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Abstract 
The CHERI protection model extends contemporary Instruction Set Architectures (ISAs) with 
support for architectural capabilities. The UKRI Digital Security by Design (DSbD) programme is 
supporting the creation of Arm’s prototype Morello processor, System-on-Chip (SoC), and board. 
Morello experimentally incorporates the CHERI protection model, developed at the University of 
Cambridge and SRI International, into the ARMv8-A architecture. This document declares a set of 
capability essential IP – ideas essential to the creation of a contemporary CHERI capability system 
in architecture and microarchitecture. Arm and Cambridge agree that they have made this IP 
available for use without restriction. This document also identifies a set of CHERI background 
documents that may be of value as prior art. 
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1 Statement of intent 
The objective of this document is to lay out the Intellectual Property (IP) positions of the University 
of Cambridge and Arm Limited with respect to the Digital Security by Design (DSbD) programme 
and the Arm Morello architecture, processor, System-on-Chip (SoC), and board. As part of this 
work, we have identified a set of Capability Essential IP: a set of key architectural concepts 
required to implement the CHERI protection model in contemporary architecture and 
microarchitecture, which are elaborated in this document. 

Our intent, spelled out in detail in the remainder of this report, is to assert that we have not 
protected Capability Essential IP, and in as much as is necessary, grant permission for them to be 
used freely and without restriction in third-party implementations. Our aim is to encourage the 
widespread adoption of these technologies, which we believe is best done through the avoidance of 
intellectual property protection or limitations on free use. This report does not make any assertions 
regarding IP that is not Capability Essential. We cannot, and do not, warrant that the IP described in 
this document is free from protection by any third parties, or from other restrictions (such as export 
control).  

In Section 2, we define key terms, including Capability Essential IP, and describe our IP position. 

In Sections 3 and 4, we enumerate essential architectural and microarchitectural IP. 

In Section 5, we provide a bibliography and identify an additional set of potentially relevant 
background material encapsulated in past University of Cambridge technical reports, papers, and 
open-source hardware and software releases. These do not define capability essential IP, but may be 
of interest to parties considering the design and implementation of protection models in architecture 
and microarchitecture as prior art. 

As this is our first attempt to enumerate Capability Essential IP, we expect that there will be future 
versions of this report expanding on these concepts. 
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2 IP position and assertion 
This report encapsulates our current understanding of capability essential IP, the essential concepts 
underlying the implementation of the CHERI protection model in computer architecture, 
microarchitecture, and software. These architectural and microarchitectural concepts are expressed 
explicitly in this document in Sections 3 and 4. 

2.1 Capability essential IP 
“Capability Architecture” means the microprocessor Instruction Set Architecture (ISA), cache and 
memory system and exception architecture mechanisms required to support capability-based 
memory pointer protection and in-address-space compartmentalisation. This includes architectural 
features required to implement full or compressed fat-pointer style capabilities with base/bounds, 
permissions, guarded manipulation, object types, information flow-control, safe compression, tags 
for integrity, capability-based domain switching mechanisms, temporal memory safety, and the 
capability-based control of Direct Memory Access (DMA), as well as the minimum page table 
modifications required to support the capability architecture. 

“Capability Essential IP” means IPR which, absent any license, is unavoidably infringed to make, 
use, market, import, offer to sell, or sell, and to otherwise directly or indirectly distribute, or 
otherwise commercially exploit products which implement a Capability Architecture. “Unavoidably 
infringed” means that there is no commercially and technically viable alternative way to implement 
that element of a Capability Architecture without resulting in such infringement. To the extent that 
such Intellectual Property constitutes a patent, only those claims of such patent which are 
unavoidably infringed shall be deemed to be Capability Essential IP. 

Capability Essential IP without limitation includes Intellectual Property listed in Schedule A and 
excludes Intellectual Property listed in Schedule B. For the avoidance of doubt, the presence of 
Intellectual Property in Schedule A does not constitute agreement that, and is not determinative of 
whether, such Intellectual Property is unavoidably infringed when implementing a Capability 
Architecture. Capability Essential IP shall not include any Arm Implementation IP or features 
which are directed to improving the efficiency of a Capability Architecture. 

SCHEDULE A  
Capability Essential IP includes those architectural features set out in the defined term together with 
software and software mechanisms such as:  

• compiler-based techniques for annotating or mechanically identifying opportunities to use 
capabilities to represent language-level pointers and references;  

• linker and debugger support for capabilities;  
• operating-system support such as capability context switching and virtual-memory support 

for tags, and compartmentalisation support via fast hardware-software domain switching;  
• runtime support for creating and maintaining of compartments based on capabilities; and  
• other capability features which are fundamentally required to support the portability of 

software between implementations of a Capability Architecture.  

It also includes tests for software features such as compiler support, linker support, and operating-
system support for capabilities. 

SCHEDULE B  
Capability Essential IP excludes:  
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• technology which is not directly related to capability-based protection mechanisms, such as 
general-purpose processing technology suitable for use in systems which do not implement 
a Capability Architecture.  

• non-essential microarchitectural optimisations of capability mechanisms, and technology 
directed to the interaction of non-essential processing system components with capability 
mechanisms.  

• Technology that may be used to develop, design, manufacture, sell or use any product or 
portion thereof that implements a Capability Architecture but which is not part of such 
Capability Architecture (examples of such technologies include without limitation electronic 
design automation technology and semiconductor manufacturing technology). 

2.2 IP position 
The University of Cambridge and Arm Limited have not filed, and will not file, for patent 
protection for any Capability Essential IP described in this document. 
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3 Capability essential architecture 
3.1 CHERI 
This text is drawn from Section 3.12 of the CHERI ISAv8 specification [Wat20b]: 

• Capabilities can be used to implement pointers into virtual address spaces (or physical 
address spaces for processors without virtual memory, or with virtual memory disabled); 

• Tags on registers or in memory determine whether they are valid capabilities for loading, 
fetching, or jumping to; 

• Tagged registers can contain both data and capabilities, allowing (for example) capability 
oblivious memory copies; 

• Tags on capability-sized, capability-aligned units of memory preserve validity (or invalidity) 
across loads and stores to memory; 

• Tags are associated with physical memory locations – i.e., if the same physical memory is 
mapped at two different virtual addresses, the same tags will be used; 

• Attempts to store data (rather than a valid capability) into memory that has one or more 
valid tags will atomically clear the tags on any affected memory; 

• Capability loads and stores to memory offer strong atomicity with respect to capability 
values and tags preventing race conditions that might yield combinations of different 
capability values, or the tag remaining set when a corrupted capability is reloaded; 

• Capabilities contain bounds and permissions; a capability’s address is able to float freely 
within (and to varying extents, beyond) the bounds; 

• Permissions control both data and control-flow operations; 
• Guarded manipulation in the architecture (and, implicitly, microarchitecture) implements 

monotonicity: rights can be reduced (but not increased) through valid manipulations of 
capabilities; 

• Invalid manipulations of capabilities violating guarded-manipulation rules lead to an 
exception or clearing of the valid tag, whether in a register or in memory, with suitable 
atomicity; 

• Loads via, stores via, and jumps to capabilities are constrained by permissions and bounds, 
and will throw an exception, clear data, or clear tags on a violation; 

• For bounds or other violations on a branch or jump instruction, the exception could be 
thrown on the source instruction, or when fetching the at the destination address; 

• Capability exceptions, in general, are delivered with greater priority than MMU exceptions; 
• Permissions on capabilities include the ability to not just control loading and storing of data, 

but also loading and storing of capabilities; 
• Capability-unaware loads, stores, and jump operations via integer pointers are constrained 

by implied capabilities such as the Default Data Capability and Program Counter Capability, 
ensuring that legacy code is constrained; 

• If present, the Memory Management Unit (MMU), whether through extensions to software 
managed Translation Look-aside Buffers (TLBs), or via page-table extensions for hardware 
managed TLBs, contains additional permissions controlling the loading and storing of 
capabilities; 

• That MMU-enforced permissions may clear tags or throw exceptions if violated (possibly as 
configurable option); 

• C-language compatibility is maintained through definitions of NULL to be untagged, zero-
filled memory, instructions to convert between capabilities and integer pointers, and 
instructions providing C-compatible equality operators; 
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• Reserved capabilities, whether in special registers or within a capability register file, allow a 
software supervisor to operate with greater rights than non-supervisor code, recovering 
those rights on exception delivery; 

• A capability flow-control model to allow the propagation of capabilities to be constrained, 
preventing the capabilities marked as local from being stored via capabilities marked to 
prevent that; 

• Sealed capabilities allow a non-monotonic escalation of privilege associated with a 
constrained control-flow transition to a defined address. Subject to the use of suitable 
instructions, and appropriate permissions, a pair of sealed capabilities with identical object 
types allow access to unsealed versions of the capabilities, with code beginning execution at 
one of them. This enables software-enabled behaviours such as software 
compartmentalization. 

• Sealed entry capabilities likewise allow non-monotonic escalation of privilege associated 
with a constrained control-flow transition to a defined address. Subject to use of suitable 
instructions, and appropriate permissions, a single sealed entry (sentry) capability allows 
code to begin execution via an unsealed version of the same capability. 

• By clearing architecture-defined permissions, and utilizing software-defined permissions, 
capabilities can be used to represent spaces other than the virtual address space; 

• For compressed capabilities, addresses can stray well out-of-bounds without becoming 
unrepresentable; 

• For compressed capabilities, alignment requirements do not restrict common object sizes 
and do not overly restrict large objects beyond common limitations of allocators and virtual 
memory mapping; and 

• That through inductive properties of the instruction set, from the point of CPU reset, via 
guarded manipulation, and suitable firmware and software management, it is not possible to 
“forge” capabilities or otherwise escalate privilege other than as described by this model and 
explicit exercise of privilege (e.g., via saved exception-handler capabilities, unsealing, etc). 

 

3.2 Morello 
The following high-level concepts implemented in Morello [Arm20] can be considered capability-
essential IP: 

• Sealed capabilities allow a non-monotonic escalation of privilege associated with a 
constrained control-flow transition to a defined address. Subject to the use of suitable 
instructions, and appropriate permissions, a sealed capability allows controlled access to 
two unsealed capabilities in memory with code beginning execution at one of them. 
This enables software-enabled behaviours such as software compartmentalization. 

• Sealed capabilities allow a non-monotonic escalation of privilege associated with a 
constrained control-flow transition to a defined address. Subject to the use of suitable 
instructions, and appropriate permissions, a sealed capability allows access to an unsealed 
version of the same capability and controlled access to a further capability in memory 
with the code beginning execution at that capability. This enables software-enabled 
behaviours such as software compartmentalization. 

• An identifier managed by software using capability permissions and used by hardware to 
discriminate speculation contexts. This enables separation of a software defined set of 
compartments in an environment where uncontrolled speculation can leak information. 
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4 Capability essential microarchitecture 
4.1 CHERI 
This text is drawn from Chapter 11 of the CHERI ISAv8 specification [Wat20b]: 

The CHERI architecture has been designed to fit into modern RISC pipelines without disturbing 
existing control-flow or data paths. 

As a result, microarchitectural concerns are simpler than they could otherwise be, but there are 
nevertheless several innovations that have been developed for prototype implementations that may 
be relevant to specific microarchitectures that implement the CHERI model. 

The following repositories hold open-source CHERI implementations or libraries, and are 
referenced in the sections below. 

• [CHERI-MIPS]: Original reference implementation of the CHERI-MIPS ISA set 
• [cheri-cap-lib]: A library of reference capability algorithms developed for CHERI-MIPS and 

adapted for CHERI-RISC-V implementations, including for capability compression 
• [TagController]: Tag controller for emulating a tagged memory using a hierarchical in-

memory table developed for CHERI-MIPS and adapted for CHERI-RISC-V 
implementations 

• [CHERI-Piccolo]: CHERI-RISC-V CPU with a simple 3-stage pipeline, for low-end 
applications (e.g., embedded, IoT) 

• [CHERI-Flute]: CHERI-RISC-V CPU with a simple 5-stage in-order pipeline, for low-end 
applications needing MMUs and some performance 

• [CHERI-Toooba]: CHERI-RISC-V CPU with a superscalar, out-of-order pipeline and multi-
core capable; based on RISCY-OOO from MIT 

4.1.1 Capabilities in the pipeline 
Capability instructions in the CHERI architecture are modelled after integer operations and are 
almost entirely single-cycle in the open-source implementations. This makes it possible for a 
CHERI architecture to unify integer and capability registers and execution paths. 

4.1.1.1 Register file 
Capabilities may be stored in an extended, integer register file, or may use a separate, dedicated 
register file. 

The CHERI-MIPS architecture and microarchitecture use a separate capability register file, 
enabling instructions to access capability operands in addition to two integer operands. CHERI-
MIPS uses a dedicated module to perform CHERI operations, but this runs in lockstep with the 
main pipeline as many capability instructions have integer operands or results, and all legacy 
memory operations implicitly have DDC as a capability operand. This microarchitecture is 
described in [Woo14a]. A superscalar and out-of-order implementation in this style would dedicate 
execution units to capability operations with ports into the capability register file which would not 
be necessary in integer execution units, similar to specializations used for floating point execution 
units. 

Our CHERI-RISC-V architecture and microarchitectures use a unified register file for both integers 
and capabilities. All integer execution units are extended to implement capability manipulation 
operations. 

It should also be possible to implement a unified register-file architecture with a 
microarchitecturally split register file. One such option would split the physical register file 
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between the lower half, which is used by integer operations, and the upper half which is consumed 
(and produced) exclusively by capability operations. This division could enable specialization of 
execution units to reduce the cost of capabilities to integer paths. This would also reduce total 
register file storage, as all integer operands and results would not require an entry in the capability 
register file, while complicating renaming due to operands being split between two renamed register 
files. 

4.1.1.2 Capability decoding 
CHERI capabilities are compressed (see Section 11.2 of [Wat20b]) and various microarchitectures 
may choose to decode capabilities in stages when there is opportunity in the pipeline. The open-
source CHERI implementations, including CHERI-MIPS, Piccolo, Flute, and Toooba, use 3 stages 
of decompression. The first is the fully compressed, architectural in-memory format. The second is 
a lightly decoded in-register format that is produced on load from memory. The third is a pipeline 
format that is consumed by high-performance functions in the pipeline and is decoded on read from 
the register file. 

The open-source cheri-cap-lib library (summarised in Appendix E of [Wat20b]) used in our open-
source CHERI implementations expresses these three levels of compression using a typeclass; a 
microarchitectural “API” to capabilities which includes capability manipulation operations for each 
level of decompression. The in-register view extracts E (the exponent) into a dedicated field, 
reconstitutes the top two bits of the T field, and also extracts amid from the address into a dedicated 
field. This decompression is fast enough to be performed parallel to the byte-select in the general- 
purpose loads in the CHERI-MIPS pipeline [Woo19]. In turn, this format is further decoded into the 
in-pipeline format by adding a few Booleans and 2-bit offsets that locate the top and base with 
respect to the address. These fields are used to perform capability operations such as computing a 
full top or base, or fast representability checks. 

While many variations of the capability typeclass could be useful for a CHERI implementation, 
these three design points provided in the library have enabled sufficient flexibility to implement an 
array of optimised hardware microarchitectures. 

4.1.1.3 Program Counter Capability (PCC) 
CHERI extends the program counter (PC) with bounds and permissions, which are together called 
PCC. PC is very performance sensitive and is predicted in most microarchitectures. 

A processor requires the address of PCC at the earliest stage of the pipeline to initiate instruction 
fetch, but the bounds and permissions of PCC are needed only to decide exception conditions and 
can therefore be checked at any point in the pipeline. The CHERI-MIPS microarchitecture takes 
advantage of this distinction to speculate on only the address of PCC (i.e., the address of the 
instruction to be fetched) using the branch predictor, but forwards updates to PCC bounds to the 
execute stage of the pipeline. This microarchitecture is described in [Woo14]. The in-order Piccolo 
and Flute microarchitectures share this design. 

Forwarding in superscalar and out-of-order pipelines is more complex so we chose to predict the 
entirety of PCC in the Toooba microarchitecture. The BTB delivers both bounds and address, 
allowing the bounds to be checked early in the pipeline, with a branch misprediction resulting from 
a mismatch in either the address bits or the bounds and permissions. The Arm implementers of the 
Morello prototype observe that predicting the bounds, as is done in Toooba, is the optimal 
performance solution, though it is expensive microarchitecturally. In order to optimise prediction 
state, a microarchitecture may choose to predict the bounds separately from the address to take 
advantage of shared bounds and permissions between branch targets.  
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Section 4.2 describes Arm’s Morello microarchitecture, including PC/PCC prediction, in greater 
detail. Another way of handling the PC/PCC interlock would be to rename PC/PCC and do physical 
tag tracking for dependencies, as is done with any other renamed register. 

4.1.1.4 Default Data Capability (DDC) 
CHERI defines a DDC register which provides both an offset and bounds for non-capability-aware 
loads and stores such that the capability mechanism can constrain legacy executables. Both the 
offset and the bounds for integer addresses require special handling in the microarchitecture. 

The CHERI-MIPS architecture added register-offset addressing to the base MIPS instruction set 
such that a capability-address store has two integer register operands (data and offset) as well as a 
capability register address operand. This path in the CHERI-MIPS microarchitecture was used to 
implement standard MIPS loads and stores which also offset through DDC. 

The CHERI-RISC-V architecture does not introduce a new addressing mode and therefore does not 
require an additional register operand for addressing in any common case. Our CHERI-RISC-V 
microarchitectures implement DDC as a special, non-forwarded capability register. That is, 
CSpecialRW modifications of DDC traverse the back end of the pipeline alone to avoid consistency 
issues. DDC is then read directly in any place in the pipeline where it is needed directly from the 
register without forwarding. 

In many implementations it may be desirable to optimise the address offset of DDC, as an extra add 
on the address-generation path may be problematic. 

For memory operations with an immediate offset, microarchitectures without DDC forwarding can 
add the DDC offset to the immediate operand before the Execute stage so that we preserve two-
operand address calculation on the critical path. As RISC-V and MIPS exclusively provide 
immediate-offset addressing, this optimization resolves the issue for these architectures where DDC 
forwarding is not implemented.  

For register-offset addressing or for microarchitectures that forward DDC, the DDC-offset 
performance might be optimised by an architectural change that limits allowed alignments and 
possibly sizes of DDC. For example, if DDC were constrained to be aligned and sized to the same 
power of two, we may simply OR the DDC offset with the resulting address. If the access is in- 
bounds, the OR will be exactly equivalent to an ADD, and if not the instruction will be cancelled 
due to the exception. One could also imagine implementations that perform this optimization 
microarchitecturally such that power-of-two aligned-and-sized DDCs operate at full speed and other 
values of DDC fall back to a lower performance mode. 

4.1.1.5 Capability mode bit 
A CHERI ISA may choose to implement a capability mode bit in order to reuse legacy load and 
store encodings for capability-based loads and stores. This mode bit affects the decoding of 
instructions, determining the source of bounds for memory access and may also determine alternate 
decodings of other repurposed instructions. 

CHERI-RISC-V specifies a mode bit that is defined in PCC. Our in-order open-source 
implementations, Piccolo and Flute, forward the mode bit along with the bounds to the Execute 
stage such that mode-bit-dependant decoding does not take place before Execute, which 
surprisingly fits well into these microarchitectures. 

Our Toooba implementation predicts the mode bit with the entirety of PCC so that the mode bit is 
available anywhere in the pipeline including Decode. 
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If the mode bit is specified in a special register rather than being attached to PCC, the same design 
options should be available. The mode bit might cause a pipeline flush on modification so that the 
current mode might be accessed anywhere in the pipeline, might be forwarded to allow rapid mode 
switching, or might be predicted along with PCC to optimise repeated mode switches. 

4.1.1.6 Bounds checking 
Many CHERI instructions must check bounds, including all memory-access instructions and many 
capability-manipulation instructions. The CHERI-MIPS microarchitecture implements all 
instructions with a single general-purpose bounds-check unit in the pipeline which is never used 
more than once by any instruction. In addition to this general-purpose bounds-check, there is a 
bounds-check on PCC. 

The general-purpose bounds check generally produces exceptions and does not affect destination 
register values, so the bounds-check in CHERI-MIPS is set up in the Execute stage but is performed 
during Memory Access. 

The general-purpose bounds-check unit must support not only less-than comparison for the top (the 
common case), but also less-than-or-equal-to for CSetBounds. CSetBounds also requires extended 
precision for the upper bound rather than wrap-around arithmetic used by addresses. The bounds 
check unit supports separate upper and lower address comparisons against the upper and lower 
bounds respectively in order to validate the highest and lowest byte accessed by a memory 
transaction, and also to support the TestSubset operation. This shared-bounds-check strategy is also 
used in the Piccolo and Flute microarchitectures, and the Toooba superscalar microarchitecture has 
one set of bounds-check logic per integer pipe and memory access pipe with some specialization to 
the two cases. 

The PCC bounds check can be optimised in a number of ways. 

The CHERI-MIPS and CHERI-RISC-V architectures are designed to remove the need to ever 
perform a representable check on PCC modification. While any legacy branch or jump to an integer 
register could be considered an add to the address of PCC, potentially requiring a representability 
check, the MIPS and RISC-V CHERI architectures avoid this condition by throwing an out-of-
bounds exception on the branch using the general-purpose bounds-check for control flow 
instructions. 

All of our open-source CHERI microarchitectures bounds check PCC for every instruction 
executed. As branch targets are guaranteed to be in-bounds, it should be possible for the bounds 
check on PCC to be elided for the majority of instructions, possibly checking PCC bounds in 
batches. Alternatively, we might calculate the number of instructions to the bound on each jump 
and assert that the distance-to-the-bound counter does not reach zero. 

4.1.1.7 Special Capability Registers (SCRs) 
The set of Special Capability Registers (SCRs) contain registers with special pipeline implications 
(such as DDC and PCC) and also registers to allow simplified privilege escalation which are gated 
by privilege ring. These registers are accessible only through explicit move-from and move-to GPR 
instructions. 

The CHERI-MIPS implementation implements all SCRs besides PCC, KCC, and EPCC as 
forwarded general-purpose capability registers. PCC is predicted, and KCC and EPCC are used for 
swapping with PCC on exception and are broken out into dedicated registers without forwarding to 
enable single-cycle exceptions without the need to access the forwarded register file. 
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Piccolo, Flute, and Toooba implement all SCRs as non-forwarded registers, blocking the pipeline 
for the duration of the execution of any SCR modification. 

4.1.2 Compressed capability optimizations 
The compression scheme used in CHERI-128 and CHERI-64 is partially described in [Woo19] and 
its key algorithms are implemented in the cheri-cap-lib repository [cheri-cap-lib]. The key 
algorithms are reproduced in Appendix E of [Wat20b]. These algorithms are a significant 
contribution to the community as they enable reasonably efficient microarchitectural 
implementations of CHERI. 

4.1.2.1 Decompressing bounds 
Decompressing the bounds of capabilities is highly optimised. Bounds decompression requires 
detecting the relative positioning between the top and bottom with respect to the address, as 
described in [Woo19]. 

The GetTop function is more complex than the GetBase function, as described in Section E.1 of 
[Wat20], due to the requirement to discern between top being 0 or 264. This algorithm is a noted 
contribution as it is non-trivial to develop a correct algorithm that is fast enough for common use in 
pipelines. 

4.1.2.2 Bounds checking 
There are two types of bounds check in CHERI microarchitectures: precise and representable. 
Precise bounds checks assert that an address is between the bounds of the capability, but a 
representable check asserts that a transformation on the address of a compressed capability does not 
change its bounds due to the limitations of compression. 

4.1.2.2.1 Precise bounds check  
Cheri-cap-lib provides CapInBounds (listed in Section E.2 of [Wat20b]) which is an algorithm to 
check that an encoded capability is within bounds without decompressing the bounds of the 
capability. 

We have not required an optimised bounds check which integrates an offset to the address (e.g., for 
offset addressing) as these bounds checks are not on the critical path in our designs, but generally 
produce exceptions. Precise bounds checks with an offset are usually checked against fully decoded 
bounds (usually in the next pipeline stage), but could use the IncOffset function discussed below 
followed by CapInBounds. 

4.1.2.2.2 Fast representability checks 
When the address of a capability is being modified, the algorithm must assert that the resulting 
capability will still decode the same bounds as the original capability. Custom fast representability 
checks that operate directly on the compressed fields of the encoding are required for each single- 
cycle operation that modifies the address to avoid dependence on decompressed values which 
generally require the majority of a cycle to calculate. 

The IncOffset and SetOffset operations are supported by a single function listed in Section E.3 of 
[Wat20b], and implement the function described in Section 3.5.4 of [Wat20b]. This shared function 
allows a single circuit to support both operations. 

The SetAddress operation must detect if an arbitrary new address is within the representable limits 
of the capability, and has a distinct implementation listed in Section E.4 of [Wat20b]. 
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4.1.2.3 Setting bounds  
The SetBounds function listed in Section E.5 of [Wat20b] and described in Section 3.5.4 of 
[Wat20b] provides a single, shared, high-speed function that returns a single data structure 
containing a capability with the new bounds (to implement CSetBounds), a flag indicating if 
rounding was necessary (to facilitate CSetBoundsExact), a mask that could be applied to a pointer 
to align it with the supplied length (to facilitate CRepresentableAlignmentMask), as well as the 
length that was actually achieved after rounding (to facilitate CRoundRepresentableLength). 

It is a challenge to implement a SetBounds circuit that rounds only when precisely necessary while 
achieving single-cycle execution. The example algorithm is described in detail in the comments of 
the listing, and includes pre-computing all fields for both the rounded and unrounded cases while 
simultaneously detecting if rounding will occur, followed by a select of the correct return values. 
The rounding detection logic is sophisticated and uses a smear-right technique to generate a mask 
to select bits in the address and length relative to the most significant set bit of the length without 
waiting for the result of CountLeadingZeros. A case matrix is then constructed to detect carry ins to 
an arbitrary region of the new top based on masked values rather than waiting for the result of full 
adds. 

4.1.3 Loading and storing capabilities 
CHERI requires atomic memory access to capability-wide words (e.g., 129-bit words). 

4.1.3.1 Capability width 
All open-source CHERI implementations have widened the memory interface between the core and 
the caches to the capability width. The CHERI-MIPS microarchitecture required that all memory 
paths were at least capability-width at least to the TagController. For Flute and Piccolo we allow 
memory paths past the L1 to be half the width of a capability, but never split a capability between 
bursts. These implementations duplicate the tag bit on the two flits of the capability. The tag bit is 
added to the USER fields of the data channels of AXI (RDATA/WDATA) in these 
implementations, so it was not possible to transfer less than one tag bit with each flit. 

In addition to the cache interfaces, the Toooba microarchitecture enlarged all load and store buffers 
to at least 129 bits along with all other memory forwarding paths. 

4.1.3.2 Capability permission complexity 
The CHERI architecture requires data-dependent faults such that the address and data must be 
available for inspection before a store can be issued. Specifically, the architecture defines a 
PERMIT_STORE_LOCAL_CAPABILITY bit on an address that may trigger a fault if the 
GLOBAL bit is not set on capability data that is being stored. 

The open-source CHERI implementations are based on microarchitectures that do not issue stores 
unless both operands are available, and so are able to trivially inspect both operands and mark a 
store for exception if necessary. Most high-performance processors will separate address and data 
issue to release the store address as soon as possible, but might need to delay the store address issue 
until store data is available in order to capture both the tag and global bit for fault detection. A few 
other options could be considered if the PERMIT_STORE_LOCAL_CAPABILITY is no longer 
required in the architecture. 

4.1.4 Tagged memory 
The CHERI capability model requires one extra bit per capability word, e.g., CHERI-128 requires 
129-bit memory words. This requires changes to the microarchitecture of the memory subsystem to 
widen structures where possible, or emulate wider memory where it is not. 



 17 

4.1.4.1 Tagging data caches 
Data banks and interfaces of caches can simply be widened to accommodate tagged words. The 
capability tags can either be stored in the data banks, or the capability tags for a line might be 
aggregated and stored separately, e.g., into the record for that line in the cache-tag bank. We have 
used both approaches in open-source implementations, with the second facilitating CLoadTags. 

Alternatively, tags could be stored in a separate cache structure that could reduce on-chip storage 
using compression. This design point would need to solve problems with coherency and would need 
to integrate into the pipeline such that tag and data pairs are always accessed atomically. 

Efficient Tagged Memory [Joa17] discusses each of the above design points in detail. 

4.1.4.2 Tagging memory  
External memory has become a commodity, so there are strong pressures to build systems that 
support industry-standard interfaces. 

4.1.4.2.1 Tag controller with cache 
Our primary approach, described in [Joa17], is a tag controller that allows an external memory 
controller to emulate a memory holding tagged words. This tag controller maintains a tag table in 
the external memory and provides the tag bits for each line requested from the remainder of 
external memory. The tag controller contains a cache of lines from the tag table to reduce tag table 
accesses. Furthermore, the tag table can be hierarchical such that each bit of a root level indicates 
whether any bits are set in a block of the leaf table. This structure significantly reduces cache 
pressure, as a single line of the root table can potentially replace many lines of the leaf (or flat) 
table. 

We have implemented this approach in the open-source TagController project which is used in all 
of our open-source implementations. This tag controller is parametrisable for arbitrary hierarchy 
depths and arbitrary block sizes at each level of the hierarchy. 

4.1.4.2.2 Wide memory 
Commodity external memory may hold memory words wider than its processor word size (e.g., 
ECC memory). A capability system may choose such a memory type and use these bits to hold 
capability tags alongside data in external memory. As ECC bits typically provide more storage than 
necessary to hold capability tags, a CHERI system using ECC memory should be able to support in-
word capability tags and as well as error detection and correction at some level. 

4.1.4.2.3 Dedicated memory 
It is also possible to design a system with a dedicated memory channel for tags. For example, a 
system with a 1024-bit memory interface (e.g., HBM) might add an 8-bit memory interface for 
accessing tags. 

4.1.4.3 Loading tags 
The CHERI architecture includes a CLoadTags instruction to load the tags for a cache line into a 
register. CLoadTags is expected to be cache coherent, so it is not possible to bypass data caches 
completely, and it is complex to allow greater-than-cache-line granularity 

The CHERI-MIPS implementation will opportunistically return tags from the cache if the line is 
present, but will not trigger a cache fill based on a miss due to CLoadTags, but will forward the 
request to the next level of cache hierarchy, ultimately hitting the TagController if all caches miss. 
If the request hits the TagController, it will respond to the request directly, performing an ordinary 
tag table lookup and caching any results. 
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4.1.5 Speculative side-channel precautions 
We recommend that CHERI implementations take reasonable precautions to prevent data access 
through speculative side channels. Many of these observations are explored in [Wat18]. CHERI 
microarchitectures should reasonably be expected to constrain memory access in speculation to 
capabilities that are architecturally available to the program. That is, no capability should exist in 
registers and forwarding paths beyond capabilities in the latest committed architectural state of the 
register file, those transitively reachable through them, and less-powerful capabilities derived from 
these. This property, which we may call Speculative Capability Constraint (SCC), requires a few 
microarchitectural features. 

4.1.5.1 Capability-guarded cache access 
Permissions and bounds of a memory access should be verified before any cache access is initiated. 
This is generally reasonable, as these checks are simpler than TLB translation which must also 
occur before the cache can take action on behalf of a memory access. This property is necessary to 
support SCC by preventing unreachable capabilities from being introduced into the pipeline from 
memory. All of our open-source implementations have this behaviour. 

4.1.5.2 PCC bounds forwarding (not prediction) 
SCC may be violated by a design that predicts the bounds of PCC. For example, the Toooba 
implementation predicts the bounds of PCC, storing the entire PCC in the branch target buffer. On 
any jump, it is possible for a powerful PCC to be predicted, introducing read rights to new 
addresses that were not implied by the latest-committed state of the register file. The Morello 
implementation chooses to forward the bounds of PCC rather than predict them, so the PCC 
capability cannot be used in a data memory access unless it is legally sourced form another register 
in the pipeline. CHERI-MIPS, Piccolo, and Flute share this design choice, though they are of less 
note as their simple pipelines do not allow speculative read gadgets. 

4.1.5.3 Speculative forgery prevention 
SCC may also be violated if capabilities can be forged in speculation. CHERI capability 
manipulation instructions should not speculatively produce capabilities with privilege greater than 
their operands provide. For example, CBuildCap should not forward tagged bits to its consumers 
while waiting for the result of its bounds check. CSetBounds and CUnseal share similar concerns. It 
is believed that all open-source CHERI implementations may currently forward unsafe values for 
these instructions, and the Toooba microarchitecture is likely vulnerable to speculative execution 
attacks through this vector. This concern might be more systematically alleviated by an architecture 
that clears tags rather than throws exceptions for operations that manipulate the privilege of a 
capability. The Arm Morello architecture generally clears tags rather than throws exceptions for 
capability manipulation instructions, and we expect the Morello microarchitecture to be immune to 
this class of attacks for this reason.  

In addition, any speculation in a microarchitecture that could synthesise a value rather than deriving 
it from architecturally defined bits (e.g., value speculation) should not produce valid capability 
values. This could include not only a capability predicted to be loaded from a memory location, but 
also a predicted integer value that is used to bound a capability. 
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If these restrictions become performance-limiting, one could imagine deploying Speculative Taint 
Tracking1 ensure that speculatively forged capabilities do not affect cache state. 

4.1.5.4 Compartment ID (CID) enforcement 
Even if SCC is enforced, we may have code paths that manipulate powerful capabilities that must 
be protected from speculative execution attacks. The CID is described in Section 2.5 of [Wat20b] to 
provide an architectural means to convey trust boundaries to the microarchitecture. The CID should 
be used to tag microarchitectural state to prevent instructions in disparate compartments influencing 
each other’s execution in much the same way as we might hope a modern microarchitecture might 
prevent user space speculative state influencing kernel execution. For example, the branch target 
buffer should tag entries with the CID such that targets learned in one compartment would not be 
used when speculating in another compartment, allowing an attacker to redirect branches that 
expose powerful capabilities to side-channel gadgets. The branch history table may also be tagged, 
as well as prefetchers and any other structure that holds state that influences prediction. 

The CID itself may be large and require compression in the microarchitecture. For example, a 
microarchitecture may introduce a table that holds several active CIDs while attaching table indices 
to all state used for speculation. Such a microarchitecture requires a means to flush state belonging 
to old table values before installing a new value at an index. 

If domain crossing is to be highly optimised, the application of the CID may be imprecise (e.g., 
allowing use of old CID state until the new CID install commits) or the CID itself may be predicted. 
Either of these may be very difficult to allow without introducing speculative-side- channel 
vulnerabilities. 

4.2 Morello 
In addition to microarchitectural IP listed above in CHERI based implementations by University of 
Cambridge, following microarchitectural ideas in the Arm’s Morello implementation could be 
considered essential IP. 

4.2.1 ST(L)XP 
Wider memory operations due to capability-width transactions may require cracking instructions 
into multiple µops (micro-operations), which in turn may require atomically tying together multiple 
memory buffer entries. For example, ST{L}XP is a 32B operation. Morello implemented this in a 
16B store buffer design which required cracking the operation into two µops. This required 
complexity to handle correct success/failure for two µops instead of one to make sure the result is 
atomic (both succeed or both fail).  Logic had to handle one tag/address for both stores, had to 
handle translation atomicity, and had to handle writing data from both or none at all.  Morello used 
adjacent pairs to associate the merge buffer entries together so that they always retire together and 
write together or fail together. 

Another microarchitecture implementation could use a simplified design where the entire store data 
path is 32B within the processor – store buffers, writes to the cache or memory subsystem. 

 
1 J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas and C. W. Fletcher. ‘Speculative Taint 
Tracking (STT) A Comprehensive Protection for Speculatively Accessed Data’. In: Proceedings of 
the 52nd IEEE/ACM International Symposium on Microarchitecture (IEEE MICRO 2019) 
(Columbus, Ohio, USA). Oct. 2019. 
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Other solutions are very dependent on the microarchitecture implementation of stores: how and 
where they track pass/fail of the exclusive instructions; how they write to the data cache/memory 
subsystem; how they keep ordering of stores (for release semantics). 

4.2.2 LDCT – read all tag bits for a cache line: 
If the tag bits are stored in the same banks as the data they are associated with, and on a cache miss, 
the data returned is sent in multiple beats, then special care has to be made to wait for all the data to 
return. For example, in Morello, each cache line is filled in two beats, and we were able to ensure 
that the entire line was filled before responding by setting the access address to the centre of the 
cache line including bytes from both beats, forcing the load operation to wait until the entire cache 
line was returned. 

Other implementations: 

For ideal LDCT performance, you would want the tags to be tracked separately and not require any 
special handling.  

With our implementation memory model, another way to implement LDCT is to crack it into 4 tag 
loads and merge their results. 

4.2.3 PC/PCC dependency tracking 
In legacy designs, the PC is predicted and therefore assumed to be known from the beginning of the 
pipeline for every instruction.  In contrast, the Bounds/etc of the PCC do not need to be known up 
front, and do not need to be predicted, which would be expensive and/or complex.  

Rather than predicting the bounds/etc of PCC, Morello implements a custom forwarding 
mechanism for operations that read their PCC, including both ALU operations and commit-time PC 
bounds checking. Morello keeps the bounds of in-flight PCCs in a dedicated register file and each 
instruction is associated with an entry. At commit time, the bounds of each instruction must be 
known to resolve any PCC bounds exceptions.  In addition, any instructions that take their PCC as 
an operand will block in the issue queue until their PCC is resolved. 

In fact, the Morello base architecture kept PC base addresses in a centralised PC regfile (PCRF), 
and any PC readers require an index into this register file to resolve the upper bits of the PC. In 
Morello, these PCRF entries held a further index into a bounds register file, PCCRF which is only 
populated as branches are actually resolved. For commit time bounds checking, we walk and 
broadcast the PCRF entries that have a “resolved” (known) PCCrf entry so we can resolve any PCC 
bounds exceptions. 

The issue queues can use this broadcast PCRF to release the dependency on the PCC that any PCC 
readers have without having to rename the PC or track any extra information. 

Other implementations: 

Predicting the bounds would be the optimal performance solution (though expensive). 

Another way of handling the PC/PCC interlock would be to rename the PC/PCC and do physical 
tag tracking for dependencies (like any other renamed register). 
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