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Abstract

Data-driven Representations in Brain Science:
Modelling Approaches in Gene Expression and Neuroimaging Domains

Tiago Manuel Lourenço Azevedo

The assumptions made before modelling real-world data greatly affect performance
tasks in machine learning. It is then paramount to find a good data representation in order
to successfully develop machine learning models. When no considerable prior assumption
exists on the data, values are directly represented in a “flatten”, 1-Dimensional vector
space. However, it is possible to go one step further and perceive more complex relational
patterns: for example, a Graph-Dimensional space is used to illustrate the more structured
way to represent data and their relational inductive bias.

This thesis is focused on these two computational data dimensions across two scales
of human biology: the micro scale of molecular biology using gene expression data, and
the macro scale of neuroscience using neuroimaging data. Different modelling approaches
will be explored to understand how one can model and represent high-dimensional brain
data across the specific needs in the applied fields of these two scales. Specifically, for
Graph-Dimensional data two approaches will be developed. Firstly, specific and shared
genetic profiles that can be generalisable to external datasets will be extracted by applying
multilayer co-expression networks across 49 human tissues. Then, a novel deep learning
model will be introduced to leverage the entirety of resting-state fMRI data (i.e., spatial
and temporal dynamics), as opposed to previous approaches in the literature that simplify
and condense this type of data, while illustrating its robustness in an external multimodal
dataset and explainability capacities. For 1-Dimensional data, an interpretable model will
be developed for understanding cognitive factors using multimodal brain data.

Overall, the research adopted in this thesis explores explainable data-driven represen-
tations and modelling approaches across the multidisciplinary scientific fields of machine
learning, molecular biology, and neuroscience. It also helps highlight the contributions of
these fields when modelling the brain and its intra- and inter-dynamics across the human
body.
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Ramon Viñas for such enriching discussions in which I was so lucky to participate and
learn from. Also, thanks to Tim Rittman for the early support and for introducing me
to the fascinating field of connectomics. Of course, nothing would be possible without
the wider support of the department itself and my group, to whom a “thank you” is not
enough. I am truly grateful to have had the chance to work with all these people and
receive such excellent advice. I must also thank the students whose projects I was lucky to
supervise (some of which I briefly mention in this thesis): Alexandru-Catalin Filip, Kamilė
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Chapter 1

Introduction

1.1 Complexity in Data Representations

Science has been very successful in advancing our understanding of the world by modelling
it across many fields while focusing on distinct orders of magnitude. For instance, it
is possible to focus on the astronomical scale (i.e. around 108 and 1024 metres) all the
way down to the subatomic (i.e. below 10−18 metres). This fascinating range of scales
illustrates the inherent complexity involved when trying to model the world. Finding
a good data representation is then paramount to successfully modelling some aspect of
science using computational methods. In the field of machine learning this is commonly
called representation learning [31], and its correct use can greatly affect subsequent learning
tasks.

This thesis considers two main ways of looking at specific scales when modelling real-
world cases, which affects how information is acquired and represented. The most simple
way is when one directly perceives simple features or values; for example, in a human
scale this could be the height of a person, or even simple colour perceptions (e.g. this
table is brown, this mug is yellow). Technically, these values are represented in a “flatten”
representation or, in other words, in a 1-Dimensional vector space; we do not make any
prior assumptions on the data, and just directly perceive what is observed. However, we
can go one step further and perceive more complex patterns beyond these more simple,
direct ones. For instance, besides the brown table and the yellow mug, one can see some
relations : the mug is on the table, and the person is looking at the mug. A more typical
example of relations exists in a social network where, beyond the features we have for
each person, we also have friendship relations connecting them. I call this representation a
Graph-Dimensional space to illustrate the more structured way of representing data.

A Graph-Dimensional space is a consequence of considering a relational inductive
bias1, where we try to perceive not just the flatten, simple features but also their arbitrary
relations. Relational inductive biases are pervasive in the fields of molecular biology
and neuroscience. When observing a structural brain scan (see Section 2.3), one can
perceive flatten characteristics, such as the thickness of the prefrontal cortex in the right
hemisphere, or its grey volume in the left hemisphere. These two regions may be related
in different ways: do their neurons fire in a similar pattern across a period of time, or in
a non-synchronous way? In the same way, if one takes a blood sample and measures its
gene expression profile (see Section 2.2), we can see how specific genes are more or less

1An inductive bias is a set of prior assumptions when modelling/representing data.
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expressed (i.e. flatten representation); if this expression profile is shared with other parts
of the body, then the blood is related to those body parts.

George Box famously mentioned in some of his work that “all models are wrong, but
some are useful” [42]. It is under this vast and complex real world that this thesis fits:
in developing “wrong” models that can still be “useful” in some way. I will narrow my
attention to two captivating scales in human brain biology: firstly, the micro scale of
molecular biology using gene expression data, and then the macro scale of neuroscience
using neuroimaging data.

1.2 Research Questions

The previous section illustrated how representation learning can be influenced by using
flatten features (i.e. 1-Dimensional representation) or features with related entities in the
form of a graph (i.e. Graph-Dimensional representation). This thesis aims to explore
different modelling approaches in brain science using 1-D and Graph-D representations,
with a focus on the gene expression and neuroimaging domains. Given this context, there
are three main research questions I will seek to explore in this thesis (in parenthesis a
single name is added for textual identification):

1. (Representation) How can we model and represent very complex and high-dimensional
brain data according to specific needs in the applied fields of molecular biology and
neuroscience?

2. (Explanations) Is it possible to provide models to applied researchers that can
provide explanations on how decisions are made, even if learning complex non-linear
patterns?

3. (Graph) How can we integrate graph-based data in order to better understand
neurological and genetic mechanisms of the brain?

The historical and recent successes of machine learning in a multitude of fields leveraging
different data structures [86, 153] make this computational subfield the obvious candidate
to answer these research questions. It is impossible to develop a one-size-fits-all solution;
therefore, I will investigate the suitability of deep learning and more traditional machine
learning methods for each applied field in Research Question 1 (Representation). In the
case of molecular biology, gene expression data will be explored, while I will focus on
neuroimaging data in the case of neuroscience. Although in the neuroimaging domain
analyses are typically focused on the brain alone, in the gene expression domain we have
access to data of other parts of the human body in the same format as those of the brain.
Therefore, I will leverage this particular characteristic of gene expression data to allow the
development of brain models that take advantage of information in other body tissues.

Using machine learning approaches to explore the intricate non-linear patterns of
data could lead to well-known issues in the field. In the past, scientists developed
cutting-edge models beating benchmarks without much knowledge of what the model was
actually learning [53]. Although these black-box models can be very helpful [140], a lack
of understanding of what the model is learning can lead to adversarial attacks [8, 99]
or failure to generalise in out-of-distribution data [261]. These issues can have severe
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consequences for humans when they happen in safety-critical environments and justify the
considerable importance of Research Question 2 (Explanations) (see Section 2.1.7).

Finally, Research Question 3 (Graph) is focused on the specific case of using data
in Graph-D space, and what additional mechanistic advantages this space brings when
compared with using a flatten data representation (see Section 2.1.8).

All in all, given the inherent complexity of the real-world fields of molecular biology and
neuroscience, I aim to develop possible answers through different, though complementary,
perspectives. Specifically, I will explore data representations (i.e. in 1-D and Graph-D
spaces) and machine learning approaches (i.e. supervised and unsupervised).

1.3 Thesis Structure

I structure this thesis as indicated in Figure 1.1 in order to tackle the three research
questions posed in the previous section. This thesis is divided into two main parts. The
first, which explores Graph-Dimensional data representations, is comprised of two chapters.
The second explores 1-Dimensional data representations, and is comprised of one chapter.
The first two research questions will be explored in all these three main chapters, whereas
the third research question will be expressly explored only in the first two main chapters.

To help answer Research Question 1 (Representation) I will be dealing with distinct
challenges in each of the main three chapters. In Chapter 3 I will focus on using a multilayer
approach to model co-expression networks across 13 brain tissues and 36 other human
tissues, aiming to extract specific and shared genetic profiles that can be generalisable to
external datasets. Chapter 4 will introduce a novel deep learning model which can leverage
the entirety of resting-state fMRI data (see Section 2.3) as opposed to previous approaches
in the literature that simplify and condense this type of data. Finally, in Chapter 5 I
will focus on how to extract more interpretable information from brain data using feature
engineering to better understand cognitive factors.

I will seek to provide specific insights in all three chapters on what each model learns in
order to tackle Research Question 2 (Explanations) regarding explainable models. Indeed,
in Chapter 3 all the code and information on each community across human tissues is
provided so anyone can analyse how each genetic profile is shared across body tissues.
Chapter 4 will leverage the clusters formed across samples to understand which patterns
emerge from the model, and in Chapter 5 I will provide a ranked list of the most informative
brain features for each task at hand.

Finally, Research Question 3 (Graph) is explored only in chapters 3 and 4. In these
chapters, data are represented in a Graph-D space, that is, modelled as graphs. Indeed,
in the former Chapter 3, I adopt a multilayer approach to represent the relations of
co-expression networks (i.e. graphs), while in the latter Chapter 4 I propose a deep
learning architecture which is able to specifically leverage the graph structure of the data.

It is a particularly exciting time to research on these topics [65, 74, 81, 287], given
the high quality and well-curated datasets being released to use by researchers. During
this thesis development, I had access to almost a thousand neuroimaging scans explored
in chapters 4 and 5, and more than 35 thousand neuroimaging scans in Chapter 4 (see
Section 2.3.3). The last release of GTEx dataset was publicly released close to the end of
this thesis [4]; indeed, I was able to explore this last version in Chapter 3. Further details
of all the datasets used in this thesis, as illustrated in Figure 1.1, are provided in each
chapter.
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Gene Expression Data

Supervised Learning 
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Chapter 2 
Preliminary Background

Machine Learning NeuroimagingMolecular Biology

Figure 1.1: Thesis structure for the main chapters. Different perspectives will be explored
and integrated across distinct data representations (i.e. 1-D and Graph-D spaces), ma-
chine learning approaches (i.e. supervised and unsupervised), data fields (i.e. molecular
biology and neuroscience), and respective main datasets comprised of gene expression
and neuroimaging data. The research questions tackled in each chapter are shown, and
explained in Section 1.2. Each dataset is presented in detail in its respective chapter.
Chapter 2 provides the fundamental concepts from machine learning, molecular biology,
and neuroimaging explored in the main chapters.

Further to the three main chapters of this thesis, in Chapter 2 I will outline an overview
of the topics explored in this thesis. Specifically, I will summarise fundamental concepts on
machine learning training procedures, as well as background concepts in molecular biology
and neuroimaging. In Chapter 6 I will highlight the main limitations and contributions of
this thesis and offer my thoughts on interesting future directions of research stemming
from its limitations.
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Chapter 2

Preliminary Background

The research questions posed in Section 1.2 centre on machine learning applications in the
molecular biology and neuroimaging domains. Accordingly, in this chapter I will provide
an introduction to essential machine learning techniques used in this thesis. I will also
offer an overview of fundamental molecular biology and neuroimaging concepts used in
this thesis.

2.1 Machine Learning Fundamentals

Since the identification in October 2012 [213] of data scientist as the “sexiest [sic] job
of the 21st century”, the hype of related fields like machine learning still exists. Indeed,
machine learning has been, and still is, an active field of research with clear implications for
society. Many try to pinpoint reasons for such successful and still ongoing advancements:
artificial intelligence is outpacing Moore’s Law in a very significant way, increased amounts
of big data are being publicly released, storage is becoming cheaper every year, and
more sophisticated machine learning algorithms are still being proposed every month.
Machine learning is entering almost every field of research, making it the most popular
computational tool in applied artificial intelligence, despite known concerns on whether
some advances are real [144].

Programming languages are maturing and diversifying fast, allowing virtually everyone
in the world to develop and try their own ideas. For example, in a report by Stack Overflow
in 2017 [227], they claim that “Python has a solid claim to being the fastest-growing
major programming language”, with a clear growing pattern not only in wealthy but also
in lower-income countries. Python is a scripting language with a vast online supportive
community and comprehensive documentation for technical and non-technical people alike.
This makes it easier for people without a computer science background to use it in their
own non-computational subfield. The field of machine learning follows these trends: we
see a matured scientific python-based ecosystem with core numeric libraries (e.g. NumPy
and SciPy), advanced interactive environments (e.g. IPython and Jupyter notebooks),
and domain-specific packages (e.g. statsmodels for statistics, pandas for tabular data
structures, scikit-learn for machine learning, and TensorFlow/PyTorch for deep learning).
The main programming language used in all chapters of this thesis was therefore Python,
given all these advantages.

A single definition of machine learning is difficult, especially with such closely related
fields such as statistics and data science. As the name indicates, however, I consider
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machine learning to be a field that tries to make machines/computers to learn something.
Deep learning is thus a subfield of machine learning, and machine learning is a subfield of
artificial intelligence. All these subfields make effective use of statistical techniques. As a
distinctive feature, machine learning changes how one thinks about a problem: instead of
thinking logically as a software developer, the focus is shifted to think more like a natural
scientist. That is, one makes observations and experiments in which the algorithm is not
told exactly which rules to follow, but rather to find patterns from the examples given by
the scientist. This shift can reduce the programming time to develop a successful machine
learning model.

This section will describe fundamental concepts on how to train machine learning
models, thus providing the general framework adopted throughout this thesis.

2.1.1 Types of Learning

As previously mentioned, there is no single definition of machine learning, apart from its
consensual inclusion of some type of “learning” - as indicated in its name. Even though
authors may consider a variety of learning frameworks, in the machine learning field it
is generally accepted that when a fixed dataset is present, a machine learning model
can broadly be defined as supervised or unsupervised, depending on how the learning
occurs. Indeed, I employ unsupervised learning in Chapter 3, and supervised learning in
chapters 4 and 5. There are four important concepts necessary for understanding these
two learning types:

• Feature: a measurable characteristic of something, which can be generally repre-
sented as a vector x ∈ RN with N elements: x1, . . . xN .

• Label: another measurable characteristic, which instead is predicted by an algorithm,
usually represented as y.

• Sample/Example: a particular instance of data, which can be represented by a
tuple (x,y) for labelled data, and only x for unlabelled data.

• Dataset: a set of samples.

In unsupervised learning the dataset contains unlabelled features, and a model tries
to find patterns without any knowledge of the ground truth. In other words, it tries to
find the complex probability distribution that generated the features of the dataset. In
supervised learning, however, each sample contains a ground-truth label (or labels) which
will guide/supervise the learning algorithm; strictly speaking, the model tries to learn how
to predict a particular label y from features x by estimating the probability distribution
p(y|x).

It is worth noting that despite these precise definitions, the two concepts are sometimes
mixed, and we can define other types of learning. For example, it is possible to use an
unsupervised model in a pipeline together with a supervised model [184]; in this case,
there is not a single type of learning involved, but rather a combination of both types.
Another popular type of learning is reinforcement learning, in which the dataset is
dynamic and the machine learning algorithm needs to interact with an environment to
receive constant rewards from its actions.

Although supervised, unsupervised, and reinforcement learning are very famous types
of learning in the field, they still do not answer what learning actually is. To be more
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precise, Mitchell [192] tries to define learning by stating that “a computer program is
said to learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with experience
E”. Goodfellow et al. [124] further clarify: “learning is our means of attaining the ability
to perform the task. For example, if we want a robot to be able to walk, then walking is
the task. We could program the robot to learn to walk, or we could attempt to directly
write a program that specifies how to walk manually”.

From this very broad definition it is possible to see that supervised, unsupervised, and
reinforcement learning depends on the specific type of experience E that is used during the
learning process. The way experience E is acquired will then influence what performance
measure P is needed. However, exploring this is beyond the scope of this section.

There are many possible tasks T that can be tackled by machine learning models. Two
frequent tasks are classification and regression, and both correspond to supervised
learning. In both cases a model tries to learn a target function fθ, parametrised by θ,
such that it can predict y = fθ (x). In the case of classification, the function is such that
f : RN → {1, . . . , k}, where k is the number of possible categories (i.e. labels); for example,
for a certain image with pixels represented in a feature vector x, this function could try to
predict whether it contains a dog, a cat, or a bird. In the case of regression the function is
such that f : RN → R: that is, the output is a continuous value; for example, one can
try to predict the economic value of a house from its characteristics. Depending on the
dataset, some parts of the feature vector could be missing, mandating other models that
can expect missing values.

As highlighted by Goodfellow et al. [124], there are some other common tasks which
are not directly explored in this thesis. For instance: (1) machine translation, where
the model receives a sequence of symbols in a certain language and tries to translate it into
a sequence of symbols in another language; (2) anomaly detection, where the model
predicts whether a certain sample is atypical of a situation, as when detecting credit card
fraud; (3) data synthesis, in which the model learns how to synthesise (i.e. generate)
new artificial samples based on those existent in the dataset; (4) imputation of missing
values to try to predict missing values on x based on the remaining existent values of
that vector; (5) denoising where the algorithm is provided with a corrupted example x̃
and tries to transform it into a “clean” feature vector x. The possibilities are endless, and
the reader could certainly find other examples in the literature. Note how all these tasks
T could be performed with just one type of learning or a combination of them.

2.1.2 Training Procedure

There are many types of models in the field of machine learning, as it will be illustrated in
this thesis. Even though this variability exists, there are ubiquitous concepts when making
a model to learn. In the previous section I introduced the concept of “performance measure
P”; the way we can correctly measure it, directly affects how the training procedure should
be conducted.

To train a model or, in other words, to fit a model to a particular dataset, one needs
to tune the learnable parameters of that model so that a performance measure P is the
best possible. The typical scenario includes training data that are “fed” to a model so
that it can learn to perform a certain task. There are then some holdout test data (e.g. a
completely different dataset) with which the model is evaluated. I should highlight that
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this seemingly simple process of training and evaluating the model in different datasets is
fundamental to avoid optimistic (i.e. biased) performance measures. Indeed, if one trains
and evaluates a model in the same set of samples, we cannot know for sure whether the
model has learned or simply memorised the data. Therefore, the interest is to determine
whether a model can perform well (i.e. generalise) with unseen data.

If only a single dataset is available, there is the need to artificially split it into training
and test sets. Random sampling is a straightforward way to perform such splitting;
however, when the dataset is known to contain samples belonging to different categories,
randomly sampling might end up with train/test sets with a category distribution distinct
from that of the original. For instance, if a dataset contains equal amounts of small,
medium, and tall people (i.e. around 33% for each category), randomly sampling could
create a training set with different category ratios. In such a case a training set could have
25% / 35% / 40% of small, medium, and tall people, respectively, and a test set could have
ratios of 35% / 25% / 40% instead. This means that the two sets of data have not only
different category ratios from the original dataset, but also opposite ratios: the training
set has fewer small than medium people, and the test set has more small than medium
people. By contrast, a stratified approach randomly splits a dataset so that the category
ratios in the two sets are roughly the same; this will also guarantee that the ratios are
representative of the original dataset. This stratification strategy was used throughout
this thesis because real-world datasets tend to have imbalanced categories, and therefore
this strategy can provide more confident evaluation quantifications.

Now that these different strategies for splitting a dataset into train/test sets are
presented, defining a method to train a model using such sets is important. The holdout
validation method is frequently used and, as described by Raschka [224], it contains four
main steps to train and evaluate a machine learning model: (1) divide the dataset into
training and test sets which is needed to “work-around for dealing with the imperfections
of a non-ideal world, such as limited data and resources, and the inability to collect more
data from the generating distribution” [224], (2) pick an appropriate model and fit it to
the training data, while manually specifying its hyperparameters, (3) evaluate the model’s
behaviour with unseen data (i.e. a test set), which is assumed to provide an unbiased
estimate of good performance, and (4) use the entire dataset (instead of just the training
set) to fit the model again, after proving that the learned model is capable of generalisation;
this step is optional and more useful when one needs a final model to be deployed in
practice.

2.1.3 Hyperparameter Tuning and Cross-Validation

When one is developing a machine learning model, some settings need to be specified.
These are formally called hyperparameters or, more informally, knobs, as they usually
need to be tweaked while optimising a model. In the case of neural networks, these
hyperparameters may be the number of layers or nodes used; in the case of random forests,
this may be the number of trees used. I have previously focused on the need of a holdout
set (i.e. test set) to obtain a final, unbiased estimate of performance for a specific model.
This section will focus on how to include hyperparameter optimisation in the training
process, sometimes also called hyperparameter tuning.

For this extra optimisation task one also needs to use some performance metric, which
can be the same as the metric used for the final evaluation on the test set. The objective
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is then to select a model with the hyperparameters that give the best final performance
metric. However, reusing the test set repeatedly to evaluate different hyperparameters
could introduce an overly optimistic estimate on the generalisation performance. To avoid
this issue it is necessary to introduce a third set, commonly called validation set, of roughly
the same size, or slightly smaller than the test set. This will allow us to keep a single test
set to be used only once for final evaluation measurements.

With this in mind, Raschka [224] extends the previous holdout validation method to
include hyperparameter optimisation, in what he calls a three-way holdout method. I
represent its five main steps in Figure 2.1, with modifications introduced for clarity and
completeness. Among other details, the possible need of a validation set by the learning
algorithm in step 2 is not included in the original paper, whereas this is the default case
in this thesis; also, the original paper defines six steps, whereas here I simplify them to
only five.

The five main steps of the three-way holdout method are the following:

1. Divide the dataset into training, validation, and test sets. These will be used
respectively for model fitting, model selection, and final evaluation of the selected
model. This step differs from step 1 in the holdout validation method as it creates a
further validation set.

2. Conduct the actual hyperparameter tuning by fitting different models to the training
data, each model with a different set of hyperparameters. This step will result in
multiple models and performance estimates, and the model with the best perfor-
mance metric is chosen for the next step. Given sometimes an infinite choice of
hyperparameters exists, I will explore in the next section different ways to determine
which hyperparameter to choose in this step. Depending on the model, sometimes
the validation set might also be needed by the learning algorithm, rather than just
used for performance evaluation.

3. If the validation set was only used for evaluation in the previous step, refit the
model on both the training and validation sets to avoid a pessimistic bias due to a
smaller amount of data. This refit uses the hyperparameters that yielded the best
performance metric in the previous step. This step is often ignored in the literature
mostly because many models need a separate validation set during the training
procedure which cannot be merged with the training data. For instance, in deep
learning models, the validation set is needed to know when to stop the learning
process.

4. The selected model is evaluated on the independent test set for estimation of
generalisation performance. This corresponds to the same step 3 in the holdout
validation method.

5. Optionally, use the entire dataset to refit the model on the maximum number of
samples available and select that model for deployment. This step will likely yield a
model with different learned parameters from the model evaluated in the previous
step but, in theory, using more informative data should improve model performance.
On this assumption, the performance evaluated in step 4 is an underestimation of
the actual performance of the model in this step; however, as there are no holdout
data left, only by monitoring the deployed model in the real world it will be possible

23



Data

Training Data Validation
Data Test Data

Model #1

1

Performance 1Evaluation
2

Training Data

Hyperparameter
values #1

Hyperparameter
values #2

Hyperparameter
values #N

Validation
Data

Model #2

Model #N

Evaluation

Evaluation

Learning
Algorithm

Performance 2

Performance N

Best Model

3

Training Data Validation
Data

Final ModelLearning
Algorithm

4
Test Data Final Model

Final PerformanceEvaluation

Data

5
Final ModelLearning

Algorithm

Best
Hyperparameter

values

Best
Hyperparameter

values

Figure 2.1: The five steps for hyperparameter tuning using the three-way holdout method,
where each number corresponds to one step: dataset division, hyperparameter tuning,
model refit, test set evaluation, and final model refit. Each step is explained in more detail
in Section 2.1.3, and adapted from Raschka [224].
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Figure 2.2: Data division into folds in a k-fold cross-validation procedure for k = 5. At
each division one fold is used as a validation set, while the remaining folds are used for
training. Performance is then averaged across all the performances.

to practically evaluate its performance. This step corresponds to the final step in
the holdout validation method.

Raschka [224] presents the three-way holdout method for the particular case of supervised
learning by highlighting the need for labels in all the steps. However, I argue that this
method is general enough for any type of learning, and have adapted the original steps
accordingly in Figure 2.1. Due to their nature, learning types such as the unsupervised one
do not contain ground truth labels to evaluate performance directly. Still, some evaluation
of the model is needed to validate the choice of hyperparameters or simply to understand
how successful the learning process was. The key here is to consider that evaluating the
performance of the model could go beyond systematic quantitative metrics: it can include
visual checks (e.g. subjectively evaluating how clusters from clustering algorithms look in a
2D embedding), checking the evolution of an objective function as a proxy for performance,
or evaluating the accumulated reward in a reinforcement learning task.

One way to frame steps 2 and 3 in the three-way holdout method is to think of them
as a function fM that for a given set of possible hyperparameters H and a dataset D,
outputs the best model and respective best hyperparameters:

model, hyperparameters = fM (H ,D) . (2.1)

In the case of the three-way holdout method this function fM only considers a single
training/validation split, but one could use a cross-validation procedure instead. This
term has loose and varied semantics in the literature, being used not only for hyper-
parameter tuning and model selection but also to report a more unbiased performance
estimation.

A type of cross-validation is the k-fold cross-validation, where one divides a dataset
into k non-overlapping folds. At each division, one fold is used as a validation set, and
the remaining k − 1 folds are used as a training set. Figure 2.2 illustrates the process for
a 5-fold cross-validation, in which performance is averaged across the 5 non-overlapping
validation sets.

The k-fold cross-validation procedure can be directly applied inside fM for the same
type of input and output. For each set of hyperparameter values, the learning algorithm
trains a model k times for each different split of training/validation sets. This means that
the performance reported for a model with a certain set of hyperparameter values will now
be an average of these different folds. At the end this process avoids an indirect overly
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optimistic selection of hyperparameter values for a specific validation set; instead, it finds
the best hyperparameters that generalise better for different data splits rather than for a
single validation set.

It is common in machine learning literature to use cross-validation to avoid a perfor-
mance evaluation in a single test set. In smaller datasets, it is not clear whether a single
test set could have a lucky set of samples that produce an overly optimistic performance
measure. Therefore, cross-validation can be used to define k non-overlapping test sets,
and repeat the holdout validation method or the three-way holdout method for each k test
set. The final performance measure estimation is averaged across these k test folds.

Using cross-validation for hyperparameter tuning or providing an averaged final perfor-
mance brings a noticeable overhead in computational costs, as more models need to be
trained and evaluated. Accordingly, this is usually conducted only for smaller datasets
where there is an increased likelihood of producing overly optimistic evaluation metrics.

As it is possible to see, despite the common concepts needed for training and evaluating
a machine learning model, the details still need to be adapted for each particular need.
Indeed, in this thesis each chapter has slightly different training procedures. For instance,
Chapter 4 has used a straightforward three-way holdout method with cross-validation for
final performance evaluation. On the other hand, in Chapter 5, due to the small and
very high-dimensional dataset, I have used a variant called nested cross-validation, where
cross-validation is used both for hyperparameter tuning and final performance evaluation.

2.1.4 Hyperparameter Tuning Methods

As it was mentioned in the previous section, each distinct set of hyperparameters will
require a model to be fit to the training data, thus resulting in multiple performance
estimates. In this section I will describe which methods are typically used to conduct
hyperparameter tuning, given it is not practical - and most of the times not possible -
to try every combination. It should be highlighted that there are other methods in the
literature with a certain level of complexity (e.g. genetic algorithms) but that are less used
in practice for common hyperparameter tuning procedures to fine-tune a single model.

Manual search consists in manually choosing and experimenting with different hy-
perparameter combinations. Typically, an initial choice is set based on judgement and
experience, and at each iteration a new, subjective choice is made according to the previous
results. This loop is repeated for as long as possible until a satisfactory metric is scored.
This is a tedious process and not used in practice when the search space (i.e. the set of
possible hyperparameter values) is too large.

Grid search is perhaps the most basic hyperparameter tuning method commonly used.
As the name indicates, a grid of possible hyperparameter values is chosen, and the model
is trained using every combination in that grid. In this sense, the choice of the values in
the grid is left to the person implementing the tuning procedure. When a big number of
values is used in the grid, this method can cover a thorough amount of the search space
and be quite inefficient as a consequence. In practice, most of the times the search space is
infinite thus this search is prone to biases when implementing it (e.g. the grid choice might
not capture the best combination). This method still contains some level of manual choice
like with manual search, but to a much lesser extent given the choices are made a priori.
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Random search differs from grid search as a discrete set of values is no longer required;
instead, each hyperparameter is defined as a statistical distribution from which it can
be randomly sampled from. If a hyperparameter contains categorical values, then each
value is sampled with equal probability. A notorious advantage of random search when
compared to grid search is its flexibility: the number of iterations can be decided based on
time or desired number of combinations instead of a fixed grid. Another key advantage of
random search is that even if the optimal value of hyperparameters is in a grid, random
search will usually find a “close-enough” solution in far fewer iterations, making this
method significantly efficient; this happens because grid search can spend considerable
time evaluating unpromising regions of the search space. In a famous seminal work
by Bergstra and Bengio [33], it is shown that random search can sometimes even find
better values than when using grid search, and that “for most datasets only a few of
the hyperparameters really matter, but that different hyperparameters are important
on different datasets”. Figure 2.3 illustrates these issues in a simple scenario; however,
the assumption that not all hyperparameters are equally important holds true for most
datasets.

Figure 2.3: Grid and random search space when optimising a function f(x1, x2) =
g(x1) + h(x2) ≈ g(x1), where g(x1) is shown in green above and h(x2) in yellow on the left
side of each square. With grid search, g is only tested in three distinct places while with
random search it is explored with more distinct values. Image taken from Bergstra and
Bengio [33].

Bayesian optimisation uses Bayesian theory to optimise objective functions that take
a long time to evaluate. This method offers a principled approach to weight the importance
of hyperparameter values such that the results of a previous iteration can be used to
improve the sampling method for the next choice of values. This process starts by training
a model with a specific configuration (i.e. set of hyperparameter values) which will have a
score based on some metric. Then, for a probability model P (score|configuration), one
could use Gaussian processes to model the prior probability of model scores across the
search space [116, 247]1. This means that the previously evaluated configuration is used
to compute a posterior expectation of the search space, which in turn can be used to
sample more informed hyperparameter values. This process is run iteratively until a

1Other regression models such as decision trees [145] and even neural networks [248] can also be used,
but explanation of either cases is beyond the scope of this thesis.
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certain threshold is met. A key constrain of this method is that it belongs to a class
of sequential model-based optimisation (SMBO) algorithms, meaning that in order to
search a combination of N hyperparameter values, one needs to run them sequentially.
In contrast, with random or grid search one can launch those evaluations in parallel in a
server, making the search more efficient in these later cases with similar resulting metrics.
This constrain was the main reason why Bayesian optimisation was not used in this thesis.

2.1.5 Supervised Learning

In this section I will introduce two supervised learning methods which will be used or
adapted in chapters 4 and 5.

2.1.5.1 Support Vector Machine (SVM)

The support vector machine (SVM) [39] is a supervised learning technique that is typically
used for classification tasks. In its standard binary classification form, it maps the data
into a higher-dimensional space where the two classes can be separated by a hyperplane.
The goal of SVM is then to maximise the gap (usually called functional margin) separating
the closest pair of data samples from the hyperplane. These closest points are called the
support vectors (therefore the name of the method), because they are the data observations
that “support” (i.e. determine) the decision boundary between the two classes.

For a training set with samples xi ∈ Rd, i = {1, 2, . . . , N} and corresponding labels
yi ∈ {−1, 1}, this training set can be separable in feature space if there is a vector w and
scalar b such that2:

yi(w
Tφ(xi) + b) ≥ 1, ∀i ∈ {1, 2, . . . , N} (2.2)

where φ : Rd → RF denotes a fixed feature-space transformation that maps the d-
dimensional inputs to a F -dimensional feature space. By definition, there will be at least
one data sample in which the equality yi(w

Tφ(xi) + b) = 1 holds true, and for those
samples whose the equality holds true, they are the support vectors.

The optimisation problem requires the minimisation of the following optimisation
problem:

argmin
w,b

1

2
‖w‖2, (2.3)

subject to the constrain given in Equation 2.2. In real applications such perfect
separation does not exist, thus, to take into account misclassifications, it is necessary to
introduce a penalty term (the so-called slack variable ξi) for each data sample such that

ξi =

{
0, if xi is correctly classified∣∣yi − (wTφ(xi) + b

)∣∣ , otherwise.
(2.4)

2It is sometimes seen in the literature yi ∈ {0, 1}, which would require some changes in the optimisation
rules, but still producing equivalent results in practice.
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This penalty term is therefore a linear representation of the distance of the data sample
to the decision boundary. The optimisation problem in Equation 2.3 now turns into:

argmin
w,b,ξ

(
1

2
‖w‖2 + C

N∑
i=1

ξi

)
, (2.5)

subject to the constrain yi(w
Tφ(xi)+b) ≥ 1−ξi, and where C is a parameter controlling

the trade-off for the penalisation of misclassifications.
Higher dimensional transformations can allow SVM to separate data in higher-dimensional

space, whose transformation is defined based on the support vectors. The decision function
for the classification problem of an unlabelled vector xi can be given by

sign

(∑
m∈S

ymαmφ(xm)φ(xi) + b

)
, (2.6)

where S denotes the indices of the support vectors and αm are coefficients previously
determined by the SVM algorithm. This would mean that it would have to perform
operations with the higher dimensional vectors in the transformed feature space, which
could lead to impractical computational costs. Another way to tackle this problem is to use
the kernel trick. The “trick” is that kernel methods are able to represent the data in terms
of pairwise similarity comparisons between the data samples in the original d-dimensional
space without the need to explicitly apply the transformation φ(xi) mentioned above. For
a dataset with N samples, we would represent a kernel matrix of size N ×N where each
element (i, j) is calculated by a kernel function that is defined as:

K : Rd × Rd → R, s.t. K(xi, xj) = φ(xi) · φ(xj). (2.7)

The three most commonly used kernels are:

• Linear kernel: K (xi, xj) = xTi xj, representing a simple dot product. Combining
equations 2.6 and 2.7, it follows that with this kernel, φ(xi) = xi.

• Polynomial kernel: K (xi, xj) =
(
γxTi xj + r

)q
, where γ, r, and q are kernel

parameters in which q represents the order of the polynomial and γ > 0.

• Radial basis kernel (RBF): K (xi, xj) = exp (−γ|xi − xj|2), where γ > 0 is a
kernel parameter, and |.| denotes the Euclidean distance. This is sometimes called
the Gaussian kernel.

All in all, the kernel trick allows the SVM optimisation to find an optimal higher-
dimensional hyperplane without the need to directly find the function φ(). For more details
on SVM and on how this is calculated see, for example, chapter 7 of Bishop [36]’s book.

2.1.5.2 Extreme Gradient Boosting (XGBoost)

The eXtreme Gradient Boosting (XGBoost) [57] is an open-source optimised gradient
boosting library. It was originally developed in C++, but soon it received implementations
in many languages such as Python and R, while starting to be widely popular given its
successes in top Kaggle competitions3.

3https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-

winning-solutions
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A key characteristic of XGBoost is, as the name indicates, boosting. Boosting allows
to build a single model by iteratively adding individual ones (so-called weak learners), in
practice making it an ensemble model. The idea is therefore to learn from past mistakes
by focusing the learning on the difficult cases or, in other words, focusing on correcting
the mistakes from previous iterations. This is different, for example, from a standard
ensemble model in which if all models are trained in separate, all of them might make the
same mistake.

Closely following the notation from the original paper [57], let D = {(xi, yi)}Ni=1

represent a dataset with pairs of features xi ∈ Rm (with m features), and labels yi ∈ R if a
regression task in present, or yi ∈ Rc for a classification task with c categories. An XGBoost
model is built using an ensemble of “Classification And Regression Trees” (CARTs) [43]
which are represented as adapted decision trees where each leaf (i.e., end node) will contain
a continuous score based on the decisions of the internal nodes leading to each leaf.

Formally, for a tree ensemble model, the output for an input xi is calculated as the
(additive) summation of the output of K functions (i.e., CARTs):

ŷi =
K∑
k=1

fk(xi), (2.8)

where each function fk(x) corresponds to a CART in the ensemble model. Specifically,
fk(x) = wq(x), where wj is the continuous score on the j-th leaf at the respective tree,
and q maps an input to the corresponding leaf index such that, for a tree with T leaves,
we have q : Rm → T and w ∈ RT . In this sense, q represents the decision rules in a tree
mapping the input to the corresponding score.

The following regularised objective is minimised to learn the set of trees in the model:

L =
N∑
i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk), (2.9)

where l is a differentiable loss function and Ω(f) is the regularisation term that penalises
complex trees. This regularisation term is defined for XGBoost as γT + 1

2
λ
∑T

j=1w
2
j , where

λ and γ are hyperparameters.
Given we are in the presence of gradient boosting, the tree ensemble model is optimised

in an additive fashion; therefore, in order to optimise Equation 2.9, some modifications
need to be introduced as learning all trees at once is intractable. This additive strategy
is illustrated in the following iterative way, where at each step t we fix what has been
learned so far, and add one tree at a time:

ŷ
(0)
i = 0

ŷ
(1)
i = f1(xi) = ŷ

(0)
i + f1(xi)

. . .

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi),

(2.10)

where the first step contains a dummy function that predicts 0 for all inputs. Given
this iterative representation, and using the Taylor expansion up to the second order [106],
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the loss at step t is approximated to the following objective function:

L(t) =
N∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft), (2.11)

where gi = ∂
ŷ
(t−1)
i

l
(
yi, ŷ

(t−1)
i

)
and hi = ∂2

ŷ
(t−1)
i

l
(
yi, ŷ

(t−1)
i

)
are the first and second

order gradients of the loss function at that step t, respectively. This definition allows the
usage of different loss functions as only gi and hi are needed as inputs to the solver.

With Equation 2.11, it is possible to evaluate the quality of a tree at a specific timestep;
however, it is still needed to decide how to construct a new tree at each step. Ideally, all
tree structures q would be enumerated and evaluated but obviously that is not tractable.
The solution is a greedy algorithm that starts from a single leaf and splits it into two
leaves iteratively. Let Ij = {i|q(xi) = j} be the set of indices of data points assigned to
leaf j. Also let IL, IR be the instances sets of the left and right leaves after a split. By
letting I = IL ∪ IR, Chen and Guestrin [57] defined the loss reduction after a split (i.e.
the gain) as:

Gain =
1

2

[
G2
L

HL + λ
+

G2
R

HR + λ
− G2

I

HI + λ

]
− γ, (2.12)

where Gj =
∑

i∈Ij gi and Hj =
∑

i∈Ij hi. Intuitively, it can be seen that G2
L/(HL + λ)

corresponds to the quality of the left tree structure; using the same intuition in the
remaining equation, it is possible to see that if the gain is not big enough (dependent on
γ), it is better not to add that split. This process corresponds to the pruning techniques
used in decision tree-based models.

There are two further techniques used in XGBoost that are worth mention in this
section: shrinkage and subsampling. Shrinkage scales newly added weights by a factor
(tunable as a hyperparameter), after each step; in practice, it reduces the influence of each
tree hence allowing future trees to improve the final tree ensemble model. Subsampling can
come in two facets: (1) subsampling training instances at each step, and (2) subsampling
features. Both subsampling techniques can not only prevent overfitting, but also speed-up
computation.

Despite following the same principles as gradient boosting machines (GBMs), there
are some details that separate XGBoost from other GBM implementations which explain
why it has been such a popular model. When it was introduced, XGBoost provided a
set of technical features that no other GBM had implemented altogether in the same
tool. Some included out-of-core computation (i.e., when data is too large to fit entirely in
memory) and sparsity-aware split finding. A key characteristic besides these performance
enhancements is that XGBoost used a fundamentally more regularised model formulation.
With time, other GBM models incorporated characteristics from XGBoost, as well as
vice-versa, but as mentioned before, XGBoost continues to be widely popular.

XGBoost and, in general, GBMs, contain some known limitations. A practical one con-
cerns the many possible hyperparameters that need to be optimised, sometimes compared
to some decisions on the architectural decision of neural networks, therefore requiring
a large search space. The intractability of enumerating all possible tree structures and
therefore the solution of doing one split at a time is an obvious limitation. GBMs, due
to their additive strategy, could continue indefinitely to minimise all errors, therefore
overemphasising outliers and possibly causing overfitting if not controlled properly. A final
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major problem with additive trees is their memory usage, which is exactly one of the key
issues that XGBoost tried to tackle for a more efficient implementation.

2.1.6 Good Representations

Training the supervised methods from Section 2.1.5 with a training procedure and selection
of hyperparameters using the techniques presented in sections 2.1.2-2.1.4 can be seen as
performing representation learning. This is the case because these methods are learning
representations from input data such that they can learn a target function fθ, parametrised
by θ, such that it can predict y = fθ (x) (see Section 2.1.1).

Bengio et al. [31] posited that the goal of representation learning is to “to disentangle
as many factors as possible, discarding as little information about the data as is practical”.
It is a challenge to determine what is possible and practical, but one way to tackle the
practicality is to define the purpose of representations as to make subsequent learning tasks
easier [124]. Based on this assumption, Dimanov [72] defined six primary requirements for
an ideal representation:

• Expressive. The expressivity of a representation, also known as capacity, helps in
guaranteeing the learnability of models and can be intuitively seen as the number of
input regions that parameters can encode. There are different ways to actually make
an approximate calculation of expressiveness [31, 221]; for instance, the Rademacher
complexity measures the capacity of a hypothesis space by fitting random labels such
that a higher complexity means that the model can fit a larger number of random
labels and thus it has higher capacity [193].

• Abstract. A level of abstraction is needed so the representation knows which
information needs to keep (i.e. the most salient factors of variation in the data)
and which to ignore (i.e. those variations that are uninformative or invariant to the
subsequent task).

• Disentangling. Beyond abstraction, a good representation should also be able
to separate the underlying factors of variation of a dataset such that each feature
in representation space is independent/orthogonal and corresponds to a different
explanatory cause.

• Easy to model. When each factor can be observed without affecting the other
factors (e.g., the representation is disentangled), then the representation could be
easier for a human to comprehend and interpret.

• Compact. A smaller representation can be more efficiently handled both computa-
tionally (e.g. less computations when multiplying vectors) as well as statistically (i.e.
less parameters to learn).

• Robust. This can concern robustness to perturbations in the inputs (e.g. adversarial
examples), as well as out-of-distribution generalisation to unseen data.

It is important to highlight that, although ideal, these requirements might not be
all satisfied at the same time. For example, a representation with independent features
(e.g. disentangled) might not preserve as much information as possible, and a compact
representation might not be expressive enough [72]. As it will be explored in the next
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section, the increased expressive power of representations (as very deep neural networks
are one example of) can come at the cost of their interpretability.

Despite the possible conflicts, these ideal requirements are a good framework to
understand the approaches used in this thesis when I explored Research Question 1
(Representation). Indeed, these approaches can be framed under the assumption that the
purpose of representations is to make subsequent learning tasks easier [124] when I use
specific modelling approaches for the objectives I have in each chapter; specifically, when
using multilayer networks for the transcriptomic networks in Chapter 3, graph neural
networks for the supervised task using graph-structured data in Chapter 4, and XGBoost
for the tabular data used in Chapter 5 in which it was important to have interpretable
model decisions.

Finally, some evaluations made in this chapter can be directly framed under the re-
quirements presented here. For instance, compactness of model can be seen in Section 4.4.2
when a more compact representation is able to achieve similar performance, therefore
also indicating a good level of abstraction; robustness of models are directly evaluated
using cross validation in chapters 4 and 5, and in some parts of Chapter 3; the “easy to
model” requirement is also seen in Chapter 5 when interpretability insights are made due
to underlying representation achieved by XGBoost.

2.1.7 Explainability and Interpretability

Research Question 2 (Explanations) asks: “is it possible to provide models to applied
researchers that can provide explanations on how decisions are made (...) ?”. Therefore,
this section will motivate this question while providing a more precise view of what an
explanation means.

Unfortunately, there is no single consensus in the field regarding what explainability
means precisely, and this term is constantly used interchangeably with interpretability [7,
52, 177], despite some efforts in trying to find a common definition [14, 129, 162, 194, 197].
A simple definition of interpretability is given by Doshi-Velez and Kim [76] as “the ability
to explain or to present in understandable terms to a human”, but as it is possible to see
from different works, different authors will look to this term from different perspectives.

In this thesis I will consider the definitions from the recent survey by Arrieta et al.
[14], in which explainability “is linked to post-hoc explainability since it covers the
techniques used to convert a non-interpretable model into a explainable one”, while “the
interpretability of the model is something that comes from the design of the model itself”.
The authors postulate a general definition of the field of explainable artificial intelligence
as “given an audience, (...) is one that produces details or reasons to make its functioning
clear or easy to understand”. This general definition of explainable artificial intelligence
then indirectly includes interpretability and explainability as equally important to move
the field forward, while arguing that the type of explanations might differ depending on
the target audience. Notice this difference is present in the different nomenclature used in
chapters 4 and 5: while in the former I strive to provide post-hoc explanations to a deep
learning model, in the latter I use the term “interpretability” given the explanations come
from leveraging characteristics from how XGBoost is designed.

It is worth motivating why looking for these explainable properties is important instead
of just looking to the best evaluation metrics for a certain task, even if a single, precise
definition of explanation does not exist. One practical reason is that, as I briefly mention at
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the start of this thesis, artificial intelligence systems are increasingly used in safety-critical
environments, and therefore it is challenging to rely on systems in which one does not know
how they work or make decisions; indeed, the U.S. Defense Advanced Research Projects
Agency has a project on explainable artificial intelligence4. One particular example to
illustrate the importance of explainability is when it was discovered that models learned to
predict the class “horse” in the ImageNet dataset not by using features from the horse but
by looking to the copyright tag existent in many of those images [169]. On a more general
level, this means that explainability can help debug very complex models and discover
biases in the datasets that should be accounted for [12, 46, 170]. Ultimately, the field
of explainable artificial intelligence could push models to be trusted by more people [72]
while being safer [268] and auditable [40].

Together with the approaches to try to define the field of explainable artificial intelli-
gence, it is already possible to see specific progress relevant to the contributions of this
thesis. In this context, SHapley Additive exPlanations (SHAP), which will be explained
and used in Chapter 5, has been a recurrent choice to try to find post-hoc explanations. For
instance, Yap et al. [293] used SHAP to explain a deep learning model predicting tissue type
from transcriptome data (see Section 2.2), and Yu et al. [297] integrated SHAP with auto
encoders to evaluate the contribution of different genes for various cancer-related classes in
the hidden variables of those auto encoders. Despite the apparent focus of the explainable
artificial intelligence field on deep learning architectures, it is also possible to see rule-based
models to find biologically relevant patterns from gene-gene temporal relations in gene
expression data [13]. Explainable artificial intelligence is also widely present in the neu-
roimaging field, with review/surveys of deep learning-based medical image models already
available [207, 264, 267]; likewise, despite the even more recent paper explosion in the field
of graph neural networks (see Section 2.1.8), the interplay of these new architectures with
explainability is already being explored [295, 298]. The inclusion of explainable artificial
intelligence in neuroimaging developments can be done to help physicians understand
why someone is being diagnosed with a certain neurodegenerative disease [84] and which
structural connections are involved in neurodegenerative diseases [88]; sometimes, those
models achieve better evaluation metrics than non-explainable models [263]. Finally,
the identification of regions involved in brain ageing is also a promising application of
explainable artificial intelligence in neuroimaging [110, 286].

I argue that these reasons fully motivate Research Question 2 (Explanations) in the
sense that finding explanations is a good objective to strive while exploring the other
two research questions. However, for completeness, it is important to mention that
some authors still disagree with some of these ideas. Some defend that in some cases
artificial intelligence models can be clinically validated even when their function is not
completely understood [189], and that current explainability methods are unlikely to
achieve the goals that the field is looking for so we should look for more rigorous evaluation
processes instead [118]. I consider that an underlying cause for these doubts is the belief
that explainable/interpretable models cannot perform as well as current state-of-the-art
ones [165]; however, growing evidence shows that the development of interpretable models
does not need to negatively influence their performance [231]. As the several surveys
referenced in this section show, this is a growing field and I lean on the cautious side that
this is a needed functionality; therefore, it should be looked for together with rigorous
evaluation processes.

4https://www.darpa.mil/program/explainable-artificial-intelligence
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2.1.8 Graph Neural Networks

This section will briefly outline the utility of graph neural networks (GNNs) in the context
of this thesis, as they directly motivate how Research Question 3 (Graph) was tackled
in Chapter 4. This type of neural networks has seen an explosion in number of related
publications around 2017 on a multitude of applications where data can be naturally
represented as a graph [288, 302]. The field is still growing in part due to very significant
successes in both academic [257] and industrial [69] applications. The original GNN is
attributed to Gori et al. [127], though earlier approaches in the 1990s exist often involving
directed acyclic graphs [105, 250, 251].

GNNs can be seen as a way to apply deep learning methods on graph data, in which
the underlying idea is to generate representations that depend on the actual structure
of the graph and any information (i.e. features) from the nodes, edges, and the graph
as a whole. Making a parallel with CNNs which are effective at extracting features from
grid-like data (e.g. 2D and 3D images), and RNNs which are able to learn features from
data that are temporally organised as a sequence of steps, GNNs can learn from data
that can be depicted in the form of unordered entities and relations such as graphs. This
connects with the framework presented in Section 2.1.6 where it was stated that good
representations are those that make subsequent learning tasks easier: CNNs, RNNs, and
GNNs leverage specific prior information known about the input data in order to have
better representations, and therefore better performance on different learning tasks.

There are different ways to frame and explain GNNs (including the formalisation taken
in Chapter 4), but in all these different ways there is a notion of a neural message passing
mechanism where “messages” are exchanged between nodes and updated using neural
networks. These are generically called message-passing neural networks (MPNN) [119];

more formally, if we consider v
(l−1)
i the features of node i in layer (l − 1), and j ∈ N (i)

the neighbour nodes of i connected through an edge with edge features ej,i, an MPNN
layer can be defined as:

v
(l)
i = γ(l)

(
v

(l−1)
i , ρe→vj∈N (i)

(
ϕ(l)

(
v

(l−1)
i ,v

(l−1)
j , ej,i

)))
, (2.13)

where ρe→vj∈N (i) is a differentiable aggregation function, invariant to input permutation
and applied across node’s neighbours, and γ and ϕ are also differentiable functions such
as multi-layer perceptrons.

In summary, the previous paragraphs illustrate an important advantage of GNNs
over regular deep learning models which is the fact that they allow the creation of “good”
representations for graph data. This happens because they create features that are invariant
to node permutations while still taking into account the connectivity of the underlying
graph structure.

As GNNs are still a very intense field of study, it is necessary to note that they
contain known limitations. One of the topics still being researched concern the actual
expressive power of GNN representations, as some authors pointed out that common
GNN architectures are not able to capture certain simple graph structures [25, 240, 289].
The fact that it is a relatively recent field also means that hardware acceleration has not
matured yet for these architectures, and implementations of these models are not as fast
as what currently exists for CNNs: this is due to a combination of dense and very sparse
operations and the need to scale some operations to huge graphs [5, 291]. These known
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limitations led the results in Chapter 4 to be compared to other GNN models in the field,
as well as non deep learning baselines.

2.2 Molecular Biology Fundamentals

Chapter 3 explores the applied field of molecular biology, and more specifically gene
expression from transcriptomic data. Therefore, in this section, I will clarify not only the
key semantics of a transcriptomic dataset, but also additional concepts that are critical to
an understanding of the broader applied field in which transcriptomics exist in the context
of this thesis.

The “central dogma” of molecular biology was explicitly stated in 1958 by Francis
Crick [63], and posits that the flow of genetic information is unidirectional: through a
process called transcription the DNA encodes genetic information (nucleic acid) which is
passed on to the messenger RNA molecules; proteins are then synthesised from information
in this RNA in a process known as translation. These proteins ultimately end up influencing
how a phenotype is expressed through metabolites5 and environmental factors. A phenotype
is an observable trait in an individual, such as the colour of hair, blood type, or structural
features of the brain such as those analysed in Chapter 5’s neuroimaging scans.

This “central dogma” was stated around the same time as the discovery of the three-
dimensional, double-helical model for the structure of DNA. The latter discovery was
ultimately the topic of the Nobel prize in Physiology or Medicine in 1962, famous for not
crediting the groundbreaking crystallography work by Rosalind Franklin and Raymond
Gosling [104] which provided the vital clue (commonly called “photo 51”) to the double
helix structure [1, 182]. Since the assertion of the “central dogma” and the discovery
of the DNA structure, our knowledge of biological systems has greatly evolved, and we
now know that more complex interactions exist among the different components [241].
For instance, it is known that transcription factors are proteins that can initiate and
regulate the transcription of genes, therefore indicating that this process is not completely
unidirectional.

2.2.1 Multi-omics

In molecular biology, it is common to add the suffix “-omics” to imply a comprehensive, or
global, assessment of a set of molecules [132]. I now present several “-omics” directly and
indirectly related to the topics analysed in this thesis; each one has unique characteristics
and provides a different view at the molecular level.

Genomics concerns the study of an organism’s full DNA. This term is distinct from
the genome, which is an organism’s complete set of genetic information. In the early
2000s, thanks to the availability of whole-sequencing data provided by large consortia
such as the Human Genome Project, many genome-wide association studies (GWAS6)
flourished in order to find associations between genes and phenotypes in multiple human

5A metabolite is an intermediate or end product of metabolism, and can therefore provide information
on cellular activity and physiological status.

6GWAS studies are critical but a thorough explanation is beyond the scope of this thesis. Very briefly,
thousands of individuals are genotyped at more than a million genetic markers, and statistically significant
differences between cases and controls are considered evidence of association.
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populations [125]. These advances ultimately helped in understanding highly complex
genetic traits in health and disease, leading genomics to be the most mature “omic”
field [132]. Despite the remarkable advances in identifying many complex genotype-
phenotype associations, there are still known limitations [260], the main one concerning
that only correlations are revealed in these studies, and other factors play a critical role
in explaining phenotype such as gene regulation and environmental stimuli. One of the
reasons for the development of multi-omic analysis is to overcome some of these limitations.

Transcriptomics examines genome-wide RNA levels qualitatively (i.e. which transcripts
are present), as well as quantitatively (i.e. how much each transcript is expressed).
This term usually refers to all the RNA existent, but may sometimes just refer to the
messenger RNA (mRNA) containing necessary information for protein synthesis. The
transcriptome (i.e. the set of all RNA transcripts) is therefore an expression of the genome
by capturing the genes expressed at the transcription level for a particular condition. At
this stage, it is usually possible to generate gene expression profiles such as those I have
used in this thesis. I should highlight that the transcriptome is susceptible to environmental
conditions, highlighting the importance of gene expression analysis to identify genes that
exhibit differences in expression between health conditions and even among different body
tissues; therefore, this type of data addresses some of the issues still existent in GWAS
studies regarding gene regulation and external factors [159]. Besides traditional statistical
methods, machine learning and deep learning methods have proved to be efficient at
identifying transcriptomic profiles associated with specific phenotypes, considering different
input data such as measured RNA-seq data7 [279], single cell expression [142], and also
imputed transcriptomic data [128].

Proteomics is the quantification of cellular levels of proteins encoded by the genome,
as well as the study of the diverse properties of proteins in a cell or tissue [214]. As mRNA
resulting from transcription can decay quickly and therefore not be translated, looking
only at gene expression levels can be misleading. It is at this stage where well-known
protein-protein interactions are studied. The transcriptome may include genes that do
not encode proteins (e.g. genes with a regulatory function), and as a consequence the
study of the proteomics alone might not give a complete picture in molecular biology. It
can therefore be seen as more of a complementary addition to the study of such complex
environments.

Epigenomics is the study of the complete set of chemical changes to the genetic material
of a cell, also known as the epigenome [204]. Even though I do not directly explore this
concept in this thesis, it is important to fully comprehend the possible applications of this
field. Unlike the static genome, the epigenome can be dynamically affected with long-lasting
effects, sometimes even heritable, on genetic and environmental factors. Although a bit
controversial, growing evidence supports a role for epigenetic regulation as a key mechanism
underlying lifelong regulation of gene expression that mediates stress vulnerability [200]
and disease development [54].

Other “-omics”. It is worth mentioning that there are other “-omics” which are not as
important for the understanding of this thesis, but still worth mention for completeness

7RNA-seq is a particular sequencing technique for RNA quantification.
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for the interested reader. They include, but are not limited to: metabolomics, the
study of metabolites which can have a complementary role with transcriptomics and
proteomics [139]; lipidomics, the analysis of a specific type of metabolites called lipids
which can be associated with various diseases [285]; and microbiomics, the study of the
microorganisms in certain parts of the human body [222].

2.2.2 Networks

Networks are pervasive in the molecular biology field, and therefore in this short section I
will give some application examples for a wider understanding of the field which indirectly
underpinned the hypothesis explored in Chapter 3. The representation in the form
of networks provides a more intuitive perspective of molecular biological systems thus
allowing the analysis of different interactions between molecules from the different “-omics”
presented in Section 2.2.1.

Examples of common networks include, but are not limited to: (1) gene co-expression
networks (the ones I explored in Chapter 3), (2) protein-protein interactions to under-
stand (or predict) how different proteins can interact and be activated under certain
conditions [181, 303], (3) metabolic networks which can inform how metabolites are trans-
formed to synthesise other substances (and therefore each edge represents a metabolic
reaction) [149], and (4) the interactome which loosely represents the integrated network of
all physical/molecular interactions in a cell [51], therefore allowing for a holistic integration
of many “-omics” in the same representation.

With this representation of nodes referring to molecules and edges depicting interactions,
each node can then be characterised according to topological measures that can suggest
biological roles in those networks. Indeed, one can look to power-law networks [300] and
explore how the removal of small-degree nodes does not have a substantial effect in the
network’s properties, as well as looking to cliques/modules and corresponding biological
implications [131, 147]. A useful network modelling approach concerns multilayer networks,
which are formally defined in Section 3.1.7 when used in the context of Chapter 3. As I
will describe, they are able to aggregate different modelling levels in a single network [164]
and thus are typically used to integrate different “-omics” [130, 218, 292]; however, in this
thesis, I will use this modelling approach to focus on the field of transcriptomics.

2.3 Neuroimaging Fundamentals

Chapters 4 and 5 explore the applied field of neuroimaging. Therefore, this section will
explore important concepts for a better understanding of the applied work in the context
of this thesis.

2.3.1 Types of Neuroimaging Scans

Neuroimaging is a field concerned with creating visual representations of a brain for
clinical and research purposes. There are two main types of neuroimaging: structural and
functional imaging. Each type contains many possible techniques, which vary in temporal
and spatial resolution, as well as in the type of components that are targeted (e.g. grey
matter, blood vessels, tumours). The imaging methods used in this thesis are not invasive,
but some other techniques could include the injection of radioactive material into the
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bloodstream to interact with specific molecules in the brain, called metabolic imaging.
These metabolic imaging methods are expensive and not widely available; therefore,
gathering sufficient data for meaningful analysis with artificial intelligence methods is
impractical.

The most common type of structural imaging is magnetic resonance imaging (MRI).
In MRI scanners a uniform magnetic field is first employed, taking then advantage of the
magnetic properties of hydrogen which is prevalent in the human body [64, 168, 274]. In
short, a radio frequency (RF) pulse is emitted from the scanner at which the hydrogen
protons change their alignment and emit energy. Some time after the RF, the emitted
signals are measured using Fourier transformations in the frequency domain. After varying
the sequence of RF pulses, different types of images are created and two variables of the
scan sequence will determine tissue contrast in these images: repetition time (TR) and
echo time (TE). TR is the time between successive pulse sequences and TE is the time
between the application of a RF pulse and the receipt of the echo signal or, in other words,
the time between the excitation pulse and the peak of the signal.

By varying the TR and TE values, different MRI sequences can be produced with
distinct contrasts for different body components as shown in Figure 2.4 which illustrates
five MRI techniques, each one targeted to detect different components of the brain [64].
For example, T1-weighted scans are produced using short TE and TR times which produce
dark cerebrospinal fluid (CSF), light white matter, and grey cortex; these are particularly
useful for looking at brain structure. In contrast, T2-weighted scans are produced using
longer TE and TR times, producing bright CSF, darker white matter and lighter cortex;
these are particularly useful for examining changes in the brain’s white matter.

One significant advantage of MRI scanners is that they do not involve ionising radiation
in contrast to other techniques such as computer tomography (CT) scans, making it
a safe option with little to no hazard of increased cancer risk. Therefore, it is highly
versatile and widely used in medical diagnosis, monitoring disease, and general research
purposes [66, 68].

Functional neuroimaging concerns the measure of brain activity throughout the brain;
such measures help understand relationships between activities in specific brain areas and
mental functions of interest in cognition, psychology, and social neuroscience [95]. In this
neuroimaging type, it is common to have a temporal resolution, as activity is measured
across time, and a spatial resolution that tends to be significantly lower than the static
structural neuroimaging techniques. For instance, electroencephalography (EEG) measures
voltage fluctuations from electrodes placed along the scalp and magnetoencephalography
(MEG) measures magnetic fields fluctuations from magnetometers placed along the scalp;
therefore, even though their temporal resolution is extremely high, its spatial resolution is
sparse as it mainly concerns positions outside the skull. Other functional neuroimaging
techniques exist, such as positron emission tomography (PET) in which radioactive
substances are injected into the body to detect specific metabolic processes [95], but this
technique is not used in this thesis.

As it is possible to see, a key difference between structural and functional neuroimaging
concerns their resolution at different scales [94]. For instance, EEG and MEG focus on
high frequency brain activity, but are limited by being able to examine only cortical signals.
MRI has a lower frequency of time sampling, but is able to visualise the whole brain and
provide structural and volumetric data for further analysis.

A typical type of functional neuroimaging which will be analysed in Chapter 4 is
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(a) In T1-weighted imaging, grey matter is darker
than white matter, while in T2-weighted imaging
this is the opposite. In PD-weighted imaging there
is little contrast between brain and cerebrospinal
fluid but more pronounced distinction between
grey and white matter.

(b) White matter tracts
obtained from MRI dif-
fusion tensor imaging.
Colours are calculated
at post-processing time
based on water diffu-
sion direction.

(c) Magnetic resonance
angiography, for de-
tecting blood vessels.
This image was ob-
tained using particular
magnetic pulse dynam-
ics with a short echo
time (TE) called time-
of-flight (TOF).

Figure 2.4: Examples of five distinct MRI techniques, each highlighting different compo-
nents of the brain. Images taken from Wikimedia Commons8.

functional magnetic resonance imaging (fMRI). This imaging type uses the blood-oxygen-
level-dependent (BOLD) contrast, with limited spatial resolution typically ranging between
2-4mm for each voxel9, and temporal resolution ranging between 1-2 seconds. The BOLD
contrast can detect changes in oxygen saturation in haemoglobin due to its magnetic
properties. These changes serve as a proxy for detecting brain activity as the vascular
system changes to respond to the brain’s need for glucose [98].

There are mainly two types of fMRI image: task-specific fMRI and resting-state fMRI
(rs-fMRI). In task-specific fMRI, a person is asked to perform some cognitive task and a
researcher can then explore which brain areas are responsible for the person’s response.
In rs-fMRI, a person enters the scanner without performing any particular task, and the

8https://commons.wikimedia.org/wiki/File:T1t2PD.jpg, https://commons.wikimedia.org/wiki/File:White_

Matter_Connections_Obtained_with_MRI_Tractography.png, https://commons.wikimedia.org/wiki/File:Mra-mip.jpg
9A voxel corresponds to a pixel in 3D space.
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Figure 2.5: High-level steps to generate a graph representation from fMRI time series data.
A brain is initially parcellated (i.e. divided) into regions of interest, from which time series
are extracted. Correlations are calculated between every pair of brain regions to generate
a symmetric matrix and a respective graph representation. Brain parcellation techniques
are explored in Section 2.3.2.

objective is to analyse the activations that the brain produces at rest (i.e. in the absence
of any external stimulus) [98].

As depicted in Figure 2.5, by correlating the fMRI time series of every pair of brain
regions we can obtain a graph visualisation representing how different brain regions
are more functionally connected over a certain period of time. In this way, functional
connectivity can be represented as an association matrix using the correlation strength
between every brain region pair. This matrix can be highly informative as a stronger
correlation indicates that two brain regions were similarly activated/deactivated during
a certain time (i.e. in-sync), thus indicating some form of communication. The study
of brain connectivity, sometimes also called “connectomics” has revealed insights in to
normal brain function and neuropsychiatric disease [102].

The study and mapping of the neural connections in the brain is a field that has
recently attracted great interest in the scientific community. It is known that topology
and functional connectivity change with age and form the basis for things such as learning,
ageing and disease. Thus, it is possible to better understand these aspects of brain
dynamics just by analysing its working connections [238, 256]. These functional brain
networks differ between people and may respond uniquely to different external stimuli or
treatments. This heterogeneity opens up the possibility for personalised medicine based
on the knowledge of brain networks [91, 138].

2.3.2 Processing Neuroimaging Scans

The complex physical mechanisms involved with these neuroimaging scans introduce yet
another challenge: the preprocessing steps for downstream analysis. A number of issues
need to be addressed in preprocessing to remove noise and permit comparison between
individuals. For example, physical movements of a person inside the scanner and blood
flowing through the brain can introduce noise. As the brain is not a rigid organ like a
bone, it can move and produce motion artifacts in the resulting image, though this is less
of an issue than the person moving in the scanner.
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Other MRI artifacts are worth mentioning, which after their identification might
require a radiologist or another specialist to understand whether a solution needs to involve
hardware change, new scanner parameters, better controlling the patient, redoing the scan,
use software correction when preprocessing the data, or simply excluding the scan in later
analysis. The following artifacts are not an extensive list but illustrate other known MRI
artifacts:

• Susceptibility artifact, when a patient has an implant or another medical device that
responds to the magnetic field, therefore producing wrong contrasts in the resulting
image [237].

• Zipper artifact, in which spurious RF signals entering the shielded room can produce
noise in the image, therefore making it difficult to interpret [134].

• Black boundary artifact, in which a black line is artificially created at water-fat
interfaces such as muscle and fat. This effect can also be called 2nd order chemical
shift artifact [134].

• Diastolic pseudogating, which happens when sequence timing is, by chance, in-sync
with heart rate, therefore producing different blood signal intensity in large vessels
across image slices [26].

• Magic angle effect, seen mostly with ligaments oriented at a 55-degree angle with
the magnetic field; as a result, in T2 images this can produce a sudden increase in
localised signal [49].

Many techniques and statistical procedures have been developed to extract the under-
lying signal from the raw images that come from these scanners. There is no standard
method for preprocessing, although a number of common necessary steps are shared
between preprocessing pipelines. The exact preprocessing steps depend on the type of
imaging, the scanner strength and manufacturer, and the amount of inherent noise and
motion artefact within the data. This variability is well illustrated in a recent study, where
Botvinik-Nezer et al. [41] assessed the effect of the flexibility in analytical approaches
available when analysing fMRI-based hypotheses by asking 70 independent teams to
analyse the same dataset. Strikingly, no two teams chose identical workflows to analyse
the data. This flexibility resulted in sizeable variation in the results of hypothesis tests,
even for teams whose statistical maps were highly correlated at intermediate stages of the
analysis pipeline. This study highlights the need for careful and principled selection of
preprocessing steps for neuroimaging to improve transparency, reproducibility, and impact
of research [126]. It is beyond the this thesis’ scope to detail workflows; instead, I will
provide the overall preprocessing steps used in this thesis in Section 2.3.3 and provide a
more technical description of how they were processed in each chapter.

An important concept in neuroimaging is that of a brain atlas. In a map, regions are
geographically delineated; likewise, in a brain atlas there are non-overlapping regions of
interest (ROIs) dividing the brain. A brain atlas can be defined according to anatomical
features, on regions known to functionally work together in some particular tasks (e.g.
reasoning, perception), or even on known molecular properties [70, 83, 93].

As it is computationally expensive to analyse all the brain voxels, an atlas is useful
to parcellate (i.e. divide) a brain captured in a scanner for downstream analysis. By
applying a parcellation, one can analyse an average value calculated from all the voxels in
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a ROI. To use the analogy of a map, this would be similar to averaging the ages of all
people living within one city rather than using each individual age. As these atlases are
sometimes represented in a common brain in 3D space, one typical preprocessing step in
brain imaging parcellation is to wrap the brain from the raw image into this common space
by applying linear and non-linear calculations. Sometimes a brain parcellation could be
data-driven instead of atlas-driven, in which ROIs are defined by clustering of information
in the data.

An example of such an atlas is the Desikan-Killiany cortical atlas [70], which was used
in chapters 4 and 5 and is depicted in Figure 2.6 for the cortex. This atlas was originally
created based on 40 MRI scans and is a gyral-based atlas, that is, a gyrus10 is defined as
running between the bottoms of two adjacent sulci11.

Figure 2.6: Cortical regions from the Desikan-Killiany atlas represented in one hemisphere,
with subcortical regions in grey. Figure taken from Nagtegaal et al. [199] with permission
from Elsevier.

2.3.3 Datasets

In this thesis I used two main neuroimaging datasets: the Human Connectome Project
(in chapters 4 and 5) and the UK Biobank (in Chapter 4). The Human Connectome
Project (HCP) is one of the most homogeneous and well-characterised open datasets for
young healthy subjects, and the UK Biobank (UKB) is known to be subject to potential
selection bias as its population tend to have a low risk for disease [108, 253] (for instance,

10A gyrus is the name given to the bumps ridges on the cerebral cortex.
11A sulcus is a shallow groove that surrounds a gyrus.
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Figure 2.7: Main preprocessing pipeline followed by collaborators (see Section 1.4) on
the Human Connectome Project (HCP) and UK Biobank (UKB) datasets. More specific
details are provided in each chapter where the data is used. “Minimal preprocessing
pipeline” was originally defined by Glasser et al. [122] and directly provided to download
by each consortium, while remaining steps are run by collaborators.

the proportion of people currently smoking in the UKB is 10.7% compared to 14.7% in the
general population12). In this thesis I used an HCP release with 1,200 subjects, and the
UKB is a dataset of over 500,000 people aged around 40-80 years old who have undergone
repeated cognitive testing, with approximately 35,000 having undergone neuroimaging
with MRI.

Both datasets contain well-characterised population cohorts and have undergone
consistent, standardised neuroimaging and clinical assessments [89, 191]. Having aligned
and standardised acquisition protocols is crucial to ensure consistency across acquisition
sites as well as to improve data quality across sites and scanner [73]. Furthermore, to
support the need of large datasets for reproducible findings with minimal statistical
errors [186], no selection criteria was applied on my side when acquiring the data. Despite
this limitation, the size of the datasets, age of participants, and high quality neuroimaging
data make the HCP and UKB ideal to assess the different modelling approaches applied
in this thesis.

Both datasets followed the same preprocessing steps for the same type of data but
were preprocessed by different collaborators before being shared with me (see Section 1.4
for collaborator details). Figure 2.7 depicts the main neuroimaging preprocessing steps
followed in this thesis. Details and differences about the specific steps followed in each
dataset and modality are provided in each chapter where the data is used.

As I mentioned in Section 2.3.2, there is no single preprocessing pipeline; however, the
steps followed in this thesis are widely used in the field as the data preprocessed using
the “minimal preprocessing pipeline” [122] are directly provided by the different consortia.
The Desikan-Killiany atlas introduced in the previous section was chosen as a common
atlas with enough granularity to balance ease of interpretation of results with consistency
when compared, for instance, to parcellations with hundreds of regions or to parcellations
without divisions based on known neuroanatomical knowledge. Furthermore, this is a
generalised atlas that can be applied across populations and allowed the preprocessing of
all the data modalities used in this thesis. Crucially, it is a widely used atlas in literature
which enables the embedding and comparison of results to the wider scholarship.

12Data from the Office for National Statistics: https://www.ons.gov.uk
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2.4 Summary

This chapter outlined and explained fundamental concepts and key literature that are
important to the correct understanding of this thesis and its significance. The first
section on machine learning fundamentals concerns all the main chapters of this thesis
and therefore presented topics on model training steps, tasks, important characteristics,
and others. This was followed by two sections clarifying concepts on the applied fields of
molecular biology (needed for Chapter 3) and neuroimaging (needed for chapters 4 and 5).
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Chapter 3

Multilayer Modelling and Analysis of
the Human Transcriptome

The modern science of networks has contributed to notable advances in a range of
disciplines, facilitating complex representations of biological, social, and technological
systems; a key aspect of such systems is the existence of community structures, wherein
groups of nodes are organised into dense internal connections with sparser connections
between groups [103]. Community structure detection in genome-wide gene expression data
may enable detection of regulatory relationships between regulators (e.g. transcription
factors) and their targets, and capture novel tissue biology otherwise difficult to reach.
Furthermore, it offers opportunities for data-driven discovery and functional annotation of
biological pathways.

Together with collaborators (see Section 1.4), I hypothesised that community structure
is an important organising principle of the human transcriptome, with critical implications
for biological discovery and clinical applications. Co-expression networks, in fact, encode
functionally relevant relationships between genes. These include gene interactions and
coordinated transcriptional regulation [233], and provide an approach to elucidating the
molecular basis of disease traits [117]. Therefore, reconstructing communities of genes in
the transcriptome may uncover novel relationships between genes, facilitate insights into
regulatory processes, and improve the mapping of the human diseasome.

Despite previous knowledge on the importance of transcriptomic network structures
in distinct tissues of the human body [11, 27], to the best of my knowledge this is the
first work exploring the multi-tissue modelling hypothesis we stated based on community
structure from a Graph-Dimensional representation. Therefore, this represents a new
perspective in the field of transcriptomics which I will argue to have further implications
for biological discovery. This interesting perspective was probably not explored before
due to only recently the last release of the GTEx dataset (see Section 3.1.1) was made
available to researchers as the most comprehensive human transcriptome dataset [4].

As briefly introduced in Section 2.2.2, the hypothesis explored in this chapter follows
other distinct lines of work that I bring together in this chapter and are therefore important
to highlight. Multilayer networks were thoroughly used to integrate networks from many
“-omics” in the past [130, 218, 292], whereas here I will only use transcriptomic networks.
A paper developed after the work presented in this chapter used multiplex networks
to integrate several networks of many “-omics”, this time including networks generated
from GTEx in a similar fashion like those in this chapter [47]. Previous works using
gene co-expression networks from transcriptomic datasets were previously limited by the
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number of networks they could actually integrate together using multilayer networks or
other approaches [183, 301]. In all these works, however, no communities were analysed in
the same way as in this chapter, which I find a crucial difference given the importance of
community structure in the hypothesis formulation.

This chapter presents a model of the human transcriptome as a multilayer network,
and performs a comprehensive analysis of the communities obtained to further our un-
derstanding of its wiring diagram as well as facilitate research into improved disease
diagnosis and profiling. I conduct a systematic analysis of the tissue-type specificity of the
communities in the transcriptome to gain insights into gene function in the genome and
enhance our ability to identify disease-associated genes. This study represents an effort
to fill an important gap in our understanding of the role of gene expression in complex
traits, i.e. how a gene’s phenotypic consequence on disease or trait [111] is mediated by
its membership in tissue-specific biological modules as molecular substrates. Finally, the
inter-tissue analysis of the transcriptome holds promise for identifying novel regulatory
mechanisms, enhancing our understanding of trait variation and pleiotropy1, while opening
up new possibilities for translational applications.

As I mentioned in Section 1.4, I aimed to publicly release the source code of all
my work. This is of particular importance in this chapter as I describe a resource to
catalyse further research by the scientific community, which I can only briefly summarise
in some sections. Besides code and documentation to all experiments described in this
chapter, I want to highlight that in a publicly available GitHub repository2 it is possible
to find: (1) more detailed information on the communities described in Section 3.2.2,
(2) all the documentation on how to correctly include an example of an external dataset
into the models described in Section 3.2.3, and (3) a full set of relationships between the
communities and enriched pathways from Section 3.2.4.

All in all, the three main contributions of this chapter are: (1) identification of
community structure as an important organising principal of the human transcriptome,
thus with applications for biological discovery, (2) suggestion of a presence of a hierarchy of
clusters in the transcriptome at increasingly finer scales, and (3) distribution of a publicly
available rich resource of co-expression networks, communities, multiplex architectures
and enriched biological pathways that can help catalyse hypothesis-driven research. These
contributions therefore help tackling two gaps in literature as tissue-to-tissue regulatory
studies are understudied when compared to intra-tissue ones, and I present a new approach
to quantify UMAP global structure which is not based on a single run.

3.1 Methods

3.1.1 Dataset - GTEx

The GTEx V8 dataset [4, 60] is a genomic resource consisting of 948 donors and 17,382
RNA-Seq samples from 52 tissues and two cell lines. The resource provides a catalogue of
genetic effects on the transcriptome and a broad survey of individual and tissue-specific
gene expression. Of the 54 tissues and cell lines, 49 include samples with at least 70
subjects, forming the basis of the analysis of genetic regulatory effects [4]. Therefore, only
those 49 tissues were used in this chapter.

1Pleiotropy occurs when one gene influences two or more seemingly unrelated phenotypic traits.
2https://github.com/tjiagoM/gtex-transcriptome-modelling
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The analysis was restricted to protein-encoding genes based on the GENCODE Release
26 (GRCh38) annotation. Although the GTEx dataset had annotated genes with Ensembl
IDs, those were converted to GENE IDs. During that process, duplicated and unmapped
genes were removed from downstream analyses. After this preprocessing step, the resulting
dataset is characterised by the following count statistics:

• Genes present in at least one tissue: 18,364

• Genes present in only one tissue: 412

• Genes present in all 49 tissues: 12,557

3.1.2 Accounting for Unmodelled Factors

Disambiguating true co-expression from artefacts is an important concern in the presence
of hidden variables. In order to correct for batch effects and other unwanted variation in
the gene expression data, I used the sva R package (v3.34.0). This package is specifically
targeted for identifying surrogate variables in high-dimensional datasets [211] and investi-
gating unmodelled and unmeasured sources of expression heterogeneity [171]. For each
tissue gene expression matrix, the number of components (latent factors) was estimated
using a permutation procedure, as described by Buja and Eyuboglu [45].

Subsequently, using the function sva network, residuals were generated after regressing
out the surrogate variables. The residual values, rather than the original gene expression
values, were used in the downstream analyses. For convenience, I refer to the residual
values as the ‘gene expression data’, since they represent the expression levels that have
been corrected for (unwanted) confounders.

3.1.3 Community Detection on Co-Expression Networks

For each tissue, a correlation matrix C = [zij] was created by calculating the Pearson
correlation coefficient rij for every pair (i, j) of genes. Fisher z -transformation was then
applied:

zij = 0.5× ln

(
1 + rij
1− rij

)
, (3.1)

where ln is the natural logarithm function.
For each correlation matrix, only the strongest correlations were retained (i.e. trans-

formed zij less than −0.8 and greater than 0.8) to generate a co-expression network. An
adjacency matrix A = [Aij] was defined, for each tissue, such that Aij is equal to zij if
gene i and gene j are co-expressed (retained), and zero otherwise. These networks are
undirected and without self-loops, which implies Aij = Aji and Aii = 0.

I sought to detect groups of genes in each tissue to find communities whose internal
connections are denser than the connections with the rest of the co-expression network.
To that end, I applied the Louvain community detection method [37] in each tissue to
generate a comprehensive atlas of communities. An asymmetric treatment for the negative
correlations was used, thus inducing negatively correlated genes to belong to different
communities [230]. The algorithm identifies communities by maximising the modularity
index [201], Q∗, as the algorithm progresses:

Q∗ =
1

v+

∑
ij

(
wij

+ − eij+
)
δMiMj

− 1

v+ + v−

∑
ij

(
wij
− − eij−

)
δMiMj

. (3.2)
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Here, a positive connection between nodes i and j is denoted as wij
+ and has a value

between 0 and 1; likewise, a negative connection is represented wij
− and can also have

a value between 0 and 1. eij
± is the chance-expected within-module connection weight

and calculated, for each positive/negative correspondent, as
s±i s
±
j

v±
, where s±i is the sum of

positive or negative connection weights of node i. v± is the sum of all positive or negative
edges, and δMiMj

= 1 when nodes i and j are in the same module or zero otherwise. The
Louvain method initially assigns each node to its own community and iteratively evaluates
the gain in modularity if one node is moved from one formed community to another of
its neighbourhood. I have used the Brain Connectivity Toolbox Python package v0.5.03,
where the resolution parameter γ was set to its default value, 1.

3.1.4 UMAP Embeddings

To produce a lower-dimensional representation of the original dataset, I applied Uniform
Manifold Approximation and Projection (UMAP) [190] to check the embedded structure
of all samples. The goal is to generate a map that reveals embedded structures and test
whether biologically relevant clusters can be recovered from the gene expression data.
UMAP was chosen because of its theoretical grounding in manifold theory [190], and the
substantial improvement in running time on the data compared to t-SNE, with its known
computational and quadratic memory complexity in sample size [180]. UMAP can also
capture non-linear effects in gene expression, which is preferable over more traditional
dimensionality reduction techniques such as Principal Component Analysis.

Towards this end, I analysed both the full master matrix M of scaled gene expression
in the range [0, 1] consisting of all genes (i.e. 18, 364), and a submatrix consisting of only
those genes that belong to a community in at least one tissue (i.e. 3, 259). Similarly to all
of the results in the rest of this chapter, I considered only Louvain communities with at
least 4 genes.

Drawing conclusions about relationships between clusters (tissues) from UMAP and
similar approaches must be done with caution due to some known caveats [71, “Caveats”
Section], especially when trying to interpret Euclidean distances between points [281].
UMAP emphasises local distances over global distances, which means that disconnected
clusters may change their relative positions even when running the algorithm with the
same hyperparameters but different random seeds. With this in mind, I sought to quantify
the conservation and variability of UMAP clusters (i.e. global structure), including the
relation among biologically-meaningful clusters (tissues). Such structure was characterised
using the matrix [d(i, j)] of pairwise distances for clusters i and j, representing in practice
an estimate of the sampling distribution of the global structure.

This quantification problem was approached through a non-parametric bootstrapping
procedure. From the master matrix M of gene expression, I generated a total of B
bootstrapped manifolds, each of equal size. Here, each such sample was randomly drawn
from 80% of the data points, i.e. rows in M. For the k -th sample, I constructed the

matrix V(k) = [ ̂d(i, j)(k)] of pairwise distances derived from the UMAP embeddings for
tissues i and j. Note that V(k) is a symmetric matrix with zeros along the diagonal. The

set { ̂d(i, j)(k)}Bk=1 allows us to calculate the mean and variance of the UMAP-derived

3https://github.com/aestrivex/bctpy
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estimator for d(i, j):

d(i, j) =

∑B
k=1

̂d(i, j)(k)

B
, (3.3)

σ̂2
d(i,j) =

∑B
k=1

̂d(i, j)(k)
2

B − 1
−

(∑B
k=1

̂d(i, j)(k)

B − 1

)2

. (3.4)

A heatmap can be used to visualise d(i, j) for each tissue pair (i, j).
For two tissues i0 and i1, I define a “clustering conservation coefficient” to quantify

the preservation of the clustering of tissues i0 and i1 relative to all tissues {j}:

C(i0,i1) = corr(d(i0, j), d(i1, j)), (3.5)

where corr is the correlation operator. The correlation is calculated for a pair of UMAP-
derived distance estimates across all tissues {j}. In particular, this statistic allows us to
formally test the null hypothesis of no conservation of global structure for a given pair of
tissues. This coefficient can be extended to a larger set of tissues, i0, . . . , il (e.g. the 13
brain regions), using the first order statistic:

Ci0,...,il = min
s,t∈1,...,l

C(is,it). (3.6)

Collectively, this approach provides a way to perform statistical inference on the UMAP
embedded structures.

To evaluate the relevance of the trained UMAP model generated from the GTEx
communities, I passed previously unseen data to the model for embedding into the learned
latent map. To that end, I used The Cancer Genome Atlas (TCGA) [282] gene expression
data. The TCGA is a landmark cancer genomics program, molecularly characterised over
20,000 primary cancer samples spanning 33 cancer types.

3.1.5 Prediction Power on Tissues Gene Expression

I investigated the extent to which each community’s gene expression profile was predictive
of each of the tissues; as before, Louvain communities with less than 4 genes were filtered
out from this analysis. The master matrix M, representing the entire dataset under
analysis, has 15, 201 rows representing each RNA-Seq sample from each tissue collected
from all subjects, and 18, 364 columns representing the total number of genes available. If
a value was non-existent (which may be due to the gene’s expression being tissue-specific),
a zero value is used, conveying no expression in that tissue.

For each community, the expression values of the member genes were selected from
M. With this sliced table, 49 binary classifications were performed using Support Vector
Machine (SVM), wherein for each classification, each tissue was predicted. Essentially, the
sliced table, which comprises the training data, for a k-member community can be viewed
as a collection of vectors {( ~x1, y1), . . . , ( ~xn, yn)}, where ~xi ∈ Rk is the gene expression
profile of the k genes for the i-th sample and yi ∈ {1, 0} indicates membership in the tissue
to be predicted. The goal of the classification is to separate the tissue to be predicted from
the other tissues via the largest margin hyperplane, which can be generically written as
~w ·~x+ b = 0, where ~w is normal to the hyperplane. SVM was used with a linear kernel and
weights were adjusted to be inversely proportional to class frequencies in the input data
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(this corresponds to setting the class weight parameter in scikit-learn to “balanced”). To
avoid overfitting, each classification was performed using a stratified 3-fold cross-validation
procedure, in which the F1 score metric

F1 =
2

(precision)−1 + (recall)−1
(3.7)

was used to report the prediction power across the three folds. The choice of the F1 score
instead of other metrics was because each binary classification was highly unbalanced,
i.e., a given tissue is the positive outcome, and all the other 48 tissues are the negative
outcome.

For comparison with the communities, it was also investigated how biologically mean-
ingful sets of genes encoding current biological knowledge are predictive of tissues. For
each Reactome pathway4 the expression of member genes were selected from the master
matrix M. If a gene from a Reactome pathway was not present, that gene was ignored.
The same stratified 3-fold cross-validation procedure was used here to perform 49 binary
classifications.

3.1.6 Enrichment Analysis

To evaluate the degree to which a community corresponds to well-known biological
pathways, enrichment analyses were performed using the Reactome 2016 database as a
reference. Performing enrichment analysis is a useful statistical tool used to identify groups
of over-represented genes in a large set of genes, in which such over-representation may
be associated with known biological pathways or disease phenotypes. The gseapy python
package5 was used to send calls to the Enrichr web API [167]. As per the Enrichr official
documentation, the p-value is computed using Fisher’s exact test (i.e. hypergeometric test).
Those pathways with a Benjamini-Hochberg-adjusted p-value below 0.05 were considered
significant. Louvain communities with less than 4 genes were considered not enriched.

3.1.7 Multilayer Analysis

In order to investigate the tissue-shared profiles of gene communities, as well as the
relationships between gene expression traits across tissues, I proceeded to model the
data as a multilayer network [164]. Formally, a multilayer network is defined as a pair
Λ = (G; D), where G = {G1, . . . , GL} is a set of L graphs and D consists of a set of
interlayer connections existing between the graphs and connecting the different layers.
Each graph Gl ∈ G is a “network layer” with its own associated adjacency matrix Al. Thus,
G can be specified by the vector of adjacency matrices of the L layers: A = (A1, . . . , AL).
Multilayer networks allow us to represent complex relationships which would otherwise be
impossible to describe using single-layer graphs separately.

A special case of multilayer networks is a multiplex network used in this chapter to
model the GTEx transcriptome data. In this case, all layers are composed of the same set of
nodes but may exhibit highly different topologies; in other words, the degree of node i is the
vector d[i] = (d

[i]
1 , . . . , d

[i]
L ), and d

[i]
l may vary across the layers. Interlayer connections are

established between corresponding nodes across different layers. Layers represent different

4The Reactome database is a free, open-source, curated and peer-reviewed pathway database [90].
5https://github.com/zqfang/GSEApy
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tissues, nodes represent genes, and edges between two nodes are weighted according to
the correlation weights. In the GTEx data, the correlation matrices define an adjacency
matrix Al for each layer l of the multiplex network.

Using the communities of co-expressed genes for each tissue defined in Section 3.1.3,
the so-called global multiplexity index [141] was calculated to investigate the relationships
of communities across different layers. This index quantifies how many times two nodes
(i.e. genes) are clustered in the same communities across different layers. If, for example,
gene i and gene j are clustered together in the layer of tissue T1 and of tissue T2, then the
global multiplexity index is two. In the matrix [gmi(i, j)] of global multiplexity indices
for a multiplex architecture, each element represents the number of times that two given
genes, i and j, are clustered in the same community. More formally, if L is the number of
layers, N the number of nodes for each layer, and cgi the community membership of gene i
at graph g, then the global multiplexity index gmi(i, j) for gene i and gene j, with both i
and j ∈ {0, . . . , N} is defined as follows:

gmi(i, j) =
L∑
g=1

δ(cgi , c
g
j ), (3.8)

where δ(cgi , c
g
j ) represents the Kroenecker delta function6. The value of gmi(i, j) therefore

increases by 1 if the two nodes are found to be part of the same community in a layer. If
two genes share a high value of global multiplexity index, this may indicate a greater level
of connectivity and suggest a greater functional similarity as they appear multiple times
in the same community across different layers.

I tested whether the UMAP embeddings of the communities’ transcriptome profiles
in a multiplex architecture – a subset of all communities previously interrogated – could
also recover biologically-meaningful clusters. This analysis allows an estimation of the
high-dimensional transcriptome data’s topology and tests whether additional clusters could
be uncovered at increasingly finer scales.

3.2 Results

3.2.1 Spurious Co-expression and Confounding due to Unmod-
elled Factors

The number of factors or components identified by the sva package was significantly
correlated (r ≈ 0.95, p ≈ 5.4 × 10−26) with the number of samples across tissues (see
Figure 3.1a). Notably, the greater number of such surrogate variables regressed out for
tissues with larger sample sizes recapitulates the approach used by the GTEx Consortium [4].
Specifically, the GTEx Consortium uses PEER, a related adjustment method, with 15
factors for tissue sample size N < 150 and up to 60 factors for N ≥ 350.

The impact of confound correction in co-expression analysis can be seen in Figure 3.1b.
The distribution of Pearson correlation values has more mass closer to zero with less
variance after correction, suggesting that unmodelled factors may induce spurious (or
artificially inflate) correlations in gene expression. The effect of unmodelled factors is
further illustrated in Figure 3.1, Panels (B – D), where the distribution of correlation

6The Kroenecker delta function is 1 if the variables are equal, and 0 otherwise.
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values for the covariate Age is shown for whole blood. Before correction, those values are
spread between around −0.4 and 0.4, whereas after correction the corresponding values
move towards the centre (zero) and become less dispersed. The enrichment for significant
p-values for this covariate is greatly attenuated after the correction, suggesting again that
unmeasured variables can induce spuriously significant correlations.

Notably, the variable Cohort seems to have undergone the largest change in the
correction process (this variable’s possible values are Postmortem and Organ Donor in
available tissues, except for some which can also have the Surgical value). This change
suggests that the estimation of cohort effect on gene expression can be substantially
improved by accounting for unmodelled factors.

Figure 3.1: Confounding due to unmodelled factors. (A) Relationship between the
number of inferred factors and tissue sample size. Fitted line (r ≈ 0.95, p ≈ 5.4× 10−26)
corresponds to a linear least-squares regression. The two-sided p-value is based on the
null hypothesis that the slope is zero, using the Wald Test with t-distribution for the test
statistic. (B) The difference in the variance of the distribution of Pearson correlation
values for each tissue over all genes, before and after correction. Empty cells correspond
to tissues in which only one value of the confounder is available. (C) Distribution of
Pearson correlation between the expression of a gene in whole blood and age, before and
after correction. After the correction, the correlation values move towards zero and show
considerably less dispersion. (D) The p-value distribution from Panel (C)’s values, in
logarithmic space.
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3.2.2 Atlas of Communities across Human Tissues

The Louvain algorithm identified communities in the co-expression networks for each
tissue to develop an atlas across human tissues. Summary statistics on these identified
communities can be seen in Figure 3.2. On average, a tissue was found to have 108
communities (standard deviation [SD] = 31). The highest number of communities (N =
251) occurred in “Kidney Cortex”, and the lowest number (N = 73) in “Muscle Skeletal”.
The non-solid tissues, consisting of “Cells EBV” and “Whole Blood”, have the highest
number of genes that belong to a community (i.e. at least 4,300 for each). The size of a
community varies considerably within each tissue and its distribution differs across tissues.
Indeed, even though the median community size was equal to 2 for all tissues, some tissues
had communities with size greater than 40, but always below 120. The brain tissues show
significantly higher variability (median SD = 9.9, Mann-Whitney U test p = 1.55× 10−4)
than non-brain tissues (median SD = 5.18). Thus, tissues and tissue classes may differ in
the overall topology of the communities in co-expression networks, which likely contains a
lot of tissue information.
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Figure 3.2: Summary statistics on identified communities. (A) The histogram
shows the distribution of community count in the various tissues (mean = 108, SD = 31).
(B) The scatter plot displays the community count and mean community size for each
tissue, showing a significant correlation (Spearman ρ = 0.39, p = 0.006). The highest
number of communities was observed in “Kidney Cortex” (N = 251). (C) The plot
provides the number of genes that belong to a community in each tissue, with colour
gradient used to highlight higher and lower values. The nonsolid tissues, “Cells EBV” and
“Whole Blood”, show the highest number of genes with membership in a community.

After removing the weaker correlations (−0.80 < zij < 0.80), most of the subnetworks
were already highly segregated from the rest of the network, indicating that just this
removal process could almost completely form the Louvain communities. The number
of connections coming out of communities of each size was calculated to evaluate the
segregation of those communities: for every tissue the mode was zero, and the maximum
number was never over 17. Given the thousands of genes in each tissue’s co-expression
network, the observed maximum number of connections between different communities
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(i.e. at most 17) illustrates how strong the segregation is before applying the Louvain
community analysis.

3.2.3 UMAP of Community-defined Gene Expression Manifold
and Its Persistence

Around 17.7% of the genes belong to a community in at least one tissue. Notably,
gene expression from this subset was able to recover the tissue clusters using UMAP, as
illustrated in Figure 3.3a, which means that this subset contains sufficient information to
recover the tissue clusters. The clustering of related tissues based on organ membership
(such as the 13 brains regions), or the clustering of other related tissues based on shared
function (such as the hypothalamus-pituitary complex), can be observed in the UMAP
projection. When using the complete set of genes, a similar pattern was achieved.

Taken together, these results show that gene expression from the identified communities
encodes sufficient information to distinguish the various tissues in a biologically-meaningful
low-dimensional representation.

In theory, additional clusters may be present at different scales, such as within a tissue.
Therefore, I performed UMAP analysis on the single-tissue “Whole Blood” to test for the
presence of additional clusters. Notably, no well-defined clustering was observed concerning
Cohort, body mass index (BMI), and other covariates, indicating that the sva analysis
was successful in removing potential confounders (see Figure 3.1b).

External transcriptome data can be embedded into the trained model generated from the
GTEx communities. Indeed, embedding TCGA data from 33 cancer types into the learned
UMAP models showed clustering within the testis tissue. This outcome recapitulates
two known results: (1) the GTEx finding that the testis is an outlier relative to the
other GTEx tissues in transcriptome profile [59], and (2) the role of the so-called cancer-
testis (CT) genes [55] that function as driver genes in cancer [244, 275]. Besides, UMAP
representations of the genes that belong to a GTEx-derived community recovered the
cancer types when using TCGA data to train a UMAP model. The resulting embeddings
of one run are depicted in Figure 3.4, highlighting the cross-study relevance of this model.

Using 500 bootstrapped manifolds (i.e. variable B in Section 3.1.4), I found that, on
average, related tissues tended to cluster closely together, as illustrated in Figure 3.3b.
Examples of such clusters are the 13 brain regions, the colonic and oesophageal tissues, and
various artery tissues. I also found a relationship between the average distance between
tissue clusters and the variance in the distance, showing a significant positive correlation
(Spearman ρ ≈ 0.38, p < 2.2× 10−16). Reassuringly, the tissue pairs (“Brain Cerebellum”,
“Brain Cerebellar”) and (“Skin Not Sun Epsd”, “Skin Sun Epsd”) had the lowest average
distance between clusters among all tissue pairs; the first pair consists of known duplicates
of a brain region in the GTEx data [60] and is thus expected to cluster together. Among
the tissue pairs with the highest average distance, “Adipose Subcutaneous” had an average
distance greater than 17 with each of the colonic tissues (“Colon Sigmoid” and “Colon
Transverse”), and a low variance comparable to tissue pairs with some of the smallest
average distance. Additional global patterns can be easily observed. For example, as
reflected in the heatmap, the relationship of the two skin tissues (i.e. “Skin Sun Epsd”
and “Skin Not Sun Epsd”) to all the other tissues is strongly preserved: the clustering
conservation coefficient C(i0,i1) is approximately 0.62, with p = 3.4× 10−5.
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Figure 3.3: Lower-dimensional UMAP representation of the transcriptome data
restricted to the communities and conservation of global structure. (A) UMAP
generates embedded structures through a low-dimensional projection of the submatrix
consisting of only the genes that belong to a community in at least one tissue (N = 3, 259).
Different colours are used to highlight samples belonging to distinct tissues. (B) Using
bootstrapped manifolds, the persistence of the global structure and pairwise relationships
across tissue clusters is estimated. Here, the upper-triangular matrix of the average
pairwise distances across the bootstrapped manifolds is shown, with corresponding colours
characterised by the coloured scale bar on the right.
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Figure 3.4: Lower-dimensional representation of the GTEx-derived communities
in TCGA transcriptome data. The plot shows the UMAP embedded components
through a low-dimensional projection of the submatrix consisting of only the genes that
belong to a community in at least one GTEx tissue (n = 3, 259). Different colours are
used to highlight samples belonging to distinct TCGA cancer types.

The conservation and variability of the UMAP global structure using the TCGA data
depicted in Figure 3.4 was also quantified and generated biologically consistent clusterings
for each cancer types.

3.2.4 Relationship between Tissues, Communities, and Reac-
tome Pathways

As described in Section 3.1.5, I tested individual communities for their ability to predict a
tissue. This section considers that a set of genes can predict a tissue when the average F1

score is above 0.80. Some broad patterns are noteworthy. Most of the communities from
“Whole Blood” do not have predictive power for the other tissues (see Figure 3.5a) partly
due to the stringency of the F1 threshold, which is likely to produce false negatives. This
observation indicates that the member genes in each such community from the source tissue
(“Whole Blood”) cannot “separate” the test tissue from the remaining tissues possibly
due to lack of tissue specificity of the community’s gene expression profile. However,
a community of only five genes can predict the brain region nucleus accumbens (basal
ganglia); for this community, the member genes, collectively, are “differentially expressed”
between the test brain region and the remaining tissues. Thus, although the genes are
present in “Whole Blood” (as a community), the expression profile in the test brain region
is substantially different or tissue-specific.

Prediction of tissues by Reactome pathways varies substantially. For instance, consistent
with observations for the communities, 197 Reactome pathways are not sufficient to predict
any tissue, while 164 are tissue-specific (i.e. can predict only one tissue). However, some
Reactome pathways can predict more than half of the tissues: GPCR LIGAND BINDING,
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Figure 3.5: Communities and their properties. (A) Prediction power of “Whole
Blood” communities, in F1 scores thresholded over 0.8. (B) A 15-member community in
the hippocampus is shown here as an example. An edge indicates Aij > 0.80 for genes
i and j. (C) Enrichment analysis was performed on all communities to identify known
biological processes. For example, the hippocampal community in panel (B) was found
to be significantly enriched for Reactome pathways. P-value refers to raw p-value. Red
line corresponds to the raw p < 0.05 threshold. Colour gradient reflects the adjusted
p-value. All Reactome pathways shown meet adjusted p < 0.05. (D) Heatmap displays
the correlation values for the member genes of the community in panel (B).

GPCR DOWNSTREAM SIGNALING, and SIGNALING BY GPCR predict 34, 33, and
32 tissues, respectively. This observation is perhaps expected: G-protein-coupled receptors
(GPCRs) comprise a large family of cell surface receptors that form the essential sites of
communication between the internal and external environments of cells, with a central
and widespread role in human physiology [229]. Their gene expression profile in each of
the predicted tissues differs from the remaining tissues, potentially reflecting their broad
but tissue-specific function.

Some other patterns can also be seen. The brain tissues “Brain Caudate” (basal ganglia),
“Brain Frontal Cortex”, “Brain Hippocampus”, and “Brain Nucleus” are not predicted
by any Reactome pathway, likely reflecting the fact that our current understanding (as
encoded in these pathways) have been hampered by the relative inaccessibility of these
tissues. In contrast, the two tissues cells cultured fibroblasts and whole blood are the
tissues most highly predicted by 269 and 330 Reactomes, respectively. Some tissues are
predicted by less than 5 Reactome pathways, including the tissues “Brain Amygdala”
(two), “Brain Anterior Cingulate” (one), “Brain Cortex” (two), and “Brain Hypothalamus”
(two).
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3.2.5 Enrichment of Communities for Known Biological Pro-
cesses

There were 114 communities (8.28% of all the communities with more than three member
genes) enriched for some Reactome pathway (i.e. at an adjusted p < 0.05 for level of
enrichment), thus contributing in complex ways to multiple biomolecular processes. “Whole
Blood” was the only tissue without any community enriched for known pathways, and
the “Esophagus Mucosa” was the tissue with the most communities enriched for known
pathways, with a total of 5 communities. Since the entire set of communities could fully
recover all tissues as clusters in the UMAP embeddings, these results suggest that the
remainder of the communities are likely to capture previously inaccessible and novel tissue
biology.

Notably, this analysis may uncover the role of these communities in human diseases. For
example, as depicted in Figure 3.5, a community of 15 genes in the “Brain Hippocampus”
showed a significant enrichment for diseases associated with glycosaminoglycan metabolism.
Glycosaminoglycans, which are major extracellular matrix components whose interactions
with tissue effectors can alter tissue integrity, have been shown to play a role in brain
development [187], modulating neurite outgrowth, and participating in synaptogenesis.
Alterations of glycosaminoglycan structures from Alzheimer’s disease hippocampus have
been implicated in impaired tissue homeostasis in the Alzheimer’s disease brain [146].

3.2.6 Multiplex Analysis of the Transcriptome

Five multiplex networks were used to model the various tissue interactions in the GTEx
dataset. For each multiplex architecture, only the specific component tissues were used
to construct the multiplex network, and consequently, the global community index was
calculated separately for each multiplex architecture. The five architectures analysed were:

• All Tissues: Each layer represents one of the 49 tissues analysed. This architecture
allows the investigation of gene communities shared across all tissues, with potentially
universal function.

• Brain Tissues: The 13 layers correspond to the various brain regions. This
architecture facilitates the identification of communities that may play a functional
role throughout the central nervous system (CNS).

• Brain Tissues and Whole Blood: This multiplex model consists of the 14 layers
corresponding to these tissues. This architecture allows the study of brain-derived
communities for which the easily accessible whole blood can serve as a proxy tissue.

• Brain and Gastrointestinal Tissues: The 16 layers correspond to the brain
tissues and three gastrointestinal tissues. This architecture may provide insights into
the gut-brain axis, which has attracted recent attention in the literature, such as
studies of neuropsychiatric processes and the interaction between the CNS and the
enteric nervous system (ENS)7 in neurological disorders [112, 228].

7The ENS is a large part of the autonomic nervous system that can control gastrointestinal be-
haviour [223].
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• Non-Brain Tissues: The 36 layers consist of all tissues outside the brain. This
architecture may stimulate investigations into developmental and pathophysiological
processes outside the CNS.

The groups of genes with the maximal global multiplexity index were extracted in
the five architectures, i.e., the groups of genes that share a value of 49, 13, 14, 16, and
36, respectively. These are the number of layers (tissues) in the respective architectures.
Revealing the shared community structure across the layers improves the understanding
of the functional and disease consequences of genes’ clusters. I investigated the biological
pathways in which such subgroups were involved for each architecture. The goal was to test
the communities for enrichment for known biological pathways and therefore quantify the
degree to which the communities capture the current understanding of biological processes
as encoded in the knowledge base.

Among other communities, there was a 17-member community in the “Brain Tissues”
multiplex that is significantly enriched for the nonsense-mediated decay (NMD) pathway
(adjusted p = 1.01× 10−37), which is known to be a critical modulator of neural develop-
ment and function [148]. The pathway accelerates mRNAs’ degradation with premature
termination codons, limiting the expression of the truncated proteins with potentially
deleterious effects. The community’s presence in all brain regions underscores its crucial
protective function throughout the CNS.

The “Brain and Gastrointestinal Tissues” multiplex can be used to illustrate the
capacity of this approach to investigate the relationship between two distinct systems.
Indeed, a 14-member community present in all 16 layers suggests a strong interaction
and shared function across the CNS and the ENS. Consistent with this hypothesis, the
community was found to be significantly enriched for the “metabolism of vitamins and
cofactors” (adjusted p = 6.5× 10−7), which has been shown to be responsible for altered
functioning of the CNS and ENS [185]. Although the involvement of the individual member
genes in this pathway is known, it is a novel finding that the genes are organised as a
community structure within co-expression networks persisting across the entire 16 layers
of the various brain regions and the gastrointestinal tissues.

The empirical distribution of the global multiplexity index is presented in Figure 3.6
for each of the five architectures. The maximal global multiplexity index in the five
architectures represents the groups of genes that share a value of 49, 13, 14, 16, and 36
respectively, equal to the number of layers (tissues) in the respective architectures. These
genes appear in the same community across all layers of the respective architectures. The
proportion at each value k of the index is an estimate of the probability that two genes
are clustered in the same communities across k layers.

For comparison with the UMAP embeddings generated from the set of all genes in
communities, I performed a similar analysis in the various multiplex networks. For example,
I tested whether the complete tissue clustering could be observed using just the subset
of communities across all layers of the central nervous system multiplex. I discovered a
different clustering pattern, with cultured fibroblasts clustering separately from the rest of
the tissues, which in turn no longer show well-defined clustering. This finding suggests the
presence of a hierarchy of clusters in the transcriptome at increasingly finer scales.
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Figure 3.6: Multiplex analysis. Histograms show the empirical distribution of the
global multiplexity index for each multiplex architecture. Histograms, from top to bottom,
correspond to: “All tissues”, “Brain tissues”, “Brain tissues and whole blood”, “Brain
and gastrointestinal tissues”, and “Non-brain tissues”.

3.3 Summary

This chapter developed an inter-tissue multiplex framework for the analysis of the human
transcriptome. Given the complexity of pathophysiological processes underlying complex
diseases, intra-tissue and inter-tissue transcriptome analysis should enable a more complete
mechanistic understanding. For these phenotypes, studying the interaction among tissues
may provide more significant insights into disease biology than an intra-tissue approach.
Communities in co-expression networks were shown to be enriched for some known
pathways, encoding current understandings of biological processes; however, it was also
possible to identify other communities that are likely to contain novel or previously
inaccessible functional information.

UMAP embeddings of the entire set of communities (representing only 17.7% of all
genes) fully revealed the tissue clusters. The low-dimensional representation of the subset
of communities that are in the multiplex networks did not recover the tissue clusters,
but uncovered other clustering patterns, suggesting a hierarchy of clusters at increasingly

62



finer scales. Instead of relying on a single UMAP run [75], an approach to quantify the
conservation of, and uncertainty in, the UMAP global structure was developed. New gene
expression data can be embedded into these models, facilitating integrative analyses of the
large volume of increasingly available transcriptome data. Notably, in external TCGA data,
UMAP representations of the genes that belong to a GTEx-derived community induced
clustering by cancer type, demonstrating the cross-study relevance of this approach.

This chapter presented a reference atlas of communities in co-expression networks
in each of 49 tissues and analysed them through various perspectives. Using the global
multiplexity index, I investigated the tissue-sharedness of identified communities. In
fact, communities that are shared across multiple tissues may suggest the presence of a
tissue-to-tissue mechanism that controls the activity of member genes across the layers in
the network. Such regulatory mechanisms have been relatively understudied in comparison
with intra-tissue controls. Indeed, some of the communities are shared across multiple
tissues; their dysregulation may thus lead to pleiotropic effects and contribute to known
and novel comorbidities.

In summary, I performed a network analysis on the most comprehensive human tran-
scriptome dataset available to gain insights into how structures in co-expression networks
may contribute to biological pathways and mediate disease processes. I demonstrated the
generalisability of this approach and its cross-study relevance through systematic testing
in an external dataset. Thus, this chapter provides a publicly available rich resource of
co-expression networks, communities, multiplex architectures, and enriched pathways in a
broad collection of tissues. I hope that it can catalyse research into inter-tissue regulatory
mechanisms and enable insights into downstream phenotypic and disease consequences.
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Chapter 4

A Deep Graph Neural Network
Architecture for rs-fMRI Data

Resting-state functional magnetic resonance imaging (rs-fMRI) is one of the most commonly
used, noninvasive imaging techniques employed to gain insight into human brain function.
The use of rs-fMRI data has proven extremely useful as an investigative tool in neuroscience
and, to some extent, as a biomarker of brain disease diagnosis and progression [101]. As
mentioned in Section 2.3.1, typical use of rs-fMRI data often involves using graph-theoretical
measures (such as centrality measures and community structures) to summarise high-
dimensional, whole-brain data for use in downstream tasks. As part of this process, it
is common practice to reduce the dimensionality of the data in one of three main ways:
(1) by collapsing the temporal dimension (e.g., into connectivity matrices between brain
regions ), (2) by reducing the spatial dimension (e.g., by aggregating voxel-wise signals
into predefined brain regions) [277], and (3) by employing approaches that collapse both
the temporal and spatial dimensions (e.g., in independent component analyses [30]). These
feature engineering steps are performed mostly due to the considerable volume of data in
a typical rs-fMRI dataset and its relatively low signal-to-noise ratio [246].

Although computationally beneficial, such dimensionality reduction steps inevitably
involve disregarding large amounts of information which can be useful depending on the
analysis task. For instance, collapsing the temporal dimension of rs-fMRI data reduces
the brain to a static volume where the interactions between different brain regions are
fixed over time. This stands in contrast to a growing body of research which shows that
functional connectivity in the brain is dynamic and constantly changes over time [17, 174].
As another example, association measures most commonly used are still based on linear
models, while it is well known that neuromonitoring data and brain signals, in particular,
interact nonlinearly [78, 123].

To overcome such limitations, a different approach to the analysis of rs-fMRI data would
be to devise a model that is able to combine both feature engineering and the learning of
a low-dimensional representation of the brain’s functional activity. Such a model would
need to be able to accommodate both the spatial and temporal complexities of rs-fMRI
data. To date, deep learning architectures have had great success at leveraging specific
inductive biases from complex high-dimensional data. Convolutional neural networks
(CNNs), for instance, are extremely effective at extracting shared spatial features such as
corners and edges from grid-like data (e.g., 2D and 3D images). These features can then
be combined into more complex concepts deeper within the network architecture [249].
Recurrent neural networks (RNNs), on the other hand, are able to learn features from data
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that are temporally organised as a sequence of steps [79, 80]. In contrast to both CNNs
and RNNs, graph neural networks (GNNs) can learn from data that do not have a rigid
structure like a grid or a sequence, and can be depicted in the form of unordered entities
and relations which constitute graphs (see Section 2.1.8). The formulation of GNN models
that deal with complex data structures has recently seen fast developments [288, 302] -
such models are therefore strong candidates for the analysis of rs-fMRI data.

In this chapter, I propose a model that uses GNNs to account for spatial inter-
relationships between brain regions, and temporal convolutional networks (TCNs) to
capture the intra-temporal dynamics of blood-oxygenated-level-dependent (BOLD) time
series. By incorporating GNNs and CNNs in the same end-to-end architecture, I essentially
combine intra- and inter-feature learning. In particular, GNNs can lift the limitation
of assuming linearity in the interactions between brain region-specific time series by
capturing higher-order interactions between regions of interest (ROIs). The architecture
was further engineered to specifically retain edge weights (hence circumventing the common
and arbitrary practice of thresholding and binarising adjacency matrices) and to contain
elements of explainability [14, 235]. This was done specifically to provide advantages
when a neuroscientific explanation of the inner model workings is desirable. To test
the architecture, I use the publicly available UK Biobank dataset (see Section 2.3.3),
which provides rs-fMRI scans from more than 30,000 distinct people. This dataset offers
a unique opportunity to formulate novel architectures, while supporting the need of
large datasets for reproducible findings with minimal statistical errors [186]. An ablation
analysis was also conducted on a proof-of-concept binary sex prediction task to better
evaluate the different contributions of each component of the model. Finally, to assess the
effectiveness and flexibility of the architecture, I retrain it using the multimodal Human
Connectome Project (HCP) dataset in two distinct experiments, one of which contains
multimodal neuroimaging data (i.e., rs-fMRI and structural adjacency matrices derived
from diffusion-weighted imaging).

The contribution of this chapter involves the fact that, to the best of my knowledge, this
work is the first to leverage both the spatial and temporal information in rs-fMRI data in
a single, end-to-end framework that: (1) includes temporal convolutions and graph neural
networks, (2) provides the flexibility to extract human-readable, explainability-related
patterns which are directly related to the neurobiology and neuroanatomy of the respective
brains, and (3) is able to analyse the clusters created by the graph hierarchical pooling
mechanism which turned out to carry sensible neurobiological insights. Importantly, the
model includes edge features (i.e., weights) when leveraging the graph structure in the
network; this information is often ignored in some papers which currently apply GNNs to
the study of fMRI data [163].

4.1 Related Work

Previous work using deep learning for analysing rs-fMRI can be broadly grouped by how
the spatial and temporal dimensions are processed. For the vast majority of methods,
rs-fMRI is treated as euclidean data arranged on a image grid. A commonly used image
representation within this domain is the functional connectivity matrix (FCM): a 2D
matrix constructed by using a statistical measure of similarity between ROI-derived time
series [276]. Both multilayer perceptrons (MLPs) and CNNs have been used extensively on
FCMs to learn features in order to classify autism spectrum disorder [87, 135] and attention

66



deficit hyperactivity disorder [225]. A major drawback of using FCMs is that they require
an a priori choice of similarity measure, possibly introducing unrealistic bias into the
data. For example, the often employed Pearson correlation coefficient can only measure
linear associations between BOLD signals. More recently, in line with growing interest in
dynamic functional connectivity [10, 219], CNNs have been combined with RNNs to learn
from time windowed FCMs for tasks such as fluid intelligence prediction [92] as well as
identifying major depression [290]. However, in addition to the choice of similarly measure,
the construction of classical, dynamic FCMs requires the selection of a window length,
which again is arbitrary and not trivial [143]. An alternative to the FCM representation is
to use the entire 4D brain volume timeseries as input to convolutional RNNs [3, 32, 210].
Processing voxel-wise fMRI data, however, ignores the empirical evidence that functional
brain activity may be localised depending on the task and exhibit very strong spatial
correlations [252]. This would result in learning computationally expensive features which
likely contain largely redundant information.

In line with the view of the human brain as a dynamical functional connectome, more
recent deep learning approaches treat rs-fMRI data as a graph. Within this approach, ROIs
are commonly employed to represent graph nodes, and edges between nodes are determined
by a choice of similarity measure as per FCMs [2, 252]. In this framework, GNNs can be
used to learn features between neighbouring ROIs by propagating information through the
edges which connect them. Due to their scalability and interpretability, GNNs for rs-fMRI
analysis have been widely used to model tasks such as gender classification [15, 109, 163],
age prediction [109], as well as to find imaging biomarkers for brain disorders such as
cognitive impairment [284] and autism spectrum disorder [172]. To date, the most common
type of graph convolution used for rs-fMRI analysis has been spatial convolutions [109, 173]
although spectral [166, 209] and edge convolutions [278] have also proven successful for
classification tasks. A major limitation of existing works is that graph topology is estimated
by taking a group average of FCMs [163, 278]. As a result, connectivity between subjects is
assumed to be invariant. Furthermore, the initial choice of features used to represent ROIs
is not trivial, ranging from graph theoretic measures to connectivity differences. These
limitations are addressed through the novel combined GNN and CNN model architecture
which is capable of learning from individual graph topologies as well as learning its own
nodes features.

4.2 Methods

4.2.1 Problem Definition

To represent rs-fMRI data as an undirected weighted graph, the brain is spatially parcellated
into N regions of interest (ROIs) representing graph nodes indexed by the set V =
{1, . . . , N}. Let xi ∈ RT represent the features of node i corresponding to the BOLD
time series of length T . The connections between ROIs are represented by an edge set
E ⊂ V × V composed of |E| unordered pairs (i, j), where for every edge k connecting two
nodes (i, j) ∈ E the connection strength is defined as ek ∈ R. Let the tuple G = (V , E)
denote the resulting graph. Given the graph structure G, let X ∈ RN×T , E ∈ R|E|×1, and
A ∈ RN×N denote the nodes features, edge features and adjacency matrix, respectively.
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4.2.2 Temporal Convolutional Networks

There has been evidence that a convolutional operator could perform equally well (or even
better) as compared to RNNs for sequential data. Some advantages of the convolutional
operator are, for instance: (1) lower requirements for long input sequences, especially
compared to LSTMs and GRUs, which commonly consume big chunks of memory to
store partial results for the multiple gates (convolutional kernels, in contrast, are shared
across a layer), (2) better parallelisation because a TCN/CNN layer is processed as a
whole instead of sequentially as in RNNs, and (3) easier to train (e.g., it is known that
LSTM training can commonly encounter issues with vanishing gradients). Other teams in
industry and academia have found similar results when using convolutional operations
for sequential data, for instance, in sequence-to-sequence prediction/learning [85, 115],
machine translation [156, 157], and others [58]. In summary, there is evidence that
although LSTMs have historically been used for sequential data, CNNs can achieve similar
or better performance at a significantly lower cost (I will empirically revisit this point in
Section 4.4.2).

In order to learn a representation of the temporal dynamics contained in rs-fMRI time
series, I use temporal convolutional networks (TCNs) [24]. These are a simplification over
the original WaveNet architecture used for audio synthesis [266], which has been seen to
provide significantly better results for sequence modelling in comparison to more traditional
RNN architectures (e.g., LSTMs) across a range of tasks and datasets. In particular, Bai
et al. [24] posit that convolutional networks should be seen as the natural starting point
for sequence modelling tasks, which makes them ideal for extracting information from
rs-fMRI time series.

TCNs are based on dilated causal convolutions [296], which are special 1D filters where
the size of the receptive field exponentially increases over the temporal dimension of the
data as the depth of the network increases. The padding of the convolution is ‘causal’
in the sense that an output at a specific time step is convolved only with elements from
earlier time steps from the previous layers, thus preserving temporal order. More formally,
given a single ROI time series xi ∈ RT and a filter f ∈ RK , the dilated causal convolution
operation of x with f at time t is represented as

xi ∗ f(t) =
K−1∑
s=0

f(s)xi(t− d× s), (4.1)

where d = 2l−1 is the dilation factor which, depending on the layer l controls the number
of time steps successively skipped. This relation between the dilation factor and the
layer l is the one defined in the original paper [24], which I follow in this chapter. When
compared with the original TCN architecture, batch normalisation was used instead of
weight normalisation because it empirically provided a more stable training procedure in
terms of loss evolution.

4.2.3 Graph Network Block

In this section I will present the formalisation of graph neural networks followed in this
chapter, which can be seen as a specific case of the more general one introduced in
Section 2.1.8.

Battaglia et al. [29] formalise a graph network (GN) framework through the definition
of functions that work on graph-structured representations. The main unit of computation
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in the GN framework is called the GN block and contains two update functions and one
aggregation function working on the edge and node levels.

The first operation of this GN block, which can be broadly defined as the edge model,
concerns the update function φe, which computes updated edge attributes for each edge k
based on the original edge’s attributes ek and the features of the connected nodes i and j:

e′
k = φe (ek,xi,xj) . (4.2)

Note that for rs-fMRI graph representations, each edge originally contains a single value
(i.e., ek ∈ R), but after this operation φe, the resulting dimensionality can be different:
e′
k ∈ RM , where M >= 1. Then, in what can be broadly defined as the node model, the

block computes updated node features. Firstly, for each node i, it aggregates the edge
features per node:

e′
i = ρe→v (E ′i) , (4.3)

where E ′i = {(e′
k, i, j)}

E
k=1 is the set of edges starting in node i, with node j connected

with node i through edge k. Importantly, ρe→v needs to be invariant to edge permutations
to account for the unordered structure of the data. Averaging and summation are examples
of such operations invariant to edge permutations.

Finally, the updated node features are computed using another update function at the
node level, for each node i:

x′
i = φv (e′

i,xi) . (4.4)

The aggregation function ρe→v needs to be invariant to edge permutations, but the
update functions (i.e., φe and φv) are more flexible. For example, if the features are
vectors in 1D space, the update functions could be implemented as multi-layer perceptrons
(MLPs); however, a TCN or RNN could be more suitable if the features represent images
or sequences, respectively. Section 4.3.2 details how these functions were implemented.

Although the rs-fMRI graph representation contains undirected edges, the GN block
requires directed edges. To overcome this issue, every time there is a connection between
any two nodes i and j, it is assumed the existence of two edges (ek, i, j) and (ek, j, i), one
for each direction. The original GN block [29] further contains one update function and
two aggregation functions for global (i.e., graph-level) features; however, this formalisation
it is not applicable in the fMRI data representation of this chapter.

4.2.4 Graph Pooling

After the neural network processes the input as described in the previous sections, each
node in the graph will contain a node-wise representation (i.e., a feature vector) as a
result. For the prediction task described in this chapter, where a graph-level (as opposed
to node-level) prediction is required, these representations need to be pooled (i.e., collated)
to be used for a final downstream prediction task.

To this end, it is common practice to employ a global pooling mechanism, in which node
features are pooled across the graph (e.g., by averaging or concatenating all node features),
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thus creating a final, low-dimensional embedding representation of the graph itself. Given
the graphs used in this chapter all have the same number of nodes, a concatenation pooling
mechanism is indeed possible.

However, assuming that distinct nodes (i.e., brain regions) have different levels of
importance for the downstream prediction task [137, 161], a hierarchical (as opposed
to flat) pooling mechanism could create richer embeddings. To this end, I employ the
differentiable pooling operator introduced by Ying et al. [294], commonly called DiffPool,
which learns how to sequentially collapse nodes into smaller clusters until only a single
node with the final embedding exists.

When describing a Graph Network (GN) block, a sparse representation of nodes and
edges is used to describe the operations that a GN block can have; however, DiffPool
works on dense representations of a graph. In other words, a graph G is represented by
a dense adjacency matrix A ∈ RN×N and a feature matrix X ∈ RN×F , where N is the
number of nodes and F the number of features in each node.

The DiffPool operator, at layer l, thus receives both an adjacency matrix and a node
embedding matrix, and computes updated versions of both:

A(l+1),X(l+1) = DiffPool
(
A(l),X(l)

)
. (4.5)

To achieve this, the DiffPool operator uses a graph neural network (GNN) archi-
tecture. Specifically, the same GNN architecture is duplicated to compute two distinct
representations: a new embedding Z ∈ RN(l)×F ′ and an assignment matrix S ∈ RN(l)×N(l+1) :

Z(l) = GNNl,embed

(
A(l),X(l)

)
(4.6)

S(l) = softmax
(
GNNl,pool

(
A(l),X(l)

))
, (4.7)

where N(l) is the number of nodes in layer l, N(l+1) the new number of nodes, each
corresponding to a cluster (N(l+1) < N(l)), and F ′ the number of features per node, which
can be different from the original size F from the matrix X.

The operator ends with the creation of the new node embedding matrix and adjacency
matrix, to be inputted to the next layer:

X(l+1) = S(l)TZ(l) (4.8)

A(l+1) = S(l)TA(l)S(l), (4.9)

where X(l+1) ∈ RN(l+1)×F ′ and A(l+1) ∈ RN(l+1)×N(l+1) . Overall, equations 4.6-4.9 are
the ones responsible to implement Equation 4.5.

4.3 Experiments Overview

4.3.1 Main Dataset - UK Biobank

Subject-level structural T1 and T2-FLAIR data as well as ICA-FIX [234] denoised rs-fMRI
data were obtained from UK BioBank (application 20904) [48]1. All data were acquired on

1https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
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a standard Siemens Skyra 3T scanner running VD13A SP4, with a standard Siemens 32-
channel RF receive head coil. The structural data were further preprocessed with Freesurfer
(v6.0)2 using the T2-FLAIR weighted image to improve pial surface reconstruction, similarly
to Glasser et al. [122]’s pipeline, as briefly mentioned in Section 2.3.3. Reconstruction
included bias field correction, registration to stereotaxic space, intensity normalisation,
skull stripping, and white matter segmentation. When no T2-FLAIR data were available,
Freesurfer reconstruction was done using the T1-weighted image only. Following surface
reconstruction, the Desikan-Killiany atlas [70] was aligned to each individual structural
image, and ROIs were mapped into each individual’s space for subsequent time series
extraction. To this end, the same atlas was aligned to the functional denoised rs-fMRI data
(490 volumes TR/TE = 735/39.00 ms, multiband factor 8, voxel size: 2.4×2.4×2.4, FA=52
deg, FOV 210x210 mm) using the warping parameters computed during the structural-to-
functional alignment obtained using FSL’s linear registration (FLIRT), and mean BOLD
time series (490 timepoints per scan) were extracted for each ROI. The time series were then
scaled subject-wise using the median and interquartile range according to the RobustScaler
implementation in the scikit-learn [215] python package. Edge weights were defined as full
correlations calculated with the Ledoit Wolf covariate estimator using the nilearn python
package3. Figure 4.1 shows an example scaled time series and the resulting example graph
from a single subject. The total number of subjects used from the UK Biobank was 35,159,
in which 18,649 were females and 16,510 were males (18, 649/16, 510 ≈ 1.13). The median
age was 64, with a minimum age of 44 and a maximum of 81.
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Figure 4.1: Left: Mean BOLD time series extracted from four brain regions (see legend)
from one subject’s data, after scaling. Each time point takes 0.735 seconds. Right: Graph
representation of the same subject’s data, at 10% threshold as described in Section 4.3.2.
Thicker edges represent a stronger correlation between nodes, in this case with values
between approximately 0.54 and 0.87. Each node is labelled and coloured according to the
brain region it represents (i.e., T/F/O/P/I correspond to Temporal, Frontal, Occipital,
Parietal, and Insula).

2http://surfer.nmr.mgh.harvard.edu/
3https://nilearn.github.io/
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4.3.2 Model Implementation

A conceptual summary of the neural network architecture used in this chapter is shown in
Figure 4.2, which was implemented using Pytorch [212], and Pytorch Geometric [96] for
the specific graph neural network components. The edge feature matrix E ∈ RE×1 defined
in Section 4.2.1 was implemented as two sparse matrices: a sparse representation of the
adjacency matrix Ei ∈ R2×E, and a sparse representation of the edge features Ea ∈ RE×1

(i.e., there was only one feature per edge corresponding to the correlation value). The
number of nodes N was 68 (corresponding to each brain region from the Desikan-Killiany
atlas), the number of node features F was the number of timepoints (i.e., 490), and E is the
number of edges in the graph. The number of edges depends on the threshold percentage
used to retain only the strongest correlations. Given the non-conclusive evidence on the
optimal threshold percentage in the vast majority of functional connectivity literature [114],
in this work this threshold was included in the hyperparameters to be optimised.

Edge Model Node Model

Ea

Ei

X′

Ea

Ei

X′
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Ei φeTCN

X X′
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A DiffPool
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RN×16
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RN×16
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Temporal Model

Concatenation

Figure 4.2: Main working blocks of the spatio-temporal model. The temporal model creates
an initial representation from the original node features X (i.e., temporal dynamics). This
is followed by transformations operated by the Graph Network Block which leverages the
structure of data represented in edge features Ea and its sparse connectivity Ei. Finally,
a Pooling mechanism (either DiffPool or concatenation) creates a graph representation
which is flattened and employed for a final prediction task.

The full list of hyperparameters and respective value ranges were as follows:

• dropout: [0, 0.5] (uniform distribution)

• threshold: {5, 10, 20, 30, 40} (categorical)

• learning rate: [1e−5, 1e−1] (log uniform distribution)

• weight decay: [1e−12, 1e−1] (log uniform distribution)

The model starts by employing a temporal convolutional network (TCN) architec-
ture [24] to extract a lower-dimensional embedding representation from the rs-fMRI time
series in each node. This was implemented by using three blocks, each of which containing
two layers of 1D convolutions, 1D batch normalisation, ReLU activation, and dropout.
Each block uses a kernel with size 7 (i.e., K = 7 in Equation 4.1), containing a skip
connection, and increases the number of output channels at each block, specifically 8, 16,
and 32. Dilation factor d was set to d = 2l−1, where l is the block (i.e. l ∈ {1, 2, 3}). After
these three blocks (i.e., six layers), node features from all channels are flattened to form
the input to a linear transformation which reduces each node representation to a fixed
embedding of size 16. These transformations thus reduce the original node feature matrix
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from size N × T to size N × 32 × T after the three blocks, and finally to size N × 16,
corresponding to the final embedding.

The Graph Network (GN) block is then applied, in which the update functions φe and
φv in equations 4.2 and 4.4 are multi-layer perceptrons (MLPs), and the function ρe→v

in Equation 4.3 is a set of aggregators following Corso et al. [62]’s work (i.e., edge-wise
mean, min, max, standard deviation, and sum). I stack 3 GN blocks, after each of which
an 1D batch normalisation over the node’s features and a ReLU activation are applied.
The original dimensions of X, Ei, and Ea before the GN block are kept after these
transformations.

Two types of pooling mechanisms were analysed, both of which reduce the node feature
matrix from a size of N × 16 to a size of 1× 16: a concatenation over all node’s features
followed by a single-layered MLP, and the hierarchical pooling mechanism (i.e., DiffPool).
For DiffPool, which expects a dense graph representation, data are first transformed into
a symmetric adjacency matrix A ∈ RN×N , which is a weighted matrix when considering
edge features, and binary otherwise. Similarly to the original DiffPool paper [294], DiffPool
employs three layers of the graph neural network operator from Morris et al. [195] (to
make use of weighted adjacency matrices) followed by a 1D batch normalisation, with a
final skip connection.

4.3.3 Training Procedure

In order to assess the validity of the model, I performed proof-of-concept experiments
through the well-known binary sex prediction task [151, 283]. I used a 5-fold stratified
cross-validation procedure: the UK Biobank dataset was divided into training and test
sets five times, in which each test set corresponds to 20% of the original size, and a sample
would only belong to a test set once (i.e., all test sets are mutually exclusive). This
division was done in a stratified fashion considering the sex label, bucketised age, and
bucketised BMI measures (for each variable, eight equal-sized buckets were created based
on sample quantiles). For each test set, the training set is further divided once to generate
single inner training and validation sets, using the same stratification strategy as for the
training/test case.

The neural network was trained over 150 epochs with the RMSprop optimiser [262]
and Binary Cross-Entropy loss function. The training procedure was set to stop early if
the validation loss did not reduce further after 33 consecutive epochs. Learning rate is
reduced by a factor of 0.1 after 30 epochs of validation loss not improving (i.e. when the
learning plateaus for 30 consecutive epochs). A hyperparameter search was included in the
inner training/validation sets, in which 25 random runs were launched exploring random
values of dropout, edge threshold, learning rate, and weight decay (see Section 4.3.2 for
ranges explored). In each random run, the model with the smallest validation loss was
saved, and the model with the smallest validation loss across the 25 runs was selected
to be evaluated in the test set. This procedure is done separately for each test set, and
metrics are then averaged across the five test sets.

Weights & Biases [35] was used to log the training procedure and generate the random
hyperparameters for all the 25 models in each inner sweep. These inner sweeps were run
across two different servers, and each model took between 20 minutes and 11 hours to train
depending on GPU type and early stopping. All these details are stored using Weights &
Biases, and can be accessed through my public repository (see Section 1.4). Figure 4.3
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Figure 4.3: Values of hyperparameters corresponding to each validation loss achieved
for one illustrative inner sweep of one fold. For each one of the 25 training runs (each
represented by a curved line), a set of random values is chosen for dropout, learning rate,
edge threshold and weight decay, which ultimately results in the model’s validation loss.

shows the results for the inner sweep of one of the folds for illustrative purposes. While a
certain amount of variability is visible, some trends are evident in this particular split:
the best models (i.e., with lower validation loss) tend to be achieved with higher edge
thresholds, higher learning rates, and lower dropout rates. It should be highlighted that
different sweeps could result in different trends.

4.3.4 Evaluation

As shown in Figure 4.2, the model consists of (1) a TCN block that learns intra-temporal
features from the mean BOLD time series of each ROI, followed by (2) a GN block which
leverages the spatial inter-relationships between ROIs, and finally (3) a pooling mechanism
which leverages all the information in the input, from the temporal rs-fMRI dynamics to
the graph structure and the edge features of that graph.

To understand the inner workings of this combination, I conducted an ablation analysis
to quantify the contributions of each component of the model for the specific prediction
task. Firstly, the two cases where the GN block is not used are considered, hence essentially
evaluating the importance of edge weights for this prediction task. In one case the graph
structure is completely ignored (i.e., no GN block and concatenation pooling), and in
another case a binary graph is used only for the final hierarchical pooling part (i.e., no
GN block and DiffPool applied to a binary graph).

In order to investigate the influence of the different GN components, I consider not only
the case where both node model and edge model are used in the GN Block, but also a case
where only the node model is applied. For each of these two cases, both a concatenation
pooling and DiffPool with weighted adjacency matrices are considered.

The model is compared with two deep learning models. The first one, by Gadgil et al.
[109] (named CNSLAB) is based on a voting scheme across timesteps, and the second,
by Wang et al. [278] (named cGCN), uses averaged FCMs. For both, I used the best
hyperparameters selected from each paper/repository and trained those models on my
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preprocessed data.
The model is also compared with baseline models where data structure is not leveraged;

here, the entire data representation is flattened and fed into two non-deep learning
models, namely: (1) a support vector machine (SVM) classifier with a linear kernel and
hyperparameter search over the regularisation parameter, and (2) a XGBoost [57] classifier
with hyperparameter search over several parameters.

4.3.5 External Multimodal Dataset - Human Connectome Project

To further evaluate the effectiveness and flexibility of the end-to-end architecture, its
behaviour is analysed in a multimodal setting, i.e. when adjacency matrices and time-
series are derived from distinct imaging procedures (rs-fMRI and diffusion-weighted MRI,
respectively). I employed the preprocessed Human Connectome Project (HCP) rs-fMRI
data. This dataset consists of four 15-minute-long fMRI sessions (TR = 0.72s) per subject,
acquired on a 3T scanner with isotropic spatial resolution of 2mm in 1,003 healthy subjects,
and preprocessed according to Glasser et al. [122]. For each subject, this results in 4
distinct sessions/samples per subject with 1,200 timesteps for each sample and component.
In order to ensure comparability to the UK Biobank experiments, every timeseries was
truncated to 490 timepoints. Similarly to the steps described in Section 4.3.1, the Desikan-
Killiany atlas [70] was aligned to each individual structural image, warped into single
subject space, and employed to extract ROI- and subject-wise timeseries which were scaled
subject-wise. Diffusion data was processed locally using multi-tissue, multishell constrained
spherical deconvolution [150] to obtain orientation distribution function estimates, which
were then passed to probabilistic fiber tracking (108 tracks, subsampled to 107 tracks
through Spherical-deconvolution Informed Filtering of Tractograms [245]). Structural
connectivity matrices were obtained by length-normalised streamline counts between the
same ROIs described above. A total of 3,668 graphs were used in which 1,976 were females
and 1,692 were males (1, 976/1, 692 ≈ 1.17). Nodes correspond to Desikan-Killiany ROIs,
node features correspond to 490 time points, and the adjacency matrix corresponds to the
structural connectivity extracted from tractography.

All training and evaluation steps were kept identical across all datasets.

4.4 Results

4.4.1 General Results

Table 4.1 shows the results of the ablation analysis across three different backbones - no
graph block, only node model, and full graph network block - each with two different
aggregators (i.e., concatenation and DiffPool). For notation purposes, each one of these
cases is described in the form “Backbone → Aggregator”, in which Aggregator can be
“Concat” (i.e. Concatenation) or “DiffPool”, and Backbone can be “N” for only node model,
“N + E” for both node model and edge model (i.e., full GN Block), and empty otherwise.
The table also includes results from the baselines experiments.

The models developed in this chapter perform significantly better as compared to all
baselines but in which the model without a GNN block (i.e., “→ Concat’) is similarly
good. The SVM baseline performs worse overall and involves an increase in the standard
deviation of performance parameters, possibly indicating that the deep learning model
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Table 4.1: Ablation analysis, with metrics averaged across the five test sets, with standard
deviation in parenthesis. Aggregator on the right-hand side of the arrow, “N” corresponds
to only node model, and “N + E” corresponds to full Graph Network block. Params
stands for number of parameters.

Model AUC Accuracy Sensitivity Specificity Params

N + E → Concat 0.92 (0.004) 0.85 (0.006) 0.85 (0.006) 0.84 (0.012) 291,898

N + E → DiffPool 0.82 (0.020) 0.75 (0.016) 0.72 (0.030) 0.77 (0.025) 287,420

N → Concat 0.92 (0.003) 0.84 (0.004) 0.84 (0.028) 0.85 (0.029) 291,337

N → DiffPool 0.84 (0.020) 0.76 (0.020) 0.75 (0.013) 0.77 (0.038) 286,859

→ DiffPool 0.84 (0.010) 0.76 (0.008) 0.75 (0.019) 0.77 (0.023) 278,843

→ Concat 0.92 (0.012) 0.84 (0.013) 0.84 (0.024) 0.84 (0.023) 283,321

CNSLAB [109] 0.86 (0.003) 0.78 (0.005) 0.76 (0.024) 0.79 (0.018) 198,937

cGCN [278] 0.77 (0.021) 0.70 (0.018) 0.66 (0.028) 0.74 (0.040) 45,065

XGBoost 0.89 (0.003) 0.81 (0.005) 0.80 (0.008) 0.82 (0.006) -

SVM 0.79 (0.015) 0.79 (0.017) 0.82 (0.098) 0.76 (0.101) -

is more robust to different dataset divisions (i.e., folds), while retaining the flexibility
and representation ability described above. Using DiffPool as a final aggregator appears
to result in worse overall performance when compared to the concatenation counterpart
and, in some metrics, to some baselines. Using the edge model did not bring significantly
better results when compared to using the node model only, possibly indicating that the
information contained in the edge attributes is successfully leveraged by the node model
alone for this particular prediction task.

The results presented so far consider an adjacency matrix threshold below 50% as a
hyperparameter at training time, a common data reduction practice in the connectivity
analysis field. These results were further analysed when using no threshold at all, and
the type of activation function was explored as a hyperparameter instead (i.e., ReLU or
tanh activations). This choice was made explicitly since retaining 100% of the adjacency
matrix elements results in a share of negative correlation elements, whose physiological
significance is likely to be important in brain connectivity [299]. The results of this analysis
are presented in Table 4.2.

The performance was slightly lower for most cases which did not include a threshold,
especially for the N + E → DiffPool model. A possible explanation would be the excessive
“noise” (i.e., low, possibly spurious correlations) not allowing the graph’s dominating spatial
structure to be successfully leveraged in a practical timeframe, in turn possibly resulting in
some degree of overfitting. However, performance metrics remain comparable or better to
what is illustrated in Table 4.1, suggesting that these models are still able to extract spatial
information from the data after training despite of the significant increase in memory
usage.
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Table 4.2: Results with no thresholded graphs, with metrics averaged across the five test
sets, with standard deviation in parenthesis. Aggregator on the right-hand side of the
arrow, “N” corresponds to only node model, and “N + E” corresponds to full Graph
Network block.

Model AUC Accuracy Sensitivity Specificity

N + E → Concat 0.92 (0.002) 0.84 (0.004) 0.85 (0.014) 0.83 (0.017)

N + E → DiffPool 0.77 (0.012) 0.70 (0.011) 0.68 (0.080) 0.72 (0.067)

N → Concat 0.93 (0.003) 0.85 (0.003) 0.83 (0.017) 0.86 (0.019)

N → DiffPool 0.85 (0.007) 0.77 (0.008) 0.77 (0.026) 0.77 (0.017)

4.4.2 Evaluating Architectural Choices

To better understand the utility of TCNs when compared to the more traditional LSTMs, I
reran six ablations using the UK Biobank dataset, in which the TCN block was substituted
with a LSTM block. Striving for a fair comparison between LSTM and TCN, I used the
same number of layers in both (i.e., three layers), and chose the feature dimension in the
hidden state such that the total number of learnable parameters would be similar. The 25
runs per fold have the same hyperparameter ranges in both the TCN and LSTM cases.
Table 4.3 shows that the LSTM models achieve similar performance to the TCN models;
however, this comes at a significantly higher computational cost. Due to computational
constraints, I am not able to fairly compare the runtimes among all models because of
the use of different servers with different GPU cards. However, there are two folds in the
“N → DiffPool” model (i.e., folds 4 and 5) which were run in the same GPU for both the
TCN and LSTM cases; in this case, the average runtime per model training went from 1
hour and 35 minutes (fold 4) and 1 hour and 38 minutes (fold 5) in the TCN case, to an
average of 3 hours and 14 minutes (fold 4) and 2 hours and 47 minutes (fold 5) in the case
of the LSTM. Given that these specific four folds were run on the most recent NVIDIA
A100 GPUs, which are able to speedup runtimes by a large factor when compared to older
GPUs, I expect these differences to be more striking when running the models on more
commonly used hardware.

In summary, these experiments confirm findings that RNNs and TCNs can provide
similar performance, but the former come with a significantly higher computational cost.

The impact of including the TCN block in the model was further evaluated. In this
“no TCN” experiment, I omitted the TCN block and therefore only the GNN components
are present, with a much larger temporal feature representation (i.e., 490 raw timepoints
instead of the 16 features created by the TCN block). Table 4.4 shows that performance
metrics were similar between the TCN and “no TCN” versions, but the latter resulted
in an almost 100-fold increase in the number of parameters. This means that removing
the TCN block came at a very significant cost of an unnecessary explosion in the number
of learnable parameters, making the model unnecessarily complex both at training and
test time. The important task of finding a good representation in machine learning goes
therefore beyond the simple performance analysis (i.e., metrics), and by using a TCN
block it is possible to find a lower embedding in a realistic time/complexity frame.
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Table 4.3: Results when using an LSTM instead of a TCN in the temporal block (UK
Biobank rs-fMRI dataset).

Model AUC Accuracy Sensitivity Specificity

N + E → Concat 0.93 (0.002) 0.85 (0.004) 0.85 (0.006) 0.85 (0.005)

N + E → DiffPool 0.84 (0.014) 0.76 (0.015) 0.74 (0.051) 0.77 (0.031)

N → Concat 0.93 (0.004) 0.85 (0.007) 0.85 (0.020) 0.86 (0.019)

N → DiffPool 0.84 (0.020) 0.76 (0.017) 0.78 (0.025) 0.74 (0.035)

→ DiffPool 0.82 (0.035) 0.73 (0.034) 0.73 (0.083) 0.74 (0.090)

→ Concat 0.91 (0.003) 0.83 (0.003) 0.82 (0.020) 0.83 (0.012)

Table 4.4: Results when no TCN block is used to train and evaluate on the UK Biobank
dataset.

Model AUC Accuracy Sensitivity Specificity Params (Before)

N → Concat 0.93 (0.004) 0.85 (0.004) 0.85 (0.014) 0.86 (0.013) 23,541,071 (291,337)

N + E → Concat 0.93 (0.002) 0.85 (0.003) 0.84 (0.017) 0.86 (0.015) 24,022,742 (291,898)

4.4.3 Visualisation of TCN Kernels

The weights of the TCN layers can be visually inspected. I visualised the first two layers
of one of the trained N + E → Concat models. Figure 4.4 shows the weights learned from
the first TCN layer (each row corresponding to one of the 8 output channels of that layer),
while Figure 4.5 depicts the same for the second TCN layer (each row corresponding to
one of the 8 output channels and the columns corresponding to the 8 kernels of size 7
coming from the previous 8 channels).

In both figures, and with little exceptions, it can be seen that the output channels
in the first two TCN convolutional layers will be a non-trivial weighted multiplication of
input channels, as illustrated by the patterns in the kernel weights. Given the qualitative
variability observed in these weights (which are learned at training time), I argue that
these kernels might be filtering and selecting different, non-redundant patterns present
in the original time series; however, further work is needed to actually prove that these
kernels are not redundant patterns. One possible counterexample is the kernel for the
7th output channel in the first TCN convolutional layer illustrated in Figure 4.4, which is
essentially applying a simple low pass filter by smoothing the original time series from
the input channel. It could be possible in potential future work that quantitative analysis
and comparison of the kernel weights could yield interpretable information on which type
of brain dynamics may contribute most to the final prediction. Given that these weights
are also influenced by additional factors such as normalisation strategy and subsequent
non-linear operations, further research is needed in order to establish a framework to fully
exploit this information.
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Figure 4.4: Weights of the kernels in the first TCN convolutional layer in a N + E→ Concat
model. Rows correspond to the 8 output channels of this layer, and each column is a
position in the kernel array of size 7.
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Figure 4.5: Weights of the kernels in the second TCN convolutional layer in a N +
E → Concat model. Rows correspond to the 8 output channels of this layer, and each
column is a position in the 8 kernels of size 7 that come from the 8 input channels (56
columns in total).

4.4.4 Explainability of DiffPool Clusters

Although deep neural networks are usually regarded as “black boxes”, I strived to inject
explainability elements by inspecting which mechanisms were learned during training.
To this end, I designed a strategy to inspect the hierarchical spatial pooling mechanism
provided by the DiffPool architecture. The assignment matrices from the first DiffPool
layer S(1) (see Equation 4.7) are analysed over all participants across all test sets. This is
of particular interest because it corresponds to an aggregation of subsets of brain regions
which the architecture has considered optimal while learning a particular prediction
task. These aggregations can therefore be considered “optimal” for that task within this
architecture, and provide insight into the neurophysiology which may drive the formation
of such patterns. An assignment matrix corresponds to how the original nodes in the graph
will be mapped into new nodes. In this respect, a simple and useful way of summarising this
behaviour across individuals is to count how many times two ROIs have ended up in the
same cluster, regardless of cluster size and number. More formally, an association matrix
S′ ∈ R68×68 is created, where each element S ′i,j is the number of times brain regions i and
j have been assigned together in the first DiffPool layer. This means that the higher the
value of S ′i,j , the more often information from brain regions i and j is pooled when learning
to predict binary sex. It is important to note that matrix thresholding (see threshold

hyperparameter in Section 4.3.2) can - and often will - introduce disconnected nodes in the
graph. Since the number of disconnected nodes would vary across individuals, this would
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introduce unrealistic imbalances/biases in the association matrix S′; therefore, in this
section, I only employed unthresholded matrices. In specific, I used the best performing
DiffPool model (i.e., N → DiffPool) described in Section 4.3.2.

Figure 4.6 depicts the association matrix S′ for the best performing DiffPool model
(i.e., N → DiffPool) trained on unthresholded matrices, with dendrograms resulting from
hierarchical clustering of this latter matrix (performed for visualisation purposes). The
hierarchical clustering algorithm and the corresponding dendrograms are calculated using
the seaborn [280] python package. In addition, a more traditional brain connectivity
visualisation is generated by selecting the four main clusters defined by the dendrograms
for the N → DiffPool model and overlaying their anatomical correspondence on a sample
brain surface in Figure 4.7.

An advantage of this explainability strategy (i.e., the use of the association matrix S′)
is the flexibility inherent in the multiple granularities provided by hierarchical clustering.
When choosing large clusters (e.g., four like in Figure 4.7) one can illustrate the general
aggregation patterns across the brain’s anatomy, while by selecting smaller clusters (e.g.
twelve clusters) one can reveal more local patterns in the data. I consider that these
different levels of granularity are an advantage of using DiffPool to help explain the model,
in practice revealing different scales of explainability.

When looking at how the GNNs clustered the brain regions to optimise and achieve
best sex prediction, it is possible to find that clustering into four sets of brain regions
showed interesting properties in terms of neurobiological explainability. More specifically,
the brain regions were grouped in a manner that mirrors to a certain degree the well-
known cytoarchitectural and functional properties of the cerebral cortex. For example, in
Figure 4.7, cluster 1 (dark blue) included the bilateral frontal cortex as well as occipito-
parietal regions that have a well-known role in working-memory, executive functions, and
visuo-spatial processing, amongst many other cognitive functions. The left temporal cortex
grouped with the paracentral lobule, while the right temporal cortex clustered with the
pre-cuneus (light green and light blue, respectively). Cluster 3 (dark green) included
several midline cortical areas that form the classic limbic-emotional system.

I do not wish to overinterpret these results or make “reverse neuroscience” inferences
in the sense of interpreting post hoc the behavioural meaning of a set of regions without
having directly analysed their behavioural relevance. However, I speculatively note that
the clusters emerged may have some neurobiological relevance in terms of explaining some
of the behavioural differences described between males and females in terms of cognitive,
motor and emotional skills [202, 216]. Future work, particularly directed at investigating
the links between brain and behavioural measures, is warranted to confirm whether the
clustering of regions that this model has generated to achieve optimal sex classification is
relevant at phenotypical level.

To evaluate the robustness of the DiffPool clusters, I compared the association matrices
S′ for all the five folds for the best performing DiffPool model (i.e., “N → DiffPool”)
trained on the unthresholded matrices (see Figure 4.8). Despite some differences, it is
possible to see a similar overall qualitative structure across the folds. To quantify this
difference, the normalised difference between every pair of association matrices i and j is
defined as:

Normalised difference =
S′

i − S′
j

S′
i + S′

j

. (4.10)
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Figure 4.6: Upper-triangle of the association matrix S′ for N → DiffPool model generated
when predicting binary sex on unthresholded matrices, with dendrograms from hierarchical
clustering. Each element S ′i,j indicates how many times brain regions i and j are pooled
together. On the lower left corner, a graph representation of the same association matrix
S′, thresholded at 25% with nodes identified and coloured according to their general brain
region (i.e., T/F/O/P/I correspond to Temporal, Frontal, Occipital, Parietal, and Insula);
thicker edges represent a higher S ′i,j value, in this graph representation ranging from 23, 911
to 34, 503.

The various normalised differences can be seen in Figure 4.9, with every pair showing
an average normalised different below 30%, therefore demonstrating an acceptable stability
and robustness of the clusters learned by DiffPool across folds.

4.4.5 Evaluation on an External Multimodal Dataset

Table 4.5 shows the results when training and evaluating the architecture on the Human
Connectome Project (HCP) dataset, both for the multimodal (rs-fMRI and diffusion data)
and unimodal (only rs-fMRI data) cases. Performance metrics of the developed model
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Figure 4.7: Four main brain clusters on association matrix S′ generated from N→ DiffPool
model predicting binary sex on unthresholded matrices. Each colour corresponds to one
cluster.
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Figure 4.8: Association matrices S′ for all the five folds for the model “N → DiffPool”
trained on the unthresholded matrices.

are lower, as compared to the UK Biobank analyses, when considering only rs-fMRI data
(i.e., 3-5% difference for concatenation and around 20% difference when using DiffPool).
This may illustrate known concerns about the behaviours of deep learning models in
general, and graph learning models in particular, when data is scarce; indeed, in the case
of rs-fMRI data only, the non-DL baselines reach similar, or slightly better performances
when compared to all DL models (both my model and the DL baselines), confirming
that DL models can struggle with smaller datasets. However, in the multimodal case,
when complementary information from both rs-fMRI (i.e. functional data) and diffusion-
weighted MRI (i.e. structural data) are used, my model performs notably better than
all baselines. This highlights how the model can flexibly leverage multiple data sources,
achieving performances that in some cases are higher than the unimodal results obtained
with the much larger UK Biobank dataset. This also emphasises the anticipated outcome
that even DL models perform better in the presence of richer and varied data rather than
when merely increasing dataset size, provided the model is able to leverage data richness.
This does not happen with the non-DL baselines, which perform almost equally when
comparing unimodal and multimodal data.
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Figure 4.9: Averaged normalised differences between association matrices across the five
folds of the model “N → DiffPool” depicted in Figure 4.8.

4.5 Extensions of Graph Neural Networks to Multi-

modal Brain Graphs

At the end of this chapter I would like to revisit how I specifically tackled Research
Question 3 (Graph) (see Section 1.2) in this chapter. I employed GNNs and TCNs to
integrate the spatial and temporal components of fMRI data in a single architecture. While
initially focused on a single data modality (using the UK Biobank), I later showed the
advantages of the model using multiple modalities of data and therefore showing different
ways to tackle the research question. However, there are other ways to integrate multiple
modalities of data to tackle Research Question 3 (Graph); in this sense, I would like to
highlight two Part II works which I have supervised at the Department of Computer
Science and Technology at the University of Cambridge (see Section 1.4).

The first work, by Alexandru-Catalin Filip [97], used brain graph representations in a
similar fashion as the ones I have used in this chapter; however, he specifically extended
a very successful GNN architecture called Graph Attention Network (GAT) [270]. He
handled a set of graphs provided with node features and non-binary edge weights, and
we demonstrated his architecture’s effectiveness by training it on seemingly integrated
multimodal data. This adaptation provided a powerful and flexible deep learning tool
to integrate multimodal neuroimaging connectomics data in a predictive context. We
matched state-of-the-art results in a binary sex classification task while confirming the
previously reported difficulties in predicting personality scores using brain data.

The work by Kamilė Stankevičiūtė [254] goes one step further and employs even
more data, by including both non-imaging and brain imaging data directly in the same
architecture. She was able to do so by using another data representation in the form of a
population graph, as described in Figure 4.10. As it is possible to see, she combined several
imaging and non-imaging modalities into a population graph to predict the apparent brain
age for a large and diverse dataset of subjects. The population graph representation allows
to control for confounding effects through pairwise similarities (i.e. the population graph
edges) rather than fitting of separate models, and train the entire dataset at once without
extensive filtering of the data (i.e. conditions that are closer to real clinical settings).
Consistent and unified processing of the different data modalities is important, regardless
of the downstream task or analysis method, as there is a widespread community effort to
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Table 4.5: Results when training and evaluating on the HCP dataset, both for the
multimodal (rs-fMRI and diffusion data) and unimodal (only rs-fMRI data) cases. Metrics
averaged across the five test sets, with standard deviation in parenthesis. Aggregator
on the right-hand side of the arrow, “N” corresponds to only node model, and “N + E”
corresponds to full Graph Network block.

Model AUC Accuracy Sensitivity Specificity

no GNN

→ Concat 0.89 (0.034) 0.81 (0.038) 0.79 (0.050) 0.83 (0.031)

Using both rs-fMRI and diffusion data

N + E → Concat 0.94 (0.010) 0.85 (0.016) 0.83 (0.047) 0.87 (0.058)

N + E → DiffPool 0.89 (0.019) 0.81 (0.019) 0.78 (0.047) 0.84 (0.053)

N → Concat 0.95 (0.012) 0.88 (0.018) 0.86 (0.045) 0.90 (0.026)

N → DiffPool 0.93 (0.018) 0.85 (0.024) 0.79 (0.044) 0.90 (0.035)

CNSLAB [109] 0.81 (0.029) 0.74 (0.022) 0.69 (0.051) 0.79 (0.033)

cGCN [278] 0.62 (0.019) 0.57 (0.027) 0.51 (0.205) 0.61 (0.220)

XGBoost 0.88 (0.018) 0.81 (0.021) 0.77 (0.036) 0.84 (0.017)

SVM 0.82 (0.020) 0.82 (0.022) 0.79 (0.044) 0.85 (0.058)

Using only rs-fMRI data

N + E → Concat 0.88 (0.025) 0.81 (0.030) 0.80 (0.056) 0.82 (0.037)

N + E → DiffPool 0.63 (0.027) 0.59 (0.012) 0.47 (0.080) 0.70 (0.059)

N → Concat 0.89 (0.019) 0.82 (0.019) 0.80 (0.046) 0.83 (0.054)

N → DiffPool 0.68 (0.018) 0.64 (0.014) 0.59 (0.041) 0.68 (0.057)

CNSLAB [109] 0.82 (0.031) 0.75 (0.023) 0.70 (0.053) 0.79 (0.040)

cGCN [278] 0.65 (0.039) 0.59 (0.024) 0.41 (0.175) 0.75 (0.167)

XGBoost 0.89 (0.014) 0.82 (0.019) 0.78 (0.025) 0.85 (0.030)

SVM 0.83 (0.022) 0.83 (0.024) 0.78 (0.044) 0.87 (0.064)

combat the reproducibility crisis in both neuroimaging [126] and machine learning4. This
crisis is caused by, among other factors, the lack of transparency in preprocessing methods
and software errors due to bad software engineering practices [217]. While the efforts to
improve reproducibility in neuroimaging are currently targeted at consistent processing
of functional and structural MRI with open-source libraries, this work is, to the best of
our knowledge, one of the first to additionally incorporate non-imaging data modalities.
Although this pipeline was designed to prepare the data specifically for population graphs,

4https://reproducibility-challenge.github.io/neurips2019/
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Figure 4.10: Overview of the population graph preparation and graph neural network
training procedure for brain age prediction. Figure taken from Stankevičiūtė et al. [254].

it has sufficient flexibility to be extended to more preprocessing options and adapted to
work independently from the downstream analysis method.

These two works highlight the practical interest of Research Question 3 (Graph) while
showing a different perspective on how to tackle it. They also highlight how, despite all
the discoveries and improvements in research, there are still many avenues to explore in
leveraging graph-like data with interests in scientific and applied developments.

4.6 Summary

This chapter provided a novel deep learning architecture which can successfully use the
high-dimensional and noisy rs-fMRI data, by leveraging their temporal dynamics and
spatial associations represented by what is commonly called the connectivity between brain
locations. In contrast with previous literature, I use TCNs to model intra-subject temporal
dynamics and combine them with GNNs to model inter-regional associations. I illustrated
and analysed the effectiveness of the model in a proof-of-concept binary sex prediction task,
which also included an ablation analysis with variations of the spatial pooling mechanism.
The ablation study showed how the graph network block successfully leveraged the weights
of the spatial dynamics, indicating the importance of designing an architecture specifically
targeted for spatio-temporal rs-fMRI data. These results point to an advantage of using
subject-specific FCMs because the baseline obtained using group-averaged FCMs (i.e.
cGCN) consistently performed worse against all other models, including non-DL baselines.
Contrary to my initial hypothesis, using a hierarchical pooling mechanism (i.e., DiffPool)
did not provide an improvement in overall performance when compared to concatenation
pooling and, in some cases, to baselines. The most notable exception is the multimodal
setting with the HCP dataset, in which the hierarchical pooling mechanism occasionally
provides similar results to my best model. Still, I posit that the compelling explainability
potential of DiffPool is advantageous in settings such as neuroscience investigation. In
this context, additional explorations of hierarchical pooling mechanisms could represent
an exciting future research direction.

One of the aims of this work was to provide additional contributions beyond the goal
of end-to-end modelling of functional brain activity, hoping to provide a tool that can be
tailored to the analysis of medical images. For instance, the set of experiments using unique
multimodal data from the HCP dataset illustrate how this approach can be of interest in
the emerging multimodal brain connectivity community. Also, I am not aware of any other
work in the neuroimaging field which uses a hierarchical pooling mechanism for the purpose
of generating explainable patterns from fMRI data - a crucial aspect when interacting
with the neuroscience community. While temporal convolutional networks (TCNs) and
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graph neural networks (GNNs) have been successfully introduced in previous literature,
the contribution of this chapter also lies in the combined use of these building blocks
for the specific case of modelling rs-fMRI data. Importantly, I have also motivated the
choice of TCN kernels with respect to LSTM models through a head-to-head comparison
in Section 4.4.2.

I hope this chapter can lay the groundwork for future exploration of flexible architectures
which are able to leverage the entirety of neuromonitoring data arising from the extremely
complex spatio-temporal interplay of groups of firing neurons. By demonstrating improved
performance in a task which is commonly employed in benchmarking models for functional
brain data, comparing to both non-DL and DL baselines, and sharing all code and
implementation details, I hope that this work will have an impact on future research which
will further improve spatio-temporal modelling specific to fMRI data. As demonstrated
with the multimodal Human Connectome Project (HCP) dataset, the architecture can
very easily include other types of data (e.g., multimodal structural data) and be further
extended to include possible confounds (e.g. age, IQ, cognitive status) that could drive
the prediction task in other brain disorders. Furthermore, additional analyses can be
conducted to study the robustness of the architecture to finer parcellations beside the
Desikan-Killiany atlas, possibly leading to additional neurobiological insights depending on
which regions are represented in the parcellations. Another exciting recent trend that can
be included in this architecture is to allow the network to learn the underlying connectivity
from scratch [152, 160] instead of computing associations or other handcrafted features
such as the ones used in this and other works [172, 173].
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Chapter 5

Interpreting Differences in Cognition
Using Brain Features

Predicting variability in cognitive functioning can have important consequences in delin-
eating a person’s life trajectory. Individual differences in cognition have been related to
important outcome measures like education, occupational achievement, general health,
longevity, or risk to develop dementia. One way of predicting cognitive performances
at the single-subject level is to use different neuroimaging data sources that assess dis-
tinct aspects of brain function and structure (i.e. anatomy). Resting-state functional
connectivity [77, 203] or neuroanatomically extracted features [226] are examples of such
sources of neuroimaging data. However, almost no work in this field has tried to capitalise
on multimodal neuroimaging, i.e. on the possibility to predict individual differences
in cognition by simultaneously using different types of information regarding the brain
structure or function.

This chapter combines different structural neuroimaging modalities: T1-weighted and
T1/T2- derived intracortical myelin estimates. They were used to predict subject-specific
scores in a series of cognitive and demographic measures derived from a data-reduction
analysis of a large set of behavioural measures, drawn from the Human Connectome
Project (HCP).

As shown in Chapter 2, machine learning has recently gained attention in several
applied biomedical disciplines due to the increased prediction power it can provide. Specif-
ically, deep learning methods are the most well-known ones, but they usually bring some
complexity when one wants to interpret the results or avoid overfitting [67, 243, 271].
Instead of using neural networks, this chapter focuses on a type of gradient boosting
decision tree algorithm, XGBoost [57], which has recently achieved top results in applied
machine learning competitions using tabular data (see Section 2.1.5.2). As it is built on
top of decision trees, it also has the advantage that there is space to understand how the
model makes its decisions.

To interpret the neuroanatomical basis of cognitive measures, I used recently developed
algorithms that improve machine learning models’ interpretability capacity without neglect-
ing their prediction power. Specifically, I used an adaptation of SHAP (SHapley Additive
exPlanations) [179] which is a unified framework for interpreting predictions without falling
in common mistakes that do not bring consistent and trustworthy interpretations [178].

Interpretation of 3D neuroimages can be complex and usually relies on visual plots and
specific neuroanatomical knowledge. When interpreting machine learning models that use
3D images, it is possible to visually identify areas of the brain responsible for the prediction;
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however, it is not evident whether those regions are related, for instance, to actual values
of thickness or surface area. Therefore, by reducing multimodal neuroimaging measures
to a well-characterised set of features, the interpretation of such models is direct as each
feature is self-explanatory per se. In this chapter, the different structural neuroimaging
modalities were used as subject-wise features in XGBoost.

This chapter’s main contribution is thus to show how one can interpret the neu-
roanatomical basis of cognition by applying state-of-the-art machine learning methods that
might not yet be fully and correctly explored in the field. Regarding data representation,
this is the typical flatten, direct one, which I try to capitalise for interpretability purposes.

5.1 Methods

5.1.1 Dataset - Human Connectome Project

Preprocessed structural magnetic resonance images as well as demographic and cognitive
data from 1,200 subjects were obtained from the HCP public repository1.

After accounting for missing information, the total number of subjects included in this
analysis was 905, where around 53% were females, and 47% were males. All participants
were young and healthy adults, with a median age of 29, with no hypertension, alcohol
misuse, panic disorder, depression, or other psychiatric and neurologic disorder, or history
of childhood conduct problems. The majority of people were right-handed white Americans
with a non-Hispanic or Latino background.

HCP structural T1w images were collected from a 3-Tesla Siemens Skyra unit (housed
at Washington University in St. Louis) using an axial T1-weighted sequence (TR = 2400
ms, TE = 2.14 ms, flip angle=8°, voxel-size 0.7 × 0.7 × 0.7 mm3). The T1w data were
passed through the full Freesurfer (v. 5.3)2 reconstruction stream to calculate cortical
thickness, surface area, grey volume, integrated rectified mean curvature, integrated
rectified Gaussian curvature, folding index, and intrinsic curvature index. The optimal
pipeline used to obtain these variables was the one developed by Glasser et al. [122], as
briefly mentioned in Section 2.3.3. To map all subjects’ brains to a common space, namely
the Desikan-Killiany atlas [70], reconstructed surfaces were registered to an average cortical
surface atlas released by HCP using a non-linear procedure that optimally aligned sulcal
and gyral features across subjects [100].

The HCP consortium generated myelin3 maps according to Glasser and Essen [121].
Transformation of myelin map data from the individual subject’s native mesh to the right
fsaverage template (LR) standard mesh involves two deformation maps, one representing
registration from the native mesh to the fsaverage left mesh (L) and fsaverage right mesh
(R) and another representing registration between L and R and LR. The two deformation
maps were concatenated into a single deformation map using Caret software applied to
the individual subject’s myelin map data, cortical thickness data, and surface curvature
data. The individual myelin map data were normalised to a group global mean and then
averaged at each surface node to achieve anatomical correspondence to other structural
features.

1https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
2http://surfer.nmr.mgh.harvard.edu/
3Myelin is an insulating substance that is present around the nerves. It allows electric impulses to

transmit more efficiently along nerve cells, and therefore its damage could potentially cause diseases.
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5.1.2 SHapley Additive exPlanations (SHAP)

SHAP algorithm is based on Shapley values, a concept from cooperative game theory.
Shapley values have been introduced in 1953 by Lloyd Shapley [242], and used in the
past to compute explanations on model predictions [176, 208, 258]. In cooperative game
theory, a coalition game consists of a set of N players and a value function v that maps
subset of players S ⊆ {1, 2, . . . , N} to a real value. This real value represents the collective
pay-off of a subset of players gained by “cooperating” as a set. Therefore, the outcome of
each possible combination (i.e. coalition) of players should be considered to determine the
importance of a single player.

We can find the marginal contribution of player i with respect to a coalition S, by
calculating the additional value generated by including player i in the coalition:

∆v(i, S) = v(S ∪ {i})− v(S). (5.1)

A Shapley value is then the weighted average of all the player’s marginal contributions,
which can be written as (for a player i):

φi =
∑

S⊆{1,2,...,N}\{i}

|S|!(N − |S| − 1)!

N !
∆v(i, S). (5.2)

Intuitively, over all possible ways to go from the empty set ∅ to the entire set of players,
the Shapley value generates the average player i’s contributions.

I will exemplify this mechanism with an adaptation from the glove game. Let A and
B be two players that sell gloves for £1 each, with a restriction that gloves must be sold
in pairs. Player A has 3 gloves, player B has 11 gloves, and the value of the game is the
gloves revenue. If player A plays alone, it can sell 2 gloves alone and therefore its value
is £2. Player A’s marginal contribution is different depending on whether it is joining
the empty coalition or joining the coalition of B. The following representation illustrates
this process, in which each arrow represents the inclusion of a player not present in the
previous coalition:

v(∅) = 0 v(A) = 2 φA = ∆v(A,∅)+∆v(A,{B})
2

= 3

v(B) = 10 v({A,B}) = 14 φB = ∆v(B,∅)+∆v(B,{A})
2

= 11

+10 +12

+2

+4

By looking on all possible ways to go from ∅ to {A,B}, the averaged marginal
contribution for player A is £3, and for player B is £11, which represent the number of
gloves that each player brought.

For a machine learning model, this means that the game is reproducing the outcome
of a model f(x1, x2, . . . , xN), and the players are the features xi inputted to the model.
We are then trying to quantity the contribution that each player brings to the game, that
is, the contribution that each single feature brings to the model’s outcome.

Lundberg and Lee [178] proposes SHAP values as a unified measure of feature impor-
tance by defining a class of additive feature attribution methods. Their definition of SHAP
values are derived by making the value function dependent on a specific input instance x,
making this a “local” method. These SHAP values are therefore derived from defining the
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value function as the expected model output conditioned for a specific data point when
only the features in S are known:

vx(S) = E [f(X)|XS = xS] . (5.3)

Tree-SHAP [179] is an efficient adaptation of SHAP values on additive tree-based
models such as XGBoost used in this chapter. It brings some advantages when compared
to other previously popular feature importance methods such as Gini coefficients. Two of
such advantages are individualised explanations (i.e. per input) and solving issues that
popular feature attribution methods are inconsistent and incapable of reporting the real
impact of features in tree ensemble methods. Figure 5.1 illustrate these cases with two
tree-based models.

Figure 5.1: Inconsistencies in previously widely-used feature attribution methods (i.e.
Saabas [232], Gain [236], Split Count [57], and Permutation-based methods [16]). The
Cough feature has a larger impact in Model B than Model A, but is attributed less
importance in Model B for most of other methods. Similarly, the Cough feature has a
larger impact than Fever in Model B, yet is attributed less importance for most of other
methods. Gini coefficients (a Gain method) were previously widely used by default to
explain XGBoost models, but are also the methods showing greater inconsistencies for
tree ensemble models. Figure taken from Lundberg et al. [179].

As it is possible to see, the feature importance values from the Gain, split count,
and Saabas methods are all inconsistent for this example. As without consistency it is
impossible to reliably compare feature attribution values, the guaranteed consistency of
SHAP values help explain why it gained so much popularity in recent years. Indeed, these
and other advantages have been highlighted in recent literature reviews [14, 38, 136, 272].
SHAP is presented by Linardatos et al. [175] as “the most complete method, providing
explanations for any model and any type of data, doing so at both a global and local
scope”, and “[together with LIME], by far, the most comprehensive and dominant across
the literature methods for visualising feature interactions and feature importance”.

Despite all the recent successes with SHAP (a lot due to the solid theoretical foundation
in game theory), there are still improvements being developed in a very dynamic research
field. Some of its current drawbacks driving research developments include: (1) computation
time, as the possible feature combinations exponentially increases with the number of
features, though this is not a critical issue in this thesis as I use the faster implementation
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for tree-based models, (2) not being able to simulate scenarios of how changes in particular
features will impact the output, given that, unlike LIME, SHAP does not return a model,
and (3) order of feature selection might impact the SHAP values as in real-world datasets
there are non-linear correlations among different features, even if they are independent.

5.1.3 Factor Analysis

Factor analysis (FA) is a broad term in multivariate statistics which has the objective of
finding latent variables (i.e. not directly measured variables) in a dataset. It starts from
the idea that there are a certain number of factors in a dataset and that each measured
sample captures a part of one or more of those factors4. The goal of FA is to model the
interrelationships among elements, and is accomplished by following two steps: (1) factor
extraction, and (2) factor rotation.

One possible factor extraction method is Principal Component Analysis (PCA), a
well-known unsupervised and efficient way to reduce the number of dimensions in a dataset
into certain number of “components”. These components are created in such a way that
the first component contains the maximum variation of the original dataset, the second
component contains the second-largest amount of variation, and so forth. Thanks to this,
we are able to retain only a few components for downstream analysis while retaining a
good amount of the original variation. Specifically, PCA tries to find a linear combination
with maximum variance of the original variables. For a specific dataset X ∈ Rn×k with n
samples/observations, and k columns/features, it solves a new linear combination Xci,
where ci is a column vector. To find the first principal component, it calculates:

c1 = argmax
c1

[V ar(Xc1)], s.t. cT1 c1 = 1, (5.4)

in which we add the constrain cT1 c1 = 1 to keep every element in c1 different from
infinity. For the remaining components, there is an orthogonality constrain (i.e. cTi cj = 0)
which is added for all the corresponding preceding components. For the second component,
the calculations would then be:

c2 = argmax
c2

[V ar(Xc2)], s.t. cT2 c2 = 1 and cT1 c2 = 0. (5.5)

Instead of iteratively solving this maximisation problem, it is known that the eigenvec-
tors of the covariance matrix of the data are the principal components [107]. Therefore,
to get the ordered principal components, one just needs to order the eigenvectors of the
sample covariance matrix in descendent way by their corresponding eigenvalues. The
eigenvalues represent the total amount of variance that can be explained by the corre-
sponding principal component5. An important concept which will be needed for FA is the
notion of a component loading, which is equal to the eigenvector times the square root of
the eigenvalue, and can be interpreted as the correlation of each element to the principal
component.

4There are, in fact, two types of factor analysis: exploratory and confirmatory. As I never consider
a fixed number of a priori factors, I am actually using exploratory factor analysis. However, to avoid
verbosity, I refer to it as simply factor analysis (FA).

5In theory, eigenvalues can be negative, but as in the case of PCA they explain variance, they are
always positive in practice.
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Figure 5.2: Example of variance over three elements, in which each circle represents one
element’s variance, and the box corresponds to a possible factor. Each element has its
specific variances V i; C is the common variance of all the elements, and Ei are the error
variances (e.g. due to measurement errors).

When conducting FA, PCA’s formulation is changed to what is called “common factor
analysis”. In practice, this means that instead of maximising the total variance, it assumes
the factors are linear combinations maximising the shared portion of variance, therefore
underlying latent constructs. For intuition, Figure 5.2 illustrates the different types of
variances that play a role in these calculations.

With common factor analysis, calculations are now iterative and dependent on specific
optimisation routines. For a more detailed explanation of the mathematical concepts and
implications of this fundamental differences in variance, I point the reader to Brown [44].

After this first step (factor extraction), the next one is factor rotation, in which one
wants to give the most useful interpretations in the newly defined factor loadings, rather
than only maximising measures of variance. In other words, without rotation, the first
factor will be the one explaining the largest amount of variance and therefore onto which
most elements will load, hindering interpretability by an expert.

There are two general types of rotations: (1) orthogonal, which assumes that factors
are independent among each other, and (2) oblique, in which factors are not independent
and are therefore correlated. A popular orthogonal rotation scheme that I use in this thesis
is the Varimax, introduced in 1958 by Kaiser [154] in which all factors remain uncorrelated
with one another. Its name come from the fact that it tries to maximise the variance of
the squared loadings in each factor. As a result, the orthogonal basis is rotated to disperse
the loading scores across factors, thus simplifying its analysis by an expert.

A common application of FA exists in psychology, for instance when one tries to identify
personality dimensions represented in distinct questionnaires/tests. Given both PCA and
FA reduce the original dataset dimension into a smaller set of components/factors, it is
common to wonder when to use one or another. Despite that sometimes it is possible to
see that PCA and FA loadings can be similar, it is important to make the distinction that
their fundamental aim is different (besides the mathematics explored in this section). With
PCA, one tries to find variables that are composite of the observed variables. For instance,
one could define socioeconomic status (z) as a linear combination of level of education
(xe) and wealth (xw): x = xe + xw. With FA, instead, we assume the existence of latent
factors underlying the data that are not directly measured. For example, given a set of
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questionnaires, one could assume that there is a latent construct called “prejudice” (Ψ)
influencing how people answer the questions. Possible questions could be ‘I feel negatively
towards people of other colour” (x1) or “I cannot perceive me having a friend who is Black”
(x2). Assuming residuals εi, we would have x1 = c1Ψ + ε1 and x2 = c2Ψ + ε2.

5.1.4 Adequacy of Factor Analysis

There are usually two tests to measure data adequacy to proceed with factor analysis:
Barlett’s test of sphericity [28] and the Kaiser-Meyer-Olkin (KMO) test [155].

In the Barlett’s test of sphericity, the null hypothesis is that a correlation matrix is
equal to an identity matrix. Intuitively, if the correlation matrix produced from a dataset
is the same as the identity matrix, there are no correlations/redundancies among variables
and thus no factors to find. The test statistic consists in calculating:

χ2 = − ln(det(R)) ∗
(
N − 1− 2p+ 5

6

)
, (5.6)

where N is the sample size, p the number of variables (e.g. the 23 behavioural variables
from Section 5.2.1), R the correlation matrix, ln() the natural logarithm, and det() the
determinant of a matrix.

Kaiser-Meyer-Olkin (KMO) test is a test specifically targeted to measure data adequacy
to factor analysis. It measures the proportion of variance among variables which could be
common variance by using the following formula:

KMO =

∑
i 6=j r

2
ij∑

i 6=j r
2
ij +

∑
i 6=j u

2
ij

, (5.7)

where rij is the correlation between variables i and j, and uij is the value in the partial
covariance matrix between variables i and j (i.e. partial correlation). The value below
which the test indicates factor analysis is not adequate is either 0.5 or 0.6 depending on
different authors.

5.2 Experimental Setup

5.2.1 Factor Analysis on Behavioural Data

Besides neuroimaging data, the HCP contains a rich resource of questionnaires and
phenotypes related to the problem I want to explore in this chapter (i.e. cognitive
functioning). Therefore, factor analysis is a strong candidate to simplify these variables
into more concise and easier to interpret set of variables. Indeed, factor analysis “is (...)
appropriate if the stated objective is to reproduce the intercorrelations of a set of indicators
with a smaller number of latent dimensions, recognising the existence of measurement
error in the observed measures” [44], which nicely connects with the other phenotypes
available in the HCP that I want to explore here.

To explore cognitive functioning, an expert neuroscientist (see Section 1.4) identified
twenty-three measures of affect, cognition, and health, including self-report questionnaires,
neuropsychological tasks, and other behavioural indices from the HCP. Using factor analysis
(FA), these twenty-three variables were grouped into nine independent components which
explained 70% of cumulative variance. Upon inspection by the expert neuroscientist
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of the corresponding factor loadings, he was able to assign coherent interpretations to
each factor, namely, fluid intelligence, visual memory, sex, executive functions, sustained
attention, waiting impulsivity, linguistic skills, verbal episodic memory, and visuo-spatial
skills. Subject-specific loading values were employed as dependent variables. It is important
to acknowledge that a further analysis on the influence of the number of factors (or the
threshold used for the cumulative variance) defined by the expert neuroscientist would be
necessary to understand the robustness of this approach, but this is beyond the scope of
this thesis.

When applying the Barlett’s test of sphericity to the 23 behavioural variables, the
resulting statistic test is approximately 9384.21, corresponding to a p-value < 0.00001,
therefore rejecting the null hypothesis at alpha=0.05 significance level while at the same
time providing evidence that the correlation matrix is not an identity matrix and we
can proceed with factor analysis with these variables. When applying the Kaiser-Meyer-
Olkin test to the 23 behavioural variables, the resulting value is approximately 0.69, thus
indicating that it is adequate to run factor analysis on this data.

The loadings of each phenotypic variable are specified in Table 5.1. A detailed
explanation of these phenotypic variables and how they were collected are available online6.
As it is possible to see, a single test from the HCP cannot capture a whole trait (e.g. fluid
intelligence), underscoring the usefulness of FA as not only to simplify analysis, but also
to have more complex, informative traits represented in a single variable.

Practically speaking, one could use other phenotypes available in the HCP to run factor
analysis; however, in this chapter I will focus the analysis only on the phenotypes selected
by the expert neuroscientist to not go beyond the scope of this chapter’s objectives, and
therefore focus on the cognitive/emotional dimensions. If one wants to include other
phenotypes for other hypothesis-driven questions, the methodology described in this
chapter could be followed in the same way.

5.2.2 Training Procedure

XGBoost [57] is used as the supervised machine learning method to predict each factor
(see Section 2.1.5.2).

I will use the mean squared error (MSE) and Pearson-r correlation to report the
performance of the models averaged across the five outer folds for each factor. For a
sample i (from a total of N samples), corresponding ground truth value ŷi, and predicted
prediction yi, MSE is the average squared difference between ground truth and predicted
values, calculated as:

MSE =
1

N

N∑
i

(yi − ŷi) . (5.8)

The Pearson-r correlation is a measure of linear correlation between two sets of data
and is calculated as follows for samples x with ground-truth values ŷ:

r =

∑N
i (xi − x)

(
yi − ŷ

)√∑N
i (xi − x)2∑N

i

(
yi − ŷ

)2
. (5.9)

6https://wiki.humanconnectome.org/display/PublicData/HCP-YA+Data+Dictionary-

+Updated+for+the+1200+Subject+Release
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Table 5.1: Loading values for 23 behavioural variables on the estimated factors from the
factor analysis. The colour scale represents the item loading scores on the independent
factors: blue for the most negative, and red for the most positive ones.
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Total Intracranial Volume 0.121 0.138 −0.772 0.107 0.042 0.071 −0.033 −0.005 0.093

Gender −0.048 0.047 0.841 −0.041 −0.058 −0.010 0.005 −0.082 −0.001

Age −0.084 0.182 0.455 0.077 0.137 0.067 −0.019 0.471 0.058

Memory - Picture Sequence Memory Test Score 0.124 0.560 0.220 0.130 0.036 −0.034 −0.035 −0.269 0.215

Executive Function/Cognitive Flexibility - Card
Sort Test Score

0.102 0.187 0.001 0.790 0.058 −0.025 −0.029 −0.008 −0.006

Executive Function/Inhibition - Flanker In-
hibitory Control and Attention Test Score

−0.016 0.041 −0.156 0.800 0.005 0.025 −0.109 −0.011 0.011

Fluid Intelligence - Penn Progressive Matrices:
Number of Correct Responses

0.898 0.272 −0.117 0.110 0.030 0.083 −0.105 −0.127 −0.010

Penn Progressive Matrices: Total Skipped Items −0.901 −0.260 0.111 −0.106 −0.021 −0.065 0.088 0.109 0.007

Penn Progressive Matrices: Median Reaction
Time for Correct Responses

0.875 0.071 −0.050 −0.096 0.028 0.118 −0.017 0.103 −0.003

Oral Reading Recognition Test Score −0.070 −0.083 −0.028 −0.013 0.018 0.002 0.865 0.016 0.035

Picture Vocabulary Test Score −0.076 −0.003 0.061 −0.018 −0.023 −0.027 0.871 0.016 −0.010

Processing Speed Test Score −0.005 0.101 0.021 0.732 0.060 0.018 0.103 −0.182 −0.039

Delay Discounting: Area Under the Curve for
Discounting of $200

0.101 0.047 −0.035 −0.005 0.015 0.900 −0.038 −0.059 0.036

Delay Discounting: Area Under the Curve for
Discounting of $40,000

0.111 0.102 −0.037 0.021 0.006 0.898 0.011 −0.023 −0.010

Spatial Orientation - Variable Short Penn Line
Orientation: Total Number Correct

0.215 0.665 −0.413 0.094 0.062 0.102 −0.042 −0.013 −0.182

Variable Short Penn Line Orientation: Median
Reaction Time Divided by Expected Number of
Clicks for Correct

−0.017 0.013 −0.050 −0.034 −0.013 0.029 0.027 0.042 0.940

Variable Short Penn Line Orientation: Total Po-
sitions Off for All Trials

−0.242 −0.668 0.420 −0.092 −0.061 −0.125 0.029 0.008 0.189

Sustained Attention - Short Penn Continuous
Performance Test: Sensitivity

0.065 0.152 −0.021 0.095 0.905 0.027 0.005 −0.027 −0.017

Short Penn Continuous Performance Test: Speci-
ficity

0.113 0.566 0.248 0.066 −0.064 0.048 0.067 0.155 −0.039

Short Penn Continuous Performance Test:
Longest Run of Non-Responses

0.000 0.101 0.053 −0.025 −0.923 0.006 0.009 0.063 −0.003

Verbal Episodic Memory - Penn Word Memory
Test: Total Number of Correct Responses

0.085 0.252 0.148 −0.007 0.158 0.073 −0.029 −0.643 −0.019

Penn Word Memory Test: Median Reaction
Time for Correct Responses

0.033 0.006 0.036 −0.228 −0.007 −0.049 0.015 0.761 0.008

List Sorting Working Memory Test Score 0.115 0.586 −0.066 0.124 0.028 0.043 −0.104 −0.132 0.112

These two metrics are chosen because all the factors are real numbers and from the
central limit theorem we can reasonably assume that the mean values approximately follow
a normal distribution given the large sample size (over 190 per outer fold). A model that
fits the data well will have a lower MSE value and a higher Pearson-r correlation. There
are other metrics that could have been used such as mean absolute error and root mean
squared error, but given the normality assumption, and for the purposes of this chapter,
these two metrics are good enough summary metrics to convey the analysis required on
model performance. Furthermore, instead of Pearson-r correlation one could have used
the Kendall and Spearman correlation coefficients, but they are non-parametric and do
not assume normality.

To predict each factor using the features generated from HCP, I employed a nested
cross-validation procedure as depicted in Figure 5.3 to avoid overly-optimistic scores, with
five outer folds, and three inner folds. Essentially, the data are divided into five folds,
and selecting each fold once, the other four folds are selected to run an inner loop. For
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each inner loop, the data are divided in three folds, where two of these folds are used
for hyperparameter search, selecting the hyperparameters that yield the best MSE in the
remaining fold. After running this process for each of the three folds, the model that yields
the lowest mean MSE is selected and used in the fold selected in that outer loop. In other
words, this process selects five different models for each outer fold.

Figure 5.3: Illustration of the nested cross-validation procedure used in this chapter,
where the coloured boxes represent the data. The outer loop is responsible to report final
performance, while the inner loop is responsible for hyperparameter search and model
selection. Inside each loop, the green boxes are the ones in which the model is fit, and the
orange box is where evaluation takes place.

To better evaluate the significance of these two metrics, I calculated a permutation-
based p-value [206] for each metric at each factor. For this permutation test, the null
hypothesis is that the regressor fails to leverage any dependency between the features and
corresponding labels. Specifically, for each kth permutation (k = 100 in this chapter),
the labels are stochastically permuted and the entire training/evaluation procedure is run
again. The empirical p-value is then the fraction of randomised permutations in which
the final averaged metric was better than in the original data. Intuitively, this process is
measuring how likely the observed metric can be obtained by chance, therefore this test
can be seen as a “control” to show with more confidence that the method is working.

To examine each factor in separate, I will analyse the most important features from
each model interpretability. To that end, I will be looking to the rank of those features
across the different folds. Given these are (ranked) ordinal values with a possibility of
existing some outliers, reporting the median is then more adequate than reporting the
mean across the folds. As a consequence, the median absolute deviation (MAD) is also
reported instead of standard deviation.

5.3 Results

Table 5.2 summarises the results of the nested cross-validation procedure over the nine
factors by reporting the averaged mean squared errors (MSE) and Pearson-r correlations
between actual and predicted values, with the respective standard deviations. This section
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will only analyse the results on factors 1, 2, 3, and 4 (in bold in the table) as the remaining
factors had a Pearson-r correlation below 0.15. To simplify explanations, this section will
use a specific naming convention on the brain features extracted from HCP, consisting of
three parts separated by underscores. The first part is the hemisphere (l for left and r for
right). The second part is a short form of a brain region as defined by the Desikan-Killiany
atlas [70]. The third part is the specific feature extracted from that region of the brain,
namely thck (cortical thickness), area (surface area), grayvol (grey volume), meancurv
(integrated rectified mean curvature), gauscurv (integrated rectified Gaussian curvature),
foldind (folding index), curvind (intrinsic curvature index), and myel (myelin estimate).
For instance, l precuneus foldind corresponds to the folding index value in the precuneus
region on the left hemisphere.

Table 5.2: Prediction power regarding mean squared error (MSE) and Pearson-r correlation.
In bold the only factors that are further analysed in this chapter. One asterisk means that
the p-value of the corresponding test (see Section 5.2) is below 0.05 significance level and
therefore we can reject the null hypothesis and confidently say that the model was able to
significantly leverage a dependency between the features and labels. Two asterisks are for
p-value < 0.01 significance level.

Factor Mean MSE Mean Pearson-r

(std deviation) (std deviation)

Factor 1 - Fluid Intelligence 0.95 (0.069)** 0.15 (0.049)**

Factor 2 - Visual Memory 0.91 (0.080)** 0.20 (0.019)**

Factor 3 - Sex-related Factor 0.40 (0.060)** 0.76 (0.040)**

Factor 4 - Executive Functions 0.98 (0.045)** 0.15 (0.042)**

Factor 5 - Sustained Attention 1.04 (0.839) −0.01 (0.109)

Factor 6 - Waiting Impulsivity 1.02 (0.054) 0.12 (0.052)**

Factor 7 - Linguistic Skills 0.97 (0.131)** 0.14 (0.060)**

Factor 8 - Verbal Episodic Memory 0.99 (0.052) 0.11 (0.094)**

Factor 9 - Visuo-spatial Skills 0.98 (0.284) 0.05 (0.041)*

Figure 5.4 shows the aggregated feature impact on the model output on each of the
four factors. For each subfigure, a dot represents a sample from the dataset and its colour
is the value of that feature rather than the importance on the model output. The y-axis
contains the 10 most important input features, ranked by the aggregated magnitude of
impact on the model output across all the samples. Each feature is assigned a SHAP
value (in the x-axis) which represents the marginal impact (i.e., importance) on model
output or, in other words, both the magnitude and direction of the feature’s contribution.
For instance, a higher SHAP value means that that feature contributed towards a higher
predicted value on the model’s output.

It is possible to learn different patterns from the data. For instance, from Figure 5.4a,
the surface area of the left hemisphere’s cuneus area has almost a symmetrical effect in
the model output: a higher value of this feature drives up fluid intelligence prediction with
a similar magnitude as when a lower value of this feature drives the prediction down. In
contrast, the surface area of the right hemisphere’s inferior temporal region contains a
more asymmetrical pattern: it primarily drives the prediction to a lower fluid intelligence
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for lower values of this feature but drives the prediction up to a much lesser extent.

(a) SHAP values from fluid intelligence predic-
tion

(b) SHAP values from visual memory predic-
tion

(c) SHAP values from the sex-related factor
prediction

(d) SHAP values from the executive functions
prediction

Figure 5.4: Contribution of the most important features in four factors, from one of the
respective outer folds. For each feature represented in each row, vertical dispersion stands
for the data points which share the same SHAP value for that feature. Each feature value
is colour-coded from the highest (i.e. red) to the lowest value (i.e. blue). Higher SHAP
values, which are distinct from the actual feature values, mean they contribute in a positive
direction to the final predicted variable.

The median rank of brain features when predicting fluid intelligence is not very
consistent across the outer folds. This evidence can be seen in Table 5.3 where most of the
features identified were ranked, in general, above 10, and the median absolute deviation is
relatively high as well. The most important regions are situated towards the posterior part
of the brain (parietal and cuneus regions), but some other brain regions situated around
the temporal lobes (inferior, entorhinal, transverse) are also selected. The left hemisphere
is selected more times than the right hemisphere. As one can see from the most important
features in one outer fold when predicting fluid intelligence (see Figure 5.4a), a higher
value of that feature generally contributes to a higher value of fluid intelligence, with a
clear exception of the myelin of the cuneus and transverse temporal regions on the left
hemisphere.

The most important features selected across the five outer folds for the prediction
of visual memory are much more consistent across the outer folds, as the median ranks
of the ten most important features are below 15 and the median absolute deviation is
generally below 10 (see Table 5.4). For this factor, the most important feature is the
cortical thickness of the caudal middle frontal region of the left hemisphere, and the
entorhinal cortex’s grey volume of both hemispheres. In contrast with fluid intelligence,
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Table 5.3: Median rank of the ten most important features when predicting fluid intelligence.
In parenthesis, MAD stands for median absolute deviation. Feature nomenclature explained
in the text.

Brain Feature Median Rank (MAD)

r inferiorparietal myel 9 (8)

l superiorparietal meancurv 13 (6)

l cuneus area 14 (12)

l cuneus grayvol 18 (12)

l inferiortemporal area 18 (8)

r inferiorparietal foldind 21 (20)

l entorhinal grayvol 21 (14)

r postcentral thck 22 (20)

r supramarginal grayvol 23 (19)

l transversetemporal myel 32 (11)

the right hemisphere is selected more times to predict visual memory. Although very
speculative, this finding is consistent with previous literature linking the right hemisphere
to visual memory [158]; still, the grey volumes of the entorhinal region were selected in
both hemispheres. As one can see from Figure 5.4b, some variables will contribute with
different directions to the predicted visual memory, therefore not being able to extract a
general pattern like with fluid intelligence.

Table 5.4: Median rank of the ten most important features when predicting visual memory.
In parenthesis, MAD stands for median absolute deviation. Feature nomenclature explained
in the text.

Brain Feature Median Rank (MAD)

l caudalmiddlefrontal thck 3 (2)

r entorhinal grayvol 5 (3)

l entorhinal grayvol 7 (3)

r lateraloccipital area 8 (3)

l inferiorparietal myel 9 (4)

l insula myel 13 (10)

r middletemporal area 14 (2)

r insula thck 14 (6)

r bankssts myel 14 (8)

r insula foldind 15 (5)

Prediction of the sex-related factor yielded not only the best Pearson-r correlation
values but the most consistent median ranks across the outer folds, with the ten most
important features always being in the top 15 (see Table 5.5). The insula plays a significant
role in distinguishing a male- or female-like brain, specifically regarding its grey volume in
both hemispheres and the myelin estimate in the left hemisphere. There is a dominance
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Table 5.5: Median rank of the ten most important features when predicting the sex-related
factor. In parenthesis, MAD stands for median absolute deviation. Feature nomenclature
explained in the text.

Brain Feature Median Rank (MAD)

r insula grayvol 1 (0)

l medialorbitofrontal grayvol 2 (0)

r inferiorparietal area 3 (0)

l insula grayvol 3 (1)

l superiorfrontal grayvol 5 (2)

l insula myel 6 (1)

l temporalpole meancurv 8 (2)

r inferiorparietal grayvol 11 (3)

r middletemporal area 12 (2)

l entorhinal myel 12 (4)

of the left hemisphere in predicting this factor, as well as grey volumes. In Figure 5.4c
it is possible to find a clear trend in which a lower feature value corresponds to a higher
sex-related factor or, in other words, to a brain looking more like a female one.

Finally, the median ranks of the ten most important features when predicting executive
functions are not very consistent across the outer folds, but not as inconsistent as to
when predicting fluid intelligence (see Table 5.6). The presence of variables from the
pericalcarine cortex is significant, though mostly from the right hemisphere. However, some
of the most significant regions occur towards the anterior region of the brain with both
the medial and lateral orbitofrontal regions and the frontal pole. There is a dominance of
the left hemisphere in predicting this factor, and, in general, lower feature values tend to
contribute to a lower value of executive functions (see Figure 5.4d).

5.4 Further Exploring SHAP Capabilities

The results analysed in the previous sections illustrate how one could use XGBoost and
SHAP to leverage multimodal brain data to predict individual differences in cognitive
functioning. Those results allowed to highlight specific and well-defined features that
can help with the identification of brain regions for downstream analysis by an expert
neuroscientist. To facilitate the communication of these results to a neuroscientist, more
analysis can be explored using other SHAP interpretability capabilities. This is even more
important due to the nature of XGBoost which can contain many weak learners (see
Section 2.1.5.2); therefore, even though each decision tree can be very easy to interpret
(see for instance Figure 5.5), it is not humanely possible to analyse a hundred decision
trees from a hundred weak learners.

To that end, in this section I want to further illustrate two interpretability capabilities
allowed by SHAP which can be used in interaction with an expert neuroscientist interested
in further validating and understanding these results.

The first part concerns the analysis of overall patterns among different brain regions,
illustrated by the two dependence plots in Figure 5.6. In these plots, the x-axis contains
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Table 5.6: Median rank of the ten most important features when predicting executive func-
tions. In parenthesis, MAD stands for median absolute deviation. Feature nomenclature
explained in the text.

Brain Feature Median Rank (MAD)

l medialorbitofrontal thck 5 (4)

l pericalcarine area 5 (4)

l lateralorbitofrontal myel 7 (6)

r pericalcarine grayvol 9 (5)

r pericalcarine area 10 (7)

r pericalcarine foldind 13 (7)

l frontalpole thck 15 (6)

l postcentral myel 15 (9)

l temporalpole area 17 (10)

l cuneus grayvol 19 (15)

l_insula_grayvol<7374

l_medialorbitofrontal_grayvol<5907
yes, missing

l_isthmuscingulate_grayvol<2433.5

no

r_inferiorparietal_area<5272
yes, missing

r_middletemporal_area<2995.5
no

l_postcentral_area<4231
yes, missing

r_cuneus_area<1294.5

no

leaf=0.0160487443yes, missing

leaf=-0.00425594347
no

leaf=0.0118914731yes, missing

leaf=-0.0296700783

no

leaf=0.0047525065yes, missing

leaf=-0.0183963198

no

leaf=0.00307489536
yes, missing

leaf=-0.0510851815

no

Figure 5.5: One of the XGBoost decision tree for the prediction of the sex-related factor.

the range of values for that feature, the y-axis shows the corresponding SHAP value for
each sample/dot marginalised for that feature, and the colour represents the corresponding
value of another feature (on the right) for that same sample. The plot on the left shows
an expected correlation between the grey volumes of the two insula brain regions from
both hemispheres; indeed, higher grey volumes in one hemisphere typically correspond
to higher values on the other hemisphere as well, with the exception of a very few cases.
Besides making it clearer that there is an approximate value of the r insula grayvol feature
which separates the direction of the contribution towards the model output (around
7300 in this case), it allows the discovery of potential correlations in the data. Moving
to the plot on the right (Figure 5.6b), the pattern is a bit more complex and shows a
different type of interactions between two other variables: for instance, for lower values of
l isthmuscingulate grayvol approximately below 2600, the SHAP value (i.e. contribution
towards model output) is higher when l insula grayvol is higher. All these insights can
not only allow for better discussions with an expert, but also highlight possible sources of
improvements in the data and model7.

Finally, besides allowing the interpretation and analysis of output drivers on an
aggregated (i.e. global) level, SHAP also enables the analysis of individual samples to have
a more granular understanding of prediction drivers for different people. As a reminder,

7https://neurips.cc/Conferences/2021/ScheduleMultitrack?event=21860
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(a) (b)

Figure 5.6: Dependence plots between the insula’s grey volume in the left hemisphere with
two other input features, highlighting different types of dependences and interactions. (a)
dependence with the insula’s grey volume in the right hemisphere. (b) dependence with
the isthmus-cingulate cortex’s grey volume in the left hemisphere.

SHAP values represent the change in the expected model prediction conditioned on each
feature, therefore explaining the contribution of that feature towards the difference between
the average model prediction and the actual final prediction.

In Figure 5.7 it is possible to see an example of a similar final output (around -0.6)
for the same model applied on two different people. These plots decompose the drivers of
predictions for one single sample each. The y-axis contains the most important features
driving the prediction and the corresponding raw value in lighter grey, and the x-axis
contains the SHAP value corresponding to the impact on final prediction from the baseline
prediction across the population (represented by E[f(X)]). The SHAP value of each
individual feature is detailed in the arrows that move the prediction from the E[f(X)]
baseline. A striking difference between the two plots is that for the bottom one, the most
important features drive most of the output value, but in the sample on the top, the
remaining 534 other features (in total) are driving most of the changes. This could point
an expert to a more wider analysis on the whole brain (in the top case), while the analysis
on the bottom case can possibly be more focused on a handful of brain regions.

5.5 Evaluating Model Choice

The purpose of this chapter was to show how one could interpret the neuroanatomical basis
of cognition by applying state-of-the-art machine learning methods; therefore, I focused
the analysis on SHAP and its specific implementation for the state-of-the-art XGBoost
method. A natural question arising from this approach is how useful XGBoost actually is
for this dataset in specific.

In this section I employed support vector regression models (adapted from SVM,
see Section 2.1.5.1) to approach this chapter’s problem in the same way as what was
done using XGBoost. I used the same nested cross-validation procedure using the scikit-
learn [215] python package with a random search over 100 hyperparameters including
kernel (polynomial or radial basis), epsilon (a range between 0.1 and 0.5), gamma (scale,
auto, and a range between 1e-7 and 1e-4), C (range between 0.1 and 10), and shrinking
(boolean variable).
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Figure 5.7: Most important features driving a similar final output (around -0.6) on two
different people. The marginal contribution of each feature is not the same in the two
cases.

The results from this implementation are detailed in Table 5.7 which for readability
also includes the results from XGBoost. NaNs occurred when the model learned to output
a single value for all samples and therefore it is not possible to calculate a Pearson-r
correlation.

Although the results are slightly worse when using SVR (on average), the difference
is not significant, and shows once again the challenge of the prediction tasks tackled in
this chapter. The lack of robustness presented by SVR when predicting a single value
for all test samples in certain factors (illustrated by the NaNs reported for the Pearson-r
correlation) shows one strength of XGBoost for these challenging tasks. One possible
explanation for a SVR model to output a single value for all test samples could be that
the factor loadings are approximately normally distributed, therefore indicating that SVR
models can underfit more easily than XGBoost for very complex tasks.

All in all, the main benefit of using a XGBoost model in this case concerns the specific
interpretability advantages that SHAP can bring (see Section 5.1.2) instead of using
model-agnostic interpretability tools on SVR models. As I tried to show in the previous
Section 5.4, the interpretability analysis can be both on an aggregated and granular levels
and potentially highlight further developments in cognitive functioning prediction tasks.
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Table 5.7: Prediction power regarding mean squared error (MSE) and Pearson-r correlation
between XGBoost (XGB) and Support Vector Regression (SVR).

Factor Mean MSE Mean Pearson-r

(std deviation) (std deviation)

XGB SVR XGB SVR

Factor 1 - Fluid Intelligence 0.95 (0.069) 0.95 (0.047) 0.15 (0.049) 0.13 (0.044)

Factor 2 - Visual Memory 0.91 (0.080) 0.92 (0.086) 0.20 (0.019) 0.19 (0.056)

Factor 3 - Sex-related Factor 0.40 (0.060) 0.46 (0.060) 0.76 (0.040) 0.73 (0.045)

Factor 4 - Executive Functions 0.98 (0.045) 0.99 (0.041) 0.15 (0.042) 0.12 (0.028)

Factor 5 - Sustained Attention 1.04 (0.839) 1.02 (0.854) -0.01 (0.109) NaN

Factor 6 - Waiting Impulsivity 1.02 (0.054) 1.01 (0.061) 0.12 (0.052) 0.07 (0.033)

Factor 7 - Linguistic Skills 0.97 (0.131) 0.99 (0.136) 0.14 (0.060) NaN

Factor 8 - Verbal Episodic Memory 0.99 (0.052) 0.99 (0.084) 0.11 (0.094) 0.09 (0.023)

Factor 9 - Visuo-spatial Skills 0.98 (0.284) 0.97 (0.293) 0.05 (0.041) NaN

Indeed, this connects quite well with the recent trend in the machine learning community
regarding “data-centric” AI approaches to move from a focus on modelling to a focus on
the underlying data to improve performance. Given that both XGBoost and SVR seem to
provide similar performance in practice, a data-centric approach based on the advantages
that SHAP can bring together with XGBoost modelling looks like a potentially interesting
future direction in the field.

5.6 Summary

This chapter aimed to leverage multimodal data in the form of a 1-D data representation
from brain surface-based morphometry and cortical myelin estimates. I tackled the specific
problem of predicting individual differences in cognitive functioning using these two
data modalities. The regression model yielded good performance (Pearson-r correlation
of almost 0.8) in predicting a sex-related factor; furthermore, the model was able to
significantly leverage a dependency between the features and labels for fluid intelligence,
visual memory, executive functions, and linguistic skills, but with a corresponding weak
performance of a Pearson-r correlation below 0.20 (see Table 5.2). It is important to
highlight that I could not achieve an acceptable performance or stability in predicting
sustained attention, waiting impulsivity, verbal episodic memory and visuo-spatial skills,
hinting that structural neuroimages alone cannot predict these cognitive factors and other
types of data are probably needed.

I argue that the approach described in this chapter shows that the use of specific, well-
defined and self-explanatory features can help with the quick identification of meaningful
regions of interest that are important to interpret machine learning models. Ultimately, this
avoids the visual interpretation of neuroimages, which do not convey as many semantics
as the directly extracted features.

It was possible to see that while some regions of interest appear more often, others do
not appear so much, thus suggesting they might not be as important for understanding
general cognition. Some specific features do not seem important as they never appeared
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in the lists of most important features (eg. integrated rectified Gaussian curvature and
intrinsic curvature index). It was also interesting that some factors showed a difference in
which hemisphere contributes the most to the prediction task.

Although most factors did not achieve a good performance, these results highlight
the potential of these type of features being used to predict cognitive performances.
The significance of these results are supported by the fact that the dataset used was
the HCP. This dataset is one of the most homogeneous and well-characterised open
datasets for healthy subjects, and has a considerable number of people to be analysed (i.e.
around a thousand), bringing more credibility to the results presented here. I hope this
work could inspire researchers in the field to better study differences of cognition using
well-implemented machine learning models that can be correctly interpreted.
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Chapter 6

Conclusion

I conclude this thesis by highlighting its key contributions resulting from a combination of
different knowledge fields, including machine learning, molecular biology, and neuroimaging.
I will also offer some thoughts on future research directions based on the main limitations.

6.1 Contributions

This thesis has explored data-driven representations and methods targeted for brain data
in the gene expression and neuroimaging domains. This was conducted having three main
research questions - outlined in Section 1.2 - driving the developments. In a first part
composed of two chapters, I tackled cases of Graph-Dimensional representations, while in
the second part I explored a 1-Dimensional (i.e. flatten) data representation.

Chapter 3 modelled gene expression data on the most comprehensive human transcrip-
tome dataset by using a Graph-Dimensional representation in the form of a multiplex
framework. I used unsupervised approaches to find intra- and inter-tissue profiles of gene
expression, with a focus on inter-tissue profiles stemming from the brain. I provided a rich
resource of co-expression networks, communities, multiplex architectures, and enriched bi-
ological pathways, while illustrating the cross-study relevance through analysis on external
datasets. The identification of community structure as an important organising principle
of the human transcriptome, and the suggestion of a presence of a hierarchy of clusters at
increasingly finer scales might help catalyse research into inter-tissue regulatory insights
with disease consequences.

In Chapter 4, I proposed a novel deep spatio-temporal model for the analysis of resting-
state fMRI data. In this supervised model, temporal convolutional networks capture
intra-temporal dynamics, and graph neural networks account for spatial inter-relationships
of brain connectivity. I investigated the model’s explainability capacities by capitalising
on a dataset with over 35,000 individual brain scans, and the robustness and applicability
of this model on an external multimodal dataset with almost a thousand brain scans. This
model is, to the best of my knowledge, the first end-to-end deep learning model that is
able to capitalise on both spatial and temporal information from rs-fMRI data by using
temporal convolutions and graph neural networks while providing the flexibility to extract
human-readable explanations from a hierarchical pooling mechanism.

In Chapter 5, I presented an approach to correctly identify meaningful regions of interest
in the brain for a supervised task by leveraging semantic, well-characterised 1-Dimensional
features. The interpretation of this approach was important to understanding the driving
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forces in the notoriously hard problem of predicting cognitive functioning, ultimately
avoiding the visual interpretation of neuroimages.

These three main chapters helped highlight the contributions of gene expression and
neuroimaging data when modelling the brain and its intra- and inter-dynamics across the
human body. As a consequence, this thesis makes three main contributions while tackling
the research questions defined in Section 1.2:

• Scientific contribution, as the work conducted in the three main chapters helped
explore the three research questions posed at the beginning of this thesis, across
the scientific fields of machine learning, molecular biology, and neuroscience. This
contribution is further illustrated in the publications outlined in Section 1.4.

• Technological contribution, by integrating tools from well-established and open-
source technologies, while publicly releasing the code to the community. The tools
that were integrated included mostly those which used the Python programming
language and various specific packages.

• Applied contribution, which expanded from the technological contribution. By
publicly releasing all my code and resources whenever possible, I provided documented
platforms that enable applied scientific research and development in the various
fields explored.

I conclude this section by humbly highlighting that this thesis tries to tackle two
Sustainable Development Goals (SDGs). Given the practical implications of molecular
biology and neuroscience, this thesis can indirectly catalyse research needed to improve
healthcare. This implication directly connects with SDG 3 - Good Health and Well-
being, the goal of which is to “ensure healthy lives and promote well-being for all at all
ages”. Indeed, a better knowledge of how the brain works and interacts with other parts
of the body can lead to better counselling for patients with both general and neurological
diseases [120, 198]. For example, the likely novel functional information present in the
communities of Chapter 3 may have critical implications in mapping the human diseasome.

As outlined in Section 1.4, this thesis contains a considerable amount of multidisciplinary
research and interaction, which was able to create multi-stakeholder partnerships across
different countries and knowledge fields. It is likely that these partnerships will not end
with the conclusion of this thesis and, given the importance to SDG 3, I consider that this
thesis also helps to tackle SDG 17 - Partnerships for the Goals. These partnerships
will surely continue to mobilise and share expert knowledge on technological and applied
resources to directly or indirectly achieve the other SDGs.

6.2 Limitations and Future Research Directions

It is quite an exciting time to be a researcher. We are witnessing astounding developments
in all areas of science while still leaving many questions unanswered. This section will offer
some concluding thoughts on what I believe are open avenues of research from this thesis,
and which are already finding their place in the community. I will focus on research topics
that correspond to what I consider to be the specific limitations of this thesis, rather than
trying to give broad ideas. By no means do I intend this to be an exhaustive section, but
I also hope it can highlight some interesting paths on which I am sure the field of artificial
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intelligence will play a critical role. When short-term topics are presented, they are meant
to be set on a time frame of approximately between 6 to 12 months.

The first topic I should highlight is the multimodal alignment of genetic and
neuroimaging data, the two scales I have explored in this thesis. There have been some
approaches in recent years tackling this connection. For instance, a previous study linked
brain connectivity with genetic levels to find evidence for different hypotheses on tau
distribution [61], but the lack of samples hindered the statistical power of such connections.
We are seeing other articles [34, 220, 255] coming into play, and this is supported by the
increased number of very big datasets providing both neuroimaging brain scans, as well as
genetic information. Take, for instance, the UK Biobank which I have used in Chapter 4,
already with more than 500,000 people involved with some genotype data. Likewise,
the Human Connectome Project is a traditional neuroimaging open dataset that I have
exploited in chapters 4 and 5; this dataset now provides SNP genotypes since 20181. These
numbers were unimaginable a few years ago, and I am sure the field will use these and other
datasets to produce a broader framework linking all brain connectivity, genetic profiles,
and phenotypes. The field of machine learning and, more particularly, deep learning, has
matured several multimodal approaches just waiting to be fully explored in the next stage
of big data coming from large consortia. To be more specific, a direct, short-term objective
would be to bring these other modalities to the architecture I presented in Chapter 4 given
the promising results leveraging the multimodal brain data in Section 4.4.5; this could be
achieved by defining the global level functions from the Graph Network block [29] which
were not used in this thesis and could include subject-specific genetic information. From
here, a further short-term extension would be to go beyond a binary output and instead
include more complex labels to be predicted by the architecture [113].

Another topic, more closely related to machine learning itself, is model complexity,
which needs to be considered as the fields of machine learning and neuroimaging keep
growing. With the advent of more potent MRI scans [205] at unprecedented resolution [82],
models will need to accompany this increase. Both data and models will likely become
increasingly complex; however, there is the need to focus on the opposite direction, by
reducing model complexity to improve inference time and ultimately to allow a full
democratisation of artificial intelligence in resource-constrained devices. While tied to
environmental advantages [239], this is already drawing interest in neuroscience [269]. In a
short-term perspective, there is an important follow-up work directly stemming from this
thesis which concerns exploring hardware-software co-design techniques such as quantisation
and pruning. Despite being widely popular with other types of neural networks, only
recently these techniques started to be adapted to graph neural networks [56, 259]. I believe
it is then paramount to explore these techniques for model complexity reduction with the
GNN architecture explored in Chapter 4 and understand how they can affect performance.
This approach can then be extended to another short-term follow-up work: to understand
whether the unprecedented resolution allowed with 7 Tesla MRI machines actually translate
in performance improvements. Recent papers showed promising results that indeed moving
from 3 Tesla to 7 Tesla brings advantages [50, 196], but more experiments would be needed
to validate these results, for example using the models from chapters 4 and 5.

A third, short-term topic regards the use of probabilistic Bayesian models to mea-

1https://www.humanconnectome.org/study/hcp-young-adult/article/hcp-releases-snp-

genotypes-collected-hcp-young-adult-subjects-dbgap
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sure uncertainty instead of using single deterministic outputs2. Despite the existence of
many such models and varied research directions [6, 265], most of these applications on
real-world data are not focused on 1-D Dimensional data; therefore, given the practical
utility of this type of data (see Chapter 5), exploring how recent developments on proba-
bilistic machine learning can be applied is important. Indeed, I was already personally
involved in another work using Bayesian modelling for 1-D Dimensional neuroimaging data
to identify healthy individuals with Alzheimer neuroimaging phenotypes, with promising
results [22]. A natural, short-term extension would be to use recent extensions to model
probabilistic outputs with XGBoost [188] on the learning task from Chapter 5.

I would like to finish with a long-term future research direction related to the issue
of dealing with confounders. This issue is of paramount importance in any applied
research field and reasonably left untackled in the machine learning literature. The
existence of confounders is a problem in any serious statistical analysis, as it could drive
the prediction task without the researcher detecting its existence. I tried to indirectly avoid
issues with confounders in this thesis. I used a highly homogeneous dataset in chapters 4
and 5 (i.e., HCP) and exploited a complete unsupervised tool to deconfound unwanted
variation in Chapter 3. In Section 4.5, possible confounders were directly included in
the architectures, and in Chapter 4 I used a dataset with only healthy people (i.e., UK
Biobank) while being careful with stratification. Nevertheless, to further validate my
findings, one would need to analyse confound effects in more detail to test causality rather
than correlation. The neuroimaging field does not seem to have a widely accepted approach.
For example, it is common to linearly regress out variables of interest and develop models
on the residuals, which was widely analysed in a recent study on the UK Biobank [9].
Some more recent developments are being directly implemented in deep learning models,
for cases such as unlearning the scanner bias in MRI scans [73]. In molecular biology
the use of unsupervised tools such as sva (see Chapter 3) seems to be widely adopted;
nevertheless, we might be removing real signal from the data by only correcting values
instead of bringing those variables into the model itself. I should highlight that this can
have direct health and economic effects on people’s lives. For instance, at the beginning
of the COVID-19 pandemic there were studies indicating the potential protector effect
of vitamin D, which seemed to be corroborated in people on the UK Biobank; however,
after making adjustments for confounders, Vitamin D insufficiency was not independently
associated with either COVID-19 infection or linked mortality [133].

Tackling all these and other issues will ultimately help establish artificial intelligence as
a necessary tool to help achieve the sustainable development goals [273]. I will personally
try to frame my future career following these goals, and I urge all researchers to do likewise.
This will certainly unleash the true potential of applied artificial intelligence, whatever the
researcher or research group using it.

2Model uncertainty can be framed in different ways, though in this case I am referring to the simple
generic case of understanding how certain/confident a model is of its output. In practice, this means that
a distribution over predictions should be returned instead of a single prediction, and this confidence range
can indicate when one can trust a model’s prediction.
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Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina,
Richard Benjamins, Raja Chatila, and Francisco Herrera. Explainable artificial
intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI. Information Fusion, 58:82–115, June 2020. Cited on pages 33, 66, and 90.

[15] Salim Arslan, Sofia Ira Ktena, Ben Glocker, and Daniel Rueckert. Graph saliency
maps through spectral convolutional networks: Application to sex classification with
brain connectivity. In Lecture Notes in Computer Science, pages 3–13. Springer
International Publishing, 2018. Cited on page 67.

[16] Lidia Auret and Chris Aldrich. Empirical comparison of tree ensemble variable
importance measures. Chemometrics and Intelligent Laboratory Systems, 105(2):
157–170, February 2011. Cited on page 90.

[17] Andrea Avena-Koenigsberger, Bratislav Misic, and Olaf Sporns. Communication
dynamics in complex brain networks. Nature Reviews Neuroscience, 19(1):17–33,
December 2017. Cited on page 65.

[18] Tiago Azevedo, Luca Passamonti, Pietro Lió, and Nicola Toschi. A machine learning
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