
Technical Report
Number 969

Computer Laboratory

UCAM-CL-TR-969
ISSN 1476-2986

Assessing the understandability
of a distributed algorithm by
tweeting buggy pseudocode

Martin Kleppmann

May 2022

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

https://www.cl.cam.ac.uk/

c© 2022 Martin Kleppmann

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Assessing the understandability of a distributed algorithm by

tweeting buggy pseudocode

Martin Kleppmann

Abstract

Designing algorithms for distributed systems has a reputation of being a difficult and
error-prone task, but this difficulty is rarely measured or quantified in any way. This report
tells the story of one informal experiment, in which users on Twitter were invited to identify
the bug in an incorrect CRDT algorithm. Over the following 11 hours, at least 16 people
(many of whom are professional software engineers) made attempts to find the bug, but
most were unsuccessful. The two people who did identify the bug were both PhD students
specialising in CRDTs. This result may serve as evidence of the difficulty of designing correct
CRDT algorithms.

1 Introduction

In the autumn of 2020, I was writing new lecture notes for an undergraduate course on distributed
systems.1 One topic I wanted to cover was Conflict-free Replicated Data Types (CRDTs), a
family of algorithms that allow different replicas to concurrently update some replicated data,
and which ensure that those replicas converge to the same state as they communicate [7]. CRDTs
work by making operations commutative, so different replicas can see operations in the same
order and still converge.

To make the lecture notes more interesting, I wanted to include an example algorithm that
would demonstrate some interesting features of CRDTs, while still being short enough to fit on
one slide. I did not know of a published algorithm that provided the combination of features
that I wanted, so I wrote out a new algorithm that I believed to be “obviously correct”. I have
been designing CRDT algorithms for years [2, 3, 4], which gave me confidence that I knew what
I was doing.

I then added an exercise to the lecture notes asking students to prove the correctness of the
algorithm, and I started writing my own proof for the solution notes. The proof turned out
to be more difficult than expected. Only after a few hours of fruitlessly trying to prove the
algorithm correct, I realised that the algorithm was in fact wrong: there were certain combina-
tions of concurrent operations under which replicas would not converge. Frustrated, I posted
the following on Twitter:

Martin Kleppmann at 2020-11-12 22:48 GMT
https://twitter.com/martinkl/status/1327020435419041792

Today in “distributed systems are hard”: I wrote down a simple CRDT algorithm that I
thought was “obviously correct” for a course I’m teaching. Only 10 lines or so long. Found
a fatal bug only after spending hours trying to prove the algorithm correct.

1https://www.cl.cam.ac.uk/teaching/2122/ConcDisSys/materials.html

3

https://twitter.com/martinkl/status/1327020435419041792
https://www.cl.cam.ac.uk/teaching/2122/ConcDisSys/materials.html

“10 lines” was an exaggeration; in fact the pseudocode was 24 lines long. After posting the tweet
it occurred to me that I could also post the incorrect pseudocode, and ask my followers whether
they could spot the bug. I posted it (see Section 2) and went to bed. The next morning I woke
up to several suggestions, but nobody had found the bug yet. In the end, it took 11 hours before
an example exhibiting the bug was posted by Sreeja Nair.

Fast forward 18 months, I have found out that my tweet has been cited by at least two major
papers as evidence of CRDTs being difficult to get right: by Cheung et al. at CIDR 2021 [1,
Figure 4] and by Soundarapandian et al. at PLDI 2022 [8, Reference 19]. However, a tweet
is not a very good reference: it lacks context, and it is not very permanent (for example, if a
Twitter user deletes their old tweets or closes their account, their replies to my tweet disappear
from the comment thread).

This report provides a permanent archive of this Twitter episode, as well as some context and
analysis. Although it is not a controlled study of the difficulty in finding bugs in a distributed
algorithm, I do believe that it sheds some light on the challenges of CRDT design, highlighting
that even experienced software engineers have difficulty understanding concurrent algorithms.
While the understandability of consensus algorithms was studied in a lab setting by Ongaro
and Ousterhout [6], I am not aware of a comparable study on the understandability of CRDT
algorithms. The informal Twitter experiment in this report is a first step towards such a study.

2 The Algorithm

Shortly after posting the aforementioned tweet I followed up with a screenshot of the incorrect
algorithm, which is reproduced here as Algorithm 1 on page 5. I tweeted:

Martin Kleppmann at 2020-11-12 23:10 GMT
https://twitter.com/martinkl/status/1327025979454263297

Here’s the algorithm (an op-based map CRDT with LWW semantics per key). See if you
can figure out the bug.

[Image showing Algorithm 1]

The algorithm essentially implements a replicated key-value store in which clients can perform
three operations: read the value for a key k, set the value v for a key k, or delete the key-value
mapping for a key k. In my tweet, op-based map CRDT means that it is a key-value mapping,
and that the algorithm is operation-based (as opposed to state-based), which means that one
replica’s updates are propagated to other replicas by sending a message describing the update
that occurred.

Each update is associated with a timestamp, such as a Lamport timestamp [5], which is assumed
to be globally unique. When two replicas concurrently update the same key, the update with
the greater timestamp takes precedence over the one with the lower timestamp; this behaviour
is known as last write wins (abbreviated as LWW in the tweet).

The basic correctness requirement for the algorithm is convergence: when two replicas have
seen the same set of updates, they must have the same mapping of keys to values. The bug
in Algorithm 1 is that it is possible to create a set of updates after which the replicas fail to
converge.

4

https://twitter.com/martinkl/status/1327025979454263297

Algorithm 1 The buggy algorithm that I tweeted first.

on initialisation do
values := {}

end on

on request to read value for key k do
if ∃t, v. (t, k, v) ∈ values then return v else return null

end on

on request to set key k to value v do
t := newTimestamp() . globally unique, e.g. Lamport timestamp
broadcast (set, t, k, v) by causal broadcast (including to self)

end on

on delivering (set, t, k, v) by causal broadcast do
previous := {(t′, k′, v′) ∈ values | k′ = k}
if previous = {} ∨ ∀(t′, k′, v′) ∈ previous. t′ < t then

values := (values \ previous) ∪ {(t, k, v)}
end if

end on

on request to delete key k do
if ∃t, v. (t, k, v) ∈ values then

broadcast (delete, t) by causal broadcast (including to self)
end if

end on

on delivering (delete, t) by causal broadcast do
values := {(t′, k′, v′) ∈ values | t′ 6= t}

end on

5

Algorithm 2 The fixed version of the algorithm tweeted later.

on initialisation do
values := {}

end on

on request to read value for key k do
T := {t | ∃v. (t, k, v) ∈ values}
if T = {} then

return null
else

return the unique v such that (max(T), k, v) ∈ values
end if

end on

on request to set key k to value v do
T := {t | ∃v′. (t, k, v′) ∈ values}
t := newTimestamp() . globally unique, e.g. Lamport timestamp
broadcast (set, T, t, k, v) by causal broadcast (including to self)

end on

on delivering (set, T, t, k, v) by causal broadcast do
values := {(t′, k′, v′) ∈ values | t′ /∈ T} ∪ {(t, k, v)}

end on

on request to delete key k do
T := {t | ∃v. (t, k, v) ∈ values}
if T 6= {} then

broadcast (delete, T) by causal broadcast (including to self)
end if

end on

on delivering (delete, T) by causal broadcast do
values := {(t′, k′, v′) ∈ values | t′ /∈ T}

end on

6

Over the following hours, several people volunteered ideas about the nature of the bug (see
Section 3), but nobody was able to precisely identify the circumstances in which the bug would
be triggered. The next morning I followed up:

Martin Kleppmann at 2020-11-13 09:17 GMT
https://twitter.com/martinkl/status/1327178651209764865

Well, this is fun. @tim 1729, @steveloughran, @encthenet, @simpuleguy, @KevinDP55 got
close, but nobody has yet identified the precise circumstances in which the bug occurs. The
bug is divergence (two replicas have processed the same messages, but are not in the same
state).

I then posted a revised version of the algorithm that did not suffer from the bug, without
explicitly revealing the nature of the bug. This algorithm is reproduced here as Algorithm 2 on
page 6.

Martin Kleppmann at 2020-11-13 09:19 GMT
https://twitter.com/martinkl/status/1327179176521166853

Several people have suggested that tombstones are needed. They are one possible approach,
but not the only. Here is a variant of the algorithm that is correct (I believe), but does not
use tombstones.

[Image showing Algorithm 2]

Finally, after another hour, Sreeja Nair posted a correct answer, and I retweeted it:

Martin Kleppmann at 2020-11-13 11:20 GMT
https://twitter.com/martinkl/status/1327209597011189761

And here’s the resolution. @sreejas found the bug, congratulations!

Sreeja Nair at 2020-11-13 10:09 GMT
https://twitter.com/sreejas/status/1327191953474203648

Is this the issue?

7

https://twitter.com/martinkl/status/1327178651209764865
https://twitter.com/martinkl/status/1327179176521166853
https://twitter.com/martinkl/status/1327209597011189761
https://twitter.com/sreejas/status/1327191953474203648

Table 1: Summary of attempts to find the bug

Name Occupation Answer

Taylor Blau Software engineer at GitHub none

Osama Khan Cryptocurrency company founder none

Werner Schuster JavaScript/Clojure developer definition of delete op

@digi noise unknown definition of delete op

M.P. Korstanje Software engineer tombstones

Steve Loughran Software engineer at Cloudera tombstones

John-Mark Gurney FreeBSD developer/consultant set/delete ordering

@spudwaff1e unknown causal broadcast ordering

Ryan Doenges PhD student at Cornell old values reappear

Avais Engineer broadcast reliability

Stephen Spalding Distributed systems engineer at Netflix tombstones

Rajat Kanti Bhattacharjee Engineer at Gojek set/delete ordering

Matthew Sackman Creator of a distributed database tombstones/timestamp ordering

@signof Senior software engineer causal broadcast ordering

Kevin De Porre PhD student at Vrije Universiteit Brussel almost correct answer

Sreeja Nair PhD student at Sorbonne Université correct answer

My final tweet on the topic was a comment on the composition of CRDTs:

Martin Kleppmann at 2020-11-13 11:52 GMT
https://twitter.com/martinkl/status/1327217743960084480

The interesting thing about this bug is that it comes about only from the interaction of two
features. A LWW map by itself is fine. A set in which you can insert and delete elements
(but not update them) is fine. The problem arises only when delete and update interact.

3 Solution attempts

At the time, I had approximately 29,400 followers on Twitter.2 Of these, 16 people responded
with tweets suggesting that they had attempted to find the bug. Those tweets are collected
in this section. Replies that did not suggest active engagement with the problem are given in
Section 4.

Table 1 summarises the solution attempts, along with the occupation of the respondent (if
apparent from their social profile). I personally know five of the 16 people listed, and know that
they have deep technical expertise. Therefore, even though this is a crowdsourced experiment,
the “crowd” in question contains some highly qualified people; the fact that they were not able
to identify the bug therefore indicates that it is non-obvious.

Some people said they had tried to find the bug but did not succeed:

Taylor Blau at 2020-11-12 23:14 GMT
https://twitter.com/ttaylorr_b/status/1327027054290890759

I wish that I could see it; seems right to me.

2According to https://web.archive.org/web/20201115151909/https://twitter.com/martinkl

8

https://twitter.com/martinkl/status/1327217743960084480
https://twitter.com/ttaylorr_b/status/1327027054290890759
https://web.archive.org/web/20201115151909/https://twitter.com/martinkl

Osama Khan at 2020-11-12 23:16 GMT
https://twitter.com/osamakhn/status/1327027488870961152

Can’t see it right now but there goes my evening

Two users queried the construction of the deletion operation:

Werner Schuster at 2020-11-12 23:38 GMT
https://twitter.com/murphee/status/1327032940379987968

What’s the reason for using (delete, t) and not (delete, k)? Wouldn’t that delete all entries
for the same timestamp? ... Although I guess if timestamps are globally unique it might
have the same effect as deleting k.

to which I replied:

Martin Kleppmann at 2022-11-13 08:56 GMT
https://twitter.com/martinkl/status/1327173562952781824

It deletes only the entry with a particular timestamp, rather than all entries for a key. This
is what we want, because if the delete is concurrent with a set operation, the intended end
result is that the set operation takes precedence.

and another user replied:

Ergo Sum at 2020-11-13 07:24
https://twitter.com/digi_noise/status/1327150244799320073

I had the same thoughts, but t is globally unique, so given t will always be found only for
key k.

M.P. Korstanje suggested that deleted elements should be stored explicitly (this is known as a
tombstone):

M.P. Korstanje at 2020-11-12 23:35 GMT
https://twitter.com/LogAteWhale/status/1327032338207924224

Values aren’t stored/marked as deleted so that’s bound to give problems when the delete
over takes a write that inserted the value.

That’s the direction I’d look in for bugs. But I don’t understand enough to say that it is
the bug.

This answer is not correct: causal broadcast ensures that when a value is deleted, all nodes
process the insertion of the deleted value before processing the deletion. Tombstones are not
necessary in this algorithm.

Steve Loughran also suggested tombstones:

Steve Loughran at 2020-11-12 23:30 GMT
https://twitter.com/steveloughran/status/1327031059209461760

at a guess, deletion

if someone issues a delete (k) to a node which hasn’t yet received/processed an update from
others then the delete won’t be broadcast.

9

https://twitter.com/osamakhn/status/1327027488870961152
https://twitter.com/murphee/status/1327032940379987968
https://twitter.com/martinkl/status/1327173562952781824
https://twitter.com/digi_noise/status/1327150244799320073
https://twitter.com/LogAteWhale/status/1327032338207924224
https://twitter.com/steveloughran/status/1327031059209461760

Steve Loughran at 2020-11-12 23:36 GMT
https://twitter.com/steveloughran/status/1327032633583415303

maybe also if problems you receive a delete (t) ahead of the set(t, k, v). better to just
broadcast a set(t, k, tombstone) and assuming recipients process received events in order
(?) then they could do the cleanup

John-Mark Gurney at 2020-11-13 00:56 GMT
https://twitter.com/encthenet/status/1327052580640284672

Looks like other people saw the same issue that if a set and delete are delivered in the wrong
order, a set that was after a delete could persist though it should not.

John-Mark Gurney’s suggestion is perhaps on the right track, but it does not contain enough
detail to identify the bug.

Spudwaffle at 2020-11-12 23:37 GMT
https://twitter.com/spudwaff1e/status/1327032827267846144

This answer is incorrect: in this example, causal broadcast will ensure that Carol processes
Alice’s (set, 2) before Bob’s (delete, 2), because (set, 2) causally precedes (delete, 2).

Ryan Doenges at 2020-11-12 23:33 GMT
https://twitter.com/hackedy/status/1327031870895353858

delete could make old values reappear, is that the problem? You want a deletion to be
delete(k,t) and remove all bindings (t’,k,v) where t’ <= t ?

to which I replied: “Old values reappearing is not the problem. The algorithm preserves the
invariant that there is at most one entry in the set of values for a given key, which is why it’s
safe for a delete message to contain only one timestamp.”

Avais at 2020-11-13 01:37 GMT
https://twitter.com/gramaester/status/1327062888020787200

Is the issue that the source of the boardcast may itself fail after a successful broadcast?

to which I replied: “We can assume that the broadcast protocol will take care of resending any
missing messages (for example, a node that is not the original source of a broadcast may resend
it).”

10

https://twitter.com/steveloughran/status/1327032633583415303
https://twitter.com/encthenet/status/1327052580640284672
https://twitter.com/spudwaff1e/status/1327032827267846144
https://twitter.com/hackedy/status/1327031870895353858
https://twitter.com/gramaester/status/1327062888020787200

Stephen Spalding at 2020-11-13 02:10 GMT
https://twitter.com/stephenspalding/status/1327071247054696448

What is dead may never die! (due to lack of tombstone)

The lack of tombstones is not the problem.

Rajat Kanti Bhattacharjee at 2020-11-13 03:56 GMT
https://twitter.com/simpuleguy/status/1327098070115385344

I am trying to figure the puzzle. What I can see is set us following the logic of no old writes
based on time stamp. But delete has a sense of time stamp based deletion.(time as the key)
Would it cause a discrepancy when doing set and delete on same key. Delayed set -> read
err

This suggestion indicates thinking in the right direction, but there is not enough detail.

Matthew Sackman at 2020-11-13 08:42 GMT
https://twitter.com/hylomorphism/status/1327169931419541504

Tombstones on delete maybe, as others have suggested. But also you don’t require that your
newTimestamp has a > relationship with any locally-existing t yet you rely on < elsewhere.

Matthew Sackman correctly points out that new timestamps need to be strictly greater than
any existing local timestamp, but Lamport timestamps ensure this property, so this is not the
bug.

Signof at 2020-11-13 09:39 GMT
https://twitter.com/signof/status/1327184197975420930

My guess is that Lamport timestamps are not totally ordered and that causal broadcast
isn’t strong enough to order independent concurrent writes.

Lamport timestamps are in fact totally ordered, and the ordering of causal broadcast is not the
problem here.

Kevin De Porre mentions tombstones, which are not needed, but also includes a diagram that
almost identifies the scenario in which the bug occurs:

11

https://twitter.com/stephenspalding/status/1327071247054696448
https://twitter.com/simpuleguy/status/1327098070115385344
https://twitter.com/hylomorphism/status/1327169931419541504
https://twitter.com/signof/status/1327184197975420930

Kevin De Porre at 2020-11-13 08:11 GMT
https://twitter.com/KevinDP55/status/1327162097604714496

Deleting is always tricky with CRDTs.
That’s why many CRDTs mimick deletions by marking elements as deleted rather than
really deleting them.

. . . to which I replied: “Close. Can you be specific about the conditions on the timestamps in
each operation in order for the bug to be triggered? Also, tombstones are one potential solution,
but not necessarily required here.”

Finally, Sreeja Nair posted a full example of the bug occurring, including the specific timestamps
on the messages that trigger the bug:

Sreeja Nair at 2020-11-13 10:09 GMT
https://twitter.com/sreejas/status/1327191953474203648

Is this the issue?

I accepted this tweet as the correct answer.

12

https://twitter.com/KevinDP55/status/1327162097604714496
https://twitter.com/sreejas/status/1327191953474203648

4 Other replies

In this section I have collected replies to my tweets that did not indicate an attempt to find the
bug, but which provide some further context.

Yik San Chan at 2020-11-12 22:57 GMT
https://twitter.com/yiksanchan/status/1327022607405772800

Do you use Isabelle for the proof?

to which I replied: “No, just pen and paper in this case. Though it would have been quite easily
doable in Isabelle, I think.”

Dimanne at 2020-11-13 07:30 GMT
https://twitter.com/DimanNe/status/1327151787573452801

I think it depends on what this algorithm was supposed to do :)

By the way, have you tried using TLA framework for formal description and verification?
Can it help?

to which I replied: “A minimum expectation of CRDTs is that all replicas converge to the same
state when they have delivered the same set of messages (possibly in different orders). The bug
in this algorithm is a situation in which replicas remain inconsistent. I’ve not used TLA+ myself
very much, but I have read quite a few TLA+ specifications and I hope to use it more in the
future. I’ve done more work on correctness proofs with Isabelle/HOL.”

There were also a couple of comments and questions:

Chris Batt at 2020-11-13 04:03 GMT
https://twitter.com/Ti3eInc/status/1327099729163980802

It’s ok Martin. DS will never be ’solved’. It’s the CS equivalent of evolution solving the
Cambrian Explosion!

Nacho del Valle at 2020-11-13 07:10 GMT
https://twitter.com/idelvall/status/1327146815024721921

Consistency is broken?

Mateusz Górski at 2020-11-13 09:04 GMT
https://twitter.com/gorski_mt/status/1327175538767777793

What tools do you use to prove the algorithm? TLA+? Isabel? F*?

Jonas Bonér at 2020-11-13 09:19 GMT
https://twitter.com/jboner/status/1327179366808346624

I’m grateful. Your (and other CS researchers) hard work battling with these issues makes
my life (a little bit) easier, slowly, step by step... :-)

Rajat Kanti Bhattacharjee at 2020-11-13 09:19 GMT
https://twitter.com/simpuleguy/status/1327179227645370369

Ouch double write. and missing update problem at once Woaw , tough bug.

13

https://twitter.com/yiksanchan/status/1327022607405772800
https://twitter.com/DimanNe/status/1327151787573452801
https://twitter.com/Ti3eInc/status/1327099729163980802
https://twitter.com/idelvall/status/1327146815024721921
https://twitter.com/gorski_mt/status/1327175538767777793
https://twitter.com/jboner/status/1327179366808346624
https://twitter.com/simpuleguy/status/1327179227645370369

Shaazahm at 2020-11-13 10:27 GMT
https://twitter.com/shaaza12/status/1327196346575687680

Tangent: is the “on ... do” syntax just pseudocode or a specific language? Could this be
automatically converted to CSP/TLA?

to which I replied: “It’s just pseudocode, but the intention is that it could be translated quite
easily into real code (as event handlers) or something like TLA+ (as actions).”

Daniel Marbach at 2020-11-13 11:29 GMT
https://twitter.com/danielmarbach/status/1327211987634429954

That experience is probably the greatest lessons to teach

The “experience” in this tweet presumably refers to my comment that I had “found a fatal bug
only after spending hours trying to prove the algorithm correct”.

Eduard Popescu at 2020-11-13 12:26 GMT
https://twitter.com/zyrconium13/status/1327226224159191041

TLA+ or http://alloytools.org might help. Model checkers. Just sayin’

Siddharth Goel at 2020-11-15 06:30 GMT
https://twitter.com/siddharthgoel88/status/1327861565496848385

Somehow the font in which you wrote the algorithm is the one we see in books as well. So
the mind perceives that it cannot be wrong :-D

to which I replied, “It’s just the default font in LaTeX ”

5 Discussion and conclusions

The bug in Algorithm 1, as illustrated in Sreeja Nair’s tweet, is due to the fact that the algorithm
only stores a single value and timestamp for a given key, and that mapping is removed when
the key is deleted. Thus, when there are concurrent updates to the same key, and a deletion of
an update with a greater timestamp, an update with a lower timestamp that is concurrent to
the deletion can cause divergence.

One possible solution would be to never actually delete items, but to keep the latest timestamp
for a given key as a tombstone, and to update that timestamp when a deletion is requested. How-
ever, tombstones cause problems with unbounded storage growth. Algorithm 2 is a tombstone-
free alternative: it works by storing several values and timestamps for the same key when there
are concurrent updates, and only returning the one with the highest timestamp at read time.
Every update or delete operation includes the set of timestamps that it overwrites. Causal de-
livery ensures that the overwritten operation is applied before the overwriting operation. This
approach incurs only slightly greater storage and message overhead than Algorithm 1.

The respondents who found the bug (Sreeja Nair) or came close (Kevin De Porre) were both,
at the time, PhD students specialising in CRDT algorithms. In fact, Nair’s PhD supervisor was
Marc Shapiro, one of the researchers who initially defined the concept of CRDTs [7]. Thanks
to this background, they were attuned to the types of issues that tend to appear in CRDTs.

14

https://twitter.com/shaaza12/status/1327196346575687680
https://twitter.com/danielmarbach/status/1327211987634429954
https://twitter.com/zyrconium13/status/1327226224159191041
https://twitter.com/siddharthgoel88/status/1327861565496848385

However, relying on people with PhDs in this very specific niche of research is not a scalable
strategy for developing correct algorithms. The fact that all of the experienced software engineers
who replied were not able to spot the bug should be seen as a call to improve the situation. We
need to make it possible for software engineers to develop correct replication algorithms without
requiring a PhD.

Presumably the answer is better tool support. But what sort of tools would be best? Do we
need better programming languages, better compilers, or better formal reasoning tools? Various
research efforts in these directions are already underway, and I am excited to see where they
lead.

Acknowledgements

I gratefully acknowledge the support of the Leverhulme Trust, the Isaac Newton Trust, Nokia
Bell Labs, and crowdfunding supporters including Ably, Adrià Arcarons, Chet Corcos, Macro-
meta, Mintter, David Pollak, Prisma, RelationalAI, SoftwareMill, and Adam Wiggins.

References

[1] Alvin Cheung, Natacha Crooks, Joseph M. Hellerstein, and Matthew Milano. New directions
in cloud programming. In 11th Annual Conference on Innovative Data Systems Research,
CIDR 2021, 2021. URL: http://www.cidrdb.org/cidr2021/papers/cidr2021_paper16.
pdf.

[2] Martin Kleppmann. Moving elements in list CRDTs. In 7th Workshop on Principles and
Practice of Consistency for Distributed Data, PaPoC 2020. ACM, April 2020. doi:10.1145/
3380787.3393677.

[3] Martin Kleppmann and Alastair R Beresford. A conflict-free replicated JSON datatype.
IEEE Transactions on Parallel and Distributed Systems, 28(10):2733–2746, April 2017. doi:
10.1109/tpds.2017.2697382.

[4] Martin Kleppmann, Dominic P. Mulligan, Victor B. F. Gomes, and Alastair R. Beresford.
A highly-available move operation for replicated trees. IEEE Transactions on Parallel and
Distributed Systems, 33(7):1711–1724, October 2021. doi:10.1109/tpds.2021.3118603.

[5] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-
nications of the ACM, 21(7):558–565, July 1978. doi:10.1145/359545.359563.

[6] Diego Ongaro and John K Ousterhout. In search of an understandable consensus algorithm.
In USENIX Annual Technical Conference, ATC. USENIX, June 2014. URL: https://www.
usenix.org/conference/atc14/technical-sessions/presentation/ongaro.

[7] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free repli-
cated data types. In 13th International Symposium on Stabilization, Safety, and Se-
curity of Distributed Systems, SSS 2011, pages 386–400. Springer, 2011. doi:10.1007/

978-3-642-24550-3_29.

[8] Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan. Cer-
tified mergeable replicated data types. In 43rd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2022, June 2022. doi:10.1145/3519939.
3523735.

15

http://www.cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf
http://www.cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf
http://dx.doi.org/10.1145/3380787.3393677
http://dx.doi.org/10.1145/3380787.3393677
http://dx.doi.org/10.1109/tpds.2017.2697382
http://dx.doi.org/10.1109/tpds.2017.2697382
http://dx.doi.org/10.1109/tpds.2021.3118603
http://dx.doi.org/10.1145/359545.359563
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dx.doi.org/10.1145/3519939.3523735
http://dx.doi.org/10.1145/3519939.3523735

	Introduction
	The Algorithm
	Solution attempts
	Other replies
	Discussion and conclusions

