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Inline and Sideline Approaches for Low-cost Memory
Safety in C

Myoung Jin Nam

System languages such as C or C++ are widely used for their high performance,
however the allowance of arbitrary pointer arithmetic and typecast introduces a risk
of memory corruptions. These memory errors cause unexpected termination of pro-
grams, or even worse, attackers can exploit them to alter the behavior of programs or
leak crucial data.

Despite advances in memory safety solutions, high and unpredictable overhead
remains a major challenge. Accepting that it is extremely difficult to achieve com-
plete memory safety with the performance level suitable for production deployment,
researchers attempt to strike a balance between performance, detection coverage, in-
teroperability, precision, and detection timing. Some properties are much more desir-
able, e.g. the interoperability with pre-compiled libraries. Comparatively less critical
properties are sacrificed for performance, for example, tolerating longer detection de-
lay or narrowing down detection coverage by performing approximate or probabilistic
checking or detecting only certain errors. Modern solutions compete for performance.

The performance matrix of memory safety solutions has two major assessment crite-
ria – run-time and memory overheads. Researchers trade-off and balance performance
metrics depending on its purpose or placement. Many of them tolerate the increase
in memory use for better speed, since memory safety enforcement is more desirable
for troubleshooting or testing during development, where a memory resource is not
the main issue. Run-time overhead, considered more critical, is impacted by cache
misses, dynamic instructions, DRAM row activations, branch predictions and other
factors.

This research proposes, implements, and evaluates MIU: Memory Integrity Utilities
containing three solutions – MemPatrol, FRAMER and spaceMiu. MIU suggests new
techniques for practical deployment of memory safety by exploiting free resources
with the following focuses: (1) achieving memory safety with overhead < 1% by
using concurrency and trading off prompt detection and coverage; but yet providing
eventual detection by a monitor isolation design of an in-register monitor process and
the use of AES instructions (2) complete memory safety with near-zero false negatives
focusing on eliminating overhead, that hardware support cannot resolve, by using a
new tagged-pointer representation utilising the top unused bits of a pointer.
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Chapter 1

Introduction

C/C++ languages have low-level features such as providing a set of bit manipulators,
allowing assumptions about the underlying hardware architecture to take advantages
of hardware-specific behaviors/features, and compiler support for inline assembly
language. Especially C/C++ has pointers which allow (and often require) direct ma-
nipulation of memory contents.

The visibility of memory layout in C or C++ has been two sides of the coin – it
provides high performance however the allowance of arbitrary pointer arithmetic and
type casting imposes the danger of memory corruption, which makes C/C++ lan-
guages unsafe. Those memory errors may cause unexpected termination of programs.
Even worse, security exploits use memory safety vulnerabilities to corrupt or leak
sensitive data, and hijack a vulnerable program’s control flow.

Despite advances in software defenses, exploitation of systems code written in C or
C++ is still possible [82, 122, 129, 23]. In response, several defence techniques have
been proposed to make software exploitation hard.

Current defenses fall in two basic categories: those that let memory corruption
happen, but harden the program to prevent exploitation, and those that try to detect
and block memory corruption in the first place. In the first category, for instance,
Control-flow Integrity (CFI) [1, 75, 149, 150, 151] models all allowable control flows in
a statically-computed Control-flow Graph (CFG), while Address Space Layout Ran-
domization (ASLR) [102] hides the available CFG when the process executes. Both
approaches can be bypassed [41, 120], since memory corruption can still occur, albeit
exploitation is much harder.

The second category, providing fine-grained and strong memory safety enforce-
ment, includes approaches that detect and block memory safety violations. The ap-
proaches instrument the program and maintain run-time metadata for access rights to
block unintended accesses at runtime [6, 35, 53, 88, 36, 93, 114, 25]. Most of these sys-
tems are based on an inline reference monitor [112, 37] offering deterministic guarantees
by preventing memory corruption in the first place. By embedding checks into the
binary code during compilation or via binary rewriting, inline reference monitors can
enforce integrity guarantees for the program’s memory accesses or control-flow. Vi-
olations are detected promptly, with the instruction at fault identified, which greatly
facilitates debugging. These memory safety solutions, based on inline monitors, are
indispensable for finding memory errors in C/C++ programs during development
and testing [94, 114].
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16 Introduction

Unfortunately for production deployment as an always-on solution, those ap-
proaches checking individual memory access are still heavy [122]. Their tracking of all
objects (or pointers) incurs heavy performance overheads. Performance is critical for
adoption since unsafe languages like C/C++ are employed for performance-sensitive
applications.

Whilst pushing the limit of performance with novel techniques, researchers have
made trade-offs among properties of memory safety enforcement: detection cover-
age [4, 146, 5], detection timing [141], compatibility [11, 93, 57] and performance.
Some early techniques trade off compatibility for high locality of reference. One exam-
ple is so-called fat pointers [11, 93, 57], a new pointer representation that stores extra
metadata with the address of an object that the pointer points to. Fat pointers provide
the best speed, but unfortunately impose binary incompatibility issues with external
modules especially pre-compiled libraries. It is desirable to minimise the disruption
owing to tacit assumptions by programmers and compatibility with existing code or
libraries that cannot be recompiled.

To avoid breaking binary compatibility by changing object memory layout, more
recent approaches inevitably chose to bear some performance degradation. Some of
them decouple metadata from a pointer representation and store them in a disjoint
metadata. The cost of such fine-grained memory safety storing per-object [33, 6, 114]
(or per-pointer) [88, 143, 53, 87] metadata in a remote region is dominated by metadata
updates and lookups, making efficient metadata management the key for minimizing
performance impact. These solutions focus on reducing run-time overheads by (1)
sacrificing detection coverage of memory errors [4, 146, 5] or precision [6, 9, 8]; or
(2) wasting memory space with excessive alignment or large shadow memory spaces [6,
47, 89, 114] referring to a memory region as a mirror copy of an application space.
Some other solutions trade accuracy for speed by allowing false negatives, and hence
are more useful for troubleshooting than security. They still provide wide detection
coverage but have evolved to keep the performance degradation as little as possible
to reduce the time for software testing during development.

In most cases, it is reasonable to prioritise speed over efficiency in space amongst
these two main performance assessment criteria, considering that memory safety so-
lutions are normally used during development and it is more critical to reduce time
scale than memory resources. However this perspective invites debates for produc-
tion deployment. There are systems whose memory efficiency is as important as
time, such as embedded systems with limited memory space or I/O server systems.
In addition, some causes of run-time overheads can be easily resolved with hardware
acceleration e.g customised instruction sets, while memory overhead cannot go away
even with the hardware support.

Unfortunately inline reference monitors providing fine-grained memory protection
have not fully resolved overheads caused by tracking individual memory allocations
and accesses to them despite the advances in the techniques and trade-offs. For light-
weight memory safety enforcement, researchers proposed replacing inline security
enforcement with concurrent monitors [148, 125, 111, 109, 81]. In principle, such ap-
proaches can minimize the performance overhead on the protected application by
offloading checks to the concurrent monitor. Detection, however, now happens asyn-
chronously, introducing a detection delay. This weaker security guarantee is never-
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theless still useful. For example, in the case of passive network monitoring systems,
it helps validate the integrity of the system’s past reports.

These proposals, however, face significant challenges. For some, the delay intro-
duced before the detection of memory safety violations opens up a vulnerability win-
dow during which the attackers have control of the program’s execution and may
attempt to disable the detection system. This undermines the guarantee of eventual
detection, even worse, security that those protections aim to achieve by sacrificing
spontaneous detection of memory errors. For others, attempts to isolate the moni-
tor during the vulnerability window degrade performance. Finally, these solutions
have been designed for general purpose systems, and their communication and syn-
chronization overheads between the monitor and the application threads can be pro-
hibitive for high-performance applications.

1.1 Contributions
This research demonstrates trade-offs between detection coverage, detection timing
and performance; pushes the limit of performance metrics to extreme depending on
the deployment; and improves memory safety. We propose and implement Memory
Integrity Utilities (MIU), run-time verification systems for low-cost memory safety en-
forcement, that exploit free resources. Each approach sacrifices a subset of properties
for others depending on the goal, and lowers overhead that is expensive or difficult
to resolve with hardware support.

MIU proposes both:

(1) an inline monitor prioritising near-complete memory safety with similar increase
in run-time overhead to existing approaches but much lower space overhead.

(2) a sideline monitor providing the minimal performance degradation by sacrificing
timely and immediate detection.

Firstly, our inline monitor statically instruments an application and halts program
execution at security violations. The goal of the monitor is to provide fine-grained
and deterministic memory protection without relying on probability, so that it can also
be used during development stage. For its deployment in practice, overhead must be
kept low. Compared to existing approaches, our solution provides higher efficiency in
data cache and memory footprint by utilising the top unused bits in 64-bit pointers. In
our experiments, Address Sanitizer [114] is faster, however both cause 2x slowdown,
and the run-time overhead for our approach will be resolved with hardware acceler-
ation (customised instruction sets). While keeping overheads for memory and data
cache low, we remove false negatives that may incur in some previous approaches
thus guarantee near-complete memory safety. Another advantage of this approach is
its scalability: it can be used for memory safety, type safety, thread safety and garbage
collection, or any solution that needs to map pointers to metadata.

This inline reference monitor is evaluated on two use cases with run-time verifica-
tion systems for C programs detecting:

(i) FRAMER: array-out-of bounds and some cases of dangling pointers
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(ii) spaceMiu: type confusions in C programs.

The first system, FRAMER [90, 91], illustrates the use of the capability framework
on spatial memory safety that guarantees near-zero false negatives, allowing inexpensive
validation of pointer dereferences by associating pointers to object metadata contain-
ing bounds information. The second system, spaceMiu, presents the application of the
tagged pointer capability model to type safety detecting unsafe type casts, that also vi-
olate spatial memory safety. This work defines a type relation for the C language, that
does not support type hierarchy, and unsafe type conversion in C programs, inspired
by CCured [93]; and implements run-time type confusion verifier utilising efficient
per-object type information.

Another contribution of this dissertation is a sideline monitoring system, MemPa-
trol [92], for practical deployment for high-performance systems. This system realises
very low performance degradation by pushing other memory safety properties (im-
mediate detection and error coverage) to extreme. MemPatrol does not detect errors in
timely order, yet detects them eventually. The trade-off drops the overhead down to <
1%, which is lower than 5%, that is commonly acceptable for production deployment.
MemPatrol implements a concurrent monitor detecting memory errors, and using con-
currency minimises the performance impact to a target program while allowing con-
figurable overheads, that can be useful for any systems. This work addresses one of
the challenges of concurrent monitors – a monitor being compromised by attackers
through memory corruptions during the detection delay caused by concurrency – by
monitor isolation techniques that leverage CPU registers. It takes advantage of the
AES instruction set of Intel processors [45] to implement CPU-only cryptographic
message authentication codes (MACs), and stores critical information in regular reg-
isters of user-mode programs.

This dissertation proposes, designs and evaluates these three run-time verification
approaches that improve memory safety.



Chapter 2

Background

There are two major categories in security enforcement depending on their goal. The
first category is to detect and defend memory corruption in the first place by enforcing
memory safety, offering stronger security guarantees. The second category aims at
a favourable security-to-overhead ratio rather than complete memory safety. Those
approaches in the second category let memory corruption occur in the first place but
they harden a program execution, making it difficult to exploit memory corruptions
for attackers, however exploitations are still possible with well-structured attacks.

Probabilistic solutions are usually based on randomization or encryption e.g. Instruc-
tion Set Randomization, Address Space Randomization, or Data Space Randomization. Ran-
domization protections introduce entropy to prevent exploits of safety violations. For
instance, Data Space Randomization makes it difficult for attackers to know how to
replace values in code pointers by randomizing representation of all data. Address
Space Layout Randomization (ASLR) [102, 40] hides the available Control-Flow Graph
(CFG) when the process executes. It mitigates control-flow hijacking attacks by ran-
domizing the location of code and data and thus the potential payload address. Both
approaches can be bypassed [41, 120] e.g. initial information leakage of a code pointer
and guessing attacks expose a program in memory and enable attackers to construct
exploits to bypass ASLR however they can block the majority of attacks. The overhead
of ASLR is negligible so it has been used in practice but the case to enforce full ASLR
on Linux shows 10-25% overhead, which prevents deployment. The overhead comes
from Position Independent Executables (relocatable executables) on 32-bit machines
and so ASLR should be enforced only for libraries by default on most distributions.
Many protections with probability are in the second category that prevents attackers
from exploiting memory corruptions rather than detecting vulnerabilities.

However some of protections built on a probabilistic model belong to the first cat-
egory of preventing memory corruptions. Stack smashing protection, such as Stack-
Guard [26], uses random values for stack cookies (or canaries) to detect memory
overwrites to return addresses (§ 2.3). Although the detection coverage is not as wide
as other memory protection solutions, e.g. it cannot detect data reads beyond bound-
aries, these solutions using encrypted cookies are widely deployed due to their very
low overhead and great compatibility.

The other approaches enforce a deterministic safety policy by implementing a low-
level reference monitor [37, 112]. A reference monitor observes the program execution
and halts it whenever it is about to violate the given security policy, helping remove
security vulnerabilities. While traditional reference monitors enforce higher-level poli-
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cies, such as file system permissions, and are implemented in the kernel (e.g., system
calls), more recent reference monitors enforce lower-level policies, e.g., memory safety
or control-flow integrity. They can be implemented in two ways: (1) in hardware or (2)
by embedding the reference monitor into the code through instrumentation. For in-
stance, Code Integrity + Non-executable Data is enforced by the hardware, as modern
processors support both non-writable and non-executable page permissions [79, 80].
Hardware support for protection with coarse granularity causes negligible overhead,
however hardware acceleration may not resolve overhead of low-level monitors with
fine granularity. We discuss hardware implementation especially architectural sup-
port for low-level monitoring in § 2.1.3.

The alternative to hardware support is adding the reference monitor dynamically
or statically to the code. In this section, we focus only on solutions which transform
existing programs to enforce various policies.

Firstly, dynamic (binary) instrumentation [94, 77, 16, 103] can be used to dynam-
ically insert run-time checks into unsafe binaries at run-time. It supports arbitrary
transformations but introduces some additional slowdown due to the dynamic trans-
lation process. Simple reference monitors, however, can be implemented with low
overhead: for instance, a shadow stack costs less than 6.5% performance for SPEC
CPU2006 in [103]. More sophisticated reference monitors like Taint Checking [14] or
ROP detectors [28] causes overheads that exceed 100% and are unlikely to be deployed
in practice.

Static instrumentation inlines reference monitors at compile time. This can be done
by the compiler or by static binary rewriting. Inline reference monitors can imple-
ment any safety policy and are usually more efficient than software dynamic solu-
tions, since the instrumentation is not carried out at run-time. Those approaches
provide deterministic and immediate detection of memory errors with fine granular-
ity, however their high overhead is one of the biggest challenges to deploy them in
practice. Other performance-optimised solutions for inline monitoring also incur high
and unpredictable overheads [52].

The most widely used security protections implementing an inline reference moni-
tor are static Control-Flow Integrity (CFI) and memory safety. CFI restricts the control-
flow of an application to valid execution traces by monitoring the program at runtime
and comparing its state to a set of pre-computed valid states. CFI is a defense that
leverages run-time monitors to detect specific attack vectors (control-flow hijacks for
CFI) and flags exploit attempts at run time. All modern compilers implement a form
of CFI with low overhead but different security guarantees. If security properties are
violated i.e. an invalid state is detected, an alert is raised; reference monitors usu-
ally terminate the application. Control-flow hijacking is usually the primary goal
of attacks and many CFI techniques defend them at the cost acceptable to practical
deployment (<5%). We discuss more about CFI in § 2.3.

On the other hand, memory safety monitors pointer dereferences. It usually tracks
memory allocation (or pointers) and compares a pointer to be dereferenced with
stored metadata such as bounds information or memory allocation status (alive or
de-allocated). Unfortunately inline reference monitors enforcing memory safety suf-
fer from high overheads (100%), since they check every memory allocation/release
and access. So they often target development settings when testing a program. Mem-
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Figure 2.1: Embedded Metadata: P, UB, and LB represent a pointer itself, upper
bound, and lower bound, respectively.

ory corruption can be exploited to carry out other types of attacks as well and memory
safety provides a wider range of protection. However the overhead has not been fully
resolved yet and performance is one of the main challenges of memory protection
mechanisms.

In the following subsections, we discuss different software security vulnerabilities
and identify the approaches to detecting the vulnerabilities and mitigating exploits.

2.1 Memory Safety
Enforcing memory safety stops all memory corruption exploits. Our focus is to en-
force memory safety based on low-level, inline reference monitors embedding checks
that prevent memory errors by transforming existing unsafe code. The instrumen-
tation may be in the source code, intermediate representation, or binary level. For
complete memory safety, both spatial and temporal errors must be prevented without
false negatives. In addition, high-rate false alarms are critical for practical deploy-
ment, so they must be kept very low. Unfortunately it is extremely expensive to
guarantee complete memory safety especially for system languages such as C/C++.

§ 2.1 reviews prior approaches for memory safety based on inline reference monitor
that either track objects or pointers by instrumentation and discusses their trade-offs
between detection coverage and performance. Another kind of software vulnerabili-
ties, type confusions, will be discussed in § 2.2 separately.

2.1.1 Spatial Memory Safety
Spatial memory errors refer to buffer overflows. Buffer overwrites (out-of-bounds
writes) can corrupt the content of adjacent objects, or internal data (like bookkeeping
information for the heap) or return addresses. Similarly, buffer overreads may can
reveal sensitive data or help attackers bypass address space layout randomization.

The only way to enforce complete spatial memory safety is to keep track of pointer
bounds – the lowest and highest valid address it can point to. Many approaches
have been proposed to enforce spatial memory safety in C/C++ programs. Some of
these solutions offer extensive memory protection, but they slow down applications
significantly.
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Spatial memory safety solutions are divided into two categories depending on
whether they associate bounds information with individual pointers or objects.

Pointer-based Tracking

Approaches tracking pointers associate each individual pointer with its metadata hold-
ing a valid address range that the pointer is allowed to point to [87]. Metadata is
assigned to a pointer at pointer assignment and bounds checking is performed only at
memory access unlike object-based approaches that may require optional extra-checks
at pointer arithmetic operations (as discussed later in § 2.1.1). Holding an address
range (the base address ∼ upper bound) provides protection with byte-granularity
and this permits creation of out-of-bounds pointers 1 and pointers to sub-objects that
are allowed in C/C++. This makes it easier to detect internal overflows such as an array
out-of-bounds inside a structure. As long as tracked pointers act inside instrumented
codes, pointer-based approaches do not produce false violations. However, if instru-
mented pointers passed to un-instrumented external libraries are updated there and
returned, they lose track of the pointers (this occurs when the non-instrumented code
modifies the pointer and does not properly update the bounds metadata).

Pointer-based approaches are often implemented using fat pointers [11, 57, 93, 25].
They define a new pointer representation that embeds metadata (the base and up-
per bound) with itself as presented in Fig. 2.1a), thus increasing spatial locality of
references by removing accesses to retrieve metadata in a remote memory region at
run-time checking. Unfortunately the approaches sacrifice binary compatibility. Since
fat pointers increase the number of bytes used to hold a pointer, they require modifi-
cation of the memory layout and this damages compatibility with non-instrumented
code.

CCured [93], which implements fat pointers, statically annotates a pointer qualifier
(safe, seq, and wild) on pointers discovered by constraint rules and applies instru-
mentation depending on the pointer kind. Pointers involved with pointer arithmetic
(seq) or typecast (wild) are equipped with two extra words holding the base and
upper bound and especially wild pointers cause more overheads. All break binary
compatibility. This requires wrapper annotations for calls to external libraries and im-
poses a conservative garbage collector. Cyclone [57] avoids using garbage collector in
favour of region-based memory management, but also diverges more markedly from
C. Moreover, updates to fat pointers spanning multiple words are not atomic, while
some parallel programs rely on this.

Several pointer-based approaches [143, 89, 53, 87] choose memory layout compati-
bility over the speed with high locality. Using disjoint metadata achieves compatibility
by decoupling metadata from a pointer representation and storing metadata in a re-
mote memory region. SoftBound [89] implements both a hash table or shadow mem-
ory space to map pointers to the metadata. Unfortunately, the performance overhead
of SoftBound is comparably high, 79% on average [89].

Hardware support [30, 53, 100, 135, 63] does not remove this overhead. Intel
MPX [53, 87, 99] is an ISA extension that provides hardware-accelerated pointer-

1Out-of-bounds pointers refer to pointers with a value that goes out of bounds of an object that they
point to.
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checking, using disjoint metadata in a bounds table holding per-pointer metadata as
illustrated in Fig. 2.3b. Reportedly, MPX suffers due to lack of memory even with
small working sets [66], and has turned out to be slow for pointer-intensive pro-
grams, owing to exhausting the limited number of special-purpose bounds registers
(four registers), requiring spill operations from regions of memory that themselves
require management and consume D-cache bandwidth and capacity.

Pointer-tracking approaches provide strong memory protection with near-zero false
positives/negatives, but it comes with the additional runtime overhead from meta-
data copy and update at pointer assignment, while object-based approaches update
metadata only at memory allocation/release. In addition, the number of pointers is
typically larger than that of allocated objects, so pointer-intensive programs may suf-
fer from heavier runtime overheads. More importantly, it is difficult to achieve full
compatibility with them – if a pointer created by the instrumented module is passed
to and modified in an un-instrumented module, the corresponding metadata is not
updated, causing false violations.

Object-based Tracking

Due to the compatibility and cost of per-pointer metadata, most techniques track ob-
jects. Object-based approaches [6, 114, 33, 58, 9, 66, 35, 65, 147] store metadata per object
and also make a trade-off against complete memory safety. They offer compatibility
with current source and pre-compiled legacy libraries by not changing the memory
layout of objects. In addition, per-object metadata is updated only at memory al-
location/release so even if a pointer is updated in an un-instrumented module, the
metadata does not go out-of-sync.

Per-object metadata management supports binary compatibility however it has
some drawbacks. First of all, the approach does not enforce complete memory safety.
For instance, it is more difficult to detect internal overflows compared to using per-
pointer metadata management that can simply set up a pointer’s metadata with the
address range of a sub-object.

One of the disadvantages of object-tracking is that it may not detect memory access
violation when pointers exceed the bounds of right object (intended referent) [58] by
pointer arithmetic and then land in the valid range of another object. Memory access
with these pointer can be seen valid in many object bounds-based approaches. Know-
ing only the bounds of objects is not enough to catch errors at pointer dereferences,
because we do not know if the pointer points to the intended referent. To keep track of
them, object-tracking approaches may have to check bounds at pointer arithmetic [58].
However, performing bounds checks only at pointer arithmetic may therefore cause
false positives, where a pointer going out-of-bounds by pointer arithmetic is not deref-
erenced as follows:

1 int *p;
2 int *a = malloc(100 * sizeof(int));
3 for (p = a; p < &a[100]; p++) *p = 0;

Figure 2.2: O�-by-one byte
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On exiting the for loop, p goes out-of-bounds yet is not dereferenced – this is valid
according to the C standard.

Therefore, object-based approaches should take a special care for out-of-bounds
pointers. The early approach J&K [58] addressed violation of intended referents by
padding objects with extra one byte (off-by-one byte). This still caused false positives
when a pointer legitimately goes beyond more than one byte. A more generic solution
to this problem was later provided by CRED [110]. Baggy Bounds Checking [6] in-
stead performs bounds checking at pointer arithmetic, not pointer dereferences, and
marks the out-of-bounds pointers so that errors are reported when those are derefer-
enced.

Object-tracking approaches store a valid range of allocation, so it requires address
range lookups, while pointer-tracking allows access the corresponding entry using the
address of a pointer as a key in the metadata table. Performing lookup on the address
range of objects is more expensive than lookup by key, or different representations.
J&K [58] used a splay tree to reduce the overhead of the range lookup but unfortu-
nately the slowdown is still high (11x-12x). The approach [33] applied automatic pool
allocation that partitions the memory space using static points-to analysis and stores
metadata for each partition. This technique improved the performance up to 120% by
reducing the number of bounds lookups.

Modern approaches avoid range lookups and reduce slowdown using a shadow
space [6, 114, 147, 24, 47, 94, 5]. Shadow space allows single direct array access to
metadata and this reduces the increase in executed instructions for metadata access,
removing metadata lookup in a data structure. Necula and Xu [93] creates a mirror
copy of a data structure, i.e. byte-to-byte mapping, and SoftBound [89] used both a
hashtable and shadow space, and showed that using shadow space reduces runtime
overhead, on average, by 2/3 compared with using table lookup.

Beyond byte-to-byte mapping of the application space used by early techniques,
recent techniques reduced the size of shadow space with compact encoding, at the
cost of minimum allocation size or loss of some precision. An example is Baggy
bounds checking (BBC) [6]. BBC divides the memory space into fixed-sized blocks
and mandates object alignment to the base of a block, to prevent metadata conflicts
caused by multiple objects in one block. Consequently it pads each object to the next
power of two, so that each one-byte sized entry stores only log2(padded object size).
This allows compact bounds information and fast lookup by sacrificing memory effi-
ciency. BBC addresses violation of intended referents by checking bounds at pointer
arithmetic, not at memory access, and marking pointers going out of padded bounds
so that they are detected at dereference. This can cause false positives when an il-
legal pointer comes back within their valid range without being dereferenced. BBC
performs approximate bounds checking which tolerates pointers going out-of-bounds
yet within the padded bound. Memory access with those pointers violates spatial
memory safety however it still enforces security, preventing exploits.

Address Sanitizer [114] (ASan) utilizes shadow space differently. Like BBC, it also
re-aligns and pads each object but it pads an object with redzones front and back as
shown in Fig. 2.3a. While BBC stores log2 (padded object size) in a corresponding
entry in the shadow space and tolerates access to the pad, ASan considers access
to redzones as out-of-bounds, providing greater precision. The errors are identified
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by the value in the corresponding entry in the shadow. At memory access, ASan
derives the address of its corresponding entry from a pointer, and the entry tells if
the address is addressable. ASan also prevents some dangling pointers by forcing freed
objects to stay in a so-called quarantine zone for a while. A disadvantage of ASan is
that its error detection relies on spatial or temporal distance. It loses track of pointers
going far beyond the redzone and reaching another object’s valid range and it makes
it tricky to address false negatives caused by violation of intended referents. ASan
addresses this issue by enlarging the space between objects. The wider the redzone,
the more errors ASan detects. In addition, use-after-free errors cannot be detected, in
the cases where dangling pointers are used to access objects after the pointer is freed
from the quarantine. ASan detects most errors, but it is less deterministic in theory
and trades-off memory space for detection coverage. In our experiments comparing
ASan and our prototype, ASan and FRAMER’s normalised memory footprints are
8.84 and 1.23, respectively.

Rather than fat pointers or shadow space, tagged pointers [65, 66] can instead be
used since there are unused bits in a pointer e.g. top 16 bits in a 64-bit pointer.
SGXBounds [66] trades-off address space for speed and near-complete memory safety.
SGXBounds makes objects carry their metadata in a footer as shown in Fig. 2.1b, and
utilizes the higher 32 bits of a pointer to hold the metadata location. The location is
the upper bound of its referent at the same time and object size information is stored
in the footer. Storing the absolute address of bounds frees SGXBounds from violation
of intended referents that challenge many object-tracking approaches. However this
approach works when there are enough spare bits in pointers, which is the case with
SGX enclaves, where only 36 bits of virtual address space are currently supported.

Hardware-accelerated tagged pointers are available without sacrificing address
space. ARM v8.5 ISA [9, 8] introduces the Memory Tagging Extension (MTE). This as-
signs a 4-bit tag to each 16 bytes at memory allocation, and tapping memory accesses
with incorrect tags in the pointer. However, this approach has 1/16 chance of false
negatives at each memory access when the tags in the memory and a pointer match.
In case of a real-world exploitation, the random 1/16th chance on an individual ac-
cess rapidly disappears to an acceptable level over the course of tens of operations but
still provides a usable channel that can be exploited over multiple similar systems in a
structured attack. However this solution still relies on probability for memory safety.

In the above subsections, we have discussed approaches to prevent spatial mem-
ory errors especially on buffer overflows. Similarly, uninitialised pointers containing
garbage values may happen to point at a valid object, so we make sure that pointers
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are initialised. Lastly, it is difficult to track sub-objects such as an array in a structure
or in an outer array, so it may require to manage additional information such as type
information.

2.1.2 Temporal Memory Safety
Temporal memory safety violations (dangling pointers) include null pointer deferences,
use-after-free, or double-free errors. Dangling pointers arise when pointers are derefer-
enced (used) after the memory area they try to dereference has been deallocated and
returned to the memory management system. Attacks exploiting vulnerable pointers
after referent objects are released are as strong as spatial memory safety violation,
letting the pointers deference attacker-controlled data.

Dangling pointers often occur in attempts to access freed heap objects and tend to
be exploited in conjunction with type confusion errors. Assume a dangling pointer
pointing to a new object tries to read memory with the freed object’s type. When a
virtual function of the freed object is called and the virtual function pointer is looked
up, the content of the new object will be interpreted as the vtable pointer of the old
object. This allows the corruption of the fake vtable pointer, comparable to exploiting
a spatial write error, but in this case the dangling pointer is only dereferenced for a
read. An additional aspect of this attack is that the new object may contain sensitive
information that can be leaked when read through the dangling pointer of the old
objects type.

Temporal memory errors also occurs in stack-allocated objects. Pointers to a local
variable, that are assigned to a global or heap pointers, become dangling when the
function of the local variable returns while the pointer is still alive. In this case, dan-
gling pointers are exploited to overwrite sensitive data. Writing through a dangling
pointer is similarly exploitable as an out-of-bounds pointer by corrupting other point-
ers or data inside the new object. When the dangling pointer is an escaped pointer
to a local variable and points to the stack, it may be exploited to overwrite sensitive
data, such as a return address.

Like spatial memory safety solutions, approaches to ensure temporal memory
safety [4, 88, 86, 118, 2, 32] can be divided into two categories: (1) to block tem-
poral memory errors in the first place and (2) to prevent exploitations of dangling
pointers.

Like spatial memory safety enforcements (§ 2.1.1), the approaches in the first cate-
gory also track live objects or pointers to detect dangling pointers. Valgrind’s Mem-
check [94] and Address Sanitizer (Asan) [114] track objects and mark their status in
corresponding entries in the shadow memory. These tools can detect dangling point-
ers attempting to access after their referent object is de-allocated, as long as new ob-
jects are not yet allocated in the locations. However they produce false negatives when
the memory region is re-allocated; the area is registered again and the invalid access
remains undetected. ASan removes some false negatives by keeping freed objects in
the quarantine area to prevent use-after-free errors during limited period of time but
still may miss some errors. Object-tracking approaches provides less complete tempo-
ral memory safety compared to pointer-based approaches like spatial memory safety.
Unfortunately, their overheads are quite high. Valgrind, based on dynamic instru-
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mentation, causes higher overhead (10x), while ASan built on LLVM causes around
2x.

Pointer-tracking approaches provide stronger protection. A pointer is associated
with allocation/release status information along with bounds information for com-
plete memory safety. A pointer needs to uniquify live objects i.e. to distinguish not
only two objects in different memory regions but also two temporally-distinctive objects
allocated in the same memory area. CETS [88] assigns a unique ID to each live object
and a pointer to the object is associated with the ID. The IDs are stored in a global
dictionary. Together with SoftBound [89], a pointer-based spatial memory safety so-
lution, CETS guarantees near complete memory safety. The average overhead is 48%
solely and with SoftBound+CETS is 2x. As mentioned in § 2.1.1, these tools have false
violations when pointers are updated in external un-instrumented modules.

Approaches in both categories are still heavy for practical deployment and even for
debugging for some benchmarks. Some approaches narrow detection coverage down
for low run-time and memory overheads. Cling [4] suggests a customised dynamic
memory allocator replacing malloc routines. It enforces type-safe memory re-use
among only objects with same type and alignment. It does not target detection of
all dangling pointers; instead it aims at preventing use-after-free attack exploiting
combined vulnerabilities: dangling pointers and type confusion errors. Since it is
embodied in the memory allocator, it detects only temporal memory errors of heap
objects.

2.1.3 Architectural Support and Capability Model
Memory protection systems such as Mondrian Memory Protection [139], Hard-
bound [30], Capability Hardware Enhanced RISC Instructions (CHERI) [135], M-
Machine [21], and industrial approaches such as Intel’s Memory Protection Extensions
(iMPX) [53] and Arm’s Memory Tagging Extension (MTE) [8, 9] have been proposed
for architectural support for fine-grained memory safety.

Mondrian [139] is a memory protection model layered atop page-based virtual
memory, to facilitate multiple protection domains. The page table is supplemented by
a Protection Look-aside Buffer (PLB) for managing permissions and a set of sidecar
registers are paired with general-purpose registers to reduce PLB pressure. This re-
moves requiring userspace ISA changes to support Mondrian, enhancing incremental
deployment.

Mondrian provides address validity that associates protection properties with re-
gions of address space (mentioned in § 2.1.1) rather than a per-pointer basis. It pads
all allocations to introduce guard regions like MMU guard pages. Smaller pads are
possible than with pages, while reducing the threshold at which most overflows can
be detected. This however prevents the approach from providing protection for sub-
allocations such as array entries or individual stack frames, and this may undermine
finer-grained protection. This is particularly a concern today when many classes of ex-
ploitable security vulnerabilities are premised on overflows with attacker control over
inputs to arithmetic. In addition, Mondrian relies on supervisor mode to manage its
protection table. This demands a domain switch for each allocation and free event
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so protection-domain scalability is limited – each domain requires its own complete
protection table, each with substantial memory and initialization expense.

Hardbound [30] is a hardware-assisted fat-pointer. The approach provides pointer-
based memory safety, not address validation or object-based safety, thus provides
finer-grained protection than Mondrian. Hardbound utilises a shadow space to store
the base and bounds for each pointer-aligned virtual memory location, and another
metadata space of tag bits to identify pointers in order to reduce the overhead of
non-pointers. Bounds information is initialized by the modified software – a memory
allocator for heap objects and ideally also by a compiler for stack and global objects.
The metadata are then propagated and validated by the hardware i.e. a simulated
in-order processor propagates bounds into the shadow table via registers and verifies
bounds, when pointers are dereferenced. Un-instrumented libraries and applications
will experience less mitigation.

Hardbound provides compatibility: its executables can run on legacy hardware
and ABIs are maintained by retaining native pointer size. However its fat pointers are
forgeable: an instruction adding or modifying the bounds information allows arbitrary
bounds, and the tables are accessible via virtual memory. As a result, Hardbound
pointers do not constitute a protection domain. Hardbound is also a CISC design that
proposes a microcode implementation, and requires transactional memory to write to
three table entries atomically.

Intels Memory Protection Extensions (iMPX) [53] provides Instruction Set Architec-
ture (ISA) for spatial memory safety. They describe additions to the x86 ISA to pro-
vide hardware-acceleration for compiler-based memory protection with disjoint meta-
data. As with Hardbound, bounds information per pointer is stored in architecturally-
supported shadow tables or also in software-defined locations (adjacent to the pointer
itself) and bounds checking is performed using explicit instructions.

MPX does not support pointer compression. Each 64-bit pointer consumes four
metadata: base, upper bounds, the expected pointer value, and 64 reserved bits. The
expected pointer is used for comparison with a pointer value after a pointer returns
back from external modules. If there is a mismatch, MPX drops tracking the pointer.
MPX sacrifices memory efficiency for compatibility with legacy code which may not
update bounds, unlike Hardbound. MPX does not address use-after-free errors but
supports typecast checking, making it one of the strongest spatial memory safety
enforcements.

Armv8.5-A [8, 9] introduced a new feature called Memory Tagging. ARMv8.5-
MemTag (MTE) provides architectural support for memory protection using lock and
key access to memory. Tagging memory implements the lock and pointers (virtual
addresses) are modified to contain the key. Memory access is permitted only if the
key matches the lock. Memory locations are tagged by adding four bits of metadata
to each 16 bytes of physical memory (Tag Granule). MTE supports random tag gener-
ation and pseudo-random tag generation based on a seed. Due to the limited number
of tag bits available (4 bits), the same tag may be allocated for different memory al-
locations for any specific execution, which causes false negatives. In the aspect of
exploitations, the random 1/16th chance on an individual access rapidly disappears
to an acceptable level over the course of tens of operations but still provides a usable
channel that can be exploited over multiple similar systems in a structured attack. In
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order to implement the key bits without requiring larger pointers, MTE uses the Top
Byte Ignore (TBI) feature of the Armv8-A Architecture. With TBI enabled, the top
byte of a virtual address is ignored when using it as an input for address translation.
This allows the top byte to store metadata and four bits of the top byte are used to
provide the key.

The memory bandwidth impact will depend greatly on the underlying hardware
architecture and could be close to zero if the tags are largely implemented in separate
hardware resources and blocks are normally cleared on allocation. In addition, the
code overheads for heap operations is small but users may prefer to avoid the run-
time management overheads by disabling MTE for stack operations.

Capability-based security is a different concept of security models. First of all, a ca-
pability (known as a key) is a communicable and unforgeable token of authority and
capability-based security refers to the principle of designing user programs such that
they directly share capabilities with each other according to the principle of least priv-
ilege, and to the operating system infrastructure necessary to make the transactions
secure.

A capability defines a protected object reference which grants a user process access
rights to interact with an object e.g. reading data associated with an object, modifying
the object, and executing the data in the object as a process. The capability logically
consists of a reference that uniquely identifies a particular object and a set of access
rights and a user program must use the capability to access an object. This capability
model can be implemented in a number of different ways: operating systems [29, 62,
137, 115], languages [3, 84], and hardware [140].

M-Machine [21], one of the early systems, is a 64-bit tagged-memory capability
system implementing guarded pointers tracking pointers (§ 2.1.1). M-Machine pointers
are unforgeable. They define a protection domain within a single address space,
and support protection-domain switching. It compresses a fat pointer to 64 bits: only
power-of-two aligned and sized segments are supported therefore padding is required
for common structures that break binary layouts.

Capability Hardware Enhanced RISC Instructions (CHERI) [140] is a hybrid capa-
bility model that extends the 64-bit MIPS ISA with byte-granularity memory protec-
tion. The key features are a capability coprocessor and tagged memory. The copro-
cessor supports 32 compiler-managed capability registers, each 256-bit wide, holding
capabilities. For memory safety, CHERI implements hardware fat pointers in the form
of capabilities. Each memory capability holds the base and length fields, describing a
segment of memory, and the permissions field indicating an allowed permission for
the region such as load data, store data, execute, and load and store for capabilities.
It avoids race conditions, which challenged fat pointers, by updating capability fields
and tags atomically.

Capability models must preserve capability integrity, while allowing user-space man-
agement, i.e. capabilities in memory must not be corrupted by general-purpose stores.
CHERI implements tagged memory to protect in-memory capabilities. Valid capabili-
ties are identified by an extra tag bit associated with each 256-bit location. Any non-
capability store clears this bit, protecting capabilities in memory without appealing
to kernel mode. Regional separation [137, 62] is another way to protect capabilities:
defining memory regions that can store capabilities distinct from those that can store
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data. This has limitations, since most programming languages allow pointers and
user data neighboring.

Incremental adoption of memory protection systems is critical but compatibility has
challenged the deployment of capability systems. CHERI improves earlier capability
systems with limited adoption, by hybridizing capability-based addressing with a
RISC ISA and MMU-based virtual memory. It provides both fine-grained protection
as well as compatibility.

2.2 Type Safety
A program is called type-safe when it never explicitly or implicitly converts values from
one type to another. One way to ensure type safety of a program is to use type-safe
languages. However due to the comparably poor performance of those languages,
unsafe system languages such as C or C++ are still widely used for high-performance
systems.

Type conversion in C/C++ is sometimes required and useful despite its risk to un-
dermine the integrity/safety of a program. For example, implicit type conversion
from an array to a pointer to the 1st element of it (array decay), the result of a floating
pointer operations stored in an int-typed variable, or unsigned int value passed
to a function taking a signed int. These unsafe type conversions may cause data
loss or re-interpretation of a value, therefore we make sure that every memory object
including a variable, function argument, and function return value hold an acceptable
kind of data; and operations involving values of different types, informally speaking,
make sense and do not cause data loss, incorrect interpretation of bit patterns, or mem-
ory corruption. Type confusions are often combined with dangling pointers for at-
tacks – the memory area of the deallocated object (the old object) is reused by another
object (new object). The type mismatch between the old and new object can allow the
attacker to access unintended memory.

Several approaches [36, 46, 56, 60, 69] have been proposed to prevent violations of
spatial memory safety through unsafe typecasting. Those can be categorised into two
depending on if they are based on per-object (pointer) metadata or vtable pointers.

One kind of approach [15, 31, 124, 149] is based on vtable pointers embedded in
objects in C++. These approaches save run-time overhead by avoiding manipula-
tion of per-object (or pointer) metadata, that significantly slows down many run-time
verification systems. However they usually do not support type checking between
non-polymorphic classes, not having a vtable, without breaking binary compatibil-
ity. Control-Flow Integrity (CFI) [128, 54, 130, 39] prevents some of these exploits by
verifying all indirect control flow transfers within a program to detect control-flow
hijacking. However, these techniques address the type confusion problem only par-
tially if control flow is hijacked, i.e., they detect usage of the corrupted vtable pointer,
ignoring any preceding data corruption.

The other approaches [46, 93, 56, 60] are based on tracking live objects or pointers.
The solutions track individual objects or pointers and store/utilise per-object (per-
pointer) type information. Most of them, except fat pointers, secure interoperability
with un-instrumented modules and support non-polymorphic classes. However, they
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incur high run-time overhead to manage metadata. Like deterministic bounds check-
ing, the approaches suggested their own metadata management mechanism to reduce
performance loss. This research focuses on the second category of type confusion ver-
ification based on per-object (or pointer) metadata.

Type safety enforcements based on per-object/pointer type metadata focus type
conversions taking advantage of features of type hierarchy, since the majority of type-
casts in C/C++ programs are either upcasts (conversion from a descendant type to its
ancestor type) or downcasts (in the opposite direction). Upcasts are considered safe,
and this can be verified at compile time, since if a source type of upcasts is a de-
scendant type, then the type of the allocated object at runtime is also a descendant
type.

In contrast, the target type of a downcast may mismatch the run-time type. If a tar-
get type is a descendant type of the target type, an access to the object after downcasts
may cause type confusion, a security vulnerability including internal overflows. Recog-
nition of the run-time type is undecidable, so downcasts require run-time checking to
prevent type confusion.

One of the challenges of run-time typecast verification is pointer-to type mapping.
Typecast pointers to different types may have moved to one of the sub-fields of its
referent object and run-time checkers should map the pointer to the corresponding
type at the offset. This requires an efficient management of both (1) per-object type
information and (2) per-type memory layout. We need to associate an individual
object (or pointer) with its object type and map a pointer to the object’s type using
type information in the metadata storage, which unfortunately causes high overheads.
A pointer then should be mapped to a type at the corresponding offset, and examined
if the type conversion from the type at the offset to a target type is safe.

Another challenge is to determine what type conversion is safe e.g. to define what
upcasts and downcasts are in C language. First of all, since C language does not sup-
port type hierarchy, unlike C++, we should define the hierarchy in C and their relation
with other types. For example, arbitrary pointers are frequently converted to void*
and passed inter-functionally as an argument, which is allowed and considered safe.
In CCured [93], void is considered to be an empty structure and a prefix of any type,
that is, any type is a sub-type of void. Under this definition of sub-typing, it is allowed
to upcast from a pointer in any type into void*. The pointer is then typecast from
void* to other types (desirably restoring its type) for access, requiring type confusion
checking at runtime. It is more tricky to judge valid casts between non-void types.
Strict rules on type conversion can cause false positives, while loosening them can
bring false negatives.

CCured [93] ensures both memory and type safety enforcements (§ 2.1.1). This ap-
proach observed that most typecasts in real programs are safe upcasts (from a pointer
to object to a pointer to the first sub-object), and the rest is mostly downcasts (in the op-
posite direction) in C programs written in the object-oriented style. CCured adopted
physical sub-typing [22] defining type hierarchy in C by flattening aggregate types to
primitives (atomics) to reduce wild pointers (§ 5.2).

CCured is based on fat pointers [11, 57, 93]. Approaches tracking an individual
pointer [89, 53, 87] provide strong and precise memory/type safety allowing to asso-
ciate a pointer with any corresponding type i.e. a higher composite type or sub-type.
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However it suffers heavier run-time overhead to manipulate per-pointer metadata.
In addition, embedding metadata inside objects opens a vulnerability of polluting
metadata through memory writes following bad typecasts. CCured addresses this
by updating/checking tags at memory access, causing further overhead. Although
amongst pointer-tracking approaches, using fat pointers guarantees the high perfor-
mance, the compatibility issue has not been resolved yet. More modern memory/type
safety enforcements store per-object information in disjoint metadata storage to secure
the compatibility.

TypeSan [46] is designed for an always-on solution for explicit type checks in C++.
This approach, inspired by CaVer [69], focuses on conversion from an instance of
a parent class to a descendant class. Downcasting is frequently used if the parent
class lacks some of the fields or virtual functions of the descendant class. When the
program subsequently uses the fields or functions of the descendant class that do not
exist for a given object, it may use data as a regular field in one context and as a
virtual function table (vtable) pointer in another.

TypeSan uses the per-allocation (per-object) paradigm [18, 33, 6, 47, 114] and is
composed of two services: type management and metadata storage. Firstly, type
management service is responsible for associating type layout with each allocation
site and validating downcast operations with these layouts. This service includes (1) a
type layout table holding mappings of unique offsets to data fields corresponding to
nested types and (2) a type relation table holding compatible types for each class. The
second service is metadata storage mapping from object base addresses to type layout
tables. Like many other modern run-time verification tracking objects or pointers,
the approach creates shadow space [6, 47, 68, 89, 114] for pointer-to-type mapping.
TypeSan is based on variable compression ratio memory shadowing [47]. It allows
more detailed memory allocation than other shadow space but it also mandates a
uniform alignment. Approaches using shadow space spend more memory space to
reduce the run-time overheads with the small increase in dynamic instructions. The
trade-off can be merely an issue for debugging/testing during development, but still
makes it less useful as an always-on solution on memory-intensive systems such as
on embedded systems or IO-servers.

Other approaches [60, 105] exploit debugging infrastructure and instrument the
programs allocators. Their analysis is invoked from a debugger, rather than run-
ning continuously during execution. Unlike other approaches checking at typecasts
followed by pointer dereferences, Libcrunch [60] checks pointer creations not uses, re-
ducing the number of run-time checks, since pointer creations are much less frequent
than dereferences. This imposes false negatives since a pointer can be typecast be-
fore use. In addition, it unwraps structure type only one level, unlike CCured or one
of our prototypes (spaceMiu) unrolling down to primitive types as in physical sub-
typing. Libcrunch’s check is relatively strict, because there are hardly real code which
requires the full permissiveness of physical typing. Some other approaches [19, 76]
attach physical types to machine words, unfortunately causes high overheads (10x ∼
100x) [145].

One of the challenges of type safety enforcement is to define type hierarchy for
C programs and safe/unsafe typecast unlike array out-of-bounds checking which
has more straightforward definitions of valid/invalid memory access. Judgements
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of typecasts in C programs may differ depending on C programmers’ coding style
and intention.

2.3 Control-Flow Protection
Attackers often exploit memory corruptions to take control over the program by di-
verting its control-flow. If this attack fails by Code Integrity enforcement, attackers
attempt to use memory corruptions to corrupt a code pointer. Code Pointer Integrity
aims at preventing the corruption of code pointers.

Code Pointer Integrity [67] in the first category of security enforcement, which de-
tects and defends memory corruption in the first place, offers stronger security guar-
antees. The approach moves all code pointers to a safe place and prevents the process
from corrupting the safe place. Memory corruption can still happen but all controlling
data are protected. However, so far, these techniques can be either bypassed or incur
a significant overhead to the running process. The probabilistic defense protecting
the safe region can be used [42, 38]. For example, using Authenticating Page Mapper
(APM) [42], which builds on a user-level page-fault handler to authenticate arbitrary
memory reads/writes in the virtual address space, hardens information hiding with
negligible overhead on average <1%.

While Code Pointer Integrity aims to prevent the corruption of code pointers,
Control-flow Integrity detects it. Control-Flow Integrity (CFI) [1, 126, 75, 97, 106, 149,
150] preventing illegal control flow is one example in the second category. CFI mech-
anisms normally consist of two components: (1) a static analysis component to con-
struct the Control-Flow Graph (CFG) of the application and (2) a dynamic enforce-
ment to restrict control flows according to the generated CFG. In a nutshell, CFI
restricts the set of possible target locations (indirect jump target including subroutine
return) by executing a run-time monitor that validates the target according to the con-
structed set of allowed targets. If the observed target is not in that set, the program
terminates. Most CFI approaches apply two different mechanism depending on indi-
rect control-flow transfers: forward-edge and backward-edge. Forward-edge control-flow
transfers direct code forward to a new location and are used in indirect jump and in-
direct call instructions. The backward-edge is used to return to a location that was
used in a forward-edge earlier, e.g., when returning from a function call through a
return instruction.

For forward-edge transfers, the code is usually instrumented with equivalence
checks to ensure that the target observed at runtime is in the set of valid targets.
This run-time check depends on the precision of CFI, for instance, a full set check or
a simple type comparison.

Checking backward-edge transfers should be handled differently, since equivalence
checking does not work when the control-flow is redirected to any valid call sites
by attackers upon return from a callee. Strong backward-edge protections therefore
leverage the context through the previously called functions on the stack. A mecha-
nism that enforces stack integrity ensures that any backward-edge transfers can only
return to the most recent prior caller. This property can be enforced by storing the
prior call sites in a shadow stack or guaranteeing memory safety on the stack [5], i.e.,
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if the return instructions cannot be modified then stack integrity trivially holds. CFI
approximates the CFG for better performance and this allows attackers to leverage
the approximation for delivering exploits [41]. On the other hand, in the presence
of information leaks, randomization can be bypassed, since hidden code can be re-
vealed [120].

Original CFI mechanism [1] reported overhead with 16% on average for an old ver-
sion of the SPEC benchmarks, while the maximum measured is as high as 45%. The
implementation which uses a shadow stack mechanisms for returns has an additional
10% overhead. Write Integrity Testing (WIT) [5] recorded less overhead (25%), while
enforcing both weak memory safety and the same security policy for control-flow hi-
jacking. The experiments presented in [17] showed that more recent, compiler-based
CFI mechanisms (e.g. VTV [126], VTI [15], or LLVM-CFI 3.9 [75]) have low overheads
(<5%) suitable for widespread adoption in production environments. VTV and VTI
are limited to virtual method call, while LLVM-CFI 3.9 supports all indirect calls.

Dynamic return integrity is another approach to enforce control flow. Instead of
preventing all indirect control transfers, it prevents only illegal returns, since stack-
based buffer overflow exploits are the most common form of exploit for remotely
taking over code execution. Stack smashing [7] is the most well-known control-flow
hijacking attack, which exploits a buffer overflow in a local variable to overwrite the
return address on the stack. StackGuard [26], the first proposed solution, addressed
the attack by placing a secret value (called as cookies/canaries) between the return
address and the local variables. Any changes to the cookies are regarded as overwrites
to the return address by a buffer overflow and this is detected by the check placed
before the return instruction. Stack cookies do not protect indirect calls and jumps,
and they are also vulnerable to direct overwrite attacks and information leaks. The
mechanism is still popular and widely deployed, since its cost is extremely low –
the performance overhead is negligible (less than 1%) and no compatibility issues are
introduced.

Shadow stack [131, 127] improves canary-based mechanism, extending it to solve
information leaks and direct overwrites. Stack Shield [131] creates a shadow stack and
stores the saved return address in the shadow. Upon function return, the shadow copy
can be compared with the original return address. The shadow stack is not protected
but checking if two return addresses match makes attackes much harder, because
attackers must successfully corrupt both return addresses in a remote memory region
in a limited time (i.e. before the function returns). To protect the shadow stack itself,
RAD [127] uses guard pages or switching write permission to protect the shadow stack
area. While Stack Shield does not protect against direct overwrites with low cost,
RAD with stronger protection causes 10x slowdown.

2.4 Concurrent Monitoring
Memory safety enforcement based on inline monitoring provides extensive detection
coverage of memory errors. However, heavy and unpredictable run-time overheads
of inline monitoring applied at so fine-a-grain makes it unattractive for production
deployment in performance-critical applications, such as passive network monitoring



2.4 Concurrent Monitoring 35

systems. Even performance-optimized solutions for inline monitoring incur high and
unpredictable overheads [52].

The unpredictability of the performance overhead incurred from inline monitor-
ing is a problem by itself. Its runtime overhead is highly dependent on the code
being instrumented. A few instructions inserted in a tight loop can translate to a
large number of dynamic instructions at runtime, causing a significant performance
impact. Moreover, additional memory accesses for security checks may increase mem-
ory bandwidth and cache misses. Inlined checks cannot abstain from using the cache
hierarchy and slow down the application.

To avoid the costs of inline reference monitors, researchers proposed replacing in-
line security enforcement with concurrent monitors. [148, 125, 141, 111, 109, 81]. In
principle, such approaches can minimise the performance overhead on the protected
application by offloading checks to the concurrent monitor. Detection, however, now
happens asynchronously, introducing a detection delay. This weaker security guaran-
tee is nevertheless still useful. For example, in the case of passive network monitoring
systems, it helps validate the integrity of the system’s past reports.

With the advent of multicore machines, utilizing spare CPU cores for security be-
came an attractive approach. Multi-Variant Execution Environments (MVEE) [111]
uses spare core capacity to run several slightly different versions of the same program
in lockstep, monitoring them for discrepancies. This approach, however, is impractical
for high-performance multicore programs utilizing the majority of the CPU’s cores,
and there can still be a shared cache impact of concurrent monitoring.

Cruiser [148] is one of the original systems to decouple security checks from pro-
gram execution, running them instead in a thread inside the address space of the
monitored process. Cruiser’s guarantees are probabilistic. Its low detection latency,
for the programs it was evaluated on, helps defend against tampering with its data
structures, but is not a reliable solution on its own. Moreover, for performance-critical
applications using large amounts of heap memory, like network traffic identification
systems, the detection latency would increase significantly due to the sheer num-
ber of canaries, and should not be relied upon for security. Cruiser also employs
pseudo-isolation using ASLR and surrounding its data structures with inaccessible
guard pages, in the hope that blind access will trigger segmentation faults. Recent
studies [98], however, demonstrate that faith in ASLR-based information hiding is
misplaced. Therefore, these systems do not offer a strong guarantee against tamper-
ing with the monitor’s execution before a compromise is detected. Without reliable
isolation, the risk of exploitation remains as long as there is detection delay.

Other software-based techniques utilizing spare CPU cores include Shad-
owReplica [55] and TaintPipe [81], which aim to improve the performance of dynamic
information flow tracking (DIFT) for security. DIFT is a comprehensive protection
mechanism, and these solutions demonstrated significant performance improvements
over inline DIFT, but the remaining overhead due to the presence of inline stub code
remains significant (> 2× slowdown over native execution).

Some memory protections with limited detection coverage can be adopted for con-
current monitoring system due to their effectiveness and simplicity, unlike inline mon-
itors with strong protection but high overhead from tracking objects/pointers (§ 2.1.1).
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Combining them can resolve runtime overheads of inline monitors to the level of prac-
tical deployment.

StackGuard [26] detected exploitations of stack-based buffer overflows by placing
a canary word before the return address, and checking it when the stack frame is
deactivated. Similar solutions are currently widely deployed due to their light weight,
and the idea has been extended to heap buffer overflow detection [95, 108] with canary
checks triggered by memory management routines, library routines, or system calls.

2.4.1 Monitor Isolation
Eventual detection of errors in monitoring systems may not be guaranteed when they
are compromised. Concurrent monitors are also vulnerable to the risk, unless the
monitoring systems bear the heavy overheads to protect the monitor itself. The prob-
lem of the isolation of monitoring systems has been addressed by using OS kernel
or VM hypervisor mechanisms [12, 95, 125]. These are comparatively safer, but
come with additional overhead and engineering costs. Instead, MemPatrol presents
a userspace-based solution, sharing the address space of the main application. Our
solution minimises the overhead on the execution of the main application threads
while at the same time it allows monitoring the entire memory of the application if
so required. Finally, it avoids any engineering costs for the maintenance of custom
kernel modifications.

Other software-based isolation mechanisms using Software Fault Isolation
(SFI) [133] suffer from overheads because they inline checks to the code that needs
to be contained. NativeClient [144] has an average overhead of 5% for CPU-bound
benchmarks, which is acceptable for deployment in practice.

2.4.2 Kernel Integrity Monitors
Kernel integrity monitors (KIMs) periodically inspect critical kernel memory regions,
such as syscall tables and persistent function pointers, isolating themselves from the
kernel by residing in hypervisors [50] or hardware such as PCI cards [104]. Some
KIMs tackle transient attacks by snooping the bus traffic using PCI cards [83] or even
commodity GPGPUs [64].

2.4.3 Cryptographic Key Protection
TRESOR [85], a disk encryption system that defends against main memory attacks,
uses a similar CPU-only cryptographic mechanism based on AES-NI [45], but stores
its secret key in special CPU debug registers in each core and is kernel-based.

Note that the availability of the AES-NI instruction set is not a hard requirement,
but rather an optimization and implementation convenience. For example, Loop-
Amnesia [117], a disk encryption system similar to TRESOR, does not rely on AES-
NI. We could avoid the dependency on the special AES instruction set by using their
CPU-only implementation of AES.
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MACs have been previously used in Cryptographic Control Flow Integrity
(CCFI) [78] to protect control flow elements such as return addresses, function point-
ers, and vtable pointers. CCFI also takes advantage of the AES-NI instruction set.





Chapter 3

Overview

3.1 FRAMER
FRAMER [90, 91], presented in Chapter 4, is an inline reference monitor that im-
plements a capability framework with object granularity. Its sound and deterministic
per-object metadata management mechanism enables direct access to metadata by
calculating their location from a tagged pointer by exploiting unused top 16 bits of a
64-bit pointer.

FRAMER can be the base of a solution for both (1) practical deployment with cus-
tomised ISA for its efficiency of memory footprint and cache memory and (2) sound
runtime verification during development.

This may improve the performance of memory safety, type safety, thread safety and
garbage collection, or any solution that needs to map pointers to metadata. FRAMER
improves over previous solutions by simultaneously

1. providing a novel encoding that derives the location of per-object metadata with
low memory overhead and without any assumption of objects’ alignment or
size,

2. offering flexibility in metadata placement and size,

3. saving space by removing any padding or re-alignment, and

4. avoiding internal object memory layout changes.

We evaluate FRAMER with a use case on memory safety.

3.2 spaceMiu
The spaceMiu design, presented in Chapter 5, a run-time type confusion checker for
C programs based on tagged pointers-capability model. spaceMiu defines type hier-
archy in C programs; validates type conversion using per-object type metadata; and
authorises only safe memory access at run time that removes software vulnerabilities
in the first place.

Type conversion in C with weak type rules is frequently used and sometimes re-
quired, however arbitrary typecasts impose the risk of memory corruption of pro-
grams, causing vulnerability exploitations to leak sensitive data and hijack a pro-
gram’s logic. Static analysis can validate type conversion in many cases however
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some violation should be examined at run-time. Run-time type confusion checkers
track live objects (or pointers) and check typecasts using per-object/pointer type meta-
data. Unfortunately it causes high overheads, making efficient metadata management
the key for performance.

Many large-sized C programs are written in an object-oriented style and the major-
ity of typecasts in C (also in C++) programs [93, 116]. If an allocated objects type is
a descendant type of the target type at downcast, access to an object after downcasts
may cause memory corruptions including internal overflows, commonly known as
type confusion.

Inspired by CCured’s view on sub-typing, our type confusion checker, spaceMiu,
defines up/downcast and provides relaxed validity of typecasts. It applies typecast
rules conservatively with our efficient per-object type metadata management utilising
tagged pointers. This work shows how we ensure type safety with tagged pointers-
capability model that enables direct access to type metadata. This framework can be
used to support multiple potential security enforcements including memory safety in
parallel.

3.3 MemPatrol
MemPatrol [92], presented in Chapter 6, a “sideline” integrity monitor that allows
us to minimise the amount of performance degradation at the expense of increased
detection delay. Inspired by existing proposals, MemPatrol uses a dedicated monitor
thread running in parallel with the other threads of the protected application. Pre-
vious proposals, however, either rely on costly isolation mechanisms, or introduce a
vulnerability window between the attack and its detection. During this vulnerabil-
ity window, malicious code can cover up memory corruption, breaking the security
guarantee of “eventual detection” that comes with strong isolation. The key contri-
butions of this work are (i) a novel userspace-based isolation mechanism to address
the vulnerability window, and (ii) to successfully reduce the overhead incurred by
the application’s threads to a level acceptable for a performance-critical application.
We evaluate MemPatrol on a high-performance passive network monitoring system,
demonstrating its low overheads, as well as the operator’s control of the trade-off
between performance degradation and detection delay.
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FRAMER: A Tagged-Pointer Capability
System with Memory Safety
Applications

4.1 Overview
Security mechanisms for systems programming languages, such as fine-grained mem-
ory protection for C/C++ based on inline reference monitoring, authorize operations
at runtime using access rights associated with objects and pointers. The cost of such
fine-grained capability-based security models is dominated by metadata updates and
lookups, making efficient metadata management the key for minimizing performance
impact. Existing approaches reduce metadata management overheads by sacrificing
precision, breaking binary compatibility by changing object memory layout, or wast-
ing space with excessive alignment or large shadow memory spaces.

With these limitations in mind, object-capability models [29, 68, 134, 140], using
hardware-supported tags, become very attractive, because they can manage compat-
ibility and control run-time costs. However, they cannot entirely avoid undesirable
overheads such as metadata management related memory accesses just by virtue of
being hardware-based. In turn, some hardware-based solutions also trade accuracy
for acceptable performance [70].

This chapter presents FRAMER [90, 91], a memory-efficient capability model using
tagged pointers for fast and flexible metadata access. FRAMER provides efficient per-
object metadata management that enables direct access to metadata by calculating
their location using the (currently) unused top 16 bits of a 64-bit pointer to the object
and a compact supplementary table. The key considerations behind FRAMER are as
follows.

Firstly, our tagged pointer encoding can enable the memory manager freedom to
place metadata in the associated header near the object to maximise spatial locality,
which has positive effects at all levels of the memory hierarchy. Headers can vary in
size, unlike approaches that store the header at a system-wide fixed offset from the
object, which may be useful in some applications. Headers can also be shared over
object instances. We do not develop that aspect in the current implementation and we
leave for future work to manipulate a memory manager for full freedom to place a
header or shared header.
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Secondly, the address of the header holding metadata is derived from tagged point-
ers regardless of objects’ alignment or size. FRAMER uses a novel technique to encode
the relative location of the header in unused bits at the top of a pointer. Moreover, the
encoding is such that, despite being relative to the address in the pointer, the tag does
not require updating when the address in the pointer changes. A supplementary ta-
ble is used only for cases where the location information cannot be directly addressed
with the additional 16-bits in the pointer. The address of the corresponding entry in
the table is also calculated from a tagged pointer. With the help of the tag, this table
is significantly smaller compared to typical shadow memory implementations.

Thirdly, we avoid wasting memory from any padding and superfluous alignment,
whereas existing approaches using shadow space [6, 47, 68, 89, 114] re-align or group
objects to avoid conflicts in entries, FRAMER provides great flexibility in alignment,
that completely removes constraining the objects or memory. The average space over-
head of our approach is 20% for full checking despite the generous size of metadata
and the supplementary table in our current design.

Fourthly, this approach facilitates compatibility. FRAMER’s tag is encoded in oth-
erwise unused bits at the top of a pointer, but the pointer size is unchanged and
contiguity can be ensured.

In this study, to achieve deterministic memory protection with data memory ef-
ficiency, while preserving the full 48-bit address space available in contemporary
CPUs, FRAMER sacrifices dynamic instruction count. FRAMER (1) reins in the in-
crease in extra cache misses for metadata (owing to spatial locality compared with a
total shadow memory approach) and (2) tolerates an increase in executed instructions
for arithmetic operations. This may sound unfavourable since the increase in dynamic
instructions is one of the major contributors to performance loss. However, note that
we can move to an even sweeter spot in the future where the instruction overhead
for calculation is reduced via customised ISA. In addition, the measured performance
ends up being better than might be expected – the evaluation shows excellent D-cache
performance where the performance impact of software checking is, to a fair extent,
mitigated by improved instructions per cycle (IPC). FRAMER’s framework provides
a novel encoding that derives metadata pointer from an object pointer by exploiting
the unused top 16 bits of a 64-bit pointer, lowering both memory footprint and cache
misses. FRAMER’s metadata management does not make any assumption of object
alignment or size. This avoids wasting memory for padding or re-alignment. At the
same time, it minimises additional cache misses that are consumed to access meta-
data in a remote region. In the experiments, normalised L1 D-cache miss counts for
FRAMER and ASan on average are 1.40 and 2.31, respectively.

The contributions of FRAMER are the following:

• FRAMER presents an efficient encoding technique for relative offsets that is com-
pact and avoids imposing object alignment or size constraints. Moreover, it is
favourable for hardware implementation.

• Based on the proposed encoding, this chapter designs, implements and evalu-
ates FRAMER, a generic framework for fast and practical object-metadata man-
agement with potential applications in memory safety, type safety and garbage
collection.
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Figure 4.1: Aligned frames in memory space: a memory space can be divided
into frames that are defined by memory blocks that are 2n-sized and
aligned by their size. A memory object’s wrapper frame is the small-
est frame completely containing the object. For instance, the 2-byte
sized object a’s wrapper frame size is 21 (called 1-frame). In the same
way, objects b and c’s wrapper frames are 4-frame and 3-frame, re-
spectively.

This work demonstrates promising low memory overheads and high instruction-
level parallelism.

4.2 FRAMER Approach
In a nutshell, FRAMER places per-object metadata close to their object and calculates
the location of metadata from only (1) an inbound pointer 1 and (2) additional infor-
mation tagged in the otherwise unused, top 16 bits of the pointer. We exploit the
fact that relative addresses can be encoded in far fewer bits than absolute addresses with
assistance from the memory manager to restrict the distance between the allocation
for an object and a separate object for its metadata. In the current implementation, the
metadata is stored in front of the object, essentially as a header that an object carries
with itself, requiring only a single memory manager allocation. Our own memory
manager can be implemented for the future design. For the remaining cases where
the relative address cannot fit in a 16-bit tag, we use a compact supplementary ta-
ble to locate the header. The tag encodes when this is the case, and also sufficient
information to locate the supplementary entry.

We are now going to introduce the concept of frames used to encode relative offsets.
We first define frames in § 4.2.1 and show how to calculate an object’s wrapper frame in
§ 4.2.2. In § 4.2.3 we explain how relative location can be encoded in a tagged pointer
using these concepts, and how to exploit this encoding to reduce the supplementary
table’s size.

1An inbound pointer is a pointer whose value is within the valid range of an object it points to.
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4.2.1 Frame Definitions
To record the relative location in the top 16 bits of a 64-bit pointer, which are spare
in contemporary CPUs, we define a logical structure over the whole data space of
a process, including statics, stack, and heap. The FRAMER structures are based on
the concept of frames, defined as memory blocks that are 2n-sized and aligned by their
size, where n is a non-negative integer. A frame of size 2n is called n-frame. A memory
object x will intrinsically lie inside at least one bounding frame, and x’s wrapper frame
is defined as the smallest frame completely containing x, so there exists only one
wrapper frame for x. For instance, in Fig. 4.1, each sharp-cornered box represents a
byte, and contiguous coloured bytes are objects allocated in memory (e.g. object a has
a size of 2 bytes). Memory space is divided to frames illustrated as round-cornered
boxes. Objects a,b and c’s wrapper frames are (n = 1)-frame (or 1-frame), 4-frame,
and 3-frame, respectively. For 0 ≤ m < n, we call m-frames placed inside an n-frame
f, f’s subframes.

Frames have several interesting properties. Firstly, an n-frame is aligned by 2m

for all m < n. Secondly, an object’s wrapper frame size is not proportional to the
object’s size. As shown in Fig. 4.1, the object b has a larger wrapper frame than
c, even though b’s size is smaller. This is because the wrapper frame size for an
object is determined by both the object’s size and location. Thirdly, as discussed
previously, an object’s wrapper frame is defined as the smallest frame containing the
object. Given an object x, its wrapper frame is obtained by finding a frame having x’s
base (i.e. lower bound) and upper bound in its lower-addressed (n− 1)-subframe and
higher-addressed (n− 1)-subframe, respectively. For example, in Fig. 4.1, object b’s
lower and upper bound are placed in b’s wrapper frame (4-frame)’s lower-addressed
and higher-addressed 3-subframes, respectively. It is trivial to prove that an object’s
wrapper frame is the frame having the object’s lower and upper bound in its biggest
subframes, as presented in Appendix 8.1.1.

Following basic malloc semantics, FRAMER does not natively support object
movement or growth (we reset its wrapper frame at realloc). Therefore, there exists
a unique wrapper frame for each object, and it is determined at memory allocation.
Since it does not change during the life time of an object, we can encode the meta-
data location using an offset relative to the wrapper frame. At memory allocation, we
determine the wrapper frame for the allocated object and store the metadata offset in
the pointer tag.

4.2.2 Frame Selection
We now show how to calculate the size of the wrapper frame, given an object. We call
an object whose wrapper frame is an n-frame an n-object. For any k-object o, since its
wrapper frame (i.e. a k-frame) is aligned by 2k by definition, the addresses of all bytes
in the frame coincide in their most significant (64− k) bits, and so do the addresses
of all bytes in o. In addition, the base and upper bounds are located in the lower
and higher-addressed (k− 1)-frame, respectively. This means that the (k− 1)th least
significant bit of the base and that of the upper bound are complementary to each
other.
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Based on these, we can calculate k, the binary logarithm (log2) of o’s wrapper
frame’s size. Let (b63, ..., b1, b0) and (e63, ..., e1, e0) bit vectors of k-object o’s base and
upper bound respectively, and X a don’t care value. We derive log2(wrapper frame
size) by performing XOR (exclusive OR) and CLZL (count leading zeros) operations
as follows (b63 is the most significant):

(b63, ..., bk, b(k−1), b(k−2), ..., b0)
(e63, ..., ek, e(k−1), e(k−2), ..., e0) XOR

(0, ..., 0, 1, X, ..., X) CLZL

(64− k)
We then get k by subtracting the result of the CLZL operation from 64, since k =

64− (64− k).

4.2.3 Metadata Storage Management
FRAMER’s memory manager places metadata in a header before the object contents.
For instance, in Fig. 4.3, a, b and c are all objects containing a header. Using any
bounding frame as a frame of reference, we can encode the location of the object’s
metadata (i.e. header) relative to the base of this frame. We can then derive the
metadata location given an inbound pointer using the following:

1. the binary logarithm of the bounding frame size (N = log22N)

2. an offset to a header from the bounding frame base

Given an inbound pointer and a bounding N-frame, aligned by 2N by definition,
we derive the bounding frame’s base by clearing the pointer’s N least significant bits.
This means that once a bounding frame’s N value is known to us, we can obtain the
frame’s base without any other information but the address in an inbound pointer’s
48 lower bits.

Having the value of N at hand, we may tag pointers with the offset from the bound-
ing N-frame’s base to the header. However, even with the value of N provided, the 16
bits of the tag cannot hold the large offsets required for some combinations of wrap-
per frame size and header location. For instance, a (N = 20)-object’s offset (20-frame’s
base ∼ the header) may need up to 19 bits.

To encode within the limited space of unused 16 bits of a pointer with both an
arbitrary offset and N value, FRAMER divides the virtual address space into slots
with a fixed size of 215 bytes, aligned to their size, i.e., 15-frames. Slots are set to a
size of 215 so that offsets to the header of objects can be encoded in the unused 15
bits of a pointer (one bit among 16 is reserved for a flag described subsequently). In
Fig. 4.3, da is the offset to the header of the object a.

FRAMER then distinguishes between two kinds of objects, depending on their
wrapper frame size, namely small-framed and large-framed objects. Small-framed ob-
jects are defined as (N ≤ 15)-objects, i.e. objects whose wrapper frame size is less
than/equal to 215. Large-framed objects are defined as (N > 15)-objects. For ex-
ample, in Fig. 4.3, object a is small-framed, whereas b and c are large-framed. One
extra bit, in particular the most significant, is used for a flag indicating if the object
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Figure 4.2: Tagged pointer: the tag depends on the value of N (binary logarithm
of the wrapper frame size of a referent object).

is small-framed or large-framed as shown in Fig. 4.2. We handle objects differently
depending on their kind.

Small-framed Objects

Small-framed objects are completely contained in a single slot, so any pointer to them
is derived to the slot base by zeroing the 15 least significant bits of the pointer. The
offset of a small-framed object x’s header from the base of the slot containing x is
stored in the 15-bit pointer tag. For instance, in Fig. 4.3 we tag pointers to the small-
framed object a with da (slot0’s base ∼ a’s header).

We further turn on the most significant bit of the pointer to indicate that the par-
ticular object is small-framed. FRAMER then recognises a pointer to a small-framed
object by the flag being on and takes the 15-bit tag as an offset to its header from the
base of the slot containing the object. This way, we avoid storing the value of N for
small-framed objects.

In summary, when we retrieve metadata from a header of a small-framed object (i.e.,
flag is on), inbound (in-slot) pointers are derived to the base of the slot by zeroing the
15 least significant bits (log2(slot size) = 15), and then to the address of the header by
adding the offset to the base address of the slot as follows:

1 // FLAG_MASK: ˜(1ULL << 63)
2 // flag is on
3
4 offset = (tagged_ptr & FLAG_MASK) >> 48;
5 slot_base = untagged_ptr & (˜0ULL << 15);
6 header_addr = slot_base + offset;
7 obj_base = header_addr + header_size;

Small-framed objects are overwhelmingly common. Our experiments showed the
number of large-framed objects is very low compared to small-framed ones: 1: >
200,000 on average and 1: millions in some benchmarks. This is fortunate, because the
header location for small-framed objects is derived from tagged pointers alone, while
large-framed objects require additional bits of information. We describe encoding for
large-framed objects next.
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Figure 4.3: Access to division array: the object a is small-framed, while b and c
are large-framed. da is the o�set to a. h denotes a header and |ta| is
the size of a. b and c’s entries are mapped to the same division array.
The entries in the division arrays store their corresponding object’s
header location, while the small-framed object a does not have an
entry. Only one entry of division1’s array is actually used, since the
division is not aligned by 217.

Large-framed Objects

Since large-framed objects span several slots, zeroing the 15 least significant bits (log2
of slot size) of a pointer does not always lead to a unique slot base, thus the offset in
the tag cannot be solely used to derive their relative location. In Fig. 4.3, a pointer
to a 16-object b can derive two different slot bases (slot0 and slot1) depending
on the pointer’s value, and that is the case for 17-object c (slot1 and slot2). In
addition, the offsets from the base of their wrapper frame ((N > 15)-frame) to an
(N > 15)-object’s header may not fit in spare bits. Hence, for large-framed objects,
we need to store additional location information. We store these additional bits in
a supplementary table, and use a different encoding in the pointer tag to derive the
address of the corresponding entry from any pointer to the object. We stress here that
the location of this entry is also derived using the tag in a way that enables much
smaller tables than typical shadow memory implementations.

During program initialisation, we create a table holding an entry for each 16-frame.
We call such a frame a division. Each entry contains one sub-array and the sub-array
per division is called a division array. Each division array contains a fixed number
of entries potentially pointing to metadata headers, in the current implementation as
follows:

1 typedef struct ShadowTableEntryT {
2 HeaderTy *division_array[48]; // 64-16
3 } DivisionT;
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Contrary to small-framed objects, in the tag for large-framed objects we store the
binary logarithm of their wrapper frame size (i.e., N = log22N) as shown in Fig. 4.2.
The address of an entry in a division array is then calculated from an inbound pointer
and the N value, and the entry holds the address of a header. By definition, a wrapper
frame of an (N ≥ 16)-object is aligned by its size, 2N, therefore, the frame is also
aligned by 216. This implies that a (N ≥ 16)-frame shares the base address with a
certain division, and is mapped to that division.

Each (N ≥ 16)-object maps to one division array, but that division array contains
entries for multiple large-framed objects. In Fig. 4.3, both division0 and 17-
frame0 are mapped to division0. Their mapped division (division0) is aligned
by 217 at minimum, while division1 is aligned by 216 at max.

The tag N can be used as an index into the division array to associate a header
pointer, stored in an entry in the division array, with each large-framed object mapped
to the same division. For each N ≥ 16, at most one N-object is mapped to one division
array, and the proof is presented in Appendix 8.1.2. We use the value N as an index of
a division array, and tag N in the pointer. Given a N value-tagged pointer (flag==0),
we derive the address of an entry as follows:

1 // UBASE: division base of userspace’s base
2 // SCALE: binary logarithm of division_size, i.e. 16
3 // TABLE: address of a supplementary table
4 // flag is off
5 // p is assumed tag-cleaned here
6
7 frame_base = p & (˜0ULL << N);
8 table_index = (frame_base - UBASE) / (1ULL << SCALE);
9 DivisionT *M = TABLE + table_index;
10 header_addr = M->division_array[N - SCALE];

The base of the wrapper frame (i.e. the base of the division) is obtained by zeroing
the least significant N bits of the pointer. The address of its division array is then de-
rived from the distance from the base of virtual address space and log2(division size)
(216). Finally we access the corresponding entry with the index N in the division
array.

Entries in a division array may not always be used, since an entry corresponds to
one large-framed object, which is not necessarily allocated at any given time, e.g. if
object b is not allocated in the space in Fig. 4.3, 0th element of division0’s array
would be empty. This feature is used for detecting some dangling pointers, and more
details are explained in § 4.4.2.

Unlike existing approaches using shadow space, FRAMER does not re-align ob-
jects to avoid conflicts in entries. Our wrapper frame-to-entry mapping allows wrapper
frames to be overlapped, that gives full flexibility to memory manager.

We could use different forms of a header such as a remote header or a shared header
for multiple objects, with considering a cache line, stack frame, or page. In addition,
although we fixed the division size (216), future designs may offer better flexibility in
size.

We showed how to directly access per-object metadata only with a tagged pointer.
Our approach gives great flexibility to associate metadata with each object; gives full
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Figure 4.4: Overall architecture of FRAMER

freedom to arrange objects in memory space, that removes padding objects unlike
existing approaches using shadow space. This mechanism can be exploited for many
purposes: the metadata can hold any per-object data.

4.3 FRAMER Implementation
This section describes the current implementation of FRAMER which is largely built
using LLVM. Additionally, we discuss how we offer compatibility with existing code.

4.3.1 Overview
There are three main parts to our implementation: FRAMER LLVM passes, and the
static library (lib), and the binary library in the dashed-lined box in Fig. 5.8. The
target C source code and the hooks for FRAMER’s functions in the static library are
first compiled to LLVM intermediate representation (IR). Our main transformation
pass instruments memory allocation/release, access, or optionally pointer arithmetic
in the target code in IR. In general, instrumentation simply inserts a call to library
functions, however, our use of header-attached objects and tagged pointers requires
further transformations at compile-time. The third part is wrappers around mal-
loc family (malloc, calloc, realloc, and free) routines and string functions.
Those function are interposed at link time in the current implementation but it is also
reasonable to implement customised functions instead of wrapping them to reduce
overheads instead of calling subroutines.

Our customised compiler optimisations are discussed in § 4.5.
We also had to modify the LLVM framework slightly. Our main transformation is

implemented as a LLVM Link Time Optimisation (LTO) pass for whole program anal-
ysis, and runs as an LTO pass on gold linker [74], however, incremental compilation
is also possible.

We also insert a prologue that is performed on program startup. The prologue
reserves address space for the supplementary metadata table, but pages are only
allocated on demand.
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4.3.2 Memory Allocation Transformations
We instrument memory allocation and deallocation to prepend headers and update
metadata by transforming the target IR code at compile time.

Stack-allocated Objects (address-taken locals)

For each local allocation of aggregate-type that needs a header, we create a new object
with a structure type that contains two fields, one for the header and one for the
original allocation as follows:

1 struct __attribute__((packed)) newTy {
2 HeaderTy hd;
3 Ty obj; // Ty is an original object’s type
4 };

We insert a callsite to our hook function that decides if it is small or large-framed,
updates metadata in the header, and also in the entry for large-framed objects. It then
creates a flag and tag (offset or N value), and moves the pointer to the second field
whose type is the actual allocated type by the target program. The hook returns a
tagged pointer. The allocation of the original object is removed by FRAMER’s pass,
after the pass replaces all the pointers to the original object with the tagged pointer to
the new object.

We instrument function epilogues to reset entries for large-framed non-static ob-
jects. Currently we instrument all the epilogues, and utilise the entry values for
detecting some cases of dangling pointers, that will be discussed in § 4.4.2. This
instrumentation can be removed for better performance – entries can be simply over-
written at the next update to them.

Statically-allocated objects (address-taken globals)

Creating a new global object with a header attached is straightforward, however, other
parts of the implementation are more challenging.

For static/global objects, pointers to them cannot be replaced with a tagged one
(i.e. the return value of the hook), since the return value of a function is non-constant,
whereas the original pointer may be constant e.g. an initializer of other static/global
objects or an operand of constant expression (LLVM ConstExpr) [71]. The ini-
tializer and operands must be constant, hence, replacing with a tagged pointer should
be done statically for global objects.

While the tag should be generated at compile-time, the wrapper frame size is de-
termined by their actual addresses in memory, that are known only at run-time. To
implement a tagged pointer generated from run-time information at compile-time,
FRAMER’s transformation pass builds ConstExpr of (1) the wrapper frame size N
(2) offset, (3) tag and flag selection depending on its wrapper frame size, (4) pointer
arithmetic operation to move the pointer to the second field, and then finally (5) con-
structs a tagged pointer based on them. The original pointers are replaced with this
constant tagged pointer. The concrete value of the tagged pointer is then propagated
at run-time, when the memory addresses for the base and bound are assigned.
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Table 4.1: FRAMER inserts code, highlighted in gray, for creating a header-
padded object, updating metadata and detecting memory corruption.
Codes in line 2, 5, and 8 in the first column are transformed to codes
in the second column.

Original C Instrumented C
1 struct HeaderTy {unsigned size; unsigned type id;};

struct newTy{HeaderTy hd;int A[10];};
2 int A[10]; struct newTy new A;
3 tagged = handle alloc(&new A, A size);

/* tagged = tag | &(new A->A[0]),
A size = sizeof(int) * 10 */

4 int *p; int *p;
5 p = A+idx; p = tagged + idx;
6 check inframe(tagged, p);
7 untagged p = check bounds(p, sizeof(int));
8 *p = val; *untagged p = val;

FRAMER inserts at the entry of the program’s main function a call to an initialisa-
tion function for each object. This function updates metadata in the header and, for
large-framed objects, the address in the table entry, during program initialisation.

Heap objects

We interpose calls to malloc, realloc, and calloc at link time with wrapper
functions in our binary libraries. The wrappers increase the user-defined size by
the header size, call the wrapped function, and perform the required updates and
adjustments similar to the hook for stack objects. We also interpose free with a
wrapper to reset table entries for large-framed objects.

4.3.3 Memory Access
FRAMER’s transformation pass inserts a call to our bounds checking function right
before each store and load, such that each pointer is examined and its tag stripped-
off before being dereferenced. The hook extracts the tag from a pointer, gets the
header location, performs the check using metadata in the header, and then returns
an untagged pointer after cleaning the tag. The transformation pass replaces a tagged
pointer operand of store/load with an untagged one to avoid segmentation fault
caused by dereferencing it.

Bounds checking and untagging are also performed on memcpy, memmove and
memset in similar way. (Note that LLVM overrides the C library functions to their in-
trinsic ones [73]). memmove and memcpy has two pointer operands, so we instrument
each argument separately.

As for string functions, we interpose these at link time. Wrapper functions perform
checks on their arguments, call wrapped functions with pointers cleared from tags,
and then restore the tag for their return value.
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4.3.4 Interoperability
FRAMER ensures compatibility between instrumented modules and regular pointer
representation in pre-compiled non-instrumented libraries by stripping-off tagged
pointers before passing them to non-instrumented functions. FRAMER adds a header
to objects for tracking, but this does not introduce incompatibility, since it does not
change the internal memory layout of objects or pointers.

There is another rare case of false positives (we did not encounter them), where
library code uses a tagged pointer to read from memory, where our instrumentation
did not have a chance to clear the tag as follows:

1 struct Node { // Linked list node
2 int data;
3 struct Node* next;
4 };
5
6 // The function length is externally-compiled
7 int length(struct Node * head){
8 int result = 0;
9 struct Node* current = head;
10 while (current != NULL) {
11 result++;
12 current = current->next;
13 }
14 return result;
15 }

At the call to the function length, FRAMER’s pass loses a chance to tag-clean
pointers to instrumented nodes except the pointer head passed as an argument. One
way to address this is to track memory allocation very conservatively – performing
points-to and the whole program analysis, and instrumenting only objects whose
pointers stay inside the instrumented modules. Unfortunately despite the heavy static
analysis, many objects will be dropped from tracking. The certain way is to force
ignoring the top bits at memory access with hardware support or, with a performance
overhead, by a segmentation fault handler.

4.4 FRAMER Applications
In this section we discuss how FRAMER can be used for building security applica-
tions. We explore mainly spatial safety, but we discuss additional case studies related
to temporal safety.

4.4.1 Spatial Memory Safety
FRAMER can be used to track individual memory allocations, and store object bounds
in the header associated with the object. These bounds can be used at runtime to check
memory accesses. Unlike other object-tracking or relative location-based approaches,
FRAMER can tackle legitimate pointers outside the object bounds without padding
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objects, or requiring metadata retrieval or bounds checking at pointer arithmetic op-
erations.

This subsection describes how FRAMER performs bounds checking at run-time.

Memory allocation

As described in § 4.3.2, a header is prepended to memory objects (lines 1, 2 in Ta-
ble 4.1). For spatial safety, this header must hold at least the raw object size, but can
hold additional information such as type information. This could be used for addi-
tional checks for sub-object bounds violations or type confusion. Its potential in type
confusion checking is presented in § 5, and we do not experiment with these in this
chapter.

Once we get the header address from a tagged pointer, an object’s base address
is obtained by adding the header size to the header address. After a new object is
allocated, a hook (handle alloc) updates metadata, moves the pointer to (new A-
>A), and then tags it (line 3). The pointer to the removed original object is replaced
with a tagged one (A to tagged in line 5).

Pointer arithmetic

As mentioned in § 2.1.1 and Figure 2.2, going out-of-bounds at pointer arithmetic
does not violate memory safety, as long as the pointer is not dereferenced. However,
skipping checks at pointer arithmetic can lose track of pointers’ intended referents.
Baggy Bounds Checking [6] handles this by marking such pointers during pointer
arithmetic and reporting errors only when dereferenced, and J&K [58] pads an object
by off-by-one byte.

Instead of padding, we include one imaginary off-by-one byte (or multiple bytes)
when deciding the wrapper frame (see § 4.2.2) on memory allocation. The fake
padding then is within the wrapper frame, and pointers to this are still derived to
the header, even when they alias another object by pointer arithmetic. The biggest ad-
vantage of fake padding is that it is allowed to be overlapped with neighboring objects
and thus saves memory. The fake padding does not cause conflicting supplementary
table N values across objects possibly overlapping the bytes.

FRAMER tolerates pointers to the padding at pointer arithmetic, and reports errors
on attempts to access them. FRAMER detects those pointers being dereferenced, since
bounds checking at memory access retrieves the raw size of the object. Currently
FRAMER adds fake padding only in the tail of objects, but it could be also attached
at the front to track pointers going under lower bounds, even though such pointers
are banned by the C standard.

Beyond utilising fake padding, to make a stronger guarantee for near-zero false
negatives, we could perform in-frame checking at pointer arithmetic (line 6 in Table 4.1).
We can derive the header address of an intended referent, as long as the pointer stays
inside its wrapper frame (slot for small-framed), in any circumstance. In Fig. 4.5,
consider a pointer (p), and its small-framed referent (a). Assuming p going out-of-
bounds to p’ by pointer arithmetic, p’ even violates its intended referent, but p’ is
still within slot0. Hence, p’ is derived to a’s header by zeroing lower log2(slot size)
(15) bits and adding offset. This applies the same for large-framed objects.
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Figure 4.5: By pointer arithmetic, a pointer p goes out-of-bounds (p’), and also
violates its intended referent (a to b). FRAMER still can keep track of
its referent, since p’ is in-frame. p" is out-of-frame, which we catch
at pointer arithmetic.

Hence, we could check only out-of-frame (p" in Fig. 4.5) by performing simple bit-
wise operations (no metadata retrieval) checking if p and p’ are in its wrapper frame
(or slot for small-framed):

1 // p: the source pointer of pointer arithmetic
2 // p’: the result of pointer arithmetic
3 // N: log2 wrapper_frame_size (or slot_size)
4 is_inframe = (p’ˆp)&(˜0ULL<<N);
5 assert(is_inframe==0);

FRAMER may report false positives for programs not comforming to the C standard
with out-of-frame pointers getting back in-frame by pointer arithmetic without being
dereferenced while they are out-of-frame. This is very rare, and those uses will be
usually optimised away by the compiler above optimisation level -O1. Normally the
distance between an object and its wrapper frame’s bounds is large. We can also
increase the wrapper frame size for all objects to enlarge this distance.

Memory access

As mentioned in § 4.3.3, we instrument memory access by replacing pointer operands
so that the pointers are verified and tag-stripped, before being dereferenced (line 7,8
in Table 4.1).
check bounds first reads a tagged pointer’s flag revealing whether the object is

small or large-framed. As we described in § 4.2.3 and 4.2.3, we derive the header
address from either an offset or an entry, and then get the object’s size from the
header and its base address as follows:

1 obj_base = header_addr + sizeof(HeaderTy);
2 obj_size = ((HeaderTy *)header_addr)->size;

We then check both under/overflows ((1) and (2) below, respectively). Detection of
underflows is essential for FRAMER to prevent overwrites to the header.

assert(untagged_p >= obj_base); // (1)
assert(untagged_p + sizeof(T) - 1 <= upperbound)); // (2)
// Where T is the type to be accessed
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The assertion (2) aims to catch overflows and memory corruption caused by access
after unsafe typecast such as the following example:

char *p = malloc(10);
int *q = p + 8;

*q = 10; // Memory corruption

In a similar fashion, we interpose string functions (mem* and str*) with our wrap-
pers around them. Handling individual function depends on how each function
works. For instance, strcpy copies a string src up to null-terminated byte, and
src’s length may not be equal to the array size holding it. As long as the destina-
tion array is big enough to hold src, it is safe, even if the source array is bigger
than the destination array. Hence, we check if the destination size is not smaller than
strlen(src), returning the length up to the null byte as follows:

assert(dest_array_size <= strlen(src));

4.4.2 Temporal Memory Safety
FRAMER may need additional metadata and implementation to to provide temporal
memory safety enforcement [4, 32, 88, 118] but can still detect some forms of temporal
memory errors that we now discuss briefly.

Each large-framed object is mapped to an entry in a division array in the supple-
mentary table, and the entry is mapped to at most one large-framed object for each
N. We make sure an entry is set to zero whenever a corresponding object is released.
This way, we can detect an attempt to free an already deallocated object (i.e. a double
free), by checking if the entry is zero. Access to a deallocated object (i.e. use-after-free)
is detected in the same way during metadata retrieval for a large-framed object. Note
that this cannot detect invalid temporal intended referents, i.e., an object is released,
a new object mapped to the same entry is allocated, and then a pointer attempts to
access the first object.

Detection of dangling pointers for small-framed objects is out-of-scope in the cur-
rent implementation.

4.5 Optimisations
It is very expensive to check every memory access. Support of static analysis and pro-
gram transformation can reduce overheads, for example, some operations might be
redundant such as tag-cleaing on tag-free pointers. We applied both our customised
and LLVM built-in optimisations. This subsection describes customised optimisations
for FRAMER. Suggestion of further optimisations is provided later in § 4.7.3.

Implementation Considerations As described in § 4.3.2, we replaced all occurrences
of an original pointer to a global object with a tagged one in constant expression
(LLVM ConstExpr). Unfortunately, we experienced runtime hotspots due to the prop-
agation of a constant (a global variable’s address) to every large ConstExpr. To work
around this issue we created a helper global variable for each global object; assigned
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the result of the constant propagation to the corresponding helper variable during
program initialisation; and then replaced uses of an original pointer with load of the
helper variable. This way, runtime overheads are reduced, for instance, benchmark
anagram’s overhead decreased from 14 to 1.7 seconds.

Non-array Objects We do not track non-array objects that are not involved with
pointer arithmetic, e.g., int-typed objects. It is redundant to perform bounds checking
or untagging for pointers to them. We filter out simple cases, easily recognised, from
being checked. In the general case, it is not trivial to determine if a pointer is untagged
at compile time, since back-tracing the assignment for the pointer requires whole-
program static analysis.

Safe Pointer Arithmetic Instead of full bounds checks, we only strip off tags for
pointers involved in pointer arithmetic and statically proven in-bound for simple
cases. For pointers where the bounds can be determined statically, we checks if the
index is smaller than the number of elements.

In some SPEC benchmarks, there are statically proven out-of-bound accesses, but
we do not report memory errors since they may be unreachable. We inserted a ter-
mination instruction for this case so that it can report errors at runtime, when the
execution reaches the point.

Hoist Run-time Checks Outside Loops Loop-invariant expressions can be hoisted out
of loops, thus improving run-time performance by executing the expression only once
rather than at each iteration. We modified SAFECode’s [34, 119] loop optimisation
passes, and added the modified pass to the LLVM LTO pass pipeline, so that it can be
run after FRAMER’s main transformation pass. We apply hoisting checks to mono-
tonic loops, and pull loop invariants that do not change throughout the loop, and
scalars to the pre-header of each loop. This pass works on each loop and if there
are inner loops, it handles them first. While iterating our run-time checks inside
each loop including inner loops, we determine if the pointer is hoistable. If a pointer
is hoistable, we place its scalar evolution expression along with its run-time checks
outside the loop, and delete the checks inside loop.

Inlining Function Calls in the Loop Inlining functions can improve performance,
however it can bring more performance degradation due to the bigger size of the
code (runtime checks are called basically at every memory access). Currently, we
only inline bounds checks that are inside loops to reduce the growth in code size that
can be caused by inlining.

4.6 Evaluation
We measured the performance of FRAMER on C benchmarks from Olden [20],
Ptrdist [10], and SPEC CPU 2006 [49], that are commonly used to evaluate run-time
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Table 4.2: Summary averages over all benchmarks (first three columns nor-
malised)

Memory Runtime Dynamic IPC Load D-cache Branch B-cache
footprint (cycles) instructions density MPKI density MPKI

Baseline 1.00 1.00 1.00 1.70 0.28 24.85 0.19 2.85
Store-only 1.22 1.70 2.24 2.17 0.20 12.27 0.15 1.34
Full check 1.23 3.23 5.25 2.54 0.14 5.28 0.17 0.86

verification for memory safety and compare with other implementations with many
object allocations or intensive pointer operations. For each benchmark we measured
four binary versions: uninstrumented, only store-checked and full (both load and
store checking enabled) on FRAMER, and ASan – one of the most widely used san-
itizers. We disabled ASan’s memory leak detection at run-time and halt-on-error to
measure overheads in the same setting as FRAMER. In-frame checking 4.5 was not
included for evaluation. Binaries were compiled with the regular LLVM-clang ver-
sion 4.0 at optimisation level -O2. Measurements were taken on an Intel® Xeon®

E5-2687W v3 CPU with 132 GB of RAM. Results were gathered using perf. Table 4.2
summarises the average of metrics of the baseline and the two instrumented tests.

In this text, cache and branch misses refer to L1 D-cache misses and branch predic-
tion misses both per 1000 instructions (MPKI), respectively.

4.6.1 Memory Overhead
Our metadata header was a generous 16 bytes per object. The large-frame array had
48 elements for each 16-frame (division) in use where the element size was 8 bytes to
hold full address of the header. The header size and the number of elements of each
division array can be reduced. Currently we mandate 16 alignment for compatibility
with the llvm.memset intrinsic function that sometimes assumes this alignment.
Despite inflation of space using larger-than-needed headers and division array entries
and some changes of alignment, we see FRAMER’s space overheads are very low at
1.22 and 1.23 as shown in Fig. 4.6. These measurements reflect code inflation for
instrumenting both loads and stores.

The memory overheads of FRAMER are low and stable ASan’s average normalised
overheads are 8.84 for the same working set in our experiments, and the highest over-
head is 4766% for hmmer. The average memory overhead of FRAMER is 22% ∼ 23%
for both store-only and full checking, and only two tests, perlbench.2 (84%) and
yacr2 (116%) recorded comparably higher growth than other tests. The two tests pro-
duce many small-sized objects, for example, perlbench allocates many 1-byte-sized
heap objects. Currently FRAMER instruments every heap object, so attaching a 16-
byte-sized header to all the 1-byte-sized objects made the increase higher. FRAMER’s
overheads for those benchmarks are still much lower than ASan’s: 2808% for perl-
bench.2 and 714% for yarc2.
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Figure 4.6: Normalised memory footprint (maximum resident set size)

4.6.2 Slowdown
Fig. 4.7 reports the slowdown per benchmark (relative number of additional cycles).
The average is 70% for store-only and 223% for full checking. For full-checking, ana-
gram (410%) and ks (452%) stand out for high overheads despite its smaller program
size, mostly due to heavy recursion and excessive allocations causing big growth in
executed instructions (674% for anagram, 812% for ks) as shown in Fig. 4.11, but
decreases in cache misses are moderate (76% for anagram, 81% for ks) compared
to average (decreased by 63%). On contrast, mcf recorded the highest instruction
overheads (1097%), but cache (91%) and branch misses (92%) are dropped the biggest
among all the tests, so run-time overhead did not grow in proportion to increased in-
struction count. perlbench and bzip sets’ overheads are high in both FRAMER and
ASan. Both tests produce many objects, and especially bzip recorded much higher
growth in executed instructions than perlbench and others.

Performance was impacted far less than would naively be expected from the addi-
tional dynamic instruction count (metric columns 2 and 3 in Table 4.2). The rise in
IPC (column 4) is quite considerable on average, although the figure varies greatly by
benchmark. The original IPC ranged from 0.22 to 3.20 but after instrumentation there
was half as much variation.
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Figure 4.7: Normalised runtime overhead

Our slowdown is mainly due to increased dynamic instructions to calculate meta-
data location. We measured runtime overheads for metadata management/retrieval
of benchmarks with the highest runtime overheads by forcing or preventing inlin-
ing of our hooks. As shown in Fig. 4.8, the fluctuations in proportion is negligible.
Benchmarks with low runtime overheads showed a similar pattern.

We break down the run-time cost of metadata management/retrieval. The overhead
consists of three main contributors:

1. Calculation

2. Memory access

3. Branch

Slowdown is dominated by Calculation (69.66%) – ALU operations to (1) generate a
tag at memory allocation and (2) derive the header address from the tag and pointer
value at memory access. Hardware acceleration in a future ISA would largely resolve
this overhead. We isolated tag-cleaning from Calculation to show the cost of using
tagged pointers without hardware support. Its cost (6.07%) would be removed on cur-
rent ARM that ignores top spare bits. The cost of generating tags was negligible, since
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Figure 4.8: Runtime overheads formetadatamanagement and retrieval (the over-
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it is performed only at allocation. The overhead for bounds checking after metadata
is retrieved is excluded in the measurement, since the overhead is ALU operations.
Including it will increase the proportion of calculation more.

The remaining three components cannot be resolved with simple ISA changes.
Branches arise in the following cases:

1. if a pointer is tagged or tag-free at memory access

2. if an object is a small or big-framed (i.e. a flag is true/false)

Branch checking for tagged/untagged and small/large-framed contributes 10.19%
of the total overheads of metadata management.

Current FRAMER encoding avoided any restriction on object alignment, however,
we are open to manipulate memory manager to remove large-framed objects for the
future design. Accessheader and Accessentry represent ratios of overheads to
access a header and entry, once their addresses are calculated from tagged pointers.
Accessing a header takes more time than accessing an entry, since it is performed on
both types of objects. Excluding the overhead of arithmetic operations, the cost is
around 25% of that of metadata management and retrieval.

The remaining part of the total runtime overhead that is not included in the mea-
surement shown in Fig. 4.8 is bounds checking performing arithmetic operations with
loaded metadata, which can be resolved by ISA.

4.6.3 Data Cache Misses
One of the goals of FRAMER is to allow flexible relationships between object and
header locality to minimise additional cache misses from metadata access. We do not
analyse L1 instruction cache miss rate since this generally has negligible performance
effect on modern processors, despite our slightly inflated code. To explain the mea-
sured increase in IPC we analyse L1 D-cache misses MPKI (cache misses) and branch
prediction misses MPKI. The baseline D-cache miss rate was 2.48% (Table 4.2) but this
improves with FRAMER enabled owing to repeated access to the same cache data.
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Figure 4.9: Normalised L1 D-cache load misses per 1000 instructions (MPKI)

In Fig. 4.9, we normalise cache misses to the uninstrumented figure. The average
normalised cache misses is 0.66 and 0.38 for store-only and full-checking, respectively.
The miss rate is reduced since the additional operations we add have high cache
affinity which dilutes the underlying miss rate of the application.

While ASan showed increase for four tests. ASan’s normalised misses on average is
0.73, which is higher than FRAMER’s 0.38. ASan’s highest overhead is 197% for bc,
and two tests reached increase more than by 100%. On FRAMER, power’s overhead
by 48% is mainly caused by the very low increase in instruction executed in producing
MPKI. The misses for the rest of benchmarks decreased, and normalised misses in
full-checking mode were below 0.5 for 21 tests among 28 working set, whereas only
13 tests on ASan were lower than 0.5. The overall cache miss rate showed FRAMER is
cache-efficient and stable.

Cache misses (MPKI) appear decreased with bloated instruction counts, so we also
present the increase in total numbers of cache misses. Fig. 4.10 shows the normalised
counts of cache misses for programs in SPEC that are comparably bigger sized than
tests in Olden or PtrDist. The averages of shown tests for FRAMER (Full) and ASan
are 1.24 and 2.40, and the averages for the whole set are 1.40 and 2.31, respectively.
This shows the increase in cache miss count to access metadata in FRAMER is min-
imal. On FRAMER, the increase rate of all the tests except one (277% for voronoi)
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Figure 4.10: Normalised L1 D-cache load miss count

are below 100%. On ASan, the increases for 7 tests are above 100%, and bc’s increase
rate is 1160%.

4.6.4 Instructions Executed
Fig. 4.11 reports normalised overheads per benchmark. FRAMER increases dynamic
instruction count by 124% for store-only, and 425% for full checking. This increase is
the main contributor to slowdown. Dynamic instruction penalty arises from setting up
and using tagged pointers. The major source of the growth is arithmetic operations.
As shown in Fig. 4.8, 75% of runtime overhead of metadata management/retrieval is
dominated by calculation of (1) the header address at memory access and (2) the tag
at allocation. This cost can be resolved with hardware acceleration in the future ISAs.

The penalty of utilising top bits is over-instrumentation – unless individual memory
access is proven tag-free statically, we have to instrument it (i.e. tag-cleaning) to avoid
segmentation fault in all major architectures, requiring the top bits to be zero (or
special pointer authentication code in ARM8). This results in stripping the tag field
for untagged pointers.

The average overhead for ASan is 226%, which is lower than FRAMER. The average
excluding the highest test (1336% for bh) is 184%, while FRAMER’s average exclud-
ing the highest (1098% for mcf) is 400%. The difference in slowdown on average
(FRAMER: 213%, ASan: 139%) was not big as the difference of instruction executed
due to FRAMER’s cache efficiency. ASan consumes fewer dynamic instructions, since
shadow space-only metadata storage requires simpler derivation of metadata location,
taking advantage of re-alignment of objects, as trade-off of space and high locality.

Future implementations can optimise the case where conservative analysis reveals
the tag never needs to be added. More discussion on optimisation is described in
§ 4.7.3.

4.6.5 Branch Misses
Additional conditional branches arise in FRAMER from checking whether small or
large frame is used and in the pointer validity checks themselves. Many approaches
using shadow space are relieved from these branches at metadata retrieval.
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Figure 4.11: Normalised dynamic instruction count

As shown in Table 4.2 col 7, the dynamic branch density decreases slightly under
FRAMER instrumentation, but the branch mis-prediction rate greatly decreases (col
8). The averages of normalised branch misses for store-only and full-checking are 0.62
and 0.42, respectively. This shows the additional branches achieve highly accurate
branch prediction and that branch predictors are not being overloaded. Of the new
branches added, the ones checking small/large frame size are completely statically
predictable owing to the checking code instances being associated with a given object.
And the ones checking pointer validity also predict perfectly since no out-of-bounds
errors are detected in normal operation.

4.7 Discussion

4.7.1 Comparison with Other Approaches
Shadow space-based approaches

Shadow space-based approaches reduce slowdown by lowering executed instructions.
Trade-off of data memory is tolerable in most systems during development. For
practical deployment, however, their slowdown is still high and memory footprint
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is critical in some systems, e.g. small computer running in an embedded system or
I/O-heavy server-side loads. In using shadow space, it is inevitable to pad and re-
align objects to avoid conflicts in entries [114, 6, 68, 47]. ASan pads each object for
wider detection coverage and more padding for alignment, which burdens space,
whereas FRAMER’s fake padding and wrapper frames do not consume any space.
Furthermore, their higher cache misses to access metadata in a remote memory region
(including ASan’s resetting entries at deallocation), making its runtime overheads un-
predictable.

In comparison with ASan, FRAMER showed better efficiency both in memory foot-
print (FRAMER: 23%, ASan: 784%) and cache miss counts overhead (FRAMER: 40%,
ASan: 131%). ASan showed lower increase in runtime overheads (FRAMER: 223%,
ASan: 139%), however, 75% of FRAMER’s overhead of metadata management and
retrieval is consumed for calculation, that can be largely resolved with new ISA. The
rest of overhead comes from bounds checking using loaded metadata, that can be also
implemented as ISA.

SGXBounds

SGXBounds spares 32 bits for a tag among 64 bits, while FRAMER tags only up-
per spare 16 bits. SGXBounds’s retrieving an upper bound first, not the base like
FRAMER, may save some overheads if we perform overflow-only checking. However,
using a footer makes systems slightly more vulnerable to metadata pollution without
complete memory safety. For both over/under underflow checking, we do not con-
sider our derivation of the base, not the upper bound, as a weakness. In addition,
frame encoding can be easily integrated to SGXBounds’ design.

MPX

Intel MPX [53, 87, 99] provides a hardware-accelerated pointer-based checking instru-
mented by compiler. In principle, FRAMER could utilize MPX extensions for perfor-
mance when used for spatial safety. We showed FRAMER is more cache-friendly, but
it could be made even faster if a single instruction implemented the complete tag de-
code operation, splitting apart the tagged pointer into an untagged object pointer and
separate header pointer in another register. This would be a fairly simple, register-to-
register instruction, operating on general purpose registers. Since this has not used
the D-cache, an enhancement would be to compare the pointer against a bounds limit
at hardcoded offset loaded from the header, but the best design requires further study.

4.7.2 Hardware Implementation of FRAMER
We believe FRAMER’s encoding is at its best when it is implemented as instruction set
extensions. As mentioned in §4.7.1, the increase in the number of executed instruc-
tions for calculation, the main contributor to slowdown of FRAMER, can be resolved
with new instructions. Tag-cleaning can be supported by hardware [9]. Moreover,
generating a tag and deriving a metadata address can be implemented as a single
operation, respectively.
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4.7.3 Additional Optimisations
Utilising More Spare Bits

Currently, we mandate 16-alignment due to llvm.memset intrinsic function. On this
alignment, we have spare 4 bits at the end of offset for small-framed and another
4 bits in the pointer. (We already have spare bits for large-framed ones.) Using
the bits, we can perform bounds checking only at pointer arithmetic and mark out-
of-bounds pointers, so that we can report errors when they are dereferenced. This
way, we expect to remove duplicated runtime checks, since the pointer may be used
for memory access multiple times. Above this, we can utilise them to encode more
information for better performance.

Compiler Optimisation

Redundant runtime checks can be eliminated using dominator trees. SoftBound [89]
reported that their simple dominator-based redundant check elimination improved
performance by 13% and claimed more advanced elimination [13, 142] can reduce
more overheads.

The penalty of using tagged pointers is that unless individual memory access is
proven safe at compile time, we may have to over-instrument memory access to avoid
segmentations faults. Some approaches can save expensive runtime checks to reduce
performance degradation, bearing false negatives, but it is difficult in approaches
using tagged pointer. We did not run dedicated pointer-analysis for this version but
it can remove over-instrumentation. Loop optimisation did not show a large impact
on reducing overheads, even for some SPEC benchmarks whose number of hoisted
run-time checks reached hundreds at static time. Our naive optimisation skipping
untagging improved performance more than state-of-the-art loop hoist pass. Static
points-to analysis [121, 123], as long as it does not assume the absence of memory
errors, potentially enables many tags and bounds checks to be removed at compile
time.

4.8 Conclusion
This chapter presented FRAMER, a per-object capability system utilising the currently
unused significant bits of pointers to store a tag. A key insight is that this tag can be
bifurcated using a flag bit so that the overwhelmingly common case of small-framed
objects can be dealt with efficiently in terms of both time and space. This ultimately
benefits the performance of exceptional large-framed objects too, because the design
can special-case them as well.

FRAMER is evaluated with a case study on spatial memory safety in C programs.
However, we believe its capability design could benefit the performance of other pro-
gramming language security mechanisms as well. Compared to existing approaches,
frame-based offset encoding is more flexibile both in metadata association and mem-
ory management, while still offering a fairly simple calculation to map from arbitrary
pointers to metadata locations. In addition, its intrinsic memory and cache-efficiency
make it potentially attractive for direct hardware support.





Chapter 5

SpaceMiu: Practical Type Safety for C

5.1 Overview
There are two major types of spatial memory errors. The first type of spatial mem-
ory errors is widely known as buffer overflows (§ 2.1.1). Another spatial memory
error is type confusion errors where the program accesses a memory location using an
incompatible type (§ 2.2). This chapter focuses on type confusion vulnerabilities in C.

Type conversions in C are frequently used. Attempts to access a memory location
using a type violating the contract on the memory resource can cause memory cor-
ruption. Figure 5.1 shows one example of unsafe but widely used type conversion. A
pointer p (line 6) is assumed to point to SubTy-typed data in memory, but it is risky:
memory in the location may hold data in a different type. For instance, if Ty-typed
data (line 2) is stored in the location, sub goes out-of-bounds (line 7). To prevent this,
we need to find the data type, that p points to, in memory, and then check if casting
from the data type to SubTy (line 6) is safe.

In addition, it is challenging to formulate type hierarchy in C language that heav-
ily weakens and restores types on objects. In Figure 5.1, most approaches would
treat SubTy as Ty’s child (i.e. subtype), and consider typecasting from SubTy into
Ty safe. As for casting from Ty to Y, the policies differ depending on their view.
Ty can be treated as Y’s subtype, since Ty has the same memory layout as {int;
char[5]; char[5];}, which can be interpreted as {struct Y; char[5];}. Our

1 struct Y {int fval; char ch[5];};
2 struct Ty {int ival; char name[10];};
3 struct SubTy {struct Ty x; struct Y * yp;};
4
5 struct Ty * foo (void * p){
6 struct SubTy* obj= (struct SubTy*)p;
7 struct Y* sub= obj->yp;
8 // do something with sub
9 ...
10 return (struct Ty*)sub;
11 }

Figure 5.1: C example with typecasts

67
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approach allows this cast, while some other approaches [60] do not. There is a need
for balancing tightness of type rules to minimise false positives/negatives, but still
detect memory corruptions via type errors without restricting programmers’ freedom
to manipulate pointers.

These memory corruptions are also frequently associated with unions when parsing
data with many different embedded object types in C. This can trigger security conse-
quences such as out-of-bounds read, code execution caused by size inconsistency or
improperly-parsed file containing records of different types.

Several approaches [46, 60, 93, 34, 19, 35, 116] have been proposed to prevent mem-
ory corruptions through unsafe typecast. Some of them [15, 31, 124, 149] are based
on vtable pointers, avoiding high overhead of tracking per-object (or pointer) that
has been the bottleneck of practical run-time verification systems. However the ap-
proaches usually perform only type checking between polymorphic classes so cannot
be directly used for type correctness for C programs.

Some other approaches [60, 46, 93, 57, 35] are based on per-object/pointer meta-
data. They can handle a wider range of type errors by tracking live objects or pointers
without breaking binary compatibility (except fat pointers [11, 57, 93]) however their
disadvantage is performance degradation to manage per-pointer/object type informa-
tion at run time, making efficient metadata management for pointer-to-type mapping
the key to make those solutions practical. In addition, some of them handle only C++
with class hierarchy.

In this chapter, we present spaceMiu, a run-time type confusion checker for C pro-
grams. Inspired by CCured [93], spaceMiu formulates types including unions and type
hierarchy in C mimicking up/downcast. Based on the type relation, we implement
a run-time type confusion checker using our per-object type metadata management
and two type descriptors holding per-type physical memory layout and type relation,
respectively.

Our key contributions are as follows:

1. Formulation of type relation and the validity of typecast in C

2. Efficient and scalable per-object information management

3. Evaluation on practical tests

5.2 Types and Type Relations
The first challenge we address is to define what type conversion is safe in C programs.
Many C programs heavily weaken types e.g. at function call, pointers typecast to a
different type (often to void*) from the contracted type (upcast) and accessed with
their original type (desirably) (downcast), which mimics type hierarchy. We define sub-
typing in C based on physical memory layout in this section, and discuss run-time
type confusion checking in the next section (§5.3).

Technically, C does not support type hierarchy unlike higher-level languages like
C++, C# or Java. Even so, C programmers use structure types that mimic upcasts and
downcasts. Inspired by CCured [93]’s physical equality and physical sub-typing [116, 22],
we define concrete types and their relation, and adapt them to types supported by
LLVM/clang for the C language.
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5.2.1 Type Representation
Firstly, atomic types are a subset of first-class types, whose values are the only ones
which can be produced by LLVM IR instructions [72], and that can show up anywhere
themselves, not just as instances of types. That include integers, floating points, point-
ers, vectors, and register types such as X86 mmx. We define atomic types as follows,
where n and m are non-negative integers and atomic∗ represents a pointer type:

n := 1 | 8 | 16 | 32 | 48 | 64 | 128
m := 16 | 32 | 64 | 128 | 80
atomic := intn | f pm | vectork | x86 mmx | atomic∗

Figure 5.2: Atomic Types

A vector with an element count k 1 e.g. <4 x int32 > is treated as a first class type
since it is commonly used when multiple other primitive data (atomic-typed data) are
operated in parallel using a single instruction, for instance, SIMD.

An aggregated type normally refers to an ordered collection of other types – arrays
or structures. We represent it as a list of atomic types and the list is constructed by
using a function π that flattens a type using a constructor of an empty list (nil) and
of non-empty list (::), and append operator t. An atomic type is a list of itself and an
aggregated type is a list of unrolled fields/elements as follows:

π(void) = nil
π(atomic) = Atomic :: nil
π(struct{τ1 f1; ...; τn fn}) = π(τ1) t ...t π(τn)
π(τ[n]) = π(τ1) t ...t π(τ) (n times)

Figure 5.3: Aggregated Types

5.2.2 Physical Equality
We define type hierarchy using physical equality relation between types in a list form.
Informally speaking, two types τ and τ′ are physically equal, denoted by τ ≈ τ′, when
their memory layouts are identical. More precisely, two non-pointer atomic types are
physically equal if both sizes and alignments are identical as presented in rules (1) ∼
(4) in Figure 5.4. This work assumes that an atomic type’s size and alignment are the
same and the assumption holds in most C standards. Physical equality of aggregated
types is defined based on lists of atomic types: two aggregate types are physically
equal if their ith atomic types are physically equal for all i, as shown in the rule (5) in
Figure 5.4. Pointer types are equal if their reference types are equal as shown in the
rule (6).

Currently we tolerate type conversion between int64 and a pointer type in 64-bit
machines, since the conversion is frequently used, and applying strict rules to them
generated too many errors in our experiments e.g. perlbench.

1k is a non-negative constant integer.
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(1)
nil ≈ nil

m = n (2)
intm ≈ intn

m = n (3)
f pm ≈ f pn

m = n (4)
f pm ≈ intn

α ≈ α′ τ ≈ τ′ (5)
α :: τ ≈ α′ :: τ′

τ1 ≈ τ2 (6)τ1∗ ≈ τ2∗

Figure 5.4: Physical Equality

5.2.3 Physical Sub-typing and Type Relation
Type hierarchy is defined based on our type relation between two types, called Physi-
cal sub-typing denoted by �. We show τ � τ′ by proving that τ is physically equal to
τ′ appended with τ′′, that can be either an empty or non-empty list of atomic types
as follows:

τ′ � τ ⇐⇒ ∃τ′′.τ′ ≈ τ t τ′′

When τ � τ′ holds, typecast from τ′ to τ is called upcast, which is considered
safe, and denoted by τ 7−→ τ′. Their pointer cast τ∗ 7−→ τ′∗ is also safe upcast as
presented in the following:

τ′ � τ

τ′∗ 7−→ τ∗
On contract, downcast is typecast from τ to τ′ that may cause memory corruptions.
A common use of up/downcast is temporarily weakening an arbitrary pointer to

void* given to a callback or function argument, and then casting back to its original
type. A void pointer holds an arbitrary address and any pointer can be upcast to a
void pointer without loss of information [61]. void is represented as an empty list,
making it an ancestor of any types. The validity of typecast from an arbitrary pointer
(τ* p) to void* can be derived with rules as shown below:

τ ≈ τ
τ ≈ nil :: τ
τ � void

τ∗ 7−→ void∗
Upcast pointers to void* passed inter-procedurally are normally converted back

to their original type i.e. downcast via explicit cast. Unfortunately they may downcast
to another type, which requires run-time checking.

In this notion of flattening types to the level of atomics, we may lose structural infor-
mation of aggregate types e.g. nested structures or arrays in structure type. CCured
interprets them as arrays of atomic types and make the type compatibility more re-
laxed than libcrunch [59] that breaks an aggregate type down to its immediate sub-
types, not to the level of atomics. In many cases, libcrunch’s sub-typing makes more
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sense but we noticed LLVM converts contiguous atomics in an aggregate type to a
vector type, so in this approach we follow CCured’s sub-typing.

5.3 Run-Time Typecast Checking
Upcast is considered safe and this can be verified at compile time: if a target type of
typecast is an ancestor type of the source type, the target type at runtime is also an
ancestor type of the source type.

In contrast, a target type of downcast may mismatch its data type of a pointer: if
a pointer type is a sub-type of a target type at typecast, access with the pointer after
downcast may cause overflows including internal overflows, hence downcasts require
run-time checking to prevent this type confusion.

Downcast checking is more challenging than upcast checking, since the run-time
type of a pointer is unknown at compile-time. It requires pointer-to-type mapping.
First of all, we need to track individual objects (or pointers) and store per-object
(pointer) type information in the database. We then should map a pointer at a unique
offset in the object to a sub-object (field) corresponding to a nested type.

In summary, we need the following three pieces of information to map a pointer to
its corresponding type at runtime:

1. a pointer’s referent object type

2. an offset that the pointer references in the object

3. type information at the offset

First of all, to manage per-allocation types, spaceMiu leverages FRAMER’s per-
object metadata storage (§ 4.2): each memory object holds its object type information
in a header attached to itself, and an object pointer is derived to the header location,
as described in § 4.2.3. spaceMiu collects all the types used in a program and assigns
a unique ID to each type at compile time. The current implementation of our main
transformation as a Link Time Optimization (LTO) pass makes it easier to collect all
used types of the whole program. Each header holds an object’s type ID. In addition
to the object type, FRAMER’s tagged-pointer encoding allows us to get an object’s
base address at the same time.

Once obtaining both the type ID and base address of a referent object, we calculate
an offset by subtracting the base address from an object pointer, and then get a type
at the offset using type layout descriptor. Each entry of the type layout descriptor holds
memory layout information of each type in the form of a list of types at each offset.
We retrieve the object type’s memory layout with the type ID as an index of the
descriptor, and get a nested type with the offset. Pointers are usually mapped to a
structure’s field or array’s element; otherwise we report them as an error.

spaceMiu then examines the validity of type conversion from a type at the offset (τ)
to a target type using a type relation descriptor. If a target type is τ’s descendent type
(physically not equal to and downcast of τ) or totally incompatible, spaceMiu reports
a type confusion error.
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Figure 5.5: Metadata Storage and Type Descriptors

This type confusion checker can be run with other security enforcements on the
shared metadata management such as spatial memory safety (§4.4), although we did
not evaluate in that aspect in this study.

In the following subsections, we describe (1) object-to-type mapping using per-
object metadata management and (2) pointer-to-type mapping and typecast checking
using two type descriptors.

5.3.1 Object-to-type Mapping
Allocated objects in memory are accessed with a known type. The common three cases
are (1) where an object’s type is determined at allocation and an object is written and
read with their declared type. In contrast, there are cases (2) where an object may be
associated with its type after allocation with delay or (3) where an object is accessed
with a different type from its initial type. We discuss what type is associated with an
object and when to map an object to its type in each case.

(1) The first case is where a memory block is associated with its type at allocation
and holds data in the type. Most static/stack/global objects fall in this category. We
call this type an object’s declared type. Those objects may be accessed in either their
declared type or different type. Different types are either compatible or incompatible
with the declared type.

(2) The second case is heap allocation via malloc family. A heap object does not
have a declared type initially unlike static/global/stack objects. Instead, it is given
its effective type when its pointer is typecast to a known type at memory write. We
categorise heap allocations using malloc into three as follows:

(a) τ∗ p = malloc (sizeof(τ))

(b) τ∗ p = malloc (sizeof(τ)× n)

(c) void * p= malloc (n)

Heap allocations (a) and (b) present common forms of allocation with malloc
or customised wrapper functions whose effective type is specified by programmers.
spaceMiu associates these objects with its effective type at the first typecast from void*
to τ∗. Objects of the case (a) as a τ-typed singleton and those with (b) as a τ-typed
array. Although dynamically-allocated objects are allowed to change their effective
type, we assume that objects in the cases (a) and (b) have one effective type during
their lifetime, and this agrees with most programmers’ habit.
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Heap allocation (c) represents a byte array whose effective type is determined at
memory write through string functions such as memcpy. Their effective type is usu-
ally string i.e. a char-typed array. Some byte arrays may keep being overwritten,
being used as a buffer. We treat them as a buffer that is not associated with any
particular effective type, instead of updating the type. More discussion on this imple-
mentation will be presented in § 5.5.6.

(3) The last case is where objects are given either their declared type at allocation or
effective type at the first typecast, but may hold data in another type. Unions fall in
this category. Stored data is usually in one of the field types of a union and it is read
in the same type as the written type. However the data can be also read with another
type that is not one of the fields of unions, that requires type checking at run time.

Unions may seem similar to heap objects in the sense that the data type is deter-
mined after allocation, however our approach will treat them differently. They may
not hold data in the same type as its declared (or effective) type, which is union, and
the memory may keep being overwritten with one of the field types, whereas most
heap objects except byte arrays are assumed to hold data with only one effective type
while they are alive.

We separate a union’s stored data type from its first-associated type (declared
or effective), which is a union, and call the stored data type a run-time type (RTT).
spaceMiu’s per-object metadata holds both type information as shown below:

struct HeaderT {
int TID; /* Type ID of an element */
unsigned size; /* the raw obj size */
unsigned elemsize; /* an element size for an array

otherwise equal to size */
short isUnionTy; /* if yes 1, otherwise 0 */
short RTTunion; /* Type ID of stored data in union */

};

For unions, spaceMiu stores the type ID of union itself in TID and the stored data
(field) type ID in RTTunion. isUnionTy indicates if the object is union or not. For
non-unions, RTTunion field is not used. Currently spaceMiu does not handle arrays,
so the header form should be modified to cover arrays. More details on handling
unions will be presented in § 5.4.

In summary, we store an object’s declared (or effective) type ID and RTT ID for
unions in an object’s metadata.

5.3.2 Per-object Metadata Management and Pointer-to-Type Mapping
We leverage per-object metadata management of FRAMER presented in § 4.2. The
metadata in the header holds an object’s type information – an object type ID and
RTT ID.

In addition to per-object type information, run-time type confusion checking re-
quires an offset due to operations on pointers such as pointer arithmetic prior to
typecasts to be verified. spaceMiu now performs pointer-to-type mapping that obtains
an offset from the base of an object to a pointer reference and then maps a pointer at
a unique offset to a sub-object’s type at the offset by utilising a type layout table.
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It is straightforward to get an offset in a structure-typed object is in this approach –
simply subtracting an object base from a tag-cleaned pointer.

Now we utilise the type layout descriptor to map the offset in the object to its corre-
sponding type. Once the object type ID is retrieved from a header, we directly access
a corresponding entry holding per-type physical layout information in the descriptor
with the object type ID as an index.

Each per-type layout information is in the array form, and each element of the array
holds a type ID at a unique offset. Per-type layout contains a flattened list of type IDs
at each offset as shown in Fig. 5.6a. All the entries (i.e. arrays) in the layout descriptor
are fixed-sized to the last meaningful offset of a type having the maximum offset, so
the element holding the ID of the type at the offset is also directly accessed with the
calculated offset (we filled a negative integer (-1) in the elements that are not mapped
to any type). For instance, the following structure VERTEX has a sub-structure VEC as
a field:

struct VEC {
double a;
double b;

};
struct VERTEX {

struct VEC a;
struct VERTEX* b;
struct VERTEX* c;

};

A list for struct VERTEX is obtained by flattening a sub-structure (struct VEC)
as follows, where max is the maximum offset amongst all the layouts in a program:
{VECid, -1, -1, -1, -1, -1 -1, -1,
doubleid, -1, -1, -1, -1, -1 -1, -1,
VERTEX∗id,-1, -1, -1, -1, -1 -1, -1,
VERTEX∗id, -1, -1, -1, -1, -1 -1, -1,
... up to max}

Here, one offset may be mapped to multiple types in the flattened layout e.g. a
composite-typed field (VEC) and its first field double at the offset 0 in the flattened
layout of struct VERTEX. For those cases, we choose the highest type over sub-
objects’ type at the offset, since the type holds its sub-object information. For instance,
at an offset 0 of struct VERTEX, a type ID of struct VEC is stored, not the ID of
double.

5.3.3 Type Confusion Checking
Once a pointer is mapped to a type (τ), we check if type conversion from τ to a target
type (τ′) is safe i.e. if τ′ is physically equal to or upcast of τ.

Now we utilise another type descriptor – type relation table. The relation table R is
implemented as an L × L boolean matrix, where L is the number of all used types
in a target program. Each entry (row) corresponding to one type τ holds relations
between τ and all types. Given two type IDs, i (source type τ) and j (target type τ′),
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(a) Entry of Layout Table: K is the maximum meaningful o�set among all identified types in a target
program, and kτ is the last meaningful o�set of a type τ with the type ID iτ .
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(b) Entry of Relation Table: the table R is implemented as an L× L matrix, where
L is the number of all identified types in a target program. Ench Entry (R [i][j])
holds a boolean value (b(i,j)) representing if typecast from type τ with ID i to
τ′ with ID j is safe or not.

Figure 5.6: Entries of Type Descriptors

we directly access the corresponding element in the table with them. A boolean value
(R [i][j]) represents if typecast from τ to τ′ is safe, as shown in Fig. 5.6b. If R [i][j] is
equals to false, spaceMiu reports a type confusion error.

For instance, spaceMiu found the following error at typecast from struct op* to
struct binop* at offset 48 in the benchmark perlbench:

// The syntax, iN, specifies an N-bit integer.

struct op {struct.op*; struct.op*; struct.op* ()*;
i64; i16; i16; i8; i8};

struct.binop {struct.op*; struct.op*; struct.op* ()*;
i64; i16; i16; i8; i8;
struct.op*; struct.op*;};

5.4 Union Type
As briefly mentioned in § 5.3.1, unions are handled differently from other types, since
their declared (or effective) type differs from its RTT. In this section, we discuss type
safety for unions.

LLVM-clang does not support unions. What happens in practice is that clang con-
verts a union into a structure. In this text, we call a structure, generated from a
union by LLVM-clang, a union-structure. LLVM-clang still lets the cases recognisable
by naming them with a prefix ”union.”. Consider the following union:

union Data {
int a;
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int * b;
char c[20];

};

LLVM-clang converts the union into the following union-structure:

// We present the code in C, not in LLVM IR, for explanation.
struct union.Data {

int * b;
char c[20];

};

During the process, clang may drop some fields (int a in this example) or re-order
fields. At memory access to the dropped field, clang generates typecast of a pointer
to the union-structure into the field type.

In LLVM-clang, a union is treated as a piece of memory that is accessed using
implicit pointer casts. It seems similar to a byte array, however there is a difference:
LLVM-clang does not simply create a union-structure having a byte array which is
big enough to contain any user-specified union field. It creates a union-structure with
the right size that meets alignment requirement. In the example above, LLVM-clang
pulls the most aligned field (int * b) to the front, so that the union-structure is
aligned by it. It then appends char c[20] to make the union-structure large enough
to hold the member with the largest size, and discards the redundant member (int
a). It considers both size and alignment to determine what fields are to be kept and
in what order chosen fields should be. At memory access to the field int a, LLVM-
clang performs a cast operation which converts a union-structure pointer (struct
union.Data) into int pointer type.

Sometimes LLVM-Clang modifies fields.

union Data2 {
char ch[41];
int b[10];

};

The union (Data2) is compiled to the following LLVM-IR code:

%union.Data2 = type { [10 x i32], [4 x i8] }

int b[10] becomes the first member, since it is the most aligned member of the
union, and the shortened i8-typed array (the char array) is appended to make it the
right size.

That is, a union-structure does not hold information of fields that a union initially
has. Hence, given a cast operation from a union-structure into a certain type in LLVM
IR, we cannot distinguish which case the typecast is:

1. generated by LLVM-clang to access its (possibly dropped) field

2. explicitly specified by a programmer.

The validity of static cast from a union-structure into a field type with the case (1) is
examined by the compiler, saving us from typecast checking at run-time. In contrast,
the case (2) needs to be verified by spaceMiu, however we cannot distinguish the two
cases, as mentioned.
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We could simply check the validity of any typecast from the union-structure type
into the target type, but there is another point to consider: there is a mismatch be-
tween the declared/effective type (union-structure) and the type of data (RTT) that
is actually stored in the memory location, as we pointed in § 5.3.1. The declared/-
effective type (union-structure) and RTT differ in most cases. The declared/effective
type does not change, while its RTT can be overwritten multiple times. We could treat
the last-written RTT as their object type, however, we may still need the declared/-
effective type information. It is because typecast from a union-structure into another
incompatible type may have been specified a programmer, which requires run-time
checking. Therefore we keep both type information (union-structure and RTT). We
update the ID of the object type (union-structure) at memory allocation, and we keep
the RTT ID updated at memory write to it.

At memory write, a union-structure pointer is first typecast into a certain type (T),
and then writes data in T. At memory read, it is typecast back to the written data type
T (desirably), before reading in T. Both write and read are through typecast, so run-
time operations should be applied differently depending on the use of the cast – write
or read. Instead of analysing uses of typecast at compile time and hooking differently,
for union-structures, spaceMiu performs run-time checking at memory access, not at
typecast.

Firstly, at data write to a union-structure, we update its RTT ID in the header. The
RTT is either (a) one of the field types of an original union or (b) another type that
is not a member of the union. The case (a) will be then proven safe by spaceMiu’s
run-time check at memory write. The case (b), where a typecast to an incompatible
type of a non-field, will be proven unsafe at run time.

At memory read, we check if it is safe to typecast from RTT, updated at the last
memory write, into the type to be read. To do so, we first retrieve RTT information
from the header, and then prove the compatibility between the RTT and target type.

Now we define safecast for union-structures. We treat a union-structure as a special
byte array holding any data type, so we perform bounds checking. Here, we also check
if alignment of the target type is not larger than the union-structure, otherwise the
alignment difference may cause memory corruptions. This view is reasonable since
memory access to any field is at the offset 0 by definition of unions.

Given τ (a source type) and τ′ (a target type), where any of them is a union-
structure, safecast for union-structures is defined as presented in Figure. 5.7:

Align(τ) ≥ Align(τ′) |τ| ≥ |τ′|
(Union’s safecast)

τ 7−→ τ′

Figure 5.7: Union’s safecast

For union-structures, we instrument memory access to them. Unfortunately, in
practice, this causes high performance degradation from metadata management and
type checking at every memory access. The overhead can be even larger than spatial
memory safety enforcement, whose cost has been a major challenge.

To avoid runtime overhead, we perform typecasts for unions conservatively – hook-
ing only memory access statically proven to be alias with union-structures by running
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Figure 5.8: Overall architecture of spaceMiu

points-to analysis. If a pointer operand of store instruction is an alias, then we hook
the instruction to update the RTT ID for the object at runtime. As for load, we check
if the alignment of the RTT is not smaller than the alignment of the type to be read
with.

This instrumentation can cause false negatives or positives. We sacrifice accurate
checking for unions to minimise performance degradation in the current implemen-
tation aiming at an always-on solution. For comprehensive memory/type safety,
spaceMiu can be merged with FRAMER’s spatial memory safety enforcement (§ 4.4),
that instruments all memory accesses, on the same metadata management (§ 4.2). We
then can perform operations for union-structures at memory access by recognising
them with metadata in the header: isUnionTy indicating if the object is a union-
structure, as described in § 5.3.1.

Our current header representation has limitations: it cannot handle other uses of
unions such as union-structure arrays or aggregate types containing union-structures
as fields. More generic and compact representation is needed to handle various uses
of unions.

5.5 spaceMiu Implementation
There are three main parts to our implementation: spaceMiu LLVM passes, the static
library (lib), and the binary lib in the dashed-lined box in Fig. 5.8.

The source codes of a target program and our hook functions in the static lib are first
compiled to LLVM intermediate representation (IR). Our main transformation pass
works on the LLVM IR and instruments: (1) memory allocation/release, (2) pointer
typecast, and (3) memory access. spaceMiu’s main transformation is implemented as
an LLVM Link Time Optimisation (LTO) pass for whole program analysis, and runs
as an LTO pass on gold linker [74], however, incremental compilation is also possible.
Transformation of programs to implement tagged pointers and attaching a header to
objects is the same as FRAMER described in § 4. Customised compiler optimisations
are also previously discussed in § 4.5.
malloc family routines (malloc, realloc) are interposed with our wrappers

defined in the static lib at compile time. calloc is not interposed at the moment,
since we treat allocation with it as an array that we do not track. The third part
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is string functions and free interposed at link time. spaceMiu performs only tag-
cleaning for string functions to prevent segmentation faults. Some of them such as
memcpy or strcpy could be instrumented to update effective types, but we do not
implement it in this implementation. Further discussion will be presented in § 5.5.6.

5.5.1 Creation of Type Descriptors
Before the main transformation pass traverses a program, it statically builds two type
descriptors as presented in § 5.3.2 and § 5.3.3. It is straightforward to collect all
used types of the whole program in our main as an LTO pass. It then creates the
descriptors, layout and relation tables (Fig. 5.6), using the type IDs statically. The pass
first collects all the identified types in the target program; assigns each type a unique
type ID; and then builds descriptors with the type IDs. It also assigns unique type IDs
to pointer types of operands of bitcast operations 2, so that we can remove overhead
caused by redirecting entries to pointer types from their non-pointer types in the type
descriptors at run time.

5.5.2 Program Initialisation
We insert a prologue that is performed on program startup. The prologue reserves
address space for the supplementary metadata table and pages are only allocated on
demand.

5.5.3 Memory Allocation
The current version tracks only structures including union-structures (§ 5.4) - atomics
or arrays are not instrumented. Arrays can be handled by merging spaceMiu and
FRAMER, and type information of atomics can be encoded in the spare bits in a 64-
bit pointer, that spaceMiu and FRAMER do not currently use (discussed in § 4.7.3),
without attaching a header to them for the future design.

Stack/Global/Static Objects

Our main transformation pass performs similar instrumentation to FRAMER, pre-
sented in § 4.3.2, but updates additional per-object metadata – type IDs.

For union-typed objects, it turns on the isUnionTy field indicating that it is an
union. The hook then creates a flag and tag (offset or N value), and moves the pointer
to the second field (Ty obj) whose type is the actual allocated type by the target
program.

We optionally instrument function epilogues to reset entries for large-framed non-
static objects. The current implementation does not instrument epilogues, whereas
FRAMER inserts epilogues to detect some dangling pointers.

2The bitcast instruction in LLVM IR converts a value to a given type without changing any bits.
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Heap Objects

spaceMiu’s pass interposes calls to malloc and realloc with our wrappers around
them at compile time, while FRAMER interposes them at link time (§ 4.3.2). Our
wrappers call malloc and realloc with a user-defined size added by the header
size; and the rest of operations are the same as the hook for non-heap objects except
mapping objects to their type. Whereas non-heap objects are mapped to their declared
type at allocation, heap objects are assigned their effective type at pointer casting
during pointer assignment. Assuming that heap allocations with malloc meet the
following signatures (§ 5.3.1):

Ty * p= malloc (sizeof(Ty));

our main pass searches the first pointer typecasting from void *, returned from
malloc, to its target pointer type (Ty *), and passes the target type ID as an argu-
ment to our wrappers around malloc. The pass may fail to capture the effective type,
if a malloc call does not meet the signatures or LLVM-clang optimises codes. It skips
instrumenting the heap object, when our heuristics cannot detect the effective type.

As for heap allocations with user-customised wrappers around malloc family,
their effective types are determined at call sites to the custom-wrappers, not to
malloc inside them, so the pass lazily updates type metadata at the calls to the
custom-wrappers. This delays object-to-type mapping longer at run time, and makes
it more difficult to handle effective types, especially to decide whether to instrument
malloc called by custom-wrappers. If our pass captures an effective type at one
call to a user-customised wrapper, it should instrument all the call sites to malloc,
that the custom-wrappers call. In addition, a user-customised wrapper usually has
multiple call sites. Unfortunately this caused more overhead to track all heap ob-
jects including ones not mapped to any meaningful effective type in our previous
experiment. To avoid the overhead, we forced inlining all custom-wrappers and then
performed detecting an effective type at allocation; and tracking only objects in a
type of our interest otherwise we skipped instrumenting it at inline malloc. The
evaluation in § 5.6 is measured on inline custom-wrappers.

Handling type assignment has been a challenge for run-time type confusion check-
ers. As for programs in C++, UBSan [124] based on vtable pointers cannot capture
type information of non-polymorphic objects. Approaches using per-object metadata
such as CaVer [69], TypeSan [46], and HexType [56] instrument the new operator. Hex-
Type also detects types of hard-copying objects that have already been constructed.
Libcrunch [60] handling C assumes a list of signatures like spaceMiu, but captures
more effective types by performing source-level analysis and using debug informa-
tion. One could also utilise a tool such as Coccinelle (semantic patching) [43] to
statically extract effective types or the number of element (for arrays) by tokenising
malloc’s arguments (sizeof (τ) * n) and extracting two parts of a multiplication.

The current version does not interpose calloc that is assumed to allocate an array
in our approach, that we do not track. Therefore we may have chances to miss a
non-array allocation via calloc (sizeof(τ), 1).

We also interpose free with our wrapper but at link time. This performs resetting
an entry for a large-framed object, and releasing the object with the hidden base (i.e.
the address of the header).
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5.5.4 Type Cast
spaceMiu’s transformation pass inserts a call to typecast checks right before each
bitcast operation. It statically examines if the target type of typecast is upcast or
downcast of the source type, and instruments only downcast sites. The pass passes
a pointer and the target type ID to a hook along with addresses to type descriptors
and other information needed to calculate the address of corresponding entries in the
tables.

The hook starts with extracting a tag from a pointer: if the pointer is tagged (i.e. its
referent object is instrumented), it performs checking, otherwise it returns. It then gets
the header location; retrieves an object’s type ID; and then performs pointer-to-type
and type confusion checking.

5.5.5 Memory Access
Instrumentation of memory access is similar to FRAMER presented in § 4.3.3. The
transformation pass instruments basically every memory access with a hook function
just to clean tag, unlike FRAMER.

As mentioned in § 5.4, updating type information or verifying typecast of unions
are performed at memory access. The main pass runs points-to analysis for each
function and determines if an individual memory access is alias with any union. If
so, the pass hooks memory writes with a function that updates the type ID for RTT
(i.e. the type of store). For memory reads to unions, it inserts a hook checking if the
typecast from the union’s RTT to the type of load instruction is safe.

5.5.6 String Functions
Tag-cleaning should be also performed on string functions such as memcpy, memmove
or memset in a similar way. We interpose them at link time with our wrappers, that
call wrapped functions with tag-cleaned pointers and then restore the tag for their
return value.

Some string functions such as memcpy and strcpy may be involved with deciding
effective types. We do not implement in that aspect. Further extension to handle the
issue is discussed in § 5.7.2.

5.6 Evaluation
The performance of spaceMiu is measured and evaluated on C benchmarks from
SPEC CPU 2006 [49]. For the benchmarks having multiple tests (perlbench, bzip2
and gobmk), the average of the tests is presented.

For each benchmark, two binary versions are measured: un-instrumented and in-
strumented by spaceMiu. Binaries were compiled with the regular LLVM-clang ver-
sion 4.0 at optimisation level -O2. The same compiler optimisations in the same order
are applied to two versions. Measurements were taken on an Intel® Xeon® E5-2687W
v3 CPU with 132 GB of RAM. Results were gathered using perf.
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Figure 5.9: Normalised Memory Footprint
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Figure 5.10: Normalised runtime overhead

In this text, cache and branch misses refer to L1 D-cache miss counts and branch
prediction misses, respectively.

5.6.1 Memory Overheads
Our metadata header was 16 bytes per structure-typed object. The large-frame array
had 48 elements for each 16-frame (division) in use where the element size was 8 bytes
to hold full address of the header. The header size and the number of elements of each
division array can be reduced. Currently we mandate 16 alignment for compatibility
with the llvm.memset intrinsic function that sometimes assumes this alignment.
Despite inflation of space using larger-than-needed headers and division array entries
and some changes of alignment, we see spaceMiu’s space overhead are low at 1.05
as shown in Fig. 5.9. These measurements reflect code inflation for instrumenting
metadata manipulation and typecast checking.

Despite overhead for type descriptors and padding comparably a smaller object
than arrays with a fixed-sized header, the overall overhead is mainly influenced by
increase in number of instrumented objects. One of perlbench tests with average
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Figure 5.11: Normalised Dynamic Instruction Count Overhead
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Figure 5.12: Normalised L1-D Cache Miss Count Overhead

overhead (5%) reaches 30% with instrumentation of all heap objects excluding space
for descriptors. Two tests, gcc (23%) and gobmk (13%) recorded higher growth than
other tests however it is still low.

The average memory overhead of spaceMiu (5%) instrumenting only structure-
typed objects is lower than tracking global/static/local arrays and all heap objects
for bounds checking (22 ∼ 23% on average). spaceMiu does not track heap objects
whose effective type is not recognised by the main pass (i.e. not following signatures)
so many heap objects are dropped from instrumentation. Amongst tests with heap
allocation via customised wrappers (e.g. perlbench, gcc, and gobmk), forcing in-
line those wrappers before instrumentation helped detect more effective types in the
test gcc, while inlining was not of much help for perlbench. Many heap objects
were discarded in the test perlbench and tracking all heap allocation increases the
overhead to 23% from 5%. The increase comes from both object padding and a sup-
plementary table.
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Figure 5.13: Normalised Branch Miss Count Overhead

5.6.2 Slowdown
spaceMiu’s runtime overhead on average is 26%. We track only structures that are
involved in up/downcast, so tests with a small number of instruments recorded com-
parably low increase both in memory footprint and cycles. The slowdown is mainly
caused by the increase in executed instruction to set up tags, clean tags, and perform
checks at typecast including calculation of type information location and retrieval of
information.

Slowdown from tag-cleaning and branches is one of the downsides of using tagged
pointers, but much of the overhead will be resolved with customised instructions.
spaceMiu manipulates tags both at typecast for tag extraction and memory access for
tag-cleaning to avoid segmentation fault. Tag-cleaning at memory access solely costs
around 10% ( > 10% in some tests) which is heavy for typecast checkers having a
better chance for practical deployment however this can be resolved with hardware
acceleration. At typecast, spaceMiu extracts a tag from a pointer and checks if the
tag is not zero, that results in additional branches. Removing duplicate operations to
clean tags combined with points-to analysis can resolve more overhead.
gcc (64%) stands out the highest overhead among all the tests, and perlbench

family test (50%) comes second as shown 5.10. Two tests are the main contributor to
raise the average and excluding the two tests, the average is 17%.

The main contributor in the tests with the highest overhead varies. The test
perlbench heavily typecasts pointers. Checking dominates the overhead of dynamic
instruction count up to 48% excluding the cost of tag-cleaning (60% including tag-
cleaning). In addition, a number of typecast errors are detected by spaceMiu, so extra
branch failures at typecast checking causes more overhead (§ 5.6.5). The test gcc con-
sumes more cycles on non-heap objects and spaceMiu’s statically removing duplicate
runtime checks using dominator tree and points-to analysis works well on gcc (up to
60,000 at static time) and this resolved overhead for type checking at run-time.

Compared to gcc or perlbench, the overhead for the test hmmer is not high (37%)
despite the highest increase in dynamic instruction count (95%) next to gcc (114%)
but higher than perlbench (61%). hmmer’s increases in L1-Dcache loads and branch
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loads are 10% and 2% respectively, while L1-Dcache miss counts and branch misses
slightly decreased by 1% and 3%.

5.6.3 Executed Instructions
Fig. 5.11 reports normalised executed instruction overheads per benchmark. The in-
crease in dynamic instruction counts is 55% on average.

The increase in executed instructions is the main source of slowdown. spaceMiu
consumes majority of dynamic instructions on (1) setting up tags at allocation, (2) re-
trieval of per-object type information; pointer-to-type mapping; and then type confu-
sion checking, and (3) tag-cleaning at memory access. Metadata update and typecast
checking is also performed at memory access to unions: updating metadata at store
and checking at load whose pointer operand is statically identified as an alias with
unions. The cost to check unions was very small on the tests spaceMiu was evaluated
on.

The dominant source of the growth is arithmetic operations. The overall instruction
overhead is still not dramatically high, since the occurrences of pointer typecasts is
much lower than that of memory accesses in most programs, and spaceMiu skips
run-time checks on pointers to referent objects that are not instrumented (i.e. tag-free
pointers).

To save untagging operations for the same pointer without using hardware acceler-
ation, we could run static analysis but it was not widely applied in that aspect in this
version. Currently spaceMiu does not perform inter-procedural analysis for this, so
skipping tag-cleaning is applied conservatively during optimisation.

As previously mentioned, there are heap objects whose effective type is not recog-
nised by our compiler pass. It may be more thorough to interpose at allocation at
link time and catch it at the first typecast at run time, assuming that a heap memory
object’s effective type does not change. Unfortunately we experienced much higher
runtime overhead on this implementation. However it still can be combined with
static analysis to find the first typecast operation in charge of effective type decision.

Future implementation can optimise some cases as discussed in § 5.7.1.

5.6.4 L1 D-cache Misses
L1 D-cache misses arise when accessing an object and its header that do not fit in
one cache line that is normally 64 byte-sized, and for big-framed objects, an indirect
access to the supplementary table. In addition, more cache misses at access to type
descriptors,

Figure 5.12 shows normalised L1 D-cache loads and misses per benchmark. The
cache misses increased by 4% on average after instrumentation, while cache loads
increased by 9%, so the miss rate went down overall. The baseline L1 D-cache miss
rate was 10.25% and it slightly improves to 9.32% with spaceMiu enabled owing to
repeated access to the same cache data.

Two tests recorded the highest increase in miss count – gobmk (11%) and
perlbench (9%). As for perlbench, the low growth in memory footprint (5%),
high in executed instructions (61%), high in branch loads and misses (14% and 11%)
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tells that the growth in number of instrumented objects are comparably not high but
perlbench is typecast-intensive, requiring frequent access to type descriptors in a
remote region. In contrast, the memory overhead in the test gobmk is higher than
average (13% > 5%) but the increase in branch loads, cache loads, and executed in-
structions are all below average. We can conclude that the higher increase in cache
misses in the test gobmk is dominated by (1) bigger growth in the number of mem-
ory allocation or in bad alignment, and (2) updating metadata of objects that are not
involved in typecasts at allocation.

5.6.5 Branch Prediction
Branches arise to decide whether an object is large-framed or small-framed at mem-
ory allocation of any kind of objects (static, stack, and heap). spaceMiu also checks
if a pointer is tagged to decide if a pointer to be released at heap memory release
via free. In addition, spaceMiu generates branches at the typecast checking in the
followings cases:

1. whether a pointer is tagged

2. whether a pointer is small or large-framed

3. whether a pointer references a meaningful offset in a structure

4. whether the pointer typecast is safe or not.

Checking the validity of pointer typecast generates branch mis-prediction. As de-
scribed, we conservatively report unsafe typecasts at run time e.g. tolerating 64-bit
integer to double safe, that can be considered unsafe from the traditional and strict
type safety policies.

As shown in Fig 5.13, branch misses increased slightly after instrumentation by
4% and branch loads increased by 9%, so the branch mis-prediction rate slightly de-
creased. This shows the additional branches achieve highly accurate branch predic-
tion and that branch predictors are not being overloaded. Three tests libquantum
(15%), perlbench (14%), and gcc (13%) recorded the highest overhead. While
perlbench and gcc are comparably big programs instrumenting many objects and
cast-intensive, libquantum recorded lower overhead in other criteria (memory, ex-
ecuted instructions, and cache misses) below average. The high branch misses are
dominated by mis-prediction of tagged/untagged pointers and small/large framed
objects.

5.7 Discussion

5.7.1 E�ective Type Detection for Heap Objects
To find an effective type of heap allocation with malloc, spaceMiu’s LLVM pass
searches the first typecast of a void pointer to the object into non-void pointer type
as described in § 5.5.3. Under the assumption that the first typecast follows a call
to malloc in the same function, their type information can be easily captured, but
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unfortunately other cases are dropped from tracking. In addition, instrumenting all
heap allocations via customised malloc wrappers and lazily updating type metadata
can waste performance to track heap objects whose types are captured. The whole
program analysis using call graphs, dominator tree, and alias analysis can improve
this.

A more accurate way to find effective types of heap allocations is to capture them
at the first typecast at run time, however unfortunately this causes heavy run-time
overhead especially for malloc-intensive programs.

Another way to detect effective types with less overhead but with more accuracy
is to use a preprocessor. We can tokenise malloc’s arguments (sizeof (τ) * n) by
extracting two parts of a multiplication and then associate a heap object with its type
information, object kind, and the number of element (for arrays) during the compile
time. This is possible to transform the source code using a tool such as Coccinelle
(semantic patching) [43] that can take those rules.

5.7.2 String Functions and E�ective Type

1 // Ty is structure type.
2 Ty obj = 55;
3 void* vp = malloc(sizeof Ty);
4 memcpy(vp, &Ty, sizeof Ty); /* *vp now is Ty typed */
5 Ty* gp = malloc(sizeof *gp);
6 memcpy(gp, &obj, sizeof *gp); /* *gp now is Ty typed */

Figure 5.14: String functions and e�ective type

The current implementation to capture effective types may miss some cases, and
one example is buffers whose data is hard-copied with string functions such as
memcpy or strcpy. The effective type is determined at memory copy. In Figure 5.14,
memcpy not only changes the values of each byte of the object, but also determines
the object’s effective type. Our pass can detect the effective type of the object gp,
allocated with malloc in the line 5, but fails for the object vp, since vp’s effective
type is determined by hardcopying (line 4). We can handle this by adding instrumen-
tation of string functions and modifying our instrumentation of malloc not to skip
instrumenting the heap allocations whose effective types are not captured.

5.7.3 Aliasing Rules
A structure may have void pointers that are involved in typecast as follows:
1 struct A {void * pa1; T1 * pa2;};
2 struct B {T2 * pb1};
3
4 T2 myt2= {...};
5 struct A a;
6 a.pa1= &myt2;
7 struct B b= (T2*)p->pa1; /* run-time check here */
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The contract type of the pointer pa1 is void, but its storage content is T2 (line 6).
With aliasing rules, this cast with void* is illegal in C (except when the other type
is char). spaceMiu reports this cast as an error (line 7) although the cast from the
storage content type to a target type is safe upcast.

5.7.4 Per-object Metadata Placement
Placing metadata in a header may be more preventive from metadata corruption
through buffer overflows or unsafe typecasts than in a footer especially on the cur-
rent 16-alignment. Downcasts and memory over-runs may be critical, especially for
approaches using embedded metadata (e.g. fat pointers or tagged pointers), since
memory writes after unsafe typecasts to user data in a program’s can pollute meta-
data in a header of neighboring objects. Protecting metadata is easier with spaceMiu
than with fat pointers. We can detect memory overwrites to another object’s header
caused by downcasts by adding FRAMER, that performs bounds checking. Unlike fat
pointers, we do not need to check internal overflows by unsafe downcasts to protect
metadata, since metadata is placed outside an object.

However using a header not a footer has a disadvantage – consuming branches
at memory release via free to decide if a pointer is tagged. If a pointer is tagged,
spaceMiu must move its pointer to a hidden base (i.e. a header) to free the object,
otherwise frees a pointer passed as an argument.

With support of both spatial memory safety and type safety, attaching metadata at
the end of an object is a better implementation for performance, otherwise using a
header is safer.

5.8 Conclusion
This study presented spaceMiu, that demonstrates how tagged pointers can be used
for run-time type confusion checking for C programs. This checker implements physi-
cal sub-typing for C and pointer-to-type mapping and detects unsafe typecasts. Based
on FRAMER’s metadata management, spaceMiu derives a metadata pointer from an
object pointer by exploiting the unused top 16 bits of a 64-bit pointer accesses to its
type layout and relation information with efficient database management.

Memory safety and type safety are highly similar and connected in the sense that
they both require tracking of memory allocation and load/store addresses to detect
safety violations. For both application, the memory footprint and runtime overhead
of the checking needs to be kept low (e.g. < 5%) so that it can be practically deployed.
Type safety enforcement is an easier problem since the occurrence of typecast is much
lower than load/store, making type safety more light-weight. Currently spaceMiu
is slightly heavy for an always-on type safety enforcement (> 5%). However this
approach for both memory/type safety could be better with greater static program
optimisation and ISA improvements.



Chapter 6

MemPatrol: Reliable Sideline Integrity
Monitoring for High-Performance
Systems

6.1 Overview
Integrity checking using inline reference monitors to check individual memory ac-
cesses in C/C++ programs remains prohibitively expensive for practical deployment
in the most performance-critical applications. To address this, this chapter presents
MemPatrol [92], a sideline memory integrity monitoring system that detects a class
of memory corruption attacks with very low performance overhead, using available
Linux kernel primitives and Intel CPU encryption facilities. MemPatrol aims (i) to
guarantee the eventual detection of integrity violations regardless of the detection de-
lay, by reliably protecting itself against a compromised application during the time
window between the occurrence of the attack and its eventual detection, and (ii) to
give engineers the flexibility of tuning the cost of integrity monitoring in a reliable
and predictable way by configuring the desired amount of computational resources
allocated to it.

MemPatrol implements a userspace-based isolation mechanism by using CPU reg-
isters as the integrity monitor’s private memory, allowing the monitor to safely run
as a thread inside the address space of the protected application. The CPU registers
cannot, obviously, hold all the information required to run an integrity monitoring
system, such as the addresses and expected values of memory locations. However,
they are sufficient to store cryptographic material and run a register-only message
authentication code (MAC) algorithm to reliably access the rest of the data required
for the monitor’s operation.

Attackers in control of a compromised application thread cannot tamper with the
monitor thread’s information that is offloaded to memory without detection, because
they lack access to the key used to authenticate it. The authentication key is only
available to the integrity monitor, and threads cannot address each other’s registers.
The key and intermediate states of the MAC algorithm stay only in registers, never
being flushed into userspace memory. The monitor’s code never spills registers and
does not use primitives such as setjmp/longjmp. The registers may only be flushed
to kernel-space memory during a context switch, where they remain unreachable to
a potentially compromised userspace application. Besides this main idea, this chap-
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ter discusses how MemPatrol prevents replay attacks, and the mechanisms based on
SELinux and the clone Linux system call which are required to protect the monitor
thread from forced termination by its parent process using kill or modification of
its code memory to alter its execution.

This work studies a concrete special case of sideline integrity monitoring for detect-
ing heap buffer overflows in a commercial high-performance passive network mon-
itoring system [96] where existing memory safety techniques are too expensive to
apply. We believe, however, that periodic integrity checking of memory locations in
a program’s memory can have additional applications. For example, it could be used
to detect malicious hooks installed by modifying persistent function pointers.

Of course, even a concurrent monitoring system incurs performance overhead that
may affect application threads, for example, memory bandwidth overhead from in-
creased reads, cache coherency overhead, and other cross-CPU communication in
NUMA systems. The low overhead imposed by our isolation mechanism, however,
enables engineers to minimize monitoring cost arbitrarily by throttling integrity mon-
itoring without compromising eventual detection.

In summary, MemPatrol make the following contributions:

1. An effective, userspace-based isolation mechanism for the monitor thread that
does not require new Linux kernel modifications

2. Demonstration of tunable and predictable allocation of resources to security
monitoring, in particular memory bandwidth

3. Avoidance of synchronization overhead for heap monitoring by taking advan-
tage of the memory allocation mechanisms used in performance-critical systems

The remainder of the chapter is organized as follows. Section 6.2 describes our
threat model. Section 6.3 presents our monitor thread isolation mechanism. Sec-
tion 6.4 applies our mechanism to monitoring of heap integrity, and Section 6.5 eval-
uates its performance. Section 6.6 reviews discussion for the better design, and Sec-
tion 6.7 concludes with final remarks on the current limitations and future directions
of this work.

6.2 Threat Model
In this section we discuss MemPatrol’s threat model. Firstly, we discuss the threat
model for integrity monitoring using a concurrent thread in general. Secondly, we
discuss the threat model for heap memory corruption attacks that we use as a concrete
case study of integrity monitoring.

6.2.1 Sideline Integrity Monitoring
MemPatrol’s threat model for integrity monitoring, in general, considers attacks as
malicious modification of memory contents, whether on the stack, heap, or static
variables. It divides the life cycle of a protected application into two phases: the
trusted and the untrusted phase. MemPatrol assumes the program starts in the trusted
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phase, during which the application is responsible for registering all memory loca-
tions to be monitored and then launching the monitor. The program, then, enters its
untrusted phase before the application receives any inputs from potentially malicious
third parties that could compromise it.

This work assumes that at some point after entering the untrusted phase of its life-
time, the application becomes vulnerable, for example, by starting to process external
input. After this point, it is no longer trusted by the monitor that was launched before
the process became vulnerable. In particular, we assume that a compromised process
may access any memory location that lies in its address space, and may attempt to
restore any data corrupted during the attack leading to the compromise, in order to
avoid detection. A compromised process may also invoke any system calls, such as
kill, to terminate other processes or threads, subject to OS controls. Attacks against
the OS kernel, however, are outside the scope of this work.

Finally, while the application is under the control of the attacker, we assume the
attacker may perform replay attacks, meaning that older contents of the memory can
be saved and reused to overwrite later contents.

6.2.2 Heap Integrity
We built a concrete case study of MemPatrol by applying it to heap buffer overflow
detection based on detecting canary data modifications, and evaluated it with a high-
performance passive network monitoring system [96]. Other threats such as stack-
based buffer overflows are handled by existing defences, such as GCC’s stack pro-
tector (-fstack-protector set of options), or fall outside the scope of this case
study.

The program is assumed to be compromised through heap buffer overflows em-
ploying only contiguous overwrites. Buffer overflows often belong to this category,
and we do not consider other memory safety violations, such as those enabling cor-
ruption of arbitrary memory locations.

The attacker may corrupt any kind of data in heap objects by overruns across adja-
cent memory chunks. For instance, attackers can overwrite a function pointer, virtual
function table pointer or inlined metadata of a free-list-based memory allocator by
overflows. MemPatrol assumes that attackers may overwrite contents across multiple
buffers in both directions, i.e. underflows and overflows.

Finally, MemPatrol assumes that the canary value cannot be learned through memory
disclosure 1 attacks [44, 48, 27]. However, note that the standard form of memory
disclosure attack is impractical with passive network monitoring systems, such as
[96], because there is no request-response interaction with an attacker to exfiltrate the
data. An “indirect” elaboration of the attack is conceivable, that caches the contents
of the canary to another buffer inside the process, used later to restore the canary. For
this to work, the copy must not corrupt another canary, so it must be achieved using
random access, which the current solution does not cover. These attacks are outside
the scope of this case study.

1Memory disclosure is one of the common information leak vulnerabilities. It occurs when a system
forgets to clear a memory block before using it to construct a message that is sent to an untrusted
party.



92 MemPatrol: Reliable Sideline Integrity Monitoring for High-Performance Systems

In summary, we assume the attacker can gain control of the execution of the ap-
plication through heap buffer overflows, but we cannot defend against overflows that
stride over heap canaries without overwriting them, other kinds of memory safety
violations, or against information leakage through memory disclosure attacks.

6.3 Monitor Thread Isolation
Sideline integrity monitoring systems offer asynchronous detection with a delay. Cru-
cially, if this detection latency can be exploited to disable the monitor, no concrete
security guarantees can be made. To avoid this, we need to anticipate all possible sce-
narios under which a compromised application can disrupt the monitor thread, and
thwart them. This work has identified the following ways that an attacker with full
control of the application can disrupt a monitor thread running in the same address
space:

1. Tampering with the monitor’s data structures on heap or its stack

2. Hijacking the control flow of the monitor by manipulating the monitor thread’s
stack

3. Hijacking the control flow of the monitor by altering the monitor thread’s exe-
cutable code in memory

4. Terminating the monitor thread via the kill system call

5. Faking application termination

In the following sections, we discuss how to block these attacks.

6.3.1 Protection of Data Structures in Memory
Attackers may attempt to subvert the monitor thread by corrupting data in the pro-
gram’s memory used by the monitor, such as the list of memory locations to moni-
tor. This would effectively disable monitoring. Besides these data structures that are
stored on the heap, an attacker could alter local variables or spilled registers on the
stack of the monitor thread.

This solution is for the monitor thread to only trust data in its registers. Of course
not all data can be saved in the register file due to the limited space of registers.
Instead, any data stored outside of registers must be authenticated to prevent tam-
pering. MemPatrol achieves this using cryptographic techniques. The cryptographic
key used for authentication is stored only in a register as shown in Figure 6.1. Com-
promised application threads cannot succeed in corrupting data without detection,
because they do not have access to the cryptographic key required for counterfeiting
the stored information. Of course, it is not sufficient to merely protect the key in a
register. It is also required that the entire authentication mechanism is implemented
using only registers, and that the main loop of the monitor thread also only trusts
registers and authenticates any memory used. Next, we describe the memory au-
thentication primitives and the methodology followed to implement the monitor code
using only registers for its trusted data instead of memory.
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Figure 6.1: The cryptographic key is only accessible to themonitor thread by stor-
ing it in a register, and additional information stored in memory is
authenticated cryptographically.

Authenticated Memory Accesses

To secure data stored in untrusted memory from being counterfeited, we use AES-
based Message Authentication Codes (MAC) to sign the value and its location. This
work chose AES because we can utilize the AES-NI [45] instruction set of Intel pro-
cessors which provides a hardware implementation of AES using the aesenc and
aesenclast instructions for the encryption operation. Each of them performs an
entire AES round without any access to RAM. MemPatrol uses the compiler’s intrin-
sics to access these instructions. Note however that these hardware extensions are
used in this work for convenience and performance. In principle, our solution does
not depend on the availability of dedicated cryptographic instructions, as CPU-only
implementations of AES on processors without AES-NI exist [117].

Every AES round requires a different round-specific key expanded from the initial
key. These are typically expanded once and stored in a memory-based array and
reused for every operation. We cannot use a memory-based table and we also ded-
icate using 10 registers, one for each round’s key, by interleaving the key expansion
with the encryption rounds. This technique cannot be used with decryption, because
decryption requires the expanded key in reverse order, so all the stages would have
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typedef struct {
__m128i m; /* Data word and its (albeit redundant) address */
__m128i mac; /* Message authentication code */

} sec64_t;

/* Store a verifiable word */
void store_sec64(uint64_t word, sec64_t *sec, __m128i key);

/* Return a verified word or execute an illegal instruction */
uint64_t load_sec64(sec64_t *sec, __m128i key);

Figure 6.2: Untrusted-memory data type and access routines

to be kept in registers. Fortunately, the decryption operation is not required for im-
plementing message authentication codes.

Figure 6.2 illustrates the authenticated memory access routines used by the moni-
tor thread. The routines can store and load data in units of 64-bits expanded into 256
bits of memory, namely the sec64_t type that includes the value and its signature.
Specifically, we pack the 64-bit address of the sec64_t object and the 64-bit value into
128 bits of data, and produce an additional 128-bits of MAC by encrypting the con-
catenation of the address and value using the key with the help of the store_sec64
routine.

To retrieve the value, the load_sec64 routine regenerates the signature using the
address of the sec64_t passed to it, the value from the sec64_t, and the key passed
to it in a register. If the signature does not match, it raises a trap, otherwise it returns
the value.

Replay A�acks

To block attackers from maliciously overwriting an entry with a signed datum from a
different memory location, we include the memory address in the authenticated data.
To block attackers from reusing signed data representing previous values of the same
memory location, we avoid storing new data to the same address. Note, however,
that we can enable a limited form of secure updates by using append-only tables and
keeping the table size in a register.

Writing Register-only Code

While it is entirely possible to implement the monitor thread in assembler by hand,
we found that this was not necessary. Here we describe the methodology used to
achieve the same result and to verify its correctness.

First, we isolated the code that must avoid using unauthenticated memory into
its own source file, compiled with a controlled set of GCC options, and manually in-
spected the generated assembly. Initially we attempted to instruct GCC to use specific
registers by using asm annotations on variable definitions. This achieved control of
the registers used, but unfortunately it generated memory accesses for superfluous
temporaries. Instead, we had to rely on GCC eliminating register usage through op-
timization, by compiling the code with -O3 (and also -msse4 -maes for SSE2 and
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AES-NI). Using stock AES-NI routine implementations for the MAC routines pro-
duced code with register spilling. Obviously these routines must not use any memory,
as they are the ones that we rely on for authenticating memory use elsewhere. This
is addressed by modifying the stock encryption routines to interleave the round-key
generation with the encryption rounds. This was sufficient for implementing a MAC
algorithm and the memory access routines.

Next, we worked in a similar way on the register-only implementation of the main
loop of the monitor thread. Functions calls could not be used, because they would
use the stack to save their return address and temporary variables from registers,
so we placed the previously crafted store_sec64 and load_sec64 routines in a
header file and annotated them with the always_inline GCC attribute. After some
experimentation, the desired code was achieved. Of course, the solution does not rely
on these techniques, as we could always write the core routines of the system directly
in assembler.

Finally, besides manual verification of the generated assembly code, we zero out the
rsp register at the start of the integrity checking loop using inline assembly, forcing
any stack frame access to cause a crash. This ensures we do not accidentally introduce
memory accesses due to spilled local or temporary variables as the code evolves, or
in subsequent recompilations.

6.3.2 Protection of Code
Another way the application’s threads can subvert the monitor thread is by modifying
its executable code in memory while it runs. On x86 there is no need to flush instruc-
tion caches for program memory modifications like this to take effect. Code segments
are write-protected by default, but attackers in control of the process could easily call
mprotect on a vanilla Linux kernel to gain write access to the code section of the
monitor thread. They could then neutralize the monitor thread without causing it to
exit by replacing its code with a version that does not perform integrity checks.

With a vanilla Linux kernel, this attack is entirely possible. However, solutions
to prevent the modification of program code are already included in most Linux
distributions. For example, the PaX project introduced MPROTECT[101], a kernel
patch designed to prevent the introduction of new executable code into the task’s
address space by restricting the mmap and mprotect interfaces. Security-Enhanced
Linux (SELinux) [113] also contains the execmem access control, to prevent processes
from creating memory regions that are writable and executable. One of these common
solutions needs to be used to prevent this attack. We use Red Hat Enterprise Linux
which provides SELinux.

6.3.3 Terminating or Tracing the Monitor Thread
A trivial attack scenario that must be tackled is termination of the monitor thread by
the compromised process using the kill system call, or subverting it using ptrace
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2. We address this scenario by using the Linux clone system call which allows fine-
grained control over sharing parts of the execution context. We start the application as
a privileged user and, instead of the regular POSIX thread interfaces, we use clone
with the CLONE_VM flag to create the monitor thread. After the monitor thread is
launched, the main application drops its privileges by executing setuid and setgid.
This results in two threads/processes (the distinction between thread and process is
not so clear when using clone) running in the same address space without sharing
user credentials. The monitor thread retains the privileged user credentials, while the
rest of the application is running with reduced privileges, and thus cannot use the
kill system call to signal the privileged thread, nor ptrace to debug it.

6.3.4 Faking Application Termination
Under this scenario the attacker may call exit in order to terminate the process before
the monitor thread had a chance to detect the attack. Uninitiated termination of the
application process could be considered sufficient grounds for raising an alarm, but
we also address this scenario by ensuring that a final integrity scan is performed on
exit.

6.3.5 Detection of Normal and Abnormal Termination
The monitoring system needs to detect normal application termination, in order to
also terminate, as well as abnormal termination triggered by a MAC failure in order
to raise an alarm.

Unfortunately, it is impossible to receive notification of the termination of the pro-
cess by a signal through the prctl mechanism with the PR_SET_PDEATHSIG option,
because of the different user credentials used for isolation with the explicit purpose
of disallowing signals. Instead, the monitor needs to detect the termination of its
application by polling its parent PID using kill with a signal number of 0.

As we have discussed, the execution of the monitor thread is severely constrained,
to the extent that calling the libc wrapper for kill can compromise it by dereferenc-
ing the return address saved on the stack. It is technically possible to send a signal
to another process in a safe manner on x86 Linux by running the syscall machine
instruction directly. It accepts its input parameters in registers and stores the return
address in a register. However, it is more convenient to use a more flexible scheme
described next.

To detect termination, we use an additional monitor process, spawned as a child of
the monitor thread using the normal fork mechanism. Unlike the monitor thread,
this process does not share its address space with the monitored application. There-
fore it is free of the draconian execution constraints imposed on the monitor thread.
This process can poll the main application using kill in a loop to detect its termina-
tion and signal the monitor thread, which is possible, as they are running under the

2With the ptrace system call, one process (a tracer) can pause another process (a tracee), inspect and
set the tracee’s registers and memory, or intercept system calls. It is used to implement breakpoint
debugging and system call tracing.
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same UID. The monitor thread must perform a final integrity check of the applica-
tion before exiting, to handle the possibility of a process termination initiated by the
attacker, as discussed earlier.

As for abnormal termination, once the monitor thread detects an integrity violation,
it has limited options due to its constraints. We call the __builtin_trap intrinsic
instruction which on x86 Linux compiles to an illegal instruction and generates a
SIGILL signal, terminating the monitor thread. The termination is detected by the
monitor process, which has the flexibility required to alert operators.

6.3.6 Minimizing Performance Impact
The execution of a concurrent monitor thread, unlike inline reference monitors, does
not increase the dynamic instruction count of the monitored program’s threads. How-
ever, its presence may still incur other kinds of overheads affecting them including
cache pollution, memory bandwidth increases, and cross-CPU communication.

To minimize last-level cache pollution, we ensure that the monitor thread is us-
ing non-temporal memory accesses, which are available to C code by using the
__builtin_prefetch intrinsic. Unlike inline monitoring, refraining from cache
use only affects the performance of the monitor thread itself, which translates to de-
tection delays, rather than slow down of application threads.

Moreover, network monitoring systems go to great lengths to avoid paging over-
heads because the jitter introduced to execution time by having to walk the page
tables on a miss may lead to packet loss. For example, they utilize so-called huge
pages introduced in modern processors, typically sized at 2 MiB or 1 GiB instead of
the default page size of 4 KiB on x86. We additionally avoid any such overhead by
sharing the entire address space, page tables included, with the monitored threads.

To avoid hogging memory bandwidth and minimize cross-CPU communications,
the monitor thread should pace its memory accesses. In fact, we allow the rate of
memory accesses to be configurable as a means to allow the user to select the desired
level of overhead, at the expense of detection delay. This allows the user to tune for
minimal impact on the application threads.

In summary, we explore a set of design trade-offs to avoid overhead to the applica-
tion threads at the cost of the monitor thread’s speed. This highlights the importance
of protecting the monitor thread itself so that this trade-off does not result in invali-
dating the approach.

6.3.7 Limitations
This approach assumes attackers change the behavior of a monitor by exploiting cor-
ruption on data that the monitor uses. Hence, we do not cover other heap exploits of
memory writes, for example, heap spraying or JIT spraying filling the heap with many
objects containing malicious code, and increasing the success rate of an exploit that
jumps to a location which can then be pointed to and triggered. Attacks, not directly
meddling with a monitor’s data or code, are not covered, so spraying attacks should
be handled with other defenses [107, 136]. For wider protection of critical control-flow
and data-flow variables in memory, one can use control-flow protection mechanisms
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(discussed in § 2.3) such as Cryptographically Enforced CFI (CCFI) [78]. CCFI also
leverages cryptographic primitives to protect control-flow information such as return
addresses, function pointers, and vtable pointers. Compared to MemPatrol, CCFI of-
fers comprehensive protection against control flow violations but does not protect
against some non-control-flow data corruptions that MemPatrol can detect. Moreover,
CCFI is an inline solution, hence it directly affects the performance of the application
threads (3–18% decrease in server request rate).

As mentioned in § 6.2.2, information leakage attacks, allowing reading and disclo-
sure of the canary values, are not handled for general purposes other than our case
study for passive network monitoring systems.

6.4 Case Study: Heap Integrity
Heap canaries can be used for detecting heap buffer overflows. They are fashioned af-
ter stack-based canaries and work in a similar way. Typically the canaries are checked
on deallocation, which for our use case would lead to frequent checking and overhead
to the main application threads for short-lived objects, or excessive detection delays
for long-lived ones.

As a case study of integrity monitoring, we apply MemPatrol to canary-based heap
integrity checking. We use the monitor thread to patrol heap buffers, and detect illegal
memory overwrites across boundaries between heap objects by checking corruption
of canary values placed strategically between heap-allocated objects. In this section
we describe our implementation of sideline integrity checking for heap canaries.

6.4.1 Memory Pools
To check heap canaries, the monitor needs to keep track of heap allocations. Existing
sideline heap buffer overflow detection systems achieve this by intercepting heap al-
location functions to track live heap buffers and collect the addresses and sizes of live
heap buffers. This can be a significant source of overhead, slowing down the main
application threads.

High-performance applications typically use fixed-sized memory pools for perfor-
mance, such as the memory pool library for network monitoring systems provided by
the DPDK [51] toolkit. Memory pools is the use of fixed-sized memory blocks (pools)
for memory management that allows dynamic memory allocation. The allocator pre-
allocates memory pools, allocates, accesses, and frees blocks represented by handles
at run time.

We designed our monitoring system to take full advantage of such memory pools.
Instead of tracking individual object allocations, we track information at the granu-
larity of memory pools: the base address of each pool, the number of blocks, and
the size of a block in the pool are included in an entry and added to the append-
only table used by the monitor thread. This enables the bulk setup of heap canaries
before their use in the fast path of the program. Memory pools also enable reusing ca-
naries between allocation lifetimes (since typically the object size is fixed per memory
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pool). Such canary recycling eliminates synchronization overhead suffered by existing
solutions designed around a malloc-style arbitrary object size interface.

6.4.2 Integration with the Monitored Application
MemPatrol is implemented in the form of a library offering an API for integration
with applications. To use MemPatrol the application needs to augment its memory
pool implementation with canary objects. These are defined in the MemPatrol library
by the canary_t type. The monitored application is responsible for registering all
its canaries using the patrol_register function provided by our library. This
integration effort is similar to what is required for using debugging solutions such as
Google’s AddressSanitizer [114] with custom memory allocation schemes.

In the current implementation, all canaries must be registered before the application
enters its untrusted execution phase, signified by starting the monitor thread with the
patrol_start function and dropping its privileges. Figure 6.3 illustrates the API
used by the application to integrate with MemPatrol.

typedef int8_t canary_t[16]; // Data type for canaries

void patrol_init(void); // Called at system startup

// Used for registering canary locations
void patrol_register(void *base, size_t stride, size_t count);

void patrol_start(int cpu); // Start monitoring

Figure 6.3: Canary-monitoring integration API

Upon calling the patrol_register function, the value of the base address as
a 64-bit integer and the values of the pool’s object size and object count, as 32-bit
integers concatenated into a 64-bit integer, are stored in a table using two sec64_t
entries generated using the store_sec64 function. The monitor thread has not been
started yet, so the key, generated by the patrol_init function on program startup,
is temporarily stored in memory inside the MemPatrol library.

Once the patrol_start function is called, it loads the key into a register, zeroes
out the copy in memory, and launches the monitor thread. The number of table entries
is also kept in a register to prevent it from being tampered to trick the monitor into
ignoring table entries.

6.4.3 Cryptographically Generated Canary Values
Some existing approaches [95] using random-valued canaries safely store the original
copies in the kernel or a hypervisor. In our technique, we generate canaries using
cryptographic techniques to prevent attackers from inferring the original canary val-
ues and recovering them to prevent detection after a compromise. We use 128-bits for
a canary, storing a MAC of the address of the canary. Unlike using random canary
values, this does not require storing copies of canary values for comparison.
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Figure 6.4: Secure canary checking

Since possibly-compromised threads of the application do not have access to the
key, even if attackers succeed in exploitation through heap buffer overflows, they can-
not recover the overwritten canary’s expected value. The overall checking procedure
is illustrated in Figure 6.4.

We place one canary at the end of each block. Memory blocks are typically padded
to match a requested alignment. This has to be done after the addition of the canary
size to the allocation size. There is a choice on whether to place the canary back-
to-back with the actual object, or to align the canary in memory. We chose to pack
canaries tightly, to detect even small, accidental heap buffer overflows and to save
memory, at the cost of unaligned memory accesses from the monitor thread.

6.4.4 Canary Recycling
The integrity monitor does not have to track the life cycle of each heap buffer. This is
possible since the location and values of canaries are fixed throughout the execution
of the program, thanks to the fixed size of pool elements. This allows us to setup all
canaries during the memory pool’s initialization, and avoid updates on every indi-
vidual block’s deallocation and reuse.

With such canary recycling, blocks with a corrupted canary may be returned to the
pool before being checked by the monitor, and later re-allocated. The monitor, how-
ever, will eventually inspect the canary and detect the violation, even if the affected
objects have been deallocated.
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Canary recycling eliminates the communication overheads, but on the other hand,
this approach incurs the burden of scanning all blocks of the memory pool, whether
they are currently occupied or not. This has the effect of increasing the detection delay
but is not a serious problem with appropriately provisioned memory pools.

6.5 Evaluation
We evaluated MemPatrol’s performance by running in alongside it with NCORE [96],
a proprietary Deep Packet Inspection (DPI) system, and running experiments using
high bandwidth network traffic.

6.5.1 Integration with NCORE
We modified NCORE’s memory pool library to reserve 16 bytes for one canary at the
end of each block, and to call patrol_register when the memory pool is created
to register all its canaries. Each canary also helps protect against buffer underflows in
the next block. NCORE does not store allocator metadata between blocks, but stores
free-list pointers at the start of free blocks. These are protected since canaries are
active even when their block is free. Finally, we added a call to the MemPatrol initial-
ization routine (patrol_init) at the beginning of NCORE’s startup, and a call to
MemPatrol’s monitor thread launching routine (patrol_start) after the NCORE has
initialized but before it drops privileges. The system’s memory pools are initialized
between these two calls.

6.5.2 Experimental Results
We ran NCORE on an iXsystems Mercury server with 2 Intel(R) Xeon(R) E5-2690
v4 CPUs, nominally clocked at 2.60 GHz (but running at 3.20 GHz thanks to Turbo
Boost) with HyperThreads enabled and 256 GiB of RAM at 2133 MHz distributed
over all four memory channels of the two CPUs. This system has 56 logical cores, out
of which NCORE was configured to use 41 logical cores for pattern matching, and 5
logical cores for packet capture and internal load balancing, with their sibling logical
cores left idle to avoid interference. One logical core on the first CPU was assigned to
the MemPatrol monitor thread, and one physical core per CPU (4 logical cores in total)
was left for general purpose use, such as user shells and OS services. We configured
NCORE for a pattern matching workload inspecting all network traffic against a list
of 5 million random substring patterns with an average pattern length of 100 bytes.

Space Overhead

After launch, NCORE had registered 203 million heap canaries in 120 contiguous
ranges. Thanks to memory pools, the overhead of metadata kept for each contiguous
range of canaries is low. Also, the system used 129 GB of heap memory for objects
and their canaries. Thus the average object size without canaries is 619 bytes, and the
16 bytes used for each canary amount to a memory overhead of 3.25 GB or 2.58%.
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Table 6.1: Cache hit rates for di�erent types of application threads and di�erent
temporal locality hints used by the monitor thread.

RX Workers Patrol
L3 Hit L2 Hit L3 Hit L2 Hit L3 Hit L2 Hit

No Patrol 0.31 0.10 0.64 0.66
Prefetch 0 0.31 0.10 0.62 0.66 0.00 0.00

No Prefetch 0.30 0.10 0.59 0.66 0.00 0.00
Prefetch 3 0.30 0.10 0.60 0.66 0.00 0.00

CPU Overhead

We used another iXsystems server as a traffic generator replaying a 650 MB real traffic
trace with a tool that rewrites the IP addresses on the fly to simulate an unlimited sup-
ply of flows. To evaluate the performance overhead, we generated traffic at the rate
of 50 Gb/s at 9.3 M packets/s and 170 K bidirectional flows/s. Under this load, the
baseline NCORE without MemPatrol had 77% CPU utilization on the pattern match-
ing cores. The traffic capture cores are constantly polling a network interface so are
always at 100% utilization irrespective of actual load. There was no packet loss ob-
served in this baseline setup. We repeated the experiment with the monitor thread
running, and observed no increase in CPU utilization, with packet loss also remaining
zero. By running on a separate core and performing non-temporal memory accesses,
MemPatrol did not interfere with the instruction count of the application’s processing
threads.

Cache Overhead

We used the Intel Performance Counter Monitor (PCM) tool [138] to measure the
cache hit rates on each logical core. The results are shown in Table 6.1. We show
separate results for the traffic capture threads (RX), the pattern matching threads
(Workers) and the monitor thread (Patrol). The first row is the baseline without the
monitor thread. The second row shows the results with the monitor thread running
and using non-temporal memory accesses. We observe that there is a small decrease
of the L3 cache hit rate. If we disable the non-temporal memory access hinting, or
instead we specify a high degree of temporal locality using the value 3 to the third
argument of the GCC prefetch intrinsic, we measure a slightly higher degradation.
We further get confirmation that it worked adding the hints for non-temporal memory
access to the monitor thread by observing that its cache hit rate is zero.

Memory Bandwidth Overhead

Subsequently, we used the PCM tool to measure the system memory throughput.
The measurement was done over a 60 second interval to smooth out variations. As
expected, there was no impact on the memory write throughput, but we could observe
the effects of the patrol thread on the system’s memory read throughput: An 18.1%
increase over the baseline read throughput of 15.5 GB/s.
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Figure 6.5: Relation between system read throughput and maximum detection
latency (time to scan all canaries). The user can select the trade-o�
by controlling the number of pause instructions inserted to thro�le
the monitor thread.

Detection Delay

Running at full speed, MemPatrol required 5 seconds to scan all 203 million canaries.
This corresponds to the worst-case detection delay after the corruption of a canary.
We confirmed the detection capability end-to-end by introducing an artificial buffer
overflow.

Overhead Control

Next, we ran experiments to demonstrate control of the overhead by trading-off detec-
tion latency. We slowed down the monitor thread by a configurable amount by adding
pause hardware instructions (via the _mm_pause compiler intrinsic). Figure 6.5 il-
lustrates the effect of different delays determined by the number of additional pause
instructions executed in each iteration of MemPatrol’s monitoring loop that is check-
ing one canary. Insertion of a single delay instruction results in a sharp drop of the
read throughput overhead from 18.1% to 5.2% and a roughly proportional increase in
detection latency from 5 to 17.7 seconds. By further tweaking the number of pause
instructions we can bring down the memory throughput overhead to 0.65% for an
increased detection delay of 120 seconds. This experiment confirms that the user can
decide the amount of overhead that is acceptable for the application, at the cost of de-
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Table 6.2: E�ects of the NUMA placement of the monitor thread on the detection
latency and local/remote memory bandwidth of the monitor thread’s
core.

Monitored Sockets
Both Local Remote

#Canaries 203, 159, 920 76, 184, 970 126, 974, 950
Scan Duration (µs) 5, 151, 152 1, 865, 777 3, 553, 998

#Canaries/µs 39.4 40.8 35.7
Remote Memory Bandwidth 1, 576 0 3, 339
Local Memory Bandwidth 915 3, 399 0.1

tection delay. At the same time, the design of the system does not allow an attacker to
avoid detection by exploiting the detection delay introduced for performance reasons.

NUMA E�ects

Modern multi-processor systems employ non-uniform memory access (NUMA). We
investigated the performance effects of the CPU socket placement of the monitor
thread. In the baseline setup, we use a single monitor thread running on socket 0
to monitor memory on both NUMA sockets. We wish to evaluate the performance
of a monitor thread only inspecting local memory on the socket that it is running. In
Table 6.2 we compare this against the default setup inspecting both NUMA nodes, but
also against an artificially suboptimal setup where a monitor thread inspects mem-
ory on the remote socket only. The number of canaries on each socket is different,
because the second socket is running more worker threads that maintain more state
compared to RX threads. We normalize this by reporting the number of canaries
inspected per unit of time, and observe that the difference, while matching our expec-
tations in quality, is not significant. The reason must be that remote memory accesses
suffer significantly in terms of latency, but not throughput. That is of course as long
as the interconnect between the CPUs is not overloaded. This is not the case in our
experiments, but we can observe the effects of NUMA placements on the interconnect
by showing the local vs. the remote memory traffic. We can see that with the optimal
NUMA placement there is no remote memory traffic for the core running the monitor
thread. This would motivate using multiple monitor threads, one on each NUMA
node, inspecting only local memory.

6.6 Discussions

6.6.1 Tunable Overhead
MemPatrol offers developers and operators control over its runtime overhead. A sim-
ilar idea was pursued by ASAP [132], which automatically instruments the program
to maximize its security while staying within a specified overhead budget. Unlike
MemPatrol, ASAP controls the overhead by decreasing coverage, while MemPatrol
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achieves this by increasing detection delay without compromising eventual detec-
tion. Cruiser [148] also discussed a possible approach to increase its efficiency using
back-off strategies to pace the monitor thread with nop instructions or sleep calls.
However, without proper isolation of the monitor thread, this approach undermines
Cruiser’s security guarantees.

Some KIMs tackle transient attacks by snooping the bus traffic using PCI cards [83]
or even commodity GPGPUs [64]. MemPatrol is quite similar to KIMs using periodic
memory inspection, but monitors applications, so does not require a hypervisor or
dedicated hardware.

6.6.2 Memory Safety
The case-study of MemPatrol for heap memory integrity is based on heap-canary coun-
termeasures, and specifically those that use a monitor running in parallel with the
protected application [125, 148]. Note, however, the proprietary network traffic identi-
fication system (NCORE) we evaluated, also uses stack-based overflow protections on
top of MemPatrol, and the mere use of memory pools also offers some level of protec-
tion against temporal-safety violations through the reuse of memory only for objects
with identical layout, which can prevent most abuses of function pointer fields [4].

Finally, it is worth comparing MemPatrol with inline solutions offering similar secu-
rity guarantees. For example, inline heap canary checking [108] can be very efficient,
but suffers from unbounded detection delay, as detection relies on checks triggered
by events such as deallocations. In the case of NCORE [96], a passive network traffic
identification system on which MemPatrol was evaluated, heap allocations for certain
objects such as host state may linger for several days. MemPatrol, on the other hand,
puts a bound on the detection delay. Other inline solutions detect buffer overflows
immediately by instrumenting every memory write to check whether it overwrites
a canary. WIT [5], for example, uses this approach, which contributes the bulk of
its runtime overhead of 4–25% for CPU bound benchmarks, which is prohibitive for
some performance-critical applications.

6.7 Conclusion
In summary, this work applied an integrity monitoring solution, MemPatrol, to a high-
performance network monitoring system, demonstrating 0% CPU-time overhead for
the application’s threads. The hidden memory bandwidth overheads also concerned
us, but MemPatrol demonstrated how to minimize them to under 1%. We conclude
with some remarks on current limitations and future directions.

Importantly, this case study’s memory safety guarantees are limited to heap buffer
overflow detection, and can be thwarted by memory disclosure attacks. Future work
is required to identify additional memory integrity applications.

Moreover, the current MemPatrol prototype cannot register additional memory lo-
cations to monitor after initialization, but this limitation is not fundamental. We could
intermix monitoring with processing of registration requests received through a mes-
sage queue. As long as bookkeeping data structures are append-only, the threat of
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replay attacks is averted. A general solution for supporting arbitrary updates, how-
ever, is an interesting future direction.

Creating the binary code for a system like MemPatrol is currently a tedious, manual
process. As pointed out in Loop-Amnesia [117], some level of compiler support, e.g.
to control register spilling, would help.

Finally, the full security of AES may be overkill given the bound on detection la-
tency, and lowering the number of AES rounds used could be considered as a way to
increase the monitor thread’s performance.



Chapter 7

Conclusions

This research presented MIU, Memory Integrity Utilities, including both an inline and
sideline monitoring system for memory safety. MIU focuses on the cost of memory
safety and the solutions for possible practical deployment of the enforcement.

MemPatrol adopted concurrency for the minimal performance to the level of pro-
duction deployment. Running a concurrent monitor realised 0% CPU-time overhead
for applications’ threads and configurable overheads that is useful for systems whose
workloads changes over the time. The support of synchronous communication may
bring more run-time overheads for synchronisation between a monitor thread and
user threads, so MemPatrol chose asynchronous communication like many other con-
current models. The challenge of an asynchronous concurrent monitor is the time gap
between memory corruption and its detection. This work proposed and implemented
a monitor isolation technique using registers as the monitor’s private memory.

FRAMER and spaceMiu are compiler-assisted, inline monitoring systems based on
a tagged pointer-capability model with object granularity. These systems exploit the
currently unused significant 16 bits of pointers to store a tag. The complete and
generic encoding derives a metadata pointer from a pointer to any kind of objects
and this removes the consumption of memory for padding or alignment, that benefits
all levels of memory hierarchy. It also demonstrates excellent D-cache performance.
This approach tolerates the increase in dynamic instruction used for arithmetic op-
erations for the efficiency in both memory footprint and D-cache hits. This provides
great advantages for hardware implementation, since the overheads for arithmetic op-
erations will be largely resolved with ISA, whereas it is difficult for memory footprint
and D-cache hits.

This capability model is evaluated on memory/type safety – array out-of-bounds
and type confusion checking. One of the main focuses is to cover all kinds of spa-
tial memory corruptions, while keeping the efficiency in memory. Firstly, this work
showed how frame encoding can be used for bounds checking guaranteeing near-zero
negatives caused by violation of intended referents that challenged previous memory
safety solutions with per-object metadata storage. Secondly, this capability model
proposed a framework for near-complete memory safety detecting internal overflows
and unsafe type casts with the support of additional descriptors.

For the future design, some parts of the designs can be improved. This work sacri-
fices dynamic instruction counts for memory efficiency and complete memory safety,
since the overhead from arithmetic operations are the easiest to resolve with hardware
acceleration. However, this overhead still needs to be reduced for software-based so-
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lutions. This work proved the small increase in memory overheads, so we expect
to reduce the run-time overhead with more memory overhead by re-arranging ob-
jects. Derivation of the header address of large-framed objects requires additional
arithmetic operations and more importantly the objects causes cache misses through
indirect access through the supplementary table. Minimising or even removing, if
possible, the large-framed objects can also resolve the overheads for branches.

This capability design could benefit other programming language security mech-
anisms as well above C/C++, and has a wide range of applications such as thread
safety or garbage collection that requires mapping an arbitrary to metadata.



Chapter 8

Appendix

8.1 Proofs

8.1.1 Proof 1
Given an object o and its wrapper frame f , let’s assume there exists a smaller frame x
that has o inside. Since o resides in both f and x, we can conclude that x is a subframe
of f . According to the assumption, the base address of o (baseo) is within the range
of x, hence, we get basex ≤ baseo. Here, f is o’s wrapper frame, so baseo is placed
in f ’s lower subframe. x is a subframe of f , hence x must be f ’s lower subframe.
This is resolved to contradiction between the assumption (x has o inside) and the
definition of wrapper function (o’s upper bound in the upper subframe). Hence, we
can conclude that there is no smaller frame than o’s wrapper frame; this is actually
the unique wrapper frame, and it can be used as a reference point.

8.1.2 Proof 2
We prove that for each N, there exists at most one N-object mapped to each entry of
a division array, and show N identifies an object mapped to the same division array.
To prove this, we assume there exist two distinctive objects, x and y; both are N-
objects (N ≥ 16) mapped to the same division array. Since x and y are N-objects, their
wrapper frame ( fx and fy) is 2N-sized by definition. The division is the only one that
fx and fy are mapped to as shown previously, so fx and fy have the same base address
as the division. In addition, both frames have the same size, so they are identical. Both
base addresses of x and y (bx, by) must be in the lower (N − 1)-subframe of fx (or fy),
and end addresses must be in the other sub-frame. From this, bx and by must be
smaller than ex and ey. However, the objects are distinct, so bx < ex < by < ey or vice
versa must hold. The assumption leads to a contraction. We conclude that for each
N, there is a unique N-object mapped to one division array.
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[41] Enes Göktaş, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis.
Out Of Control: Overcoming Control-Flow Integrity. In Proc. of IEEE S&P,
pages 575–589, 2014. Cited on pages 15, 19, and 32.
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