118

for (int i = 0; i < 10; i++) {
inner();

}

Intrinsic::AssignValue

const 0

var i1

<
c
o
n
t
a
i
n
s
1
>

<used-by
1 >

<
c
a
l
l
s
>

<generates>

<contains2>

<
b
r
a
n
c
h
e
s
>

Intrinsic::LessThan

anon

const 10

<contains1> <calls>

<
g
e
n
e
r
a
t
e
s
>

<u
se
d-
by

2
>

<used-by
1 >

var φ(i)
<used-by

1 >

<ssa-predecessor>

<branch-option1> <branch-option2>

func inner

<calls>

Intrinsic::Addconst 1 var i2

<calls>

<used-by1>

<used-by2>

<generates>

<ssa-predecessor>

<go-to>

<contains1> <contains2>

<contains3>

(g) Loops are represented with a branch and <go-to> control-flow edge (similar to many low-
to medium-level representations, such as JVM bytecode). In this example, the root operation
node (top-left) first initialises the i variable (red nodes and edges), then goes to the branching
operation node (top-centre). The branching operation node first generates a boolean condition
variable (green nodes and edges) and then branches. As operations are executed depth-first,
the condition-generating operation executes before the branching operation executes (by going
across the <branches> edge). One branch option is the loop body, the other is an empty option
(which will result in the operation stack unwinding the depth-first execution). The loop body
first performs the execution (orange), then increments the i variable (blue), and finally has
an operation node that has a <go-to> edge back to the branching operation node (causing
another iteration of the loop). Finally, in this example we also see that variables use the
<ssa-predecessor> edge to indicate SSA options. This edge is also applied for recursive SSA
options (such as the incremented variable i2 (bottom right, blue)).

Figure 5.4: Java code examples and their corresponding APG representations. Colours
are used purely as visual aides for the reader. All examples assume static functions (i.e.
they ignore the this argument). (Cont.)

119

try {
inner();

} catch (Exception e) {
except(e);

}
after();

<
c
o
n
t
a
i
n
s
1
>

func inner

<
c
a
l
l
s
>

<
c
o
n
t
a
i
n
s
1
>

var e
<caught-param1>

<
c
o
n
t
a
i
n
s
1
>

<u
se
d-
by

1
>

func except

<
c
a
l
l
s
>

<on-exception-go-to>

after

<
c
a
l
l
s
>

<contains2>

(h) Exception handling uses the <on-exception-go-to> and <caught-paramn> edges. The
<on-exception-go-to> edge is crossed when an exception is thrown while the origin opera-
tion node is being executed (e.g. if inner() threw an error). If no exception is thrown, the
execution proceeds as normal with the depth-first <contains> edge-based execution. Finally,
the <caught-paramn> edge acts the same as the <paramn> edge, except it originates from an
operation node instead of a function node.

Figure 5.4: Java code examples and their corresponding APG representations. Colours
are used purely as visual aides for the reader. All examples assume static functions (i.e.
they ignore the this argument).

120

tree. Though the function implementations are elided, the <calls> edges connect directly
to the target function nodes, providing the call-graph information. The operation and
branch nodes along with the solid (structural) and dashed (control flow) edges define the
control flow. The variable nodes and zigzag edges define the data flow.

5.3.2 Dynamic-Static Mapper

The dynamic-static mapper converts a given dynamic context into a set of static locations
(Scopda step 2) by exploring static execution paths in the APG. To identify the static
locations that correspond to a dynamic context, the mapper identifies all possible static
code paths (SCPs) that can correspond to a caller-path (this method generalises to callee-
trees as a tree can be treated as a series of paths). An SCP is a series of nodes in the
APG connected by control flow edges. An SCP is valid for a caller-path if the SCP,
filtered to tracked function nodes, is equal to the caller-path. Each node within an SCP
is a static location. Once the SCPs are calculated, the CTF for the optimisation selects
relevant static location(s) from the SCPs. For example, the key static location in my
running example (Fig. 5.2) is the operation node for the call to ExecutorService.submit

(highlighted in the topmost dashed (blue) circle in Fig. 5.5).
In simple cases, including Fig. 5.2, every dynamic context maps to a single static

location. In richer situations, such as when a function can be called from two different
dynamic contexts, a dynamic context may map to multiple static locations.

Scopda’s execution path exploration is intuitively a guided graph traversal along APG
control flow paths. It identifies SCPs that are valid for a given caller-path by testing all
control flow paths starting at the first invoked function in the caller-path and terminating
at the last invocation in the caller-path. A control flow path is invalidated (and exploration
on it is terminated early) when it encounters a tracked function node that does not
correspond to the next invoked function in the caller-path.

A naive approach might generate a set of concrete SCPs using standard traversal,
but this would not scale to real-world programs. Such an approach would result in a
combinatorial explosion of SCPs when there are many possible static code paths between
tracked functions (in fact, there may be infinite paths given recursion). Moreover, the
number of possible paths makes it computationally infeasible to sequentially iterate over
them.

Instead, when given a caller-path, Scopda uses the call graph to produce a caller-path-
enhanced call graph. The paths in this caller-path-enhanced call graph are exactly the
set of valid SCPs. In this graph, invocations, that are adjacent in the caller-path, are
interposed by a graph representing the SCPs of non-tracked functions between the invoked
functions. This is illustrated in Fig. 5.6.

More concretely, given a caller-path p and an invocation pi within it, and writing G for
the program’s call graph, define Gforw(pi) to be the subgraph of G which can be reached
from pi without passing through a tracked function node. Similarly define Gback(pi+1) as
the subgraph of G which is backwards reachable from pi+1 without passing through a
tracked function node. Then, the graph of SCPs that interposes two adjacent invocations,
pi and pi+1, is calculated as Gforw(pi) ∩Gback(pi+1) – the non-tracked sub-call-graph that
is reached from pi and can reach pi+1.

121

fn calculateNumber

Entry

var es

<
p
a
r
a
m
1
>

<body>

Task spawn static location

2:- Future<Integer> databaseResult

= es.submit(ThisClass::queryDatabase);

<used-by1>

fn ExecutorService.submit

<c
al
ls
>

anon

Intrinsic::StaticRef::queryDatabase

fn queryDatabase
Task-body function patch-point

<generates>

<r
ef
er
en
ce
-t
o>

<used-by
2 >

<ca
lls

>

ThisClass::queryDatabase

var databaseResult

<
g
e
n
e
r
a
t
e
s
>

expr

var otherValue

fn other

<
g
e
n
e
r
a
t
e
s
>

<c
al
ls
>

4: int otherValue = other();

return

5: return databaseResult.get()

+ otherValue;

<returns>

expr anon

Intrinsic::Add

<generates><used-by2>

<c
al
ls
>

<used-by
1 >

databaseResult.get()

+ otherValue

Future usage patch-point
anon

fn Future.get

<used-by1> <generates>

<c
al
ls
>

<used-by
1 >

databaseResult.get()

Pre-change

fn calculateNumber

Entry

var es

<
p
a
r
a
m
1
>

<body>

expr

fn queryDatabase

var databaseResult

<
g
e
n
e
r
a
t
e
s
>

<c
al
ls
>

2:+ int databaseResult

= queryDatabase();

expr

var otherValue

fn other

<
g
e
n
e
r
a
t
e
s
>

<c
al
ls
>

4: int otherValue = other();

return

5: return databaseResult

+ otherValue;

<returns>

expr anon

Intrinsic::Add

<generates><used-by2>

<c
al
ls
>

<used-by
1 >

<use
d-by1

>

databaseResult

+ otherValue

Change style

Deleted by patch

Created by patch

Post-change

Boxes containing source code are merely aids to the reader.

Figure 5.5: APG representations of calculateNumber before and after the patch from
Fig. 5.2b. Hollow nodes and edge arrowheads are those deleted or created by the patch
(these also follow git-diff colour conventions).

122

f j
d h

b g

x

p
k

q

y

Call-graph

f

b g

d h

j

Caller-path-enhanced call-graph

Gback(j) = {b, g, d, h, y, q} Gforw(f) = {b, g, d, h, x, p}

Tracked functions: {f, k, j} Caller path: (f, j)

Gforw(f) ∩Gback(j) = {b, g, d, h}

Figure 5.6: Example of a caller-path-enhanced call-graph calculated for a given call-graph,
caller-path, and set of tracked functions. The blue diamonds are tracked functions (i.e.
they will appear as invocations in the caller-path if executed during tracing), the orange
circles are untracked functions that are in the reachability sets (Gforw(f) and Gback(j))
and are thus included in the caller-path-enhanced call-graph, and the red squares are
untracked functions that are in one but not both of the reachability sets.

5.3.3 Change Transformation Functions

Scopda’s CTFs implement improvements (Scopda step 3) by transforming the APG (e.g.
by inlining a task’s execution). CTFs take an APG and a set of static locations as input,
and generate a transformed APG. CTFs are implemented as a series of graph analyses
and transformations applied to the original APG.

For example, in the running example (Fig. 5.2), the convert-to-inline CTF’s process is:

1. Derive additional patch points (Section 5.2) from the task spawn static location (the
submit() call) by identifying:

(a) The second argument to the submit() call (the <used-by2> edge terminating
at the task spawn static location in Fig. 5.5) is the task-body function.

(b) The Future.get() call, that takes the submit() call’s result variable (database-
Result) as the first argument, must be removed.

2. Modify the submit() call to call the task-body function (Fig. 5.7a).

3. Make the result variable, databaseResult, an int instead of a Future<Integer>.

4. Remove the call to Future.get() and replace it with a simple usage of the database-
Result variable (Fig. 5.7b).

123

Steps 2 and 4 can be represented in our graph grammar (recall the grammar from
Section 4.2.4.3) as follows. To modify the submit() call, define a function of the task
submission operation x as:

CallDirect(x) =

<used-by2>(y, x)

<reference-to>(y, f)

<calls>(x, submit)

7→ <calls>(x, f) (5.1)

Here, the task-body function is node f .
Similarly, to replace the Future.get call with a simple usage of databaseResult,

define a function of the task submission operation x as:

ReplaceUsages(x) =

<generates>(x, g)

<used-by1>(g, w)

<calls>(w,Future.get)

<generates>(w, v)

<used-byn>(v, u)

7→
<generates>(x, g)

<used-byn>(g, u)
(5.2)

Here, the databaseResult variable would be node g. Note that the parameter usage
index, n, is preserved in the edit.

These graph edits are illustrated in Fig. 5.7, while the overall result is illustrated in
Fig. 5.5, where the top and bottom graphs are pre- and post-change versions, respectively.
Edges changed between the versions (corresponding to the patch) have enlarged arrow
heads and nodes created/deleted are hollow. Modified edges and nodes also follow git-diff
colour conventions.

5.3.4 Rendering Source Code

There are two subtleties in the APG-to-source-code rendering process (Scopda step 4).
First, APG to AST conversion is done per-function; higher-level constructs, such as classes,
are rendered unchanged (save for the modified functions). Since Scopda operates at the
function level, for both analysis and transformation, no other source code needs to be
changed. Second, the final patch is minimised at each output step (APG-to-AST and
AST-to-source-code); this is important for adoption as larger and more complex patches
are harder for developers to check.

At each output step, Scopda copies as much of the original data (AST nodes or source
code text) as possible and only generates new versions for the parts that have been modified.
At the APG to AST step, Scopda copies the original AST for the function being rendered
and replaces only those nodes that correspond to modified APG subgraphs. Similarly,
at the AST-to-source code step, if an AST node is unmodified the corresponding source
code is copied, whereas if it is modified the source code is generated from the AST. This
process of using the original data where possible ensures that the resulting diff is minimal
(and non-functional aspects of the code, such as code style and comments, are retained).

Finally, the output patch (Scopda step 5) is generated by applying git’s diff algorithm
to the original source code and generated source code.

124

x

fn ExecutorService.submit

y

f

<
c
a
l
l
s
>

<calls>

<used-by2>

<
r
e
f
e
r
e
n
c
e
-
t
o
>

CallDirect(x) =

<used-by2>(y, x)

<reference-to>(y, f)

<calls>(x, submit)

7→ <calls>(x, f)

(a) Step 2 of the CTF process (Eq. 5.1), replace the submit() call with a call directly to the
task body function.

x g
<generates> w

fn Future.get

vu

<used-by1> <calls>

<
g
e
n
e
r
a
t
e
s
>

<used-byn>

<
u
s
e
d
-
b
y
n
>

ReplaceUsages(x) =

<generates>(x, g)

<used-by1>(g, w)

<calls>(w,Future.get)

<generates>(w, v)

<used-byn>(v, u)

7→
<generates>(x, g)

<used-byn>(g, u)

(b) Step 4 of the CTF process (Eq. 5.2), remove the Future.get() call and replace it with a
simple usage of the variable generated by the updated submit operation.

Figure 5.7: APG illustrations of the graph edits performed by the convert-to-inline CTF.
The APG legend is the same as in Fig 5.5.

5.4 Real-world complexity

The running example does not include various features present in real-world programs,
such as branch statements, inheritance, unavailable source code, and unanticipated binary
code structures. I now summarise how the APG, and Scopda more generally, handles
these, to illustrate Scopda’s approach to real-world complexity.

Branching While branching statements can generate various branch orders and be-
haviours (e.g. if vs. switch statements), such distinctions are irrelevant to the analysis
and transformation performed by Scopda. The dynamic-static mapper explores all branch
options irrespective of order. Similarly, CTFs that modify branching statements consider
the branches as identified by the static locations, not their order. Therefore, the APG iden-
tifies branches as distinct from each other, but does not specify how they are distinguished
by the source language (LI annotations can indicate this for source-code rendering).

Inheritance and interfaces Though omitted in the running example, the APG
supports inheritance with an <overrides> edge linking a function implementation to an
interface function it inherits/overrides. In analysis these edges are, effectively, expanded
as <calls> edges between operation nodes that call the interface function node and the
implementation function nodes. Scopda does not (yet) perform call-graph reduction using
infeasible path analysis [115] as the dynamic-static mapper’s reachability-based approach
for constructing graphs of SCPs is currently sufficient for the analyses it performs.

Source-code availability APGs must contain all tracked functions and all functions
on static call paths between tracked functions to enable dynamic-to-static mapping. In

125

many cases this includes functions for which the source code is unavailable (e.g. third-party
libraries). As such, Scopda also implements a language interface for generating APGs from
JVM bytecode, though it cannot render bytecode derived nodes into Java source code.
Individual APGs may contain subgraphs derived from multiple input formats/languages
(e.g. JVM bytecode and Java source code).

JVM bytecode and grey boxes JVM bytecode is an unstructured format in which
there are valid bytecode patterns3 that cannot be represented in structured graphs
(Miecznikowski and Hendren [70]), such as an APG. These patterns are addressed by an
additional APG construct, the grey box. Grey boxes contain only those nodes and edges to
enable inter-procedural analysis (e.g. call-graph edges) by the dynamic-static mapper; they
do not support code modification. Grey boxes provide safe, but imprecise, information.
Moreover, grey boxes permit Scopda to follow a fall back to simpler representation principle
when encountering unanticipated structures in code; this enables support for unstructured
formats and eases support for new languages. While grey boxes have the potential to
reduce analysis precision, they should not impede final patch generation (and do not in my
experimental experience (Section 5.5)) as they never represent source-available functions
(i.e. code which patches affect).

// Track main(), g(), and h(), but not untracked1() nor untracked2().

void main() {
if (cond) {

untracked1();

} else {
untracked2();

}
}
void untracked1() { g(); h(); }
void untracked2() { h(); g(); }

Figure 5.8: Representing untracked1 and untracked2 as grey boxes causes ambiguity in
Scopda’s analysis.

As an example of the analysis imprecision that grey boxes can cause, Fig. 5.8 presents a
constructed case that, with grey boxes, could cause ambiguity in Scopda’s analysis. In the
example, functions main, g, and h are tracked and functions untracked1 and untracked2

are not. The main function calls untracked1 and untracked2, which both call g and h

but in different orders. Given a trace-log showing main calling g and then h in turn, Scopda
could determine that untracked1 was called (due to the order of the g and h invocations).
However, if untracked1 and untracked2 were both grey boxes, Scopda would not be able
to determine which one was called as both would indicate that they call g and h, but
would not indicate the order. If a patch then depended on which was called (e.g. a patch
that needs to edit main in some way), this ambiguity could impede patch generation.

Implementation In practice it is faster to generate APGs from JVM bytecode instead
of raw .java files as it does not require further compilation (raw .java files must be
compiled by javac to resolve types for the APG, whereas these are already resolved in

3Note that these unrepresentable patterns are structural patterns, such as multi-entry basic blocks, not
behavioural patterns that enable dynamic behaviour, such as Android Intents. Behavioural patterns can
be represented in the APG format just as any in any other structured format (e.g. Java). Fundamentally,
any structural pattern that can be represented in a structured programming language can be represented
as an APG.

126

bytecode). As the APG representations of bytecode and source-code versions of a function
are semantically equivalent, I initially generate the entire program APG from bytecode and
only generate APG function representations from source-code when necessary. Specifically,
when source-code is available for a function Scopda uses it if

• the bytecode version cannot be successfully generated (i.e. it would be a grey box);
or

• the CTF must transform the function to generate a patch.

If the CTF attempts to transform a source-unavailable function, an error is returned.
While this approach requires generating APG subgraphs twice for functions to be

edited (first from bytecode and then from source code), potentially presenting scalability
issues for large code bases, in practice this is not a significant issue. APG generation is
constant w.r.t. the number of .java files to be edited for a given set of patches. Only
those .java files that will be edited in at least one patch are converted into an APG,
the rest of the source code can be ignored (the vast majority of code in large projects).
Ignoring non-patch-relevant code during (javac) compilation is possible as the compiled
.jar file – which is executed to generate the original trace and is also used as the basis
of initial APG construction – can be given as a class-path library to the javac compiler,
providing all dependencies required by the .java files. Naturally, if a .java file is affected
by multiple patches, it only needs to be compiled once as the same APG can be used to
generate multiple patches.

5.5 Application to real-world

As with Quilt and Rehype, I apply Scopda to Acme (Section 2.6.1), a (proprietary)
industrial Java API server (c. 500kLoC) for a consumer web and mobile application.
Scopda successfully generates source-code patches for each of the nineteen improvements
suggested by Rehype (the same improvements described in Section 4.3.4). Fig. 5.9 contains
one of the real patches generated by Scopda.

The APG is constructed from the server’s source code .java files, compiled .jar file,
and the Java 8 SE standard library .jar file. The final APG contains 8 690 403 total nodes,
409 231 functions, and 223 492 intrinsics. Of these, the JVM bytecode language interface
successfully generates APG representations for 398 699 functions, 97.43% of all functions.
Grey box versions are generated for the remaining functions (all are in third-party .jar

files where source is unavailable).
The server with patches automatically applied, by git apply, successfully executes

and exhibits the predicted performance increase (see Section 4.3).
Recall that, in this thesis, we are interested in the theoretical development of a practical

technique. As such, the interesting aspect of this evaluation of Scopda is that it works
when applied to a real-world codebase, using real-world Rehype improvement specifications,
not how fast it works (though it is fast, in the order of seconds) or how many improvement
specifications it is unable to handle (though it is able to handle all generated by Rehype
for Acme). Of course, there are instances where Scopda will not be able to handle an
improvement specification, as discussed above. However, such points are more interesting
for discussion and theoretical consideration, than for quantitative evaluation.

127

public UncheckedFuture<ByteBuffer> sign(ByteBuffer value, Key key) {
return executorService.submit(() -> {

try {
SecretKey secretKey = getKey(key, true);

Mac mac = Mac.getInstance(secretKey.getAlgorithm());

mac.init(secretKey);

return ByteBuffer.wrap(mac.doFinal(value.array()));

} catch (NoSuchAlgorithmException | InvalidKeyException e) {
throw new RuntimeException(e);

}
});

}

Figure 5.9: An example patch generated by Scopda for a real-world Java server.

5.6 Related work

I am unaware of existing work that modifies static source code based on dynamic analysis
in a similar manner to Rehype and Scopda. Though, there are examples of static-analysis
optimisation being performed based on dynamic analysis, such as JIT compilers deciding
whether to compile an interpreted function to native code based on its performance at
runtime. Such JIT compilation utilises dynamic analysis to decide whether to compile a
function (though the “analysis” may be as simple as a threshold test on the number of
invocations and cost per-invocation) and static analysis in optimising the compiled native
code. This differs from Rehype and Scopda in that it does not modify the original static
source code (the source code file does not change), it is, instead, an ephemeral compilation
of the static code.

Work relevant to the APG includes established general representations such as control-
flow graphs [3] and call graphs, system-specific internal representations (e.g. LLVM’s
IR [54]), and task-specific representations such as source-code query graphs [95, 83],
among others [108]. These differ from the APG in specificity (e.g. CFGs), target use
(query graphs), or structure (compiler IRs designed for optimisation and machine-code
generation). By nature of the target application, the APG does not need to represent
some information that is critical to other IRs, such as an efficiently checkable type-system,
as it can assume the input programs are valid. Within the context of compiler IRs, the
APG uses a form of semantic lowering that can be uniquely reversed (i.e. the lowered IR
can generate the unique input high-level source code (modulo white space and spurious
bracketing)), whereas most IRs do not require this attribute [18]. Furthermore, given its
unified approach (as opposed to, for example, overlay graphs), the APG is particularly
well suited to algorithms that combine analysis and transformation.

Some existing work combines static analysis and dynamic analysis for the detection of
bugs [4, 127], especially multi-threading bugs which are particularly difficult to find with
static analysis alone. Such work combines static analysis and dynamic analysis to enhance
the analysis (detection) process, whereas Scopda combines them to translate dynamic
analysis identified improvements back into the static domain (source code).

5.7 Discussion

Scopda takes a somewhat unusual static analysis approach given its focus on bridging the

128

dynamic-to-static gap. The design decisions regarding the APG encapsulate many of these
oddities. For example, it represents branching statements, but does not represent which
branch is true, false, or other, as the analysis does not need to. Similarly, it has a native
representation for exception handling, but not exception throwing. In this section we will
consider various oddities of the APG and broader Scopda design, and what lessons we
might take from them for other applications.

We begin by considering a key principle of the APG design, that it is to be used to
analyse valid execution paths, not to be executed itself. Then we will look at a key design
differentiator between the APG and other representations such as ASTs, the APG uses
composition not inheritance. Finally, we will broaden out and consider the benefits of
designing specialised data structures (or representations) for analysis, as opposed to using
generalised versions.

Valid execution path analysis, not executable

Scopda’s primary analysis phase is the dynamic-to-static mapping process, during which a
dynamic trace needs to be mapped to static code paths (SCPs). This involves checking a
recorded sparse trace against the static APG to identify which paths in the APG could
have produced the trace, and thus which static paths may have been executed.

Though superficially similar to executing a program, as it involves following control-flow
through the program, it is significantly different as it does not evaluate data to decide
whether a control-flow option is executed or not (e.g. which branch is executed). Instead,
it, conceptually, considers all possible control-flow paths and eliminates those that are
unreconcilable with the trace.

This means the APG design only needs to represent possible paths, and when paths
branch, but does not need to represent how those paths branch (e.g. which branch option
is a true/false option in an if-statement).

Composition and disentangling semantics

The APG’s semantic representation can be thought of as composition to ASTs’ inheritance,
in a similar vein to type system composition versus inheritance. Where ASTs have specific
(nested) node types (e.g. ExpressionNode, ArithmeticExpression, PlusExpression)
the APG has a single operation node type and multiple edges that define the semantics,
but the edges do not depend on each other – they are composed. This approach separates
(or disentangles, if you will) the semantics of an expression into discrete edges, rather than
being implicit in an AST node type.

Intrinsics take this a step further by representing language-specific features – irrelevant
to the change transformation functions but important to the language interfaces – as callable
functions. This compositional approach allows analysis and transformation algorithms
to deal directly with the semantics shared by different expressions and relevant to the
algorithm, rather than handling each node type individually. Importantly, this reduces
the complexity burden on transformation algorithms to maintain a valid APG.

Specialised vs. generalised representations

While there are many generalised static code representations, such as CFGs [3], ASTs, and
call-graphs, designing a specialised representation (e.g. LLVM’s IR [54]) can significantly

129

reduce the complexity of analysers built on it. Specialised data structures allow us to
encode exactly the information required, in the most convenient form. They also enable
operations that might be impossible, or very difficult, in generalised structures. In essence,
using a specialised representation moves complexity from the logic layer (the analyser)
to the data layer (the representation), the specialised representation encodes the relevant
complexity instead of the analyser encoding the complexity as logic combining existing
representations.

Two examples illustrate this well, representation lowering and maintaining repre-
sentation integrity during transformation. Many representations, including the APG
(Section 5.3.1) and LLVM’s IR [54], perform some form of lowering – reducing the level of
abstraction – during construction. In fact, a standard pattern found in compilers is the
use of “phases”, each of which may perform some type of lowering [22], until the final
executable code4 is produced (conceptually, a compiler can be thought of as a series of
lowering steps between the high-level source code and the lower-level executable code).
However, the APG differs to many other representations in its ability to reverse this,
“raising” the level of abstraction when rendering back into source code. Similarly, many
general purpose representations aim to represent only one aspect of the program (e.g. ASTs
represent code structure, CFGs represent the control-flow). This means that analysers,
which analyse multiple aspects of a program, must use these representations in concert with
each other (hence the development of utilities such as graph-overlays by Rodriguez-Prieto
et al. [95]). However, when transforming the program’s source code, as Scopda does, the
code representation integrity must be maintained so the generated patches are valid, a
particularly difficult prospect when coordinating multiple representations.

This is a fundamental drawback of generalised representations. Given the definition of
a specialised representation as being designed for a specific analysis, then a “generalised”
representation is naturally one designed without a specific analysis in mind. It is unlikely,
though theoretically not impossible, that such a generalised representation will be able
to represent all aspects of a program in a usable form5. If we accept that such an all
encompassing representation does not exist, then all generalised representations must each
represent a subset of relevant aspects (likely a single “aspect” per representation).

Any analyser that involves multiple aspects of a program will, naturally, have to use
either a composite of generalised representations or a specialised representation. If the
analyser involves transformation, then it must maintain integrity of the representation(s) it
uses. When using a composite representation, this requires maintaining integrity between
representations, which is a challenge.

An analyser could, of course, use generalised representations, perform transformations,
and maintain the integrity of the representations. Though, doing so would significantly
increase the complexity of the analyser. Conceptually it would, essentially, be creating
a specialised representation by binding the generalised representations together using a
logic layer. While possible, such an approach seems to be more work than designing a
specialised representation.

For further reading, Cooper & Torczon discuss code representations, in the context
of compilers, and their competing objectives in their book Engineering a Compiler [22],

4The form of the executable code will differ based on the runtime. For example, Java programs will be
compiled to JVM Bytecode which is then executed by the JVM, whereas C programs will normally be
compiled into an assembly language (e.g. x86 assembly).

5If achieved, this would be “the one representation to rule them all”.

130

Chapter 5. Aho et al. also discuss compiler representations and static analysis methods
(such as interprocedural analysis) in their book Compilers: principles, techniques, &
tools [1].

5.8 Conclusion

This chapter described Scopda, a system for generating source-code patches for improve-
ments identified by Rehype’s execution-trace-based dynamic analysis. Scopda first maps
the dynamic-domain improvement specifications into the static domain using a general
method and then applies a code transformation method specialised to each optimisation.
Scopda uses a custom static program representation (abstract program graph, APG) to
map between dynamic and static domains and perform code transformation within a single
representation. Applying Scopda to Acme, a large real-world program, demonstrated that
it generates sensible source-code patches in the real-world.

Scopda bridges the dynamic-to-static gap to enable dynamic analysis to be translated
into practical static changes. Though a number of tools cross the static-to-dynamic gap,
going the other direction is non-trivial. In particular, as dynamic analysis is naturally based
on limited knowledge of the target program (e.g. sparse tracing, Section 3.3), determining
the relevant static components is a challenge.

The APG representation is a core enabler of Scopda’s approach. Most importantly,
it enables the analysis and transformation of the program on a single representation.
This is possible, without significant extra algorithmic complexity in the analyser, as the
representation is specially designed for Scopda. I have argued that designing specialised
representations provides a number of substantial advantages, particularly for analysers
that involve transformations.

In the future I plan to develop support for more optimisations and expand Rehype and
Scopda to work on more programming languages. I also plan to incorporate further static
analysis techniques, such as infeasible path analysis, to improve Scopda’s treatment of
trace sparsity in improvement specifications.

131

132

Chapter 6

Tracing Overhead and Observer
Effects

Chapters 3, 4, and 5 developed a program analysis method, DTRSO , for tracing, analysing,
and modifying a program to improve its concurrency performance. This chapter does not
extend DTRSO further, instead we discuss a fundamental effect that dynamic program
analysis has to account for, the observer effect inherent in program tracing and its
implications.

6.1 Introduction

Execution tracing is used to capture precise and fine-grained data about a program’s
behaviour. These data can be used to better understand and optimise program behaviour
and to enable automatic program analysis. It is especially useful for performance analysis,
which depends on data from real executions.

However, execution tracing naturally has an observer effect (also known as a probe
effect); the act of tracing itself perturbs the behaviour being observed. This is caused
by overhead incurred by tracing. The effect can be substantial enough that the recorded
behaviour is significantly distorted from the untraced behaviour. Any analysis, manual
or automatic, on sufficiently distorted data is inherently flawed and may lead to invalid
conclusions.

There are many dimensions along which overhead can be evaluated, we will consider
three in particular:

Compute volume The amount of direct compute overhead (i.e. CPU cycles) introduced.

Memory volume The amount of memory consumed by the tracer. This indirectly incurs
compute overhead by increasing page faults and can directly incur overhead if it consumes
memory bandwidth in a bandwidth-constrained application.

Uniformity How uniformly overhead is incurred across threads (concurrent uniformity)
and across time (temporal uniformity).

While all three inform the design of new execution tracers (such as which dimensions to
prioritise for optimisation), they also elucidate the relative fragility of concurrent behaviour
and analysis.

133

I argue that understanding the (non-)uniformity of overhead is essential to understand-
ing its effect on program behaviour (Section 6.2). The common amortising mindset that
“tracing adds x% overhead” is misguided as it does not account for the nuanced nature
of overhead, instead assuming it is a consistent slow down of the program. Importantly,
overhead can qualitatively affect a program’s behaviour. This is not to suggest that
calculating the amortised overhead is not valuable, but rather that it is only one of a set
of measures of overhead that should be considered.

In this chapter we investigate the effect of tracing-overhead on program concurrent
behaviour – how and when a program uses concurrency – and execution duration in
real-world Java programs. We also consider how distorted-behaviour in traces affects the
accuracy and validity of subsequent concurrency-performance analysis. Various metrics
are suitable for exploring the effect of the overhead dimensions above. I focus on four key
metrics:

MTU Mean thread usage – effectively the integral of thread use over time, divided by
total time.

A-MTU Active threads MTU – active threads are those progressing computation at a
given time.

W-MTU Waiting threads MTU – a thread is waiting when it is waiting on another
thread to finish some work.

WCD Wall-clock duration of a program execution.

The key research questions addressed in this chapter are:

1. How does the observer effect inherent in execution tracing affect program concurrent
behaviour?

2. How do the various dimensions of tracing-overhead (compute, memory, and unifor-
mity) differ in their effects?

3. How is subsequent concurrency-performance analysis affected by the observer effect?

To investigate these questions, I augment the Quilt tracer, from Chapter 3, to generate
configured additional overhead (Section 6.3). To investigate the effect of tracing-overhead
on subsequent program analysis I use Rehype (Chapter 4, key points are summarised in
Section 6.3.2), a concurrency-performance analyser.

Experimental results (Section 6.4) suggest that: the hypothesised observer effect does
exist1 and can significantly affect concurrent behaviour; overhead dimensions vary in their
effects; and increased overhead reduces analysis accuracy. While the results are specific to
concurrent behaviour and concurrency-performance analysis, I suggest that the observer
effect is broadly relevant to many forms of dynamic analysis. Hypothetically, most forms
of dynamic analysis, which rely on tracing, may be affected as, by definition, they analyse
runtime behaviour which can change based on overhead. Practically, dynamic analyses

1Though the existence of different forms of the observer effect has been discussed in previous work (e.g.
Gait [27]), see Section 6.5, the hypothesised effect I discuss here is the effect on concurrent behaviour.
Whereas, previous works (and their hypothesises) have focused on other effects, such as the introduction
of synchronization errors.

134

that directly work with concurrency or performance will be more significantly affected as
a program’s concurrency and performance behaviour will be most affected.

The aim of this chapter is to demonstrate the existence and relevance of the tracing
observer effect on concurrent behaviour and analysis. I believe its relevance to dynamic
analysis warrants further investigation. While the experimental evidence I present is a first
step on this path of investigation, there is significant scope for further experimentation
and analysis.

Finally, I position this chapter’s work among related work in Section 6.5, discuss
implications of the results, and implications of the experimental approach on the results,
in Section 6.6, and conclude in Section 6.7.

Narrative context

In our narrative scenario (Section 1.2.2), Banjo uses Quilt to trace an execution of Paterson
and Rehype to identify and quantify potential changes. A key aspect of both of these tools
is that they provide insight into Paterson’s resource usage, specifically thread usage, and
not just wall-clock time. If Banjo only had superficial measurements, such as wall-clock
duration, to base their decision on, they may not identify any significantly beneficial
changes. Indeed, many of the beneficial changes Rehype identifies in Paterson may not
significantly affect these superficial metrics. Yet those changes may be very beneficial
in less obvious metrics, such as detailed thread usage, which can substantially affect
performance, via metrics such as throughput, over time and at scale.

This chapter discusses the importance of more detailed metrics, especially as they
relate to dynamic analysis systems.

6.2 Uniformity in Tracing

I wish to challenge an implied assumption in the statement “tracing adds x% overhead”
(examples include [66]2, [57]3, and [76]4), the assumption is that such overhead does not
significantly affect program behaviour, it merely slows the program (i.e. wall/user-clock
duration) – as though the processor, memory, and I/O speed had been slowed. Tracing-
overhead is not equivalent to a slower processor, it is not uniform as the overhead is only
incurred when events are traced and events are not traced uniformly. Thus, even given
uniform per-event overhead, the impact of tracing-overhead will be non-uniform.

Furthermore, as tracing-overhead fundamentally interacts with the broader system, by
consuming limited resources, it will have a greater impact at points of resource contention
and bottlenecks. Any such impact is further amplified as points of contention have the
greatest opportunity for distorting program behaviour.

Thus, while the apparent outcome of tracing may be x% longer execution duration,
the qualitative effect on behaviour may be greater. For example, task-scheduling may be

2“Castor can processes [sic] 30M events per second if it owns a whole core, 1.6M / 30M is 5%. This
translates to 5% application overhead, since that is what Castor steals from the application for logging.”

3“Our evaluation also shows that TSVD introduces an acceptable overhead to the testing process
— about 33% overhead for multi-threaded test cases while traditional techniques incur several times
slowdowns.”

4“Whereas sampling based tools can have up to 25% slowdown using 4kHz frequency, our tool bcc-java
has a geometric mean of less than 5%.”

135

affected5, which could lead to deadlock via thread starvation6. Similarly, programs may
change modes of operation, such as an adaptive bitrate streaming system [106] degrading
quality of video segments due to increased overhead. So, though x% might be acceptable
in some instances (e.g. for non-performance-analysis applications, such as record/replay),
it may not be so innocuous in other instances.

6.3 Experimental Method

To investigate the effects of tracing overhead, I extend the tracer to generate configurable-
overhead and use a concurrency-performance analyser to assess the effect of overhead on
subsequent analysis.

6.3.1 Configurable overhead

For this chapter, I augment Quilt to generate configurable amounts of overhead so we
can observe its effects – basically it is easier to add tracing-overhead than to remove it!
I extend the trace-config with an overhead-config specifying that additional synthetic
overhead is to be incurred when recording an event. The overhead-config can specify both
additional computation (simulated by hash operations on a sequence of random bytes)
and additional memory allocation (i.e. malloc7) by the tracing process, and also whether
allocation has a corresponding free (allocating but not freeing memory enables isolating
the effect of memory overhead from the allocation compute overhead). Ideally, we would
like to be able to configure uniformity of tracing-overhead, however, as a uniform baseline
is not possible (Section 6.2), I instead experiment with uniformity by adjusting which
functions are instrumented (Section 6.4.1).

6.3.2 Concurrency-performance analyser

Chapter 4 described Rehype, a concurrency-performance analyser. In this chapter, we use
Rehype to investigate the effect of tracing overhead on subsequent program analysis. As a
refresher, I briefly summarise the relevant aspects of Rehype here.

Rehype takes a trace-log, generated by Quilt , and produces suggestions as to how the
program’s concurrency might be refactored to improve performance (such as inlining a task
to reduce the amount of time threads in the program spend waiting). These suggestions
are called changes and denoted using δ, here treated as maps from trace-logs to trace-logs.

Given a trace-log t, Rehype produces a set of changes ∆ and an estimated trace-log
δ(t), for each change δ ∈ ∆. These approximate the trace-log the program would generate
with δ implemented on the source code. Then, given a performance metric µ and writing
the value of µ for t as µ(t), Rehype calculates the estimated proportional improvement
(EPI) of a change as:

EPIδµ(t) = (µ(δ(t))− µ(t)) / µ(t) (6.1)

5Some methods which make scheduling deterministic, such as Dthreads by Liu et al. [61], would be
robust against such task-scheduling effects. However, concurrent determinism would not substantially
affect the uniformity of overhead, given the fundamental nature of overhead uniformity discussed above.

6https://wiki.sei.cmu.edu/confluence/display/java/TPS01-J.+Do+not+execute+

interdependent+tasks+in+a+bounded+thread+pool
7Recall that Quilt is programmed in Rust, not Java, and so allocates memory directly on the OS, not

through the JVM.

136

https://wiki.sei.cmu.edu/confluence/display/java/TPS01-J.+Do+not+execute+interdependent+tasks+in+a+bounded+thread+pool
https://wiki.sei.cmu.edu/confluence/display/java/TPS01-J.+Do+not+execute+interdependent+tasks+in+a+bounded+thread+pool

The experimental situation below is slightly more complex as we have a range of traces t,
obtained by varying overhead-config in the tracer, that similar changes δ are identified for.

6.4 Experimental results

I perform experiments to investigate the three research questions (see Section 6.1). I define
the various overhead configurations used in experiments in Section 6.4.1, describe the
experimental metrics in Section 6.4.2, report on the experiments in Section 6.4.3, and
discuss experimental limitations in Section 6.4.4.

To investigate the real-world effects of tracing-overhead, I perform all experiments on
an industrial Java API server, Acme. Acme uses a task-based concurrency model (centred
on substantial usage of Java’s standard thread pool interface, ExecutorService), has
approximately 500k LoC, and has been in production for five years. Experiments execute
a synthetic series-of-requests workload which simulates the standard use of Acme on a
non-loaded machine. This provides a consistent workload8 to evaluate the effects of various
overhead configurations. As with other chapters, these experiments were run on a Linux
benchmarking machine described in Section 2.6.

6.4.1 Configurations

I use two baseline configurations:

base: instruments only concurrency constructs (such as thread-pool and task events)
necessary to capture concurrent behaviour.

std: the standard, but unoptimised, configuration used by Rehype to identify changes for
Acme (this is the configuration used in Chapters 3 and 4). This configuration extends
base by instrumenting all functions in Acme (i.e. the com.acme package, but not third-
party library code). This is a useful reference configuration as it instruments functions
necessary for Rehype to identify relevant changes, whereas base would trace an insufficient
set of functions.

I denote additional overhead configurations using their overhead type and volume
(Section 6.3.1):

co-[x]: Extends std with compute overhead by performing [x] hashes on each event;
e.g. co-2 performs two hashes each event.

db-[x]: Mirrors co-[x], except it instruments third-party library functions that are
primarily called during concurrent phases of Acme (specifically, database access functions)
instead of those instrumented by std.

ma-[x] and ml-[x]: Extends std with memory overhead by allocating [x] bytes on each
event; ma immediately frees the memory, while ml does not. These allow experiments to
isolate memory use effects from the compute overhead of allocation (Section 6.3.1).

8Acme is not perfectly deterministic, for example, it generates random identifiers that rely on time-based
seeds and it is a concurrent program in which task-scheduling may differ between runs. However, when
executing the same workload multiple times, Acme produces consistently similar performance metrics
(though, of course, not perfectly equal).

137

6.4.2 Metrics

I evaluate experiments on summary metrics of thread usage and wall-clock duration
(WCD) as the overhead configuration is varied. I calculate the mean thread usage (MTU)
across an execution for all occupied threads, active threads (A-MTU), and waiting threads
(W-MTU). A thread is occupied when it is processing a task (as opposed to being idle in
a thread pool); it is active when it is progressing computation; it is waiting when it is
paused waiting for the result of another task. I derive additional metrics below to further
evaluate the effects of overhead.

Metrics µ are naturally defined on trace-logs t. However, my experiments only vary
configurations c and not other inputs, hence it is convenient to regard µ also as functions
of c. The same applies to EPI (Section 6.3.2).

Relative effect metrics

I compare configurations c using the value of a metric relative to the base configuration
(i.e. µ(c) / µ(base)). These derived metrics provide a direct measure of the distortion
caused to concurrent behaviour by configurations’ overhead. I define the relative effect
(RE) of a metric µ as the absolute distance of the metric to the base version. That is,
given a configuration c, the µ-relative effect (µ-RE) is:

µ-RE(c) =

∣∣∣∣ µ(c)

µ(base)
− 1

∣∣∣∣ (6.2)

The ratio of MTU-RE to WCD-RE (shown in Fig. 6.2b) is useful as a measure of the
proportional effect on concurrency and duration:

MTU-RE-to-WCD-RE-ratio(c) = MTU-RE(c) / WCD-RE(c) (6.3)

Measuring the effect on Rehype accuracy

To evaluate the effect of overhead on Rehype’s analysis accuracy, I compare the EPI
(Eq. 6.1) for changes that are identified by std (as base does not record enough data)
and additional overhead configurations. Specifically, for a given configuration, I calculate
the relative EPI (REPI) for each change both it and std identify and then take the mean
REPI (MREPI) across all such changes.

Assuming metric µ, I write ∆c for the changes identified by Rehype in a trace-log under
overhead configuration c, and define ∆ = ∆c ∩∆std . The REPI of change δ ∈ ∆ indicates
the reduction in accuracy for that change caused by the configuration’s overhead:

REPIδµ(c) = EPIδµ(c) / EPIδµ(std) (6.4)

The MREPI is then the average reduction in accuracy caused by the overhead over common
changes ∆:

MREPIµ(c) =
1

|∆|
∑
δ∈∆

REPIδµ(c) (6.5)

138

Concurrent profiles

Finally, the time-series metric of thread usage over a program execution (its concurrent
profile) is useful to illustrate concurrent behaviour; its graphical form gives the shape of
concurrency throughout an execution – i.e. when and how many threads are used. Two
executions of the same program, with the same input and environment, should have almost
identical concurrent profiles in the absence of overhead; Fig. 6.1b shows the concurrent
profiles of three executions of Acme, under different overhead configurations.

6.4.3 Experiments

I devise separate experiments for each research question (see Introduction). The key
takeaway is that: tracing-overhead can significantly distort program behaviour (to amplify
or suppress concurrency), even when execution duration is largely unaffected.

RQ.1. How does the observer effect inherent in execution tracing affect pro-
gram concurrent behaviour?

To investigate this question I use the plainest form of overhead, compute volume, and
correlate it with a change in MTU, reflecting a distortion to the program’s concurrency.
This correlation is illustrated in Fig. 6.1a. The figure also shows that, for Acme, increased
overhead decreases the MTU – making the program appear less concurrent. It is important
to understand that while Acme does behave less concurrently (a greater proportion of
the execution is spent on a sequential phase) given overhead, this is not reflective of its
behaviour in a normal state without overhead (thus it merely appears less concurrent).

The intuition behind the reduction in apparent concurrency is that a particular
sequential phase of execution within Acme generates more trace events and thus incurs
more overhead. This is shown in Fig. 6.1b; the co-1k profile has an amplified sequential
phase (approximately between 30% and 95% of the execution progress), while the base

and std profiles appear more concurrent throughout. In those profiles, tracing incurs less
overhead and so does not amplify the sequential phase as significantly.

Fig. 6.1a also illustrates how concurrency distortions can affect the apparent concurrent
efficiency of a program. The W-MTU decreases more than the A-MTU, suggesting (if
taken at face value) that the program is more efficiently using concurrency (as waiting
threads are an inefficient use of resources – see Chapter 4), than it does when executed
without overhead.

Finally, Fig. 6.1c illustrates the change in maximum recorded concurrent thread use
(MaxTU) due to overhead. A MaxTU change results from a task-scheduling change. This
reflects a qualitative effect on program behaviour due to overhead. Note that the effect
is not monotonic (though it appears so for the db-* configurations due to the increased
overhead on background threads), rather, qualitative effects can be chaotic.

RQ.1. Answer: the observer effect can significantly distort the concurrent behaviour
of a program. Furthermore, overhead can have qualitative effects that are not monotonic.

RQ.2. How do the various dimensions of tracing-overhead (compute, memory,
and uniformity) differ in their effects?

I discuss this question in two parts: (i) the subtleties between compute and memory
overhead; and (ii) overhead uniformity and its fundamental nature. The difference between

139

base std co-2 co-5 co-10 co-20 co-50 co-100 co-200 co-500 co-1k

0%

20%

40%

60%

80%

100%

Configuration

M
ea

n
T

h
re

ad
U

sa
g
e

All threads Active Waiting

(a) Relative Mean Thread Usage (MTU) for compute overhead configurations. Configurations
approximately double overhead each increment.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

5

10

Normalised execution progress

#
th

re
a
d

s

base std co-1k

(b) Concurrent profiles (thread usage over normalised execution time) for the base, std, and
co-1k configurations.

ml-50 co-2 db-10

80%

100%

120%

ml-500k co-1k db-10k

Configuration

M
a
x

T
h

re
ad

U
sa

ge

ml configs co configs db configs

(c) Qualitative effect on program behaviour via the Maximum Thread Usage (MaxTU) relative
to base. A different MaxTU reflects a different task-scheduling.

Figure 6.1: The effect of compute overhead on program concurrent behaviour. All
configurations were executed 20 times.

140

b
as

e
st

d
m

a
-5

0
m

a
-1

00
m

a
-2

00
m

a
-5

00
m

a-
1
k

m
a-

2
k

m
a
-5

k
m

a
-1

0
k

m
a
-2

0
k

m
a
-5

0
k

m
a-

10
0
k

m
a-

20
0
k

m
a-

50
0
k

m
l-

5
0

m
l-

1
0
0

m
l-

2
0
0

m
l-

5
0
0

m
l-

1
k

m
l-

2
k

m
l-

5
k

m
l-

10
k

m
l-

20
k

m
l-

50
k

m
l-

10
0
k

m
l-

20
0
k

m
l-

50
0k

0%

20%

40%

60%

80%

100%

ma-* ml-*

M
T

U

All threads Active Waiting

(a) Relative MTU for memory configurations.

ml-50 co-2 db-10
1 :∞

1 : 4

2 : 4

3 : 4

1 : 1

ml-500k co-1k db-10k

M
T

U
-R

E
:

W
C

D
-R

E

ml configs co configs db configs

(b) Ratio of MTU-RE to WCD-RE (Eq. 6.3).

bas
e

std
db-10

db-20
db-50

db-10
0

db-20
0

db-50
0

db-1k
db-2k

db-5k

db-10
k80%

100%

120%

140%

M
T

U

All threads Active Waiting

(c) Relative MTU for configurations that amplify concurrency.

ml-50 co-2 db-10

1x

20x

40x

60x

ml-500k co-1k db-10k

W
C

D

ml configs co configs db configs

(d) Relative WCD for ml-*, co-*, and db-* configurations.

Figure 6.2: The effect of various overhead configurations. All configurations were executed
20 times.

141

compute and memory overhead is primarily exhibited by the difference between MTU and
WCD. The effect on MTU is bounded, while the effect on WCD is not.

Given a maximum recorded concurrent thread use MaxTU > 1, the MTU is always less
than it and greater than 1 (if the program does not deadlock), i.e. for a given configuration
c, 1 < MTU(c) < MaxTU. Moreover, the effect of increasing or decreasing overhead
begins to level off as it nears these bounds. This effect is seen in Figs. 6.1a, 6.2a, and 6.2c.

The WCD metric, however, has no such bound, it can continue to increase indefinitely
(though it can never go negative). In fact, WCD-RE naturally accelerates as overhead
increases and becomes the bottleneck in the program’s execution, this is seen in Fig. 6.2d.
The fact that co-* and db-* configurations affect duration significantly is unsurprising
as they directly add to the compute time. What is interesting, however, is that ml-*

configurations do not show the same significant increase in WCD, despite it having levels
of MTU-RE equivalent to the db-* configurations. This difference is seen in the ratio of
MTU-RE to WCD-RE (Fig. 6.2b).

I have argued that overhead uniformity cannot exist (Section 6.2). Yet, demonstrating
the effect of uniformity in isolation would require a baseline with uniform overhead (i.e.
uniform overhead incurred across time and across threads during the program execution by,
for example, slowing all hardware components by some constant factor). A purely-uniform
baseline cannot exist and a practically-uniform baseline cannot practically exist (practical
uniformity could be constructed in a toy example, but not in a real-world system). As such,
I must instead observe the effect of uniformity in other experiments, such as Fig. 6.1b.
Here, the std and co-1k configurations track the same functions, however, the functions
are not uniformly invoked across the execution. As co-1k incurs greater overhead, its
profile shows that the functions are disproportionately invoked in the sequential phase.

Uniformity, as a dimension of overhead, is important to consider as it intrinsically affects
the behavioural distortion caused by overhead. It is present in all of these experiments as
it determines where overhead is incurred. While the experiments so far have depressed
concurrency (relative MTU less than 100%) the inverse distortion, an apparent increase
in overall concurrency (relative MTU greater than 100%), can also be observed. For
example, Fig. 6.2c shows the MTU for db-* configurations. These configurations increase
the apparent concurrency by adding overhead to database access functions, which Acme
primarily calls in background threads.

Whether distortion amplifies or depresses concurrency depends on which functions in
the program generate the most trace events and when/where they are called (in concurrent
or sequential phases). While this could, theoretically, result in uniformity if all threads
produce identical events and overhead is perfectly uniform, such a scenario is unrealistic.
In real programs, the number of events traced on each thread (concurrent uniformity)
and at different times (temporal uniformity) will vary substantially causing overhead to
be non-uniform (let alone naturally occurring non-uniformity due to tracing environment
(e.g. cache behaviour)). Hence, in real programs, increased overhead correlates directly to
increased concurrent behaviour distortion (i.e. increased MTU-RE).

RQ.2. Answer: increased compute and memory overhead correlates to increased
MTU-RE and WCD-RE (though they are not proportional to each other), while uniformity
controls the shape of the concurrent distortion. However, it is impractical to experimentally
isolate overhead uniformity in real-world systems.

142

std ml-1k ml-5k ml-10k co-50 co-100 co-500

0%

100%

200%
M

R
E

P
I

MTU A-MTU W-MTU WCD

(a) The effect of overhead on Rehype’s estimation accuracy (Eq. 6.5). Note that A-MTU and
WCD overlap almost entirely.

std ml-1k ml-5k ml-10k co-50 co-100 co-500

95%

100%

%
of

s
t
d

ch
an

ge
s

id
en

ti
fi

ed

(b) The percentage of changes identified for the std configuration that are also identified for
other configurations (i.e.

∣∣∆c ∩∆std
∣∣ / ∣∣∆std

∣∣ for a given configuration c).

Figure 6.3: The effect of overhead on Rehype’s analysis. All configurations were executed
20 times.

RQ.3. How is subsequent concurrency-performance analysis affected by the
observer effect?

Increased overhead reduces the accuracy of Rehype’s estimations (Section 6.3.2). Fig. 6.3
illustrates this via two charts. The first (Fig. 6.3a) illustrates the reduced accuracy of
estimations as the MREPI (Eq. 6.5) of multiple performance metrics (MTU, A-MTU,
W-MTU, and duration) for three ml-* and co-* configurations9. The second (Fig. 6.3b)
shows the percentage of changes identified for the std configuration that were identified
by other configurations. The change in the set of identified changes for configurations
with additional overhead represents a qualitative effect on the analysis. This shows that
overhead can have a qualitative effect on concurrent behaviour (task-scheduling Fig. 6.1c)
and, separately, a qualitative effect on subsequent analysis.

The effect of overhead is compounded in estimated trace-logs (Section 6.3.2), as they

9The db-* configurations are omitted as they do not instrument enough functions for Rehype to identify
changes.

143

inherit both the behaviour distortions from the trace-log they are based off and the
reduced accuracy of estimation due to overhead. The end result is an estimate of program
behaviour, for a given change, that is far from the real behaviour the program would
exhibit with the change implemented and zero tracing overhead. This results in developers
having reduced (human) confidence in the validity of the estimations which can lead to
reduced adoption of changes (even if they are, in fact, beneficial).

That being said, I find that, generally, Rehype is able to identify many changes as
beneficial (in binary terms) despite the concurrency distortions. I hypothesise that this is
due to the relative-improvement approach of Rehype’s analysis.

RQ.3. Answer: analysis accuracy decreases as overhead increases, which matches
intuition. This has been experimentally shown for Rehype and I suspect it holds for other
analysis tools.

6.4.4 Limitations

These experimental results are limited to a single system Acme, running a single simulated
workload, using four base metrics (MTU, A-MTU, W-MTU, and WCD), and analysed by
Rehype. I argue that evaluation of tracer overhead to understand its various dimensions
is important and that I have presented some initial results in these experiments. Future
work should provide further rigour by evaluating more real-world systems, more program
behaviour metrics, and more dynamic analysers.

6.5 Related work

The observer effect has been previously studied in relation to performance analysis by
Mytkowicz et al. [72] and synchronisation errors by Gait [27]. Mytkowicz et al. analysed
how it can perturb performance data and system measurements so that a manual analysis
(by a “performance analyst”) may draw incorrect conclusions. Gait investigated how it
modifies the frequency of occurrence of synchronisation errors in concurrent programs
(inserting variable length delays affects when (and whether) synchronisation errors occur).
My work differs in that I specifically consider concurrent behaviour distortions and the
effect on automatic concurrency-performance analysis. Indeed, in Gait’s definition they
state that “if the concurrent program being studied has no synchronization errors, then
there is no probe effect.”10 (recall that probe effect is a synonym here for the observer
effect), whereas in this work I consider the observer effect on concurrency, regardless of
synchronisation errors.

Finally, the effect of various forms of overhead has been investigated in other fields. For
example, the effect of cache overhead on allocation heavy programs (Grunwald et al. [33])
and sorting algorithms (LaMarca and Ladner [52]), the effect of network overhead on cluster
computing (Martin et al. [65]), and the impact of address translation on performance
(Zhou et al. [128]).

10This quote is from the second sentence of Gait’s abstract [27]

144

6.6 Discussion

6.6.1 Functional effects of overhead

While in this chapter I have focused on distortions to program concurrent behaviour, the
tracing observer effect may significantly affect functional aspects of certain programs. In
general, tracing overhead could lead to deadlocks depending on the concurrency approach
of a given program. For example, deadlock by thread-starvation – whereby all threads
in a thread-pool are used and begin waiting for the result from another thread, with no
threads left to process a necessary task – could be caused by increased overhead realigning
thread scheduling (though such a deadlock would be indicative of poor practices that have
enabled thread-starvation in this way).

Moreover protocols and systems that adjust their behaviour based on performance may
be functionally affected by tracing-overhead. For example, adaptive video streaming [7]
adjusts the quality of video segments based on the throughput of the client-server connection.
While this is described in network terms in the literature, and in normal operation is
driven by network conditions, if significant enough overhead (such as from tracing) were
introduced in the client or server the apparent available throughput could be modified.
This would result in a functional change to program operation – i.e. adjustment in video
quality streamed and the associate effects within the program (such as time to process,
etc). Such changes in functional operation could have a substantial effect on the efficacy
of any program analysis performed on captured program behaviour data.

Investigating the potential functional effects of tracing overhead on different programs
is an interesting line of inquiry. It would further elucidate the extent to which tracing can
affect a target program.

6.6.2 Practical effects of overhead on developers

While some overhead effects (such as WCD) are directly observable by developers, others
(such as MTU) that are equally important are not easily visible. The observability of
effects is relevant to developers’ usage of tracers, and confidence in subsequent analysis.
For example, the MTU-RE to WCD-RE ratio (Fig. 6.2b) is relevant to developers’ usage
of tracers as they can directly observe WCD-RE (in terms of executions taking longer),
but not MTU-RE. Many may reasonably assume that if execution duration is significantly
affected, then other aspects of their programs will be similarly affected. Inversely, if the
execution duration is not significantly affected, they may assume that other aspects are
similarly unaffected. However, as shown in Section 6.4, this correlation does not always
hold; distortions to concurrent behaviour and duration are not consistently proportional.

If analysis outputs are less accurate than developers expect, their confidence in the
analyser (and potentially program analysis more broadly) will drop. Without confidence in
program analysis, the many benefits to software development will not be realised. As such,
reducing tracing overhead and mitigating its effects is essential to supporting adoption of
dynamic analysis.

145

6.7 Conclusion

Execution tracers have an observer effect, the act of capturing data perturbs the data
captured. Tracing overhead has numerous dimensions, I considered three: compute, mem-
ory, and uniformity. Experimental results show tracing-overhead distorts the concurrent
behaviour of a program, quantitatively and qualitatively, and can affect the accuracy
and validity of subsequent analysis. Fundamentally, uniformity cannot exist in tracing
and non-uniformity must be accepted, understood, and mitigated in execution tracers.
Furthermore, I have argued that uniformity is an essential, and understudied, dimension
of overhead that warrants further investigation.

A starting mitigation for this observer effect in tracers is to highly optimise tracers,
even if they are not being used in performance-sensitive environments. However, as
overhead and non-uniformity is fundamental to tracing and it is therefore impossible to
fully mitigate the effect, it is also important to measure and understand the kind and
volume of distortions. For example, by measuring the amount of overhead introduced
to various threads an analyser could determine the distribution of such overhead and
potentially adjust for the overhead, or at a minimum alert the user to the potential impact
of the overhead. Though the argument may become somewhat circular: measuring the
overhead of tracing may itself introduce overhead.

Rehype is somewhat robust to the distortions introduced by tracing as its suggestions
are based on relative improvement. However, this only provides a level of robustness in
terms of what improvements it suggests, Rehype’s estimations are fragile to the effects of
tracing overhead and non-uniformity. As noted in Chapter 4, the accuracy of estimations
is important for practical use for such systems.

In future work I plan to evaluate tracing-overhead on more real-world programs and
against more metrics. I also plan to investigate how tracing-overhead can qualitatively
affect application functionality, such as in adaptive video streaming where overhead may
cause video quality negotiation to have a different outcome.

146

Chapter 7

Discussion

Chapters 3 – 6 presented the core research contributions of this thesis. In this chapter,
before concluding the thesis, we will discuss points of interest that either span multiple
ideas across the previous chapters, or do not fit neatly within their bounds. Some of
these ideas are specific to DTRSO , while others generalise beyond it to the field of
dynamic analysis for concurrency optimisation and, more broadly, dynamic analysis for
static optimisation. Similarly, while some ideas are concrete and clearly scoped, others
are intentionally speculative. Finally, these discussions do not aim to form a particular
narrative, rather, they are a set of discrete considerations some of which will, hopefully,
spark ideas for other contexts and applications.

7.1 Runtime and language generalisation

Although this thesis has focused on Java, none of the algorithms, methods, or systems are
Java specific. For example, Rehype is designed for generic programming constructs, such
as tasks, and does not assume a specific implementation language or runtime engine. For
Rehype to analyse applications based on other languages, only Quilt needs to be adjusted
to trace those languages. This is analogous to adjusting the frontend of a compiler that
produces an intermediate representation (IR); the trace-log is effectively Rehype’s IR. For
example, for LLVM [54]-compiled languages I have implemented a proof-of-concept Quilt
instrumenter (Chapter 3 discusses the instrumenter component of Quilt) as an LLVM
pass1. Similarly, Scopda is designed so that, to support a new language, it only needs a
new language interface to generate APGs from that language and render them back to
the language.

In this way, both Rehype and Scopda have their own IRs (the trace-log and APG,
respectively) which aim to represent general concepts of programs and programming
languages, in dynamic and static contexts, respectively. Both IRs must, inherently, be
flawed as they will naturally fail to represent concepts from other languages or runtime
environments well, despite my best efforts to design them with generality in mind. I
believe that generalised IRs that are designed for dynamic and static analysis are an
interesting area for further research. While some may argue that existing compiler IRs
(such as LLVM’s IR) have achieved this for the static domain, I argue that a compiler IR
has different aims to an analysis IR (though these distinctions may not always be obvious).

1This instrumenter is not discussed elsewhere in this thesis as it an early-stage proof-of-concept
instrumenter and does not contribute further information to any of the primary contribution chapters.

147

For example, a compiler IR primarily aims to enable localised optimisations and final code
generation. These goals necessitate constraints on the IR, such as ensuring full detail is
retained for code generation. Whereas, Scopda’s form of analysis has different aims and
therefore different constraints. Scopda’s IR (the APG) aims for ease of dynamic-to-static
mapping and subsequent transformation for a specific type of optimisation at source-level.
Given these differences in goals and constraints, it is natural that these different kinds of
IR would warrant individual research efforts (though they will overlap at times).

In my implementation of DTRSO , I have taken a multi-phase approach that separates
tracing, dynamic analysis, and dynamic-to-static mapping. The intention is that this will
enable reuse of individual components for different languages, or even applications of the
methods. However, despite this, some languages would pose further challenges for the
fundamental model. For example, as Scopda’s approach assumes an APG representing a
whole, fully resolved program, supporting dynamically typed (and dynamically loaded)
languages, where types and functions can be mutated during runtime, would require
adapting the fundamental design as they inherently cannot be statically fully resolved for
analysis.

7.2 Concurrency model generalisation

Though this thesis has focused on task-based concurrency with thread-pool scheduling, the
core methodological and theoretical contributions are generalisable beyond this context.
The generalisation of Quilt to another concurrency model is reasonably straightforward,
it would simply need to be extended to instrument events relevant to the concurrency
model in question. Rehype would require more in-depth modification to accurately model
a program’s concurrent behaviour (e.g. by simulating a different task scheduling policy)
and new change types would need to be created for each concurrency model, though, the
core methodology of trace refactoring and estimation based on the trace-DAG should
remain sound. Scopda’s only concurrency model specific component is the CTF (change
transformation function) – CTFs would need to be implemented for each new change
created for a concurrency model – otherwise it is independent of the concurrency model.

Quilt ’s tracing method is generally applicable; the core instrumentation and tracing
framework is independent of the concurrency model. To support a new concurrency model,
Quilt would need to be extended to instrument events specific to the concurrency model.
For example, to support an async/await model, Quilt would need to instrument the
async/await keywords or functions. Similarly, to support a coroutine based model, Quilt
might need to include “continuation” events which indicate when a coroutine’s continuation
is executed on a different thread than it was suspended on. Supporting synchronisation by
communication concurrency models (such as Go’s channel-based concurrency [28]) presents
an interesting challenge, on the surface it seems likely it would require Quilt to add data
tags to messages sent, or to instrument the communication channel implementation, to
enable resolving concurrency events across threads and across time in a program execution.
However, this is not a topic I have investigated in depth and the reality may be quite
different.

Rehype’s core methods and theory are generalisable to a broader range of concurrency
models, however, it would require non-trivial extensions and modifications to support

148

other concurrency models. For example, the trace–DAG encodes concurrency constraints
using time-edges which are, in effect, “happens-before” edges. This constraint modelling
for estimation is generalisable beyond task-based concurrency. Similarly, the theory and
method underlying the transformation between trace-logs and trace-DAGs is applicable
more broadly. Whereas, extensions would be required for other aspects of Rehype such as
concurrency scheduling. For example, to accurately estimate programs built on a Fork-Join
concurrency model, Rehype would need to simulate the Fork-Join task scheduling (i.e. work
stealing), which it does not currently do. Finally, some of Rehype’s methods provide an
informative basis, though likely not an implementation basis, for similar methods applied
to other concurrency models. For example, task groups are a key aspect of Rehype that
ensure suggested changes are statically viable. The core ideas behind task groups, such
as creating sets of tasks based on the similarity of tasks’ dynamic contexts, could be
repurposed to other concurrency models, but are unlikely to be directly applicable beyond
task-based concurrency models.

Extending Rehype’s concurrency model support is an interesting opportunity for future
work. Such research could include supporting individual models (e.g. synchronisation
by communication, such as Go’s channel approach), support for integrating multiple
concurrency models within one target program (e.g. a program that uses both task-based
concurrency and synchronisation by communication concurrency), and improving the
methods for estimating programs using specific models (e.g. improving the task-scheduling
simulation for classical thread-pools or Fork-Join frameworks).

Scopda ’s key contributions centre on the dynamic to static translation, rather than on
a specific concurrency model, and so is mostly independent of a target concurrency model.
The primary work required to support a new concurrency model would be in implementing
new CTFs for each optimisation identified for the concurrency model. Though no examples
are immediately obvious, it is possible that some broader extension of Scopda might be
necessary to implement CTFs for a new concurrency model.

Note that language variations of the task-based concurrency model, such as those
utilising inbuilt async/await keywords, would require support via a Scopda language
interface, as discussed in Section 7.1. However, this would be a language support extension,
not a fundamental change in the concurrency model.

7.3 Simplicity and optimality; cost and benefit

Concurrency is hard, it always has been. New concurrent primitives, such as combinators,
are ostensibly developed to make writing “good” concurrency easier. Practically this
is not always achieved. Simply put, base primitives such as threads are conceptually
straightforward but behaviourally sub-optimal, while higher-level constructs such as
combinators are conceptually more difficult but behaviourally better. There is a trade-off
between conceptual simplicity and behavioural outcome.

As many, if not most, industrial applications now use concurrency in some form, most
developers will interact with concurrency. It is unrealistic to expect these developers to
spend significant effort and time considering conceptually difficult concurrent constructs
and approaches when “a simple thread will work well enough” (which may be true during
initial development and only later become false).

149

Source-level fixes to these concurrency problems can be straightforward, but the cost,
in developer time, of refactoring can seem unnecessary when the benefit is unclear. Hence
the importance of accurately estimating the performance effects of changes to validate the
cost-benefit trade-off of refactoring and generating automatic source-code patches where
possible.

7.4 Estimation is good, so long as its accurate

A key approach I have developed, and advocated for, in this thesis is the use of estimation
to identify improvements. This contrasts with merely identifying patterns that are
potentially inefficient. I argue that estimation is a significantly more powerful approach
(for performance analysis) as it can address patterns that are not always inefficient and
can do it without significantly greater cost. Whereas, pattern matching analysers must
either constrain themselves to patterns that are sure to be inefficient or perform some
secondary step to confirm inefficiency (such as a controlled re-execution of a program).

However, for estimation to be effective, it must be very accurate. Decreased accuracy
would likely have a quadratic2 effect on confidence in results and thus practical effectiveness
of the approach (without confidence, the estimations have no value).

Furthermore, estimation via dynamic-trace refactoring requires an integrity model –
a model that programs adhere to so that the integrity of traces are maintained when
being refactored (i.e. ensuring the refactoring of traces does not produce an impossible, or
invalid, trace). Without an integrity model, invalid traces could be generated which would,
in turn, invalidate the estimation. In DTRSO the integrity model is that the program
will adhere to the task-based concurrency model (described in Chapter 2). Estimation
methods that do not require such integrity models would be a significant research leap,
but I do not currently see how they would be possible (without compromising integrity or
accuracy).

7.5 Analysis at the developer’s abstraction

DTRSO aims to generate developer-friendly (even developer-imitating) patches that are
comprehensible and sensible to a developer. By operating at the developer’s level of
abstraction, at the source-code level, DTRSO can more naturally assist developers.

This approach is exhibited in each phase of DTRSO . Quilt traces function-level events,
as opposed to lower-level instruction-based tracing or higher-level program event tracing
(e.g. network-request events). Rehype performs trace refactorings that approximate simple
changes to function invocations, as opposed to localised instruction re-orderings or large-
scale architectural changes. Finally, a key aspect of Scopda’s IR (the APG) is that it
maintains the source-code information so that it can generate patches that integrate into
the existing source-code.

I argue that performing analysis at the developer’s level of abstraction opens oppor-
tunities for various source-level optimisations, which can have greater individual effects
than lower-level optimisations. In effect, there is significant power in being able to edit
source-code, but this is only possible when operating at the developer’s level of abstraction
so that the developer will adopt suggested changes.

2This is an informed guess; I do not have a formal model for confidence.

150

7.6 Reversing the pipeline

There is significant potential in reversing the pipeline described in this thesis to instead
estimate the effect of a source-code change created by a developer. This pipeline reversal
could leverage many of the same methods (and implementations) as DTRSO , with
appropriate adjustments as necessary.

Some code changes would be relatively trivial to estimate. For example, a change that
removed a function call would likely be a relatively straightforward reversal of the pipeline.
First, given a change and a trace, Scopda must identify which invocations of the function
in the trace are affected by the change. Superficially this may appear easier than it is. In
fact, it shares many of the challenges of the dynamic-to-static mapping Scopda currently
performs. In particular, it must determine the appropriate invocations based on the static
context of the call. Since the traces do not record specific call-sites, the same challenge
as dynamic-to-static mapping, matching dynamic traces to static locations, exists. Once
Scopda has determined the relevant invocations, Rehype can use its existing estimation
method to determine the performance benefit of the change.

However, other changes would be significantly more challenging. Namely, inserting a
new call to a function with non-trivial logic would require approximating what a trace
of that function would contain (including event timings, concurrency operations, and so
forth). This poses a interesting research challenge, likely requiring the use of statistical
or machine learning methods to “sample” possible traces from the abstract space of all
possible traces of the function. However, achieving high estimation accuracy would be
significantly more difficult due to this extra layer of uncertainty and, as suggested above,
decreased accuracy would likely have a significant effect on estimation confidence (and
thus usage of any such tool).

7.7 The challenges of the real world

Performance analysis (of which dynamic analysis for concurrency optimisation is a sub-
field) is an interesting field that can improve software in a practical way. However, to have
an impact, research performed in academia must be adopted by industry. Unfortunately,
it appears that industry adoption is slower than the academic space might hope for. I
believe this is because performance, in the general sense, is rarely a major pain point
for many software companies. Regularly companies will prioritise new software features
over improving the performance of existing features. This is further compounded by the
fact that, in general, the software industry has been able to rely upon Moore’s Law to
compensate for poor programming practices.

Moreover, each piece of real-world software will evolve to contain its own varieties
of programming edge cases as it tries to solve its own particular problem. It is thus
worthwhile emphasising the importance of applicability to real-world software for academic
research into program analysis, as contrived or benchmark examples may not include
representative edge cases.

Finally, I want to reiterate my advocacy for source-level optimisations that use a
human-in-the-middle (or developer-as-oracle) approach. To fully realise the benefit of
program analysis research, it must be adopted by industry; one way to short-cut the
challenges inherent in adoption is to create program analysis tools that empower developers
to improve their software faster and more easily, rather than trying to provide guarantees

151

for all edge cases within a single program analyser. Source-level optimisations not only
allow for more powerful high-level improvements, but also allow developers to directly
work with program analysers. There are, of course, many other reasons program-analysis
research achieves less-than-ideal adoption, but perhaps, in some cases, this approach could
help.

152

Chapter 8

Conclusion

This thesis has presented the theoretical development of a practical technique, DTRSO
(Dynamic-Trace-Refactoring for Static Optimisation), for automatically identifying perfor-
mance improvements for concurrent programs. A key insight is that reducing concurrency
can improve performance in certain, common, instances. Empirical results show that
by removing specific instances of concurrency a large real-world, industrial API server’s
throughput can be more than doubled. Though a limited example, the existence of the
inefficiencies in the real-world and the significant improvements achievable suggest that
this is a real issue in modern concurrent software.

There are three key steps in DTRSO : tracing, analysis, and patch generation.
The key method of the tracer, Quilt , is a lockless buffer-exchange algorithm that enables

tracing without blocking I/O calls on the target-program’s worker threads. Maintaining low
overhead, and minimal overhead on worker threads, is essential as tracers naturally have an
observer effect – tracing a program affects its behaviour. This observer effect is non-trivial
and, in many ways, non-obvious. Accounting for the effect of uniformity, a relatively
opaque aspect of tracing overhead, on concurrent program behaviour, is important when
developing tracers and analysers, and when considering the results from analysis.

Rehype, the concurrency-performance analysis component, refactors execution traces
to approximate a trace the program would generate given some change. With this method,
Rehype can use a single trace to accurately estimate the performance effect of multiple
potential changes without re-executing the program.

The primary challenge for generating source-code patches is bridging the dynamic-
to-static gap – translating improvement specifications which are based on dynamic data
(execution traces) into source-code patches that rely on accurately calculated static (code)
locations. To address this challenge, Scopda uses a new static code representation, an
Abstract Program Graph (APG), which unifies the program’s code structure, control-flow,
local data-flow, and call-graph in a single graph. This unified approach is key to Scopda’s
analysis and transformation approach.

I developed DTRSO to explore the field of Dynamic Analysis for Concurrency Opti-
misation and aspects of the broader topic of Dynamic Analysis for Static Optimisation –
namely, generating static code patches from dynamic analysis. This exploration has
demonstrated the potential that dynamic analysis for concurrency optimisation has for
improving software and has also begun important work in tackling the key challenges
of dynamic analysis for static optimisation. I maintain that concurrency optimisation
represents an understudied portion of the broader field and that further research into both
fields could open significant new avenues for improving software.

153

Findings

The thesis has achieved the following headline findings:

• It is possible to accurately estimate the effect of a source-level change to concurrency
using a single execution trace.

• Generating source-code patches from dynamic analysis and dynamic data-based
specifications is possible, but there are a number of practical challenges and theoretical
limitations (such as disambiguation of call paths). While those discussed in this
thesis are specific to DTRSO , I believe the theoretical considerations are likely
similar for other possible approaches to the dynamic-to-static gap.

• Tracing has a natural observer effect that can significantly affect program behaviour.
A key aspect of this effect derives from the uniformity of tracing overhead, something
that has not, to the best of my knowledge, been discussed in depth before.

As well as these findings, numerous other theoretical and practical contributions to this
area have been made and are discussed in their relevant chapters.

8.1 An exciting world

There are very exciting opportunities to leverage the power of dynamic analysis to improve
modern software. To leave you with one example (also discussed in Chapter 7), it is
theoretically possible to accurately estimate the performance effect of a source-level change
made by a developer. One approach to this would involve, in essence, rearranging the
method I have presented in this thesis. Given a set of representative trace-logs and a
developer-written source-code change, translate the source-code change into a “dynamic
change” to be made to each trace – effectively reversing Scopda – and then use Rehype to
apply the “dynamic change” to the trace-logs and, thereby, estimate the effect of each
change. This would make it possible to estimate the effects of a developer-written change
under a variety of environmental conditions (e.g. “server under no load”, “server under
normal load”, and “server under heavy load”), as each trace-log could represent a different
set of environmental conditions. Of course, this is non-trivial and there are numerous
challenges involved in such a project, but I believe they are solvable.

Excitingly, this would enable developers to see the performance effects of their code in
real-time as they write it.

154

Bibliography

[1] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Compilers:
principles, techniques, & tools. Pearson Education India, 2007.

[2] Marat Akhin and Mikhail et al. Belyaev. Kotlin language specification: Kotlin/Core.
2020.

[3] Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–19, July 1970. ISSN
0362-1340. doi: 10.1145/390013.808479. URL https://doi.org/10.1145/390013.

808479.

[4] Cyrille Artho. Combining static and dynamic analysis to find multi-threading faults
beyond data races. PhD thesis, ETH Zurich, Konstanz, 2005. Diss., Technische
Wissenschaften, Eidgenössische Technische Hochschule ETH Zürich, Nr. 16020, 2005.

[5] John Aycock. A brief history of just-in-time. ACM Comput. Surv., 35(2):97–113,
jun 2003. ISSN 0360-0300. doi: 10.1145/857076.857077. URL https://doi.org/

10.1145/857076.857077.

[6] Moshe Bach, Mark Charney, Robert Cohn, Elena Demikhovsky, Tevi Devor, Kim
Hazelwood, Aamer Jaleel, Chi-Keung Luk, Gail Lyons, Harish Patil, and Ady
Tal. Analyzing parallel programs with pin. Computer, 43(3):34–41, 2010. doi:
10.1109/MC.2010.60.

[7] Abdelhak Bentaleb, Bayan Taani, Ali C. Begen, Christian Timmerer, and Roger
Zimmermann. A survey on bitrate adaptation schemes for streaming media over
http. IEEE Communications Surveys & Tutorials, 21(1):562–585, 2019. doi: 10.
1109/COMST.2018.2862938.

[8] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. SIGPLAN Not., 41(10):169–190, October 2006. ISSN 0362-
1340. doi: 10.1145/1167515.1167488. URL https://doi.org/10.1145/1167515.

1167488.

[9] Luc Bläser. Practical detection of concurrency issues at coding time. In the 27th
ACM SIGSOFT International Symposium, pages 221–231, New York, New York,
USA, 2018. ACM Press.

155

https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/857076.857077
https://doi.org/10.1145/857076.857077
https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1145/1167515.1167488

[10] M. Braun, S. Buchwald, S. Hack, Roland Leißa, Christoph Mallon, and Andreas
Zwinkau. Simple and efficient construction of static single assignment form. In CC,
2013.

[11] L. C. Briand, Y. Labiche, and J. Leduc. Tracing distributed systems executions
using AspectJ. In 21st IEEE International Conference on Software Maintenance
(ICSM’05), pages 81–90, 2005.

[12] C++ coroutines. C++20 Coroutines. https://en.cppreference.com/w/cpp/

language/coroutines, 2022.

[13] Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, and Bin Liang.
Detecting concurrency memory corruption vulnerabilities. In the 2019 27th ACM
Joint Meeting, pages 706–717, New York, New York, USA, 2019. ACM Press.

[14] Scott Chacon and Ben Straub. Pro git. Springer Nature, 2014.

[15] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An
object-oriented approach to non-uniform cluster computing. SIGPLAN Not., 40
(10):519–538, oct 2005. ISSN 0362-1340. doi: 10.1145/1103845.1094852. URL
https://doi.org/10.1145/1103845.1094852.

[16] Qiu-Liang Chen, Jia-Ju Bai, Zu-Ming Jiang, Julia Lawall, and Shi-Min Hu. Detecting
Data Races Caused by Inconsistent Lock Protection in Device Drivers. 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 366–376, March 2019.

[17] Ankit Choudhary, Shan Lu, and Michael Pradel. Efficient Detection of Thread
Safety Violations via Coverage-Guided Generation of Concurrent Tests. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE), pages
266–277. IEEE, April 2017.

[18] Fred Chow. Intermediate representation. Communications of the ACM, 56(12):
57–62, 2013.

[19] Maria Christakis and Christian Bird. What developers want and need from program
analysis: An empirical study. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE 2016, page 332–343, New York,
NY, USA, 2016. Association for Computing Machinery. ISBN 9781450338455. doi:
10.1145/2970276.2970347. URL https://doi.org/10.1145/2970276.2970347.

[20] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. The MPI message passing
interface standard. In Programming environments for massively parallel distributed
systems, pages 213–218. Springer, 1994.

[21] Clear Linux. Clear Linux* Project. https://clearlinux.org/, 2021. Accessed
May 2021.

[22] Keith Cooper and Linda Torczon. Engineering a Compiler: International Student
Edition. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003. ISBN
9780080472676.

156

https://en.cppreference.com/w/cpp/language/coroutines
https://en.cppreference.com/w/cpp/language/coroutines
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1145/2970276.2970347
https://clearlinux.org/

[23] Dongdong Deng, Wei Zhang, and Shan Lu. Efficient concurrency-bug detection
across inputs. In the 2013 ACM SIGPLAN international conference, pages 785–802,
New York, New York, USA, 2013. ACM Press.

[24] Roman Elizarov, Mikhail Belyaev, Marat Akhin, and Ilmir Usmanov. Kotlin
Coroutines: Design and Implementation, page 68–84. Association for Com-
puting Machinery, New York, NY, USA, 2021. ISBN 9781450391108. URL
https://doi.org/10.1145/3486607.3486751.

[25] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated
performance comparison of virtual machines and Linux containers. In 2015 IEEE In-
ternational Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 171–172, 2015. doi: 10.1109/ISPASS.2015.7095802.

[26] Matteo Frigo, Harald Prokop, Matteo Frigo, C Leiserson, Harald Prokop, Sridhar
Ramachandran, Don Dailey, C Leiserson, I Lyubashevskiy, N Kushman, et al. The
cilk project. Algorithms, page 8, 1998.

[27] Jason Gait. A probe effect in concurrent programs. Software: Practice and Experience,
16(3):225–233, 1986.

[28] golang. Go Language. https://golang.org/, 2021. Accessed September 2021.

[29] Brendan Gregg. BPF Performance Tools. Addison-Wesley Professional, 2019.

[30] Brendan Gregg. Flame Graphs. http://www.brendangregg.com/flamegraphs.

html, 2020.

[31] Brendan Gregg and Jim Mauro. DTrace: Dynamic Tracing in Oracle Solaris, Mac
OS X and FreeBSD. Prentice Hall Press, USA, 1st edition, 2011. ISBN 0132091518.

[32] Groovy. Apache Groovy Language. https://groovy-lang.org/, 2021. Accessed
September 2021.

[33] Dirk Grunwald, Benjamin Zorn, and Robert Henderson. Improving the cache locality
of memory allocation. In Proceedings of the ACM SIGPLAN 1993 Conference on
Programming Language Design and Implementation, PLDI ’93, page 177–186, New
York, NY, USA, 1993. Association for Computing Machinery. ISBN 0897915984.
doi: 10.1145/155090.155107. URL https://doi.org/10.1145/155090.155107.

[34] Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. The art of
multiprocessor programming. Newnes, 2020.

[35] Carl Hewitt, Peter Bishop, and Richard Steiger. Session 8 formalisms for artificial
intelligence a universal modular actor formalism for artificial intelligence. In Advance
Papers of the Conference, volume 3, page 235. Stanford Research Institute Menlo
Park, CA, 1973.

[36] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):
666–677, August 1978. ISSN 0001-0782. doi: 10.1145/359576.359585. URL https:

//doi.org/10.1145/359576.359585.

157

https://doi.org/10.1145/3486607.3486751
https://golang.org/
http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/flamegraphs.html
https://groovy-lang.org/
https://doi.org/10.1145/155090.155107
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585

[37] Peter Hofer and Hanspeter Mössenböck. Efficient and accurate stack trace sampling in
the java hotspot virtual machine. In Proceedings of the 5th ACM/SPEC International
Conference on Performance Engineering, ICPE ’14, page 277–280, New York, NY,
USA, 2014. Association for Computing Machinery. ISBN 9781450327336. doi:
10.1145/2568088.2576759. URL https://doi.org/10.1145/2568088.2576759.

[38] Peter Hofer, David Gnedt, and Hanspeter Mössenböck. Lightweight java profiling
with partial safepoints and incremental stack tracing. In Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering, ICPE ’15, page
75–86, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450332484. doi: 10.1145/2668930.2688038. URL https://doi.org/10.1145/

2668930.2688038.

[39] Peter Hofer, David Gnedt, Andreas Schörgenhumer, and Hanspeter Mössenböck.
Efficient tracing and versatile analysis of lock contention in java applications on
the virtual machine level. In Proceedings of the 7th ACM/SPEC on International
Conference on Performance Engineering, ICPE ’16, page 263–274, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN 9781450340809. doi:
10.1145/2851553.2851559. URL https://doi.org/10.1145/2851553.2851559.

[40] Intel PIN. Pin - A Dynamic Binary Instrumentation Tool.
https://software.intel.com/content/www/us/en/develop/articles/

pin-a-dynamic-binary-instrumentation-tool.html, 2021. Accessed june
2021.

[41] intellij. JetBrains IntelliJ IDEA. https://www.jetbrains.com/idea/, 2022. Ac-
cessed July 2022.

[42] Java Documentation. Java 8 java.util.concurrent documentation.
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/

package-summary.html, 2021. Accessed june 2021.

[43] Java Documentation CallerRuns. Java 8 documentation - ThreadPoolEx-
ecutor.CallerRunsPolicy. https://docs.oracle.com/javase/8/docs/api/java/

util/concurrent/ThreadPoolExecutor.CallerRunsPolicy.html, 2021. Ac-
cessed june 2021.

[44] Java Flight Recorder. Java Flight Recorder. https://docs.oracle.com/

javacomponents/jmc-5-4/jfr-runtime-guide/about.htm#JFRUH170, 2021.

[45] Java VisualVM. Java VisualVM. https://docs.oracle.com/javase/8/docs/

technotes/guides/visualvm/profiler.html, 2020.

[46] javadev2019. JetBrains Develop Ecosystem Survey 2019, Java results. https:

//www.jetbrains.com/lp/devecosystem-2019/java/, 2019. Accessed July 2022.

[47] javadev2021. JetBrains Develop Ecosystem Survey 2021, Java results. https:

//www.jetbrains.com/lp/devecosystem-2021/java/, 2021. Accessed July 2022.

[48] Stephen C Johnson. Lint, a C program checker. Bell Telephone Laboratories Murray
Hill, 1977.

158

https://doi.org/10.1145/2568088.2576759
https://doi.org/10.1145/2668930.2688038
https://doi.org/10.1145/2668930.2688038
https://doi.org/10.1145/2851553.2851559
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://www.jetbrains.com/idea/
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.CallerRunsPolicy.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.CallerRunsPolicy.html
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/about.htm#JFRUH170
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/about.htm#JFRUH170
https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/profiler.html
https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/profiler.html
https://www.jetbrains.com/lp/devecosystem-2019/java/
https://www.jetbrains.com/lp/devecosystem-2019/java/
https://www.jetbrains.com/lp/devecosystem-2021/java/
https://www.jetbrains.com/lp/devecosystem-2021/java/

[49] Devin Kester, Martin Mwebesa, and Jeremy S Bradbury. How Good is Static
Analysis at Finding Concurrency Bugs? In 2010 10th IEEE Working Conference on
Source Code Analysis and Manipulation (SCAM), pages 115–124. IEEE, June 2010.

[50] KProbes. Kprobe-based Event Tracing. https://www.kernel.org/doc/html/

latest/trace/kprobetrace.html, 2021. Accessed june 2021.

[51] A. Krall. Efficient javavm just-in-time compilation. In Proceedings. 1998 International
Conference on Parallel Architectures and Compilation Techniques (Cat. No.98EX192),
pages 205–212, 1998. doi: 10.1109/PACT.1998.727250.

[52] Anthony LaMarca and Richard E Ladner. The influence of caches on the perfor-
mance of sorting. Journal of Algorithms, 31(1):66–104, 1999. ISSN 0196-6774. doi:
https://doi.org/10.1006/jagm.1998.0985. URL https://www.sciencedirect.com/

science/article/pii/S0196677498909853.

[53] Leslie Lamport. Time, clocks and the ordering of events in a distributed
system. Communications of the ACM 21, 7 (July 1978), 558-565. Reprinted
in several collections, including Distributed Computing: Concepts and Im-
plementations, McEntire et al., ed. IEEE Press, 1984., pages 558–565,
July 1978. URL https://www.microsoft.com/en-us/research/publication/

time-clocks-ordering-events-distributed-system/. 2000 PODC Influential
Paper Award (later renamed the Edsger W. Dijkstra Prize in Distributed Computing).
Also awarded an ACM SIGOPS Hall of Fame Award in 2007.

[54] C. Lattner and V. Adve. Llvm: a compilation framework for lifelong program analysis
transformation. In International Symposium on Code Generation and Optimization,
2004. CGO 2004., pages 75–86, 2004. doi: 10.1109/CGO.2004.1281665.

[55] Doug Lea. A java fork/join framework. In Proceedings of the ACM 2000 Conference
on Java Grande, JAVA ’00, page 36–43, New York, NY, USA, 2000. Association
for Computing Machinery. ISBN 1581132883. doi: 10.1145/337449.337465. URL
https://doi.org/10.1145/337449.337465.

[56] Philipp Lengauer, Verena Bitto, Stefan Fitzek, Markus Weninger, and Hanspeter
Mössenböck. Efficient memory traces with full pointer information. In Proceedings
of the 13th International Conference on Principles and Practices of Programming on
the Java Platform: Virtual Machines, Languages, and Tools, PPPJ ’16, New York,
NY, USA, 2016. Association for Computing Machinery. ISBN 9781450341356. doi:
10.1145/2972206.2972220. URL https://doi.org/10.1145/2972206.2972220.

[57] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan Padhye.
Efficient scalable thread-safety-violation detection. In the 27th ACM Symposium,
pages 162–180, New York, New York, USA, 2019. ACM Press.

[58] Yanze Li, Bozhen Liu, and Jeff Huang. SWORD: A Scalable Whole Program Race
Detector for Java. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion), pages 75–78. IEEE, May
2019.

159

https://www.kernel.org/doc/html/latest/trace/kprobetrace.html
https://www.kernel.org/doc/html/latest/trace/kprobetrace.html
https://www.sciencedirect.com/science/article/pii/S0196677498909853
https://www.sciencedirect.com/science/article/pii/S0196677498909853
https://www.microsoft.com/en-us/research/publication/time-clocks-ordering-events-distributed-system/
https://www.microsoft.com/en-us/research/publication/time-clocks-ordering-events-distributed-system/
https://doi.org/10.1145/337449.337465
https://doi.org/10.1145/2972206.2972220

[59] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual
Machine Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition,
2014. ISBN 013390590X.

[60] Linux perf. perf: Linux profiling with performance counters. https://perf.wiki.
kernel.org/index.php/Main_Page, 2021.

[61] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads: Efficient
deterministic multithreading. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, page 327–336, New York, NY, USA,
2011. Association for Computing Machinery. ISBN 9781450309776. doi: 10.1145/
2043556.2043587. URL https://doi.org/10.1145/2043556.2043587.

[62] lldb. The LLDB Debugger. https://lldb.llvm.org/, 2022. Accessed July 2022.

[63] llvmpgo. LLVM-Clang User Manual Profile-Guided Optimization. https://clang.
llvm.org/docs/UsersManual.html#profile-guided-optimization, 2022. Ac-
cessed July 2022.

[64] Derrick Lockwood, Benjamin Holland, and Suresh Kothari. Mockingbird: a frame-
work for enabling targeted dynamic analysis of java programs. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), pages 39–42. IEEE, 2019.

[65] Richard P. Martin, Amin M. Vahdat, David E. Culler, and Thomas E. Anderson.
Effects of communication latency, overhead, and bandwidth in a cluster architecture.
SIGARCH Comput. Archit. News, 25(2):85–97, May 1997. ISSN 0163-5964. doi:
10.1145/384286.264146. URL https://doi.org/10.1145/384286.264146.

[66] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David Mazieres, and Mendel
Rosenblum. Towards practical default-on multi-core record/replay. SIGPLAN Not.,
52(4):693–708, April 2017. ISSN 0362-1340. doi: 10.1145/3093336.3037751. URL
https://doi.org/10.1145/3093336.3037751.

[67] Chris McDonald and Matthew Heinsen Egan. Communicating using program traces.
In SPLICE Spring 2019 Workshop, CS Education Infrastructure for All II: En-abling
the Change, 2019.

[68] Dirk Merkel. Docker: lightweight linux containers for consistent development and
deployment. Linux journal, 2014(239):2, 2014.

[69] Michal Zalewski. American Fuzzy Lop (AFL). https://lcamtuf.coredump.cx/

afl/, 2022. Accessed July 2022.

[70] Jerome Miecznikowski and Laurie Hendren. Decompiling java bytecode: Problems,
traps and pitfalls. In International Conference on Compiler Construction, pages
111–127. Springer, 2002.

[71] Barton P Miller, David Koski, Cjin Pheow Lee, Vivekandanda Maganty, Ravi
Murthy, Ajitkumar Natarajan, and Jeff Steidl. Fuzz revisited: A re-examination
of the reliability of unix utilities and services. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 1995.

160

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1145/2043556.2043587
https://lldb.llvm.org/
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://doi.org/10.1145/384286.264146
https://doi.org/10.1145/3093336.3037751
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

[72] Todd Mytkowicz, Peter F Sweeney, Matthias Hauswirth, and Amer Diwan. Observer
effect and measurement bias in performance analysis. Computer Science Technical
Reports CU-CS-1042-08, University of Colorado, Boulder, 2008.

[73] Nicholas Nethercote and Alan Mycroft. Redux: A Dynamic Dataflow Tracer.
Electronic Notes in Theoretical Computer Science, 89(2):149–170, October 2003.

[74] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. ACM SIGPLAN Notices, 42(6):89–100, June 2007.

[75] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program
analysis. In Springer Berlin Heidelberg, 1999.

[76] Andy Nisbet, Nuno Miguel Nobre, Graham Riley, and Mikel Luján. Profiling and
tracing support for java applications. In Proceedings of the 2019 ACM/SPEC Interna-
tional Conference on Performance Engineering, ICPE ’19, page 119–126, New York,
NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362399. doi:
10.1145/3297663.3309677. URL https://doi.org/10.1145/3297663.3309677.

[77] A Nistor, Qingzhou Luo, M Pradel, T R Gross, and D Marinov. Ballerina: Automatic
generation and clustering of efficient random unit tests for multithreaded code. In
Proceedings of the 38th International Conference on software engineering, pages
727–737. IEEE, 2012.

[78] S. Oaks. Java Performance: In-Depth Advice for Tuning and Programming Java
8, 11, and Beyond. O’Reilly Media, 2020. ISBN 9781492056089. URL https:

//books.google.co.uk/books?id=Q3_QDwAAQBAJ.

[79] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,
Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias
Zenger. An overview of the scala programming language. 2004.

[80] Indigo Orton and Alan Mycroft. Tracing and its observer effect on concurrency.
In Proceedings of the 18th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes, MPLR 2021, page 88–96, New York, NY,
USA, 2021. Association for Computing Machinery. ISBN 9781450386753. doi:
10.1145/3475738.3480940. URL https://doi.org/10.1145/3475738.3480940.

[81] Indigo Orton and Alan Mycroft. Refactoring traces to identify concurrency improve-
ments. In Proceedings of the 23rd ACM International Workshop on Formal Techniques
for Java-like Programs, FTfJP 2021, page 16–23, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450385435. doi: 10.1145/3464971.3468420.
URL https://doi.org/10.1145/3464971.3468420.

[82] Indigo Orton and Alan Mycroft. Source code patches from dynamic analysis. In
Proceedings of the 23rd ACM International Workshop on Formal Techniques for
Java-like Programs, FTfJP 2021, page 1–8, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450385435. doi: 10.1145/3464971.3468416.
URL https://doi.org/10.1145/3464971.3468416.

161

https://doi.org/10.1145/3297663.3309677
https://books.google.co.uk/books?id=Q3_QDwAAQBAJ
https://books.google.co.uk/books?id=Q3_QDwAAQBAJ
https://doi.org/10.1145/3475738.3480940
https://doi.org/10.1145/3464971.3468420
https://doi.org/10.1145/3464971.3468416

[83] Dileep Kumar Pattipati, Rupesh Nasre, and Sreenivasa Kumar Puligundla. Opal:
An extensible framework for ontology-based program analysis. Software: Practice
and Experience, 2020.

[84] Mathias Payer, Enrico Kravina, and Thomas R. Gross. Lightweight memory trac-
ing. In 2013 USENIX Annual Technical Conference (USENIX ATC 13), pages
115–126, San Jose, CA, jun 2013. USENIX Association. ISBN 978-1-931971-
01-0. URL https://www.usenix.org/conference/atc13/technical-sessions/

presentation/payer.

[85] PCGaming. PCGaming Wiki – Fallout 3 multicore crash and fix. https:

//www.pcgamingwiki.com/wiki/Fallout_3#Game_crashes_randomly, 2008. Ac-
cessed July 2022.

[86] PCGamingF3. PCGaming Wiki – Fallout 3. https://www.pcgamingwiki.com/

wiki/Fallout_3, 2008. Accessed July 2022.

[87] Karl Pettis and Robert C. Hansen. Profile guided code positioning. In Proceedings
of the ACM SIGPLAN 1990 Conference on Programming Language Design and
Implementation, PLDI ’90, page 16–27, New York, NY, USA, 1990. Association
for Computing Machinery. ISBN 0897913647. doi: 10.1145/93542.93550. URL
https://doi.org/10.1145/93542.93550.

[88] Benjamin C Pierce. Types and programming languages. MIT press, 2002.

[89] Ernest Pobee and W K Chan. AggrePlay: efficient record and replay of multi-
threaded programs. In the 2019 27th ACM Joint Meeting, pages 567–577, New York,
New York, USA, 2019. ACM Press.

[90] Ernest Pobee, Xiupei Mei, and W K Chan. Efficient Transaction-Based Determinis-
tic Replay for Multi-threaded Programs. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 760–771. IEEE, 2019.

[91] Michael Pradel and Thomas R Gross. Fully automatic and precise detection of
thread safety violations. ACM SIGPLAN Notices, 47(6):521–530, 2012.

[92] Niels Provos and David Mazieres. A future-adaptable password scheme. In USENIX
Annual Technical Conference, FREENIX Track, volume 1999, pages 81–91, 1999.

[93] Christoph Rathfelder, Benjamin Klatt, Kai Sachs, and Samuel Kounev. Modeling
event-based communication in component-based software architectures for perfor-
mance predictions. Software & Systems Modeling, 13(4):1291–1317, 2014.

[94] James Reinders. Intel threading building blocks: outfitting C++ for multi-core
processor parallelism. ” O’Reilly Media, Inc.”, 2007.

[95] O. Rodriguez-Prieto, A. Mycroft, and F. Ortin. An efficient and scalable platform
for java source code analysis using overlaid graph representations. IEEE Access, 8:
72239–72260, 2020.

162

https://www.usenix.org/conference/atc13/technical-sessions/presentation/payer
https://www.usenix.org/conference/atc13/technical-sessions/presentation/payer
https://www.pcgamingwiki.com/wiki/Fallout_3#Game_crashes_randomly
https://www.pcgamingwiki.com/wiki/Fallout_3#Game_crashes_randomly
https://www.pcgamingwiki.com/wiki/Fallout_3
https://www.pcgamingwiki.com/wiki/Fallout_3
https://doi.org/10.1145/93542.93550

[96] Andrea Rosà, Eduardo Rosales, and Walter Binder. Analysis and optimization of
task granularity on the java virtual machine. ACM Trans. Program. Lang. Syst., 41
(3), jul 2019. ISSN 0164-0925. doi: 10.1145/3338497. URL https://doi.org/10.

1145/3338497.

[97] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and
redundant computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’88, page 12–27, New
York, NY, USA, 1988. Association for Computing Machinery. ISBN 0897912527.
doi: 10.1145/73560.73562. URL https://doi.org/10.1145/73560.73562.

[98] Ruby Tracer. Ruby/Tracer. https://github.com/ruby/tracer, 2021. Last ac-
cessed June 2021.

[99] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-
passing style. In LISP AND SYMBOLIC COMPUTATION, pages 288–298, 1993.

[100] Malavika Samak and Murali Krishna Ramanathan. Multithreaded test synthesis for
deadlock detection. ACM SIGPLAN Notices, 49(10):473–489, 2014.

[101] Malavika Samak and Murali Krishna Ramanathan. Synthesizing tests for detecting
atomicity violations. In Proceedings of the 2015 10th Joint Meeting on foundations
of software engineering, pages 131–142. ACM, 2015.

[102] Malavika Samak, Murali Krishna Ramanathan, and Suresh Jagannathan. Synthesiz-
ing racy tests. ACM SIGPLAN Notices, 50(6):175–185, 2015.

[103] Moses Schönfinkel. Über die bausteine der mathematischen logik. Mathematische
annalen, 92(3):305–316, 1924.

[104] Gregor Snelting and Frank Tip. Understanding class hierarchies using concept
analysis. ACM Transactions on Programming Languages and Systems (TOPLAS),
22(3):540–582, 2000.

[105] Sukhdeep Sodhi, Jaspal Subhlok, and Qiang Xu. Performance prediction with
skeletons. Cluster Computing, 11(2):151–165, 2008.

[106] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitaraman. Bola: Near-optimal
bitrate adaptation for online videos. IEEE/ACM Transactions on Networking, 28
(4):1698–1711, 2020. doi: 10.1109/TNET.2020.2996964.

[107] Lukas Stadler, Thomas Würthinger, and Christian Wimmer. Efficient coroutines
for the java platform. In Proceedings of the 8th International Conference on the
Principles and Practice of Programming in Java, PPPJ ’10, page 20–28, New York,
NY, USA, 2010. Association for Computing Machinery. ISBN 9781450302692. doi:
10.1145/1852761.1852765. URL https://doi.org/10.1145/1852761.1852765.

[108] James Stanier and Des Watson. Intermediate representations in imperative compilers:
A survey. ACM Comput. Surv., 45(3), July 2013. ISSN 0360-0300. doi: 10.1145/
2480741.2480743. URL https://doi.org/10.1145/2480741.2480743.

163

https://doi.org/10.1145/3338497
https://doi.org/10.1145/3338497
https://doi.org/10.1145/73560.73562
https://github.com/ruby/tracer
https://doi.org/10.1145/1852761.1852765
https://doi.org/10.1145/2480741.2480743

[109] Sebastian Steenbuck and Gordon Fraser. Generating Unit Tests for Concurrent
Classes. In 2013 IEEE Sixth International Conference on Software Testing, Verifica-
tion and Validation, pages 144–153. IEEE, 2013.

[110] J Subhlok and Qiang Xu. Automatic construction of coordinated performance
skeletons. In 2008 IEEE International Symposium on Parallel and Distributed
Processing, pages 1–5. IEEE, 2008.

[111] Herb Sutter. The free lunch is over a fundamental turn toward concurrency in
software. 2005.

[112] Alexander Tarvo and Steven Reiss. Automated analysis of multithreaded programs
for performance modeling. In Proceedings of the 29th ACM/IEEE international
conference on automated software engineering, pages 7–18. ACM, 2014.

[113] Valerio Terragni and Shing-Chi Cheung. Coverage-driven test code generation for
concurrent classes. In Proceedings of the 38th International Conference on software
engineering, pages 1121–1132. ACM, 2016.

[114] Thomas N. Theis and H.-S. Philip Wong. The end of moore’s law: A new beginning
for information technology. Computing in Science & Engineering, 19(2):41–50, 2017.
doi: 10.1109/MCSE.2017.29.

[115] Frank Tip. Infeasible paths in object-oriented programs. Science of Computer
Programming, 97:91–97, 2015.

[116] Peter Trapp. Performance Improvements Using Dynamic Performance Stubs. PhD
thesis, De Montfort University, 2011.

[117] Peter Trapp and Christian Facchi. How to Handle CPU Bound Systems: A Spezial-
ization of Dynamic Performance Stubs to CPU Stubs. undefined, 2008.

[118] Peter Trapp and Christian Facchi. Main Memory Stubs to Simulate Heap and Stack
Memory Behavior. In CMG, 2010.

[119] Peter Trapp, Markus Meyer, and Christian Facchi. Using CPU Stubs to Optimize
Parallel Processing Tasks: An Application of Dynamic Performance Stubs. In 2010
Fifth International Conference on Software Engineering Advances (ICSEA), pages
471–476. IEEE, 2010.

[120] Peter Trapp, Markus Meyer, Christian Facchi, Helge Janicke, and Francois Siewe.
Building CPU stubs to optimize CPU bound systems: An application of dynamic
performance stubs. International Journal on Advances in Software, 2011.

[121] R G Urma, M Fusco, and A Mycroft. Modern Java in Action: Lambdas, streams,
functional and reactive programming, 2018.

[122] Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

164

[123] Andreas Wilhelm, Bharatkumar Sharmay, Ranajoy Malakary, Tobias Schule, and
Michael Gerndt. Symbolic analysis of assembly traces: Lessons learned and per-
spectives. In 2015 IEEE 6th International Workshop on Program Comprehension
through Dynamic Analysis (PCODA), pages 7–12. IEEE, February 2015.

[124] Pawe l T Wojciechowski. Concurrency Combinators for Declarative Synchronization.
In Programming Languages and Systems, pages 163–178. Springer, Berlin, Heidelberg,
Berlin, Heidelberg, November 2004.

[125] Xing Wu. Scalable Communication Tracing for Performance Analysis of Parallel
Applications. PhD thesis, ProQuest Dissertations Publishing, North Carolina State
University, 2013.

[126] L. Zhang, D. R. Bild, R. P. Dick, Z. M. Mao, and P. Dinda. Panappticon: Event-
based tracing to measure mobile application and platform performance. In 2013
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 1–10, 2013.

[127] Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guoliang Jin, Shan
Lu, and Thomas Reps. Conseq: Detecting concurrency bugs through sequential errors.
SIGARCH Comput. Archit. News, 39(1):251–264, March 2011. ISSN 0163-5964. doi:
10.1145/1961295.1950395. URL https://doi.org/10.1145/1961295.1950395.

[128] Yufeng Zhou, Xiaowan Dong, Alan L. Cox, and Sandhya Dwarkadas. On the impact
of instruction address translation overhead. In 2019 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 106–116, 2019.
doi: 10.1109/ISPASS.2019.00018.

165

https://doi.org/10.1145/1961295.1950395

166

	Introduction
	Thesis structure
	Thesis contextualisation
	Thesis statement
	Running scenario

	Findings
	Published material

	Technical background
	Program analysis
	Static analysis
	Dynamic analysis
	Combining static and dynamic analysis

	Dynamic analysis for static optimisation
	Tracing, sampling, and dynamic data
	Concurrency models
	Abstract concurrency model
	Java 8 implementation and background
	Related concurrency models

	Java and the JVM
	Experimental environment
	Acme – Real-world evaluation target

	Execution Tracer
	Introduction
	Target overhead

	Trace-log
	Sparse tracing
	Tracer
	Lockless buffer exchange protocol
	Algorithmic specification

	Evaluation
	Related work
	Conclusion

	Identifying Concurrency Improvements with Dynamic Analysis
	Introduction
	Method
	Dynamic context
	Task groups
	Optimisations
	Estimation
	Soundness
	Trace-DAG construction
	Optimisation graph-edits
	Trace-DAG to Trace-log derivation
	Sleep estimation

	Improvement performance effect
	Multiple improvements
	Measuring and Selecting Improvements

	Evaluation
	Micro-benchmarks
	Estimation Accuracy
	Estimation consistency
	Suggested Improvements

	Related work
	Performance prediction
	Concurrency analysis

	Discussion
	Sleep estimation and full trace-logs
	Human refactoring
	Is this an artefact of Java's thread implementation?
	Could better implementation/developer practice avoid these problems?

	Conclusion

	Source-Code Patches from Dynamic Analysis
	Introduction
	Running example
	Method
	Abstract Program Graph
	Dynamic-Static Mapper
	Change Transformation Functions
	Rendering Source Code

	Real-world complexity
	Application to real-world
	Related work
	Discussion
	Conclusion

	Tracing Overhead and Observer Effects
	Introduction
	Uniformity in Tracing
	Experimental Method
	Configurable overhead
	Concurrency-performance analyser

	Experimental results
	Configurations
	Metrics
	Experiments
	Limitations

	Related work
	Discussion
	Functional effects of overhead
	Practical effects of overhead on developers

	Conclusion

	Discussion
	Runtime and language generalisation
	Concurrency model generalisation
	Simplicity and optimality; cost and benefit
	Estimation is good, so long as its accurate
	Analysis at the developer's abstraction
	Reversing the pipeline
	The challenges of the real world

	Conclusion
	An exciting world

	Bibliography

