
Technical Report
Number 972

Computer Laboratory

UCAM-CL-TR-972
ISSN 1476-2986

Muntjac multicore RV64 processor:
introduction and

microarchitectural guide

Xuan Guo, Daniel Bates, Robert Mullins,
Alex Bradbury

June 2022

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

https://www.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 2022 Xuan Guo, Daniel Bates, Robert Mullins,
Alex Bradbury

This work was kindly supported by lowRISC CIC.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

Abstract

Muntjac is an open-source collection of components which can be used to build
a multicore, Linux-capable system-on-chip. This includes a 64-bit RISC-V core,
a cache subsystem, and TileLink interconnect supporting cache-coherent multicore
configurations and I/O. Each component is easy to understand, verify, and extend,
with most being configurable enough to be useful across a wide range of applications.
In its current state, Muntjac achieves 2.17 DMIPS/MHz and 3.01 CoreMark/MHz,
and can achieve 80+ MHz (with FPU enabled) when targeting a Xilinx Kintex 7
FPGA. This document provides an overview of Muntjac, the standards it follows
and an explanation of design decisions and implementation details.

3

1 Introduction

Muntjac [5] is an open-source collection of components which can be used to build a
multicore, Linux-capable system-on-chip. This includes a 64-bit RISC-V core, a cache
subsystem, and TileLink interconnect supporting cache-coherent multicore configurations
and I/O. Each component is easy to understand, verify, and extend, with most being
configurable enough to be useful across a wide range of applications.

Core 0 Core 1 Core 3Core 2

Firmware
Flash

Device

Broadcaster
or L2 cache

Memory
Controller

Memory I/OROM

PLIC CLINT

IRQ

Device
DMA

Figure 1: Example multi-core Muntjac system. All solid-border components are provided
by Muntjac.

Inspired by the lowRISC’s Ibex project [6], we prioritise verification and documenta-
tion so users can make rapid progress and be confident that Muntjac’s behaviour adheres
to all appropriate standards. We focus on having clean, well-tested designs with clear
routes to further customisation and improvements. Muntjac’s performance is competitive
with other open-source projects, and we aim for a power/performance/area compromise
that maximises the value of Muntjac as a baseline design for others to use.

We anticipate Muntjac being valuable in the following situations, among others:

• Education: the complete code for a high-quality modular processor is available, with
documentation, verification support and examples, and lends itself to self-contained
extensions (e.g. a new branch predictor). This document also discusses some of the
nuances of real processor design, and some of the key design decisions we made.

• Research: Muntjac can serve as a solid baseline for experimentation, removing the
need to build and test huge swathes of general-purpose infrastructure needed to
support a single novel component.

• Industry: many real-world applications value “time to solution” over absolute per-
formance or energy efficiency. Muntjac is a reliable, configurable, complete starting
point, allowing engineers to focus on the unique selling points of their target system.

Why use Muntjac? At the project’s inception, there were a number of similar RISC-V
projects available, but none had the right mix of features for us. We believe we have now
reached a unique point in terms of performance, documentation, verification and ease of
understanding. We have a base design that we have written entirely ourselves, so we have
a consistent coding style, all components have been designed together to complement each
other, and we are able to explain the design better to new contributors. ccessibility is aided

4

by a relatively small and well-structured codebase, and usage of popular, well-supported
hardware description languages (SystemVerilog) and standards (RISC-V, TileLink) to
maximise interoperability with other tools and IP. Everything “just works” out-of-the-
box, and can be configured to suit new designs.

We are keen to see the community of Muntjac users grow, and together we will extend
and improve the range of components we offer.

2 Core overview

The Muntjac core is single-issue, in-order, scalar, and supports the RV64GC instruction
set with machine and supervisor ISA. Floating-point extensions (F and D) are optional
and can be configured with SystemVerilog parameters. The list of supported instruction-
set extensions and the standards they conform to is detailed in Table 1.

Standard Version

RV64I: Base Integer Instruction Set, 64-bit 2.1
M: Standard Extension for Integer Multiplication and Division 2.0
A: Standard Extension for Atomic Instructions 2.1
C: Standard Extension for Compressed Instructions 2.0
F: Standard Extension for Single-Precision Floating-Point 2.2 (Optional)
D: Standard Extension for Double-Precision Floating-Point 2.2 (Optional)
ZiCSR: Control and Status Register (CSR) 2.0
Zifencei: Instruction-Fetch Fence 2.0
Machine ISA 1.11
Supervisor ISA 1.11

Table 1: List of RISC-V instruction-set extension standards implemented

Frontend Backend

I$ D$

Control, Misprediction & Redirection

Aligned Instruction

Word-aligned Access
& Flush Request

Access & Flush

Next-level Cache

Interrupts

Figure 2: High-level overview of Muntjac core components

The Muntjac core is designed with modularity in mind. It aims to be easy to under-
stand, verify and extend. As shown in Figure 2, the core is separated into 4 components.
The frontend and the backend are loosely coupled and valid-ready signals are used for
stalling and back-pressure. The instruction and data caches are also loosely coupled with

5

the frontend and backend, respectively. Separating pipeline design and cache design al-
lows a differently designed cache to be swapped in easily without having to adjust the
design of the pipeline.

In general, we choose distributed stall signals over a global stall signal or a stall-
free design. Valid-ready signals are widely used both within components and between
components, so each component and each pipeline stage can be mostly self-contained.
Skid buffers are used when distributed stall signals start to cause timing issues.

3 Pipeline

3.1 Frontend

Redirection
(from BE)

BTB

BP

RAS

+4

N
ext P

C
 C

om
pute

I$
Instruction
Alignment

BE

P
C

PCGEN IF DE

Figure 3: Muntjac frontend design

Muntjac’s frontend design is illustrated in Figure 3. It is a fairly classical frontend de-
sign, except that variable-length instructions are supported. There is a separate PCGEN
stage that generates the next PC, without peeking into the fetched instruction bytes.

Muntjac supports the compressed instruction (C) extension. The C extension is desir-
able because it brings significant code size reductions, improves instruction cache efficiency
and is also required by most Linux distributions. We made a deliberate choice to not allow
the C extension to be turned off via a Verilog parameter, because doing so requires us to
add support for the misaligned instruction exception. A RISC-V misaligned instruction
exception is triggered at the jump instruction that causes it; this is the only possible
exception generated by jump instructions, so requiring the C extension can make the
backend simpler.

It should be noted that the C-extension does not only adds 2-byte compressed in-
structions, but also relaxes the alignment requirement of 4-byte instructions to be only
2-byte aligned. The relaxed alignment requirement does mean that Muntjac has to deal
with the complexity of a misaligned 4-byte instruction, potentially crossing a cache line
or even a page boundary. For any instructions that are not 4-byte aligned, two bytes
will be fetched first; the following bytes might be prefetched, but the exception triggered
during the prefetch would be discarded if the first two bytes indicate that the instruction
is compressed.

The complexity of compressed instructions and misaligned instructions is entirely han-
dled within the frontend; the instruction cache only needs to support accesses aligned to

6

word (32-bit) boundaries. When the PCGEN stage generates a PC, it will also generate a
mask indicating which half-words of the fetched word are significant. For example, when
a branch lands on a misaligned location (i.e. PC%4 = 2), a mask of 0b10 is generated;
when the PCGEN stage predicts that control flow will deviate after an instruction that
ends on a misaligned location (e.g. a misaligned 4-byte predicted-taken branch), a mask
of 0b01 is generated; a mask of 0b11 is generated for most other scenarios where all half-
words are significant. The instruction alignment logic takes the fetched words and the
masks and re-segments into individual instructions to be decompressed and decoded.

The branch target buffer (BTB), return address stack (RAS) and branch predictor are
used to predict the next PC. In the current version of Muntjac, a direct-mapped BTB is
used. The branch target buffer will output 3 pieces of information:

• the type of instruction: whether the instruction is a conditional branch, jump, call,
or return instruction, or not a control flow instruction at all;

• the target PC in case the instruction is a branch or a jump;

• whether the second half-word is part of the instruction stream (in case the control-
flow instruction ends on a misaligned location).

The RAS is pushed when a BTB predicts a call or a yield instruction, and is popped
when BTB predicts a return or a yield instruction. The RAS is implemented like a ring;
pushing when the RAS is full will overwrite the first entry, and popping when the RAS is
empty reads the last entry. A separate set of buffer pointers are maintained that are only
adjusted when a call/return/yield instruction is committed; in case of a misprediction,
this counter will override the speculative counters to re-balance the return address stack,
so that a single misprediction will not cause cascade RAS mispredictions.

The branch predictor is used when the BTB predicts a conditional branch. Currently,
the branch predictor implemented is a simple bi-modal 2-bit saturating counter, but like
other components, the interface between frontend and branch predictor is well-defined
and a different implementation can be easily swapped in.

The backend notifies the frontend for all control-flow instructions committed whether
correctly predicted or not. The frontend makes use of this information to train the branch
predictor, and in case of a misprediction, also trains the BTB, adjusts RAS pointers, and
re-initiates the fetch.

3.2 Backend

The aligned instructions from the frontend are expanded into 4-byte instructions if they
are compressed, decoded and have operands fetched in the DE stage as shown in Figure 4.
The issue logic manages control, data and structural hazards, and issues instructions into
one of the functional units.

The arithmetic logic unit (ALU) and the branching unit complete in a single cycle,
while the latency of other functional units may be multiple and variable number of cycles.
To hide the latency of data cache accesses (usually 2 cycles when cache hits), there are
two execution stages, EX1 and EX2. All instructions progress from EX1 to EX2 before
their result is written back; a register is placed between the two stages to hold the result
if the functional unit completes before it could progress into EX2.

CSR accesses and other system instruction executions are handled outside the normal
data flow. When a system instruction is decoded, the issue logic blocks it from continuing
down the pipeline, and instead waits for all previously issued instructions to commit (or
trap). It will then dispatch the instruction to the control state machine when the pipeline

7

D
ecom

press

D
ecoder

D$

ALU

Branch

Issue

Control State
Machine

Reg
Read

EX1 EX2

CSR Read

Interrupts

Reg
Write

To FE

From FE

DE

MUL/DIV

FPU

Figure 4: Muntjac backend design

is empty. After the control state machine deals with the instruction, it will inject the
execution result (e.g. CSR value read) into the pipeline. This design ensures that all
backend control signals are stable, so functional units do not have to latch control signals
internally; global states can only change when the pipeline is empty.

Except for the data cache interface, no functional units nor the control state machine
may generate exceptions. Insufficient privilege or illegal CSR accesses are all decoded as
illegal instructions by the decoder. If a load or store instruction triggers an exception,
all instructions in flight are cancelled by setting their destination register to x0. This
simple cancellation process is made possible by the fact that all functional units other
than the data cache are stateless and cannot generate exceptions, and that the control
state machine is outside the pipeline.

Two implementation options are provided for the multiplier. A slower implementation
that has a 17x17 multiplier and splits 32-bit multiplication into 3 narrow multiplications,
and 64-bit multiplication into 10-16 narrow ones. A faster one uses a 33x33 multiplier
and splits 64-bit multiplications into 3-4 narrow multiplications. 1 extra cycle is inserted
on the input path for timing purposes. The division unit implemented performs 1-bit per
cycle long division. 1 extra cycle each is inserted on the input and output path for timing.
If a pipelined multiplier or multi-bit-per-cycle divider is needed it could easily be plugged
into the existing interface.

DIV/SQRT

MUL

Comparator/Misc

ADD N
orm

alize

R
ound

Figure 5: Muntjac FPU design

An FPU is available with Muntjac, supporting both single-precision and double-
precision floating-point arithmetics. It is divided into 3 stages as shown in Figure 5.
The “normalize” stage converts subnormal numbers into normalized form and decodes

8

zero, infinity and NaNs. Single-precision floating-point numbers will be expanded to
double-precision at this stage so arithmetic pipelines are unaware of the difference. There
is a multiplication-and-add pipeline, which as its name implies, handles multiplication,
add, and fused multiplication-and-add (FMA). Division and square root using long divi-
sion are in the same pipeline. Another pipeline handles comparison, min-max and other
miscellaneous operations. After the arithmetic pipeline, the result is fed into one of the
single-precision, double-precision or integer rounding modules to convert from the inter-
nal normalized form back to IEEE format or to integers. The number of cycles depends
on the operation and ranges between 3 and 59. Unlike many other implementations, we
opted not to use a recoded format internally, so that NaN-boxing behaviour is more easily
implemented and hard-to-test bugs related to recoding can be avoided.

We provide a few options for floating-point support:

• No FP support: No FP registers are supported, and FPU is not instantiated

• Full FP support: FP registers are supported, and FPU is instantiated

• FP register only: FP registers are supported, but FPU is not instantiated. In this
mode, FP load and store operations are supported and handled by the hardware,
but other FP operations will cause an illegal instruction exception. This mode can
be used if the user only uses FP instructions occasionally on cold paths, wants the
core to appear as RV64GC, but does not want to bear the cost of FPU. In this
mode, M-mode firmware can trap and emulate the floating-point operations, but
trapping is not needed when the operating system (OS) merely saves or restores FP
contexts without performing actual computations.

It is also possible to have multiple cores sharing a single FP unit, but this is not yet
implemented.

4 Protocol choice for cache coherency

In Muntjac, both instruction and data caches communicate with the pipeline via generic
valid-ready interfaces, allowing flexibility in cache designs and their protocol choice. How-
ever we do want to provide a reference cache implementation which could suit general use
cases.

Since cache coherency protocols have profound influences on cache designs and a lot
of work is to be spent on implementing all necessary utilities and infrastructures, we thor-
oughly evaluated a range of cache coherency protocols to be used for the reference cache
implementations. Candidates include a custom 3 channel protocol and open-standards
such as AXI/ACE and TileLink.

4.1 AXI

AXI [1] is short for Advanced eXtensible Interface, and is one protocol out of the Advanced
Microcontroller Bus Architecture (AMBA) family. The specification is developed and
published by ARM. The specification is royalty-free, but it does come with a restriction
that if a design uses AXI and includes a CPU, then the CPU should either be licensed
from ARM, or must not be compatible with ARM ISA. Since Muntjac is not compatible
with ARM ISA, the license restriction would not apply.

The latest version of the AXI specification when the project began was AXI 4, and
the latest version of AXI as of the time of writing is AXI 5. There is a trimmed down
version called AXI-lite for peripheral IOs that have low performance requirements.

9

AXI/AXI-lite have 5 channels: Read Address (AR), Read Response (R), Write Ad-
dress (AW), Write Data (W) and Write Response (B). Each channel has its own valid and
ready signals and handshaking happens upon assertion of both valid and ready signals.
AXI requires the valid signal be constantly asserted until the handshake happens. AXI
requires that no combinational path exists between input and output signals.

AXI has two basic transactions:

• Read: host sends address, size and length on AR channel, and device responds on
R channel with data and status.

• Write: host sends address, size and length on AW channel, and sends data on W
channel. The device responds on B channel with status.

Size is the size of a single burst, while length is the number of bursts minus 1. A
“last” signal is required for channels that support multiple bursts (R/W in AXI). The
separation of size and length leads to a possibility called narrow bursts, when the size is
smaller than the native size given the width of data signals but the length is non-zero.
Narrow bursts are not supported by all AXI implementations.

AXI also places AW and W in separate channels. In AXI 3, both AW and W channels
carry transaction IDs, but it could be different to handle if addresses and data are not
arriving in the same order. The ID of the W channel was subsequently removed in AXI
4 and reordering of write is forbidden.

AXI supports load-reserved store-conditional (LRSC) by exclusive accesses. Read
request can have ARLOCK set, and the device can respond with EXOKAY if it supports
exclusive accesses. A subsequent write request can have AWLOCK set, and if the memory
has not been modified between the read and the write request, the write will be accepted
by the device and an EXOKAY status is returned. Otherwise, the memory is not updated
and OKAY is returned. Starting in AXI 5, AW channel has an additional atomic operation
signal AWATOP; the supported atomic operations are a super set of atomic operations
supported by RISC-V.

4.2 ACE

ACE, short for AXI coherence extensions, is also from the AMBA protocol family. ACE
extends AXI with 5 additional channels: Snoop Address (AC), Snoop Response (CR),
Snoop Data (CD), Read Acknowledgement (RACK) and Write Acknowledgement (WACK).
AC, CR and CD are flow controlled using valid and ready signals like AXI channels, while
RACK and WACK channels are one-way and have no ready signals.

A typical read transaction that needs invalidation makes use of AR, AC, CR, CD, R
and RACK channels:

• Host issues a read transaction on AR channel.

• Device forwards the address to the AC channel.

• Other hosts respond on CR channel, optionally provide data on CD channel.

• If data is present, device forwards the data to R channel; otherwise the device
handles the read transaction itself, e.g. serve request from the cache or forward to
the next-level cache.

• Host completes the transaction on RACK channel.

Write-back or eviction makes use of AW, W, B and WACK channels:

10

• Host issues a write transaction on AW channel.

• If cache line is dirty, data is transferred on W channel.

• Device responds on B channel.

• Host completes the transaction on WACK channel.

In ACE a cache line can be in one of 5 states: Invalid (I), UniqueDirty (UD), Shared-
Dirty (SD), UniqueClean (UC), SharedClean (SC), i.e. it is a MOESI protocol.

4.3 TileLink

TileLink [10] is a family of open-standard interconnect protocols originally designed by UC
Berkeley Architecture Research group and subsequently SiFive. Unlike ACE’s MOESI,
TileLink follows MESI model. There are two permission levels in TileLink: N (None), B
(Branch) and T (Trunk), some quite atypical naming differing from normal None, Read,

Read/Write nomenclature.
In TileLink, caches are viewed as a tree with a single device as the root (e.g. LLC),

L1 caches as the leaf and intermediary caches (if any) as the middle nodes. and For
any particular cache line, all agents that contain cache copies of the cache line forms a
subtree, known as coherence tree in TileLink. The point of write serialization is known
as the Tip; a node on the path between the Tip and the root (including both) is called a
Trunk, and children of the Tip are known as Branches. For example, when L1 requests
Trunk permission from L2, L2 requests Trunk from memory controller, then all agents
have the cache line in the Trunk state. TileLink formally defines that only Trunk Tip
with no Branches have write permission to the cache line to reflect the fact that only L1
can write the cache line in this case.

There are 5 channels for a TileLink link: A, B, C, D and E. Out of these channels, A,
C and E flow from hosts to devices, while B and D flow from devices to hosts.

• A channel carries requests such as Get and PutPartialData/PutFullData message
for uncached memory accesses, or AcquireBlock/AcquirePerm message for obtain-
ing data and permission for a cache line.

• B channel carries ProbeBlock/ProbePerm messages to invalidate a cache line from
hosts.

• C channel carries Release/ReleaseData voluntary cache line permission release
(and writeback) messages, or ProbeAck/ProbeAckData messages in response to in-
validation messages sent over the B channel.

• D channel carries AccessAck/AccessAckData messages in response to Get/
PutPartialData/PutFullData messages sent over A channel, or Grant/GrantData
cache line permission grant messages in response to AcquireBlock/AcquirePerm

messages sent over the A channel, or ReleaseAck messages in response to voluntary
cache line release messages sent over the C channel.

• E channel carries GrantAck message in response to Grant/GrantData messages sent
over the D channel.

If sorted according to causal order:

• Uncached read: host sends Get and device responds with AccessAckData.

11

• Uncached write: host sends PutPartialData/PutFullData and device responds
with AccessAck.

• Increase cache line permission: host sends AcquireBlock/AcquirePerm, device re-
sponds with Grant/GrantData and host responds with GrantAck.

• Non-voluntary decrease cache line permission: device sends ProbeBlock/ProbePerm,
host responds with ProbeAck/ProbeAckData.

• Voluntary decrease cache line permission: host sends Release/ReleaseData and
device responds with ReleaseAck.

There are also atomic read-modify-write transactions and a hint/prefetch transac-
tion. They are handled similarly to Get and PutFullData. Muntjac does not use these
transactions so we will ignore them.

The channels are of ascending priority (A < B < C < D < E). Naturally, all
responses are on a higher priority channel than the original request. If a link agent is
waiting for the response on a channel, it must be able to process messages sent over
higher-priority channels. For example, a host waiting the response of AcquireBlock must
be able to process a ProbeBlock message. However, a host waiting for the response of
ReleaseData would not have to process ProbeBlock until it has received ReleaseAck.
The priority requirement ensures that if a message is not processed, there must be a higher
priority message in process. With limited (5) priority levels, this property guarantees the
deadlock freedom of the TileLink network.

Host Device Host Device

Figure 6: Ambiguous TileLink transaction if E channel is absent

TileLink does not guarantee any ordering of messages over channels. This relaxed
requirement is the rationale behind the three-way handshake of cache line permission
acquisition requests. If the E channel is absent, the transactions shown in Figure 6 are
no different to the host; however in the left figure, the device would assume that the host
no longer owns the cache line, while in the right figure, the device would assume that the
host owns the cache line. This ambiguity is removed by requiring a GrantAck response
to Grant/GrantData so the device would not send a ProbeBlock message until it has
received the GrantAck.

12

There are three variants: TileLink Uncached Lightweight (TL-UL), TileLink Uncached
Heavyweight (TL-UH) and TileLink Cached (TL-C). TL-C supports all messages. TL-
UH supports Get and PutPartialData/PutFullData (and hint/atomics) with their cor-
responding response messages. TL-UL supports Get and PutPartialData/PutFullData

(without hint/atomics) and does not support multi-cycle bursty transfers. Since TL-UL
and TL-UH do not support any messages on channel B, C and E, they only need channel
A and D.

4.4 Custom protocol

We have also considered a custom 3-channel protocol. It contains a Req, Resp and Wb

channel. For simplicity we will use TileLink names for messages:

• Cache line permission is increased by sending out an AcquireBlock request on Req

channel, and the device responds GrantData on the Resp channel.

• Voluntary release of cache line permissions is done by sending Release on the Wb

channel and is not acknowledged.

• Invalidation is performed by the device sending a ProbeBlock on the Resp channel
and the host responds with ProbeAck on the Wb channel.

This design is simplest and was used during the early prototyping stages. However the
lack of acknowledge on Wb means that a reordering of AcquireBlock (on Req channel) and
Release (on Wb channel) is problematic. Consider the scenario where a host sends out a
Release followed by a AcquireBlock to the same address. Because the Release message
does not require acknowledgement, if message on the Wb channel is delayed, the device
may receive the AcquireBlock first followed by Release, different from the sending order.
The host would assume that it owns the block while the device would mistakenly believe
that the block is released, causing inconsistency.

The most straightforward fix is adding new channels, which brings us close to TileLink.
While fixing the issue without adding new channels is possible, e.g. adding reordering
constraints across multiple channels, we conclude that additional complication would
make a custom protocol not worthwhile given that TileLink only requires 2 additional
channels and has no reordering constraints.

4.5 Comparison

One difference between AXI/ACE is the specification of transaction sizes. In AXI, two
fields are used: size and length. TileLink instead has a single size field that can be only
used to specify sizes of powers of two: if the size is smaller than the bus data width,
it is a narrow transaction; otherwise the transaction is bursty. Data width conversion is
complicated in AXI due to the possibility of narrow bursts; in comparison it is very simple
for TileLink, and data width downsizing could even be stateless. TileLink’s power of two
requirement however means that burst length is also power of two, so DMA devices are
harder to implement compared to AXI because they have to divide accesses to aligned
chunks.

Another significant difference between AXI/ACE and TileLink is the usage of IDs. In
AXI, the same ID can be used for multiple in-flight transactions. Devices are required
to respond to transactions of the same ID in FIFO order and reordering is forbidden.
In TileLink, the ID must not be reused until the transaction has been completed. AXI’s
design simplifies the design of simple hosts by allowing them to issue multiple transactions

13

under the same ID and process them one by one; crossbar implementations are more
complicated if two transactions to different devices are under the same ID, since the
crossbar has to block the second request (otherwise the response to host could be out-
of-order). On the other hand, TileLink crossbars only need to arbitrate messages going
towards the same channel. Without reordering requirements, TileLink crossbars can be
stateless.

In AXI, control and data signals are in separate channels; in TileLink they are sent
in the same channel, and control signals are held constant for all data beats for bursty
transactions. TileLink’s approach makes interconnects and devices simpler because con-
trol and data will not be reordered; the AXI 4’s ditch of ID in W channel manifests the
disadvantage of separate control and data signals. A minor disadvantage of TileLink’s
design is that FIFOs either have to store redundant control signals or have to store control
and data signals separately despite being from a single channel, but we consider it to be
insignificant.

AXI4-Lite AXI5-Lite AXI4 AXI5 ACE TL-UL TL-UH TL-C

of Channels 5 10 2 5

Data width 32 or 64 Up to 1024 Up to 4096

Transaction Size Full bus width Up to bus width Up to bus width Up to 4096

Burst Length 1 Up to 256 1
Length must be power of 2
Address must be aligned

Control & Data Separate Combined

”Last” Signal Always true Explicit Always true Implied

Atomics No LRSC Only Yes Yes No Atomics Only Yes

IDs Optional Required, same ID indicates FIFO Required, same ID forbidden

Table 2: Summary of cache coherency protocol differences

Table 2 summarises differences between the cache coherency protocol evaluated. AXI-
Lite, TL-UL and TL-UH are mainly for device IOs and they are not suitable as the cache
coherency protocol due to lack of atomic support needed to implement the entirety of
RISC-V’s A extension. We also ruled out the usage of bare AXI. While AXI 5 does
support LRSC and atomic operations, the need of bus transactions for all atomic ac-
cesses is unfavourable. While traditionally it is believed that synchronisations are rare,
the statement is no longer true given the rise of multi-threaded programs. To avoid
data races, very fine-grained locking is becoming widely adopted, and their performance
and overhead has been greatly improved by ParkingLot [8]. The Rust programming lan-
guage [11] takes further steps to eliminate data races by ensuring all data shared between
threads are protected by thread-safe reference counters and locks, all of which use atomic
operations underneath. As a result of the fine granularity, the vast majority of atomic
memory accesses are uncontended. The performance in such cases becomes critical, and
the requirement of bus transactions for all atomic operations is undesirable.

Considering simplicity, number of channels, and the fact that Ibex [6] and OpenTitan
[7] already makes use of TileLink, we ultimately selected TL-C over ACE for cache co-
herent links, TL-UH for uncached accesses and TL-UL for I/O memory access. TileLink
specification includes provision for update-based protocols; Muntjac does not implement
them. This removes the possibility of a bursty B channel, and saves 73 bits per 64-bit
data width TL-C link.

One additional aspect worth mentioning is not about the intrinsic design of protocols,
but their current adoptions. Many existing third party IPs use AXI. So for compati-
bility/interoperability reasons, a bridge needs to be feasible between the protocol cho-

14

sen (TileLink) and AXI. Fortunately, TileLink to AXI bridge is fairly trivial; AXI to
TileLink bridge requires splitting AXI transactions into chunks due to the address align-
ment requirements of TileLink, but we consider this burden to be acceptable. We have
implemented these bridges to be used along with Muntjac.

5 Cache design

Muntjac provides cache implementations with interfaces that comply with the TileLink
protocol. Both instruction and data caches communicate with the pipeline via generic
valid-ready interfaces, so they have to manage the request replays themselves without
help from the frontend/backend.

5.1 Data cache

Miss
Handler

Tag
SRAM

Data
SRAM

MEM.A

MEM.D

CPU.REQ

Refill
Logic

Writeback
Logic

Fast Path

MEM.E

MEM.C

CPU.RESP

CPU.FLUSH
Flush Logic Probe Logic

FIFO

PTW

TLB

MEM.B

Figure 7: Muntjac L1 data cache subcomponents

Muntjac’s data cache implements the TileLink Cached (TL-C) protocol for its memory-
facing interface and is therefore multi-core-capable. It is organised into several state
machines as shown in Figure 7. The cache is set-associative, and for each way, tags and
data are stored in separate single-port SRAMs. Our initial implementation used simple
dual-port (1-read 1-write) SRAMs, but benchmarks showed only a small performance
difference, so Muntjac switches to single-port SRAMs for less transistor usage. Data
SRAMs are 64-bit wide and do not have byte masks for writes.

When an access request arrives from the backend (via CPU.REQ), a parallel lookup to
all of the tag SRAM, data SRAM and TLB take place as shown in Figure 8. The physical
address translated by the TLB is used for tag comparison (i.e. this is a physically-
indexed physically-tagged (PIPT) cache). For a load or atomic fetch-and-update request,
if everything hits, the data word fetched and multiplexed will be aligned if the access is
narrow (less than 64-bit) and returned to the pipeline.

15

Tag
SRAM

Data
SRAM

CPU.REQ.ADDR

Aligner

Miss & Writeback (Slow Path)

CPU.RESPComparator

AMOALU
Data

SRAM

Replay

Page Table Walk (Slow Path)

TLB

Aligner
CPU.REQ.DATA

Figure 8: Muntjac L1 data cache fast path

The cache has its own ALU, the AMOALU, for atomic operations and narrow stores.
For a store or an atomic fetch-and-update request, the supplied data from the pipeline
will first be aligned, i.e. have the bytes shifted to their position in the containing 64-
bit word for a narrow store. The current value from the data SRAM and the aligned
data will then enter AMOALU, recombined with the current value for the inactive bytes
before being written back into the data SRAM. Plain stores are implemented similar
to an AMOSWAP: while no computation is performed, AMOALU is still used for byte
recombination. Recombining bytes is preferred to using byte masks on SRAMs to ease
future implementation of ECC.

The SRAM accesses are arbitrated between all subcomponents of the cache, so the
SRAM lookups might be blocked when another subcomponent (e.g. the probe logic) is
accessing it, in which case the request will be replayed. Similarly, a TLB miss will trigger
a page table walk and TLB refill, and the request will be replayed afterwards. If the
accessed cache line is nonexistent in the cache, the fast path will trigger the miss handler,
and optionally trigger the writeback logic if eviction is needed for a replacement.

The fast path only interacts with the SRAMs and all TileLink protocol details are
handled in other subcomponents. To avoid SRAM access races, refill, probe, flush and
writeback logic are mutually exclusive and at most one of them can be active at a time.
Upon a cache miss, the miss handler will send a TileLink A-channel AcquireBlock mes-
sage. The corresponding D-channel Grant/GrantData response is processed by the refill
logic, which updates the tag and data SRAM and sends back GrantAck message over chan-
nel E. Because writeback logic (C-channel) might be active when the response is received
and TileLink mandates D-channel messages takes priority over the C-channel, a FIFO is
needed for the refill logic. I/O accesses are not specially treated by the fast path; they are
treated as cache misses and the miss handler will still send out an AcquireBlock message.
If the address space accessed is I/O, the request will be responded with a denied Grant

message, and then the miss handler will retry the request using Get or PutPartialData

uncached access.

Writeback logic is responsible for both voluntary releases (e.g. eviction or a flush)
or for responding to probes initiated by the next-level cache. In the case of a voluntary
release, writeback will issue Release/ReleaseData and wait for ReleaseAck. Probe logic
is activated when a ProbeBlock message is received over the TileLink B-channel, and it
will look up the tag and leave the task of sending ProbeAck or ProbeAckData message to
the writeback logic. The probe logic is required even in a single core configuration, e.g.
to keep instruction cache and page table walkers coherent.

16

RISC-V has load-linked/store-conditional (LL/SC) instructions, which may cause live
lock in a multi-core setup; a forward progress requirement is thus included in the specifica-
tion. In Muntjac, when a cache access misses and the cache line is refilled, a 16-cycle timer
starts ticking. Within 16 cycles, any ProbeBlock request to the cache line is blocked. This
invalidation protection is lifted when a memory store has been made, another cache miss
happens or when the timer expires, whichever happens first.

Muntjac’s data cache, as it is currently implemented, is sequential consistent, and thus
all fences are treated as no-ops. This is means that Muntjac is currently compliant with
both RISC-V weak memory model (RVWMO) and RISC-V total store order (RVTSO).
However, it should be noted that the cache is implemented in this way solely due to
simplicity rather than a deliberate design decision. Future changes and improvements
could weaken it so that it is no longer compliant with RVTSO. RVWMO compliance is
however guaranteed as mandated by relevant RISC-V standards.

5.2 Instruction cache

Miss
Handler

Tag
SRAM

Data
SRAM

MEM.A

MEM.D
CPU.REQ

Refill Logic

Fast Path

CPU.RESP

CPU.FLUSH
Flush Logic

PTW

TLB

Figure 9: Muntjac L1 instruction cache subcomponents

Muntjac’s instruction cache is derived from the data cache but with unnecessary fea-
tures removed. The high-level structure is portrayed in Figure 9. As a derivative, the
overall design and operation are similar to those of data cache.

In RISC-V, an explicit FENCE.I instruction is necessary to ensure modified code is
visible to instruction fetch. Therefore, we implemented a non-coherent version of the
instruction cache; it will be fully flushed when a FENCE.I or SFENCE.VMA instruction
is executed. All cache coherence related logic is removed from this instruction cache, and
the TileLink variant it conforms to is TileLink Uncached Heavyweight (TL-UH). When
the cache misses, a bursty Get request is sent instead of AcquireBlock. A failed Get

request will cause an instruction access fault immediately rather than initiating a retry
as an I/O memory access. If needed, a coherent instruction cache that communicates via
TL-C is also available.

Write support is not needed in the instruction cache which simplifies the fast path
compared to the data cache, shown in Figure 10. Also, unlike the data cache which
needs to support variable size accesses, the instruction cache supports only 32-bit access;
the alignment stage is therefore also removed from the instruction cache (note that the
compressed instruction handling is performed entirely in the frontend). This narrower
access also allows us to reduce the data SRAM’s width to 32-bits.

17

Tag
SRAM

Data
SRAM

CPU.REQ

Miss & Writeback (Slow Path)

CPU.RESP

Comparator

Replay

Page Table Walk (Slow Path)

TLB

Figure 10: Muntjac L1 instruction cache fast path

5.3 SRAM word interleaving

The native word width of the data cache’s data SRAM is 64-bit, and 32-bit for the
instruction cache’s data SRAM. However, the bus width is often configured to be wider
than 64-bit to improve bandwidth and reduce latency caused by a high number of beats
in a bursty transaction. Adding a TileLink data width converter could solve the data
width discrepancy, but the performance is not optimal.

In Muntjac’s set associative cache design, data SRAMs are already banked; each set
needs its own data SRAM bank to allow parallel lookup for cache access. For example,
a 64-bit 4-way data cache therefore has a SRAM bandwidth of 256 bits/cycle for lookup.
An interleaving technique would allow all the bandwidth to be utilised for refilling as well.

A0 B0 C0 D0

B1 A1 D1 C1

C2 D2 A2 B2

D3 C3 B3 A3

Width

D
ep
th

Figure 11: Parallel data SRAM lookup across multiple ways, given a fixed offset

A naive design would have each data SRAM bank storing data for a specific way,
and data in the same cache line are indexed by their offsets within the cache line. With
interleaving, words in the same cache line may not be stored in the same bank of data
SRAM. The index and way number used to access a word depends on both its offset
within the cache line and the way number of the cache line.

Figure 11 and Figure 12 illustrates the interleaving mechanism and how data access
is performed with this scheme with a hypothetical 4-way cache where each cache line
contains 4 words. ABCD indicates the way number of a cache line, and 0123 indicates
the offset within the cache line. A0-3 therefore are the same cache line, but it can be
observed that they are spread out in different banks.

Cells with the same colour are simultaneously accessed in the same cycle. Figure 11
demonstrates a fast-path read operation that must simultaneously read all ways of a

18

A0 B0 C0 D0

B1 A1 D1 C1

C2 D2 A2 B2

D3 C3 B3 A3

D
ep
th

Width

Figure 12: Wide data SRAM access of multiple words within the same cache line

particular set in parallel. The same index is used for SRAMs in each way, so words of the
same offset are fetched for all ways (all cells sharing the same colour have the same offset).
Figure 12 on the other hand reflects the scenario where wide data access is needed for
writeback or refilling. A different index is used for each SRAM, so that all fetched words
belong to the same cache line (all cells sharing the same colour are in the same way).

This interleaving scheme reduces the number of cycles needed for writeback and refill-
ing, expanding the maximum bus width from 64 bits to 256 bits for a 4-way set-associative
data cache without the need to expand the bit width of each SRAM or adding TileLink
adapters. Similarly, a 4-way set associative instruction cache supports a maximum bus
width of 128 bits.

6 Multicore support

Both data cache and instruction cache have a memory-facing TileLink link, and they are
aggregated as shown in Figure 2. The aggregation is performed by a passive stateless 2:1
multiplexer that only switches messages based on source IDs. Currently 4 IDs are used
per core: the data cache and instruction cache are allocated with one ID each, and their
page table walkers are each allocated with a distinct ID.

The instruction cache and data cache are considered as distinct hosts in the TileLink
network, because they are not inherently coherent to each other; when an instruction
cache requests a dirty cache line that resides in the data cache of the same core, the dirty
data should be written back and used, instead of the stale data in the next-level cache
or the main memory. Similarly, the page table walker for the data TLB is considered a
distinct host from the data cache itself, so that up-to-date page table entries are used.

These requirements means that each core consists of multiple hosts from the TileLink
network’s perspective. Therefore, there are no fundamental differences between a single-
core Muntjac system and a multi-core Muntjac system. A broadcaster or an L2 cache will
always be necessary for correct operation.

In a typical system like Figure 1, TileLink links from each core and possibly DMA-
capable devices will be further aggregated with a stateless m:1 multiplexer; the link will
then be split into multiple links with a stateless 1:n demultiplexer depending on address
ranges and sink IDs. The handling will differ depending on the properties of the address
spaces:

19

• IO: all caching AcquireBlock requests are denied. Get/PutPartialData are allowed
and further demultiplexed to core local interrupt (CLINT) controller, platform-
level interrupt controller (PLIC) or devices. Interrupt controllers and devices follow
TileLink Uncached Lightweight (TL-UL), which does not support bursty transac-
tions.

• ROM: AcquireBlock messages that request Trunk (read-write) permission are de-
nied. PutPartialData requests are denied. Get is allowed, and read-only AcquireBlock

requests are converted into Get requests by a “TL-C ROM terminator” component.

• Memory: unlike IO and ROM, memory-like addresses can both be cached and mod-
ified. A broadcaster or an L2 cache is required as previously mentioned. Ultimately,
after potentially multiple levels of caches, it would be connected to a memory con-
troller that talks TL-UH.

6.1 Broadcaster

Request
Handler

Release
Handler

Probe Logic
L1.B

MEM.A

MEM.D

L1.A

L1.C

L1.D

L1.E

Figure 13: Simple broadcasting bus to bridge TL-C multiple hosts to a TL-UH port

For 1 or 2 cores, a broadcaster like Figure 13 is simplest and requires no additional
SRAMs. For each incoming request on the L1’s A channel, the broadcaster will send out
a ProbeBlock to all caching hosts except the initiator. The message will be converted to
Get only after all ProbeAck messages are received. ProbeAckData and ReleaseData are
converted to PutFullData while Release is responded by the broadcaster directly with
ReleaseAck.

A broadcaster will generate probing traffic to all cores for all requests even if these
cores are not using the cache line. This will hurt the performance of L1 caches. For
multi-core systems, it is recommended that an L2 cache is used.

6.2 L2 cache

Muntjac provides a reference L2 cache design. This cache uses TL-C for both the CPU-
facing link and memory-facing link, so despite its name, it could be cascaded and used
as L3 caches as well. This cache design can also be used as individual banks of a larger
cache, multiplexed by address.

When the cache is used as a last-level cache, a “RAM terminator” is provided which
converts TL-C protocol to TL-UH (this is allowed for the L2 cache because there is only a

20

single host (the cache) while for cores there are multiple hosts). Bridge IPs are provided
to further convert it to AXI.

Request
Handler

Release
Handler

Probe LogicL1.B SRAM

MEM.A

MEM.D

L1.A

L1.E

L1.D

L1.C

Writeback
Logic

MEM.B

MEM.E

MEM.C

Figure 14: Muntjac L2 cache design

The cache consists of SRAMs for tags and data, probe logic, writeback logic and
handlers for requests and releases, as shown in Figure 14. Multiple copies of request and
release handlers can exist for parallelism, allowing messages for different addresses to be
handled differently. Typically the number for each type of handler matches the number
of cores. It should be noted that to ensure correctness, only one of the logic can be active
for a particular address.

The probe logic is a very simple sequencer. A cache line may be shared by multiple L1
caches, so invalidation could potentially be multicast. TileLink is a unicasting protocol, so
a sequencer is needed to separate the multicasting invalidation to a number of unicasting
ProbeBlock messages.

The request handler, as its name suggests, handles request messages like Get or
AcquireBlock from A channel. If cache access hits and no probing is necessary, the
response gets sent back on the D channel. For Grant/GrantData responses, recipient
GrantAck on E channel will bring the request handler to idle state for new requests. The
request handler is also responsible for refilling the cache if the cache access misses. To
reduce latency, the refilled data is simultaneously forwarded back to the L1 and written
back to the data SRAM. If cache line eviction is necessary before refilling, probing of the
evicted cache line and dirty data writeback is delegated to the writeback logic.

When probing is necessary, the request handler sends out the probe via probe logic, and
is expected to handle the ProbeAck/ProbeAckData itself, as well as Release/ReleaseData
messages to the same address. This requirement is essential for the deadlock-free operation
of TileLink: another core may issue a Release to the same cache line concurrently as the
current one in progress by the request handler; the release handler cannot operate on the
same cache line to avoid conflicts. Whenever a C channel message with data is received,
the request handler simultaneously writes it back to the SRAM and forwards it to the
requester of the original initiating A channel message. The handler will read data from
SRAM and respond to the requester if none of the C channel messages contain data.

The writeback logic is responsible for both eviction and probes from next-level caches.
Similar to the request handler, it sends out the probe via probe logic and handles all C
channel messages to the cache line of concern. Though, in this case, data are forwarded as

21

ReleaseData or ProbeAckData to the memory-facing C channel rather than CPU-facing
D channel.

Because the writeback and request logic is responsible for C channel messages for their
cache lines, the release handler is very simple. It only ever deals with Release/ReleaseData
messages. It simply writes the data back to the SRAM if necessary and responds with
ReleaseAck.

7 Utilisation and performance

Instruction Type Stall Cycles Notes

Integer Arithmetic 0 No RAW data hazard

Load 0
Store/Atomics 0/1 1 cycle stall if succeeded immediately by a load or atomic

Integer Multiplication
3/10/16 (Slow Multiplier)
1/3/4 (Fast Multiplier)

Numbers in MULW/MUL/MULH order

Integer Division 33/65 33 for DIVW/REMU, 65 for DIV/REM

FP Arithmetic 4 Same for FADD/FSUB/FMUL/FMA
FP Division/Sqrt 57 No separate treatment for single precision
FP Bitcasts/Classification 0
FP Comparison 1
FP Misc 2 Includes sign manipulation, conversion

Jump/Branch (Predicted) 0/1
+1 cycle stall if jump target is a misaligned 4-byte instruction.

Jump/Branch (Mispredicted) 3/4

CSR Access 2 Pipeline is flushed before access happens.

FENCE.I/SFENCE.VMA/ERET
Traps
Interrupts

7/8 Implemented as a pipeline flush followed by a redirection (similar to a
mispredicted jump/branch).

Table 3: Number of stall-cycles for different instructions

Table 3 lists the approximate number of stall cycles an instruction will cause. All
instruction and data caches accesses are assumed to hit. As described in Section 3.2,
Muntjac backend has two execution stages and therefore can usually hide the latency
of two cycles instructions. For example, memory loads or bitcasting a float to integer
would create no stalls. It should be noted though these are still two cycle instructions,
so if the succeeding instruction needs to use their output register, 1 cycle stall will be
induced due to read-after-write (RAW) data hazard. Only integer instructions from the
base instruction set (RV64I) is single-cycle.

For the Dhrystone and CoreMark benchmarks, we use the default configuration pa-
rameters. The L1 data and instruction cache are 16 KiB each, 4-way associative. The
L1 data and instruction TLBs are 32 entry each and 4-way associative. The L2 cache is
64KiB/core in size and also 4-way associative. The compiler being used is GCC 9.2.0,
with optimisations enabled and some jump target alignment
(-falign-functions=4 -falign-jumps=4 -falign-loops=4). Muntjac achieves Dhry-
stone score of 2.17 DMIPS/MHz and CoreMark score of 3.01 CoreMark/MHz.

While Muntjac aims to be both FPGA and ASIC friendly, and does not employ FPGA-
specific optimisations, we do test it on FPGA hardware extensively. We tested Muntjac
on Digilent Genesys 2 board (with Xilinx Kintex 7) and Nexys A7 board (with Xilinx
Artix 7). The result for Xilinx Kintex 7 is shown in Table 4. Synplify is used for its
better ability to perform retiming compared to Vivado. With these utilisations Genesys
2 board can comfortably fit a 4-core system and Nexys A7 a 2-core system with full FPU.
Table 4 also shows that the option to turn on FP registers but not FPUs has very limited
overhead comparing to turning the floating point support fully off, making this option a
good choice for running Linux kernel and userspace compiled for RV64GC target.

22

Frequency Pipeline Core
(MHz) LUTs Registers LUTs Registers

FPU on 89 13663 4538 17420 6683
FPU off 97 6022 3098 9902 5266
FPU off, FP registers on 95 6111 3121 9924 5281

Table 4: Synthesis result for Xilinx Kintex 7 with Synopsys Synplify

4K 16K 64K 256K 1M 4M 16M 64M
Size

0

20

40

60

80

100

La
te

nc
y

(c
yc

le
s)

Sequential
Random

Figure 15: Memory access latency vs working set size

23

Figure 15 shows the memory access latency plotted against size of working set, with
both result of linear and random access shown. The test is carried out using Linus
Torvalds’ test-tlb tools [12]. The test is performed on a Genesys 2 board with 4 cores
instantiated with default parameters, so has a total L2 of 256KiB. The DDR3 memory on
the development board is used, with an approximate latency of 30 cycles per cache line.

We have also measured the core-to-core communication latency of a multicore Muntjac
system, using a tiny benchmark tool [4] that creates two spin-based semaphores and let two
threads up and down them alternatively. The latency between a core UP the semaphore
and another core DOWN it is measured to be around 44 cycles. Two bus transactions are
involved in such operation, we estimate each transaction to take 20 cycles (4 bus messages,
AcquireBlock/ProbeBlock/ReleaseData/GrantData plus a few cycles delay in the L1
and the L2 responding to messages). This is similar to the latency of a L1 miss but L2
hit indicated in Figure 15.

8 Verification

We have put considerable effort into verification given its importance for encouraging
adoption of the IP and growing its user base. Our hope is that this could make Muntjac
a capable starting point for further extensions by simplifies the process of validating any
modifications.

We have broken our verification efforts down into two main areas:

• Core: ensure Muntjac adheres to the RISC-V specification

• Memory system/TileLink: ensure the memory system behaves in a consistent way
and that our TileLink IP adheres to the TileLink specification

All testing is heavily scripted to allow both automation and a fast route to useful
output for new users. Further details on each test suite can be found in the test directory
of the Muntjac source repository.

As well as these regression tests, we also regularly run ad-hoc system tests, which
involve tasks such as booting Linux (with Debian userspace) and running parallel bench-
marks like PARSEC [2].

8.1 Core & pipeline testing

Testing of the core and pipeline aims to ensure that Muntjac is able to execute RISC-
V programs in a way that is consistent with the RISC-V specification. The standards
supported are detailed in Table 1.

• riscv-tests [9]: ensure that we meet RISC-V ISA specifications

• riscv-dv [3]: random test generation to improve test coverage

We run all tests on both an isolated Muntjac pipeline, and a whole core (pipeline +
L1/L2 caches). This allows us to narrow down the source of issues (Table 5), and also
gives us more control over cache latencies, allowing us to exercise more internal states of
the pipeline.

With these tests, we have been able to achieve the following coverage.

24

Pass on core Fail on core

Pass on pipeline All good Bug in memory system
Fail on pipeline Bug in pipeline testbench Bug in pipeline or shared

testbench infrastructure

Table 5: Verification results and their likely meanings.

Component Line coverage

Pipeline 93%
Core (excluding pipeline) 90%

8.2 TileLink testing

Muntjac uses TileLink 1.8 [10] as the on-chip communication protocol between all of the
caches in the memory system. A cache coherence protocol runs on top of TileLink, but
is orthogonal to it.

For each of the TileLink protocol variants (TL-UL, TL-UH, TL-C), we provide:

• A module which monitors a TileLink port and checks that all communication adheres
to the TileLink specification.

• A collection of functional coverage points, enumerating all of the states we want to
see when testing (Table 6).

Scope Coverpoints

Each channel (A, B, C, D,
E)

Two messages were sent with/without a pause be-
tween them
A valid message was/was not accepted by the recipient
The corrupt/denied bits were used (if appropriate)

Each field (A.address,
D.data, etc.)

The value changed/stayed the same while waiting for
a message to be accepted
Consecutive messages used the same/different values

Table 6: Coverpoints used by Muntjac’s TileLink verification.

We also provide a TileLink traffic generator capable of generating (random) valid re-
quests and responses. Testing may then proceed in one of two ways. First, by simulating
an isolated TileLink network and pushing random valid traffic through it, we can deter-
mine whether the TileLink components are configured properly and behave as expected.
Second, by enabling assertions in a standard Muntjac system and running software on it,
we can ensure that all components which interact with the TileLink network respect the
relevant protocols and produce valid requests/responses.

The coverage achieved through this process is outlined in Table 7. We do not quote
functional coverage figures since not every coverpoint applies to every component (e.g.
coverpoints concerning message reordering are not relevant for components which re-
quire/ensure FIFO ordering).

25

Component Line coverage

tl adapter N/A
tl broadcast 100%

tl data downsizer 100%
tl data upsizer 100%
tl fifo async N/A

tl fifo converter 100%
tl fifo sync N/A

tl io terminator 100%
tl ram terminator 99%

tl regslice 100%
tl rom terminator 96%
tl sink upsizer 100%

tl size downsizer 100%
tl socket 1n 100%
tl socket m1 100%

tl source downsizer 100%
tl source shifter N/A

Table 7: Test coverage of Muntjac’s TileLink IP. Coverage is N/A when there are no
coverpoints in the component (e.g. all work is delegated to subcomponents).

References

[1] ARM. AMBA AXI and ACE Protocol Specification. https://developer.arm.com/
documentation/ihi0022/hc, 2021. Accessed: 2021-09-22.

[2] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, January 2011.

[3] Google. RISCV-DV: open-source instruction generator for RISC-V processor verifi-
cation. https://github.com/google/riscv-dv, 2021. Accessed: 2021-11-08.

[4] Xuan Guo. InterCoreBench: Intercore performance benchmark. https://github.

com/nbdd0121/InterCoreBench, 2021. Accessed: 2021-04-05.

[5] Xuan Guo and Daniel Bates. Muntjac RISC-V core. https://github.com/lowRISC/
muntjac, 2022. Accessed: 2022-04-23.

[6] lowRISC. Ibex RISC-V core. https://github.com/lowRISC/ibex, 2021. Accessed:
2021-09-24.

[7] lowRISC. OpenTitan bus specification. https://docs.opentitan.org/hw/ip/

tlul/doc/, 2021. Accessed: 2021-09-24.

[8] Filip Pizlo. Locking in WebKit. https://webkit.org/blog/6161/

locking-in-webkit/, 2016. Accessed: 2021-09-22.

[9] RISC-V International. riscv-tests: unit tests for RISC-V processors. https:

//github.com/riscv-software-src/riscv-tests, 2021. Accessed: 2021-11-08.

26

https://developer.arm.com/documentation/ihi0022/hc
https://developer.arm.com/documentation/ihi0022/hc
https://github.com/google/riscv-dv
https://github.com/nbdd0121/InterCoreBench
https://github.com/nbdd0121/InterCoreBench
https://github.com/lowRISC/muntjac
https://github.com/lowRISC/muntjac
https://github.com/lowRISC/ibex
https://docs.opentitan.org/hw/ip/tlul/doc/
https://docs.opentitan.org/hw/ip/tlul/doc/
https://webkit.org/blog/6161/locking-in-webkit/
https://webkit.org/blog/6161/locking-in-webkit/
https://github.com/riscv-software-src/riscv-tests
https://github.com/riscv-software-src/riscv-tests

[10] SiFive. TileLink specification 1.8.1. https://sifive.cdn.prismic.io/sifive/

7bef6f5c-ed3a-4712-866a-1a2e0c6b7b13_tilelink_spec_1.8.1.pdf, 2020. Ac-
cessed: 2021-09-24.

[11] The Rust Project Developers. The Rust programming language. https://github.

com/rust-lang/rust, 2021. Accessed: 2021-09-22.

[12] Linus Torvalds. test-tlb: Stupid memory latency and tlb tester. https://github.

com/torvalds/test-tlb, 2018. Accessed: 2022-05-05.

27

https://sifive.cdn.prismic.io/sifive/7bef6f5c-ed3a-4712-866a-1a2e0c6b7b13_tilelink_spec_1.8.1.pdf
https://sifive.cdn.prismic.io/sifive/7bef6f5c-ed3a-4712-866a-1a2e0c6b7b13_tilelink_spec_1.8.1.pdf
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://github.com/torvalds/test-tlb
https://github.com/torvalds/test-tlb

	Introduction
	Core overview
	Pipeline
	Frontend
	Backend

	Protocol choice for cache coherency
	AXI
	ACE
	TileLink
	Custom protocol
	Comparison

	Cache design
	Data cache
	Instruction cache
	SRAM word interleaving

	Multicore support
	Broadcaster
	L2 cache

	Utilisation and performance
	Verification
	Core & pipeline testing
	TileLink testing

