
Technical Report
Number 943

Computer Laboratory

UCAM-CL-TR-943
ISSN 1476-2986

Latency-First datacenter
network scheduling

Mathew P. Grosvenor

January 2020

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

https://www.cl.cam.ac.uk/

c© 2020 Mathew P. Grosvenor

This technical report is based on a dissertation submitted
April 2017 by the author for the degree of Doctor of
Philosophy to the University of Cambridge.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Latency-First Datacenter Network Scheduling

Matthew Philip Grosvenor

Summary

Every day we take for granted that, with the click of a mouse or a tap on a touchscreen,
we can instantly access the Internet to globally exchange information, finances and physical
goods. The computational machinery behind the Internet is found in datacenters scattered all over
the globe. Each datacenter contains many tens of thousands of computers connected together
through a datacenter network. Like the Internet, datacenter networks suffer from network
interference. Network interference occurs when congestion caused by some applications, delays
or interferes with traffic from other applications. Network interference makes it difficult to
predict network latency: the time that any given packet will take to traverse the network. The lack
of predictability makes it difficult to build fast, efficient, and responsive datacenter applications.

In this dissertation I address the problem of network interference in datacenter networks.
I do so primarily by exploiting network scheduling techniques. Network scheduling techniques
were previously developed to provide predictability in the Internet. However, they were complex
to deploy and administer because few assumptions could be made about the network. Unlike the
Internet, datacenter networks are administered by a single entity, and have well known physical
properties, that rarely change.

The thesis of this dissertation is that it is both possible and practical to resolve network
interference in datacenter networks by using network scheduling techniques. I show that it is
possible to resolve network interference by deriving a simple, and general, network scheduler
and traffic regulator. I take the novel step of basing my scheduler design on a simple, but realistic,
model of a datacenter switch. By regulating the flow of traffic into each switch, I show that it
is possible to bound latency across the network. I develop the leaky token bucket regulator to
perform this function. I show that my network scheduler design is practical by implementing a
simple, and immediately deployable, system called QJUMP. QJUMP is thoroughly evaluated and
demonstrated to resolve network interference between datacenter applications in both simulation
and on a physical test-bed. I further show that QJUMP can be extended and improved upon in
a variety of ways. I therefore conclude that it is both possible and practical to control network
interference in datacenter networks using network scheduling techniques.

Acknowledgements

First and foremost, I would like to acknowledge the support and care of my supervisor, Andrew
W. Moore. Andrew is a true gentleman and a scholar. Beyond his excellent academic credentials
and impressive grant writing skills, he is a deeply caring human being. He has always placed
my physical and emotional wellbeing ahead of my academic progress and, for that, I am truly
grateful. I could not have asked for more from my supervisor.

My deepest thanks also go to my second supervisor Robert N. M. Watson. Robert too
has deeply cared for my wellbeing as well as my academic and career progression. Despite his
significant commitments, whenever I have needed it, Robert has always made the time for me.
I will always be thankful for his marathon effort of reading, and providing deeply insightful
comments on this dissertation, during a 12 hour flight to the US. The document has been much
improved as a result.

I will forever be indebted to Andrew and Robert for their time, love and support over
these years. It has been an honour to work with both of you and I am privileged to call you
friends. I sincerely hope to continue our collaborations into the future. It is thanks to the efforts
of both Robert and Andrew that I have been generously supported by the EPSRC INTERNET,
DARPA MRC2 and EU Horizon 2020 SSICLOPS research programs. These programs have
kept me warm, dry, and fed, as well as opening up the world to me through collaboration and
conference travel to exotic locations (like Oakland, California).

The Cambridge Computer Laboratory has a proud history reaching back as far as the
very beginning of computing as we know it. My thanks go to all the members, past and present,
of the Computer Laboratory, especially the Systems Research Group (SRG) and the Networks
and Operating Systems (NetOS) group. In particular I would like to thank Steven Hand for his
keen insights and Jon Crowcroft for his impressive (random?) idea generation abilities. Jon read
and provided feedback to this dissertation multiple times (sometimes even unsolicited) which
has immensely improved the quality of the final document.

To my first, and best, post-doc Yury Audzevich. You taught me everything I know about
networks and switches. Your quiet humility is an inspiration and I’ve truly missed you since you
moved on to better things. This dissertation would not have been possible if you hadn’t taken me
under your wing during my first weeks in Cambridge.

There will always be a special place in my heart for James Snee. You’ve taught me so
much about how the Ph.D. marathon is run. Your race to completion, with all the highs and lows

showed me that it is possible to finish. Your gentle (and sometimes not so gentle) hand rescued
me from the abyss more than once. When I had nothing left and wanted to quit, you were there
to push me back on track. Thank you. Like many others James volunteered part of his brain, and
much of his sanity, to read and comment on the early versions of this document.

My sincerest gratitude also goes to George Neville-Neil, Tim Harris, Peter von Konigs-
mark, Christopher Bailey, Nick McKeown and Charles P. “Chuck” Thacker for reading and
providing detailed feedback on earlier versions of this document. Each of your efforts made
meaningful and lasting improvements to the quality of this dissertation and the work contained
within it.

Thanks also go to Ionel Gog and Malte Schwarzkopf AKA “CamSaS”. Through many
late nights we’ve struggled, debated, argued, fought, Cherry Box’d, joked and celebrated. You
two have been the force behind our best publications, my worst ideas, and inspiration to keep
going all these years. Thank you both.

It is easy to acknowledge those that have been close and present over the last 5 years,
but there are some who have shaped this dissertation since well before it began. To Matthew
“Doc” Chapman, Geoff Erickson, and Greg “Robo” Robinson, you are the role models that
encouraged me to leave the trappings of a well paid job and become an impoverished student
once again. Thank you? Thanks also go all of my friends at Zomojo / Exablaze for your support.
I have never met a more genuine, honest or caring group of people and I am immensely looking
forward to joining the team again.

Thanks also to Kevin Elphinstone and Gernot Heiser, for teaching (torturing?) me about
operating systems and reminding me that I would never start a Ph.D after I had started working,
and that I would never return to Australia after living in Europe. I always love a challenge...

Going all the way back to the start, my family have been behind and in front of me the
whole way. To my brave parents, Philip and Kathy Grosvenor, who left the comfort of South
Africa for a better education for your children, I will never be able to truly thank you for the
impact that your have had. The support and encouragement of my parents and my brother, David
Grosvenor, have kept me going in the darkest hours. Without your love and sacrifices no part of
this work would have been possible. Dad, you taught me everything I know about computers,
Mom, you taught me everything I know about writing and David, you taught me everything I
know about perseverance. From the bottom of my heart, thank you all.

It is one thing to supervise, assist or befriend a Ph.D. student. It is another thing to live
with one. It is something else entirely to marry one. To my precious Evianne. My lieve-anne’tje.
My honing konijntje. How can I ever thank you? You have been my rock and my strength all of
these years. You’ve celebrated my success and tended to my wounds. You’ve pushed me to keep
writing and you’ve read this dissertation cover to cover. You’ve struggled through every single
day of this dissertation with me; every tear and every smile. No moment has gone by without
your love and support. This dissertation is as much yours as it is mine. All my thanks, all my
love, and everything I am and have, go to you, Mrs Dr Evianne. L. (van Gijn) Grosvenor.

Contents

1 Introduction 11

1.1 Contributions . 13

1.2 Publications . 15

1.3 Dissertation Overview . 16

2 Background 17

2.1 The Rise of Hyper-scale Datacenters . 17

2.2 TCP Congestion Control . 23

2.3 Network Interference in Datacenters . 25

2.4 Congestion Control in Datacenters . 32

2.5 Multiplexer Scheduling – In Theory and in Practice 47

2.6 Conclusions . 57

2.7 Chapter Summary . 57

3 Bounding Delay in Datacenter Networks 59

3.1 A Model of a Datacenter Switch . 60

3.2 Bounding Delay in Datacenter Networks . 62

3.3 Relationship to PGPS Delay Bound . 75

3.4 Practical Considerations . 77

3.5 Conclusions . 93

3.6 Chapter Summary . 93

4 Implementing Predictable Datacenter Networks 95

4.1 Throughput vs. Latency . 95

4.2 Jump the Queue with Prioritisation . 97

CONTENTS CONTENTS

4.3 Implementation . 97

4.4 Configuration . 98

4.5 Evaluation . 100

4.6 Conclusions . 110

4.7 Chapter Summary . 111

5 Improvements and Future Work 113

5.1 Automatic Application Configuration . 113

5.2 The problem of N . 114

5.3 Scalability . 114

5.4 The Dynamic Coordination Problem . 116

5.5 End-Host Network Coordination . 117

5.6 Centralised Network Coordination . 122

5.7 Distributed Network Coordination . 127

5.8 Conclusions . 130

5.9 Chapter Summary . 130

6 Conclusions 133

List of Acronyms 135

List of Figures 139

List of Tables 141

Bibliography 143

Appendices 159

A Web Sources 161

A.1 Amazon . 161

A.2 Arista . 163

A.3 Broadcom . 174

A.4 Cisco . 180

8

CONTENTS 9

A.5 CNet . 198

A.6 Datacenter Knowledge . 205

A.7 Datacenter Frontier . 209

A.8 Endace . 215

A.9 Exablaze . 217

A.10 Extreme Tech . 224

A.11 Facebook . 227

A.12 Frank McSherry . 245

A.13 Google . 247

A.14 Hewlett Packard . 252

A.15 IEEE 802 LAN/MAN Standards Committee 254

A.16 Intel . 256

A.17 Internet Society . 269

A.18 IPv6 World Congress 2014 . 271

A.19 Linux . 273

A.20 Metmako . 279

A.21 Microsoft . 281

A.22 Netcraft . 288

A.23 OpenCompute Project . 290

A.24 Solarflare . 298

A.25 Statistics Brain . 300

A.26 The Storage Networking Industry Association 303

A.27 Wired . 306

10 CONTENTS

Chapter 1

Introduction

EVERY day we take it for granted that with the click of a mouse or a tap on a touchscreen
we can instantly access information [1], keep in touch with friends [2], and globally
transact finances [3, 4], music [5, 6], movies [5, 6], and physical goods [7–9] over the

Internet. The computational machinery behind the Internet services provided by Amazon [7],
Apple [10], Facebook [2], Google [11], Microsoft [12], and others is found in warehouses
scattered all over the globe. These warehouses, or datacenters, contain many tens of thousands
of computers, all working together to produce, manage, and maintain our online world [13]. We
now take for granted that from a desktop, laptop, phone, or watch we can perform hundreds
of Internet searches every day. Yet it takes 1,000s of computers working and communicating
with each other to produce a single Google search result [14]. Such a result will be produced in
less than 0.2 seconds. For so many computers to work together, they must be connected by a
communications network.

The communications networks used inside datacenters inherit many of their features
from the Internet. Like the Internet, information is transmitted through the network in discrete
units called packets. Datacenter networks use Internet Protocol (IP) [15] encapsulated inside
of Ethernet frames [16] to transfer packets. Computers (also known as hosts, end-hosts, or
machines) are attached to the network and send packets to other computers via Network Interface
Controllers (NICs). Copper or optical fibre links connect NICs to network switches. Switches
forward (or route) packets between their ports, some of which may be be connected to host NICs
while other ports are connected to additional switches. Like Internet routers, datacenter switches
use statistical multiplexing to forward packets between their ports. In a statistically multiplexed
network, packets share the network in a first come, first served manner [17]. A packet arriving at
a switch (or router) is either, forwarded immediately if the output link is free, or, forced to wait
in a queue until the link becomes free. This means that different packet sources can interfere
with each other in the network.

Network interference makes it difficult to predict the time that packets will take to
traverse the network from their source to their destination. This time is known the network
delay or network latency. Some packets may experience very high network latencies in extreme

11

12

cases. These extreme cases are called tail latencies because they occur due to the combination
of low-probability events, and, as a result, fall at the far end (or tail) of the latency distribution.
Latency distributions in datacenter networks are typically non-normal and may have tails that are
many orders of magnitude greater than the minimum and median values [13].

The close coupling of applications in datacenters magnifies the effects of tail laten-
cies [13]. When 1,000s of computers work together, the latency of the slowest message dominates
the overall performance. For example, in a realistic datacenter model, if as few as one machine
in 10,000 is delayed, up to 18% of responses can experience long tail latencies [13]. This can
have a tangible impact on user engagement and thus potential revenue [18, 19].

In this dissertation I address the problem of network interference causing tail latencies in
datacenter networks. I do so by taking a latency-first approach. That is, I arrange my investigation
to concentrate primarily on the problem of network latency caused by network interference.
All other concerns (scalability, utilisation, throughput, cost, deployability etc.) are treated as
secondary. I address these secondary concerns only after I have proposed solutions to network
latency tails caused by network interference.

I begin my investigation by conducting a thorough historical, analytical and experimental
analysis of the causes of, and potential mitigations to, network interference. Ultimately I conclude
that network scheduling techniques are the best tool to address this problem. Network scheduling
techniques provide a principled and mathematically sound method of providing isolation between
different applications sharing a network. Previous work [20–23] on network scheduling typically
sought to provide isolation in the form of throughput guarantees. Doing so often also resulted in
guaranteed (bounded) network latency. In my work, I take the opposite approach. I first consider
network scheduling techniques that offer bounded latency, and only subsequently concern myself
with throughput availability and throughput guarantees.

Network scheduling techniques have been extensively studied in the context of the
Internet network. When applied in this context, the techniques were found to be difficult to
configure, required universal deployment of specialised (expensive) network hardware, and often
required cooperation between multiple competing entities [24]. All of these problems can be
resolved in the new context of datacenter networks.

The thesis of this dissertation is that it is both possible and practical to resolve network
interference in datacenter networks by using network scheduling techniques. I show that it is
possible to resolve network interference by taking a similar approach to Parekh and Gallager [20,
21]. Like Parekh and Gallager, I use a switch scheduling model and an input traffic regulator to
provide isolation in the network. Unlike Parekh and Gallager, I take a latency-first, datacenter
specific approach, rooted in the design of datacenter networks as they exist today. To do so, I
create a simple, but realistic, switch scheduler model based on known and measured properties of
existing datacenter switches. Using this model, I derive the necessary traffic regulation conditions
to bound delay across the scheduler and consequently through the network. I express the traffic
regulation conditions using a new type of traffic regulator called a Leaky Token Bucket (LTB)

CHAPTER 1. INTRODUCTION 13

regulator. Finally, I express the resulting delay bound using a simple equation, parameterised over
the maximum packet size, the number of senders, network link-rates, and switch performance.
In doing so, I show that it is possible to precisely control latency in the network and therefore
mitigate the effects of network interference.

To show that my approach is practical, I apply the Leaky Token Bucket regulator, and
delay-bound calculation, in a system called QJUMP. QJUMP [25, 26] combines low-latency and
high-bandwidth flows in datacenter networks while resolving the problem of network interference.
The system is simple and coordination free, requires no changes to hardware or application
software, and is designed to be immediately deployable in datacenter environments.

QJUMP operates by regulating the injection rate of low-latency traffic into the network
using a fast implementation of a Leaky Token Bucket regulator. This bounds the time that
the low-latency traffic will take to cross the network and thus mitigates the effects of network
interference. Bounded-latency traffic is prioritised over high-bandwidth traffic so that both
types of traffic can co-exist on the same network. This results in a coordination-free system
offering both low-rate, bounded-latency traffic and high-rate, unbounded-latency traffic service
levels. I thus show that it is practical to resolve network interference using a network scheduling
approach.

Unfortunately, the QJUMP implementation does not offer a high-rate and bounded-
latency service level. There is nothing intrinsic in my scheduling model, or regulator design to
prohibit this. To resolve this problem, I propose three extensions to QJUMP: (i) EYEQJUMP,
(ii) FASTJUMP, and (iii) R3CJUMP. The main difference between QJUMP and the following
proposals is the introduction of dynamic, runtime coordination. Each system implements this
coordination in different ways: EYEQJUMP uses end-host based coordination, FASTJUMP

uses a centralised coordinator and R3CJUMP uses distributed coordination. Regardless of the
implementation mechanism, the introduction of dynamic, runtime coordination allows hosts to
negotiate channels in the network that have bounded latency and (up to) line-rate throughput.
As part of this negotiation, limits can also be placed on the lowest acceptable throughput and/or
highest acceptable latency of a channel. The result is an emulation of circuit switching behaviour
over a packet switched network. The network can therefore be made to offer both statistical and
bounded service simultaneously over the same infrastructure. I conclude that network scheduling
is a viable and practical approach to controlling network interference in datacenter networks.

The remainder of this chapter contains a brief overview of my contributions, related
publications, and highlights of the dissertation to follow.

1.1 Contributions
In this dissertation I make the following primary contributions:

1. I propose a novel, discrete scheduling model based on known and measured properties of
commodity datacenter switches. Using this model, I determine the packet transmission

14 1.1. CONTRIBUTIONS

conditions required to provide isolation and bounded latency in datacenter networks using
commodity hardware. I describe these transmission conditions using a new, fluid-flow
regulator called a Leaky Token Bucket (LTB). I express the resulting delay bound using
a simple equation, parameterised over only four parameters. Finally I show that the
combination of my discrete scheduling model and fluid-flow traffic regulator can achieve
similar bounds to previous work, which used a fluid-flow scheduler and a discrete traffic
regulator (Chapter 3).

2. I show that the model derived in contribution (1) can be implemented in a simple, coordina-
tion free, and immediately deployable manner in datacenters. This implementation requires
minimal modifications to host kernels and requires no modifications to applications, host
hardware and the datacenter network. It offers bounded latency communication for low-
rate, latency-sensitive applications in datacenter networks. The implementation results in
measurable improvements to network interference between datacenter applications (see
Chapter 4).

3. I discuss in detail three proposals to extend the implementation from contribution (2)
to accommodate guaranteed latency at line-rate throughput. Each of these proposals
requires dynamic coordination. I discuss end-host, centralised and distributed coordination
schemes. The proposals come at the cost of increased deployment complexity and/or
network requirements (see Chapter 5).

All of the models, algorithms, physical implementations, experimental tools, and analysis used to
produce the above contributions are my own work. However, as with any research project, parts
of the work leading to this dissertation were completed in collaboration with others. In particular,
Ionel Gog implemented and configured the Musketeer [27] system which was used to generate
and run Hadoop Map-Reduce workloads used in some experiments, especially those found in
Sections 2.4 and 4.5. Ionel also implemented an initial version of the NS2 simulation of QJUMP

used to produce the results in Section 4.5.3. Additionally, Malte Schwarzkopf and I implemented
parallel versions of a tool called dag-join, which was used to analyse packet traces and measure
latency across network devices. This tool was important for producing the in-network latency
measurements used in many places throughout the dissertation particularly in Sections 3.4.6 and
4.5.1. Malte and I cross-checked the results of our implementations to find and remove bugs
resulting in a tool that I am confident in. Furthermore, many of the plots throughout the document
were generated using the matplotlib library with the aid of scripts initially written by Malte.
In addition to specific assistance, both Malte and Ionel, along with my supervisors, co-authors,
colleagues, fellow researchers and students of my own have contributed to discussions and the
progression of the ideas found within. This to-and-fro, although indefinable, was vital to the
development of the ideas, implementations and publications leading to this final dissertation.

CHAPTER 1. INTRODUCTION 15

1.2 Publications
This dissertation is not substantially the same as any that I have submitted, or, is being concur-
rently submitted for a degree or diploma or other any qualification. Some of the contents also
appears in the following publications:

• MATTHEW P. GROSVENOR, MALTE SCHWARZKOPF, ROBERT N. M. WATSON, AN-
DREW W. MOORE. R2D2: Bufferless, Switchless Data Center Networks Using Com-
modity Ethernet Hardware (poster). In Proceedings of the Special Interest Group on
Communications 2013 (SIGCOMM 2013 - Hong Kong).

• MATTHEW P. GROSVENOR, MALTE SCHWARZKOPF, IONEL GOG, ANDREW W. MOORE

Jump the Queue to Lower Latency. In ;login: The Usenix Magazine April 2015, Vol. 40,
No. 2.

• MATTHEW P. GROSVENOR, MALTE SCHWARZKOPF, IONEL GOG, ROBERT N. M.
WATSON, ANDREW W. MOORE, STEVEN HAND AND JON CROWCROFT. Queues don’t
matter if you can JUMP them! In Proceedings of the 12th Symposium on Networked
Systems Design and Implementation (NSDI 2015) (best paper award).

• HITESH BALLANI, PAOLO COSTA, CHRISTOS GKANTSIDIS, MATTHEW P. GROSVENOR,
THOMAS KARAGIANNIS, LAZAROS KOROMILAS, GREG O’SHEA. Enabling End-Host
Network Functions. In Proceedings of the Special Interest Group on Communications
2015 (SIGCOMM 2015 - London) (NB: authors listed alphabetically by surname).

• NOA ZILBERMAN, MATTHEW P. GROSVENOR, DIANA POPESCU, NEELAKANDAN

MANIHATTY BOJAN, GIANNI ANTICHI, MARCIN WOJCIK, AND ANDREW W. MOORE Where
Has My Time Gone? In Proceedings of Passive and Active Measurements 2017 (PAM
2017 - Sydney)

In addition to the above, the following publications that I have authored, or contributed to, have
influenced my work, although they are not directly related to the contents of this dissertation:

• MATTHEW P. GROSVENOR. uvNIC: Rapid Prototyping Network Interface Controller
Device Drivers (poster). In Proceedings of the Special Interest Group on Communications
2012 (SIGCOMM 2012 - Helsinki).

• MALTE SCHWARZKOPF, MATTHEW P. GROSVENOR AND STEVEN HAND. New wine in
old skins: the case for distributed operating systems in the data center. In Proceedings of
the 4th Asia-Pacific Workshop on Systems (APSys 2013 - Singapore).

• IONEL GOG, MALTE SCHWARZKOPF, NATACHA CROOKS, MATTHEW P. GROSVENOR,
ALLEN CLEMENT, STEVEN HAND. Musketeer: all for one, one for all in data processing
systems. In Proceedings of the 10th European Conference on Computer Systems (EuroSys
2015).

16 1.3. DISSERTATION OVERVIEW

1.3 Dissertation Overview
The rest of this dissertation is organised as follows:

• Chapter 2 — Background — Introduces the design and construction of datacenter networks.
It contains a thorough discussion of the historical context of network interference, related
literature and contemporary approaches to resolving network interference. It also contains
a brief measurement based study demonstrating the effects of network interference under
controlled conditions and when using typical datacenter applications. Additionally it
contains (where possible) measurements of the effectiveness of contemporary approaches
to resolving network inference.

• Chapter 3 — Bounding Delay in Datacenter Networks — Includes a description of a
simple, but realistic, scheduling model derived from datacenter switches. This model is
used to derive a new type of traffic regulator called a Leaky Token Bucket regulator. The
chapter details how delay bounds can be calculated and enforced by combining these
models and how they relate to previous work. It also includes a description of a fast
software-based implementation of the regulator and discusses (in detail) many practical
considerations for implementing network scheduling in datacenter networks.

• Chapter 4 — Implementing Predictable Datacenter Networks — Describes and evaluates
QJUMP. QJUMP is a simple but useful implementation of a co-ordination free, distributed
system implementing the equations and regulator derived in Chapter 3. This system was
first published in my paper “Queues don’t matter when you can JUMP them” [25, 26]
(Chapter 4).

• Chapter 5 — Improvements and Future Work — Describes future work and potential
solutions to some of the problems found in Chapter 4. This includes a detailed description
of three proposed systems: (i) EYEQJUMP, (ii) FASTJUMP and; (iii) R3CJUMP. The
EYEQJUMP proposal extends on QJUMP to allow for centralised coordination using end-
host cooperation in full-bisection bandwidth networks. This improves on the throughput
limitations imposed by QJUMP. The EYEQJUMP proposal is generalised to operate on
arbitrary network topologies by including a centralised coordinator in the FASTJUMP

proposal. This proposal introduces planing and routing traffic in the network, but has
a central point of failure (the coordinator). The R3CJUMP proposal improves upon the
FASTJUMP proposal by introducing fully distributed control but introduces broadcast
overheads which may be intolerable at certain scales or with certain workloads.

• Chapter 6 — Conclusions — Contains some concluding statements and final remarks.

To facilitate the reader all substantial chapters (2-5) conclude with a short chapter summary. The
chapter summaries should provide the reader with enough background material to start reading
the following chapter independently of the rest of the dissertation.

Chapter 2

Background

2.1 The Rise of Hyper-scale Datacenters

MODERN web-services companies such as Amazon, Google, Facebook and Microsoft
run at “hyper-scale” [28, 29]. Their systems support billions of users1, index over a
billon websites2, and serve billions of requests per day3. Furthermore, these services

are growing rapidly; Facebook now adds two new datacenters nearly every year [30] and, every
day, Amazon adds enough new server capacity to support all of its global infrastructure needs
from 2004 (when it was a $7B annual revenue company) [31]. The network infrastructure
required by hyper-scale datacenter operators must scale to support tens of millions of endpoints
(i.e. bare metal or virtualised servers) and middleboxes (i.e. physical and virtualized network
functions) [32] and supply petabits per second of bandwidth across the network4 [34].

In general there are few concrete details about the construction of large-scale datacenters
and their networks. Internet giants such as Amazon, Apple, Google and Microsoft continue
to view the technical details of their datacenter infrastructure as trade secrets, which yield
competitive advantages over one another. This has made them historically reluctant to share
many details. Recently, Facebook has defied the convention by launching the “Open Compute
Project (OCP)”[35]. The OCP aims to “democratize access to the best server, storage and data
center technologies available” [35]. Over time, Apple and Microsoft5 have joined this effort (to
varying degrees) and both Amazon [31] and Google [34] have recently also revealed some details
of the scale of their operations. Although details are still limited (and often dated) it is possible

1 As of June 30, 2016, Facebook reports that it has 1.13 billion daily active users. The company further claims to
have had an average of 1.71 billion active users over the same month. See Appendix A.11.1.

2As of September 2016, Netcraft estimates that there are over 1.29 billion websites. See Appendix A.22.1.
3 The Statistic Brain Research Institute estimates that in 2015, an average of 7.8 billon Google searches were

performed each day. See Appendix A.25.1.
4Alexey Andreyev, Facebook Engineering blog (14 November 2014) [33]. See Appendix A.11.3.
5Cade Metz, wired.com (March, 2015) and, Frank Frankovsky, opencompute.org blog (16 January 2013). See

Appendix A.27.1 and A.23.3.

17

18 2.1. THE RISE OF HYPER-SCALE DATACENTERS

to combine these sources to arrive at reasonable estimate of how contemporary datacenters are
constructed and operate.

2.1.1 Datacenter Applications

The need for the hyper-scale datacenters operated by Facebook, Google, Microsoft and others
arose out of the scale of problems being tackled. These included indexing and interactively
searching the entire Internet and providing social networking and business productivity services
to billions of people. Unlike the provision of shared infrastructure cloud services6, these
problems require massively parallel, highly distributed software systems [36]. And, unlike
super-computers, the software systems require flexibility, generality and 99.999% or better
uptime over several years of service [36]. As a result datacenters typically run a small number of
very large applications using shared management and deployment infrastructure [36].

The applications running in datacenter environments can broadly be classified into three
distinct layers: bottom, middle and top:

1. Bottom layer – Distributed Coordination – In this layer are management, scheduling and
coordination services. These include distributed timing and consensus services such as the
Precision Time Protocol daemon (PTPd) [37], Chubby [38], and Zookeeper [39], and task
placement, management and scheduling systems like Borg [40], and Omega [41].

2. Middle layer – Distributed Data Access and Storage – This middle layer runs services that
provide distributed data storage and access systems. It includes block storage systems such
as the Google File System (GFS) [42] or the Hadoop Distributed File System (HDFS) [43] to
provide unstructured distributed data storage. Above these, structured data services such as
BigTable [44], MegaStore [45], Spanner [46], and MySQL [47] provide structure/database
abstractions with various consistency levels. To keep these systems fast, some operators
(e.g. Facebook) use in-memory caching services like memcached [48].

3. Top layer – Distributed Programming Frameworks and Distributed Applications – On the
top layer are the distributed programming frameworks such as Google Map-Reduce [49],
Hadoop Map-Reduce [50], Spark [51], and Naiad [52]. Actual datacenter applications such
as web-search engines, social networking systems, email and office productivity systems
and video and image delivery systems run within these higher level frameworks. These
systems often have “front-end” language extensions such as FlumeJava [53], Hive [54],
and Pig [55]. Recent work has extended these abstractions to a single unified interface
which can automatically select the correct abstraction based on job properties [27].

2.1.2 Datacenter Host Configurations

The software systems running inside of datacenters operate on commodity x86 [56] based Central
Processing Units (CPUs). Depending on the source, it is generally agreed that warehouse scale

6From providers such as Amazon Web Services , Microsoft Azure and Google Compute Engine

CHAPTER 2. BACKGROUND 19

(a) The Google custom server chassis (circa 2005) (b) The Facebook Yosemite modular sled (circa 2015)

Figure 2.1: Server designs from hyperscale datacenter operators (Facebook and Google).

datacenters operate using between 40,0007 and 80,000 [30, 31] hosts per facility with 100,000
hosts being the upper limit 8 [31]. Given the scale of operation, it is not surprising that the hosts
themselves are custom built. In 2009 Google demonstrated their (2005 vintage) custom built
server and chassis (See Fig. 2.1a). The machines were a 2 socket x86 CPU design with, 2 hard
disk drives, 8 memory slots and a lead-acid backup battery.

Since 2009, Amazon, Facebook9 and Microsoft10, have also revealed that they build
custom severs. Amazon, Facebook and others have also had Intel build custom CPUs for them.
For example, Amazon’s CPUs contain higher than usual core counts (10 CPUs), running faster
than usual and are said to include an FPGA fabric for extra flexibility11.

The most recently published host design is the “Yosemite modular micro-sever” pub-
lished by Facebook in early 201512 (See Fig. 2.1b). According to Facebook, Yosemite was
designed in response to power and scaling issues experienced with “mainstream” two socket
server designs. This suggests that the two socket design used by Google in 2005 has likely been
prevalent throughout the industry for at least the last decade.

The Yosemite modular micro-sever comprises four single socket System on Chip (SoC)
Xeon-D13 based server cards, each connected to a carrier board and housed in a “sled” enclosure14.
The carrier sled bears a strong resemblance to Facebook’s earlier “Group Hug” design15. In each

7Rich Miller, datacenterknowledge.com (1 April 2009) and Stephen Shankland, cnet.com (1 April 2009) who
both attended the 2009 Efficient Datacenter Summit held by Google. See Appendix A.5.1,A.6.1 and A.13.1.

8Rich Miller, datacenterfrontier.com (23 September 2015) who attended the 2014 Amazon Re:Invent conference.
See Appendix A.7.1.

9Hu Li, Facebook Engineering Blog (10 March 2015). See Appendix A.11.2.
10The Open CloudServer design on the OCP is attributed to Microsoft. Corroborated by marketing material from

Microsoft. See Appendix A.21.1 and A.23.1.
11Yevgeniy Sverdlik, datacenterknowledge.com (13 November 2014) and corroborated in part by a press release

from intel.com (June 12, 2015). See Appendix A.6.2 and A.16.1.
12Hu Li, Facebook Engineering Blog (10 March 2015). See Appendix A.11.2.
13Marketing materials, Intel. See Appendix A.16.2.
14As detailed in the Open Compute project Yosemite project specification. See Appendix A.23.2 for more details
15Joel Hruska, extremetech.com (28 January 2013), corroborated by Frank Frankovsky, opencompute.org blog

(16 January 2013). See Appendix A.10.1 and A.23.3.

20 2.1. THE RISE OF HYPER-SCALE DATACENTERS

……...

Network Edge

Network Core

ToR / Leaf

Hosts

Racks

ToR / Leaf

Hosts

Core / Spine Core / Spine

ToR / Leaf

Hosts

Agg. / Fabric Agg. / Fabric

Figure 2.2: Datacenter network architecture.

sled a 4-port “multi-host” NIC connects the host to 40Gb/s or 50Gb/s networking.

2.1.3 Datacenter Network Architectures

Figure 2.2 shows a high level depiction of a datacenter network. At the bottom of the figure
are hosts, contained within racks. The term “rack” refers to a 19 inch “relay rack” (or more
recently “telecommunications rack”) which was standardised as early 1934 [57]. A standard rack
comprises 42 Rack Units (RUs) (or Us), each of which are 1.752 inches high and 19 inches wide.
Facebook’s “Open Rack” has the same external dimensions as a standard rack, but accommodates
modules that are 21 inches wide [35]. A rack is the standard unit of deployment for datacenter
hosts. The Facebook Yosemite sled design is intended to house up to 192 hosts (SoCs) in each
rack, giving it a density of one host per 0.25RU.

Various terminologies are used to describe the components of a datacenter network16 [28,
29, 34, 36]. Hosts within a rack are connected to a Top of Rack (ToR) 17 (or leaf) switch. These
switches are connected to aggregation (or fabric) switches, which are connected to core (or
spine) switches (see Fig. 2.2). ToR switches and end-hosts lie at the edge of the network while
aggregation and core switches fall in the core of the network.

The arrangement of connections between components in the network (the network

16Alexey Andreyev, Facebook Engineering blog (14 November 2014). See Appendix A.11.3.
17The term “Top of Rack” switch is a misnomer. In the datacenter context, Top of Rack (ToR) switches are

usually mounted in the middle of the rack to shorten cable lengths [36].

CHAPTER 2. BACKGROUND 21

topology) varies by deployment. Facebook18, Google [34] and Microsoft [28, 29] use variants
of the Clos architecture [58] in the core of their networks. Clos networks provide non-blocking
switching capacity that is greater than the capacity of any single switch. In a non-blocking
network, any input to the network can be connected to any unused output regardless of any
existing connections [59]. Non-blocking networks offer full bisection bandwidth. The bisection
bandwidth of a network is the capacity of the network when partitioned in half [60]. If a network
offers full bisection bandwidth, then any input to the network can communicate with any unused
output at full speed (line-rate).

The edge of the network is typically oversubscribed. The Facebook “Fabric”19 ToR

switches provide 12× 40Gb/s connections to hosts the rack and 4× 40Gb/s connections to the
fabric switches. The Google “Jupiter” [34] network is much denser. In one configuration, 48×
40Gb/s connections are provided to hosts in the rack and 16× 40Gb/s to the aggregation switches.
In both cases, 16-port, 40Gb/s merchant Ethernet [16] switching chips are used, and, in both
cases, there is a 3:1 oversubscription ratio across each ToR switch. Both Facebook and Google
use their own switch designs 20 [34]. Microsoft also appears to be using 40Gb/s networking to
the hosts21 [28, 29], although the networking infrastructure appears to be commodity, provided
by Arista Networks22.

There is evidence that Facebook (and by inference, Amazon, Google, Microsoft et al.)
are moving towards 50Gb/s and 100Gb/s networks. The Open Compute Project specifications
require the Yosemite shared host NIC (see §2.1.2) to be capable of running four, 10Gb/s connec-
tions or two, 25Gb/s connections over a Quad 25Gb/s Small Form-factor Pluggable (QSFP28)
connector23. The QSFP28 connector24 is used by vendors of 50 Gb/s and 100Gb/s Ethernet
equipment. In late 201525 and early 201626, Facebook announced work on an expanded ToR

switch called the “Wedge 100”, which is based on the Broadcom BCM56960 “Tomahawk”
Ethernet switching silicon27. The Wedge 100 is a 32 port QSFP28, 100Gb/s switching platform.
As of yet, no concrete details have emerged about how, or if, this change will affect Facebook’s
datacenter network topology designs.

Both Facebook’s and Google’s networks are comprised of sub-networks which are used

18Alexey Andreyev, Facebook Engineering blog (14 November 2014). See Appendix A.11.3.
19Alexey Andreyev, Facebook Engineering blog (14 November 2014). See Appendix A.11.3.
20Yuval Bachar and Adam Simpkins, Facebook Engineering Blog (18 June 2014). See Appendix A.11.4.
21The Open CloudServer design on the OpenCompute project (www.opencompute.org) is attributed to

Microsoft. Corroborated by marketing material from Microsoft. See Appendix A.21.1 and A.23.1.
22Press release, Arista. See Appendix A.2.1. Corroborated by personal discussions while working at Microsoft

Research
23Standardised by the Small Form Factor committee of the Storage Networking Industry Association. See

Appendix A.26.1.
24Also known as QSFP100 by some vendors e.g Arista. See Appendix A.2.2 for more details
25Jasmeet Bagga and Zhiping Yao, Facebook Engineering Blog (19 November 2015). See Appendix A.11.4.
26Jasmeet Bagga, Hany Morsy and Zhiping Yao, Facebook Engineering Blog (9 March 2016). See Ap-

pendix A.11.5.
27Marketing material, Broadcom. See Appendix A.3.1.

www.opencompute.org

22 2.1. THE RISE OF HYPER-SCALE DATACENTERS

to facilitate management and resource allocation. These sub-networks are called “cells” [61],
“clusters” [34], “containers” [62] or “pods”28. For the remainder of this dissertation I will adopt
the nomenclature of pod-scale network to refer to one of these sub-networks. Facebook defines a
pod as a standard “unit of network”. Each Facebook pod includes 48 server racks. Assuming
each rack contains between 48 and 192 hosts, this means that each pod contains between 2000
and 9000 hosts. For the remainder of this work, I will assume that a pod-scale network contains
approximately 5000 hosts unless otherwise stated.

Recently there has been increased discussion of “rack-scale computing” and “rack-
scale networks”[63–65]. The key observation of rack-scale computing is that, since datacenter
operators provision hosts at a granularity of whole racks, it logical to construct larger rack-scale
computers at the same granularity. A rack-scale computer would do away with the boundaries
between hosts within a rack and disaggregate their resources to increase performance, density,
power efficiency, and/or reduce costs. For example, disk or memory resources could be shared
among many SoCs in a rack, obviating the need to have a disk per host. However, doing so would
place more pressure on the internal network in such system. It is predicted that29 rack-scale
computers could reach the density of small pods, containing the equivalent of thousands hosts.
This suggests that much of the work presented in this dissertation will be equally relevant to
rack-scale networks.

2.1.4 Datacenter Network Protocols

Datacenter networks owe their existence and much of their history to the development of the
Internet. Key to the development of the Internet was the co-development of the Internet Protocol
(IP) and Transmission Control Protocol (TCP) [66]. On the Internet today there is a mixture of IP
version 4 (IPv4) [15] and IP version 6 (IPv6) [67] traffic. The most substantial difference between
the two protocol versions is the address size. While IPv4 is limited to approximately four billion
addresses (32 address bits), IPv6 supports around 3.4× 1038 addresses (128 address bits). The
majority of datacenter operators appear to still be using IPv4 in their internal networks30. One
notable exception is Facebook. In 2014 Facebook announced a long running project to convert
their datacenter infrastructure to IPv6. According to Facebook, in 2014 “100% of our hosts we
care about respond on IPv6” and “75% of our internal traffic is now IPv6”31 The transition to IPv6

was expected to be fully complete within the following 2 years (i.e. at the time of writing this
dissertation).

The scale of datacenter networks means that traditional layer 2 services such as Address
Resolution Protocol (ARP) [68] perform poorly [69]. To combat these issues, datacenter operators

28Alexey Andreyev, Facebook Engineering blog (14 November 2014). See Appendix A.11.3.
29Marketing material, Hewlett Packard Research and Intel. See Appendix A.14.1 and A.16.3.
30Microsoft Azure Frequently Asked Questions, Amazon Web Services Documentation – Load Balancing, and

Google Cloud Platform Documentation – Networking and Firewalls. See Appendix A.21.2, A.1.1 and A.13.2.
31Presented at the IPv6 World Congress 2014, (see Appendix A.18.1) by Paul Saab. Slides (see Appendix A.11.6)

posted by to the IPv6 public group on Facebook. See A.11.7. Corroborated by Dan York (22 March 2014) on the
Internet Society blog (see Appendix A.17.1) who attended the conference.

CHAPTER 2. BACKGROUND 23

employ IP layer routing protocols like Border Gateway Protocol (BGP) [70]. Facebook uses
“standard BGP4 as the only routing protocol” with a “centralized BGP controller that is able to
override any routing paths”, while Google has resorted to building its own protocol dubbed
“FirePath”. Like Facebook’s solution, FirePath introduces distributed routing decisions in
merchant silicon switch ICs but yields control to a logically centralised controller [34]. Microsoft
is thought to be using a system much like VL2 [28, 29, 69].

Regardless of the particular variant of IP and the routing protocol used, connections
between hosts are most often made using Transmission Control Protocol (TCP). A 2010 study
found that up to 99.91% of datacenter traffic uses TCP [71].

There are two defining characteristics for TCP: (i) the ‘on-the-wire’ packet format, and;
(ii) the congestion control algorithm. The TCP packet format has remained relatively unchanged
since version 4 was first specified in 1978 [72]. On the other hand, numerous TCP congestion
control algorithms have been proposed.

2.2 TCP Congestion Control

In 1987 the early Internet was in trouble. A series of ‘congestion collapses’ saw throughput
between physically close sites drop from 32kb/s to only 40b/s. The culprit was determined to
be the 4.3BSD implementation of TCP [73]. At the time, TCP had no congestion control. In the
seminal paper Congestion Avoidance and Control, Van Jacobson (with credit to Mike Karels)
introduced the first TCP congestion control algorithm, retrospectively named “TCP Tahoe”. The
key insight motivating the development of the algorithm was the principle of “conservation of
packets”. Specifically that:

A new packet isn’t put into the network until an old packet leaves.

Jacobson argued that if this principle could be obeyed, then congestion collapse would only occur
in exceptional circumstances. He therefore approached the TCP congestion control problem as a
task of “. . . finding places that violate conservation and fixing them.” Although seemingly trivial,
these insights will become a key part of my work described Chapter 3. On the basis of these
insights, Jacobson developed the first TCP congestion control algorithm. It had three essential
components:

1. Slow-start: While a new connection was starting, the algorithm would start at a low (slow)
transmission rate and exponentially increase its sending window to probe for available
bandwidth to be consumed.

2. Round-trip time estimation: Once the connection had reached equilibrium, it would use a
fast to method estimate the variance in Round-trip Time (RTT) measurements which would
be used to make good estimates for retransmit timeouts.

24 2.2. TCP CONGESTION CONTROL

3. Congestion avoidance: When a stable connection with good RTT estimates experienced
packet loss, it could assume (with high probability) that congestion was occurring. This
would be mitigated by exponentially reducing the sending rate and then linearly increasing
it again to probe for unused bandwidth.

Using these simple principles, Jacobson brought the Internet’s congestion collapse problems
under control.

There are now many TCP congestion control algorithms in common use. These algo-
rithms are mostly small variations on the original ideas and are optimised for different types of
connections. For example, high bandwidth, low delay networks (e.g. datacenters) have different
properties to low bandwidth, high loss rate networks (e.g microwave/wireless links) which are
again different to high bandwidth, high loss, high delay networks (e.g. satellite links). Some of
the major variants of TCP in production today are:

• TCP CUBIC [74]: the default TCP congestion control algorithm used by the Linux kernel
since version 2.6.19 (still used today in version 4.6) as well as in Mac OS X Yosemite.
TCP CUBIC is optimised for high-bandwidth, high-latency connections which are found in
homes, businesses and Internet facing devices.

• Compound TCP [75]: the default TCP congestion control algorithm used by the Windows
kernel. It is optimised for “high-speed, long distance” networks which in practice is similar
to the constraints above.

• TCP New-Reno [76]: the default TCP congestion control algorithm used by the FreeBSD

kernel. TCP New-Reno is a modified version of TCP Reno which includes selective
acknowledgements to improve bandwidth utilisation.

• Datacenter TCP (DCTCP) [71]: First published in 2010, DCTCP is optimised for high-
bandwidth, low-latency datacenter networks with switches that support Explicit Congestion
Notification (ECN). DCTCP uses the rate at which ECN markings are received to estimate
queue occupancy and thereby control queue depths. DCTCP has been integrated into the
Windows Server 2012 operating system32 as well as the Linux 3.18 kernel33. Google use
an algorithm similar to DCTCP in their datacenters [34] .

Despite their superficial differences, all variants of TCP attempt to answer the same
fundamental question as the original: “What is the appropriate sending rate for the current
network path?” [77]. This question is not answered explicitly. Rather, each TCP connection
determines its sending rate by probing the network path. This probing works by increasing
the sending rate until a congestion signal is detected, then backing off and trying again. The
congestion signal will trigger when multiple connections compete for a bottleneck resource

32Discussed on Microsoft Technet (9 May 2012). See Appendix A.21.3.
33Linux 3.18 release discussed on kernelnewbies.org (7 December 2014). See Appendix A.19.1.

CHAPTER 2. BACKGROUND 25

Figure 2.3: TCP’s characteristic sawtooth queueing pattern (Nichols and Jacobson [81]).

causing queuing to exceed some bound. Typically, the bound is the size of memory supporting
the queues, and the trigger is packet loss when the queue is exhausted. Some variants of TCP

employ more sophisticated congestion signalling instead of/in addition to packet loss. For
example, modified switches/routers may insert Explicit Congestion Notification (ECN) markings
into packets [71, 78] and/or TCP may use fine-grained timing [75, 79, 80] provided by the NIC

and/or hosts.

Regardless of the signalling method, probing for congestion and then backing off again
causes queues in the network to build and then decrease in a “saw-tooth” wave shape [71, 81]
(e.g. see Fig. 2.3). In the early Internet this was a feature. It ensured that the slowest (yet
typically most expensive34), links were kept fully utilised. However, as queues build up
so too does the delay across them. Packets sharing the same queue but belonging to different
connections/protocols will also experience this delay. Depending on the amount of memory/depth
of the queue, these delays might be many milliseconds in the worst case. In the early Internet,
memory was limited by expense and delays were high. As a result, the time spent in queues
was a relatively small faction of the end-to-end delay. But, as speeds at the edge of the Internet
have increased, and memory has become inexpensive, buffers have deepened and long delays
have now become problematic. This phenomenon has become known as “bufferbloat” [82]. As I
will describe in the next section, effects similar to bufferbloat are also experienced in datacenter
environments.

2.3 Network Interference in Datacenters

Networks in datacenters operate at very high speeds (10Gb/s to 40Gb/s) and transfer packets
over paths only tens of meters long (nanoseconds of delay). This means the queueing delays
can account for a sizeable fraction of end-to-end delays. Additionally, datacenter applications
are distributed and tightly coupled, leading to correlated packet arrival events. For example, in
a distribute-aggregate workload, work may be distributed to many hosts (known as fan-out),
which then report their results back to a single host (known as fan-in). A high degree of fan-in
can cause periods of intense congestion resulting in congestion collapse (e.g. “TCP incast” [83])

34 For example long distance terrestrial links, under-sea cables and satellite links.

26 2.3. NETWORK INTERFERENCE IN DATACENTERS

fre
qu

en
cy

latency

Latency Distribution

min med 90% 99% 99.9% max

latency tail

Figure 2.4: A depiction of network latency distributions and latency tails.

and further exacerbate latency and queueing issues.

Datacenter applications (see §2.1.1) are mixed and have varying network needs. For
example, timing and coordination applications are often dependent on consistent, low latency
network performance. By contrast, storage and data processing applications can be limited
by network throughput35. However, switch queues are shared between these different types of
applications. This means that congestion from throughput-intensive applications (like Hadoop)
may cause queueing that delays packets from latency-sensitive applications (like PTPd). In effect,
throughput intensive applications can produce a form of interference36 or crosstalk37 which
affects latency sensitive applications. For the remainder of this dissertation I will refer to this
effect as network interference.

When latency sensitive applications are subject to network interference, skewed latency
distributions develop. An example of such a distribution is given in Figure 2.4. In the figure, the
most frequently occurring latency values are at the left of the curve, and there is small region
between which the minimum, medium and 90th percentile of values lie. At the right-hand side
of the curve are infrequently occurring values, which have very high latencies. This region is
known as the long tail or simply the tail [13, 84, 85]. In practice, latency tails may be many
orders of magnitude greater than the minimum and median values. Much of the work in this
dissertation is concerned with minimising and controlling latency tails.

The close coupling of applications in datacenters magnifies the effects of tail laten-
cies [13]. When 1,000s of computers work together, the latency of the slowest message can
dominate the overall performance. For example, Barroso et al. considered a hypothetical system,

35Research conducted at the University of Cambridge by Frank McSherry (an author of Naiad [52]), in collabora-
tion with my colleague and QJUMP collaborator Malte Schwarzkopf. Published on Frank’s personal blog (8 July
2015). See Appendix A.12.1.

36 In general, extraneous energy, from natural or man-made sources, that impedes the reception of desired signals.
http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm

37 Any phenomenon by which a signal transmitted on one circuit or channel of a transmission system creates
an undesired effect in another circuit or channel. http://www.its.bldrdoc.gov/fs-1037/fs-1037c.
htm

http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm
http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm
http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm

CHAPTER 2. BACKGROUND 27

Setup / Percentile 10th (µs) 50th (µs) 90th (µs) 99th (µs)

otherwise idle network (A) 36 85 118 126
shared switches (B) 37 110 120 130

shared host egress (C) 168 228 259 268
shared host ingress (D) 55 125 249 278

shared host ingress and egress (E) 171 221 224 229
shared switch queue (F) 1,790 1,920 2,010 2,100

Table 2.1: Latency of ping vs. iperf with various degrees of network resource sharing.
All results taken over 5,000 samples.

with a typical response time of 1ms, but with a 99.99th percentile response time of 1s. In such a
system, if each request required 2,000 servers to handle it, up to 18% of requests would take over
1 second to complete [13, 36]. Such delays can have a tangible impact on user engagement and
thus potential revenue [18, 19]. Controlling tail latencies and isolating latency sensitive applica-
tions from interference caused by throughput intensive applications is therefore an important
problem to be solved in datacenter networking.

2.3.1 Quantifying Network Interference

Network interference may occur at any place where packets share network resources, particularly
in shared queues or buffers. Applications may share ingress or egress queues in the host, share
the same network switch scheduler, or share the same queue in a switch. In the following section
I present the results of an empirical study, designed to assess the potential impact of network
interference from different types of sharing, and to determine the appropriate location to begin
resolving it.

To perform the experiment, I emulate two major classes of datacenter applications: (i) a
latency-sensitive Remote Procedure Call (RPC) application using ping, and; (ii) a throughput-
intensive bulk transfer application using one or more instances of iperf. The ping application
sends small Internet Control Message Protocol (ICMP) echo-request messages to a destination
host, which then responds with ICMP echo-reply messages [86]. The time between the request and
the reply is measured, resulting in an estimate of the network Round-trip Time (RTT). The iperf
application establishes a TCP connection between an iperf-client and an iperf-server.
The client then attempts to saturate the connection by sending many large sized messages. The
rate at which these messages are sent/received is measured, resulting in an estimate of available
network bandwidth.

Many of the distributed systems described in Section 2.1.1 implement RPC and/or
bulk-transfer messaging. Bulk transfers are likely to cause congestion, while RPCs are likely
to suffer from network interference. By measuring increases or decreases in ping RTTs, it is
possible to measure directly an application’s observed impact from network interference.

Table 2.1 shows the results of arranging ping and iperf with various types of network

28 2.3. NETWORK INTERFERENCE IN DATACENTERS

queue sharing as detailed in Figure 2.5. The arrangements are as follows:

A Otherwise idle network (Fig. 2.5a) : This is the base case. Here only one instance of
ping is probing the network, it is otherwise idle. The median (50th percentile) ping round
trip time is 85µs and the 99th percentile is 126µs.

B Shared switches (Fig. 2.5b): In this case, there is an iperf client sending traffic to an
iperf server and a ping source probing a destination. Four independent hosts are used
(one for each source/destination pair). Nothing is shared between the hosts except the
switches in-between them. The switches fairly share traffic between the two independent
sources. Sharing switches produces only a small degree of network interference. The
median (50th percentile) RTT increases by 25µs but the 10th, 90th and 99thpercentiles move
by less than 4µs.

C Shared host egress (Fig. 2.5c): This is the same as case (B), however, both the ping and
iperf sources are located on the same host. This means that the entire host egress path
(i.e. kernel, driver & NIC) is shared between the sources. In this case the impact of sharing
is significant. Across all percentiles an impact of at least 110µs is seen. These results are
roughly double the base case values.

D Shared host ingress (Fig. 2.5d): This is the opposite of case (C). The ping and iperf

sources are located on separate hosts, but the destinations are located on the same des-
tination host. Again, the entire host ingress path (i.e. NIC, driver & kernel) is shared.
Interestingly, in this case, the 10th and 50th percentile (median) values are much lower
than in case (C). High speed network cards perform an optimisation called “interrupt
moderation”38. This delays packets inside the NIC until either a sufficient number of
packets have been received or a timeout has expired. When ping shares a NIC queue with
iperf, many more packets are received leading to shorter interrupt moderation periods.

E Shared ingress and egress (Fig. 2.5e): This is the combination of case (D) and (D). In
this case, only two hosts are used. Both sources reside on one and both destinations reside
on the other. It would appear that the results here are dominated by the interference in the
source egress path because the results in this test are approximately the same as the shared
source host egress case (see case (C)).

F Shared switch queue (Fig. 2.5f): This final case is the same as case (E) with the addition
of second pair of hosts acting as an iperf client/server pair. The addition of the extra
pair creates contention across the shared link between the switches. Both iperf clients
will attempt to transmit at 10Gb/s, but neither will be able to achieve this. Instead, TCP’s
congestion control algorithm will infer a fair share of 5Gb/s for each source. As described
in Section 2.2, the congestion control algorithm will cause queues to build until full, then
reduce, and build again in a characteristic sawtooth pattern. Since iperf and ping share
a source host, ping packets will also be affected by the queues building. This will cause
ping’s traffic to be delayed. The result is that, in every percentile, ping packets are
delayed by at least an order of magnitude greater than the any pervious case. The 99th

38Intel XL710 Ethernet Controller datasheet. See A.16.4.

CHAPTER 2. BACKGROUND 29

sw
itchping src ping dest.

sw
itch

(a) Otherwise idle network.
sw

itch

sw
itch

iperf src

ping src ping dest.

iperf dest.

(b) Two hosts, shared switches.

ping src
iperf src

sw
itch

sw
itch

ping dest.

iperf dest.

(c) Shared host egress.

iperf src

ping dest.
iperf dest.

ping src

sw
itch

sw
itch

(d) Shared host ingress.

ping dest.
iperf dest.

ping src
iperf src

sw
itch

sw
itch

(e) Shared host ingress and egress.

ping src
iperf src 1

iperf src 2

ping dest.

sw
itch iperf dest. 1

ping dest. 2

sw
itch

(f) Shared switch queue.

Figure 2.5: Arrangements for ping / iperf network sharing tests.

percentile ping latency is degraded by over 16× compared to the base case.

Comparing case (F) (the shared switch queue case) with all other cases reveals that, although any
degree of sharing results in interference, the effect is worst when applications share a congested
switch queue.

2.3.2 Testing with Datacenter Applications

The experiments conducted above demonstrated that network interference is both an application
measurable effect, and, that it occurs most severely in shared switch queue situations. However,
these experiments used ping and iperf which lie at extreme ends of the latency and bandwidth
requirements spectrum. The degree to which realistic datacenter applications can cause and/or
be affected by network interference remains untested. To do this requires the use of realistic
datacenter applications on a realistic network topology.

In Section 2.1.1, I described three layers of datacenter applications: (i) the distributed

30 2.3. NETWORK INTERFERENCE IN DATACENTERS

coordination layer, (ii) the distributed data access layer, and, (iii) the distributed programming
frameworks/ applications layer. To test if realistic datacenter applications are capable of produc-
ing and/or being effected by network interference, I have selected one application from each layer:
PTPd from the distributed coordination layer (see §2.3.2.1), memcached from the distributed
data access layer (see §2.3.2.2) and Hadoop Map-Reduce from the distributed data-processing
layer (see §2.3.2.3). I arranged these applications to run on 12 machine, 10Gb/s test network
(see Fig. 2.6). Each application has a unique performance metric that will be measured on this
network. I call this the application specific metric of interest. Specific details of the applications
and their performance metrics are as follows:

2.3.2.1 PTPd - Clock Synchronisation

Precise clock synchronisation is important to many distributed systems (e.g. Spanner [46],
Fastpass [87] etc.). The Precision Time Protocol daemon (PTPd)39 offers nanosecond-granularity
time synchronisation to machines on a local network. It operates by exchanging timing messages
between a “master” (server) and a “slave” (client). The messages are issued at a low rate,
usually once per second. The master issues sync messages which indicate the current time.
The slave issues delay_req messages which are used to calculate the network delay. Using
these two values, the slave can estimate its clock offset from the master clock and modify its
clock to match. The Precision Time Protocol (PTP) requires the network to provide near constant
latency (otherwise known as low jitter). It also assumes both slowly changing network delays
and symmetrical network paths. These assumptions make the protocol highly susceptible to
network interference. In the following experiments, the application specific metric of interest for
Precision Time Protocol (PTP) is network jitter. This will be expressed at the application level
as the perceived time offset between the slave and master. PTPd reports this value as part of its
built-in performance statistics.

2.3.2.2 Memcached - Key/Value Store Cache

Memcached40 is a popular in-memory key-value store used by Facebook and others to accelerate
frequent item access [48]. The application stores values of a few kilobytes which are accessed
by providing smaller keys. As the name implies, these keys and values are stored in memory
so that they can be accessed quickly. Memcached clients may issue get or set messages to a
memcached server. A get message causes the server to return a value associated with a key. A
set message causes the server to assign a new value to a key. In either case, the application does
very minimal processing work. Its performance is nearly entirely limited by network latency
and throughput. A well configured memcached installation can achieve a request rate 200-300
thousand requests per second, at a throughput of 3-5Gb/s [48]. Users of memcached require the
application to respond quickly to individual requests so that individual systems can achieve fast
response times. Users also require that memcached can sustain high request rates so that many

39Available from https://github.com/ptpd/ptpd.
40Available from https://github.com/memcached/memcached.

https://github.com/ptpd/ptpd
https://github.com/memcached/memcached

CHAPTER 2. BACKGROUND 31

parallel systems can operate with a single memcached instance. In the following experiments,
the application specific metric of interest for memcached is request latency. This is the time
measured between a request being issued and a response being received. A secondary application
specific metric is throughput, which is the number of requests that can be served per second.
Measurements of these metrics are made by an external application which issues requests and
receives responses.

In my measurements I use a slightly modified version of the memaslap load generator.
The default memaslap load generator only reports summary statistics at the end of each experi-
ment. My modified version stores the latency of every request in memory and returns all values
once when the test is complete or memory runs out. I then process the raw values myself.

2.3.2.3 Hadoop Map-Reduce - Distributed Programming Framework

Hadoop Map-Reduce [50] (commonly known as Hadoop MR or simply Hadoop) is an open
source implementation of the Google Map-Reduce [49] system. The system provides a high level
framework for programming distributed systems. In a Map-Reduce system there are two phases
of computation. The first map phase takes a set of key/value inputs and produces a (possibly
empty) set of intermediate values for every key. The second reduce phase takes the set of values
for each key and merges them together to form a possibly smaller set. Usually the output from
the reduce phase is a single value or no value at all. Between the map and reduce phases, a shuffle
phase communicates all values with a given key to at least one reducer. In practice mappers
and reducers use the same physical machines, so the shuffle phase becomes a synchronised
all-to-all communication step. Synchronised all-to-all communication puts immense stress on
the network and can result in TCP incast [83] throughput collapse. The application specific
metric for Map-Reduce is therefore Flow Completion Time (FCT). This will be expressed at the
application level as the time it takes for a Map-Reduce job to complete.

The Hadoop Map-Reduce system stores its data in a distributed data-store called the
Hadoop Distributed File System (HDFS) [43]. Loosely speaking, HDFS is an implementation
of Google File System (GFS) [42]. HDFS segregates data into blocks of a fixed size. Typically
these blocks are 128MB. Block data is stored on multiple datanodes where this data is replicated.
The replication is usually at least three ways and attempts are made in larger clusters to ensure
the replicas reside in different failure domains. HDFS uses a centralised namenode on which
meta-data about the location of each block is stored and the relationship that blocks have to any
given file. This name node may have a backup for failover purposes.

Without a user supplied program, Hadoop is nothing more than a framework. To
exercise Hadoop, I supply two 512MB files, each containing uniformly randomly generated
numbers in ASCII text format (39M rows). The files are loaded into HDFS. Using the Musketeer
system [27] Hadoop code is generated to apply a natural join to these datasets. The output
of which is 29GB in size (1.5B rows). Although the join operation is simple and the data
size is relatively small, this operation is a common component of many higher level services

32 2.4. CONGESTION CONTROL IN DATACENTERS

H10 H11 H12H8H7H6H1 H9... H5

ToR switch 3ToR switch 2

Aggregation switch

ToR switch 1

10G

10G

Figure 2.6: Network topology of my test-bed.

and algorithms used by datacenter operators [27]. It is thus indicative of a realistic datacenter
workload.

2.3.3 Experimental Configuration

The above applications need somewhere to run in order to test the effects of interference between
them. I use the following experimental configuration to run and test them. The physical test-bed
comprises an otherwise idle, 12 node cluster of recent AMD Opteron and Intel Xeon-based
machines running Linux kernel 3.4.55 with an Ubuntu 14.04 software distribution. Each machine
has a two-port 10Gb/s NIC installed and is connected to a 10Gb/s Ethernet/IP network. The
network is comprised of four Arista 7050 switches arranged as per Figure 2.6. This architecture
is broadly similar to those described in Section 2.1.3 and approximates41 the 3:1 oversubscription
ratio found in production datacenters (see §2.1.3). I use ptpd v2.1.042, memcached v1.4.1443, and
I generate load for memcached using memaslap from libmemcached v1.0.1544. memaslap is
modified as described in Section 2.3.2.2. It is configured using binary protocol with a mixed
get/set workload of 1kB requests in TCP mode with 128 concurrent requests45. Finally, Hadoop
2.0.0-mr1-cdh4.5.1 is deployed on eight of our twelve nodes, with the HDFS data in tmpfs and
the replication factor set to six46.

2.4 Congestion Control in Datacenters

Datacenter network congestion control continues to be an active area of research, development,
and implementation efforts. Some of these efforts are readily deployable while others are still
at a prototype or simulation only stage. The following section contains a description of the
relevant contemporary approaches. Key properties of the approaches are summarised in Table 2.2.

41Within the constraints of the equipment available to me
42https://github.com/ptpd/ptpd.
43https://github.com/memcached/memcached.
44http://libmemcached.org/
45Flags: -X 1024 -B -T2 -c 128 -t 120s -S 1s
46This simulates the traffic a larger Hadoop cluster would generate.

https://github.com/ptpd/ptpd
https://github.com/memcached/memcached
http://libmemcached.org/

CHAPTER 2. BACKGROUND 33

Unmodified Coord. Flow Bounded Imple-
System hardware proto. OS kernel apps. free deadlines latency mented

D
ep

lo
ya

bl
e

TCP [74] 3 3 3 3 3 7 7 3‡

EFC [88] 3 3 3 3 3 7 7 3‡

ECN [78] 3∗, ECN 3 3 3 3 7 7 3‡

DCTCP [71] 3∗, ECN 3∗ 7 3 3 7 7 3‡

Fastpass[87] 3 3 3, module 3 7 7 7 3‡

EyeQ [89] 3∗, ECN 3 7 3 7 7 7 3‡

QJUMP 3 3 3, module 3 3 3∗ 3 3‡

EYEQJUMP 3 3 3, module 3 7 3 3 7

FASTJUMP 3 3 3, module 3 7 3 3 7

R3CJUMP 3∗, ECN 3 3, module 3 7 3 3 7

N
ot

de
pl

oy
ab

le

D2TCP [90] 3∗, ECN 3∗ 7 7 7∗ 3 7 3

HULL [91] 7 3∗ 7 3 3 7 7 3∗

D3 [92] 7 7 7 7 3 3 7 7∗, softw.
PDQ [93] 7 7 7 7 7 3 7 7

pFabric [94] 7 7 7 3 3 3∗ 7 7

DeTail [85] 7 3 3 7 7∗ 7 7 7∗, softw.
TDMA [95] 3∗ 3∗ 7 3∗ 7 7 3 3

Table 2.2: Comparison of related systems. ∗with caveats, see text; ‡implementation
publicly available.

Systems are categorised as deployable if they function on commodity hardware using unmodified
transport protocols and unmodified application source code. They are classified as implemented
if tests have been run on physical test-beds (i.e. not in simulation alone) and if any special
hardware required has at least been prototyped. For some approaches the source code is publicly
available. Where possible, publicly available systems are tested to measure their effectiveness
at resolving network interference on my test-bed. For comparison, the table also contains rows
for QJUMP, EYEQJUMP, FASTJUMP and R3CJUMP which will be described more fully in
Chapters 4 and 5.

2.4.1 Transmission Control Protocol (TCP CUBIC)

The default TCP congestion control algorithm used by the Linux kernel 2.6.19 to 4.6 and Mac
OS X Yosemite is TCP CUBIC [74]. The protocol modifies the linear window growth function of
previous TCP standards to be a cubic function. This is in order to improve the scalability of TCP

over fast and long distance networks (e.g. the Internet). CUBIC is not specifically designed for
use in datacenters, but since it is the default algorithm included with Linux, it makes a useful
comparison point.

It is worth noting that PTP does not use TCP to transfer messages. The protocol uses
either User Datagram Protocol (UDP) [96] or Ethernet frames directly. It is however very
sensitive to delays in the network which can be caused by TCP filling switch queues. PTP is in

34 2.4. CONGESTION CONTROL IN DATACENTERS

0 100 200 300 400 500 600
Time since start [sec]

-400
-200

0
200
400
600

C
lo

ck
of

fs
et

[µ
s]

ptpd only
ptpd with hadoop

(a) PTPd performance (synchronisation offset)

0 100 200 300 400 500 600
Time since start [sec]

0
200
400
600
800

1000
1200

La
te

nc
yt

[µ
s]

memcached only
memcached with Hadoop (TCP)

(b) memcached performance (request latency)

idle TCP
Configuration

0

25

50

75

100

125

150

R
un

tim
e

[s
ec

]

(c) Hadoop (runtime)

Figure 2.7: Comparison of PTPd, memcached and Hadoop performance when run in
isolation, or on a shared network using only TCP congestion control to mitigate interference.

effect an external measure of the delays caused by TCP queueing in the network.

In Figure 2.7a, I show a timeline of PTPd synchronising a host clock on both an idle
network and when sharing the network with Hadoop. PTP takes approximately 5 minutes
to stabilise clock synchronisation to within ≤10µs while there is no background traffic (see
Figure 2.7a). When PTP shares the network with Hadoop, Hadoop’s shuffle phases causes
queueing. This delays PTPd’s synchronisation packets and causes PTPd to temporarily fall
200–500µs out of synchronisation. The effect is is 50× worse than on an idle network. The
result is clear: PTP is both affected by network interference and network interference can be
caused by Hadoop. As expected, TCP CUBIC does little to reduce this interference.

Figure 2.7b shows that a similar situation occurs with memcached. The figure reports
the same timeline, this time showing request latencies for memcached, also on an idle network
and on a network shared with Hadoop. With Hadoop running, the 99th percentile request latency
degrades by 1.5× from 779µs to 1196µs. Furthermore, around 1 in 6,000 requests takes over
200ms to complete. This is likely because severe packet loss triggers a TCP Retransmit Timeout
(RTO).

A Retransmit Timeout (RTO) fires when TCP fails to receive several consecutive ac-
knowledgements. The protocol cannot know if the acknowledgements have been lost, or if they
are being delayed by severe congestion. Injecting more packets into the network may exacerbate
severe congestion, but missing acknowledgements may also indicate that data has not been
received and needs to be retransmitted. The protocol must therefore wait for a ‘safe’ period

CHAPTER 2. BACKGROUND 35

0 100 200 300 400 500 600
Time since start [sec]

-400
-200

0
200
400
600

C
lo

ck
of

fs
et

[µ
s]

ptpd only
ptpd with hadoop + EFC

(a) PTPd performance (synchronisation offset)

0 100 200 300 400 500 600
Time since start [sec]

0
200
400
600
800

1000
1200

La
te

nc
yt

[µ
s]

memcached only
memcached with Hadoop + EFC

(b) memcached performance (request latency)

idle EFC
Configuration

0

25

50

75

100

125

150

R
un

tim
e

[s
ec

]

(c) Hadoop (runtime)

Figure 2.8: Comparison of PTPd, memcached and Hadoop performance when run in
isolation, or on a shared network while using Ethernet flow control (IEEE 802.3x) to
mitigate interference.

so that any outstanding (delayed) acknowledgements can be received, but not too long so that
bandwidth is wasted because required retransmissions have not been sent. The value of ‘safe’ is
determined dynamically [66] with a minimum value which is called the minimum RTO (minRTO).
The default minRTO value is 200ms in Linux, (see §3.4.1) for more details. Messages delayed by
a minRTO are over 85× worse than the maximum latency on an idle network.

In Figure 2.7c I show the runtime of Hadoop with and without memcached and PTPd

sharing the network. The impact of PTPd and memcached on the Hadoop job runtime is minimal.

2.4.2 Ethernet Flow Control (IEEE 802.3x)

Ethernet Flow Control (EFC) is a data link layer congestion control mechanism. It is a form of
explicit congestion notification and one of the central components of the Datacenter Bridging
(DCB) extensions to Ethernet [95, 97]. When using Ethernet Flow Control (EFC), hosts and
switches issue special link-local pause frames when their queues are full (or nearly full). These
messages alert the sender to stop sending for a specified pause period [95] which is contained in
the message. Pause frames allow the receiver to clear local buffers before they overflow. One
problem with this approach is that several higher layer (e.g. TCP, UDP) flows may share a single
Ethernet layer connection. If one of these flows exceeds the output capacity of the switch, a
pause frame may be issued and all flows will be delayed. This is otherwise known as Head of
Line (HOL) blocking. To mitigate HOL blocking effects, there is an extension to IEEE 802.3x

36 2.4. CONGESTION CONTROL IN DATACENTERS

pr
ob

ab
ili

ty

queue depth

WRED ECN Marking

lower

0

1

upper

Figure 2.9: WRED marking probably function

called Priority Flow Control (PFC) (IEEE 802.1Qbb [88]). PFC extends the flow control format
to support 8 different traffic classes. By sending an 802.1Qbb PFC pause frame, different traffic
classes can be paused [95] for different amounts of time (or not at all).

Figure 2.8 shows the effect of using Ethernet Flow Control in the same experimental
configuration as above. It shows that EFC has a limited positive influence on memcached
(Fig 2.8b). This is because EFC limits loss in the network. Although limiting loss in the network
would appear to be beneficial, it also has secondary effects. Ordinarily, TCP would use loss as
a signal to reduce its sending rate. Since EFC limits loss, TCP keeps all queues occupied and
pause messages add further delay to the network. This has a strongly negative influence on PTPd

(Fig 2.8a) performance. Hadoop’s performance is throughput bound and remains unaffected
(Fig 2.8c).

2.4.3 Explicit Congestion Notification (ECN)

In comparison to EFC/PFC, Explicit Congestion Notification (ECN) [78] provides a more fine-
grained congestion signal. ECN is a network layer mechanism in which switches indicate
queueing to end-hosts by marking IP packets with a special flag. Our Arista 7050 switch
implements ECN with Weighted Random Early Detection (WRED)47. WRED is a type of Active
Queue Management (AQM) scheme and is a variant of Random Early Detection (RED) [98].
In a WRED system, an administrator must configure two marking thresholds: an upper and
lower threshold (See Fig. 2.9). These thresholds denote queue lengths within the switch. If
the queue length is below the lower threshold, no action is taken. When queuing exceeds the
lower threshold, packets are randomly marked by setting explicit congestion notification bit.
The markings are added with linearly increasing probability until the upper threshold is reached.
Once the queue length exceeds the upper threshold, all packets are marked with the ECN bit set.
The ECN bit expresses to senders and receivers that congestion is occurring or will occur soon. It
allows senders to reduce their rates well before packet loss becomes a problem.

47Arista switch configuration manual. See Appendix A.2.4.

CHAPTER 2. BACKGROUND 37

5 10 20 40 80 16
0

32
0

64
0

12
80

25
60

ECN minimum marking threshold [segments]

1

5

10

15

20

25

30
N

or
m

al
iz

ed
R

M
S

la
te

nc
y

memcached
PTPd
Hadoop

Figure 2.10: Normalised Root Mean Squared (RMS) performance for PTPd, memcached
and Hadoop when run in on a shared network while using explicit congestion notifications
(ECN). Results are normalised to applications running on an idle network. Applications are
reported using their application specific metric; PTPd: synchronisation offset, memcached:
request latency, and Hadoop: job completion time.

One of the difficulties with deploying RED/WRED systems is choosing the correct mark-
ing thresholds. The choice of marking threshold can have a dramatic impact on on application’s
performance. Figure 2.10 shows the results of using ten different marking thresholds pairs,
ranging between [5, 10] and [2560, 5120] ([lower,upper], in packets). The figure shows the
RMS value of each application specific metric, normalised to the idle case. The application
specific metrics are; PTPd: synchronisation offset, memcached: request latency, and Hadoop: job
completion time (for more details see §4.5.2). None of these settings achieve ideal performance
for all three applications, but the best compromise is at [40, 80]. This point lies directly before
an inversion point where memcached starts to be heavily affected by Hadoop’s traffic, but at
the minimum reduction in Hadoop’s traffic. With this configuration, ECN effectively resolves
the interference experienced by PTPd and memcached. However, this comes at the expense
of substantially increased Hadoop runtimes. Figure 2.11 is included to facilitate comparisons
with previous and forthcoming experiments. This shows the performance of the ECN using the
same style of plots previously used (e.g Fig. 2.8), when configured at thresholds of [40,80]. The
figure shows the improved performance of PTPd and memcached, but also the decreased Hadoop
performance.

It is interesting to note that the recommended ECN thresholds for DCTCP [71] (see
§2.4.4) falls nearly exactly in the middle of this range ([65,65]). Finally, contrary to claims by
previous work (e.g. [71, 91]), at the time of writing I found it difficult to acquire switches that
support ECN. Only one (now superseded) model of Arista switches supported ECN and it has

38 2.4. CONGESTION CONTROL IN DATACENTERS

0 100 200 300 400 500 600
Time since start [sec]

-400
-200

0
200
400
600

C
lo

ck
of

fs
et

[µ
s]

ptpd only
ptpd with hadoop + ECN

(a) PTPd performance (synchronisation offset)

0 100 200 300 400 500 600
Time since start [sec]

0
200
400
600
800

1000
1200

La
te

nc
yt

[µ
s]

memcached only
memcached with Hadoop + ECN

(b) memcached performance (request latency)

idle ECN
Configuration

0

50

100

150

200

250

300

R
un

tim
e

[s
ec

]

(c) Hadoop (runtime)

Figure 2.11: Comparison of ECN, memcached and Hadoop performance when run in isola-
tion, or while on a shared network using Explicit Congestion Notification (ECN) configured
to [min,max] marking thresholds of [40,80] to mitigate interference.

proven difficult to find new switches that do. Nevertheless ECN appears to be widely used by
Google, Facebook and others[34].

2.4.4 Datacenter TCP (DCTCP)

Datacenter TCP (DCTCP) has recently been proposed as a solution to TCP problems such as TCP

incast found in datacenter networks [71]. DCTCP is optimised for high-bandwidth, low-latency
datacenter networks with switches that support ECN. It improves upon ECN (see §2.4.3) by
estimating the fraction of bytes that encounter congestion, rather than simply detecting that
some congestion has occurred. It then scales the TCP congestion window based on this estimate.
This method is claimed to achieve high burst tolerance, low latency, and high throughput with
shallow-buffered switches. DCTCP has seen impressive uptake: It has been integrated into the
Windows Server 2012 operating system48 as well as the Linux 3.18 kernel49 and Google use an
algorithm similar to DCTCP in their datacenters [34].

As with previous approaches, I configured an ran DCTCP with PTPd, memcached and
Hadoop sharing the test network. Figure 2.12 shows the results. The figure largely supports the
DCTCP authors’ claims. DCTCP reduces the variance in PTPd synchronisation and memcached
latency compared to the contended case. However, this comes with a small, but marked, increase

48Discussed on Microsoft Technet (9 May 2012). See Appendix A.21.3.
49Linux 3.18 release discussed on kernelnewbies.org (7 December 2014). See Appendix A.19.1.

CHAPTER 2. BACKGROUND 39

0 100 200 300 400 500 600
Time since start [sec]

-400
-200

0
200
400
600

C
lo

ck
of

fs
et

[µ
s]

ptpd only
ptpd with hadoop + DCTCP

(a) PTPd performance (synchronisation offset)

0 100 200 300 400 500 600
Time since start [sec]

0
200
400
600
800

1000
1200

La
te

nc
yt

[µ
s]

memcached only
memcached with Hadoop + DCTCP

(b) memcached performance (request latency)

idle DCTCP
Configuration

0

25

50

75

100

125

150

175

R
un

tim
e

[s
ec

]

(c) Hadoop (runtime)

Figure 2.12: Comparison of PTPd, memcached and Hadoop performance when run in
isolation, or on a shared network using datacenter TCP (DCTCP) to mitigate interference.

in Hadoop job runtimes. Nevertheless, DCTCP performs best out of all previously tested
approaches.

2.4.5 High-bandwidth Ultra-low Latency (HULL)

Since DCTCP was proposed, several variants have been proposed that extend it in various ways.
High bandwidth Ultra Low Latency (HULL) [91] is one such example. With HULL, the authors
are motivated by a desire to provide predictable, “ultra-low latency” in datacenter networks
without sacrificing (too much) bandwidth. The authors of HULL make an important observation
which will become a central element in my work:

Achieving predictable and low fabric latency essentially requires congestion sig-
nalling before any queueing occurs. That is, achieving the lowest level of queueing
latency imposes a fundamental trade-off with bandwidth (emphasis added).

To resolve this trade-off, the authors propose a Phantom Queue (PQ) approach associated with
each switch port. Rather than marking packets when queueing occurs, the PQ simulates queue
buildup for a virtual egress port running at a speed slightly slower than the physical link speed.
The PQ is then used to mark packets (using ECN flags) when queuing would occur on the slower
link (but has not yet actually occurred). This produces a sensitive imminent congestion signal
based on utilisation rather than actual queuing. However, the problem with this signal is that
it is susceptible to bursty behaviour in the network. For a variety of reasons including TCP

40 2.4. CONGESTION CONTROL IN DATACENTERS

slow-start (see §2.2 and [99]), acknoweldgement compression [100] and various offload features
in NICs like Large Segment Offload (LSO) [91] transmissions are bursty [101]. To overcome
this packet-pacing is required in the NIC. The packet-pacing feature ensures a consistent rate of
packet transmissions into the network. The authors observe that:

It is paradoxical that the pacer must queue packets at the edge (end-hosts) so that
queueing inside the network is reduced. Such edge queueing can actually increase
end-to-end latency, offsetting any benefits of reduced in-network queueing.

To combat this problem, pacing is selectively applied only to long flows using an online classifi-
cation system.

Despite impressive performance gains over DCTCP, HULL suffers from several draw-
backs. Like DCTCP, its rate-limiting is applied in reaction to ECN-marked packets which requires
the support of ECN enabled switches50. Furthermore, it requires phantom queue modifications
to those switches, which would require custom switch chips to be produced as well as pacing
features to be integrated into NICs. These are invasive hardware changes to both the edge and
the core of the network hardware. It is difficult to see how HULL might be deployed in current
datacenters where commodity hardware dominates purchasing decisions.

2.4.6 D2TCP and D3 and PDQ

Another alternative to DCTCP is Deadline-aware Datacenter TCP (D2TCP) [90]. D2TCP extends
DCTCP’s window adjustment algorithm with the notion of flow deadlines. Flows with later
deadlines aggressively reduce their sending rate in the face of congestion whereas flows with
near deadlines reduce their sending window less aggressively or not at all. Like DCTCP, D2TCP

requires switches that support ECN.

Another deadline aware datacenter network transport is Deadline Driven Delivery (D3)
control protocol. D3 is a radical departure from the TCP/IP based protocols described so far.
It introduces an entirely new protocol, header format and network switch/router architecture.
D3 introduces the notion that unfairness can increase performance. Under D3, hosts calculate a
desired rate based on the remaining flow size and deadline. This calculation is used to generate
a request which is sent to each switch/router along the path. Rate allocations are made by the
switches which greedily allocate rate to request packets on each round trip and store them in the
new header format.

A substantial enhancement over D3 is Preemptive Distributed Quick (PDQ). PDQ also
champions the usefulness of unfairness in datacenter networks but takes it one step further. PDQ

implements a distributed preemptive scheduling mechanism. Switches along the network path
not only assign a rate to a flow, but can also “pause” (similar to §2.4.2) or even terminate a flow.
PDQ can be used to implement Earliest Deadline First (EDF) and/or Shortest Job Remaining

50Only one in five 10Gb/s switches I looked at supports ECN.

CHAPTER 2. BACKGROUND 41

(SJR) scheduling algorithms. However, like D3, PDQ also requires substantial modifications to
the switches, kernels and applications.

D2TCP, D3 and PDQ all introduce new congestion control algorithms to the datacenter.
Furthermore, all champion the application of unfairness in datacenters. Yet no system funda-
mentally changes the network interference properties of the network. Under all systems queue
occupancy is similar to that of DCTCP, but is instead unfairly allocated proportionally to flows
dependent on their respective deadlines. An interesting consequence is that all systems show that
differentiating between different types of traffic (“unfairness”) in the datacenter network can be
beneficial overall. I apply this principle in my work, especially in QJUMP (see Chapter 4).

2.4.7 TDMA for Datacenter Ethernet

One observation that motivated the distributed design of PDQ is that it is “unrealistic” to
implement a “centralised algorithm” for scheduling flows in a datacenter network. The authors of
TDMA for Datacenter Ethernet [95] do exactly this. They argue that datacenter communication
patterns look less like the traditional wide-area workloads that TCP was designed for and more
like the tightly coupled communication network of a supercomputer backplane. However, despite
supercomputer-like workloads, datacenter networks eschew “boutique” link layers designed
for supercomputers (e.g. Infiniband [102]) because of the cost advantages of Ethernet. As a
response, the paper introduces the design of a Time Division Multiple Access (TDMA) Media
Access Controller layer using commodity Ethernet hardware.

Like PDQ, the TDMA Ethernet design issues special messages to selectively pause
or preempt flows on each host. However unlike PDQ, these messages are sent to all hosts
simultaneously by a centralised scheduler. The messages serve as a way to gate flows into the
network. This is how the time division, multiple access schedule is implemented.

TDMA Ethernet uses a centralised scheduler. The aim of the scheduler is to decide when
and for how long each flow is allowed to use a given network path. This is to ensure that no two
flows attempt to use the same network path at the same time (which would cause congestion).
The scheduler is given network resource demands and capacities via an out-of-band network and
uses these to calculate the schedule for a short interval.

TDMA Ethernet is evaluated using an Hadoop Map-Reduce shuffle (all-to-all) like
workload. The results show a significant improvement in flow completion times. Furthermore,
the system is explicitly tested for its ability to handle network interference. A similar test to my
own from Section 2.3.1, case (6), is used. In the test, a UDP based ping application measures
Round-trip Times (RTTs) in the presence of congestion caused by two TCP senders. With the
TDMA system enabled, the RTTs are reduced by a factor of around 3×. However, this reduction
comes at the expense of throughput for the high rate senders.

Although the results of the TDMA Media Access Controller (MAC) system evaluation
show promise, the design, implementation and evaluation fall short in several ways:

42 2.4. CONGESTION CONTROL IN DATACENTERS

1. Scheduling messages are implemented using 802.1x/802.1Qbb Ethernet Flow Control
(EFC) / Priority Flow Control (PFC) (see also 2.4.2). The design uses the traffic class
identifier in the PFC message to selectively pause specific routes through the network.
However, standard PFC messages are limited to only 8 different traffic classes (using a 3-bit
class identifier). To overcome this limitation, the authors modify the PFC format, extending
it to 11 bits and use a kernel bypass network stack to implement this. This significant
modification deviates from the stated goal of using commodity Ethernet hardware and
would require substantial hardware and software changes in a real deployment.

2. Overheads in the system limit the minimum time interval for each transmission slot. In the
prototype implementation a minimum time slot of 300µs with an additional “guard time”
of 15µs is used. The guard time imposes a minimum 5% bandwidth penalty on any flow,
while the minimum slot time requires that each flow send at least 375kB per interval. If a
flow cannot use its entire slot, significantly more bandwidth will be wasted.

3. No attempt is made to handle path heterogeneity, a common feature in datacenter networks
(see §2.1.3).

4. Few details are given about the scheduling algorithm employed. The prototype implemen-
tation uses a “round-robin scheduler that leverages some simplifying assumptions about
the network topology”, but no further details are given. The optimal scheduling problem is
known to be NP-hard [87, 94, 103] and thus scales poorly with both increasing network
size and utilisation. Furthermore, the authors explicitly state that the scheduler is unable to
estimate demand for short, latency sensitive flows in (paper §§4.1). However, the network
interference test (paper §6.2 and described above) would appear to rely on this property.
No details are given on how the interference test is made possible given this scheduler
limitation.

2.4.8 Fastpass

The development of efficient centralised network flow scheduler is left as an open problem by
the authors of TDMA Ethernet (see §2.4.7). Fastpass tackles this problem directly, but takes
it one step further. Rather than implement a centralised flow scheduler, Fastpass implements
a centralised packet scheduler. Like TDMA Ethernet, the goal of Fastpass is to implement a
“zero-queue” datacenter network. To achieve this, Fastpass treats the network as if it were a
single (complex) switch. Like TDMA Ethernet, Fastpass hosts issue requests to a centralised
arbiter for permission to send packets into the network. In Fastpass, the arbiter performs a similar
job to classical switch schedulers like iSLIP [103] and PIM [104].

In essence Fastpass implements a packet-by-packet Time Division Multiple Access
(TDMA) scheme over a datacenter network. In many respects this is a refined version of the
approaches taken in TDMA Ethernet (see §2.4.7). The approach also echoes the the work in
High bandwidth Ultra Low Latency (HULL) (§2.4.5) where the scheduler “queues packets at the
edge (end-hosts) so that queueing inside the network is reduced [or eliminated]”. While Fastpass
eliminates in-network queueing, requests for an allocation must queue at the centralised arbiter

CHAPTER 2. BACKGROUND 43

and packets must wait at the end-hosts until a schedule can be issued. Furthermore, unlike TDMA

Ethernet, Fastpass does not take into consideration of capacity at the destination hosts. Delays
at the end hosts would lead to dropped packets, despite the significant resources expended in
getting them there.

The Fastpass software arbiter is capable of scheduling 2.21Tb/s of traffic on a single
8 core machine. The arbiter is tested in a live rack in a Facebook cluster. Only a single rack
is tested, so no path planning is required, which does reduce the complexity of the test. As its
main result, the test demonstrates a 2.5× reduction in TCP retransmissions from an average
4 per second down to 1.6 per second. The authors do not elaborate on any benefit gained by
this reduction. Although retransmission timeouts (RTOs) can lead high latencies (see 2.4.1), 4
timeouts per second already appears to be a very low value. A reduction from 4 per second down
to 1.6 per second would appear to be inconsequential, especially given that a 10Gb/s Ethernet
link is capable of transmitting between 800K and 14.4M frames per second [105].

Fastpass lacks a specific evaluation of its impact on overall, end-to-end packet latency.
Once again echoing the earlier work in HULL,“edge queueing can actually increase end-to-end
latency, offsetting any benefits of reduced in-network queueing.” This appears to be the case.
The paper reports a similar ping and iperf experiment to that conducted in Section 2.3.1. In
the test, iperf is demonstrated to interfere with ping performance. Fastpass is then shown
to resolve this interference. Unfortunately, no baseline values for ping without Fastpass or
iperf are given. In the reported results, ping traffic using Fastpass has a 50th percentile RTT of
230µs and a 99th percentile of 380µs. These values are approximately 3× the baseline latency
values that I obtained in my experiments. They exceed all other types of interference other than
shared switch queues (case 6) in my experiments. I cannot say for certain that my experimental
arrangement was identical to theirs, but it would appear prima facie that Fastpass is introducing
significant delays to the ping traffic.

One final issue with the Fastpass approach is that it requires the network to be rearrange-
ably non-blocking (RNB). An RNB network differs slightly from the non-blocking networks
described in Section 2.1.3. In an RNB, any input port can still be connected to any free output
port however, existing connections may need to be rearranged to do so [106]. Although this is
a weak form of non-blocking network, it still rules out oversubscribed networks such as those
commonly found in datacenters (see §2.1.3). This requirement may be the reason that only a
single rack was used in the Facebook evaluation test.

2.4.9 pFabric

Unlike Fastpass, pFabric is a completely clean-slate approach to datacenter network congestion
control. The system aims to take principled, minimal, approach to the problem of scheduling
datacenter networks.

A key insight of the paper is to decouple flow scheduling from rate control. This is
achieved by including a single number in the header of every packet which encodes its priority.

44 2.4. CONGESTION CONTROL IN DATACENTERS

Switches in the network simply schedule packets on the basis of this priority value. The paper
argues that such switches then require only shallow buffers and simple hardware construct. The
authors go to great lengths to substantiate this claim by describing, in detail, how the scheme
could realised in simple hardware. The priority value is set independently by each flow. It can be
used to encode many different scheduling values. Examples include: the remaining flow size,
the flow deadline or the absolute flow size.

For the remainder of the paper, the authors choose “remaining flow size” as the value
to be encoded. Encoding the remaining flow size into the priority field allows pFabric to
approximate the Shortest Remaining Processing Time (SRPT) scheduler. This policy is known
to be optimal for minimising Flow Completion Time (FCT) on a single link. However, even a
simplified version of the problem for multiple links is known to be NP-Hard. pFabric implements
a greedy approximation of SRPT policy. The greedy approximation has been proven to be at least
within a factor of 2 of the optimal, though the authors claim that, in practice, their solution is
much closer.

Using the above scheduling mechanisms, the need for rate control in pFabric is minimal.
Only one corner case mandates its use: if a packet traverses the entire network but is dropped at
the last hop, significant resources will have been wasted. To cope with this, pFabric uses TCP’s
most basic rate control mechanisms, and removes the initial slow-start phase as well as several
congestion heuristics.

pFabric is evaluated in simulation using two synthetic workloads. The workloads
replicate the flow size distributions found in previous datacenter network studies [69, 71]. Using
these workloads, the evaluation focuses mainly on Flow Completion Time (FCT) performance.
pFabric is shown to significantly outperform TCP (see §2.2 and §2.4.1), DCTCP (see §2.4.4) and
PDQ (see §2.4.6) as well as closely approximating the optimal scheduling solution. However,
pFabric’s near-optimality is strictly limited to minimising average Flow Completion Times
(FCT). Although the simulations show impressive 99th percentile flow completion time results,
there is no guarantee that these results will hold under other traffic patterns. Furthermore, the
performance is predicated on the assumption that flows have a fixed size which applications can
predeclare ahead of time. Predeclaring flow sizes ahead of time is not trivial to do with practical
applications.

While workloads like Hadoop and HDFS transfer data in chunks with fixed sizes,
streaming workloads cannot be easily described in a fixed size manner. One approach to doing
this might be to break large flows into smaller flowlets of application level messages. Techniques
for doing this are described in Enabling End-Host Network Functions [107]. The problem with
using flowlets (especially at high load) is that it will produce many small sized messages with
similar priorities. In this case, packets will queue and contend with each other in a manner that
resembles existing systems. pFabric requires its minimal TCP-like rate control mechanisms for
situations like this. However, when invoked, the performance of the system will degrade to
TCP-like performance.

CHAPTER 2. BACKGROUND 45

As with other priority based systems, pFabric’s priority system can also be gamed.
Large users like Hadoop and HDFS might game the system by starting many short flows rather
than one large flow. The short flows would consume a higher fraction of high priority time slices
in switches potentially leading to unfairness at best, and poor service for all at worst.

Finally, as a clean-slate design, pFabric requires new switches, network adapters and
substantial end-host modifications. This would make the system difficult to deploy into a
production datacenter environment.

2.4.10 pHost and EyeQ

The Fastpass system (see 2.4.8) required networks that are rearrangeably non-blocking (RNB).
Given the requirement for a non-blocking network, alternative system designs are possible.
pHost [108] is one such design. pHost assumes a full bisection bandwidth network [109]. It
further assumes that network switches are configured to spread packets uniformly across the set
of available paths through the network. This is called packet spraying [110].

The authors observe that “using packet-spraying in a full-bisection-bandwidth network
can eliminate almost all congestion in the core” which means that “sophisticated path-level
scheduling (as in Fastpass)” and “ detailed packet scheduling (as in pFabric)” are unneeded. In a
full bisection bandwidth network using packet spraying, queueing is restricted to contention at
the end hosts. To resolve this, pHost employs a Request To Send (RTS)/Clear To Send (CTS)
scheme. Under this scheme, sending hosts send RTS messages to an arbitrator at the destination
host. The arbitrator applies a scheduling policy to senders and issues CTS tokens to senders along
with a timeout for those tokens. Doing so places a bound on both the rate at which the sender
may inject new packets into the network and a bound on the time over which that injection may
occur.

Like PDQ (§2.4.6) and Fastpass, the pHost CTS token mechanism allows the scheduler to
preempt flows by issuing no new tokens for a given flow. This ability makes the pHost scheduler
very flexible. It can implement many different scheduling policies including minimising flow
completion times, deadline aware scheduling (e.g. §2.4.6) and fairness across multiple tenants.

In a simulation based evaluation, pHost is compared to Fastpass [87] (see §2.4.8) and
pFabric [94] (see §2.4.9). The authors show that pHost performs better than both Fastpass and
pFabric (which itself is near optimal). Further they argue that the scheme is readily implementable
over commodity networks, although, no real-world implementation is demonstrated.

pHost is not evaluated in terms of end-to-end latency nor in terms of network inter-
ference. Like Fastpass, pHost implements a packet by packet schedule with requests being
arbitrated at a centralised (destination host) arbiter. It is therefore likely that pHost will suffer
from similar latency performance artefacts to Fastpass, which introduced a 3× latency penalty.

The pHost system assumes a full-bisection bandwidth network. As discussed in Sec-
tion 2.1.3 (pg. 20), these are not common in real datacenter deployments. Typically datacenter

46 2.4. CONGESTION CONTROL IN DATACENTERS

deployments have an oversubscription ratio of around 3:1. The authors of EyeQ [89] concur
with this observation. However, using measurements from a production Microsoft Azure cluster
they go on to qualify that, despite the oversubscription, persistent congestion mostly occurs at
edge links and not in the core. This motivates the design of EyeQ which, like pHost, pushes
per-tenant state and rate management to the edge of the network.

EyeQ is designed to provide bandwidth isolation to multiple Virtual Machines (VMs)
sharing a datacenter network. It operates in a manner conceptually similar to pHost. A receiver
module at each destination measures the rate at which traffic is received from each source over
short time intervals of 200µs. On the basis of these measurements, the receiver calculates the
required rate limits for senders. The calculation assumes that no change will occur until the next
measurement interval. Using a measurement interval limits the time over which tenants may
interfere with each other. The interference period cannot exceed the measurement interval plus
scheduling, communication and rate limiting delays. It does not, however, limit the potential
extent of the interference which may still be very large in synchronised burst scenarios.

EyeQ is explicitly tested for its ability to control network interference. The system is
stressed using a memcached based TCP sender and a bursty UDP sender. In the base case, the
memcached sender achieves a 50th and 99th percentile latency of 98µs and 666µs respectively.
When the bursty UDP sender is enabled, these values degrade by three orders of magnitude. With
EyeQ enabled, the latencies are controlled to within 30% of the base values. EyeQ does however
degrade the overall performance of high throughput tasks. In an all-to-all shuffle test (modelled
on Map-Reduce) job completion times increase by 16%. This is for two reasons. First, EyeQ’s
congestion detecters maintain a 10% bandwidth headroom in order to work at end host without
network ECN support. Second, the receivers do not share bandwidth over periods of less than
200µs leading to short periods of under utilisation. Once again, EyeQ exposes the fundamental
trade-off between latency and bandwidth discussed by the authors of HULL (see §2.4.5).

2.4.11 DeTail

DeTail [85] takes a cross-layered, engineering centric, approach to minimising flow completion
times in datacenter networks. The DeTail authors argue that latency tails are due to “flash
congestion”, though they do not define this term. Further they argue that “flash congestion”
aggravates three issues present in datacenter networks:

1. Packet-loss and retransmissions which can lead to TCP timeouts. This can be particularly
serious for short flows that are still in the slow-start phase. For these flows, typical RTTs
would be on the order of 100s of microseconds, whereas TCP timeouts are likely to be 10s
of milliseconds. TCP timeouts would lead to tails many orders of magnitude greater than
the median.

2. Mixed workloads including both latency sensitive and throughput intensive traffic. When
congestion occurs, latency sensitive traffic may be queued behind throughput intensive
traffic. This queueing will contribute to the tails experienced by both types of traffic.

CHAPTER 2. BACKGROUND 47

3. Uneven load-balancing can lead to congestion hotspots, exacerbating issues (1) and (2)
above. The authors demonstrate scenarios where both flow hashing (e.g. ECMP [111])
and packet spraying [110] based load balancing are deficient and can lead to high 99th

percentile flow completion times.

To resolve these issues, DeTail introduces a new switch design. It uses (i) priority flow control
(PFC) to create a lossless fabric, (ii) packet prioritisation to differentiate between latency sensitive
and throughput intensive workload types, (iii) Explicit Congestion Notification (ECN) to signal
congestion, and (iv) adaptive load balancing to alleviate congestion hotspots. Features (i), (ii)
and (iii) where all already available in commodity switches at the time the paper was written.

By applying techniques (i)-(iii), DeTail assumes that any queueing at a switch is an
indication of congestion. Using this information, DeTail routes traffic through the path with the
shortest egress queue length. The authors assume that the entire datacenter network is IP routed,
with multiple paths between senders and receivers and that a routing protocol such as BGP or
Open Shortest Path First (OSPF) is in operation to determine these routes. This assumption is not
justified by the authors, however it is consistent with descriptions of existing datacenter networks
(see §2.1.4, pg. 22)

The main benefit of DeTail is its ability to reduce extreme latency tails caused by TCP

timeouts rather than to resolve interference caused by queueing in switches. The system relies
on both Ethernet Flow Control (see Section 2.4.2, pg. 35) and Explicit Congestion Notifications
(see Section 2.4.3, pg. 36), both of which I observe exacerbate, rather than resolve network
interference. Furthemore, like pFabric, DeTail introduces significant changes to into the switching
architecture. Unlike pFabric, no detailed description is offered for how these changes might be
implemented in hardware. This makes DeTail unlikely to see adoption in “the age of merchant
silicon” [112].

2.5 Multiplexer Scheduling – In Theory and in Practice
Datacenter networks are a shared resource of limited capacity. The congestion control solutions
discussed in Section 2.4 attempt to divide this resource equitably between network users. Some
systems (§2.4.1-§2.4.5) attempt to arrive at fair-share allocation for each user. Others (§2.4.6–
§2.4.11) attempt to optimise for a specific criterion, e.g. minimising average Flow Completion
Times (FCT), or minimising missed deadlines. However, congestion control systems are not
alone in the task of allocating network resources. Throughout the network are multiplexing
points where users contend for access to network resources. Multiplexing points can be found
in software, in hardware, or at the borders between software and hardware. For example,
multiple software processes, each with one or more flows, may contend to send or receive via
the (software) kernel. Similarly multiple flows, from multiple hosts may contend for access to
switch hardware to send or receive via that switch. Finally, many flows to (or from) the network
adapter may contend for software (or hardware) resources in the end-host.

At each point of contention, some system must be used to determine how to apportion

48 2.5. MULTIPLEXER SCHEDULING – IN THEORY AND IN PRACTICE

network resources across competing demands. Typically this system comprises one or more
queues, and a scheduling algorithm. The scheduling algorithm needs to decide how to allocate
three nearly independent quantities, each of which has an impact on network interference. These
quantities are [22]: (i) which packets get transmitted (bandwidth), (ii) when those packets get
transmitted (delay), and (iii) which packets are discarded (buffer space) when capacity is overrun.

The congestion control systems in Section 2.4 primarily attempt to control ingress and
egress rates into and out of the network. Queue depths at the multiplexers are treated as side
effect. With the exceptions of pFabric 2.4.9 and DeTail 2.4.11, none of the congestion control
systems in §2.4 take into account scheduler behaviour at multiplexing points. Furthermore, all of
the solutions rely on cooperation between the hosts using the network. For example, if a single
TCP sender chose to ignore its congestion window, it could unfairly monopolise the network to
the disadvantage of other senders. Likewise, if a host in the Fastpass network chose to ignore its
scheduled transmission intervals, it too could unfairly monopolise the network. This problem is
not a new one, nor is it restricted to datacenter network contexts.

Several years before Van Jacobson published his work on TCP Congestion Avoidance
and Control (see §2.2), John Nagle was grappling with a similar problem [113]. He too was
observing congestion based throughput collapse in early ARPANET/Internet systems. To resolve
these issues, he proposed two solutions: (i) the now ubiquitous51 ‘Nagle’s Algorithm’ for
controlling small packet overheads, and; (ii) a congestion avoidance scheme for TCP using
ICMP source quench messages. The latter is similar in spirit to (although less developed than)
Jacobson’s efforts. Having proposed these end-host based solutions, Nagle observed that they
were not enough:

Host misbehavior by excessive traffic generation can prevent not only the host’s own
traffic from getting through, but can interfere with other unrelated traffic.

My arguments in Sections 2.2 and 2.3 echo this observation. In a followup paper [114], Nagle
showed that even in switches with infinite memory, an overload situation caused by misbehaving
hosts could result in all packets being dropped. This surprising result lead Nagle to argue that:

If the packet switches queue on a strictly first in, first out basis, the badly behaved
host will interfere with the transmission of data by other, better-behaved hosts.

The key to this argument is the observation that first in, first out (FIFO) ordered scheduling at
packet switches can allow malicious or malfunctioning users to unfairly monopolise the network.
In the Internet, where hosts come from a range of disparate administrative domains, this could
be a serious problem. Ideally, different users of the network should be protected from each other
so that interference cannot occur. At the same time, network utilisation should be maximised.

51Available in every major operating system distribution: Linux (http://linux.die.net/man/7/tcp),
FreeBSD/macOS (https://www.freebsd.org/cgi/man.cgi?query=tcp&sektion=4&
manpath=FreeBSD+9.0-RELEASE), and Windows (https://msdn.microsoft.com/en-gb/
library/windows/desktop/ms740476(v=vs.85).aspx).

http://linux.die.net/man/7/tcp
https://www.freebsd.org/cgi/man.cgi?query=tcp&sektion=4&manpath=FreeBSD+9.0-RELEASE
https://www.freebsd.org/cgi/man.cgi?query=tcp&sektion=4&manpath=FreeBSD+9.0-RELEASE
https://msdn.microsoft.com/en-gb/library/windows/desktop/ms740476(v=vs.85).aspx
https://msdn.microsoft.com/en-gb/library/windows/desktop/ms740476(v=vs.85).aspx

CHAPTER 2. BACKGROUND 49

2.5.1 Scheduling – In Theory

By applying a game theoretic approach to the problem, Nagle proposed a protection solution
which would correctly incentivise senders to limit their own sending rates and would protect
users from senders who did not [114]. In his solution, each source in the network would be given
its own queue at the switch. The queues would be serviced in round-robin order. If a queue was
empty, it would be skipped and its service time would be equally (fairly) distributed to other
users. Nagle argued that this mechanism would be fair, and that outgoing link bandwidth would
thus be parcelled out equally amongst all source hosts whilst maximising overall utilisation. This
would be true if all users sent equally sized packets. However, many modern packet switched
networks such as the Internet and Ethernet (as used in datacenters) have variable packet sizes.
If variable packet sizes are used, then users sending larger packets can still obtain an unfair
proportion of the available throughput.

2.5.1.1 (Weighted) Fair Queueing - WFQ

The variable sized packet deficiency in Nagle’s round-robin scheduling was addressed by De-
mers et al. [22]. To overcome the deficiency, Demers initially proposed an idealised, hypothetical
service discipline. Similar to Nagle’s solution, in this discipline, each source/destination pair
would be placed into its own queue at the switch. However, rather than scheduling whole packets,
every non-empty queue would receive only 1 bit of service per scheduling round. Because every
packet must be at least 1 bit in size, the discipline would guarantee fair service between all
competing sources, regardless of packet sizes. This discipline has its roots in the Generalised
Processor Sharing (GPS) model described in Section 2.5.1.2. The problem with this model is
that it is not practically realisable.

Practical packet switches must service one whole packet at a time. To compensate for
this, Demers et al. proposed the Fair Queueing (FQ) approximation. To chose the next packet
to be serviced, an FQ scheduler first runs a ‘simulation’ of the idealised bit-by-bit scheduling
scheme, given the current outstanding packets to be serviced. The simulation calculates the time
at which all packets would have been serviced, had they been using the idealised scheme. The
FQ scheduler then chooses the packet with the minimum finishing time as the next packet to be
serviced. This allows an FQ scheduler to approximate the idealised discipline while still dealing
in units of whole packets.

Fair queueing can be generalised to allow for arbitrary bandwidth divisions. To do
so, every user is given a weight which determines the relative share of bandwidth that they
are allocated. This generalisation is known as Weighted Fair Queueing (WFQ). Weighted fair
queueing was independently developed by Parekh et al. under the name “Packet-by-packet
Generalised Processor Sharing (PGPS)”. It has been proven (by Parekh et al.) that PGPS/WFQ

schedulers are never worse than 1 maximum sized packet behind the ideal discipline [20].

50 2.5. MULTIPLEXER SCHEDULING – IN THEORY AND IN PRACTICE

2.5.1.2 (Packetised) (Generalised) Processor Sharing - (P)(G)PS

Processor Sharing (PS) and Generalised Processor Sharing (GPS) are the natural, mathematical
extensions of the bit-by-bit round-robin scheme discussed in Section 2.5.1.1 (although the roots
of these approaches are much older [115]). Generalised Processor Sharing (GPS) schemes
were first proposed by Kleinrock in the context of scheduling processor access in time-shared
computers [116]. Although practically unimplementable, these schemes achieve a theoretical
best case which forms a bound on the performance of realisable algorithms. For this reason, PS

and PGPS are the standard against which all other scheduling algorithms are compared.

Like the bit-by-bit system described above in Section 2.5.1.1, a processor sharing
scheduler gives each user, or session, its own FIFO queue. These queues are serviced in round
robin order, with each queue receiving a quantum Q of service time. However, unlike previously
described systems, PS schedulers employ an extreme approach, taking the limit as Q approaches
0 (Q→ 0). This implies that each queue will receive an infinitesimal amount of service. Thus,
if there are N non-empty queues, every queue will receive an instantaneous service which is
exactly oneN th of the total output rate. Therefore, in contrast to previously described approaches
(see §2.5–§2.5.1.1), PS schedulers are precisely fair. Processor sharing schedulers are also known
as fluid-flow schedulers because of their infinitesimal division of work.

Processor sharing schedulers serve all sessions at the same rate. However, it may be
beneficial to allow each session to be served at some arbitrary faction of the overall capacity.
This is much like the Weighted Fair Queueing extension to Fair Queueing (see 2.5.1.1). Applying
this extension to processor sharing is called Generalised Processor Sharing (GPS).

A GPS scheduler serves each session in proportion to its weight. More formally [20]: a
session is defined as backlogged if it has a non-empty queue. If, over some time period (τ, t],
there are N sessions being served, and each session has a positive, real weight φ1, φ2, . . . φN ,
then, for any backlogged session i, and any other session j, the following relation holds:

Si(τ, t)
Sj(τ, t)

≤ φi

φj

(2.1)

Where Sx(τ, t) is the amount of data served from the xth session. Furthermore, by summing over
all sessions j, the ith session is guaranteed a service rate of gi, which is a function of the link
speed r and the session weight φi:

gi = φi∑
j φj

× r (2.2)

Parekh et al. proposed a realisable packet based approximation to GPS which they called
PGPS. This algorithm, although independently developed, is identical to the WFQ algorithm
discussed in Section 2.5.1.1. Parekh proved two important properties for PGPS based systems:
(i) a packet will never depart later than one maximum sized packet time from a GPS system, and;
(ii) the amount of data served by a PGPS system will never be less than one maximum sized
packet deviation from a GPS system. More formally:

dk
iW F Q − dk

iGP S ≤
Pmax

r
(2.3)

CHAPTER 2. BACKGROUND 51

SiGP S(τ, t)− SiW F Q(τ, t) ≤ Pmax (2.4)

Where:

• Pmax is a maximum sized packet and r is the rate of the rate of service.
• dk

iW F Q and dk
iGP S are the times at which the kth packet on session i departs under WFQ and

GPS respectively.
• SiW F Q(τ, t) and SiGP S(τ, t) are the amount of data serviced over a time period (τ, t] under

WFQ and GPS respectively.

On this basis, Parekh further proved that PGPS servers could implement bounded delay scheduling
when combined with a token bucket regulator [20] and that this delay could be bounded end-to-
end if every scheduler in the network was also a PGPS server [21]. The bound on delay (D) in
this case is given by the relation:

D ≤ σ

g
+

K∑
s=1

Pmax

rs

+
K−1∑
s=1

Mmax

gs

(2.5)

Where:

• All sources are governed by a token bucket abstraction with rate ρ and burst size σ.
• The maximum size of packets in the network is Pmax and maximum size of packets in the

session is Mmax.
• The packets pass through K switches (schedulers) in total.
• For each switch s, there is a total rate rs of which each session receives a rate gs.
• g is the minimum of all gs.
• It is assumed that ρ ≤ g, i.e. the session is underutilised or at most perfectly utilised.

The terms in this equation can be understood intuitively. The first term σ/g is the pure GPS

term. This is the delay that would be experienced without a packetised GPS approximation.
The second term,

∑K
s=1

Pmax

rs
, is the PGPS correction term. This term adjusts for the difference

between GPS and the PGPS approximation at each switch. Recall from Equation 2.3 that PGPS

WFQ approximations are never worse than one full sized packet behind a GPS scheduler (see also
[20]). The final term,

∑K−1
s=1

Mmax

gs
, is the serialisation delay correction term. This term adjusts

for the time it takes each packet to be serialised as is passes between each switch.

These result above is important for two reasons. First, it proves that, with the help of
schedulers along the way, isolation is possible end-to-end in a packet switched network. Second,
it proves that, with the help of token bucket regulators at the source, an upper bound on delay is
possible end-to-end in packet switched network. Combined, these properties show that, at least
mathematically, network interference can be solved in packet switched networks.

2.5.1.3 Worst-case Fair, Wighted Fair Queuing - WF2Q

Equations 2.3 and 2.4 can easily be misinterpreted. They show that the amount of data served by
a PGPS system will never be less than one maximum sized packet deviation from the equivalent

52 2.5. MULTIPLEXER SCHEDULING – IN THEORY AND IN PRACTICE

GPS system. However, this does not imply that a PGPS scheduler provides near identical service
to a GPS scheduler. It is possible for a PGPS scheduler to serve much more data than the
equivalent GPS server. This can occur when backlogged packets are served ahead of the time at
which they would have begun service in a GPS system. The authors of Worst Case Fair, Weighted
Fair Queueing (WF2Q) [23] demonstrate this issue and resolve it. The WF2Q scheduler resolves
this discrepancy by introducing a further constraint into the GPS simulation. Packets are only
chosen for service from the set of packets which would have started (or possibly finished) service
in the equivalent GPS system. WF2Q is proved to have a tighter bound than WFQ. It deviates by
no more than one maximum sized packet, either behind, or ahead of GPS.

2.5.1.4 Latency Rate LR Servers

Beyond WFQ (see §2.5.1.1), PGPS (see §2.5.1.2) and WF2Q (see §2.5.1.3) are a range of other
scheduling algorithms that approximate GPS scheduling. These include Self-Clocked Fair
Queuing [117], Virtual Clock [118], Deficit Round Robin [119], Weighted Round Robin [120]
and many others. Most have similar operational principles and performance bounds. Typically
these different schedulers make different trade-offs between the closeness of the approximation
and the implementation complexity or speed. Some have only very subtle differences to PGPS

(e.g. Virtual Clock [118]). It is therefore not surprising that all of the above schedulers can be
classified into a single, more general, scheduling class.

Stiliadis et al. describe the class of latency rate (LR) schedulers [121] which encapsu-
lates the above scheduling algorithms. latency rate servers are defined by their deviation from
GPS during a period of backlogged service. Specifically, an LR scheduler is defined by two
properties, latency (Θ) and rate (ρ). Formally, an LR server is one that satisfies the following
relation:

Si,j(τ, t) ≥ max(0, ρi(t− τ −Θi)) (2.6)

Where:

• The j th busy period of session i begins at time τ and finishes at time t.
• The total service provided to session i during the during the interval (τ, t] is given by S
• ρi is the rate allocated to session i
• Θi is the minimum non-negative number that satisfies the inequality.

For a scheduling algorithm to be in the class LR, Equation 2.6 simply requires that there is a
lower bound on the rate of service it offers. Intuitively, the parameter Θ quantifies this bound as
the maximum deviation in delay from GPS that a given scheduler will achieve over a given busy
period. Recall that in Section 2.5.1.2 the bound of a PGPS system (Eq. 2.5) is given by three
terms, a pure GPS term (σ/g) and two correction terms (

∑K
s=1

Pmax

rs
and

∑K−1
s=1

Mmax

gs
). As defined

above, Θ is essentially a generic term that generalises over the correction terms for different
schedulers. Given this understanding, it should intuitively follow (and Stiliads et al. prove), that

CHAPTER 2. BACKGROUND 53

a sequence of LR schedulers have a bound given by:

Di ≤
σi

gi

+
K∑

s=1
Θi,s (2.7)

The result above is important because it proves that bounded delay across a network does not
specifically require a PGPS scheduler. Instead, all schedulers that can be described within the
LR class can be arbitrarily combined, yet bounded delay can still be achieved. This means that
even on a complex network comprising many different sub-networks, where each sub-network
operates its own subtly different schedulers, bounded delay can still be achieved. The Internet is
an example of a complex network of sub-networks, independently operated and administered,
where bounded delay would be a desirable property. One notable implementation of bounded
delay over heterogeneous networks, founded on the ideas of LR networks, is the Integrated
Services framework (described in §2.5.2.1).

2.5.2 Scheduling – In Practice

Early in the history of the Internet, researchers and practitioners became aware that the Internet
might be used for many different purposes. For example, it might be used for interactive remote
sessions, and, real-time video and audio [20, 21, 118, 122, 123], as well as being used for
email and file transfer systems. While file transfer systems work best if given high throughput,
realtime audio/video systems were expected52 to require bounded delay and jitter properties.
Designers/researchers reasoned that it would be ideal to “integrate” these different “service”
requirements into the same network infrastructure. This idea lead to the development of the
Integrated Services standard (IntServ) [123].

2.5.2.1 Integrated Services - IntServ

The Integrated Services (IntServ) (IS) architecture was designed to support realtime as well as
non-realtime services over the Internet. The core idea is to abstract the notion of “packet service”
as provided by the Internet network. By abstracting packet service, different packet schedules
could be added to the Internet, allowing different types and quality of service to be offered.
While the original Internet design would only supply best effort delivery, the IS authors argued
that there would be “an inescapable requirement for routers to be able to reserve resources in
order to provide special Quality of Service (QoS) for specific packet streams” [123]. This would
in turn require flow specific state at each router.

52It is beyond the scope of this dissertation, although this point raises some interesting questions: To the best
of my knowledge, end-to-end realtime/prioritised packet delivery and scheduling systems like Integrated Services
(IS) have not been deployed widely over the internet at large. Yet, realtime audio and video systems like FaceTime,
Skype, Viber. WhatsApp etc. have proliferated. This begs the questions: (i) are advanced scheduling systems like
IS more common than it is generally accepted? (and if so, who is paying for the premium service?) (ii) if not, what
did the IS authors not predict about the future (current) internet, that has made IS unnecessary for supporting these
realtime services? Is it simply that bandwidth has increased or is there more to it?

54 2.5. MULTIPLEXER SCHEDULING – IN THEORY AND IN PRACTICE

The IntServ design requires two essential components: (i) a resource reservation proto-
col, and (ii) a per-router implementation architecture. The standard reservation protocol used
by IntServ is the Resource reSerVation Protocol (RSVP) [124]. RSVP is designed as a generic
mechanism for making flow specific requests for network resources and state along a route from
source to sender. The protocol requests resources for simplex flows, i.e. it requests resources
in only one direction. Importantly, these requests are receiver oriented. This means that the
requests are made by a receiver and follow the reverse path of the flow from receiver back to the
source that they are reserving resources for. The resources reserved by an RSVP request depend
on the Quality of Service (QoS) requirements of the application and are described by a FlowSpec.
The packets affected by the reservation are selected by a FilterSpec. Together a FlowSpec and a
FilterSpec form a FlowDescriptor which is issued in an RSVP reservation request message.

The second component of the IntServ design is the per-router architecture. The archi-
tecture comprised three key components:

• Packet classifiers – which essentially implement the desires of FilterSpecs. Packet classi-
fiers map each incoming packet into a class that will be acted upon by a scheduler.

• Packet schedulers – which apply scheduling policies to queues of classified packets.
Packet schedulers implement the QoS desires of applications as given by FlowSpecs using
algorithms such as those described in Section 2.5.1

• Admission control – which accepts or rejects FlowDescriptors based on the requested
QoS level and the available resources.

IntServ makes a collection of different quality of service options available [125, 126].
In the context of network interference mitigations, the most relevant is the service model for
real-time applications called the guaranteed service [126]. This service class is specifically
aimed at schedulers like those described in Sections 2.5.1.1–2.5.1.3. The end-to-end behaviour
of the guaranteed service class is based on the fluid-flow model described in Section 2.5.1.2. In
the guaranteed service model, queueing delays must not exceed the equivalent fluid-flow delays
by more than a specified error bound. According to the standard, the error bound is described by
two values C and D in the equation:

D ≤ b

R
+

K∑
s=1

Cs

R
+

K∑
s=1

Ds (2.8)

Where:

• the flow passes through each router s and there are K routers in total53.
• the flow obeys a token bucket rate limiter with rate r and burst size b.
• the flow rate r is less than or equal to network capacity for that flow R.

53 While the standard does not use the s, K notation, I have transformed the notation for clarity and consistency
of this text.

CHAPTER 2. BACKGROUND 55

• Cs describes the rate-based deviation from the fluid-flow model at each router s
• Ds describes the rate independent deviation from the fluid-flow model at each router s

By coalescing terms Cs and Ds into a generic deviation term Θs and renaming the variables b
and R into σ and g respectively, Equation 2.8 can be rewritten as:

D ≤ σ

g
+

K∑
s=1

Θs (2.9)

which corresponds exactly with the Equation 2.7. This means that the Guaranteed Quality of
Service class for IntServ simply requires any LR (see §2.5.1.4) class scheduler to be implemented
at each router. When a receiver makes a reservation for guaranteed service, it includes a value S
or slack time in the RSVP request [126, 127]. This value defines the deviation from a fluid-flow
model that the application can tolerate. This value is the same as the “latency” component of an
LR server.

2.5.2.2 Differentiated Services - DiffServ

IntServ requires that all routers along a path implement per-flow state. This puts pressure on
memory I/O and a fixed upper bound on the number of flows that a given router can support.
Furthermore, it requires that each Internet service provider cooperate by allowing RSVP messages
to traverse their infrastructure and make per flow state/reservation changes. Even from the outset,
it was acknowledged that this would cause scalability and deployment issues [123], but these
issues were never fully addressed by the standard. In response to these issues, an alternative
standard was proposed. The authors of the standard reasoned that it would be sufficient to simply
differentiate between differed classes of service using coarse grained mechanics. This lead to the
development of the Differentiated Services (DS) (DiffServ) standard [128].

The differentiated services architecture is based on a simple model where traffic entering
a network is classified and possibly conditioned at the boundaries of the network. This traffic is
assigned to a class known as a behaviour aggregate (BA). Each behaviour aggregate is identified
by a single Differentiated Services Code Point (DSCP). A code point is a 6-bit field in the IP

header which defines how packets within the core of the network are forwarded. At each hop
over the network a Per-hop Behaviour (PHB) determines the actions that will be applied for a
given differentiated services code point value. There are (currently) four well defined PHBs.

• The default PHB [129] specifies that a packet marked with the DSCP value ‘000000’ gets
the traditional best effort service. If a packet arrives at a DS compliant node and its DSCP

value is not mapped to any of the other PHBs, it will get mapped to the default PHB54

• The Class-Selector PHBs [129] implement a backwards compatible layer that can interop-
erate with the earlier IP Type of Service (ToS) [130] coded packets.

54Cisco white-paper. See Appendix A.4.1.

56 2.5. MULTIPLEXER SCHEDULING – IN THEORY AND IN PRACTICE

• The Expedited Forwarding PHB [131] provides similar operation to the IntServ Guaranteed
Service class for low-loss, low-latency, low-jitter and assured bandwidth requests.

• The Assured Forwarding PHB [131] is similar to the IntServ controlled load class. It
defines a method where BAs can divide traffic into different assurance level classes. These
can be used to, for example, subdivide bandwidth between different categories of traffic.

The DiffServ (DS) model distinguishes between different DS domains. A domain is
a contiguous set of DS nodes which operate with a common service policy and common set
of PHB groups implemented on each node. To provide end-to-end Quality of Service (QoS),
each domain along the path must support the DiffServ code-points requested and some external
mechanism must be used to negotiate the policy or Service Level Agreement (SLA) that will
be applied. Unlike IntServ, the DiffServ standard does not explicitly contain a mechanism or
guidelines on how this negotiation might be completed. In this sense, DiffServe is better suited
to intranet service differentiation (such as within an Internet Service Provider (ISP) or a Local
Area Network (LAN)) rather than Internet differentiation.

2.5.2.3 IntServ vs. DiffServ

IntServ (see 2.5.2.1) and DiffServ (see 2.5.2.2) take fundamentally different approaches to the
problems of providing quality of service. At one extreme, DiffServ is pragmatic, rooted in
easily implementable mechanics with a minimum of hardware support. But, DiffServ is not an
end-to-end solution, it works only within a specific DS domain, and even within a domain it
provides no guarantees of performance. It is up to a DiffServ operator to determine, implement
and deploy the correct policies. Furthermore, the DiffServ standards (e.g. [131]) provide almost
no guidance about how to implement robust guaranteed bounded performance within a DiffServ
domain.

At the other extreme, IntServ is rooted in the fundamental theorems of infinitesimally
divisible fluid-flow models. It provides strong, mathematically provable bounds on bandwidth,
delay and hence interference. However, these bounds are based on perfect separation of individual
flows into distinct queues, knowledge of the minimum and maximum requirements of every
flow and require routers to implement complex scheduling algorithms that apply sophisticated
scheduling and prioritisation of packets on a per-flow basis. The implementation of these
algorithms is not trivial [132] and it is difficult to find modern systems that support them. It
would be ideal to be able to provide the benefits of the rigorously developed mathematical
guarantees of IntServ, with the pragmatic implementation focused design of DiffServ, tailored
for the resources available in modern datacenter networks. This goal will be the focus of the
following chapters of this dissertation.

CHAPTER 2. BACKGROUND 57

2.6 Conclusions
In this chapter I discussed the construction and operation of warehouse scale datacenters (§2.1).
In particular, the problems associated with congestion, which causes interference between
applications (§2.2–2.3). Although there are a variety of approaches to congestion control
in datacenters, none provide an effective solution to network interference (§2.4) and most
approaches require drastic changes to the hardware and software, making them impractical to
deploy. I also discussed the work of Parkeh et al. that builds on Generalised Processor Sharing
(GPS) (§2.5). GPS is a scheduling model where work is assumed to be infinitesimally divisible. It
provides perfect isolation and, by definition, makes interference impossible. Unfortunately GPS

is unimplementable. Parekh et al. proposed a discretised approximation of GPS in the network
context called Packet-by-packet Generalised Processor Sharing (PGPS)55 which has a small but
known deviation from the ideal schedule. Furthermore, Parekh et al. showed that when the
traffic load is governed by a token bucket regulator, PGPS can deliver bounded latency across the
network. Stiliadis et al. went on to show that PGPS is just one example in a class of “Latency
Rate” servers which can be combined to offer bounded latency across a network. LR servers
form the basis of the IntServ standard which was proposed to offer different service types in the
Internet. In reaction to difficulties with deploying IntServ, DiffServ was developed which takes a
more course-grained, practical approach to providing Quality of Service.

2.7 Chapter Summary
• Warehouse scale datacenters are a necessary component of modern Internet services (§2.1).

– They are built using commodity x86 hosts and merchant Ethernet switches, and run
at a scale of approximately 50,000 hosts per facility (§2.1.2).

– Datacenter networks are built using Clos-like topologies typically with a top-of-rack
oversubscription ratio of about 3:1 (§2.1.3)

– The networks are organised into subnetworks called pods which have a few thousand
hosts in each (§2.1.3).

– The predominant protocol used in datacenter networks is TCP (§2.1.4).

• The TCP congestion control algorithm (§2.2) tries to sense congestion by filling up queues
which can lead to interference between applications (§2.3).

– Interference occurs when packets from latency sensitive applications share congested
queues with throughput intensive applications.

– Congested switch queues can cause delays of 16× the idle case (§2.3.1).

• Conventional and proposed mechanisms for congestion control in datacenter networks fail
to resolve network interference (§2.4).

55Also proposed by Demers et al. as Weighted Fair Queueing (WFQ) [22].

58 2.7. CHAPTER SUMMARY

• There are mathematical models which show that it is possible to achieve near perfect
isolation in networks which will bound the amount interference that can result (§2.5.1).

– These models have been implemented in QoS schemes for the Internet, but they are
complicated to deploy and require per-flow state (§2.5.2.1).

– To combat this, coarse-grained classification has also been proposed, but the standards
provide no guidance on how to implement isolation and guarantees using coarse-
grained classification (§2.5.2.2).

Chapter 3

Bounding Delay in Datacenter Networks

IN the preceding chapter I discussed the work of Parkeh et al. that builds on Generalised
Processor Sharing (GPS) (§2.5) and Stiliadis et al. who showed that PGPS is just one
example in the class of latency rate (LR) servers. All LR servers can be combined to offer

bounded latency across a network. The problem with these approaches is the implicit assumption
that network switches can be arbitrarily altered to implement a given scheduling policy. This is
not true in datacenters because they are constructed using commodity switch silicon components1

(see §2.1.2–§2.1.3). To derive a delay bound and implement isolation in a datacenter network,
we must take into account the properties of datacenter switches as they are, rather than how we
would like them to be.

In this chapter, I take a similar approach to Parekh et al.. I combine a switch scheduling
model and an input traffic regulator to provide bounded delay through the network. The bound
provides guarantees that are as tight as circuit switches. However, rather than beginning from
an idealised GPS fluid-flow scheduling model, I take the novel step of starting with known
and measured properties of existing datacenter switches. Based on these properties, I create
simple, but realistic, discrete switch scheduling model. Using the model, I then derive the
necessary traffic regulation conditions to bound delay across the scheduler and consequently
through the network. I express the traffic regulation conditions using a new type of fluid-flow
traffic regulator called a Leaky Token Bucket (LTB) and the resulting delay bound using a simple
equation, parameterised over the maximum packet size, the number of senders, network link-
rates, and switch performance. In later chapters I will relax these bounds and demonstrate how
the model, traffic constraints, and leaky token bucket regulator can be implemented and deployed
in datacenter practical networks. In doing so, I show that it is possible and practical to precisely
control datacenter network latency and therefore mitigate the effects of network interference.

1To the best of my knowledge. As noted in §2.1.2, datacenter operators have already requested significant CPU
modifications from Intel, so there is no reason, in principle, that similar requests could not also be made to switch
silicon vendors. However, at present, there is no evidence of this happening.

59

60 3.1. A MODEL OF A DATACENTER SWITCH

crossbar scheduler
virtual output queues crossbarinputs

1

outputs 1 2 3 4

4

2

3

4

1

2

3

2

3

Figure 3.1: An architectural model of a Virtual Output Queue (VOQ) datacenter switch

3.1 A Model of a Datacenter Switch

For the remainder of this dissertation I will assume that datacenter switches can be modelled
according to the high level architectural diagram given in Figure 3.1. The figure shows a 4 port
switch, with input and output ports numbered 1 to 4. Inputs 1 to 4 are shown on the left-hand
side of the figure while outputs 1 to 4 are shown on the bottom of the figure. In the figure, each
input has 3 output queues associated with it (the queues for inputs 2 and 3 are omitted for clarity).
The output queues are used to store packets before they are sent (forwarded) to the correct output.
This type of queuing is called Virtual Output Queue (VOQ) [133] because the output queues are
located on the input side of the switch. It is generally understood that VOQ designs are the basis
of modern high speed switching devices2 [134, 135].

When a packet arrives at the switch, the destination address is decoded from the packet
header and the packet is placed into the corresponding virtual output queue. For example, a
packet arriving on input 4, destined for output 3 will be placed into the third output queue
associated with input 4. Ethernet prohibits circular forwarding so inputs do not have an output
queue corresponding to themselves. That is, in this example, input 1 contains queues for outputs
2, 3, and 4, but no queue for output 1. If there are N ports on the switch, each input will have at
least N − 1 output queues dedicated to it. This arrangement means that there will be at least
(N − 1)× (N − 1) ≈ N2 queues in total in the switch.

In practice there are usually many more than N output queues per input. Packets

2Cisco 5000 Series white-paper. See Appendix A.4.2.

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 61

arriving at the switch will be sorted into different queues based on the destination output port as
well as the type of packet (e.g. if the packet is unicast/multicast) and any class/priority of service
tags (e.g. DSCP). For example, on each input, the Cisco Nexus 5548, 48 port, 10Gb/s datacenter
switch3 supports 128 multicast queues, and, 8 different priority queues per output. The device
has 512 queues in total per port (i.e. 128 + 48× 8 = 512) and a little under 25,000 queues in
total (i.e. 48 × 512 ≈ 25, 000). The 8 priority queues per input are used to implement simple
Quality of Service (QoS) features such as priority queueing via Ethernet Virtual Local Area
Network (VLAN) priorities [136] and/or the DiffServ [123] code point, both of which are widely
supported4. However, there is no support for more advanced per-flow queueing QoS schemes
such WFQ, WF2Q etc. (described in Sections 2.5.1.1–2.5.1.4) which would require vastly more
queues and memory I/O bandwidth.

Once packets have been sorted into their appropriate virtual output queues, they need to
be transferred to the output ports. To do so, packets need to cross the crossbar. In the figure, the
crossbar is the grid structure with all input ports on the left, and all output ports on the bottom.
At the intersection of each input/output pair, an electrical connection must be made to join the
output queue to the actual output. The figure show input 1 connected electrically to output 2, and
input 4 connected electrically to output 3. The paths between input 1 and output 2, and, input
4 and output 3 are also highlighted. Only one input port can transmit to one 5 output port at a
time. A crucial function of high performance switches is to determine the schedule of crossbar
connections. In general crossbar schedulers need to achieve high utilisation and fairness across
competing input queues as well as being simple and implementable in hardware. This makes
crossbar schedulers an important component of high-speed switches.

Unfortunately specific details of crossbar scheduler designs are viewed as a trade secret
by switch silicon manufacturers. This is because the overall performance of the switch is tied to
the quality of the scheduler’s decisions. One well known scheduling algorithm is iSLIP, proposed
by McKeown [103]. It is widely believed that variants of iSLIP are used in production switch
chips, though there is little direct evidence to support this. The Cisco 5000 series switches are
a notable exception. Marketing materials for the switch state that it is “based on an enhanced
iSLIP algorithm” which has been modified “to accommodate cut-through switching of different
packet sizes”6. No further details of the modifications are available and other manufacturers
are reluctant to say even this much. As a result, in my model I do not (and cannot) assume a
specific switch scheduling algorithm. I will instead assume that the switch crossbar scheduler
implementation has at least the following properties:

1. port-independent, parallel matching: the scheduler should independently and in parallel
perform matching for each output port. Scheduling one output port should not interfere

3Cisco 5548 switch white-paper. See Appendix A.4.3.
4Broadcom BCM56580 “Trident II+” marketing material, Intel FM5000/FM6000 datasheet and Cisco 5000/5500

series white-papers. See Appendix A.3.3, A.16.5, A.4.2 and A.4.3.
5or more if doing multicast
6According to Cisco 5548 white-paper. See Appendix A.4.4.

62 3.2. BOUNDING DELAY IN DATACENTER NETWORKS

with scheduling another. For example, scheduling packets to output port 1 should not
interfere with or delay scheduling packets for output port 3.

2. work conserving: if an output is available and there is a packet destined for it, the packet
will be scheduled. Packets should not wait unless another packet is already being served.

3. throughput conserving: if there are multiple packets destined for an output, the switch will
schedule them back-to-back. The minimum sized Inter-frame Gap (IFG) [16] should be
maintained so that line-rate throughput is possible at the output.

Note that the above definitions do not include any explicit notion of fairness across competing
inputs for a given output. It will become clear in Section 3.2 why this is not a requirement.

The iSLIP algorithm uses a parallel matching process which satisfies these requirements.
My switching model is therefore applicable to at least any reasonable switch silicon implemen-
tation of an iSLIP-like algorithm (e.g. the Cisco 5548 switch7). Furthermore, the experiments
conducted in Section 3.4.6 show that the popular Trident II+8 switching silicon also meets these
requirements, although it is not known if it implements iSLIP internally.

Beyond hardware switches, end-hosts also implement software multiplexing points. 1-to-
n and n-to-1 multiplexers are a common component of the network path in end hosts where many
applications share one network card and vice-versa. Software implementations acting as either n-
to-1 multiplexers or 1-to-n demultiplexers are likely to satisfy the above requirements. However, it
is unlikely that general purpose n-to-n software switch implementations like OpenVSwitch [137]
will be able to satisfy the above requirements. Such a software switch would need to dedicate a
CPU core to each output if it was to perform port-independent, parallel matching (requirement 1).
Furthermore shared memory and data structures are likely to induce some degree of interference.
Finally, obtaining throughput conserving performance (requirement 3) in a software switch may
be a serious challenge. Further work, outside of the scope of this dissertation, is needed to
examine effects, applicability and potential modifications needed to apply this model to general
n-to-n software switches.

3.2 Bounding Delay in Datacenter Networks

Using the switch model described in Section 3.1 it is possible to derive a delay bound for
datacenter networks. To do this, I start by deriving the conditions necessary to obtain a delay
bound in a simplified one-shot scenario (§3.2.1). In this scenario there is only one switch and the
senders are allowed to send at most one packet, once to the switch. In Section 3.2.2, I will relax
the one-shot restriction to allow hosts to send an arbitrary number of packets. Finally in Section
3.2.4, I will expand the bound conditions to include multi-hop network topologies. To begin the
analysis, I will make the following initial assumptions:

7According to Cisco 5548 white-paper. See Appendix A.4.4.
8The Broadcom BCM56850 is also known as “Trident II+” according to Broadcom marketing material. See

Appendix A.3.2.

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 63

sw
itch

1

2

3

4

servicing delay
service order

Figure 3.2: Packet number 4 is unlucky. It waits for 3 previous packets to be serviced before
it is serviced.

1. There is a single switch with a single switch crossbar inside9.
2. The switch is a store-and-forward type. That is, all packets will be buffered at least once

inside the switch10.
3. The switch implements a scheduler with the properties described in Section 3.1.
4. The switch is initially idle. No packets are in flight or are being processed at the switch

and no packets are generated at the switch11.
5. Each sender is attached to a single port.
6. All senders may send at most one packet to the switch at any time.
7. All packets are a fixed size. Furthermore, the Inter-frame Gap (IFG) period is considered

to be part this fixed size. This means that IFGs can be ignored.

I will relax assumptions (4) in Section 3.2.2, assumption (6) in Section 3.2.3 and assumption (1)
in Section 3.2.4. Assumption (3) will be discussed in more detail in Section 3.4.6.

3.2.1 The One-shot Case

First I assume a single switch (as described in §3.1) with a single host connected to it. The host
may send only a single packet. I define the delay (or latency) across a switch as the interval
between the last bit of the packet arriving at the switch, and the last bit of the packet leaving
from the switch12. This definition takes into account the serialisation time required to output the
packet onto the output link and is thus dependent on both packet size and the switch’s output
rate. It is not dependent on the switch’s input rate.

9More complex multi-chip switches are essentially multi-hop networks and can be treated as such.
10As opposed to cut-through [138] switches. A store-and-forward switch queuing model is a reasonable approxi-

mation of a cut-through switch model and is always a strict upper bound.
11For example Link Layer Discovery Protocol [139] or Spanning Tree Protocol [140] packets.
12My definition is in contrast to RFC1242 [141] which defines delay across a store-and-forward device as the

period between the last bit arriving, and the first bit departing.

64 3.2. BOUNDING DELAY IN DATACENTER NETWORKS

When a packet of size P arrives at a store-and-forward switch, it must be fully buffered
before it can leave. The last bit to arrive will need to wait until all previous bits have been
serialised through the output before it can bit output. Assuming that there are P bits in the packet
and the switch has an output speed of r bits/second, it will take P/r seconds to serialise the
packet. The switch also adds some amount of intrinsic delay εi as the packet moves through the
switch pipeline and crossbar. Thus, the delay experienced by the a single packet across a single
switch is given by:

d1p = P

r
+ εi (3.1)

Where:

• d1p is the delay in seconds to service one packet
• P is the packet size in bits, and r is the output link rate in bits per second.
• εi is the switch intrinsic delay constant (in seconds) added by the switch.

If instead of one host, there are m hosts connected to the switch, and each host can send a single
packet, then the worst case delay occurs when all packets arrive at the same time. In this situation
the last packet to be serviced experiences the longest delay. I call this kind of delay the switch
servicing delay (see Figure 3.2). The servicing delay period is given by the sum of the per-packet
bounds:

d ≤
m∑

p=1

(
P

rp

)
+ εi (3.2)

Where:

• d is the worst case delay (in seconds) for the switch to service one packet from each of m
hosts.

• the packet size is P bits, and the minimum link rate for a given port p is ri bits per second.
• εi is the switch intrinsic delay constant (in seconds) added by the switch.

Note that the intrinsic delay (εi) is included only once. Since the switch is required to be
throughput conserving (see requirement 3, §3.1) only the first packet will experience the intrinsic
switch delay. For other packets this delay will be hidden. Furthermore, let us assume that all
ports on the switch run at a rate of at least r. This gives us the equation:

d ≤ m× P

r
+ εsw (3.3)

On a modern switch, the quoted switch processing delay εsw is typically between 95ns and
350ns13. Since queueing, host, and application latencies are often 10–1, 000× greater (e.g. see
Table 2.1), the switch processing delay can usually be ignored.

3.2.2 The Multi-shot Case

To calculate the multi-shot delay bound, we must consider a further source of delay. I will call
this type of delay queueing delay. Queuing delay happens when a new packet arrives at the tail

13Exablaze ExaLink Fusion, Arista 7150 and Cisco Nexus 3548 marketing material. See Appendix A.9.1, A.2.3
and A.4.5.

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 65

sw
itch

service order

1235 46

queueing delay

Figure 3.3: Packet number 6 is at the back of the queue, it must wait for 5 packets to be
removed from the head of queue before it will be serviced.

of a queue and must wait until it reaches the head so that it can be scheduled (see Figure 3.3).
Queuing delay is thus a property of the rate at which packets are added to and removed from
each queue. If the input rate is higher than the output rate, a queue may build up indefinitely and
overflow. This is not a new problem. Recall that in order to maintain a delay bound, Parekh et al.
required the network to be underutilised or at most perfectly utilised (see §2.5.1.2). Specifically
that:

ρ ≤ g; where: ρ is the rate of the token bucket regulator, and g is the minimum rate
assigned to the session.

The solution to the problem is also not new. Recall the principle of ‘conservation of packets’ as
proposed by Jacobson (see §2.2). Specifically that:

A new packet isn’t put into the network [switch queue] until an old packet leaves.

It follows that, if the switch is initially idle (assumption 4, §3.2), and we ensure that packets are
only added at a rate that the switch scheduler can service them, then they will never experience
queuing delay. This means that the delay bound can be maintained indefinitely.

In Section 3.2.1 I derived a bound for the switch servicing delay in a single shot scenario
(Eq. 3.3). This bound is the time the switch will take to service all packets sent to it if each host
sends only one packet and the switch is idle. If we would like hosts to be able to send multiple
packets, we can regulate each host to send one packet for each switch servicing delay period.
If each host can send only one packet per switch servicing delay period then, by definition, the
switch will service all packets in the period and every packet will arrive at an empty queue. I
will henceforth refer to the switch servicing delay period as the switch epoch (esw) to distinguish
it from the end-to-end delay bound (d). In single switch scenarios these values are identical. In
more complex arrangements they are not. Remembering that packet sizes are assumed to be
fixed (assumption 7,3.2), by applying a switch epoch based rate limit to all senders, senders will

66 3.2. BOUNDING DELAY IN DATACENTER NETWORKS

receive a guaranteed share of the bandwidth and a guaranteed end-to-end delay bound. The rate
limit R is given by dividing the maximum packet size Pmax by the switch epoch esw. The epoch
in this case is the same as switch servicing delay d from Equation 3.2.1. Formally:

R = P

esw

= P

mP/r + ε
≈ r

m
(3.4)

Note: the rate computed by the above Equation 3.4 is subtly misleading. The resulting value R
in bits per second appears to be a continuous value over time. It would seem to imply that in
any interval (t, τ], at most (τ − t)× r bits may be sent into the network. This is not true. If the
value of τ − t is greater than the servicing interval, then more than P bits might be sent into the
network, violating the packet size restriction (P) and thus potentially violating the delay bound.
In order to maintain the delay bound, both conditions must hold. That is, a rate of R must not be
exceeded and packet size of P must not be exceeded. I therefore refer to the average rate-limit as
Rave = P/esw and the effective rate-limit Reff as the tuple (P, esw) that captures this restriction.

3.2.3 Variable-sized Packets and the Leaky Token Bucket

If a host is (P, esw) limited according to Equation 3.3, and issues a packet that is smaller than P ,
this will not affect the upper bound on the servicing delay. We can therefore relax the assumption
that packets are a fixed size P (assumption 7, §3.2), and instead allow packets to be at most Pmax

bits in size. The switch epoch esw given by equation 3.3 thus becomes:

esw ≤ m× Pmax

r
+ εsw (3.5)

In this case, the effective rate-limit Reff is now described by the tuple (Pmax, esw) and the
average rate-limit Rave is given by:

Rave = Pmax

esw

= Pmax

mPmax/r + ε
≈ r

m
(3.6)

Allowing hosts to send smaller packets causes a secondary problem. Recall that a source must
limit its transmissions to one packet of size ≤ Pmax every esw seconds to maintain the delay
bound. If a host issues a packet of size l < Pmax, it will need to wait esw seconds before sending
another packet and thus waste bandwidth proportional to Pmax − l.

To alleviate this bandwidth reduction, consider the case where a host is allowed to issue
two, half-sized packets (Pmax/2) back-to-back14 (see Fig. 3.4a). In this case the delay bound
will still be maintained because the amount of work that the switch needs to do does not change,
i.e., the switch still needs to service at most m× Pmax bits within a period of esw. However, the
advantage of sending half-sized packets is that the sender may choose to space these packets
appart. To maintain the delay bound, we need ensure that the switch will always have enough
time to service half-sized packets, regardless of the spacing between them, or how many there

14As in assumption 7, §3.2, the Inter-frame Gap (IFG) is assumed to be encapsulated into this size so that it can
be safely ignored.

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 67

sw
itch

Pmax

½ Pmax ½ Pmax

(a) A back-to-back half-sized packet.

sw
itch

½ Pmax

(b) All packets are half-sized.

Figure 3.4: Half-sized packet considerations.

are. The limiting case is thus when all hosts are allowed to send half-sized packets, and these
packets arrive at the switch, at same time (see Fig. 3.4b).

Equation 3.5 can be applied to give the service time required for this case. From the
equation, the switch epoch (maximum servicing time) esw is proportional to the maximum packet
size Pmax (ignoring εsw). If we halve the packet size, the epoch is also halved. That is, if we
set P ′max = Pmax/2 then e′sw = esw/2. Therefore, the latest moment that any of the half size
packets may arrive is esw/2.

We can easily generalise this logic for any packet size. If P ′max = Pmax/x then e′sw is
simply esw/x. Figure 3.5a shows this relationship graphically. As time progresses across the
x-axis from 0 to esw, the maximum number of bits that can be issued into the network decreases
proportionally from Pmax down to 0. Formally at a time v where 0 ≤ v ≤ esw, a host may send
at most b bits into the network where b is given by:

b ≤ esw − v
esw

× Pmax 0 ≤ v ≤ esw (3.7)

Note that this relation only remains true provided that the sender continues to be (P, esw)
constrained. That is, at most Pmax bits can sent in total during any time esw. Figure 3.5b again
shows this relationship graphically. In the figure, a full sized packet is issued at time 0. As a
result, Pmax bits have been sent and no more bits can be transmitted for another esw seconds.
In Figure 3.5c, a half-sized packet is issued at time 0. At any time up to esw/2 later, another
half-sized packet may be issued. Finally, in Figure 3.5d, minimum sized packets are issued
across the whole period. Again the delay bound will be maintained provided that no more than
Pmax bits are sent in total, and provided that no packet is larger than the result from Equation 3.7.

The generalisation above naturally leads to a new kind of traffic regulator abstraction. I
call this abstraction a Leaky Token Bucket (LTB) regulator. The Leaky Token Bucket is based on
the token bucket regulator shown in Figure 3.6). In a standard token bucket regulator, tokens

68 3.2. BOUNDING DELAY IN DATACENTER NETWORKS

0 esw

Pmax

(a) Allowable packet transmission sizes throughout a
switch epoch.

0 esw

Pmax

(b) Full sized packets consuming the allowable allo-
cation.

0

Pmax

½ Pmax

½ esw
esw

(c) half-sized packets consuming the allowable allo-
cation.

0

Pmax

Pmin

esw

(d) Minimum sized packets distributed across the
switch epoch.

Figure 3.5: The generalised delay model for packet spacing with variable packet sized

bucket depth σ

tokens enter at rate ⍴

Figure 3.6: The token bucket regulator. Tokens are added at a rate ρ to a bucket of size σ.
Sending a packet of size p will consume p tokens from the bucket. σ sets the maximum burst
size and ρ sets the average departure rate.

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 69

Pmax tokens enter every esw seconds

(discrete)

Pmax
Pmax tokens leave every esw seconds

(fluid)

esw

leak rate
R = P max

esw

Pmax

bucket depth

Pmax

Figure 3.7: The leaky token bucket regulator. Pmax tokens are added once every esw seconds
to a bucket with maximum capacity Pmax. The tokens leak out of the bucket at a constant
rate of R = Pmax/esw, such that the bucket will be fully empty at most esw seconds after the
tokens were added, or sooner if they used up to send packets.

(bits) are added to a bucket of a size σ at a rate ρ. If the bucket fills up and overflows, excess
tokens are dropped (ignored). When a packet is transmitted, it uses tokens from the bucket
corresponding with the size of the packet. If there are not enough tokens in the bucket, the packet
is queued until the more tokens arrive, or dropped if the queue is full.

A Leaky Token Bucket adds two more features to this model. First, tokens are added
in discrete batches, one batch per time interval; Pmax tokens are added at the start of every
interval of esw seconds, maintaining an average rate of ρ = Pmax/esw. Second, the bucket has
a leak. Tokens leak out of the bucket at a constant (fluid-flow rate) of L, which is given by
L = Pmax/esw. Importantly, the average arrival rate of tokens is exactly equal to the average
leak rate. If no packets arrive to consume tokens, the bucket will be empty at the end of each
interval, just before new tokens arrive to replenish it. If packets do arrive, the bucket will empty
sooner. The leaky token bucket regulator therefore enforces the packet spacing limits set by
Equation 3.7 (shown graphically in Fig. 3.5a) as well the effective rate-limit (Pmax, esw).

From the perspective of its output, the a leaky token bucket is a special case of a token
bucket; it always emits at most the same amount of traffic as a classical token bucket regulator
configured with the same parameters (ρ = R and σ = Pmax). This means that the LTB can be
used in situations requiring a token bucket regulator abstraction (such as Equation 2.5) without
altering the upper bound on delay. Conversely, token bucket regulators cannot be used in place
of LTBs. Since a token bucket regulator “fills” rather than “leaks”, cases can result where more
than Pmax bytes are issued in a single epoch. For an example of such a case see Figure 3.8. The
figure shows the amount of tokens in a token bucket as function of time. As time proceeds, the
bucket fills to capacity, then at t0 a small packet of size ptx1 is transmitted. Some period later,
another packet of size ptx2 is sent. In this case, the sum of ptx1 and ptx2 is greater than Pmax.
This violates the constraint that nor more than Pmax bytes are transmitted in any period of esw.

70 3.2. BOUNDING DELAY IN DATACENTER NETWORKS

esw

ptx1

B
uc

ke
t c

ap
ac

ity
timet0

Pmax

ptx2

Figure 3.8: The token bucket regulator admits a packet Ptx1 a time t0. At some time later, it
admits a further packet Ptx2 . This means that in a period esw, it admits Ptx1 + Ptx2 > Pmax

bytes. This violates the constraint that no more than Pmax bytes are admitted in any period
of esw.

S1

S4S2

S3

Figure 3.9: The maximum burst size depends on the number of ports on the preceding switch.

3.2.4 The Multi-switch Case

In Sections 3.2.1–3.2.3, I showed that a switch withm ports, can deliver bounded latency provided
that all sources are Leaky Token Bucket (LTB) constrained. The LTB ensures that a single switch
will have exactly enough time to service all packets sent to it, before the next servicing interval
begins. This constraint ensures that a delay bound can be maintained indefinitely across that
switch. In this section, I consider how to cascade multiple switches together, so that a similar
delay bound can be developed for more complex network topologies.

Figure 3.9 shows an example of a simple, cascaded network topology. The figure shows
4 switches, S1–S4, connected together. Switches S1–S3 have 3, 2, and 1 inputs respectively. The
outputs of switches S1–S3 all fan-in to the inputs on switch S4.

To determine the behaviour of the network as a whole, we must first consider the output
traffic patterns generated by each switch. For example, if 3 packets arrive at the same time on
the inputs to S1, then the switch will serve those packets in the minimum servicing time, given
by Equation 3.5. Recall from Section 3.1 that switches are required to be throughput conserving

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 71

(requirement 3). Serving all three packets in a throughput conserving way at switch S1 will
produce a packet train comprising 3 packets back-to-back at the switch’s output. A similar result
will be produced by switches S2 and S3.

In the worst case, the head packet from each of these trains will arrive on each input
to switch S4 at the same time. Strictly speaking, switch S4 will operate in parallel to switches
S1–S3. This means that, at the moment that the first packet from each packet train arrives at S4,
the switch S4 will immediately15 choose one packet and begin serving it. Assuming that the
input and output rates of all switches are the same, this first packet will just have completed
service through S4 at the same moment that the second packets in the packet trains generated S1

and S2 will arrive.

Analysis of parallel processing becomes difficult if the network supports multiple
input/output rates as datacenters do. To simplify the analysis, I assume that all switches at
the same depth in the network operate in parallel, but that switches at different depths operate
in series (this same assumption is implied by related work [21, 23, 121]). This, simplifying,
assumption allows me to treat the queueing behaviour in sequential switches additively. It is thus
straightforward to calculate an upper bound on the number of packets that switch S4 will receive,
and therefore a bound on the delay through the switch. However, since the bound does not fully
take into account parallelism, this is not a tight upper bound. A lower, worst-case bound is still
possible. I leave its development to future work.

In my example, the switches S1–S3 are at the same depth in the network, while switch
S4 is one layer deeper. S1–S3 are thus assumed to operate in parallel, while S4 is assumed to
only begin processing when the last packets produced by switches S1–S3 have arrived. Under
this assumption, switch S4 will need to process n packets from the preceding switches, where
n is given by the total number of sources that fan-in to those switches. In this case n will
be 6 (= 3 + 2 + 1)(see Fig. 3.9). The delay across the switch S4 is thus simply given by
Equation 3.5 where the number of ports on the switch (m) is replaced with nk, the number of
sources fanning-in to switch k. Formally:

dk ≤ nk ×
Pmax

rk

+ εk (3.8)

Where:

• dk is the worst-case (sequential assumption) servicing delay at a switch k
• nk is the maximum number of sources from all previous switches fanning-in to switch k
• Pmax the maximum packet size (in bits)
• rk is the output rate of the switch (in bits per second)
• εk is the processing delay introduced by the switch k (ins seconds)

The worst case delay through a network comprising K switches in total is calculated additively.

15From switch requirement 2: the switch is work conserving meaning that if there work to be done, it will be
started immediately. §3.1

72 3.2. BOUNDING DELAY IN DATACENTER NETWORKS

That is:

dnet ≤
K∑

k=1

nkPmax

rk

+ εk (3.9)

Where dnet is the total delay bound through the network and otherwise the same definitions as
Equation 3.8 are used.

Equation 3.9 gives the delay bound where each source can send only a single packet.
This is the network-wide equivalent of the single switch, one-shot case discussed in Section 3.2.1.
To allow hosts to send multiple packets into the network, we need to determine the maximum
rate at which packets can be issued, so that no switch queue builds indefinitely. That is, we need
to find the minimum period over which each source must wait before sending a new packet. I
call this period the network epoch (enet). This is the network-wide equivalent to the switch epoch
(esw), discussed in the single switch, multi-shot case in Section 3.2.2.

Recall from Section 2.2 (pg. 23) that a TCP connection will remain congestion free
provided that “a new packet isn’t put into the network until an old packet leaves.” A similar
principle applies in the network-wide case. If we ensure that hosts do not issue new packets
into the network until their previous packets have left, the network delay will remain bounded
indefinitely. Intuitively, the minimum network epoch value will be bounded by the switch with
the maximum servicing delay. To maintain the bound, all packets must have left this switch
before new packets can be added. The network epoch is thus given by:

enet = max
(nkPmax

rk

+ εk

)
∀ 0 ≤ k ≤ K (3.10)

Where enet is the network epoch and otherwise the same definitions as Equation 3.8 are used.
The average rate-limit for each host is thus given by:

Rave = Pmax

enet

= Pmax

nMPmax/rM + ε
≈ rM

nM

(3.11)

where:

• Rave is the average rate-limit (in bits per second)
• Pmax is the maximum packet size (in bits)
• enet is the maximum worst-case servicing delay for all switches (in seconds).
• enet occurs at the M th switch along the path.
• nM is number of hosts preceding switch M .
• rM is the minimum output rate of switch M (in bits per second).

As in section 3.2.2 it is more correct to use the effective rate limit Reff given by (Pmax, enet). The
effective rate-limit is a better description because it ensures that there is a space of at least enet

seconds between each transmission of size Pmax. Furthermore, applying the same logic from
Section 3.2.3 it is sufficient for the senders to be Leaky Token Bucket (LTB) constrained.

To understand why the above intuition is true, consider Figure 3.10. The figure shows
two switches connected to each other in series. The first switch (S1) has h inputs and an output

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 73

S1 S2
r1

r2
1

h

1

i

Figure 3.10: The limiting case for cascaded switches.

rate of r1. Switch S1 is connected directly to switch S2. Without loss of generality, I assume that
the only input to switch S2 is from S1. This means that both S1 and S2 have the same number of
preceding source hosts (h). The second switch (S2) has i outputs and a minimum output rate of
r2.

The worst case delay for both switches occurs when all n inputs on S1 are directed
to a single output on S2. Therefore, we may assume that the number of outputs i = 1. From
Equation 3.8, the worst case delay dk across any switch Sk is proportional to nk (the number
of preceding hosts) and Pmax (the maximum packet size), and inversely proportional to rk (the
minimum output rate), (assuming that εk is insignificant). Recall that Pmax is a constant and
since all h inputs on switch S1 precede switch S2, then n1 = n2 = h (which is also a constant).
Therefore, both the per-packet delay dk at each switch (from Eq. 3.1), and the servicing delay
bound Dk across each switch (from Eq. 3.8) are inversely proportional to rk. More formally:

dk ∝
1
rk

and Dk ∝
1
rk

for any switch k (3.12)

With two switches cascaded, we must consider three cases to determine if the intuitive bound
holds.

1. r1 < r2 (switch S1 is limiting): Assume that two packets Pa and Pb arrive at S1 and that Pa

is the first packet to be serviced. Assuming no transmission delay and no intrinsic switch
delay, the last bit of packet Pa will arrive at switch S2 at the same instant that the first bit
of packet Pb starts to be served. It will take a time d1a to service Pa at switch S1. From
Equation 3.12, if r1 < r2 then d1a > d2a Therefore, switch S2 will always have completed
serving Pa, before Pb arrives at it. Provided that no more than n packets of size Pmax are
injected into the network in a period of D1, it follows that no queue in the network will
build indefinitely.

2. r1 = r2 (neither switch is limiting): This is just a special case of the description above. In
this case, if r1 = r2 then d1a = d2a. It follows that the packet Pa will leave S2 at the same
instant that the packet Pb arrives at S2. Therefore the bound continues to hold under the
same conditions.

74 3.2. BOUNDING DELAY IN DATACENTER NETWORKS

3. r1 > r2 (switch S2 is limiting): We know from above that when r1 = r2 the delay bound
is maintained. I therefore assume the opposite extreme: the limit as r1 → ∞. Since
d1 ∝ 1/r1 then, in the limit as r1 →∞, d1 → 0. With d1 → 0, the switch S1 will appear
invisible to S2. That is, it will appear as if all n sources are directly connected to S2.
Therefore, using the same logic as in Section 3.2.2, if no more than n packets of size Pmax

are issued into the network during a period of D2 then no queue will build indefinitely and
the bound will be maintained.

We can thus conclude that the intuition from Equation 3.10 is correct and that the injection rate
into the network will be limited by the switch with the longest servicing delay.

3.2.5 Datacenter Network Reduction

For any reasonable datacenter network, a number of additional properties will also hold. These
properties make it possible to simplify the calculation of the network epoch from Equation 3.10.
The properties are:

• The core of the network is at least as fast as the edge of the network. This is true of all
datacenter network architectures discussed in Section 2.1.3.

• All hosts are connected to the edge of the network. This is again true of all the datacenter
network architectures discussed in Section 2.1.3.

• All hosts in the network participate in the latency bound and are permitted to send traffic
to a single destination host. This property causes the maximum potential fan-in to be equal
to the total number of hosts in the network.

Assuming that all of the above properties hold, the worst case delay will always occur at the
edge switch with the slowest output speed (which is likely to be uniform across the network).
The network epoch calculation from Equation 3.10 therefore reduces to:

edcnet = N × Pmax

redge

+ εedge (3.13)

Where:

• edcnet is the network epoch for a reasonable datacenter network.
• N is the total number of hosts in the network
• Pmax the maximum packet size (in bits)
• redge is the slowest edge speed of the network (in bits per second)
• εedge is the processing delay introduced by the slowest edge switch

The results from Equation 3.9 can therefore be used to calculate the maximum delay
that any packet will experience in a datacenter network of any topology, using a reasonable
switch model, and a Leaky Token Bucket, configured according to Equation 3.13.

By replacing the network epoch enet with the datacenter network epoch edcnet in Equa-
tion 3.11, we can calculate the effective rate offered to hosts in a datacenter network. That

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 75

is:

Rave = Pmax

edcnet

≈ redge

N
(3.14)

Where the terms have the same definitions as in Equation 3.13.

Practically speaking, there is a problem with Equation 3.14. From the equation, the
average rate given to each host scales inversely proportionally to the number of hosts in the
network. For example, in the small sample network (d) given in Section 3.4.7, there are 144
hosts and an edge speed of 10Gb/s, but each host receives an average rate of only 69Mb/s.
That is, approximately 99.3% of the network bandwidth is ‘wasted’. In larger, more realistic,
pod-scale networks of 1000-5000 hosts, the effect is more pronounced. For example, on a
10Gb/s network with 5000 hosts, each host will receive only 2Mb/s of average throughput
(i.e. 99.98% capacity lost). It should be remembered that, although the average bandwidth is low,
all packets transmitted at this low rate will receive bounded latency in the network and therefore
interference-free performance, without packet loss due to congestion. This is a much stronger
property than low bandwidth alone. The subject of Chapters 4 and 5 are methods to mitigate
and/or adapt to the issue of low bandwidth whilst retaining bounded delay.

3.3 Relationship to PGPS Delay Bound

The delay bound equation given in Equation 3.9 has a strong relationship to the PGPS delay
bound [21] discussed in Section 2.5.1.2 (pg. 50) and given in Equation 2.5. The PGPS delay
bound equation is replicated below for convenience:

D ≤ σ

g
+

K∑
s=1

Pmax

rs

+
K−1∑
s=1

Mmax

gs

(3.15)

Where:

• All sources are governed by a token bucket abstraction with rate ρ and burst size σ.
• The maximum size of packets in the network is Pmax and maximum size of packets in the

session is Mmax.
• The packets pass through K switches in total.
• For each switch s, there is a total rate rs of which each session receives a rate gs.
• g is the minimum of all gs.
• It is assumed that ρ ≤ g, i.e. the session is underutilised or at most perfectly utilised.

Recall from Section 2.5.1.2 that the terms in this equation can be understood intuitively. The first
term σ/g is the pure GPS term. This is the fluid-flow delay that would be experienced without a
packetised GPS approximation. The second term,

∑K
s=1

Pmax

rs
, is the PGPS correction term. This

term adjusts for the difference between GPS and the PGPS approximation at each switch. PGPS
approximations are never worse than a full sized packet behind a GPS scheduler (see also [20]).
The final term,

∑K−1
s=1

Mmax

gs
, is the serialisation delay correction term. This term adjusts for the

time it takes each packet to be serialised as is passes between each switch.

76 3.3. RELATIONSHIP TO PGPS DELAY BOUND

To draw a meaningful comparison between the two approaches, let us rewrite the
PGPS delay bound equation with the same parameters used in the delay bound equation (3.9).
Specifically I assume that:

• the network is a reasonable datacenter network with the same properties used to produce
Equation 3.13.

• Each host is given a fair share of each switch that it is connected to i.e. gs = rs/ns

• The network has n hosts in total.
• The minimum rate given to a host is one nth of the rate at the edge , i.e g = min(gs) =
redge/n

• Pmax is the same for all hosts and all sessions i.e Pmax = Mmax

• The token bucket regulator is configured with burst size is σ = Pmax and average rate
ρ = g = redge/n.

Substituting these parameters into Equation 3.15 results in:

D ≤ n× Pmax

redge

+
K∑

s=1

Pmax

rs

+
K−1∑
s=1

ns × Pmax

rs

(3.16)

Note that the first term is essentially the same as Equation 3.13. This is the limiting case for the
network rate to be undersubscribed yet, for all hosts in the network to participate in bounded
delay. It is also just a special case of the third term in the equation. Since the edge switch is the
final switch in a path, and the summation in the third term fails to take this into account (i.e the
sum is between switches 1 and k − 1), it can simply be incorporated into the final summation to
become:

D ≤
K∑

s=1

Pmax

rs

+
K∑

s=1

ns × Pmax

rs

(3.17)

Note now that the second term in Equation 3.17 is essentially the same as Equation 3.9.
Parekh et al. did not take into account intrinsic switch delays (σk), it is otherwise identical.

Comparing Equation 3.9 and Equation 3.17 the only notable difference is the first
term. This term compensates for the difference between a GPS fluid-flow model scheduler, and
a PGPS discrete approximation to fluid-flow model scheduler. It may seem paradoxical that
Equation 3.9, which assumes a very simple scheduling model, has a lower delay lower bound
than Equation 3.17, which assumes a more sophisticated PGPS scheduler. This can be accounted
for by the assumed traffic models. Equation 3.17 assumes a token bucket regulator. This regulator
can issue a burst of at most Pmax at any time. The PGPS scheduler will incorporate this into
the fair share model, applying a fluid-flow model and adding a worst case delay of Pmax/r. By
contrast, the Leaky Token Bucket regulator applies a fluid-flow abstraction at the source. It
ensures that bursts of size Pmax are spaced over a period of least n× Pmax/r and that, no more
than Pmax bytes are issued over each period. This is a much more restrictive traffic regulator,
which allows the switch schedulers to have a much simpler service model. Finally, note that 3.17
can be rearranged as follows:

D ≤
K∑

s=1

(ns + 1)× Pmax

rs

(3.18)

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 77

th
ro

ug
hp

ut

time

input traffic

th
ro

ug
hp

ut
time

traffic shaper

th
ro

ug
hp

ut

time

traffic policer

rate limit rate limit

Figure 3.11: Different approaches to traffic regulation, traffic shaping and traffic policing.

For large n this reduces to

D ≤
K∑

s=1

ns × Pmax

rs

(3.19)

which is essentially identical to Equation 3.9. The PGPS scheduler thus provides approximately
the same bounds as Equation 3.9 (sans εk) . It does so using a complex (fluid-flow) scheduler and
a simple (bursty) regulator. By contrast Equation 3.9 provides its bound using a simple (bursty)
scheduler and a complex (fluid-flow) regulator.

3.4 Practical Considerations

Section 3.2 describes a mathematical model for bounding latency in datacenter networks. Doing
so assumes ideal hosts, networks and software as well as perfect regulators and protocols. In
this section I discuss some of the practical considerations for realising the aims of Section 3.2 in
realistic datacenter networks. Many of these considerations lead to configuration trade-off’s. For
these configuration questions there are no easy or correct solutions. Ultimately the right decision
will depend on critical operations information and operational trade-offs.

3.4.1 Regulator Queue Depth

A subtle but important component of the Token Bucket / Leaky Token Bucket regulators described
in Section 3.2.3 is the input queue (see Fig. 3.6/3.7). The input queue is used to hold packets that
arrive while there are not enough tokens in the bucket to allow transmission. If the queue is full,
packets will be dropped. An important configuration parameter is the length of this queue.

When configuring the input queue length, the user must choose between two opposing
goals: (i) to maximise burst tolerance, the regulator should have a long queue, ideally infinitely
long; and (ii) to minimise latency impact, the regulator should have a short queue, ideally of zero
length. This distinction leads to a classification scheme for traffic regulators.

Traffic regulators can be classified as either policing or shaping16. A regulator with a
16Cisco Configuration Guide, Release 12.2. See Appendix A.4.7 for more details

78 3.4. PRACTICAL CONSIDERATIONS

queue length greater than zero is a shaping regulator. Shaping regulators alter the “shape” of
the throughput curve over time. When the offered load exceeds the capacity of the bucket, the
limiter will queue the excess traffic. When the offered load falls short of the output rate, the
queue will drain. This buffering leads to a smoother output traffic function overall. An example
of traffic shaping is shown in Figure 3.11. The input traffic throughput curve is shown on the left
of the figure. The traffic has periods of high rate and periods of low rate. The shaping regulator
(middle) alters the shape of the traffic, smoothing it over time to form a uniform throughput
curve.

The hope with a shaping regulator is that the average offered load will not exceed the
average output rate for too long. As a result, the queue will not build indefinitely. The value
of “too long” depends on the length of the queue. Practically speaking, queues will be limited
to some fraction of available memory. A shallow queue will use less memory, while a longer
queue will be more resilient to bursts and offer a longer shaping period. The choice between
these opposing trade-offs is an operator specific decision.

Although shaping regulators lead to a smoother output traffic function, the additional
queueing leads to the potential for increased latency in the network. To eliminate this extra
latency, the queue length could be configured to be zero. A regulator with a queue length of zero
is called a policing regulator.

Policing regulators do not buffer packets. They apply an admissibility criterion to
each packet and simply drop packets that do not match. This limits the ability of the sender to
exceed a given instantaneous transmission rate. As a result, no smoothing is applied and traffic
burstiness is forwarded (see Fig. 3.11 right) to the destination. This makes their output more
predictable. In addition to providing better latency properties, policing rate limiters are also
simpler to implement. They can be implemented in only a few lines of code, require no memory,
and have a minimal impact on overall system performance (i.e. memory use, CPU performance
etc). The drawback of a zero queue length (policing) regulator is that potential bandwidth is
wasted when the offered load falls short of the output rate-limit. Policing regulators can also
trigger poor protocol behaviour as discussed later in Section 3.4.5. Ultimately, regulator queue
length configuration is an operator specific decision and, one that will depend on how, as well as
where the limiter is implemented.

3.4.2 Regulator Placement

The regulators discussed in §3.4.1 can be implemented at several places between an application
and the network. The choice of location will affect the amount of CPU, memory and hardware
resources used, the maintainability of the system, application impact as well as the fidelity of
regulation. A summary of regulator placement trade-offs discussed in this section is shown in
Table 3.1.

Application The first option is to insert the traffic regulator code into applications. This can
be achieved in two ways: (i) the application’s code can be modified directly and recompiled;

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 79

Placement Fidelity Configurability HW Accel. Num Limiters App. Mods CPU use

Application Low High 7 Per flow Yes Medium
LD Preload Low High 7 Per socket No Medium

Kernel (e.g. TC) Medium Medium 7 Per socket No Medium
NIC (e.g. [142]) High Limited 3 HW Limited No Low

Switch High Limited 3 HW Limited No None

Table 3.1: Comparison of regulator placement trade-offs.

or, (ii) the application’s system-calls can be captured and routed through additional code (for
example using the Linux Dynamic Linker and configuring the LD_PRELOAD17 environment
variable). The first method is advantageous because it can be aware of application internal
state. This means that it can distinguish between individual messages and between flows that are
multiplexed over a single TCP connection. However, this method requires the application code to
be modified. By contrast, dynamic injection can be used without modifications to the application
source code or binary, but cannot be application aware. Both methods are advantageous because
they are relatively simple to implement and debug. For applications that use byte stream
protocols (e.g. TCP), these regulators can segment application messages which are larger than
Pmax into smaller messages by making multiple calls to send(). The segmentation will have
some CPU overhead and performing many system-calls can impose significant latency penalties.
Furthermore, neither method has direct access to the network hardware, which means that both
methods suffer from low fidelity regulation. For example, throughput enhancing features in
the kernel or network adapter may attempt to batch messages/packets together (e.g. Nagle’s
Algorithm[113]) which can disrupt the inter-packet timing applied by these kinds of regulators.

Kernel An alternative arrangement is to place the regulator code inside the kernel, for example
using the Linux Traffic Control (TC)[143] interface. This avoids the system-call overheads asso-
ciated with the methods described above. TC modules are placed between the network stack and
the network adapter driver. The module receives fully formed frames from the TCP/IP/Ethernet
stack where protocol/kernel layer batching operations have already been performed. This means
that TC models have high fidelity control over what gets sent to the network adapter. However,
this also causes difficulties if the module receives frames larger than Pmax. Network acceleration
mechanics such as TCP Segment Offload (TSO), Large Segment Offload (LSO) and Generic
Segment Offload (GSO) operate by sending large size segments down to the NIC where they are
re-segmented into Maximum Transfer Unit (MTU) sized frames. If a large segment is received
by the regulator it must either: drop the entire segment, or re-segment it into smaller segments. It
can be computationally expensive to re-segment large frames in software. Finally, kernel-based
regulators do not have direct control over the network adapter hardware. They provide high
fidelity control over what gets sent to the adapter but over not what gets put into the network.

17See Appendix A.19.2.

80 3.4. PRACTICAL CONSIDERATIONS

Network Adapter Network adapters often also offer rate-limiting options. For example, the
Intel 82599 chipset (as used in x520 and x540 adapters) supports hardware based transmit rate
limiters18. There are several problems with this implementation. The chipset supports only one
rate-limiter per transmit queue and only 128 transmit queues. This limits the availability of
hardware based rate-limiting to at most 128 concurrent configurations. Furthermore, the Linux
operating system does not expose a mechanism for configuring and using rate-limiter options on
network adapters. Finally, these rate-limiters have limited configuration options. The Intel X520
chipset has an output rate configuration value only. There is no direct support for modifying
queue lengths. Furthermore, no details are given about rate-limiting scheduler implementation.
It is unlikely that Leaky Token Bucket regulator functionality will be directly supported and it is
unlikely that it could be approximated without more NIC configurability.

In response to configurability issues, limited queue counts and other shortcomings,
Radhakrishnan et al. proposed SENIC [142], a purpose built network adapter and software
stack that could support “10s of thousands of rate limiters”. Similarly, my previous work
proposed Eden, a generic mechanism to enable custom end-host network functions such as
rate-limiting/traffic regulation [107] to be offloaded into network adapters. The key feature
of both of these systems was the ability for applications to tag flows which would then be
handled specially in hardware. Eden specifically provides a Domain Specific Language (DSL)
for describing these messages and for describing functions (e.g. regulators) to be implemented in
the hardware. Unfortunately, both projects require custom hardware which is not currently found
in datacenters.

Software A final alternative is to use rate-limiting functions offered by switches. Commodity
switches from Cisco and Arista19 offer egress shaping and policing configurations. These
features are typically configured around a specific port or DSCP field value. This limits the
number of effective rate-limiters to between 1 and 8 configurations. Once again, the rate-limiters
implemented in commodity switches have limited configuration options and limited details about
their internal scheduler operation. It is therefore unknowable if Leaky Token Bucket functionality
could be implemented or approximated using these features.

On balance, I concluded that a kernel-based policing regulator offers the highest fidelity
and configurability with the lowest runtime and implementation cost. Unless otherwise noted, I
will employ a kernel-based policing regulator for the remainder of this dissertation Operators
with more significant hardware or software control may balance this choice differently.

3.4.3 Packet Size Considerations

In Equations 3.9 and 3.10, the end-to-end delay and rate limit are (approximately) proportional
to the value of Pmax. To minimise the delay bound and maximise throughput, Pmax should
therefore be as small as possible. The Ethernet standard limits frames to a minimum size of

18Intel 82599 datasheet. See Appendix A.16.6.
19Cisco and Arista configuration guides. See Appendix A.4.6 and A.2.4.

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 81

64B [16]. This imposes a constraint on the allowable values for the minimum delay. For example,
on a 32 port, 40Gb/s switch with a service time of ε = 0.45µs (e.g. Arista 7060X20), assuming
all ports are participating, the minimum delay guarantee given by Eq. 3.9 with 64B frames is:

d ≤ 32× 64B
40Gb/s

+ 0.45µs ≤ 0.86µs (3.20)

This delay cannot be further reduced by decreasing the frame size. The only other option
to further reduce the guaranteed minimum delay is to reduce the number of participating
hosts/ports/connections (n). The operator is therefore left in the position of deciding between
reducing the bound on network delay and reducing the number of hosts that can participate. In
the simplest deployments, all hosts in the network participate delay bound (see Chap. 4). This
places a lower bound minimum delay bound that can be guaranteed through the network. Chapter
5 discusses some ways in which this problem may be alleviated.

The placement of the regulator (See §3.4.2) also has an effect on the maximum reason-
able value of Pmax. In standard Ethernet networks, the largest frame allowable is 1518B [16]. In
some extended Ethernet devices this can be configured using jumboframes up to 9000B [144].
As discussed in 3.2.3, sending two packets back-to-back has the same effect on the network as
sending one large packet. Therefore, it would seem illogical to set Pmax larger than the maximum
frame size that Ethernet supports. Doing so would require multiple packets to fulfil and would
have a negative effect on application messages and the delay bound. However, this is not true if
the regulator is placed in software. Network acceleration mechanics such as TCP TCP Segment
Offload (TSO), Large Segment Offload (LSO) and Generic Segment Offload (GSO) operate by
sending large messages from the host software to the network card where they are re-segmented
into maximum sized frames. In-kernel/application-based regulators may receive these large
frames (typically 64kB) and have to choose between dropping them (which wastes bandwidth),
or re-segmenting them (which is computationally expensive and wastes bandwidth). Therefore,
the maximum reasonable size for Pmax may indeed be larger than maximum Ethernet packet,
and is instead bounded by the segmentation offload size.

3.4.4 Regulator Implementation

A regulator is required if we wish to bound latency across the network. The regulator must at
least ensure that its output is (Pmax, enet) constrained. Pseudocode for a minimal implementation
of a discrete (Pmax, enet) enforcing, policing regulator is given in Listing 3.1. The code takes a
new packet as an argument. It is assumed that the size of the packet is known. The code first
checks to see if a sufficient time has elapsed since the last transmission (line 10). If a time of at
least enet seconds has passed, it resets the timer (line 11) and adds a fresh allocation of bytes
to the token bucket (line 12). On line 16, the code checks to see if there are enough tokens
remaining in the bucket to send a packet. If true, the packet is transmitted (line 18). If not, the
packet is dropped (line 15). Line 17 is important: this line implements the (Pmax, enet) constraint.

20Arista 7060X marketing material. See Appendix A.2.5.

82 3.4. PRACTICAL CONSIDERATIONS

1

2 const long epoch_cycles = to_cycles(e_net_secs); //Assumes CPU speed

3 long timestart_cycles = 0;

4 long bucket_tokens = 0;

5

6 int limiter_packet_event(buffer packet) {

7 long now_cycles = asm("rdtsc"); // read cycle counter

8

9 //Reset timer if sufficient time has passed

10 if (now_cycles > timestart_cycles + epoch_cycles) { //Enough time passed?

11 timestart_cycles = now_cycles; //Reset timer

12 bucket_tokens = P_max_bytes; //Add fresh tokens

13 }

14 }

15

16 if(packet.size <= bucket_tokens){ //Enough tokens to send?

17 bucket_tokens = 0; //Remove all tokens

18 return sendToHWQueue(packet); //Send the packet to the hardware

19 }

20

21 return DROP; //Packet requires too many tokens drop it

22 }

Listing 3.1: Pseudocode for a fast policing regulator.

When a packet is sent, the bucket is completely drained (bucket_tokens = 0), thus enforcing
the constraint.

Since the code applies to every packet, it needs to be fast. Note that the current “time”
measured on line 6 is a call to read the system timestamp cycle counter (RDTSC) rather than
to obtain the wall-clock time. Furthermore, the delay value is pre-computed into cycles on line
2. These operations allow the code to perform relatively cheap cycles based operations rather
than expensive wall-clock time keeping operations. According to the Intel 64/IA32 Software
Developers Manual [56]:

On processors with invariant TSC support, the OS may use the TSC for wall clock
timer services (instead of ACPI or HPET timers). [. . .] TSC reads are much more
efficient and do not incur the overhead associated with a ring transition or access to
a platform resource. . .

The cycle space optimisation assumes that the host machine has invariant Time Stamp Counter
(TSC). An invariant TSC will run at a constant rate in all power states and across all cores.

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 83

1

2 const long epoch_cycles = to_cycles(epoch_secs); //Assumes CPU speed

3 long timestart_cycles = 0;

4 long bucket_tokens = 0;

5

6 int limiter_packet_event(buffer packet) {

7 long now_cycles = asm("rdtsc"); // read cycle counter

8

9 //Reset timer if sufficient time has passed

10 if (now_cycles > timestart_cycles + epoch_cycles) { //Enough time passed?

11 timestart_cycles = now_cycles; //Reset timer

12 bucket_tokens = P_max_bytes; //Reset token bucket

13 }

14 }

15

16 const long leaked_tokens = P_max_bytes * (time_now_cycles - timestart_cycles)

17 / (epoch_cycles); //How many tokens leaked out?

18 if(packet.size <= bucket_tokens - leaked_tokens){ //Enough tokens?

19 bucket_tokens -= packet.size;

20 return sendToHWQueue(packet); //Send the packet to the hardware

21 }

22

23 return DROP; //Packet requires too many tokens drop it

24 }

Listing 3.2: Pseudocode for a fast Leaky Token Bucket (LTB) based policing regulator.

Recent commodity x86 CPUs that are run in datacenter operations (See 2.1.2) support this feature.
However, this optimisation assumes that a calibration routine (such as that described in the Intel
Developer’s Manual [145]) has been run to calculate or infer the CPU clock speed and to make
these conversions possible.

The problem with the above regulator is that it wastes bandwidth. Every time a packet is
sent the bucket is reset to zero. This is resolved by using a Leaky Token Bucket (LTB) regulator
(§3.2). An LTB ensures that at most Pmax bits are issued into the network with a minimum
spacing of time enet seconds. However, it can also issue traffic into the network in intervals
smaller than enet so long as its bucket is “leaky”. That is, it may issue b bits into the network
where b is given by the following equation (see §3.2.3 for more details):

b ≤ enet − v
enet

× Pmax ∀ 0 ≤ v ≤ enet (3.21)

Listing 3.2 extends Listing 3.1 to a full Leaky Token Bucket policing regulator. The

84 3.4. PRACTICAL CONSIDERATIONS

listing very slightly modifies Listing 3.1 with an extra calculation on line 16. This calculation is
an implementation of Equation 3.21. It determines the number of bytes that would have leaked
out of the bucket during the epoch interval. The modification makes this code similar to the
operations performed by PGPS schedulers (see §2.5.1). In essence, the modified code runs a
fluid-flow simulation of finishing time of the leaking bucket “on the side”. To remain fast, the
calculation is performed using integer mathematics rather than floating point computation. This
many introduce small rounding errors of one byte which I consider to be insignificant. Line 18 is
modified to compare the packet size to the bucket contents minus the amount that would have
leaked out. If there are sufficient tokens remaining, the packet is transmitted and the tokens are
removed from the bucket. If not, the packet is dropped.

On my test machines, I have found no measurable effect of this regulator on CPU

utilisation or throughput. On average it imposes a cost of approximately 35 cycles per packet
(σ = 18.6; 99th% = 69 cycles) on the Linux kernel critical path of ≈8,000 cycles. This amounts
to a less than 0.5% overhead. It is important to note that this regulator is a policer without
resegmentation. No buffering is performed and all packets that are bigger than Pmax will be
dropped. Despite these shortcomings I found this solution to work adequately with realistic
applications (see Chapter 4).

3.4.5 Policing Limiter Protocol Effects

The algorithm presented in Section 3.4.4 is a policing algorithm. Packets are admitted or rejected
from the network depending on the time since the last transmission. This leads to the desirable
property of predictable network behaviour. However, it can also have a detrimental effect on
the end-to-end performance of TCP. Since TCP is the most common protocol in datacenter
environments (See §2.2 and §2.4.1–§2.4.4), it is important to understand and mitigate these
effects.

Figure 3.12a shows the throughput performance of UDP traffic generated by iperf

when subjected to a 500Mb/s policing rate limiter. As shown in the figure, the UDP traffic is
stable at between 400Mb/s and 490Mb/s, never exceeding the 500Mb/s limit. Figure 3.12b
shows the throughput performance of iperf generating TCP CUBIC when subjected to the same
500Mb/s policing rate limiter.

As seen in Figure 3.12b, the TCP throughput results are quite different. Over a 300
millisecond window only 3 packets are sent. This happens because the policer drops 3 out of 4
packets. As a result, TCP fails to receive 3 consecutive acknowledgements. The protocol cannot
know if the acknowledgements have been lost, or if they are being delayed by severe congestion.
If they are delayed by congestion, injecting more packets into the network may exacerbate the
congestion. But, if the packets genuinely have been lost, the lost packets need to be retransmitted.
In response, TCP waits for a ‘safe’ period so that any outstanding (delayed) acknowledgements
can be received, but not too long so that bandwidth is wasted because the retransmissions have
not been sent. The value of ‘safe’ is determined dynamically [66] with a minimum value which

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 85

600 650 700 750 800 850 900
Time [msec]

0

100

200

300

400

500

600
Th

ro
ug

hp
ut

[M
B

it/
s] vanilla UDP

(a) Vanilla UDP behaviour

600 650 700 750 800 850 900
Time [msec]

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
[M

B
it/

s] vanilla TCP

(b) Vanilla TCP behaviour

600 650 700 750 800 850 900
Time [msec]

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
[M

B
it/

s] TCP, 5ms minRTO

(c) TCP with reduce retransmit timout

600 650 700 750 800 850 900
Time [msec]

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
[M

B
it/

s] TCP, 5.8kB window

(d) TCP with socket buffer windowing.

Figure 3.12: Protocol effects of applying policing regulaltors

is called the minRTO. On the 3.4.55 Linux Kernel the default minRTO value is 200ms21. The
result of waiting for 200ms is complete TCP throughput collapse.

Two simple mitigations can be applied to resolve the throughput collapse shown in
Figure 3.12b. First, the default minRTO value of 200ms is overly cautious for datacenter networks
where round-trip-times are measured in microseconds. Figure 3.12c shows the effect of reducing
the minRTO value to 5ms. The figure shows a marked improvement in TCP’s behaviour, however,
it is apparent that timeouts still dominate the performance.

An alternative mitigation is to limit the TCP transmit socket buffer size given to applica-
tions. The transmit socket buffer is used by applications to transfer data from the application
into the kernel, but before the TCP stack is invoked. Limiting the buffer size limits the ability
of applications to inject traffic into the network stack, effectively applying a simple rate-limiter
to the application. The effect of resizing the socket buffer to just under 4 frames is shown in
Figure 3.12d. As shown, this mitigation leads TCP to more stable throughput, approaching an

21See Linux Kernel 3.4.55 source code, include/net/tcp.h, line 135, e.g. http://lxr.free-electrons.
com/source/include/net/tcp.h#L135

http://lxr.free-electrons.com/source/include/net/tcp.h#L135
http://lxr.free-electrons.com/source/include/net/tcp.h#L135

86 3.4. PRACTICAL CONSIDERATIONS

average transfer rate of 500Mb/s and suffering from far fewer minRTO timeouts.

Unfortunately, limiting the size of the TCP socket buffer can be problematic for some
applications because it results in a kind of back-pressure which may not be correctly handled by
the application code. When the buffer is full, the kernel will signal the application by returning
an ENOBUFS22 error code. If the application is not expecting this return value it may a) crash
or b) fail into an inconsistent state. Furthermore, the Linux user manual explicitly states that
ENOBUFS errors “normally, do not occur in Linux” which means that few programmers will
think to handle it explicitly.

The effects of policing limiters are most pronounced for aggressive rate limits of a
few hundred megabits per second. At less aggressive limits, TCP successfully transitions into
congestion avoidance mode and the limiter operates as expected. Nevertheless, operators wishing
to use TCP with aggressive limits are left in a difficult position. They must decide which is
preferable:

1. Good TCP performance with unpredictable latency arising from a shaping rate limiter.
2. Poor TCP performance with predictable per packet latencies from a strict policing rate

limiter.
3. Improved TCP performance using a shorter RTO timeout, but with increased kernel fragility

due reconfiguration (and recompilation) of kernel defaults.
4. Improved TCP performance using socket-buffer windowing, but with increased application

fragility due to ENOBUFS error handling errors.

The choice between these options will depend on operator specific constraints. In my experiments
making these choices has not been necessary. PTPd uses UDP traffic at low rate (1 packet per
second), memcached uses TCP at medium rate (about 5Gb/s) and Hadoop uses TCP up to line-rate
(about 10Gb/s) (see Chapter 4 for more details).

3.4.6 Switch Behaviour

In Section 3.1 I assumed that switch schedulers are: (i) parallel and port-independent, (ii)
work-conserving and, (iii) throughput conserving. As a rule, switch silicon manufacturers keep
the precise implementation details of their schedulers secret. To understand the behaviour of
representative datacenter switches and verify that they operate as required by the model, I ran
the following experiments on an Arista 7050 switch, which uses a 10Gb/s Broadcom Trident II+
switching silicon23 internally.

3.4.6.1 Port-independent, parallel matching

I first verified that the switch scheduler is port-independent and parallel. To do so, I arranged
14 hosts connected to each other via the switch as shown in Figure 3.13a. I placed optical taps

22Linux man page – sendto(2). See Appendix A.19.3 for more details
23Broadcom BCM56580 “Trident II+” marketing material. See Appendix A.3.3

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 87

1 2

4

6

3

A

5

B

7

C

9

D

capture

8

10

sw
itch

(a) Port independent, parallel matching test ar-
rangement

1

11

2

10

capture

9

trigger

sw
itch

(b) Work conserving and throughput conserving
test arrangements

Figure 3.13: Switch model validation experimental configurations.

between the output of host 1 and the input to the switch, and, between the output of switch and
the input to host 2. The taps forward packets to a hardware time-stamping network capture device
(6ns resolution24) which is used to calculate the latency experienced across the switch. The first
pair of hosts (1 and 2) exchange ping messages (ICMP echo requests/replies) in “flood ping” 25

mode (around 13Mb/s). These small, low rate messages provide a way to sample the port-to-port
switch latency, including the crossbar scheduler latency. Hosts 3 and 4, 5 and 6, (7 and 8, etc)
are arranged as iperf clients and servers respectively. As the high rate iperf traffic crosses
the switch fabric, the switch scheduler will need to schedule this traffic as well as the iping
traffic. A parallel scheduler should exhibit no change in the latency of iping traffic regardless of
number of iperf pairs. The last group of hosts (A-D) act as additional clients for each iperf

server. These hosts add further strain to the scheduler by adding contention for output ports. In
this case, multiple input ports will have outstanding packets in output queues destined for the
same output port. This is done to ensure that the switch scheduler is not exercising a fast path in
the one-to-one case.

The results of this experiment are shown in Figures 3.14a and 3.14b26. Each figure
contains 5 box and whisker plots. The box and whisker plots show the observed latency
distribution across the switch as a function of the number of iperf clients. The boxes are at

24Exablaze X10 datasheet. See Appendix A.9.2.
25In flood ping mode, the iping sender emits ICMP echo requests as quickly as it can.
26Each box and whisker plot is sourced from approx. 500,000 measurement data points. Although the results

appear identical, I have verified that each source is uniquely derived from each experiment.

88 3.4. PRACTICAL CONSIDERATIONS

0 1 2 3 4
Number of hosts sending

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

[µ
s]

(a) Scheduler is parallel and port-independent
(single source, single destination)

0 2 4 6 8
Number of hosts sending

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

[µ
s]

(b) Scheduler is parallel and port-independent
(double source, single destination)

0 1 2 3 4 5 6 7 8 9 10
Number of hosts sending

0
2
4
6
8

10
12

La
te

nc
y

[µ
s]

modelled worst case

(c) Scheduler is work conserving.

0 1 2 3 4 5 6 7 8 9 10
Number of hosts sending

0

22

44

66

88

110

132

La
te

nc
y

[µ
s]

modelled worst case

(d) Scheduler is throughput conserving.

Figure 3.14: Experimental results of switch model verification tests.

the 25th and 75th percentiles, whiskers are 1st and 99th percentiles, and the stars indicate the
maximum latency observed over approximately 500,000 samples. Figure 3.14a shows the results
for the uncontended cases while Figure 3.14b shows the results for contended cases. Both figures
include the idle case where there are no iperf clients/servers in operation.

The figures show that the ping measurements are unaffected by the traffic on other
ports. There is no measurable difference between the latency of ping requests with or without
the iperf traffic. I therefore conclude experimentally that at least one popular datacenter switch
silicon implements the required parallel scheduling functionality. As discussed in Section 3.1,
the Cisco Nexus 55xx switches implement an iSLIP like algorithm that will also meet these
requirements.

3.4.6.2 Work Conservation

The next experiment tests if the switch scheduler is work conserving. This is required by
Section 3.2.1 and is the key to Equation 3.4 and all that follow. To do so, I arranged ten hosts
as per Figure 3.13b. Between one source host and the switch, and between the switch and the
destination host I paced optical taps (similar to that in the experiment above). Once again the
taps feed into a high resolution network capture device to measure and calculate the latency
across the switch. In this experiment, the measurement device offers a measurement granularity

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 89

7.5ns27.

Each host generates packets using the Netmap [105] kernel bypass system. Using
the Netmap system allows me to accurately control the number of packets that are sent to the
network card for transmission. Each host generates full-sized (1518B) packets in response to
a broadcast trigger message being received over a separate control network. The hosts send a
configurable number of packets in a train to the destination. This creates a synchronised burst of
traffic arriving at the switch which is the same as the modelled case in Section 3.2.1.

For the first experiment, each host sends a single packet to the destination in response
to the trigger. The triggers are spaced at 1ms to ensure a quiescent system. Figure 3.14c
shows the measured latency results across the switch. The figure comprises 10 box and whisker
plots similar to those described in Section 3.4.6.1 above. The plots show the observed latency
distribution as a function of the number of hosts (n) and the modelled worst case using Equation
3.1. The modelled worst case uses the parameters P = 1518B, R = 10Gb/s, εk = 588ns28 and
n = [1, 2, 3, ..., 10]. In the figure, the observed worst-case packet switching latency increases
nearly linearly with the number of sending hosts. It tracks the predicted worst case closely up
to six senders and then begins to fall short. This is because the probability of all senders being
exactly synchronised (i.e. all 10 packets arriving within a ≈1µs window) decays exponentially
with the number of hosts. Interestingly this observation suggests that in a larger, asynchronous
systems, the observed latencies will generally be lower than those predicted by the worst case in
Equation 3.1, but that the worst case bound does hold as expected.

3.4.6.3 Throughput Conservation

Section 3.2.2 requires that the switch scheduler be throughput conserving. In it I argue that
variable sized packets can be used with a Leaky Token Bucket regulator if back-to-back packets
can be treated as if they were large packets of the same size. Section 3.2.4 also relies on this
requirement to construct mutli-switch delay bounds. To analyse the behaviour of the switch
when subject to “trains” of back-to-back packets, I reconfigured the experiment above. In this
second experiment, each host generates 10 back-to-back packets destined for a single destination
host. Once again, packets are generated by all hosts in response to a trigger message and triggers
are spaced by 1ms. The results are shown in Figure 3.14d.

Again the same box and whisker plots described in Section 3.4.6.1 are used. In this
case the Eq. 3.8 is used to model the worst case behaviour. The modelled worst case uses the
parameters Pmax = 1518B, R = 10Gb/s, εk = 588ns and n = [10, 20, 30, .., 100]. The plot
shows the latency across the switch as a function of the number of sending hosts. Once again the
measured behaviour in Figure 3.14d tracks closely with the modelled behaviour. Since the packet
trains are used instead of single packets, there is a statistically higher probability of achieving
the near worst conflicts which is reflected in the graph. In this graph there is a closer alignment

27Endace 9.2X2 datasheet. See Appendix A.8.1.
28Since the size of this experiment is small, εk cannot be ignored.

90 3.4. PRACTICAL CONSIDERATIONS

H144...

ToR switch 3ToR switch 2

Aggregation switch

ToR switch 1

10G

40G

... ...H97H96H49H48H97

(a) “Skinny” Tree Network (oversubscribed)

H144...

ToR switch 3ToR switch 2

Aggregation switch

ToR switch 1

10G

4x40G

... ...H97H96H49H48H1

(b) Fat-Tree / Folded Clos Network

Leaf 1

Hosts 1...16

Spine 1 Spine 2

Leaf 2

... ...
17...32

Leaf 8

96...112

Leaf 9

... ...
128...144

……...
40G

40G

(c) Resilient / Path Diverse (oversubscribed)

Spine 1

Leaf 1

Hosts 1...16

Spine 2 Spine 3 Spine 4

Leaf 2

... ...
17...32

Leaf 8

96...112

Leaf 9

... ...
128...144

……...
10G

40G

(d) Non-Blocking Clos

Figure 3.15: Datacenter network topology examples.

between the predicted worst case latency and the measured value. Overall, I can conclude from
the measured results of a representative datacenter switching silicon, that my switch scheduling
model presented in Section 2.2 is reasonable.

3.4.7 Network Topology

As described in Section 2.1.3, datacenter networks may be constructed from a variety of different
network topologies. It is an operator specific decision which topology to use and which arising
trade-offs are/are-not acceptable. Some example topologies are given in Figure 3.15. The
figure depicts 4 network topologies, each servicing 144 hosts: (a) a simple tree network, (b) a
fat-tree/folded Clos network, (c) a Facebook inspired “fabric” style network29 and, (d) a 3-stage
Clos network. Each of the different network designs have implicit trade-offs between the amount
and complexity of the physical wiring, the amount of bandwidth/over subscription that each
switch/host receives and the cost and complexity of the switches used. For example, the networks
depicted in (b) and (d) provide full bisection bandwidth whereas the networks depicted in (a)
and (c) do not. Furthermore, the networks depicted in (a) and (b) provide only 1 route between
any pair of servers whereas the networks depicted in (c) and (d) provide many.

The choice of topology also has implications for how the equations derived in §3.2 can
be applied and delay bounds that they can deliver. In each case, Equation 3.9 and Equation 3.10
must be used to calculate the senders’ delay bound and sending rate respectively. For example,
using the skinny tree network from Figure 3.15a, assuming that all hosts participate (e.g. n =
144), and that the switch latency (εK) is negligible, the delay bound is given by:

D ≤
K∑

k=1

nkPmax

rk

= 48Pmax

40Gb/s
+ 96Pmax

40Gb/s
+ 143Pmax

10Gb/s
= 179Pmax

10Gb/s
(3.22)

29See Appendix A.11.3.

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 91

Topol. ToR up (ns/b) Core (ns/b) ToR down (ns/b) Total (ns/b) Rate (Mb/s)
a 4.8 9.6 14.3 28.7 69.9
b 0.1 0.8 14.3 15.2 69.9
c 0.4 3.2 3.6 6.8 279.7
d 0.4 3.2 14.3 17.9 69.9

d@40G edge 0.4 3.2 3.6 7.2 297.7
b@40G edge 0.1 0.8 3.6 4.5 297.7

Table 3.2: Delay bounds for each switch, total delay bound and average rate limit for each
host using the topologies given in Figure 3.15, expressed as nanoseconds per bit.

The first term (48Pmax/10) accounts for the maximum fan-in at the ToR switches (48 ways),
the second term (96Pmax/40) accounts for the maximum fan-in (96 ways) at the core switches
and the final term (143Pmax/10) accounts for the maximum fan-in at the final ToR switch (n− 1
ways = 143). The coefficient of 143 instead of 144 in the final term accounts for the fact that the
destination host does not send to itself over the network. This term also gives the average and
effective rate-limits which are 46.5Mb/s and (Pmax, 215Pmax/10Gbps) respectively. Note that
the average rate-limit does not depend on Pmax which is precisely why the effective rate-limit is
required.

To further explore the relationship between topology and delay bound see Table 3.2.
This table shows the delays accumulated at each switch and the total delay bound for the each
topology in Figure 3.15. Each delay value is given in nanoseconds per bit (ns/b), making them
independent of Pmax. To obtain the actual delay bound a suitable Pmax value must be chosen.
For example, the total delay bound for topology b with Pmax = 128B = 1024b is given by
15.2× 1024 = 15565ns ≈ 15.5µs

Interestingly, Table 3.2 shows that the largest component of overall network latency is
always the final top-of-rack switch (ToR down) on the path. In topology (b), over 94% of the
total delay is added by the final hop. There are two reasons for this. First, all hosts in the network
need to pass through the final switch to be able to communicate with the destination. Thus the
longest (potential) queues will be at this maximum fan-in point. Second, the slowest links in the
network are typically at the edge of the network. This compounds the above delays. The result is
that, not only are the queues potentially longest, but the service rate is also the slowest leading to
the longest potential delays.

Counterintuitively, Table 3.2 also shows that oversubscription of bandwidth is not
always negative. Topologies b and d have full bisection bandwidth while topology c is 8:1 over
subscribed. But, topology c has the fastest edge speed at 40Gb/s. This makes topology c around
2.5× faster than topology b/c. By setting the edge speed in topology d to 40Gb/s, the result
improves it to parity with topology c. By setting the edge speed in topology b to 40Gb/s, the best
result (4.5ns/b) is obtained. The important consideration here is that full bisection bandwidth
is not sufficient. In general, having high path diversity with slow link speeds harms the latency

92 3.4. PRACTICAL CONSIDERATIONS

bound unless all paths can be used in a non-blocking way. If the operator can use ECMP [111] or
similar to bind flows to a given path in topology so that they do not interfere with each other, then
the aggregate service rate would increase and the delay bound could be reduced. Once again,
network topology and traffic engineering considerations are an operator specific decision. Such
decisions involve resource/cost trade-offs (e.g.the number of 10Gb/s and/or 40Gb/s switches),
physical complexity and failover trade-offs (e.g. cabling and failure domain concerns) as well
as operational and latency delay bound concerns. Each an operator will wish to weigh these
considerations for their own environments.

3.4.8 Host Latency Sources

The analysis and discussion in Chapter 3 has so far avoided host latency/interference issues.
Hosts may contribute to end-to-end latency variance through a variety of mechanisms [146];
scheduling and interrupts from the operating system, the BIOS and even the hardware can preempt
applications causing latency spikes. Likewise batching and queueing operations in the kernel
and network card often exchange throughput performance for latency variance. Other sources of
variation include cache and TLB misses as well as page table lookups. Finally resource sharing
between applications and/or virtual machines can have adverse effects when applications are
mixed.

In the commercial sector, High Frequency Traders (HFTs) and others whose applications
are latency sensitive employ specifically designed low latency network cards (e.g. Solarflare
Flareon Adapters30, Exablaze ExaNIC X1031) and kernel bypass/userspace network stacks
(e.g. Solarflare “Open”-Onload32, Exablaze ExaSock33, etc). In combination with scheduler
priorities, memory pinning, CPU pinning, and interrupt pinning, these provide lower overall
latency as well as better bounds on host based latency sources. These techniques are applicable to
commodity operating systems and software. In my preceding and following experiments I used
some or all of the above techniques where necessary. Furthermore, I ensure that applications are
run on idle machines without any application sharing. Operators may be more or less constrained
in the tools and techniques that they can apply. Once again, the specifics of the operational
environment, the performance requirements, and the resources available will determine the
acceptable trade-offs in this space.

While host latencies are, without a doubt, an important component of end-to-end delay
bounds in datacenter networks, mitigating and controlling variability in them is a subject area of
its own right. There is much previous and on-going work ([84, 146–151]) in the area. I therefore
limit the scope of this dissertation to in-network latencies only and defer to these and other
excellent works in the field for those interested in a more complete picture.

30According to Solarflare Flareon/“Open” Onload marketing material. See Appendix A.24.1.
31Exablaze X10 marketing material. See Appendix A.9.2.
32According to Solarflare Flareon/“Open”-Onload marketing material. See Appendix A.24.1.
33David, Exablaze Blog (14 July 2014). See Appendix A.9.3.

CHAPTER 3. BOUNDING DELAY IN DATACENTER NETWORKS 93

3.5 Conclusions
In this chapter I developed a model of a datacenter switch (§3.1) and showed that, in combination
with a Leaky Token Bucket (LTB) (§3.2.3),it is possible to bound delay in datacenter networks
(§3.2.4). Furthermore I showed that the above bounds are approximately the same as those offered
by PGPS (§3.3). Following this discussion I went on to examine many of the practical issues
associated with implementing these bounds in realistic datacenter settings (§3.4). In particular, I
showed experimentally that a widely deployed switch silicon implements the minimum required
properties of my model (§3.4.6). Finally, I showed that sensible values can be determined
for many implementation specific concerns and trade-offs necessary to realise the preceding
scheduler and regulator in a realistic datacenter network environment (§3.4.1–3.4.8).

3.6 Chapter Summary
• To control interference in a network it is necessary to bound delay. PGPS (see §2.5.1)

offers bounded delay. However, it starts from a fluid-flow model governed by a token
bucket regulator and works toward a packetised approximation with bounded delay.

• I pursue an alternative approach: I begin from a simple but realistic model of a datacenter
switch (§3.1), derive a way to bound delay in it, and then derive a fluid-flow based regulator
to maintain the delay (§3.2).

– Switches are assumed to use a Virtual Output Queueing (VOQ) architecture and a
switch scheduler that is (i) parallel and port-independent, (ii) work conserving and,
(iii) throughput conserving (§3.1).

– Delay can be bounded within a single switch in a single shot scenario according to
the equation R = d ≤ m× P

r
+ εsw (§3.2.1).

– If packets are limited to an effective rate limit described by (P, esw) this bound can
be maintained indefinitely (§3.2.2).

– I introduce Leaky Token Bucket (LTB) regulator. An LTB is a variant of a token
bucket where tokens are added a rate described by (P, esw), one batch per time
interval maintaining an average rate of ρ = Pmax/esw and; tokens leak out of the
bucket at a constant (fluid-flow rate) which is given by L = Pmax/esw. This maintains
the effective rate limit but allows smaller packets to be sent (§3.2.3).

– Multiple switches are cascaded together leading to the delay bound given by dnet ≤∑K
k=1

nkPmax

rk
+ εk where the flow is LTB constrained with parameters (Pmax, enet)

(§3.2.4).

• When arranged with the same parameters, the PGPS delay bound reduces to
∑K

s=1
(ns+1)×Pmax

rs

which is nearly identical to the bound derived using an LTB. PGPS uses a fluid-flow based
scheduler and a discrete regulator while I use a discrete scheduler and a fluid-flow regulator
(§3.3).

94 3.6. CHAPTER SUMMARY

• Despite the simplicity of the mathematics, there are many practical considerations to
address in order to implement the above schemes. Addressing these considerations is
ultimately an operator’s decision and will depend on operational trade-offs (§3.4).

– The queue depth of the regulator determines how tolerant it is of bursts, but also
how long packets can potentially wait, which extends the potential latency bound. I
choose a queue depth of zero which is called “policing” regulator (§3.4.1).

– Regulators may be placed at many places between the application and the network: in
the application, between the application and the kernel, in the kernel, in the network
card or in the switch. I find that the in-kernel placement offers the best compromise
of features, fidelity, and overheads (§3.4.2).

– Packet sizes are limited to a minimum of 64B which limits the minimum delay bound.
The maximum size of packets is the TSO/GSO/LSO transfer size which is usually
about 64kB. Beyond this size there is no gain to be had (§3.4.3).

– A policing Leaky Token Bucket regulator can be implemented in 24 lines of high
performance code. One optimisation is to perform calculations using cycles rather
than using wall-clock time (§3.4.4).

– Using TCP with an aggressive policing limiter can lead to poor performance. This
can be mitigated by using transmit window sizing and smaller retransmit timeouts
(§3.4.5).

– At least one common variant of a popular datacenter switch chip (Trident II+) imple-
ments a (i) parallel and port-independent, (ii) work conserving and, (iii) throughput
conserving scheduler (§3.4.6).

– Datacenter network topologies have an impact on the obtainable bounds. The most
significant limit comes from the speed at the edge of the network. The next most
significant limit comes from amount of interference free throughput in the core of
the network (§3.4.7).

– Hosts can add latency and interference. This is out of scope for the dissertation
(§3.4.8).

Chapter 4

Implementing Predictable Datacenter
Networks

IN the preceding chapter I described a scheduling model based on the operation of datacenter
switches. From this model, I derived the source traffic constraints required to provide
bounded latency in the network, and the Leaky Token Bucket (LTB) regulator to enforce

these constraints. I showed that reasonable values can be determined for many implementation
specific concerns and trade-offs required to realise the above mathematical constructions in
a realistic datacenter network. I also demonstrated a potential issue with the approach (see
§3.2.5): the average rate given to each host scales inversely proportionally to the number of
hosts participating in the bounded delay network (N). For example, on a 10Gb/s network with
N = 5000 hosts, each host will receive only 2Mb/s of average throughput (i.e. 99.98% network
capacity is lost). The value of N is therefore an important practical consideration.

In this chapter I discuss a straightforward method to make the concepts from Chapter 3
practical. I embody this in a coordination free-system called QJUMP. QJUMP favours simplicity
and deployability above all other concerns. Its design makes the convenient assumption that N
is equal to the number of hosts in the network. This assumption is convenient because it implies
that all hosts can participate in the bounded delay property of the network, but also that the delay
bound is minimised and that average throughput value is maximised. Under this assumption, no
runtime coordination or control is necessary, making QJUMP easy to implement and deploy.

4.1 Throughput vs. Latency

The problem demonstrated in Chapter 3 is that considerable throughput can be lost at the expense
interference control. For some applications, particularly coordination and control applications,
the trade-off between low throughput and interference control will lie deeply in favour of
interference control. Nevertheless, low throughput is clearly not ideal for all applications. This
situation can be improved upon by making two observations:

95

96 4.1. THROUGHPUT VS. LATENCY

1. Equation 3.13 is pessimistic: it assumes that all hosts transmit to a single destination at
the same time, taking the worst (combination of) paths. This is unlikely given a realistic
network and traffic distribution.

2. Some applications (e.g. PTPd) are more sensitive to delays than others (e.g. memcached)
whereas still other applications (e.g. Hadoop) are most sensitive to throughput restrictions.

From the first observation, we can relax the throughput constraints in Equation 3.14 by assuming
that fewer than all hosts send to a single destination at the worst time. For example, we may
assume that only half of the hosts concurrently send to a single destination (i.e. 72 out of 144).
Substituting this in to Equations 3.9 and 3.14 results in:

D ≤
K∑

k=1

nkPmax

rk

= 16
40Gb/s

+ 72
40Gb/s

+ 71
10Gb/s

= 93
10Gb/s

= 9.3ns/bit (4.1)

Rave ≈
redge

N
= 10Gb/s

72 = 138Mb/s (4.2)

That is, assuming that only 72 hosts send at any one time, those hosts can all send at twice the
rate (138Mb/s) and can receive almost half the latency guarantee (9.3ns/b vs 17.9ns/b – see
Table 3.2). We can generalise the above idea by introducing a scaling factor f so that the number
of effective senders in the network N ′ is given by:

N ′ = N

f
where 1 ≤ f ≤ N. (4.3)

Intuitively, f is a “throughput factor”: as the value of f grows, so does the amount of throughput
available, but the effective number of hosts that can use the network (N ′) decreases. In the
previous example, the total number of hosts in the network was N = 144, but the effective
number of senders was N ′ = 72. The throughput factor was thus f = 2.

From the second observation above, some (but not all) applications can tolerate some
degree of latency variance above the guaranteed bound. For these applications, we can aim for a
statistical reduction in latency variance rather than bounded latency. This is achieved by assuming,
but not enforcing the value for f . This re-introduces a degree of statistical multiplexing to the
network albeit one that is more tightly controlled. When the guess for f is too optimistic, the
actual number of senders is greater thanN ′, then some queueing will occur and the latency bound
will be violated. However, under reasonable circumstances, with reasonable traffic patterns, the
resulting queueing will still yield an improvement in tail latencies.

The probability that interference occurs increases with increasing values of f . At the
upper bound (f = N), the potential latency variance is equivalent to existing networks, but full
network throughput (Rave = redge) is available to applications. This configuration is essentially
identical to networks as they are currently. Setting f to any value lower than N represents a
decrease in the likelihood of interference and hence latency variability. At the lower bound
(f = 1), latency is guaranteed, albeit with tightly controlled throughput. In essence, f quantifies

CHAPTER 4. IMPLEMENTING PREDICTABLE DATACENTER NETWORKS 97

the interference vs. throughput trade-off. Large values of f have high throughput with the cost
of a high likelihood of interference. Small values of f have low throughput with the advantage
of lower/bounded interference.

4.2 Jump the Queue with Prioritisation
It would be ideal to use multiple values of f concurrently, so that different applications can
benefit from the interference/latency variability vs. throughput trade-off that suits them best. To
achieve this, the network needs to be partitioned so that traffic from latency-sensitive applications
(e.g. PTPd, memcached) can “jump-the-queue” over traffic from throughput intensive applications
(e.g. Hadoop).

Datacenter switches support the IEEE 802.1Q [136] standard which provides eight (0–7)
hardware enforced “service classes” or “priorities”. IEEE 802.1Q is a strict priority system which
means that high priority traffic will always be serviced in preference to low priority traffic.

Priorities are often hard to use in practice because priority selection can become a “race
to the top”. For example, PTPd users may assume that PTPd traffic is the most latency sensitive
and should receive the highest priority. Meanwhile, Hadoop users may assume that Hadoop
traffic is the most bandwidth sensitive, and should similarly receive the highest priority. Since
there are a limited number of priorities, and neither can achieve an advantage and prioritisation
loses its value. The QJUMP system is different.

In QJUMP, priority values are intentionally bound to rate-limit values. For each priority,
I assign a value of f . The higher the priority the smaller the value of f . Since a small value of
f implies an aggressive rate limit, priorities become useful because they are no longer “free”.
QJUMP users must choose between low latency variance/interference at low throughput (high
priority) and high latency variance at high throughput (low priority).

I call the assignment of an f value to a priority a QJUMP level. The latency variance
of a given QJUMP level is a function of the sum of the QJUMP levels above it. In Section 4.4, I
discuss various ways of assigning f values to QJUMP levels.

4.3 Implementation
To implement QJUMP requires two components: (i) a leaky token bucket regulator (as described
in §3.4.4), and (ii) a mechanism to configure applications to use QJUMP levels. The regulator can
be deployed in many locations (see §3.4.2 for a fuller discussion). In a single-authority datacenter
environments (e.g. Google, Facebook etc), the regulator is best deployed as an addition to the
kernel network egress path. In a multi-tenant environment (e.g. Amazon AWS, Microsoft Azure
etc), the regulator might best be deployed as a component in the hypervisor. In either case,
these choices limit the changes to the system to a pluggable component with a well defined
interface, yet offer the highest fidelity and configurability and the lowest runtime cost. In
such a configuration, the applications and network hardware remain unchanged and inserting

98 4.4. CONFIGURATION

or removing a kernel module is a low overhead exercise. This aligns with QJUMP’s goals of
simplicity and deployability.

4.3.1 Application Utility

QJUMP requires that applications (or, specifically, sockets within applications) are assigned to
QJUMP levels. In Linux and other UNIX like operating systems, this can easily be done in applica-
tion code directly with a setsockopt() using the SO_PRIORITY option. The SO_PRIORITY
option, in combination with the Linux IEEE 802.1Q driver module, allows hosts to issue packets
tagged with a priority value that will be handled by the switch. To support unmodified appli-
cations without recompilation, I have implemented a utility that dynamically intercepts socket
setup system-calls and alters their options. I inject the utility into unmodified executables via
the Linux dynamic linker’s LD_PRELOAD support (a similar technique to that used by ExaSock1

and “Open” Onload2). The utility performs two tasks: (i) it configures socket priority values,
and (ii) it sets socket send buffer sizes to avoid TCP retransmit timeouts occurring (as described
in §3.4.1).

4.4 Configuration

A QJUMP deployment requires four parameters to be considered/configured: (i) Pmax, the
maximum packet size; (ii) rk, the rate of the slowest edge link; (iii) ε, the cumulative switch
processing delay; and (iv) fi, the per-level throughput factors.

4.4.1 Configuring R and ε

Since the topology of a datacenter network is relatively static, the minimum link speed R and
the cumulative switching delay ε do not vary much or often. Typical values are R = 10Gb/s
or 40Gb/s and ε = 0.1µs to 0.5µs. Setting the remaining parameters P , and f requires some
consideration of the specific aims and objectives for the QJUMP deployment.

4.4.2 Configuring Pmax

As discussed in Section 3.4.3, there are limits on the allowable sizes that Pmax may take. In
summary, the lower limit is 64B while the practical upper limit (for a kernel-based regulator) is
around 64kB (see §3.4.3 for more details). In addition to these limitations, from Equation 3.10,
the network epoch grows linearly with increasing Pmax. The Pmax value should therefore be kept
small to keep the network epoch short. Incentives to decrease the packet size are usually aligned
with incentives to decrease the latency bound. However, Pmax should also be large enough to
be useful. Benson et al. found that 30%–50% of packets in many datacenters contain fewer
than 256 bytes [152]. This suggests that ≤256B packets are sufficient for some applications.

1 Exablaze blog post (14 July 2014). See Appendix A.9.3.
2Solarflare Flareon/“Open”-Onload marketing material. See Appendix A.24.1.

CHAPTER 4. IMPLEMENTING PREDICTABLE DATACENTER NETWORKS 99

For 1,000 hosts, setting P to 256 bytes results in a worst-case delay of ≈ 200µs, which is low
enough to be useful to applications.

4.4.3 Configuring fi

The most difficult parameters to determine are the throughput factors fi. Fortunately, each value
of fi is easily expressible as a rate-limit in Mb/s (e.g. R′ave ≈

redge

N ′) which makes choosing values
relatively intuitive (see §4.5 for examples). This is in contrast to other systems such as DCTCP

which have complex parameters. And example from DCTCP is the parameter g. This is defined
as follows: “0 < g < 1 is the weight given to new samples against the past in the estimation of
α” [71]. The best value for fi depends on the desired latency distribution and the workload. The
simplest configuration is to use only two QJUMP levels: (i) guaranteed latency (f1 = 1) and (ii)
maximum throughput (f7 = N). This configuration, however, lacks flexibility. Alternatively, a
set of fi values can be configured for a known application mix or for a known traffic distribution.

1. Known Application Mix Datacenter application mixes are often known, or information
on application profiles can be obtained from users [153–155]. If application latency and
throughput requirements can be estimated or measured, the QJUMP levels can be set to
accommodate their needs. Likewise, applications can be assigned to existing QJUMP

levels based on their profile. In practice, simple benchmarks at different rate limits make it
easy to characterise an application. For an example of this method using memcached see
Section 4.5.4.1. There may be more applications than QJUMP levels. In this case, either
some levels will need to be shared between applications, or applications will need to be
scheduled onto different hosts to avoid sharing (e.g. Silo [153]).

2. Known Traffic Distribution While the application mix in large datacenters can be com-
plex, monitoring infrastructure can supply aggregate traffic statistics. An approximate
distribution of flow sizes is often available [69, 71, 152]. For a known flow size distribution,
fi values can be configured to partition the traffic into a latency variance vs. throughput
distribution. I applied this method on a flow size Cumulative Distribution Function (CDF)
using a simple spreadsheet. This worked well in my experiments and simulations in
§4.5.3. Alternatively, an exponential distribution of fi values of e.g. f0=10Gb/s, f1=5Gb/s,
f2=2.5Gb/s, etc., can provide a wide range of choices within a limited number of QJUMP

levels.

4.4.4 A note on configuring N and nk

Equations 3.9 and 3.14 are parameterised over nk and N respectively. From the total number of
hosts N on the network, we need to select the subset that we wish to use with QJUMP. QJUMP

makes the assumption that N is configured to be equal to the total number of hosts within a pod
and nk is a (topologically determined) function of N . The size of the QJUMP latency bound
scales as a function of N . If all hosts in the network use QJUMP, and each host has one latency

100 4.5. EVALUATION

application socket, then N can take a value of between 1,000 and 4,000 hosts and maintain a
bound of 100-500µs using small messages of 64–256B. Increasing the number of application
sockets that use the bounded latency layer would require N to scale accordingly, resulting in
either a higher latency bound or fewer hosts being able to participate. QJUMP could also be
configured with N set as a subset of the hosts, provided that the remainder of hosts only use the
lowest network priority and that priority is configured for best effort service (i.e. f = N).

Application-specific knowledge could be exploited to increase the number of hosts
that can participate in a QJUMP network while retaining the latency bound. For example, a
distribute/aggregate service may send requests to 10,000 hosts, but can be certain that fewer
than 1,000 hosts will respond to each request. In this case, N can still be set to 1,000 hosts, but
all 10,000 hosts could use QJUMP at the guaranteed level. The delay bound would still be met
provided that no more than 1,000 hosts respond to any given request.

Finally, it is worth noting that QJUMP scales proportionally with the network edge
speed. On a faster network (e.g. a 40Gb/s edge), the same delay bound can be maintained for
larger values of N (e.g. 16,000) or as large as 40, 000 hosts (assuming the application specific
knowledge above). This means that, although QJUMP is explicitly designed for pod-scale
networks, it may scale as large as realistic datacenter networks depending on the configuration
of the network and the use-case for which it is deployed.

4.5 Evaluation

I have evaluated QJUMP on both a small deployment and in simulation. My evaluation shows
that QJUMP:

1. Resolves network interference for a collection of real-world datacenter applications
(§4.5.1.1);

2. Outperforms Ethernet Flow Control (EFC)(IEEE 802.3x), Ethernet Flow Control (EFC)
and DCTCP (§4.5.2);

3. Provides excellent flow completion times, close to or better than pFabric [94] (§4.5.3);
4. Is easily configurable, illustrated by examples of methods to determine QJUMP parameters

(§4.4).

4.5.1 QJUMP Resolves Network Interference

My experiments in Section 2.3 and 2.4 showed that network interference degrades application
performance. I now repeat those experiments with QJUMP enabled and show that QJUMP

mitigates the network interference, resulting in near ideal performance. I also show that in a
realistic, multi-application, setting QJUMP both resolves network interference and outperforms
other readily available systems. As before, I execute these experiments on the topology shown in
Figure 2.6.

CHAPTER 4. IMPLEMENTING PREDICTABLE DATACENTER NETWORKS 101

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
alone
+ iperf
+ iperf w/ QJ

250 500 1000 1500
Latency in µs

(a) CDF of ping application measured latency.

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

5 300 600 900 1200
Latency in µs

ping
+ iperf
+ iperf w/ qjump

(b) CDF of ping packet latency across a switch.

Figure 4.1: QJUMP resolves network interference both at an application perceivable level
(a) and across the switch (b) (note the change in x-axis scale in both cases)

4.5.1.1 Low Latency RPC vs. Bulk Transfer

Remote Procedure Calls (RPCs) and bulk data transfers represent extreme ends of the latency-
bandwidth spectrum. QJUMP resolves network interference at these extremes. As in Section 2.4,
I emulate RPCs and bulk data transfers using ping and iperf respectively. In this experiment
I measure in-network latency for the ping traffic both from the perspective of the application
(ping) and directly using a high resolution Endace DAG3 capture card and optical taps. The
first measurement (Fig. 4.1a) shows that QJUMP resolves queueing latency from an application’s
perspective. In this case, QJUMP performs better than the idle case. QJUMP provides a median
(50th percentile) latency of 175µs compared to 185µs in the idle case. This because prioritised
packets are accelerated up through the host network card/stack.

The second measurement (Fig. 4.1b) verifies that the source of queueing latency (arising
within shared switch queues) is resolved by QJUMP. By setting ping to the highest QJUMP

level (f7 = 1), the latency across the switch is reduced by over 300× (Figure 4.1b). The small
difference between idle switch latency (1.6µs) and QJUMP latency (2–4µs) arises due to a small
on-chip queue through which the switch processes packets in-order. No prioritisation is applied
in this queue. The switch processing delay, represented as ε in Equations 3.10 and 3.9, is
thus no more than 4µs. Without the re-scaled x-axis of Figure 4.1b, this difference would be
imperceptible.

4.5.1.2 Memcached

QJUMP also resolves network interference between realistic datacenter applications such as
memcached sharing a network with Hadoop. I show this by repeating the memcached experiments
from Section 2.3.2. Once again I measure application-level request latency using memaslap.
In this experiment, memcached is configured at an intermediate QJUMP level, rate-limited to
5Gb/s (see §4.5.4.1 for more details). Figure 4.2 shows the distribution plot (CDF) of memcached

3Endace DAG 9.2X2. See Appendix A.8.1.

102 4.5. EVALUATION

0 500 1000 1500 2000
Request latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0

idle
contended
+QJ

Figure 4.2: QJUMP reduces memcached request latency: CDF of 9 million samples.

request latencies when running on an idle network, a network shared with Hadoop, and a shared
network with QJUMP enabled. With QJUMP enabled, the request latencies are close to the
ideal. The median latency improves from 824µs in the shared case to 476µs: a (nearly) 2×
improvement.4 There is no measurable effect on Hadoop’s performance (see §4.5.2 for more
details).

4.5.1.3 Multi-application Environment

In real-world datacenters, a range of applications with different latency and bandwidth require-
ments share the same infrastructure. QJUMP effectively resolves network interference in these
shared, multi-application environments. To demonstrate this I use the three representative ap-
plications discussed in Section 2.3.2: ptpd for time synchronisation, memcached for serving
small objects, and Hadoop for batch data analysis. Once again, resolving on-host interference is
outside the scope of my work, so I do not allow hosts to share applications in these experiments.
More details on combating host based interference can be found in Section 3.4.8.

As demonstrated in Section 2.4.1, PTPd and memcached are easily perturbed by
Hadoop’s traffic. Figure 4.3 (top) shows a 1ms timeline of average request latencies for mem-
cached, and synchronisation offsets for ptpd, each running alone on an otherwise idle network.
Figure 4.3 (middle), shows the two applications sharing the network with Hadoop. In this case,
average latencies increase for both applications and visible latency spikes (corresponding to
Hadoop’s shuffle phases) emerge. With QJUMP deployed, I assign ptpd to f7 = 1, Hadoop to
f0 = N = 12 and memcached to T5 = 5Gb/s =⇒ f5 = 6 (see §4.5.4 for further configuration
details). Using QJUMP, the three applications are able to co-exist without interference (Figure 4.3

4The distributions for the idle network and the QJUMP case do not completely agree due to randomness in the
load generated.

CHAPTER 4. IMPLEMENTING PREDICTABLE DATACENTER NETWORKS 103

0

400

800

1200 IDLE memcached
PTPd

0

400

800

1200 CONT.

0 50 100 150 200 250 300 350 400 450 500
Time since start [sec]

0

400

800

1200 CONT. + QJ

La
te

nc
y

(m
em

ca
ch

ed
)/

O
ffs

et
(p

tp
d)

[µ
s]

Figure 4.3: PTPd and memcached in isolation (top), with interfering traffic from Hadoop
(middle) and with the interference mitigated by QJUMP (bottom).

0.1
%

0.4
%

1.6
%

6.2
%

25
.0%

10
0.0

%

40
0.0

%

Burst size / switch buffer size [log2]

0

2000

4000

6000

8000

10000

12000

14000

Th
ro

ug
hp

ut
[re

q/
s]

TCP
UDP + retries
Broadcast UDP + QJump

Figure 4.4: QJUMP offers constant two-phase commit throughput even at high levels of
network interference.

(bottom)). Hadoop’s performance is not noticeably affected by QJUMP (see §4.5.2 for more
details).

4.5.1.4 Distributed Atomic Commit

One of QJUMP’s features over traditional congestion control systems is its guaranteed latency
level. Bounded latency enables interesting new designs for datacenter coordination software such
as SDN control planes, fast failure detection, and distributed consensus systems. To demonstrate

104 4.5. EVALUATION

the usefulness of QJUMP’s bounded-latency level, I built a simple distributed two-phase atomic-
commit (2PC) application. 2PC like protocols are at the heart of many distributed agreement
systems such as the Paxos [156] and Raft [157] protocol variants.

My 2PC application communicates over TCP or over UDP with explicit acknowledge-
ments and retransmissions. Since QJUMP offers lossless delivery, the coordinator can send
its messages by UDP broadcast when QJUMP is enabled. This optimisation yields a ≈30%
throughput improvement over both TCP and UDP.

In Figure 4.4, I show the request rate for one coordinator and seven servers as a function
of network interference. Interference is created with two traffic generators: one that generates
a constant 10Gb/s of UDP traffic and another that sends fixed-size packet trains followed by a
25ms pause. I report interference as the ratio of the burst size to the internal switch buffer size.
Beyond a ratio of 200%, permanent queues build up in the switch. At this point the impact of
retransmissions degrade will throughput of the UDP and TCP implementations to 20% of the
10,000 requests per second observed on an idle network. By contrast, the UDP-over-QJUMP

implementation does not degrade because its messages “jump the queue”. At high interference
ratios (>200%), two-phase commit over QJUMP achieves 6.5× the throughput of standard TCP or
UDP. Furthermore, QJUMP’s reliable delivery and low latency enables very aggressive timeouts
to be used for failure detection. My 2PC system detects component failure within two network
epochs (≈40µs on the network), several orders of magnitude faster than typical failure detection
timeouts (e.g. 150 ms in RAMCloud [158, §4.6]).

4.5.2 QJUMP Compared

In Section 2.4 I discussed several contemporary approaches to congestion control in datacenter
networks and their impact on network interference. Of those approaches, the first 4 (TCP CUBIC,
Ethernet Flow Control, Explicit Congestion Notification and Datacenter TCP), were deployable
in my testing environment (see §2.4.1–§2.4.4). Figure 4.5 shows a summary of the results from
Section 2.4 on a unified axis and compared with QJUMP.

The figure shows the Root Mean Squared (RMS) value of each application specific
metric of interest, normalised to the ideal case. RMS [159] is used because it provides a good
typical value of a continuously varying quantity so that the different approaches can be compared
easily. The application specific metrics of interest are synchronisation offset (PTPd), request
latency (memcached) and runtime (Hadoop) (for more details see §2.3.2.1 to §2.3.2.3). The ideal
case shows each application running on the network alone. Every other case shows all three
applications running at the same time. The ECN case shows the ‘optimal’ [minimum,maximum]
marking threshold of [40, 80] (see 2.4.3 for more details).

The figure shows that, of all the previously tested solutions, DCTCP does the best
job of controlling network interference. However, even when using DCTCP, the RMS PTP

synchronisation offset is still over 2× worse than the ideal case. This is because DCTCP still
uses TCP’s probing method to search for unused bandwidth, which has the effect of lengthening

CHAPTER 4. IMPLEMENTING PREDICTABLE DATACENTER NETWORKS 105

Ideal

Contended

Eth. Flow Ctrl. ECN
DCTCP

QJUMP
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

R
M

S
ap

p.
m

et
ric 31

8

12
61

4

Hadoop
runtime

PTPd sync.
offset

memcached
req. latency

Figure 4.5: QJUMP exhibits closest to ideal performance for all of Hadoop, PTPd and
memcached.

Spine 1

Leaf 1

Hosts 1...16

Spine 2 Spine 3 Spine 4

Leaf 2

... ...
17...32

Leaf 8

96...112

Leaf 9

... ...
128...144

……...
10G

40G

Figure 4.6: 144 node leaf-spine topology used for simulation experiments.

queues within the network. By contrast, QJUMP is close to ideal for all metrics. The variance in
Hadoop, PTPd and memcached performance is close to or slightly better than in the uncontended
ideal case. This shows that QJUMP outperforms its competitors in a small practical datacenter
applications test.

4.5.3 QJUMP Improves Flow Completion Times

While QJUMP performs well in comparison with other congestion control schemes, the QJUMP

design has its roots in network scheduling (as described in §2.5 and §3–§3.3). It is therefore
necessary to compare QJUMP against other network scheduling approaches. One such approach
is pFabric [94] (see also §2.4.9). The pFabric architecture has been shown to schedule flows
close to optimally. The authors of pFabric show that a “greedy scheduler [. . .] that prioritizes
small flows over large flows end-to-end across the fabric can provide near-ideal average FCT”
(Flow Completion Time). The pFabric greedy scheduler is an approximation of the shortest time
remaining scheduling policy, which has been shown to be optimal [160].

106 4.5. EVALUATION
W

eb
-s

ea
rc

h
w

or
kl

oa
d

0.2 0.4 0.6 0.8
Load

1

2

5

10

20

N
or
m
al
iz
ed

FC
T
[lo
g 1

0
]

TCP
DCTCP

pFabric

QJump

(a) (0, 100kB]: average.

0.2 0.4 0.6 0.8
Load

1

2

5

10

20

N
or

m
al

iz
ed

FC
T

[lo
g

1
0
]

(b) (0, 100kB]: 99th percentile.

0.2 0.4 0.6 0.8
Load

1

2

5

10

20

N
or

m
al

iz
ed

FC
T

[lo
g

1
0
]

(c) (10MB,∞): average.

D
at

a-
m

in
in

g
w

or
kl

oa
d

0.2 0.4 0.6 0.8
Load

1

2

5

10

20

N
or

m
al

iz
ed

FC
T

[lo
g

1
0
]

TCP
DCTCP

pFabric
QJump

(d) (0, 100kB]: average.

0.2 0.4 0.6 0.8
Load

1

2

5

10

20

N
or

m
al

iz
ed

FC
T

[lo
g

1
0
]

(e) (0, 100kB]: 99th percentile.

0.2 0.4 0.6 0.8
Load

1

2

5

10

20

N
or

m
al

iz
ed

FC
T

[lo
g

1
0
]

(f) (10MB,∞): average.

Figure 4.7: Normalised flow completion times in a 144-host simulation (1 is ideal): QJUMP

outperforms TCP, DCTCP and pFabric for small flows. N.B.: log-scale y-axis; QJUMP and
pFabric overlap in (a), (d) and (e).

QJUMP’s method of regulating and prioritising flows in order of increasing rate imposes
an ordering on network traffic that also (crudely) approximates the shortest time remaining
schedule. Flows with a higher rate allocation implicitly have a longer running time and are
given a low priority. Flows with a low rate allocation implicitly have a shorter runtime and are
given high priority. In this way, QJUMP is broadly similar to pFabric in its approach. The key
difference between QJUMP and pFabric is that QJUMP levels are fixed. Flows do move between
QJUMP levels as they near completion. This simplification makes QJUMP easier to implement
and deploy.

Since pFabric is a “. . . clean-slate design [that] requires modifications both at the
switches and the end-hosts . . . ” [94] it is only available in simulation. To compare the two,
QJUMP was implemented in the simulation environment provided by the pFabric authors5.
This environment also facilitates comparisons between QJUMP, a baseline TCP instantiation
and a DCTCP implementation (also provided by the authors of pFabric). Comparing against
TCP and DCTCP are useful to cross-validate the simulation with the experiments performed in
Section 4.5.2.

Figure 4.6 shows the leaf-spine network topology used to evaluate pFabric. There are
144 hosts in total using 9 leaf switches and 4 four spine switches. The core of the network runs at

5The initial implementation was carried out by Ionel Gog, my coauthor and collaborator.

CHAPTER 4. IMPLEMENTING PREDICTABLE DATACENTER NETWORKS 107

40Gb/s while the edge runs at 10Gb/s. To perform the evaluation, I used the same workloads as
those used by pFabric. These are derived from web search [71, §2.2] and data mining [69, §3.1]
clusters in Microsoft datacenters. I also show matching graphs in Figure 4.7 from the pFabric
paper. As in pFabric, I normalise flows to their ideal flow completion times (FCTs) on an idle
network.

Figure 4.7 reports the average and 99th percentile normalised FCTs for small flows
(0kB, 100kB] and the average FCTs for large flows (10MB,∞). For both workloads, QJUMP is
configured with P = 9kB, n = 144, and {f0 . . . f7} = {144, 100, 20, 10, 5, 3, 2, 1}. I chose this
configuration based on the distribution of flow sizes in the web search workload. However, it
also worked well for the data mining workload.

Despite its simplicity, QJUMP performs very well. As expected, it works best on short
flows. On both workloads, QJUMP achieves average and 99th percentile FCTs close to or better
than pFabric’s. On the web-search workload, QJUMP beats pFabric by a margin of up to 32%
at the 99th percentile (Fig. 4.7b). For larger flows, the results are mixed. On the web search
workload, QJUMP outperforms pFabric by up to 20% at high load, but loses to pFabric by 15%
at low load (Fig. 4.7c). On the data mining workload, QJUMP’s average FCTs are between 30%
and 63% worse than pFabric’s (Fig. 4.7f).

In the data-mining workload, 85% of all flows transfer fewer than 100kB, but over 80%
of the bytes are transferred in flows of greater than 100MB (less than 15% of the total flows).
QJUMP’s short epoch intervals cannot sense the difference between large flows and very large
flow, so it does not apply any rate-limiting (scheduling) to them. This results in sub-optimal
behaviour. It is possible that a combined approach might improve this. In such an approach
QJUMP would regulate the interactions between large flows and small flows, while DCTCP is
used to regulate the interactions between different large flows. I leave investigation of the avenue
to future work.

4.5.4 QJUMP Configuration

4.5.4.1 Rate Selection (the fi Parameter)

As described in Section 4.4, QJUMP levels can be determined in several ways. One approach is
to tune the levels to a specific mix of applications. For some applications, it is clear that they
perform best at guaranteed latency (e.g. ptpd at f7 = 1) or high rate (e.g. Hadoop at f0 = N).
For others, their performance at different throughput factors is less straightforward. Memcached
is an example of such an application.

Memcached requires low request latency variance as well as reasonable request through-
put. To find the optimal point, I investigated the performance of memcached with different
amounts of rate limiting applied. In this experiment, memaslap benchmarks a single server and
there is no network interference. Figure 4.8 shows memcached’s request throughput and latency
as a function of rate-limiting. At very low rates, throughput is low due to rate limiting, and the

108 4.5. EVALUATION

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 6
Rate limit [Gb/s] ***

10µs

100µs

1ms

10ms

100ms

1s

La
te

nc
y

[lo
g

1
0
]

Max. latency
99%ile latency

0

50

100

150

200

Th
ro

ug
hp

ut
[k

re
q/

s]

best tradeoff

Throughput

Figure 4.8: Memcached throughput (top) and latency (bottom, log10) as a function of the
QJUMP rate limit.

tail latencies (99th percentile and maximum) are high because of constant TCP retransmission
timeouts. As the rate increases to around 500Mb/s, the 99th percentile latency drops dramatically.
At this point the server is underloaded and most requests can be completed quickly, although
TCP timeouts still have an effect. Peak throughput is reached at a rate allocation of around 5Gb/s
beyond which throughput improvements are marginal and the latency distribution is unchanged.
At the same point, the request latency also stabilises. Hence, a rate-limit of 5Gb/s gives the best
trade-off for memcached. This point has the strongest interference control from other systems
without throughput restrictions to memcached itself.

A rate limit can easily be converted into a throughput factor using Equation 4.3 (pg. 96)
and rearranging for fi (e.g. fi = nR′

Redge
). On our test-bed n = 12 and Redge =10Gb/s. Since

R′ =5Gb/s the throughput factor is f = 6. We can therefore choose a QJUMP level for
memcached (e.g. f4) and set it to a throughput factor ≥ 6.

4.5.4.2 Sensitivity to f

QJUMP claims to offer bounded latency level at throughput factor f7 = 1. At this level, all packets
admitted into the network should reach their destinations within the bound given by Equation 3.9.
To verify that this is true, and to gauge the sensitivity of QJUMP to (mis)configuration of fi, I
performed the following scale-up experiment. In the experiment I arranged a 60-host virtualised
topology running on ten physical machines (see Figure 4.9). Each machine runs a “hypervisor”
(Linux kernel) with a 10Gb/s uplink to the network. Each hypervisor runs six “guests” (processes)
each with a 1.6Gb/s network connection. Each guest runs two applications (threads): (i) an
emulated “coordination service” that generates one 256 byte packet per time interval (at the

CHAPTER 4. IMPLEMENTING PREDICTABLE DATACENTER NETWORKS 109

...

G1...G6

ToR Switch 3ToR Switch 2

Aggregation Switch

ToR Switch 1

HV 1 HV 4... HV 5 HV 7... HV 8 HV 10

19...24 25...30 37...42 43...49 55...60

1.6G

10G

10G

Figure 4.9: Latency bound validation topology: 10 hypervisors (HV) and 60 guests (G1..60)
and 120 apps.

0.8 1.0 1.2 1.4 1.9 2.7
Throughput factor f

0

5

10

15

20

25

30

E
nd

-to
-e

nd
la

te
nc

y
[µ

s]

A B C
average
99th%ile
100th%ile

latency bound

Figure 4.10: Latency bound validation experiment using a 60 host fan-in of f7 and f0 traffic.
100 million samples per data point.

highest QJUMP level), and (ii) an emulated “bulk sender” service that issues 1518 byte packets
as fast as possible (at the lowest QJUMP level). The coordination messages are sent to a single
destination. The time interval in-between coordination messages is configurable. For 60 hosts
sending 256B packets, the correct interval is the network epoch which is 24.3µs. This is a
throughput factor fi = 1. To test the sensitivity of QJUMP to the throughput factor, I vary fi

between values of 0.8 and 3 (20% underloaded to 300% overloaded).

Figure 4.10 shows the latency distribution of coordination packets as a function of the
throughput factor. If f7 is set to less than 1.0 (region A), the latency bound is met (as we would
expect). In region B (1.0 to 2.7), the 100th percentile outliers increase. Transient queueing affects
some packets, but all requests make it within the latency bound. Beyond f7 = 2.7 (region C),
permanent queueing occurs and the 99th and 100th percentiles increase beyond the bound. This
experiment indicates that QJUMP works as expected when configured correctly and can tolerate

110 4.6. CONCLUSIONS

some degree of misconfiguration, in this case of over 200%, while still meeting the delay bound
guarantee in a 100M data-point sample. Naturally, the system offers no actual guarantees beyond
a throughput factor of f = 1, only a reduction in likelihood of interference occurring.

4.5.5 Experimental Limitations and Opportunities

The experiments in this section have demonstrated functional prototype implementations of
QJUMP both on a small test-bed as well as in simulation. These experiments have verified that
QJUMP resolves network interference both from an application perceived perspective and when
measured directly in the network. QJUMP achieves good results in both cases. However, the
experiments are limited in size and complexity to what can reasonably be achieved in a laboratory
environment. Specifically, QJUMP has not been tested at a datacenter scale using thousands of
hosts. It is quite possible that new, unforeseen, problems or issues may arise when operating at
larger scale.

In addition to scale limitations, the combined application test (see §4.5.1.3) is not as
compelling as it may at first appear. Specifically, there was no n-to-1 fan-in component present in
the memcached/PTPd traffic patterns. This means that the traffic regulator, although operational,
was not providing any useful protection and could easily have been disabled6. An interesting
consequence of this limitation is that it demonstrates that QJUMP could potentially be deployed
in a less rigorous manner. If operators simply prioritised traffic in order of decreasing rate
requirements, a good network schedule may naturally result without the imposition of traffic
regulators. Such a deployment would work best in underutilised networks where congestion is
likely to cause transient effects but will not lead to significant periods of contention for network
resources. Further investigation of these ideas is left to future work.

4.6 Conclusions

In this chapter I discussed QJUMP, a simple and direct approach to resolving the network
interference problem described in Chapter 2. QJUMP implements the methods described in
Chapter 3 but is expressly designed for simplicity and immediate deployability. It places minimal
requirements on network infrastructure (prioritised packets §4.2), minimal requirements on the
host infrastructure (loadable kernel modules §4.3) and minimal requirements on applications
(runtime dynamic linker module to snoop on socket calls §4.3.1). These minimal requirements
make QJUMP easy to deploy immediately. However, this minimalism also comes with several
costs: (i) QJUMP only offers guaranteed latency messaging at very low throughput, (ii) QJUMP

requires operators to manually measure and configure applications and; (iii) QJUMP is limited in
scalability to pod-scale networks of a few thousand hosts.

6Note that this does not imply that the regulator is ineffective, §4.5.4.2 demonstrates that the regulator operates
correctly, providing the expected latency bounds well beyond its expected effective range.

CHAPTER 4. IMPLEMENTING PREDICTABLE DATACENTER NETWORKS 111

4.7 Chapter Summary

• I apply the model and regulator from Chapter 3 in a system called QJUMP. QJUMP takes a
simple, direct and immediately deployable approach to implementing the equations.

• To do so, I make the simplifying assumption of setting N (the number of hosts/flows
participating in the bound) to be equal to n, (the number of hosts in the network) (§4).

• The result of this decision is that the effective rate offered to each host scales inversely
proportionally to the number of hosts. Over 99% of the available throughput is therefore
lost.

• To resolve the (severe) throughput limitations, I take an approximate approach.

– QJUMP uses a “throughput factor” f to provide relaxed throughput constraints in
exchange for relaxed latency variance (§4.1)

– Several throughput factor values are layered over each other using hardware enforced
priorities (§4.2).

– The guaranteed service layer is given the highest priority.

• The above approach is deployed on a small test cluster and tested with representative
datacenter applications (§4.5). It is shown to:

– Resolve interference for low latency RPC’s in the presence of bulk transfer traffic
(§4.5.1.1).

– Resolve interference for datacenter applications sharing a network with Hadoop
(§4.5.1.2).

– Resolve interference in a mixed application environment with PTPd, memcached and
Hadoop sharing the network infrastructure (§4.5.1.3).

– Resolve interference and provide better runtime and failure detection performance
for a two-phase commit coordination service (§4.5.1.4).

• QJUMP is also shown to outperform all of the deployable congestion control schemes
discussed in Section 2.4 (TCP, EFC,ECN,DCTCP)(§4.5.2).

• The network scheduling methods used by QJUMP are similar to those used by pFabric.
QJUMP is thus tested against pFabric in simulation and performs close to, and in many
cases, better than pFabric (§4.5.3).

• Finally, I show that the configuration parameters are relatively easy to derive and that
QJUMP shows minimal sensitivity to misconfiguration (§4.5.4.1–§4.5.4.2).

112 4.7. CHAPTER SUMMARY

Chapter 5

Improvements and Future Work

IN Chapter 4 I discussed QJUMP, a simple and direct approach to resolving the network
interference problem described in Chapter 2, by implementing model and traffic regula-
tor described in Chapter 3. QJUMP is expressly designed for simplicity and immediate

deployability. However, QJUMP’s minimalism also comes with several costs: QJUMP offers
guaranteed latency messaging only at low throughput, it requires operators to manually measure
and configure applications, and it is practically limited in scalability. In this chapter I discuss
in detail several potential improvements that could be made to QJUMP to resolve these issues.
I begin (§5.1) by discussing an approach to automatic application configuration that would
make QJUMP easier to deploy and manage. I then (§5.2–§5.3) go on to discuss approaches to
improving the scalability of QJUMP. Finally I present three (§5.5–§5.7) comprehensive system
designs which would improve on all three issues with varying costs and complexity trade-offs.

5.1 Automatic Application Configuration
In Section 4.5.4 I showed that it is possible and practical to configure QJUMP levels. Furthermore,
I showed that QJUMP is insensitive to some degree of misconfiguration. One problem with
QJUMP is the requirement to manually classify applications into QJUMP levels. It would be
ideal if applications could be automatically classified into QJUMP levels. This would require
overcoming a several engineering challenges:

1. The regulator code would need to be extended to calculate an estimate of the instantaneous
throughput for each application. The estimate could then be used to classify applications
into appropriate QJUMP levels.

2. Applications that exceeded their throughput allocation would need to be moved to a lower
QJUMP level. On the other hand, applications that underutilised their allocation would
need be lifted to a higher QJUMP level. This is more complicated than it would initially
appear because race-conditions and reordering can occur due to QJUMP’s strict packet
prioritisation. To implement this correctly, the priority elevation algorithm would need to
be aware of packets in flight and wait a suitable time for these to complete.

113

114 5.2. THE PROBLEM OF N

3. Some applications (e.g. Naiad [52]) have latency-sensitive control traffic as well as
throughput-intensive traffic mixed into the same sockets. This traffic needs to be treated
separately [161], but to do so the regulator must be application aware. In my previously
published work “Eden” [107] we showed that it was possible to describe application
messages at a high level and compile that to a hardware or software interpreter inline with
the data path. A similar approach would be needed, although the Eden system would need
to be extended to understand Leaky Token Bucket (LTB) which it cannot easily express
currently.

4. Some applications may have asymmetrical traffic patterns. For example, an Hadoop shuffle
performed on a skewed dataset may transfer many gigabytes to some machines, and only a
few kilobytes to others. Instances that move only a few kilobytes may stay at high QJUMP

levels while instances that transfer many gigabytes might be downgraded. This would lead
to application level race conditions, again as a result of network packet prioritisation. To
resolve this, we would require some level of distributed coordination between applications
at the same level and potentially an application aware message parser like Eden [107].

5.2 The problem of N
Further issues with QJUMP relate to choosing the value for N ; the number of hosts participating
in the guaranteed latency QJUMP level. For simplicity, QJUMP assumes that N is equal to the
number of hosts in the network. For a pod-scale network this means that N is between 1000 and
5000 hosts. This choice has two limitations:

1. Throughput – Since the effective rate given to each application scales inversely propor-
tionally to N , QJUMP offers only a fraction of the available bandwidth at the guaranteed
layer (see §4.1 for more details). QJUMP resolves this by forcing applications to chose
between either bounded latency at low throughput or high(er) throughput with (more) vari-
able latency. It would be ideal to be able to achieve both high throughput and guaranteed
latency bounds.

2. Scalability – QJUMP is targeted specially at pod-scale networks of 1000-5000 hosts. Pod-
scale networks are 10-100× smaller than full-scale datacenter networks. It would be ideal
to be able to offer bounded latency for entire datacenter networks.

In following sections I discuss several future directions and trade-offs for resolving these
limitations.

5.3 Scalability
There are several potential approaches to resolving QJUMP’s scalability issues. In this section, I
describe an approach which requires minimal changes to the QJUMP system, but requires some
changes to the datacenter network configuration. This change allows QJUMP to scale to larger
networks, but retains the same throughput limitations. In Sections 5.5–5.7, I describe ways of

CHAPTER 5. IMPROVEMENTS AND FUTURE WORK 115

X

n0

(a) An abstract view of a QJUMP pod

X

n0

m

(b) Incoming link of equivalent capacity m hosts
connected to abstract pod

X

k0

(c) Abstract view of interconnect between pods

0

m

policer

n

(d) Outgoing link of equivalent capacity m hosts
connected to abstract pod

Figure 5.1: Abstracting the QJUMP pod to form groups of pods with a QJUMP domain inside
each and bounded latency between them.

instead modifying QJUMP to improve both its scalability and the throughput restrictions that it
imposes.

One approach to resolving the scalability issues with QJUMP is to apply QJUMP to
individual pods and then to implement latency bounds between the pods. That is, QJUMP could
be used to bound latency inside of each pod and QJUMP could also be used to bound latency
between each pod. This is a “QJUMP in QJUMP” approach. The result would be bounded latency
between any node and any other node in the network.

To understand how this could work, consider Figure 5.1a. The figure shows an abstract
depiction a of QJUMP pod. The pod has N hosts connected to each other via a network
interconnect. The dominating source of delays in the network is the fan-in point (X) where all
hosts converge (usually the last hop top-of-rack switch). The bound given by QJUMP at this
point proportional to N − 1.

In Figure 5.1b the abstract view of a pod is extended to include an incoming link. This
link is given the capacity of m hosts. The added link increases the potential delays at (X). The

116 5.4. THE DYNAMIC COORDINATION PROBLEM

delays at (X) are now proportional to N − 1 +m hosts. For example, if m is equivalent to one
host, then the delays at (X) are proportional to N . This change allows hosts outside of the pod to
act as if they were a single (or more with m > 1) machine within the pod. The difficulty now is
ensuring that other pods cannot behave as any more than m machines.

Figure 5.1c shows an abstract view of interconnects between pods. The figure shows k
pods connected to each via a network interconnect. It should be clear that this figure is nearly
identical to Figure 5.1a. Once again, delays will occur at the fan-in point (X). Assuming a QJUMP

deployment to control interference, these delays will be proportional to k − 1. As with QJUMP

deployed in hosts, it is necessary to ensure that each pod is regulated so that it cannot overwhelm
the destination pod. In Figure 5.1d I show a Leaky Token Bucket (LTB) see §3.2.3) applied to
the output from a pod into the pod interconnect network. This regulator limits traffic out of the
pod to a rate proportional to m

k−1 resulting in bounded delays throughout the network. Intuitively,
this solution abstracts entire pods to act as if they were single hosts and allows multiple pods to
be connected together, giving a “QJUMP in QJUMP” approach.

There are two potential problems with the solution: (i) it requires an LTB regulator to be
inserted between pods in the network and; (ii) it further exacerbates the throughput limitations of
QJUMP both within, and between pods.

Problem (i) is potentially resolvable by using the same technique described in Sec-
tion 3.4.4. Instead of using a leaky token bucket regulator, a simpler policer could be used.
Existing switches can provide traffic policing functions on egress ports1. Although this lacks
some of the throughput availability of a true LTB regulator, the latency bounds would still hold.
Another approach might be to place middle-boxes between pods to implement more complete
LTB regulators. This would provide higher fidelity regulation, but would require the middle box
to keep up with high throughput and would involve invasive changes to the network. Resolving
problem (ii), QJUMP’s throughput limitations, is the subject of the following sections (§5.5–§5.7).

5.4 The Dynamic Coordination Problem

To implement high-throughput and bounded latency simultaneously requires a system that can
make dynamic choices about the value of N , the number of hosts sharing any given network
path. For example, consider a datacenter application shown in Figure 5.2. The figure shows an
application using several hosts and sharing a single switch. In Figure 5.2a the application is using
only two hosts (3 and 4). In this scenario there is only one path through the network between
the hosts. N thus has a value of 1 and the application can therefore enjoy line-rate throughput
at bounded latency. If another component of the application were to join the system from host
2, N would need be set to 2 and each host could be given 50% of the available throughput,
again, at bounded latency. In either case, this is significantly better than the 20% that would be
allocated via QJUMP with a fixed N value of 5. The ideal scenario would be for this decision

1Cisco and Arista configuration guides. See Appendix A.4.6 and A.2.4.

CHAPTER 5. IMPROVEMENTS AND FUTURE WORK 117

TOR Switch N = 1

(a) Two hosts on a single switch, the outgoing link
not shared, thus N = 1

TOR Switch N = 2

(b) Three hosts on a single switch, the outgoing link
is shared between 2 hosts, thus N = 2

Figure 5.2: Dynamically assigning the value of N depending on the number of hosts sharing
the outgoing link.

QJUMP (§4) EYEQJUMP (§5.5) FASTJUMP (§5.6) R3CJUMP (§5.7)

Dynamic N 7 3 3 3

Coordination none end-host centralised distributed
Unmod. Application 3 7 7 7

Unmod. Kernel 3 7 7 7

Unmod. Hardware 3 3 3 3∗

Topology independent 3 7 3 3

Source routing req. 7 7 3 3

Fully distributed 3 3 7 3

Scalability limit N net. topology arbiter perf. net. bandwidth

Table 5.1: Comparison of the features and trade-offs between QJUMP, EYEQJUMP,
FASTJUMP and R3CJUMP. ∗with caveats, see §5.7.2

to be made dynamically as hosts/applications come and go. In order to implement this kind
of dynamic system, it is necessary for all hosts to agree on the current value of N . Doing so
requires some degree of coordination between hosts. The extent of the coordination required
will depend on where the coordinator is run, and any assumptions that could be made about
the network topology. In the following sections (§5.5–§5.7), I describe three potential dynamic
system designs and some of the trade-offs involved in constructing them. These systems are
called EYEQJUMP, FASTJUMP and R3CJUMP. Table 5.1 includes a summary of each of these
systems compared with QJUMP and the important trade-offs between them. Each system is a
potential direction for future work.

5.5 End-Host Network Coordination

In Section 2.4.10 I discussed EyeQ and pHost. Although subtly different in their goals and
implementations, both systems make similar fundamental observations; that, in full or near-

118 5.5. END-HOST NETWORK COORDINATION

full bisection bandwidth networks, congestion occurs only at the last-hop Top of Rack (ToR)
switch. As a result, both systems propose an end-host coordinated congestion control scheme.
Although the details vary, both schemes essentially control the rate at which sources can issue
packets into the network by pushing back on senders. There are some issues with each scheme:
pHost implements a packet by packet schedule where requests are arbitrated at destination host
arbiters. pHost therefore suffers from latency performance artefacts similar to Fastpass, which
introduced a 3× latency penalty in the best case. On the other hand, EyeQ measures and issues
rate allocation messages every 200µs and includes a 10% bandwidth overhead margin. This
limits the throughput available as well as the period over which interference can be controlled.
Despite their implementation shortcomings, both approaches show promising results.

Drawing inspiration from the promising results of EyeQ and pHost, and taking into
account the lessons learned in QJUMP, I now propose EYEQJUMP, a host-based coordination
system extension to QJUMP. Like EyeQ, EYEQJUMP would use an end host based arbitrator
that issues rate allocation messages to sources. Unlike EyeQ, these messages would be based
on explicit rate allocation requests issued by hosts rather than estimates over a measurement
interval. Like pHost, a source would request (and most often be granted) permission to send
before it can begin transmitting. Unlike pHost, only one message is required to reserve capacity
for the lifetime of the flow. Once permission has been granted, the sender could continue to
send, but its rate would be regulated by flow rate adjustment messages from the destination.
Finally like QJUMP, EYEQJUMP would take into account bounded delay scheduling across the
network by employing the network epoch calculation to limit the impact of interference. Unlike
QJUMP, EYEQJUMP could dynamically vary the value of N at destination hosts which means
that throughput can be as high as line-rate whilst retaining bounded delay.

5.5.1 Theory of Operation

QJUMP (§4) required only minimal information about the topology of the network. Specifically,
it made the pessimal assumption that the worst case queueing delay would occur along a single
path in the network shared by all hosts. By contrast, EYEQJUMP would make the assumption of
a full bi-sectional bandwidth network such as those shown in Figure 3.15b and 3.15d. It would
further assume that the network implements a fair load balancing mechanism across the links
such as packet spraying [110]. This means that the aggregate bandwidth of multiple links could
be taken as if they were one link. For example, the four 40Gb/s links shown in Figure 3.15b
and 3.15d could be assumed to be effectively one 160Gb/s link. This alters the results of queuing
equations (Eq. 3.22/3.10):

dnet =
K∑

k=1

nkPmax

Rk

= 16Pmax

160Gb/s
+ 112Pmax

160Gb/s
+ 143Pmax

10Gb/s
= 2416Pmax

160Gb/s
= 15.1ns/b (5.1)

where:

• dnet is the network wide delay bound (in seconds)
• nk is the maximum number of sources from all previous switches fanning-in to switch k

CHAPTER 5. IMPROVEMENTS AND FUTURE WORK 119

• Pmax the maximum packet size (in bits)
• rk is the output rate of the switch (in bits per second)

If we assume minimum packet size of 64B, then the maximum end-to-end D is:

D = 15.1ns/b× 64B = 7.731µs (5.2)

The network epoch edcnet is given by (Eq. 3.13):

enet = nkPmax

rk

= 144× 64B
10GB/s

= 7.373µs (5.3)

which means that each host can transmit at an average rate of (Eq. 3.14):

Rave = Pmax

edcnet

= 64B
7.373µs = 69.44Mb/s (5.4)

That is, each host could transmit at the maximum allowable fair share rate of (10Gb/s / 144 hosts
= 69.44Mb/s) and achieve a guaranteed latency of ≤ 7.731µs in the network.

The change in network assumptions would yield a limited improvement in latency
(15.1ns/b vs 15.2ns/b see §3.4.7 for more details) over QJUMP. However, since both network
designs are bottlenecked at the destination host, the change is not significant enough to be
meaningful. To achieve a meaningful change, the number of hosts N participating in the system
would needs to be made dynamic.

To vary the number of hosts dynamically, each host can be made aware of the network
topology at start-time and keep a variable x, which is the number of connections to it. Since the
host cannot know the extent of the queueing happening in the first two stages of the network, it
would assume the worst case for the first two terms of equation 5.2. For the final (dominating)
case, it would leave the fan-in parameter (x) as an unknown, resulting in the following (from
Eq. 3.10):

D =
K∑

k=1

nkPmax

Rk

= 16Pmax

160Gb/s
+ 112Pmax

160Gb/s
+ xPmax

10Gb/s
= (16x+ 128)Pmax

160Gb/s
(5.5)

The network epoch is thus given by (from Eq. 3.10):

enet = x× 64B
10GB/s

(5.6)

which means that each host can transmit at an average rate of (from Eq. 3.11):

Rave = Pmax

enet

= 64B
1 × 10GB/s

64B× x
= 10Gb/s

x
(5.7)

When a new connection is made to the host, the host would increment the value of x and
recalculate the correct transmission rates for all current connections. These recalculated rates
would be returned as an update to all hosts which could then adjust their rates appropriately. The
rate adjustment could be timed to happen one epoch before the new host begins transmitting so
that interference in the network would be controlled, even as rates are adjusted.

120 5.5. END-HOST NETWORK COORDINATION

Applying Equations 5.5 and 5.7 would result in a marked performance improvement over
QJUMP. As an example, assuming that Pmax = 64B and that there is only source transmitting to
the destination host, EYEQJUMP would provide a latency bound of 0.461µs at a rate of 10Gb/s
(compared to 7.731µs at 0.069Gb/s).

One final improvement could be made to EYEQJUMP. In Chapter 4, I observed that
not all applications require the maximum available throughput from the network. For example,
PTPd only issues one packet every second. If PTPd shared a destination host with only one other
application, then the value of x (from above) would be 2. That is, PTPd would be allocated
50% of the network bandwidth, giving it 5Gb/s of a 10Gb/s network. This is clearly overkill
for an application that has a transfer rate of 1200b/s (bits per second!). Instead, if PTP used
a minimum network allocation (10Gb/s

144 hosts) it would consume only 0.069Gb/s, and the second
application could use the remaining 9.931Gb/s. In this toy example with only 144 hosts, the
gains of this modification are substantial. Rather than consuming 50% of the network capacity,
PTPd would consume less than 1%. In a pod sized network with 5000 machines, the gains would
be even more significant (from 50% down to 0.2%).

The preceding improvement can be implemented if applications issue a “maximum
throughput request” along with their connection requests. This request must be issued as a
multiple of the minimum fair-share allocation so that bounded latency can still be implemented
safely. This throughput request could then be used to provide a max-min fair share [162]
allocation to users of the network. In a max-min allocation, all users receive either their
maximum required share of the resource, or an equal share of whatever resource is remaining
after maximum allocations have been made. As a further extension, users could also request their
minimum throughput requirement. If this requirement cannot be met, the network could reject
the request leading to more predictable latency and throughput performance. Such a scheme
would emulate the behaviour of a circuit switched network over a commodity datacenter packet
switched network infrastructure.

5.5.2 Architecture

QJUMP was expressly designed to minimise the changes to hosts and applications. Implementing
EYEQJUMP would require more extensive modifications. It would require that applications
specify their maximum/minimum rate requirements along with the usual BSD sockets calls
to start a new connection. The regular sockets interface does not support this feature which
means that both the interface and the applications would need to be modified to accept this.
Implementing EYEQJUMP would require a more sophisticated source regulator implementation
which:

• issues connection request messages before a new connection is established
• listens for new rate allocation messages and updates its parameters as they arrive
• issues periodic heartbeat messages to keep the destination informed of liveness
• issues shutdown messages when a flow/connection terminates

CHAPTER 5. IMPROVEMENTS AND FUTURE WORK 121

Finally, implementing EYEQJUMP would require that destination hosts be modified to:

• listen for new connection allocation messages
• keep track of the network state for allocating resources to sources and calculate max-min

fair share network allocations
• issue rate allocations to sources as rates change and terminations to sources whose rate

allocation cannot be satisfied.
• keep track of liveness in case a source crashes without terminating its flows safely

5.5.3 Scalability

EYEQJUMP primarily attempts to solve QJUMP’s throughput limitations whilst retaining its
latency bounds. EYEQJUMP works because senders are decoupled from each other through the
network and are only coupled to at destination hosts, which determine a dynamic value of N . A
further effect of this decoupling is that EYEQJUMP is no longer limited to networks of pod-scale.
Provided that the network can sustain full-bisection bandwidth between all hosts, the scale of
EYEQJUMP is essentially unlimited. Providing full-bisection bandwidth to very large networks
is by no means impossible, but it is very expensive which is why large operators like Facebook
and Google tend not to do this. As network capacities grow2 it is likely that network capacity will
begin to outstrip host capacities. It may then be possible to build large scale, undersubscribed,
full-bisection bandwidth networks using cost effective components.

5.5.4 EYEQJUMP Limitations

By introducing end-host based coordination, allowing changes to the kernel and applications,
and by assuming a full-bisection bandwidth network, EYEQJUMP could achieve bounded latency
at high throughput and provide better scalability than QJUMP. The EYEQJUMP design has four
major limitations:

1. The reservation scheme used by EYEQJUMP emulates circuit switching mechanisms over
a packet switched network. These mechanisms are not work conserving. This drawback
could be addressed by using a similar priority scheme to QJUMP. Applications that
need bounded latency could do so by reserving capacity at a high-priority level (non
work conserving), while applications that do not need bounded latency/throughput could
continue to use a low-priority level as normal (work conserving). This strategy is similar
to that used by QJUMP and would segregate the same network infrastructure into two
virtual networks: (i) a high-priority bounded-latency circuit switched network, and; (ii) a
low-priority work-conserving packet-switched network.

2. The assumption of a full bisection bandwidth network is not easy to justify in a datacenter
network, pod-scale or otherwise. The existing and operational designs discussed in
Section 2.1.3 are based on a 3:1 oversubscription ratio at the ToR switch. To be applicable
to existing datacenter networks, a system could not make this assumption.

2Work has already begun on 400Gb/s Ethernet standards. See Appendix A.15.1.

122 5.6. CENTRALISED NETWORK COORDINATION

3. The latency bound offered by EYEQJUMP is not optimal. End hosts have no knowledge
of network utilisation and therefore would need to assume worst case delays through the
intermediate switches in the network. The contribution of these delays can be significant
when the number of hosts is small. For example, with only one host using a path, the worst
case queueing delay offered is still 0.4µs (from Eq. 5.5) whereas it should be closer to
0.15µs.

4. A complete EYEQJUMP implementation would need to be optimised to operate at full
line-rate. To do so, the traffic regulator implementation and, ideally, the reservation
protocol would need to be integrated into the TCP protocol. This would require significant
engineering efforts.

5.6 Centralised Network Coordination

In the preceding section (§5.5) I proposed an extension to QJUMP called EYEQJUMP. EYE-
QJUMP improved upon QJUMP by offering hosts the ability to dynamically negotiate channels
through the network. These channels would have guaranteed latency bounds and could operate at
up to line-rate throughput. The EYEQJUMP design has two major shortcomings. First, it is archi-
tected on the assumption of a full bi-section bandwidth network. As discussed in Section 2.1.3,
deployed datacenter networks are typically oversubscribed. This means that a full bisection
bandwidth network assumption is unlikely to hold. Secondly, the dynamic allocation scheme
proposed by EYEQJUMP only operates at the final switch hop. EYEQJUMP must therefore
assume worst case queueing delays in the core of the network. Both issues can be resolved by
drawing inspiration from the Fastpass system, described more completely in Section 2.4.8.

In brief, Fastpass introduced a centralised mechanism for arbitrating access to the
network. Hosts wishing to send a packet must first send a request to an arbitrator. The arbitrator
calculates a maximal-matching for the network and allocates a timeslot to the host for trans-
mission of the packet. The maximal-matching problem is computationally expensive, however,
Fastpass shows that it is possible to schedule over 2Tb/s of traffic on an 8 core arbitrator3.
Fastpass claims to offer a “zero-queue” network, although this claim is subtly misleading. While
the system ensures that there are no collisions in the network, queuing still occurs in the arbitrator,
and in hosts while they are waiting for their allocated time slots. To make the matching problem
tractable, Fastpass requires a rearrangably non-blocking network design. This places similar
constraints on the network to pHost, EyeQ (see §2.4.10) and EYEQJUMP.

In response to the problems with EYEQJUMP, I now introduce a further proposal to
extend QJUMP, called FASTJUMP. The FASTJUMP design is modelled on a similar concept to
Fastpass, but addresses many of its shortcomings. Like Fastpass, FASTJUMP would employ
a centralised arbitrator. When a host wishes to send packets into the network, it would first
contact the arbitrator to negotiate a channel through the network. Unlike Fastpass, the FASTJUMP

3The authors show that their allocator can schedule 2.21Tb/s of full sized frames, which is equivalent to 221
endpoints.

CHAPTER 5. IMPROVEMENTS AND FUTURE WORK 123

arbitrator would be flow based rather than packet based. Negotiation would only be triggered
by the addition or removal of a flow. This means that FASTJUMP could operate on networks of
arbitrary topology. Furthermore, the design would use the network scheduling model described
in Chapter 3 and implemented in QJUMP. Unlike Fastpass, this scheduler uses of a model of
network switches to provide bounded latency. Employing this model would make FASTJUMP

less computationally expensive and therefore more scalable than Fastpass. The negotiation
process used could be similar to that of EYEQJUMP. Like EYEQJUMP, the arbitrator would hold
the state of the network in local memory. However, unlike EYEQJUMP, the arbitrator would
hold the entire network state rather than just the state for a single destination. Like EYEQJUMP,
FASTJUMP clients would send requests to the arbitrator which would respond by issuing rate
adjustments to all hosts so that the bounded delay could be maintained.

5.6.1 Architecture

Architecturally, FASTJUMP would be very similar to EYEQJUMP (see §5.5 for further details).
It would also require the same (extensive) modifications to applications and kernels. There are
only two major differences between the FASTJUMP and EYEQJUMP architectures:

1. FASTJUMP hosts would issue flow start/stop requests to a (more sophisticated) centralised
arbitrator, rather than the destination-host arbitrator design used in EYEQJUMP.

2. In addition to the assumptions made by EYEQJUMP, FASTJUMP would further assume that
a source routing scheme such as MPLS [163] or GRE [164] is available in the network.

Like QJUMP and EYEQJUMP, FASTJUMP would rely on the assumption that datacenter
networks have relatively static topologies. On this basis, the arbitrator could keep a graph in
memory representing the entire network topology. Each edge in the graph would hold a list
of the flows currently using the edge, along with their requested and allocated rates. Unlike
EYEQJUMP this topology is not assumed to have full bisection bandwidth. To add a new flow to
the network, the arbitrator would need to perform at least the following four operations:

1. Traverse the network graph to find a path/paths between the source and destination. Even
for a large datacenter the number of paths/edges in the graph is relatively small. For a
network of 50,000 hosts using the Facebook Fabric topology, the graph has less than
55,000 vertices and 150,000 edges4.

2. Choose a path for the new flow to be added into the network. This choice could affect
other flows that share any switches or links with the new flow.

3. Calculate a new max-min allocation (or otherwise) for all flows in the network. If the new
allocation would cause a previously allocated flow to fall short of its minimum throughput
requirements, the new flow allocation would need be to rejected.

4. Inform all hosts whose rate allocations have changed or inform the requester that the flow
addition request has been rejected.

4 In comparison, our previously published graph analytics work [27], the smallest workload had 3M vertices and
117M edges.

124 5.6. CENTRALISED NETWORK COORDINATION

The major difference between the EYEQJUMP design and the FASTJUMP design is
the need for a more sophisticated, network-wide, path planner and rate allocator. There is wide
scope for future work on these path planners/allocators. To guide ongoing work, I now propose
three potential approaches to the path planning / rate allocation problem. All approaches provide
a max-min fair allocation across the network, however, each approach makes different trade-offs
with respect to the cost of the implementation, and the allocation of network resources.

5.6.1.1 Optimal Planner

The optimal path planner would carry out three steps to add a new flow to the network:

1. It would use a graph search algorithm to find all candidate paths between the source and the
destination. Datacenter network graphs are relatively small, so a simple depth/breadth-first
search may be sufficient. The complexity of a depth/breadth-first search is O(L + V)
where L is the number of links in the network and V is the number of vertices. L and V
are small (< 200, 000) in a reasonable datacenter network comprising ≈50,000 hosts.

2. The impact of adding the additional flow to the candidate path would then need to be
calculated for the entire network. This calculation could be performed by applying the
“water filling” [165] max-min fair share allocation algorithm (or similar). The water-filling
algorithm has a complexity of O(FL+ F 2), where F is the total number of flows in the
network and L is the number of links [65]. It would need to be repeated P times, where P
is the number of distinct path candidates found between the source and the destination.
If the number of flows is very large, this step may limit the overall performance. At
termination of the max-min allocation, each flow would be given a score to determine how
much it was affected by the addition of the new flow. As an example, the fraction of the
requested rate allocated to each flow could be used as a metric for scoring. These scores
could then be aggregated to give a final, network-wide score for adding the new flow into
the candidate path.

3. Finally, the planner would choose the candidate with the greatest score overall, thereby
optimising for minimal impact on the network/other flows. This scheme would ensure that
new flows admitted to the network would cause the least disruption and would maximise
overall network utility.

5.6.1.2 Greedy Planner

The greedy planner is an heuristic algorithm that acts much like TCP when a new flow is
added. In this planner, a modified Dijkstra’s algorithm would be applied to search for an
admissible path between the source and the destination. Dijkstra’s algorithm has a complexity
of O((L + V) log(L)) where L is the number of links (edges), and V is the number vertices.
A single link is considered at each step of the algorithm. The new flow would tentatively be

CHAPTER 5. IMPROVEMENTS AND FUTURE WORK 125

added to this link, and a max-min allocation performed for all flows that share it. If the max-min
allocation fails to find a solution that meets all flows’ minimum rate requirements, then the link
would be marked as inadmissible. Performing a max-min allocation on a single link is much
simpler than the network-wide equivalent. If all flows sharing a link are stored in sorted order,
the max-min allocation step can be performed in O(f log(f)) time, where f is the number of
flows on a single link. In general f is likely to be much smaller than F , the total number of
flows in the network, and, L and V are likely to be small (< 200, 000) in a reasonable datacenter
network.

This modified Dijkstra’s algorithm forms a path through the network by optimising
for the maximum available rate allocation. Once a complete path has been found, the flow is
assigned the maximum achievable rate common to all links that it traverses, thus maximising the
flow’s rate allocation. At this stage, the water-filling algorithm could then be applied to rebalance
all other flows’ rate allocations. This would ensure that all flows receive their maximum available
rate and that no link has its capacity exceeded. As before, the water-filling algorithm has a
complexity of O(FL+ F 2), where F is the total number of flows in the network, but this time it
would only need to be run once. The F term is still likely to dominate the performance of the
planner as a whole.

As a faster alternative, the water-filling step could be omitted. Instead, only those flows
whose rate allocation decreased (as a result of the new flow being added) would have their rates
adjusted. This would ensure that no link has its capacity exceeded, but no further steps would be
taken. The network would not be globally rebalanced which means that some capacity might
be wasted. However, if the rate at which flows are added/removed is high, the network may
approximate an optimal allocation over time.

The greedy planner would act much like networks currently do when new TCP flows are
added. These flows greedily consume as much available resource as they are able to on the path
with no regard global optimality. We’ve become happy with this TCP approach in datacenters
and in the Internet so this may be a suitable planner despite it’s lack of global optimality. It is
also likely to be faster than optimal planner because global optimality is not considered.

5.6.1.3 Hippocratic Planner

While the greedy planner would emulate TCP by maximising rate allocation for a newly added
flow, this is not the only choice with a centralised planner. As an alternative, I propose the
hippocratic planner. This planner is derived from famous greek philosopher’s “do no harm”
principle. As with the greedy planner, Dijkstra’s algorithm would be applied to search for an
admissible path between the source and sink. However, like the optimal planner, at each step, a
cost metric would computed. Again, each flow could be given a score which is the fraction of its
requested and actual rate allocations and these scores could be summed to give an estimate of the
“goodness” of a given link. The new flow would then be tentatively added, a max-min allocation
performed, and then all flows on the link would be re-scored. The “cost” of taking a given path

126 5.6. CENTRALISED NETWORK COORDINATION

would be calculated by the change in cost between the initial state and the tentative state. The
hippocratic planner will have the same runtime cost as the greedy planner, but would attempt
to minimise the “harm” done to other flows. It would thus achieve a compromise between the
greedy planner and the optimal planner approaches. Like the greedy planner, it is an heuristic
algorithm and is not guaranteed to be globally optimal. Also like the greedy planner, it likely to
be faster than the optimal planner.

The preceding list of planner algorithms (§5.6.1.1–§5.6.1.3) are by no means definitive,
nor can any strong statements be made about their relative performance. Further work would be
needed to evaluate the efficacy of the approaches and validate their performance.

5.6.2 Scalability

The question of scalability for FASTJUMP is more complicated than that of EYEQJUMP. Like
EYEQJUMP, the FASTJUMP design primarily attempts to solve QJUMP’s throughput limitations
whilst retaining its latency bounds. In a FASTJUMP implementation, senders would be decoupled
from each other and from destination hosts which means that a network wide value of N can
be determined dynamically. Once again, a further effect of this decoupling is that the system’s
performance is no longer globally limited by the number of hosts in the network. However, like
Fastpass, FASTJUMP uses a centralised arbitrator. The scalability of the system would therefore
be coupled to the performance of the arbitrator.

The existing Fastpass implementation is claimed to schedule over 2.2Tb/s of traffic on
an 8 core arbitrator. Assuming 10Gb/s hosts, this implies a limit of 220 hosts and only 55 hosts
at 40Gb/s. However, Fastpass is limited because it attempts to schedule every packet while the
FASTJUMP design would only schedule flows. This makes FASTJUMP non work-conserving,
but does imply orders of magnitude more scalability. Ultimately the question of scalability
for FASTJUMP is an implementation specific one and cannot be answered without an adequate
prototype to test with.

5.6.3 FASTJUMP Limitations

FASTJUMP is a proposal for an extension to the ideas presented in QJUMP and EYEQJUMP. The
design retains the same benefits of bounded latency and interference isolation offered by QJUMP

and EYEQJUMP. Like EYEQJUMP, it would improve over QJUMP by allowing applications to
negotiate channels with bounded latency and high throughput. However, also like EYEQJUMP,
FASTJUMP would achieve its higher throughput by eliminating the simplicity and immediate
deployability of QJUMP.

The FASTJUMP architecture is inspired Fastpass (see §2.4.8) and, as a result, it also
suffers from some of the same limitations. Firstly, both systems are reactive. Fastpass and
FASTJUMP both wait for applications to contact them before making a scheduling decision.
This means that significant latency can be incurred to establish a new connection. If the cluster

CHAPTER 5. IMPROVEMENTS AND FUTURE WORK 127

scheduler could be made aware of an application’s networking needs, scheduling/planning work
could be done at cluster scheduling time. This is in principle similar to the Silo system [153].
Secondly, like any centralised coordination system, FASTJUMP would also introduce a central
point of failure. The Fastpass authors suggested that this could be resolved by including a
backup coordinator. However, to operate correctly, both controllers would need to implement a
consistency protocol between them to ensure agreement over shared state and some mechanism to
alert all hosts about leadership changes. These are both non-trivial distributed systems problems.

5.7 Distributed Network Coordination

The previous section (§5.6) described a proposal called FASTJUMP. FASTJUMP could provide
better throughput opportunities than QJUMP over an arbitrary network topology which was not
supported by the EYEQJUMP design. However, the FASTJUMP design is based on a centralised
solution which also makes it a central point of failure. While the failure properties of FASTJUMP

could be improved by the introduction of a backup coordinator, this would introduce further
complications. The primary and backup systems would need to synchronise with each other
and agree upon shared state in a consistent way. Failover would need to be handled carefully
so that all hosts are made aware of the transition from primary to backup coordinator. During
this transition period, in-flight requests would also need to be carefully handled. All of these
problems fall into the domain of distributed consistency systems.

One of the benefits that QJUMP introduced was the ability to build simpler distributed
systems using its bounded-latency property. A further benefit of QJUMP is that its latency bound
applies to broadcast messages. I demonstrated these benefits in the construction and evaluation
of a high performance two phase commit system (see §4.5.1.4). In the following section I outline
a final proposed extension to QJUMP called R3CJUMP5.

R3CJUMP would implement a fully distributed version of FASTJUMP built over the
top of QJUMP. The changes between FASTJUMP and R3CJUMP would be minimal. R3CJUMP

would use the same planner system as FASTJUMP but introduce an eventual-consistency system
for distributing flow state to all hosts. When a host wishes to send a new flow, it would perform
its rate and route calculations locally. Before beginning to transmit, the host would issue a
broadcast message to all remote hosts. This would alert other hosts of the new flow and cause
the remote hosts to adjust their rates for any flows which are affected. Collisions in this request
could be handled by using a fixed priority order and timing information from the guarantees
provided by QJUMP.

The R3CJUMP design shares many similarities with the Rack Routing and Congestion
Control system (R2C2) [65]6. R2C2 is specifically designed for deployment in Rack-Scale

5Resilient Rate, Routing and Coordination Jump
6Indeed, I worked as an intern at Microsoft Research Cambridge during its development and worked with many

of its coauthors. It is likely that some degree of cross-pollination of ideas occurred and the R3CJUMP design was
developed parallel with R2C2.

128 5.7. DISTRIBUTED NETWORK COORDINATION

systems. The authors assume a 3D torus network topology where all nodes act as both hosts
and switches. They argue that, the cost of broadcast is low in this network topology. They
therefore employ broadcast as a mechanism for distributing state updates in the network. Flow
initiation/termination events are broadcasted to all nodes. Each node, including the sender,
calculates flow-rates locally in response these messages. The sender enforces this rate locally. In
“Discussion and Future Work” the authors consider the possibility of using a broadcast mechanism
in regular switched networks. This is precisely the proposal I explore with R3CJUMP.

5.7.1 Architecture

In R3CJUMP, all hosts would act like the coordinator used for FASTJUMP. Each host would store
a complete network graph in local memory including all the flows on every link. The system
would implement a simple eventual-consistency protocol to keep the state of all coordinators
synchronised. This would have two benefits: (i) graph traversal computations are distributed and
localised to each host, thereby improving performance and scalability, and reducing queueing
time in the system, and; (ii) as in QJUMP, the system would again be fully distributed, thereby
improving its fault tolerance properties.

The consensus protocol used by R3CJUMP would rely on the assumption of bounded-
latency network provided by QJUMP for very fast convergence. Networks are lossy environments
and network protocols are already designed to cope with this. Unlike bank account balances or
airline reservations, inconsistencies or faults can be tolerated and even detected. This means that
a coordination system can be “best-effort” rather than strict. This also simplifies the design and
improves the potential performance.

In R3CJUMP, when a host wants to make a new connection, it would inspect its own
local copy of the network graph and compute the best path from source to destination (potentially
using one of the planner algorithms proposed in Section 5.6). Assuming that a path is found,
it would then send a short broadcast message to all hosts that updates their graphs as well.
The broadcast message would be sent at high priority over the guaranteed latency messaging
layer offered by QJUMP. R3CJUMP would use the fact that broadcast messages are included
in the latency guarantee offered by QJUMP. This means that after one network epoch (as
defined in §3.2.1) sending hosts could assume that their message has arrived at all destinations7.
Furthermore, after two network epochs, sending hosts could further assume that all conflicting
messages that were in-flight have arrived. This would allow the conflict resolution algorithm to
have a fixed upper bound on the time it waits before committing a new flow to the network state.
Conflict resolution could be applied by any means, but for simplicity, each host could be given
a fixed host-id (e.g. derived from the IP address) and conflicting messages could be resolved
simply by taking the highest/lowest host-id value.

It is possible that some of the graph update messages may be lost or corrupted in the
network and/or that some hosts may fail and lose their copy of the network state. To cope with

7or failed to arrive.

CHAPTER 5. IMPROVEMENTS AND FUTURE WORK 129

this, long lived connections could issue occasional broadcast “heartbeat” messages which include
the connection state information. This would ensure that all hosts eventually see an up-to-date
view of the network graph and that hosts can be added and removed dynamically. This would
form a primitive, but fast, eventual-consistency coordination system.

In addition to heartbeats, individual flows could use aggressively set Explicit Congestion
Notification functions in switches to quickly detect conflicting inconsistent states in the network.
For example, consider the case where two hosts share a switch and wish to use a common a link
of 10Gb/s. If one host fails to receive the message, then an aggregate of 15Gb/s would be pushed
into the switch, but only 10Gb/s is available on the output link. Since the link cannot handle
this rate, queueing would occur in the switch. Any queueing beyond the limit guaranteed by
QJUMP indicates a problem. This queueing could be detected by monitoring ECN status bits and
reacting by issuing broadcast state updates. Again, this would result in a fast eventual-consistency
coordination system.

5.7.2 Limitations

In the R3CJUMP design, there is a natural limit to the performance. The distribution of the
consensus messages is governed by the QJUMP epoch. This means that a host cannot issue more
than one flow start/stop or heartbeat message per epoch. Assuming a pod-scale network of 1,000
hosts and a message size of 64B, Equation 3.13 gives a network epoch of 256µs. This means
that each host can issue over 19,000 messages per second.

The obvious limitation of both R2C2 and the R3CJUMP design is that the broadcast
coordination traffic consumes network bandwidth. Using broadcast messages means that costs
scale with the number of destination hosts in the network. That is, a 64B message has an
equivalent cost of 64B×1,000 hosts ≈ 64kB on the network. The authors of R2C2 analysed this
problem extensively. They concluded that the overhead of such a system, given a reasonable
datacenter workload, is only 1.3%. However, the authors assumed a 16B broadcast message
and a 512 node network. I have so far assumed that messages are 64B in size. Extending their
analysis to the R3CJUMP design yields an overhead of 1.3% ×4 ×2 = 10.4%. Further extending
to a 5,000 node pod yields an unacceptably high overhead of 52%. There are three potential
mitigations to this problem:

1. The R2C2 authors demonstrate that a 16B message can be used. By scaling the message
size down from 64B to 16B, the overheads would reduce to 2.6% and 13% for a 1000 and
5000 node cluster respectively. These are more tolerable, but would prevent using standard
Ethernet networks.

2. R2C2 and R3CJUMP have different goals. R2C2 aims to be a complete network stack for
rack-scale computers whereas R3CJUMP aims to add bounded latency, high throughput
messaging to commodity datacenter networks. As such, R3CJUMP does not need to
schedule all of the traffic in the network. Short flows could be sent using QJUMP mechanics,
thus avoiding the broadcast setup costs, and longer flows that are not latency sensitive

130 5.8. CONCLUSIONS

could continue to use low priority, best effort services. This would reduce the fraction of
flows that require broadcast messages and thus the resulting overhead.

3. The broadcast coordination messages could be offloaded into a separate, simple broad-
cast/aggregate network such as that described in my previous work R2D2 [166]. This
network has no layer 2 switching capacity. It simply aggregates all messages and broad-
casts them. The simplicity and speed of this network would make it ideal for this purpose
and recent hardware products such as the Exablaze Fusion8 and Metamako MetaMux9

would make it realisable today.

5.8 Conclusions

This chapter has explored a number of potential modifications and extensions that could be
made to the QJUMP system. These extensions would allow QJUMP to be easier to operate and/or
offer bounded latency at higher throughput and/or higher scalability. However, each proposal
also comes with further costs and complexities. All of the extensions would require more
invasive changes to be made to the application and/or kernel of each host. Furthermore, each
extension would add operator specific trade-offs and complexities. The EYEQJUMP proposal
makes the assumption that the network has full-bisection bandwidth support. This is not true in
many existing datacenter networks, but could be made true at additional cost/complexity. The
FASTJUMP proposal adds a central point of failure to the network and may limit the rate of
connections that can be made. Finally, the R3CJUMP proposal adds resilience, but makes the
assumption that broadcast traffic can be used for coordination. This would reduce the effective
size of the network that it could service, and add extra cost in terms bandwidth resources.
Ultimately the choice of trade-off, if any, is an operator specific one which must be tailored to
the circumstances of deployment. Further development, implementation, testing and evaluation
of these extensions is left to future work.

5.9 Chapter Summary

• I discuss the two major flaws with the QJUMP system presented in Chapter 4: (i), that it
requires application developers to specify the throughput requirements of their applications
and; (ii), that it pessimistically assumes that all hosts participate in the bounded latency
layer.

• To resolve (i), I propose a mechanism for automatically determining and setting the correct
application rate and QJUMP level.

• To understand (ii), I discuss the problem of N , the number of hosts participating in the
bounded latency layer (§5.2). QJUMP uses a static value for N , which is configured to be

8Exablaze ExaLink Fusion marketing materials. See Appendix A.9.1.
9Metamako MetaMux 48 marketing materials. See Appendix A.20.1.

CHAPTER 5. IMPROVEMENTS AND FUTURE WORK 131

equal to the total number of hosts. This limits the throughput available to hosts and limits
potential scalability.

• I discuss a proposal for embedding “QJUMP in QJUMP” to provide scalability by linking
multiple pods together (§5.3). While this method can be implemented with minimal
changes, it exacerbates QJUMP’s throughput limitations.

• To resolve the throughput limitations a dynamic value for N is required, which implies
the need for coordination. I then propose three potential coordination solutions which set
dynamic values for N : EYEQJUMP, FASTJUMP, and R3CJUMP.

• Drawing inspiration from past work, EyeQ [89] and pHost [108], I show that by assuming
that the network has full bisection bandwidth, only destination hosts are needed to make
decisions regarding N (§5.5.1).

• I describe an architecture called EYEQJUMP for implementing this idea (§5.5.2), which
requires significant changes to the QJUMP system.

• Taking inspiration from past work “Fastpass”, I show that by assuming a centralised
coordinator the restrictions of EYEQJUMP can be lifted.

• I describe an architecture called FASTJUMP for a centralised coordinator (§5.6.1). This
architecture assumes a network support for source routing and requires a more comprehen-
sive route planner.

• I outline three potential route planner designs: (i) an optimal planner (§5.6.1.1), (ii) a
greedy planner (§5.6.1.2) and; (iii) an heuristic “hippocratic” planner (§5.6.1.3).

• Drawing inspiration from past work R2C2 [65], I show that it is possible to implement fully
distributed control to reduce the restrictions of QJUMP and EYEQJUMP, but overcome the
central point of failure from FASTJUMP

• I describe an architecture called R3CJUMP for a distributed coordination system (§5.7.1).

• I describe a consistency protocol based on QJUMP to distribute state. This allows all hosts
to operate as both sources and coordinators (§5.7.1).

• R3CJUMP relies on broadcast messaging which can be expensive. I discuss the limitations
of this approach and provide an estimate of the costs for a reasonable datacenter workload
(§5.7.2).

132 5.9. CHAPTER SUMMARY

Chapter 6

Conclusions

IN this dissertation, I have thoroughly analysed, discussed, and addressed the problem of
network interference in datacenter networks. I began by exploring the nature and function
of modern, warehouse-scale datacenters. By collating a range of public and published

information, I constructed a detailed picture of the internal operation of hyper-scale datacenter
facilities. Each facility comprises 50,000–100,000 x86 hosts, which are networked together using
commodity Ethernet / IP networks. These hosts run a collection of software including distributed
coordination, distributed data access, and distributed applications/programming frameworks. I
concluded that the tightly coupled, yet distributed nature of datacenter applications makes them
susceptible to interference in the network.

To determine the potential impact of network interference, I constructed and ran a
suite of micro-benchmark experiments using representative RPC and bulk transfer applications
respectively. By doing so, I concluded that network interference is an application-measurable
effect and validated the intuition that network interference occurs as a result of congestion in
shared switch queues.

To understand the causes and potential solutions to network congestion, I reviewed the
history of congestion control, from Van Jacobson’s original scheme for TCP, to modern varieties
such as Datacenter TCP. I also presented a range of academic contributions to congestion control,
especially those with an emphasis on tail-latency and/or network interference in datacenters.
Where possible, I tested these systems for their ability to control network interference using a
selection of representative datacenter applications. I concluded that current congestion control
schemes fail to resolve network interference because they do not take into account network
multiplexor (switch) scheduling behaviour.

As a result, I reviewed several theoretical and practical approaches to network schedul-
ing. I concentrated on systems that approximate Generalised Processor Sharing (GPS) be-
cause GPS provides theoretically perfect scheduling performance. I discussed several realisable
schemes that approximate GPS including Fair Queueing (FQ), Weighted Fair Queueing (WFQ),
Packet-by-packet Generalised Processor Sharing (PGPS), Worst Case Fair, Weighted Fair Queue-

133

134

ing (WF2Q), and others that fall into the class of latency rate (LR) servers. I concluded that
network scheduling techniques can be used to provide approximate isolation in the network
which would have the effect of bounding latency and thus resolving network interference.

Unfortunately, GPS approximation solutions require hardware support within switch-
es/routers. This makes the above schedulers impossible to deploy in datacenter networks that are
constructed out of commodity hardware components. In response, I developed a new scheduling
system based on a simple model of commodity Virtual Output Queue (VOQ) datacenter switch
architectures. Using this model, I derived the necessary traffic conditions required to provide
bounded delay across a network of switches, and developed the Leaky Token Bucket (LTB)
regulator to enforce these conditions. Combining the fluid-flow LTB regulator with a simple,
discrete datacenter switch scheduler model results in similar performance to combining a token
bucket regulator and PGPS/WFQ scheduler in the same environment. I thus concluded that it is
possible to resolve network interference in datacenter networks using network scheduling.

To demonstrate that network scheduling is practical in datacenter networks, I imple-
mented QJUMP. QJUMP applies the LTB regulator at each host and statically configures the
regulator based on the total number of hosts in the network. QJUMP ensures that network latency
remains bounded and that network interference is therefore tightly controlled. The problem
with this static approach is that it limits the available throughput at each host to an unacceptably
low level. To resolve this problem, QJUMP uses network enforced priorities and gives users the
opportunity to trade latency variability for throughput. I concluded that the solution to QJUMP’s
throughput problems is viable for a variety of datacenter applications, but nevertheless lacks the
ability to offer users bounded latency at high throughput.

To resolve QJUMP’s throughput limitations, I proposed three new designs for future
work: (i) EYEQJUMP, (ii) FASTJUMP and, (iii) R3CJUMP. The EYEQJUMP design improved
on QJUMP’s static configuration by introducing host-based dynamic channel negotiation. This
allowed EYEQJUMP to offer bounded latency and at potentially line-rate throughput. The
downside of this approach is, that it requires network topologies with full-bisection bandwidth.
Alternatively, I proposed FASTJUMP which employed a centralised arbitrator for dynamic
configuration. FASTJUMP could operate on any network topology but introduced a central
point-of-failure. Finally, I proposed R3CJUMP that implemented a best-effort consensus system
for fully distributing rate allocation decisions. The disadvantage of this approach is, that it would
generate broadcast traffic on the network which could limit its scalability. I concluded that the
choice between QJUMP, and its proposed extensions EYEQJUMP, FASTJUMP or R3CJUMP is
an operator specific decision.

In conclusion, I have demonstrated that network interference is an application-measurable
effect and a problem in datacenter networks. To address this problem, I have developed novel
theoretical and practical solutions using a latency-first, network scheduling approach. I therefore
conclude that, it is both possible and practical to control network interference in datacenter
networks, using network scheduling techniques.

List of Acronyms

LR . latency rate

2PC . two-phase atomic-commit

AQM Active Queue Management

ARP . Address Resolution Protocol

BA . behaviour aggregate

BGP . Border Gateway Protocol

CDF . Cumulative Distribution Function

CPU . Central Processing Unit

CTS . Clear To Send

D2TCP Deadline-aware Datacenter TCP

D3 . Deadline Driven Delivery

DCB . Datacenter Bridging

DCTCP Datacenter TCP

DSCP Differentiated Services Code Point

DS . Differentiated Services

ECN . Explicit Congestion Notification

EDF . Earliest Deadline First

EFC . Ethernet Flow Control

FCT . Flow Completion Time

FIFO . first in, first out

135

136 List of Acronyms

FQ . Fair Queueing

GFS . Google File System

GPS . Generalised Processor Sharing

GSO . Generic Segment Offload

HDFS Hadoop Distributed File System

HOL . Head of Line

HULL High bandwidth Ultra Low Latency

ICMP Internet Control Message Protocol

IFG . Inter-frame Gap

IPv4 . IP version 4

IPv6 . IP version 6

IP . Internet Protocol

ISP . Internet Service Provider

IS . Integrated Services

LAN . Local Area Network

LSO . Large Segment Offload

LTB . Leaky Token Bucket

MAC . Media Access Controller

MTU . Maximum Transfer Unit

NIC . Network Interface Controller

OCP . Open Compute Project

OSPF Open Shortest Path First

PDQ . Preemptive Distributed Quick

PFC . Priority Flow Control

PGPS Packet-by-packet Generalised Processor Sharing

PHB . Per-hop Behaviour

List of Acronyms 137

PS . Processor Sharing

PTPd . Precision Time Protocol daemon

PTP . Precision Time Protocol

QSFP28 Quad 25Gb/s Small Form-factor Pluggable

QoS . Quality of Service

RED . Random Early Detection

RMS . Root Mean Squared

RPC . Remote Procedure Call

RSVP Resource reSerVation Protocol

RTO . Retransmit Timeout

RTS . Request To Send

RTT . Round-trip Time

RU . Rack Unit

SJR . Shortest Job Remaining

SLA . Service Level Agreement

SRPT Shortest Remaining Processing Time

SoC . System on Chip

TCP . Transmission Control Protocol

TC . Traffic Control

TDMA Time Division Multiple Access

TSC . Time Stamp Counter

TSO . TCP Segment Offload

ToR . Top of Rack

ToS . Type of Service

UDP . User Datagram Protocol

VLAN Virtual Local Area Network

138 List of Acronyms

VM . Virtual Machine

VOQ . Virtual Output Queue

WF2Q Worst Case Fair, Weighted Fair Queueing

WFQ . Weighted Fair Queueing

WRED Weighted Random Early Detection

minRTO minimum RTO

List of Figures

2.1 Hyperscale datacenter operator server designs. 19

2.2 Datacenter network architecture. 20

2.3 TCP sawtooth queueing pattern. 25

2.4 Network latency tails. 26

2.5 Network sharing tests. 29

2.6 Test-bed network topology. 32

2.7 Mixed application performance using TCP congestion control only. 34

2.8 Mixed application performance using EFC (IEEE 802.3x). 35

2.10 Mixed application performance with various ECN settings. 37

2.11 Mixed application performance using optimal ECN settings. 38

2.12 Mixed application performance using DCTCP. 39

3.1 Architectural model of a virtual output queue (VOQ) switch. 60

3.2 Switch servicing delay illustration. 63

3.3 Switch queueing delay illustration. 65

3.4 Half-sized packet considerations. 67

3.5 Generalised delay model for variable packet sizes/spacing. 68

3.6 The token bucket regulator. 68

3.7 The leaky token bucket regulator. 69

3.8 A token bucket regulator admits too much traffic. 70

3.9 Cascaded switch burst sizes. 70

3.10 The limiting case for cascaded switches. 73

3.11 Traffic regulation: policing vs. shaping. 77

3.12 Protocol effects of applying policing regulaltors 85

139

140 LIST OF FIGURES

3.13 Switch model validation experimental configurations. 87

3.14 Experimental results of switch model verification tests. 88

3.15 Datacenter network topology examples. 90

4.1 QJUMP resolves network interference. 101

4.2 QJUMP reduces memcached request latency. 102

4.3 QJUMP resolves inference in a mixed application setting. 103

4.4 QJUMP offers constant two-phase commit throughput. 103

4.5 QJUMP exhibits closest to ideal performance. 105

4.6 144 node leaf-spine topology used for simulation experiments. 105

4.7 QJUMP performs closely to pFabric and DCTCP. 106

4.8 Memcached throughput and latency as a function of rate limit. 108

4.9 Latency bound validation topology. 109

4.10 Latency bound validation experiment. 109

5.1 Abstracting QJUMP for increased scalability. 115

5.2 Dynamically assigning the value of N . 117

List of Tables

2.1 Latency of ping vs. iperf with various degrees of network resource sharing. . 27

2.2 Comparison of related systems. 33

3.1 Comparison of regulator placement trade-offs. 79

3.2 Delay bounds for different network topologies. 91

5.1 Comparison between QJUMP, EYEQJUMP, FASTJUMP and R3CJUMP. 117

141

142 LIST OF TABLES

Bibliography

[1] The Wikimedia Foundation. Wikipedia: The Free Encyclopeida. https://en.

wikipedia.org/; accessed 26/10/2015. See p. 11.

[2] Facebook Corporation. Facebook. https://www.facebook.com/; accessed
26/10/2015. See p. 11.

[3] HSB PLC. HSBC Bank Online. https://www.hasbc.co.uk/; accessed
26/10/2015. See p. 11.

[4] UKForex PLC. UK Foreign Exchange Services. https://www.ukforex.co.uk/;
accessed 26/10/2015. See p. 11.

[5] Amazon Inc. Amazon Prime. https://www.amazon.co.uk/gp/prime/; ac-
cessed 26/10/2015. See p. 11.

[6] Apple Inc. iTunes . http://www.apple.com/uk/itunes/; accessed 26/10/2015.
See p. 11.

[7] Amazon Inc. Amazon. https://www.amazon.co.uk/; accessed 26/10/2015. See
p. 11.

[8] eBay Inc. eBay. https://www.ebay.com/; accessed 26/10/2015.

[9] Tesco Plc. Tesco Online Shopping. https://www.tesco.com/; accessed
26/10/2015. See p. 11.

[10] Apple Inc. Apple. https://www.amazon.com/; accessed 5/8/2016. See p. 11.

[11] Facebook Inc. Google . https://www.google.com/; accessed 5/8/2016. See p. 11.

[12] Microsoft Inc. Microsoft. https://www.microsoft.com/; accessed 5/8/2016.
See p. 11.

[13] Jeffrey Dean and Luiz André Barroso. The Tail at Scale: Managing Latency Variability in
Large-Scale Online Services. Commun. ACM, 56(2), February 2013. See pp. 11, 12, 26,
and 27.

143

https://en.wikipedia.org/
https://en.wikipedia.org/
https://www.facebook.com/
https://www.hasbc.co.uk/
https://www.ukforex.co.uk/
https://www.amazon.co.uk/gp/prime/
http://www.apple.com/uk/itunes/
https://www.amazon.co.uk/
https://www.ebay.com/
https://www.tesco.com/
https://www.amazon.com/
https://www.google.com/
https://www.microsoft.com/

144 BIBLIOGRAPHY

[14] Jeffrey Dean. Challenges in Building Large-scale Information Retrieval Systems: Invited
Talk. In Proceedings of the Second ACM International Conference on Web Search and
Data Mining, WSDM ’09, pages 1–1, New York, NY, USA, 2009. ACM. See p. 11.

[15] J. Postel. Internet Protocol. RFC 791 (INTERNET STANDARD), September 1981.
Updated by RFCs 1349, 2474, 6864. See pp. 11 and 22.

[16] IEEE Standard for Ethernet. IEEE Std 802.3-2012 (Revision to IEEE Std 802.3-2008),
pages 1–3747, Dec 2012. See pp. 11, 21, 62, and 81.

[17] S. Keshav. An Engineering Approach to Computer Networking: ATM Networks, the
Internet, and the Telephone Network. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997. See p. 11.

[18] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay. The Information Visualizer,
an Information Workspace. In Proceedings of CHI, pages 181–186, 1991. See pp. 12
and 27.

[19] Jake Brutlag. Speed Matters for Google Web Search. Technical report, Google. Available
at: http://goo.gl/1qF8xt; accessed 24/09/2014. See pp. 12 and 27.

[20] Abhay K. Parekh and Robert G. Gallager. A Generalized Processor Sharing Approach to
Flow Control in Integrated Services Networks: The Single-node Case. IEEE/ACM Trans.
Netw., 1(3):344–357, June 1993. See pp. 12, 49, 50, 51, 53, and 75.

[21] Abhay K. Parekh and Robert G. Gallagher. A Generalized Processor Sharing Approach
to Flow Control in Integrated Services Networks: The Multiple Node Case. IEEE/ACM
Trans. Netw., 2(2):137–150, April 1994. See pp. 12, 51, 53, 71, and 75.

[22] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing
Algorithm. SIGCOMM Comput. Commun. Rev., 19(4):1–12, August 1989. See pp. 48, 49,
and 57.

[23] J. C. R. Bennett and Hui Zhang. WF2Q: Worst-Case Fair Weighted Fair Queueing.
In INFOCOM ’96. Fifteenth Annual Joint Conference of the IEEE Computer Societies.
Networking the Next Generation. Proceedings IEEE, volume 1, pages 120–128 vol.1, Mar
1996. See pp. 12, 52, and 71.

[24] Jon Crowcroft, Steven Hand, Richard Mortier, Timothy Roscoe, and Andrew Warfield.
QoS’s Downfall: At the bottom, or not at all! In Proceedings of the ACM SIGCOMM
Workshop on Revisiting IP QoS, 2003. See p. 12.

[25] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M. Watson, Andrew W.
Moore, Steven Hand, and Jon Crowcroft. Queues Don’t Matter when You Can JUMP

THEM! In Proceedings of the 12th USENIX Conference on Networked Systems Design and

http://goo.gl/1qF8xt

BIBLIOGRAPHY 145

Implementation, NSDI’15, pages 1–14, Berkeley, CA, USA, 2015. USENIX Association.
See pp. 13 and 16.

[26] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, and Andrew W. Moore. Jump
the Queue to Lower Latency. In ;login: The USENIX Magazine, volume 40, pages 6–10.
2015. See pp. 13 and 16.

[27] Ionel Gog, Malte Schwarzkopf, Natacha Crooks, Matthew P. Grosvenor, Allen Clement,
and Steven Hand. Musketeer: All for One, One for All in Data Processing Systems. In
Proceedings of the Tenth European Conference on Computer Systems, EuroSys ’15, pages
2:1–2:16, New York, NY, USA, 2015. ACM. See pp. 14, 18, 31, 32, and 123.

[28] Albert Greenberg. SDN for the Cloud (keynote speech) . In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, SIGCOMM ’15, page 0,
New York, NY, USA, 2015. ACM. See pp. 17, 20, 21, and 23.

[29] Albert Greenberg. SDN for the Cloud (slides for keynote speech). http:

//conferences.sigcomm.org/sigcomm/2015/pdf/papers/p0.pdf,
August 2015. See pp. 17, 20, 21, and 23.

[30] Yuval Bachar. Disaggregation: The New Way to Build Mega (and Micro) Data Centers.
In Proceedings of the Eleventh ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ANCS ’15, pages 1–1, Washington, DC, USA, 2015. IEEE
Computer Society. See pp. 17 and 19.

[31] Amazon Web Services Inc. AWS re:Invent 2014 | (SPOT301) AWS Innovation at Scale.
https://www.youtube.com/watch?v=JIQETrFC_SQ; accessed 26/10/2015.
See pp. 17 and 19.

[32] Luyuan Fang, Fabio Chiussi, Deepak Bansal, Vijay Gill, Tony Lin, Jeff Cox, and Gary
Ratterree. Hierarchical SDN for the Hyper-scale, Hyper-elastic Data Center and Cloud.
In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, SOSR ’15, pages 7:1–7:13, New York, NY, USA, 2015. ACM. See p. 17.

[33] Alexey Andreyev. Introducing data center fabric, the next-generation Facebook data
center network. https://code.facebook.com/posts/360346274145943/
introducing-data-center-fabric-the-next-generation-facebook-data-center-network/;
accessed 04/10/2016. See p. 17.

[34] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy Bannon,
Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand Kanagala, Jeff
Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle, Stephen Stuart, and
Amin Vahdat. Jupiter Rising: A Decade of Clos Topologies and Centralized Control in
Google’s Datacenter Network. In Proceedings of the 2015 ACM Conference on Special

http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p0.pdf
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p0.pdf
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/

146 BIBLIOGRAPHY

Interest Group on Data Communication, SIGCOMM ’15, pages 183–197, New York, NY,
USA, 2015. ACM. See pp. 17, 20, 21, 22, 23, 24, and 38.

[35] Facebook Corporation. Open Compute Project - Mission and Principles. http:

//www.opencompute.org/about/mission-and-principles/; accessed
26/10/2015. See pp. 17 and 20.

[36] L.A. Barroso and U. Hölzle. The Datacenter as a Computer: An Introduction to the
Design of Warehouse-scale Machines. Synthesis lectures in computer architecture. Morgan
& Claypool, 2009. See pp. 18, 20, and 27.

[37] IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measure-
ment and Control Systems. IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002), pages
1–269, July 2008. See p. 18.

[38] Mike Burrows. The Chubby Lock Service for Loosely-coupled Distributed Systems. In
Proceedings of the 7th Symposium on Operating Systems Design and Implementation,
OSDI ’06, pages 335–350, Berkeley, CA, USA, 2006. USENIX Association. See p. 18.

[39] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. ZooKeeper:
Wait-free Coordination for Internet-scale Systems. In Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference, USENIXATC’10, pages 11–11,
Berkeley, CA, USA, 2010. USENIX Association. See p. 18.

[40] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, and
John Wilkes. Large-scale Cluster Management at Google with Borg. In Proceedings of
the Tenth European Conference on Computer Systems, EuroSys ’15, pages 18:1–18:17,
New York, NY, USA, 2015. ACM. See p. 18.

[41] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. Omega:
Flexible, Scalable Schedulers for Large Compute Clusters. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys ’13, pages 351–364, New York, NY,
USA, 2013. ACM. See p. 18.

[42] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. In
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP
’03, pages 29–43, New York, NY, USA, 2003. ACM. See pp. 18 and 31.

[43] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed File System.
In 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pages
1–10, May 2010. See pp. 18 and 31.

[44] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A Distributed

http://www.opencompute.org/about/mission-and-principles/
http://www.opencompute.org/about/mission-and-principles/

BIBLIOGRAPHY 147

Storage System for Structured Data. ACM Trans. Comput. Syst., 26(2):4:1–4:26, June
2008. See p. 18.

[45] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James Larson,
Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore:
Providing Scalable, Highly Available Storage for Interactive Services. In Proceedings of
the Conference on Innovative Data system Research (CIDR), pages 223–234, 2011. See
p. 18.

[46] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.
Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild,
Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey
Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi
Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner:
Google&Rsquo;s Globally Distributed Database. ACM Trans. Comput. Syst., 31(3):8:1–
8:22, August 2013. See pp. 18 and 30.

[47] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain, Joydeep
Sen Sarma, Raghotham Murthy, and Hao Liu. Data Warehousing and Analytics Infrastruc-
ture at Facebook. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’10, pages 1013–1020, New York, NY, USA, 2010.
ACM. See p. 18.

[48] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C.
Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung,
and Venkateshwaran Venkataramani. Scaling Memcache at Facebook. In Proceedings of
NSDI, pages 385–398, 2013. See pp. 18 and 30.

[49] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In Proceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004.
USENIX Association. See pp. 18 and 31.

[50] Jens Dittrich and Jorge-Arnulfo Quiané-Ruiz. Efficient Big Data Processing in Hadoop
MapReduce. Proc. VLDB Endow., 5(12):2014–2015, August 2012. See pp. 18 and 31.

[51] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient Distributed Datasets:
A Fault-tolerant Abstraction for In-memory Cluster Computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation, NSDI’12, pages
2–2, Berkeley, CA, USA, 2012. USENIX Association. See p. 18.

[52] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and
Martín Abadi. Naiad: A Timely Dataflow System. In Proceedings of SOSP, pages
439–455, 2013. See pp. 18, 26, and 114.

148 BIBLIOGRAPHY

[53] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry,
Robert Bradshaw, and Nathan Weizenbaum. FlumeJava: Easy, Efficient Data-parallel
Pipelines. SIGPLAN Not., 45(6):363–375, June 2010. See p. 18.

[54] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: A Warehousing Solution
over a Map-reduce Framework. Proc. VLDB Endow., 2(2):1626–1629, August 2009. See
p. 18.

[55] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig Latin: A Not-so-foreign Language for Data Processing. In Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD
’08, pages 1099–1110, New York, NY, USA, 2008. ACM. See p. 18.

[56] Intel 64 and IA-32 Architectures Software Developer’s Manual, volume Volume 3A:
System Programming Guide, Part 1, page 16.12.1. Intel Corporation, 2011. See pp. 18
and 82.

[57] Robtert Mezger. The Relay Rack in Amateur Construction. QST American Radio Relay
League., 18, 1934. See p. 20.

[58] Charles Clos. A study of non-blocking switching networks. Bell System Technical Journal,
The, 32(2):406–424, March 1953. See p. 21.

[59] William Dally and Brian Towles. Principles and Practices of Interconnection Networks,
page 111. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003. See p. 21.

[60] William Dally and Brian Towles. Principles and Practices of Interconnection Networks,
page 48. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003. See p. 21.

[61] Reiss, C. and Tumanov, A. and Ganger, G.R. and Katz, R.H. and Kozuch, M.A. Hetero-
geneity and dynamicity of clouds at scale: Google trace analysis. In Proceedings of SoCC,
2012. See p. 22.

[62] James R Hamilton. An Architecture for Modular Data Centers. In Proceesings of the
Conference on Innovative Data Systems Research, 2007. See p. 22.

[63] Alexandros Daglis, Stanko Novaković, Edouard Bugnion, Babak Falsafi, and Boris Grot.
Manycore Network Interfaces for In-memory Rack-scale Computing. In Proceedings of
the 42Nd Annual International Symposium on Computer Architecture, ISCA ’15, pages
567–579, New York, NY, USA, 2015. ACM. See p. 22.

[64] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan Milojicic. Beyond
Processor-centric Operating Systems. In Proceedings of the 15th USENIX Conference on
Hot Topics in Operating Systems, HOTOS’15, pages 17–17, Berkeley, CA, USA, 2015.
USENIX Association.

BIBLIOGRAPHY 149

[65] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian Kash. R2C2: A Network Stack for
Rack-scale Computers. In Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM ’15, pages 551–564, New York, NY, USA,
2015. ACM. See pp. 22, 124, 127, and 131.

[66] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122
(INTERNET STANDARD), October 1989. Updated by RFCs 1349, 4379, 5884, 6093,
6298, 6633, 6864. See pp. 22, 35, and 84.

[67] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC 2460
(Draft Standard), December 1998. Updated by RFCs 5095, 5722, 5871, 6437, 6564, 6935,
6946, 7045, 7112. See p. 22.

[68] D. Plummer. Ethernet Address Resolution Protocol: Or Converting Network Protocol
Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware. RFC 826
(INTERNET STANDARD), November 1982. Updated by RFCs 5227, 5494. See p. 22.

[69] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon Kim,
Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta. VL2: a scalable
and flexible data center network. In Proceedings of SIGCOMM, pages 51–62, 2009. See
pp. 22, 23, 44, 99, and 107.

[70] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). RFC 4271 (Draft
Standard), January 2006. Updated by RFCs 6286, 6608, 6793, 7606, 7607, 7705. See
p. 23.

[71] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel,
Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data center TCP (DCTCP).
In Proceedings of SIGCOMM, pages 63–74, 2010. See pp. 23, 24, 25, 33, 37, 38, 44, 99,
and 107.

[72] LATEST HEADER FORMATS. IEN 44 (Proposed Standard), June 1978. See p. 23.

[73] V. Jacobson. Congestion Avoidance and Control. In Symposium Proceedings on Commu-
nications Architectures and Protocols, SIGCOMM ’88, pages 314–329, New York, NY,
USA, 1988. ACM. See p. 23.

[74] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A New TCP-friendly High-speed TCP
Variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, July 2008. See pp. 24 and 33.

[75] Qian Zhang Murari Sridharan Kun Tan, Jingmin Song. A Compound TCP Approach for
High-speed and Long Distance Networks. Technical report, July 2005. See pp. 24 and 25.

[76] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The NewReno Modification to TCP’s
Fast Recovery Algorithm. RFC 6582 (Proposed Standard), April 2012. See p. 24.

150 BIBLIOGRAPHY

[77] S. Floyd, M. Allman, A. Jain, and P. Sarolahti. Quick-Start for TCP and IP. RFC 4782
(Experimental), January 2007. See p. 24.

[78] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion Notifica-
tion (ECN) to IP. RFC 3168 (Proposed Standard), September 2001. Updated by RFCs
4301, 6040. See pp. 25, 33, and 36.

[79] David X. Wei, Cheng Jin, Steven H. Low, and Sanjay Hegde. FAST TCP: Motivation,
Architecture, Algorithms, Performance. IEEE/ACM Trans. Netw., 14(6):1246–1259,
December 2006. See p. 25.

[80] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP Vegas: New
Techniques for Congestion Detection and Avoidance. In Proceedings of the Conference
on Communications Architectures, Protocols and Applications, SIGCOMM ’94, pages
24–35, New York, NY, USA, 1994. ACM. See p. 25.

[81] Kathleen Nichols and Van Jacobson. Controlling Queue Delay. Queue, 10(5):20:20–20:34,
May 2012. See p. 25.

[82] Jim Gettys and Kathleen Nichols. Bufferbloat: dark buffers in the internet. Commun.
ACM, 55(1):57–65, January 2012. See p. 25.

[83] Yanpei Chen, Rean Griffith, Junda Liu, Randy H Katz, and Anthony D Joseph. Under-
standing TCP incast throughput collapse in datacenter networks. In Proceedings of WREN,
pages 73–82, 2009. See pp. 25 and 31.

[84] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. Bobtail: Avoiding
Long Tails in the Cloud. In Proceedings of NSDI, pages 329–342, 2013. See pp. 26
and 92.

[85] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy Katz. DeTail:
Reducing the Flow Completion Time Tail in Datacenter Networks. SIGCOMM Comput.
Commun. Rev., 42(4):139–150, August 2012. See pp. 26, 33, and 46.

[86] J. Postel. Internet Control Message Protocol. RFC 792 (INTERNET STANDARD),
September 1981. Updated by RFCs 950, 4884, 6633, 6918. See p. 27.

[87] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans Fugal.
Fastpass: A Centralized “Zero-queue” Datacenter Network. In Proceedings of SIGCOMM,
pages 307–318, 2014. See pp. 30, 33, 42, and 45.

[88] IEEE Standard for Local and metropolitan area networks–Media Access Control (MAC)
Bridges and Virtual Bridged Local Area Networks–Amendment 17: Priority-based Flow
Control. IEEE Std 802.1Qbb-2011 (Amendment to IEEE Std 802.1Q-2011 as amended by
IEEE Std 802.1Qbe-2011 and IEEE Std 802.1Qbc-2011), pages 1–40, Sept 2011. See
pp. 33 and 36.

BIBLIOGRAPHY 151

[89] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar, Albert
Greenberg, and Changhoon Kim. EyeQ: Practical Network Performance Isolation at the
Edge. In Proceedings of NSDI, pages 297–311, 2013. See pp. 33, 46, and 131.

[90] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. Deadline-aware Datacenter TCP
(D2TCP). SIGCOMM Comput. Commun. Rev., 42(4):115–126, August 2012. See pp. 33
and 40.

[91] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat, and
Masato Yasuda. Less is more: trading a little bandwidth for ultra-low latency in the data
center. In Proceedings of NSDI, pages 253–266, 2012. See pp. 33, 37, 39, and 40.

[92] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. Better Never
Than Late: Meeting Deadlines in Datacenter Networks. In Proceedings SIGCOMM, pages
50–61, 2011. See p. 33.

[93] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. Finishing flows quickly with
preemptive scheduling. In Proceedings of SIGCOMM, pages 127–138, 2012. See p. 33.

[94] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown, Balaji
Prabhakar, and Scott Shenker. pFabric: Minimal Near-optimal Datacenter Transport. In
Proceedings of SIGCOMM, pages 435–446, 2013. See pp. 33, 42, 45, 100, 105, and 106.

[95] Bhanu Chandra Vattikonda, George Porter, Amin Vahdat, and Alex C. Snoeren. Practical
TDMA for Datacenter Ethernet. In Proceedings of Eurosys, pages 225–238, 2012. See
pp. 33, 35, 36, and 41.

[96] J. Postel. User Datagram Protocol. RFC 768 (INTERNET STANDARD), August 1980.
See p. 33.

[97] S. A. Reinemo, T. Skeie, and M. K. Wadekar. Ethernet for High-Performance Data centers:
On the New IEEE Datacenter Bridging Standards. IEEE Micro, 30(4):42–51, July 2010.
See p. 35.

[98] Sally Floyd and Van Jacobson. Random Early Detection Gateways for Congestion
Avoidance. IEEE/ACM Trans. Netw., 1(4):397–413, August 1993. See p. 36.

[99] Hao Jiang and Constantinos Dovrolis. Why is the Internet Traffic Bursty in Short Time
Scales? In Proceedings of the 2005 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS ’05, pages 241–252,
New York, NY, USA, 2005. ACM. See p. 40.

[100] Lixia Zhang, Scott Shenker, and Daivd D. Clark. Observations on the Dynamics of a
Congestion Control Algorithm: The Effects of Two-way Traffic. SIGCOMM Comput.
Commun. Rev., 21(4):133–147, August 1991. See p. 40.

152 BIBLIOGRAPHY

[101] Rishi Kapoor, Alex C. Snoeren, Geoffrey M. Voelker, and George Porter. Bullet Trains: A
Study of NIC Burst Behavior at Microsecond Timescales. In Proceedings of the Ninth
ACM Conference on Emerging Networking Experiments and Technologies, CoNEXT ’13,
pages 133–138, New York, NY, USA, 2013. ACM. See p. 40.

[102] T. Shanley, J. Winkles, and Inc MindShare. InfiniBand Network Architecture. PC system
architecture series. Addison-Wesley, 2003. See p. 41.

[103] Nick McKeown. The iSLIP Scheduling Algorithm for Input-queued Switches. IEEE/ACM
Trans. Netw., 7(2):188–201, April 1999. See pp. 42 and 61.

[104] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P. Thacker. High-
speed Switch Scheduling for Local-area Networks. ACM Trans. Comput. Syst., 11(4):319–
352, November 1993. See p. 42.

[105] Luigi Rizzo. Netmap: A Novel Framework for Fast Packet I/O. In Proceedings of the
2012 USENIX Conference on Annual Technical Conference, USENIX ATC’12, pages 9–9,
Berkeley, CA, USA, 2012. USENIX Association. See pp. 43 and 89.

[106] José Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection Networks, page 52.
Morgan Kaufmann, 2002. See p. 43.

[107] Hitesh Ballani, Paolo Costa, Christos Gkantsidis, Matthew P. Grosvenor, Thomas Kara-
giannis, Lazaros Koromilas, and Greg O’Shea. Enabling End-Host Network Functions.
In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Commu-
nication, SIGCOMM ’15, pages 493–507, New York, NY, USA, 2015. ACM. See pp. 44,
80, and 114.

[108] Gautam Kumar Rachit Agarwal Sylvia Ratnasamy Peter Xiang Gao, Akshay Narayan and
Scott Shenker. pHost: Distributed Near-optimal Datacenter Transport Over Commodity
Network Fabric. In Proceedings of the 2015 ACM Conference on emerging Networking
EXperiments and Technologies (CoNEXT), 2015. See pp. 45 and 131.

[109] José Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection Networks, page 476.
Morgan Kaufmann, 2002. See p. 45.

[110] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. On the impact of packet spraying in
data center networks. In INFOCOM, 2013 Proceedings IEEE, pages 2130–2138, April
2013. See pp. 45, 47, and 118.

[111] IEEE Standard for Local and metropolitan area networks - Media Access Control (MAC)
Bridges and Virtual Bridged Local Area Networks - Amendment 22: Equal Cost Multiple
Path (ECMP). IEEE Std 802.1Qbp-2014 (Amendment to IEEE Std 802.1Q-2011), pages
1–127, April 2014. See pp. 47 and 92.

BIBLIOGRAPHY 153

[112] Nathan Farrington, Erik Rubow, and Amin Vahdat. Data Center Switch Architecture in
the Age of Merchant Silicon. In Proceedings of the 2009 17th IEEE Symposium on High
Performance Interconnects, HOTI ’09, pages 93–102, Washington, DC, USA, 2009. IEEE
Computer Society. See p. 47.

[113] J. Nagle. Congestion Control in IP/TCP Internetworks. RFC 896 (Historic), January 1984.
Obsoleted by RFC 7805. See pp. 48 and 79.

[114] J. Nagle. On Packet Switches with Infinite Storage. IEEE Transactions on Communica-
tions, 35(4):435–438, Apr 1987. See pp. 48 and 49.

[115] Leonard Kleinrock. Analysis of A time-shared processor. Naval Research Logistics
Quarterly, 11(1):59–73, 1964. See p. 50.

[116] Leonard Kleinrock. Time-shared Systems: A Theoretical Treatment. J. ACM, 14(2):242–
261, April 1967. See p. 50.

[117] S. J. Golestani. A self-clocked fair queueing scheme for broadband applications. In
INFOCOM ’94. Networking for Global Communications., 13th Proceedings IEEE, pages
636–646 vol.2, Jun 1994. See p. 52.

[118] L. Zhang. Virtual Clock: A New Traffic Control Algorithm for Packet Switching Net-
works. In Proceedings of the ACM Symposium on Communications Architectures &Amp;
Protocols, SIGCOMM ’90, pages 19–29, New York, NY, USA, 1990. ACM. See pp. 52
and 53.

[119] M. Shreedhar and George Varghese. Efficient Fair Queueing Using Deficit Round-robin.
IEEE/ACM Trans. Netw., 4(3):375–385, June 1996. See p. 52.

[120] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. Weighted Round-robin Cell Multi-
plexing in a General-purpose ATM Switch Chip. IEEE J.Sel. A. Commun., 9(8):1265–1279,
September 2006. See p. 52.

[121] Dimitrios Stiliadis and Anujan Varma. Latency-rate Servers: A General Model for
Analysis of Traffic Scheduling Algorithms. IEEE/ACM Trans. Netw., 6(5):611–624,
October 1998. See pp. 52 and 71.

[122] David D. Clark, Scott Shenker, and Lixia Zhang. Supporting Real-time Applications in
an Integrated Services Packet Network: Architecture and Mechanism. In Conference
Proceedings on Communications Architectures &Amp; Protocols, SIGCOMM ’92, pages
14–26, New York, NY, USA, 1992. ACM. See p. 53.

[123] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture: an
Overview. RFC 1633 (Informational), June 1994. See pp. 53, 55, and 61.

154 BIBLIOGRAPHY

[124] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation Protocol
(RSVP) – Version 1 Functional Specification. RFC 2205 (Proposed Standard), September
1997. Updated by RFCs 2750, 3936, 4495, 5946, 6437, 6780. See p. 54.

[125] J. Wroclawski. Specification of the Controlled-Load Network Element Service. RFC
2211 (Proposed Standard), September 1997. See p. 54.

[126] S. Shenker, C. Partridge, and R. Guerin. Specification of Guaranteed Quality of Service.
RFC 2212 (Proposed Standard), September 1997. See pp. 54 and 55.

[127] J. Wroclawski. The Use of RSVP with IETF Integrated Services. RFC 2210 (Proposed
Standard), September 1997. See p. 55.

[128] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for
Differentiated Services. RFC 2475 (Informational), December 1998. Updated by RFC
3260. See p. 55.

[129] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated Services
Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474 (Proposed Standard), December
1998. Updated by RFCs 3168, 3260. See p. 55.

[130] P. Almquist. Type of Service in the Internet Protocol Suite. RFC 1349 (Proposed Standard),
July 1992. Obsoleted by RFC 2474. See p. 55.

[131] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding PHB Group.
RFC 2597 (Proposed Standard), June 1999. Updated by RFC 3260. See p. 56.

[132] D. C. Stephens, J. C. R. Bennett, and Hui Zhang. Implementing scheduling algorithms in
high-speed networks. IEEE Journal on Selected Areas in Communications, 17(6):1145–
1158, Jun 1999. See p. 56.

[133] William Dally and Brian Towles. Principles and Practices of Interconnection Networks,
page 400. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003. See p. 60.

[134] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P. Thacker. High-
speed Switch Scheduling for Local-area Networks. ACM Trans. Comput. Syst., 11(4):319–
352, November 1993. See p. 60.

[135] N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and M. Horowitz. Tiny Tera: a
packet switch core. IEEE Micro, 17(1):26–33, Jan 1997. See p. 60.

[136] IEEE. Standard for local and metropolitan area networks, Virtual Bridged Local Area
Networks. IEEE Std. 802.11Q-2005, 2005. See pp. 61 and 97.

[137] Ben Pfaff, Justin Pettit, and Scott Shenker. Extending Networking into the Virtualization
Layer. In Proceedings of the 2009 8th ACM Workshop on Hot Topics in Networks, 2009.
See p. 62.

BIBLIOGRAPHY 155

[138] Parviz Kermani and Leonard Kleinrock. Virtual cut-through: A new computer communi-
cation switching technique. Computer Networks, 3(4):267–286, 1979. See p. 63.

[139] IEEE Standard for Local and metropolitan area networks - Station and Media Access
Control Connectivity Discovery. IEEE Std 802.1AB-2016 (Revision of IEEE Std 802.1AB-
2009), pages 1–146, March 2016. See p. 63.

[140] IEEE Standard for Local and metropolitan area networks: Media Access Control (MAC)
Bridges. IEEE Std 802.1D-2004 (Revision of IEEE Std 802.1D-1998), pages 1–277, June
2004. See p. 63.

[141] Bradner, Scott. Benchmarking Terminology for Network Interconnection Devices. RFC
1242, July 1991. See p. 63.

[142] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani, George
Porter, and Amin Vahdat. SENIC: Scalable NIC for End-host Rate Limiting. In Proceed-
ings of the 11th USENIX Conference on Networked Systems Design and Implementation,
NSDI’14, pages 475–488, Berkeley, CA, USA, 2014. USENIX Association. See pp. 79
and 80.

[143] Sameer Seth and M. Ajaykumar Venkatesulu. TCP/IP Architecture, Design and Imple-
mentation in Linux, pages 591–633. Wiley-IEEE Computer Society Press, 2008. See
p. 79.

[144] Robert Winter, Rich Hernandez, Gaurav Chawla, Anthony Faustini, Carl Solder, Thomas
Scheibe, David Law, Siamick Ayandeh, Brad Booth, Blaine Kohl, Charlie Lavacchia, Subi
Krishnamurthy, Raja Karthikeyan, Eric Multanen, and Manoj Wadekar. Ethernet Jumbo
Frames. Ethernet Alliance, 2009. See p. 81.

[145] Intel 64 and IA-32 Architectures Software Developer’s Manual, volume Volume 3C:
System Programming Guide, Part 3, page 18.15. Intel Corporation, 2011. See p. 83.

[146] Noa Zilberman, Matthew P. Grosvenor, Diana Andreea Popescu, Neelakandan Manihatty
Bojan, Gianni Antichi, Marcin Wójcik, and Andrew W. Moore. Where has my time gone?
In Passive and Active Measurement - 18th International Conference, PAM 2017, Sydney,
NSW, Australia, March 30-31, 2017, Proceedings, pages 201–214, 2017. See p. 92.

[147] Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and John K.
Ousterhout. It’s Time for Low Latency. In Proceedings of the 13th USENIX Conference
on Hot Topics in Operating Systems, HotOS’13, pages 11–11, Berkeley, CA, USA, 2011.
USENIX Association.

[148] Jacob Leverich and Christos Kozyrakis. Reconciling High Server Utilization and Sub-
millisecond Quality-of-service. In Proceedings of EuroSys, pages 4:1–4:14, 2014.

156 BIBLIOGRAPHY

[149] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy,
Thomas Anderson, and Timothy Roscoe. Arrakis: The Operating System is the Control
Plane. In Proceedings of OSDI 14, pages 1–16, October 2014.

[150] Lingjia Tang, Jason Mars, Neil Vachharajani, Robert Hundt, and Mary-Lou Soffa. The Im-
pact of Memory Subsystem Resource Sharing on Datacenter Applications. In Proceedings
of ISCA, 2011.

[151] Mihai Dobrescu, Katerina Argyraki, and Sylvia Ratnasamy. Toward Predictable Perfor-
mance in Software Packet-processing Platforms. In Proceedings of NSDI, pages 141–154,
2012. See p. 92.

[152] Theophilus Benson, Aditya Akella, and David A. Maltz. Network Traffic Characteristics
of Data Centers in the Wild. In Proceedings of IMC, pages 267–280, 2010. See pp. 98
and 99.

[153] Keon Jang et al. Silo: Predictable Message Completion Time in the Cloud. Technical
report, Microsoft Research, 2013. MSR-TR-2013-95. See pp. 99 and 127.

[154] Virajith Jalaparti, Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron.
Bridging the Tenant-provider Gap in Cloud Services. In Proceedings of SoCC, pages
10:1–10:14, 2012.

[155] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards Predictable
Datacenter Networks. In Proceedings of SIGCOMM, pages 242–253, 2011. See p. 99.

[156] Leslie Lamport. The Part-time Parliament. ACM Trans. Comput. Syst., 16(2):133–169,
May 1998. See p. 104.

[157] Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus Algorithm.
In 2014 USENIX Annual Technical Conference (USENIX ATC 14), pages 305–319,
Philadelphia, PA, June 2014. USENIX Association. See p. 104.

[158] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel
Rosenblum. Fast Crash Recovery in RAMCloud. In Proceedings of SOSP, pages 29–41,
2011. See p. 104.

[159] Oxford Reference: root-mean-square value. http://www.oxfordreference.

com/10.1093/oi/authority.20110803100428422, 2016. See p. 104.

[160] Linus Schrage. A Proof of the Optimality of the Shortest Remaining Processing Time
Discipline. Operations Research, 16(3):687–690, 1968. See p. 105.

[161] Rebecca Isaacs. Tuning the performance of Naiad. Part 1: the network. Big Data at SVC
blog, http://bit.ly/1gl5Cjk; accessed 25/09/2014. See p. 114.

http://www.oxfordreference.com/10.1093/oi/authority.20110803100428422
http://www.oxfordreference.com/10.1093/oi/authority.20110803100428422
http://bit.ly/1gl5Cjk

BIBLIOGRAPHY 157

[162] S. Keshav. An Engineering Approach to Computer Networking: ATM Networks, the
Internet, and the Telephone Network, page 215. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1997. See p. 120.

[163] V. Sharma and F. Hellstrand. Framework for Multi-Protocol Label Switching (MPLS)-
based Recovery. RFC 3469 (Informational), February 2003. Updated by RFC 5462. See
p. 123.

[164] S. Hanks, T. Li, D. Farinacci, and P. Traina. Generic Routing Encapsulation (GRE). RFC
1701 (Informational), October 1994. See p. 123.

[165] Bozidar Radunović and Jean-Yves Le Boudec. A Unified Framework for Max-min and
Min-max Fairness with Applications. IEEE/ACM Trans. Netw., 15(5):1073–1083, October
2007. See p. 124.

[166] Matthew P. Grosvenor, Malte Schwarzkopf, and Andrew W. Moore. R2D2: Bufferless,
Switchless Data Center Networks Using Commodity Ethernet Hardware. In Proceedings
of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 507–508,
New York, NY, USA, 2013. ACM. See p. 130.

158 BIBLIOGRAPHY

Appendices

159

Appendix A

Web Sources

The motivation for this dissertation arrises from the hyperscale networks used by today’s giant
Internet companies. Unsurprisingly, several of the references used in this dissertation were
available from web sources only. These sources include consumer focused technical websites
such as Wired and CNet, special interest websites such datacenterknowledge.com, press releases
and marketing material from companies like Microsoft and Intel, blogs such as those run by
Facebook and the OpenCompute project and statistics from company websites/corporate home
pages. Although these sources provide a wealth of material not available from traditional
(academic) sources, there is no guarantee that web based sources will remain hosted/available
for the lifetime of this dissertation. To ensure that these valuable references remain accessible, I
have included extracts from the original sources in the following appendix.

A.1 Amazon

A.1.1 AWS Documentation, Elastic Load Balancing, Classic Load Bal-
ancers, Internet-Facing Classic Load Balancers

161

30/09/2016 Internet-Facing Classic Load Balancers - Elastic Load Balancing

http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-internet-facing-load-balancers.html 1/1

EC2‑Classic

Load balancers in EC2‑Classic support both IPv4 and IPv6 addresses. The console
displays the following public DNS names:

name123456789.region.elb.amazonaws.com
ipv6.name123456789.region.elb.amazonaws.com
dualstack.name123456789.region.elb.amazonaws.com

The base public DNS name returns only IPv4 records. The public DNS name with
the ipv6 prefix returns only IPv6 records. The public DNS name with
the dualstack prefix returns both IPv4 and IPv6 records. We recommend that you enable
IPv6 support by using the DNS name with thedualstack prefix to ensure that clients can
access the load balancer using either IPv4 or IPv6.

Clients can connect to your load balancer in EC2‑Classic using either IPv4 or IPv6.
However, communication between the load balancer and its back‑end instances uses only
IPv4, regardless of how the client communicates with your load balancer.

APPENDIX A. WEB SOURCES 163

A.2 Arista

A.2.1 Arista Networks Delivers Open Management Infrastructure API
Support for Microsoft

Press Releases

News

In the News

Press Releases

Analyst Notes

Social Media

Video Library

Arista Networks Delivers Open Management

Infrastructure API Support for Microsoft

Furthering Automation and Programmability for Today’s Data Center

Santa Clara, CA June 3, 2013 –Arista today announced full support for Microsoft
Open Management Infrastructure (OMI) across all Arista platforms through Arista

EOS (extensible operating system) software version 4.12. This expands Arista’s

offerings in Software Defined Networking (SDN) by continuing to provide the

broadest set of interfaces to management platforms for open programmability and

orchestration.

“Microsoft’s Cloud OS is built on Windows Server, System Center, and Windows

Azure and aligns with Microsoft’s commitment to openness, supporting standards

(CIM + WSMan) using OMI,” said Chris Phillips, Partner Director PM, Windows

Server, Microsoft. “Arista’s manageable switch’s support for Microsoft OMI gives

customers flexibility and cost effectiveness as they implement networking across

public and private cloud environments.”

The growth of cloudbased computing is driving demand for more automation, which

requires a solid foundation built upon management standards. Arista switches,

widely deployed in Windows Azure data centers, drove Arista’s implementation of

OMI in close collaboration with Microsoft, and enabling OMI standardsbased

management to satisfy Windows Azure’s cloud management requirements.

“Our customers are asking for open, standardsbased API’s to support next

generation cloud architectures,” said Anshul Sadana, senior vice president of

Customer Engineering for Arista Networks. “Implementing OMI with its tight

integration into Microsoft’s System Center 2012 allows us to integrate Arista’s

industry leading cloud networking solutions and deliver easy and efficient

management for our mutual customers’ datacenters, virtual workloads, and hybrid

cloud IT environments.”

OMI uses the DMTF Common Information Model (CIM) object model and protocol to

manage servers and network switches. More information about CIM may be found at

DMTF (http://www.dmtf.org).

Availability
Arista EOS support of Microsoft OMI is available now.

About Arista Networks
The company was founded to deliver software defined cloud networking solutions for

large data center and computing environments. Arista’s awardwinning 10/40/100

GbE switches redefine scalability, robustness, and price–performance, with more

than one million cloud networking ports being deployed worldwide. At the core of

Arista's platform is EOS, the world’s most advanced network operating system.

Arista Networks products are available worldwide through distribution partners,

systems integrators and resellers.

Additional information and resources on today’s announcement can be found at:

http://www.arista.com

Solutions Products EOS Central Partner Support Company

Search EnglishLogin

APPENDIX A. WEB SOURCES 165

A.2.2 Arista 100G Transceivers and Cables: Q&A

Source: https://www.arista.com/assets/data/pdf/Arista100G_TC_QA.pdf

https://www.arista.com/assets/data/pdf/Arista100G_TC_QA.pdf

What is the difference between QSFP28 and QSFP100?
They are the same. “QSFP” form factor was originally defined for <10G speeds. When it was
adopted for 40G, the name became QSFP+ to denote the higher aggregate performance. The
same “QSFP” form factor was later adopted for 100G but the electrical interface had to be
upgrade to handle 25Gbps/lane. The electrical interface for 100G can handle up to 28Gbps,
hence the engineering and industry name is QSFP28. Arista refers to the 100G form factor as
QSFP100 to ensure it is clear that this is a 100G optic, not a 28G optic.

What are the different speeds supported by Arista 100G ports?
All Arista products with 100G ports support multiple speeds. The table below is a summary of
the range of port combinations permitted, with the correct optics:

Product Interface
Form
Factor

100G
Capable

100G
Operating
Mode

40G
Capable

25/50G
Capable

10G
Capable

7500R36CQ QSFP100 Yes 4 Lanes of
25GbE

Yes Yes Yes

7500R48S2CQ QSFP100 Yes 4 Lanes of
25GbE

Yes Yes Yes

7500E72S MXP Yes
XSR10

10 Lanes
of 10GbE

Yes XSR4 No Yes SR

7500E12CM MXP Yes
XSR10

10 Lanes
of 10GbE

Yes XSR4 No Yes SR

7500E12CQ QSFP100 Yes 4 Lanes of
25GbE

Yes No Yes

7500E6C2 CFP2 Yes 4 Lanes of
25GbE

Yes No Yes

7280TR48C6 QSFP100 Yes 4 Lanes of
25GbE

Yes Yes Yes

7280SR48C6 QSFP100 Yes 4 Lanes of
25GbE

Yes Yes Yes

7280QRC36 QSFP100 Yes 4 Lanes of
25GbE

Yes Yes Yes

7280CR48 QSFP100 Yes 4 Lanes of
25GbE

Yes Yes Yes

7280SE72 MXP Yes
XSR10

10 Lanes
of 10GbE

Yes XSR4 No Yes SR

7280SE68 QSFP100 Yes 4 Lanes of Yes No Yes

APPENDIX A. WEB SOURCES 167

A.2.3 Arista 7150 Series

03/10/2016 Arista - Arista 7150 Series

https://www.arista.com/en/products/7150-series 1/2

The Arista 7150 Series is the leading ultra low latency 1RU platform providing a unique combination of performance,
advanced features and a balanced set of resources for low latency financial markets, HPC clusters and virtualized data
centers.

Arista 7150 Series Video Datasheet

The Arista 7150S Advantages:

First SDN Switch architected for leadingedge applications including Big Data, Cloud Networks, Financial Trading,
HPC and Web 2.0 environments

Industry leading accurate and predictable performance in a range of densities (deterministic high performance,
lowest latency and jitter for all traffic)

Unprecedented balanced resources and deployment flexibility for "Any Application” suitability

First network–wide virtualization platform for next generation cloud bursting support with wire speed VXLAN
hardwarebased Tunnel Endpoint termination

First platform to support submicrosecond Network Address Translation (NAT)

First deterministic latency and highperformance 10GbE/ 40GbE switch and IEEE 1588 Platform

First integrated switch for precision data analysis and capture (DANZ) redefining instrumentation, automation and
analysis of highend infrastructure

Arista 7150 Series Model Comparison

7150 Switches

7150S24 7150S52 7150S64

Description 7150 Switch 24
Port SFP+

7150 Switch 52
Port SFP+

7150 Switch 48
Port SFP+
4 QSFP+

Total Ports 24 52 64

SFP+ Ports 24 52 48

L2/3 Throughput 480 Gbps 1.04 Tbps 1.28 Tbps

L2/3 PPS 360 Mpps 780 Mpps 960 Mpps

Latency 350ns 380ns 380ns

Typical Power
Draw 191 W 191 W 224 W

Robust anypurpose data center switch with comprehensive feature sets:

High Performance, Low Latency, 10 and 40Gb Switching with Large Resources

APPENDIX A. WEB SOURCES 169

A.2.4 Switch User Manual

Source: https://www.arista.com/docs/Manuals/ConfigGuide.pdf

https://www.arista.com/docs/Manuals/ConfigGuide.pdf

Chapter 22 Quality of Service Quality of Service Conceptual Overview

User Manual: Version 4.15.3F 20 November 2015 1057

• Section 22.4.3: CoS Rewrite – Petra Platform Switches
• Section 22.5.3: CoS and DSCP Rewrite – Trident Platform Switches
• Section 22.6.3: CoS and DSCP Rewrite – Trident-II Platform Switches

22.1.1.4 Traffic Classes

Data stream distribution is based on their traffic classes. Data stream management varies by switch
platform. Traffic classes are derived from these data stream, inbound port, and switch attributes:

• CoS field contents
• DSCP field contents
• Inbound port trust setting
• CoS default setting (Arad, FM6000, Trident, and Trident-II platform switches)
• DSCP default setting (Arad, FM6000, Trident, and Trident-II platform switches)
• Traffic class default setting (Petra platform switches)

When a port is configured to derive a data stream’s traffic class from the CoS or DSCP value associated
with the stream, the traffic class is determined from a conversion map.

• A CoS-traffic class map derives a traffic class from a CoS value.
• A DSCP-traffic class map derives a traffic class from a DSCP value.

Map entries are configurable through CLI commands. Default maps determine the traffic class value
when CLI map entry commands are not configured. Default maps vary by switch platform.

These sections describe traffic class configuration procedures:

• Section 22.2.2: Traffic Class Derivations – Arad Platform Switches
• Section 22.3.2: Traffic Class Derivations – FM6000 Platform Switches
• Section 22.4.2: Traffic Class Derivations – Petra Platform Switches
• Section 22.5.2: Traffic Class Derivations – Trident Platform Switches
• Section 22.6.2: Traffic Class Derivations – Trident-II Platform Switches

22.1.2 Transmit Queues and Port Shaping
Transmit queues are logical partitions of an Ethernet port’s egress bandwidth. Data streams are assigned
to queues based on their traffic class, then sent as scheduled by port and transmit settings. Support
varies by switch platform. A queue’s label determines its priority: Tx-queue 0 has lowest priority.

Parameters that determine transmission schedules include:

• Traffic class-transmit queue mapping: One set of traffic class-transmit queue maps is defined for all
switch ports. The map determines the schedule for transmitting data streams based on traffic class.
The set of available transmit maps vary by switch platforms:

— Arad, FM6000, and Trident-II platforms: one map for all unicast and multicast traffic.
— Trident platform: one map for unicast traffic and one map for multicast traffic.
— Petra platform: one map for unicast traffic. Queue shaping is not available for multicast traffic.

• Port shaping: Port shaping specifies a port’s maximum egress bandwidth.

• Queue shaping: Queue shaping specifies a transmit queue’s maximum egress bandwidth.

FM6000 platform switches do not support simultaneous port shaping and queue shaping. Enabling
port shaping on an FM6000 switch disables queue shaping, regardless of the previous
configuration.

• Queue priority: Queue priority specifies the transmission scheduling algorithm from the transmit
queues. The switch defines two queue priority types:

1058 20 November 2015 User Manual: Version 4.15.3F

Quality of Service Conceptual Overview Chapter 22 Quality of Service

— Strict Priority: Strict priority queues are serviced in the order of their priority rank - subject to
each queue’s configured maximum bandwidth. Data is not handled for a queue until all
queues with higher priority are emptied or their transmission limit is reached. These queues
typically carry low latency real time traffic and require highest available priority.

— Round Robin: Round robin queues are serviced simultaneously subject to assigned bandwidth
percentage and configured maximum bandwidth. All round robin queues have lower priority
than strict priority queues. Round robin queues can be starved by strict priority queues.

Round robin priority is not available on Trident-II platform switches.

• Queue bandwidth allocation: Queue bandwidth allocation specifies the time slice (percentage)
assigned to a round robin queue, relative to all other round robin queues.

These sections describe transmit queue and port shaping configuration procedures:

• Section 22.2.4: Transmit Queues and Port Shaping – Arad Platform Switches
• Section 22.3.4: Transmit Queues and Port Shaping – FM6000 Platform Switches
• Section 22.4.4: Transmit Queues and Port Shaping – Petra Platform Switches
• Section 22.5.4: Transmit Queues and Port Shaping – Trident Platform Switches
• Section 22.6.4: Transmit Queues and Port Shaping – Trident-II Platform Switches

22.1.3 Explicit Congestion Notification (ECN)
Explicit Congestion Notification (ECN) is an IP and TCP extension that facilitates end-to-end network
congestion notification without dropping packets. ECN recognizes early congestion and sets flags that
signal affected hosts. Trident platform switches extend ECN support to non-TCP packets.

ECN usage requires that it is supported and enabled by both endpoints. Although only unicast flows
are modified by ECN markers, the multicast, broadcast, and unmarked unicast flows can affect network
congestion and influence the indication of unicast packet congestion.

22.1.3.1 ECN Conceptual Overview

ECN uses DiffServ field bits 6 and 7 (IPv4 or IPv6 header) to advertise ECN capabilities:

• 00: Router does not support ECN.
• 10: Router supports ECN.
• 01: Router supports ECN.
• 11: Congestion encountered.

Networks typically signal congestion by dropping packets. After an ECN capable router negotiates
ECN, it signals impending congestion by marking the IP header of packets encountering the congestion
instead of dropping the packets. The recipient echoes the congestion indication back to the sender,
which reduces its transmission rate as if it had detected a dropped packet.

Switches support ECN for unicast queues through Weighted Random Early Detection (WRED), which
is an active queue management (AQM) algorithm that extends Random Early Detection (RED) to define
multiple thresholds for an individual queue. WRED determines congestion by comparing average
queue size with queue thresholds. Average queue size depends on the previous average and current
queue size:

average queue size = (old_avg * (1-2^(-weight))) + (current_queue_size * 2^(-weight))

where weight is the exponential weight factor used for averaging the queue size.

Packets are marked based on WRED as follows:

• If average queue size is below the minimum threshold, packets are queued as in normal operation
without ECN.

172 A.2. ARISTA

A.2.5 Arista 7060X Series

04/10/2016 Arista - Arista 7060X Series

https://www.arista.com/en/products/7060x-series 1/2

The Arista 7060X and 7260X Series are a range of 1RU and 2RU high performance 40GbE and 100GbE high density,
fixed configuration, data center switches with wire speed layer 2 and layer 3 features, and advanced features for
software driven cloud networking. The Arista 7060X and 7260X deliver a rich choice of interface speed and density
allowing networks seamlessly evolve from 10GbE and 40GbE to 25GbE and 100GbE. With support for advanced EOS
features these switches are ideal for traditional or fully virtualized data centers.

The 7060X and 7260X support a flexible combination of speeds including 10G, 25G, 40G and 100G in compact form
factors that allows customers to design networks to accommodate the myriad different applications and eastwest traffic
patterns found in modern data centers whilst providing investment protection.

 7060CX32 7260QX64 7260CX64

Switch Height 1RU 2RU 2RU

Ports 32 x QSFP100
2 x SFP+

64 x QSFP+
2 x SFP+

64 x QSFP100
2 x SFP+

Max. 10GbE
Density 130 2 258

Max. 25GbE
Density 128 256

Max. 40GbE
Density 32 64 64

Max. 50GbE
Density 64 128

Max. 100GbE
Density 32 64

Max. I/O Rate
(Tbps) 6.4Tbps 5.12Tbps 12.8Tbps

Max. Forwarding
Rate 3.3Bpps 3.3Bpps 9.52Bpps

Latency 450ns 550ns 550 to 1500ns

Packet Buffer
Memory 16MB 64MB

Airflow Direction FronttoBack or BacktoFront

High Performance 40/100GbE leafspine
High Density wirespeed 40GbE and 100GbE

174 A.3. BROADCOM

A.3 Broadcom

A.3.1 High-Density 25/100 Gigabit Ethernet StrataXGS Tomahawk Eth-
ernet Switch Series, Product Code: BCM56960 Series

30/09/2016 High-Density 25/100 Gigabit Ethernet StrataXGS® Tomahawk Ethernet Switch Series - BCM56960 Series | Broadcom

https://www.broadcom.com/products/ethernet-communication-and-switching/switching/bcm56960-series 1/2

HighDensity 25/100 Gigabit Ethernet StrataXGS®
Tomahawk Ethernet Switch Series
Product Code: BCM56960 Series

Broadcom's BCM56960 Series, also known as the StrataXGS® Tomahawk switch

series, can help build highly scalable, featurerich, topofrack (ToR), blade or

aggregation switches to enable cloudscale networking. StrataXGS Tomahawk is the

first series of switches to offer 25 Gbps SerDes in support of 25/50/100GbE. It

provides a total switching capacity of 3.2 Tbps ranging from 32 ports of 100 GbE to

128 ports of 25 GbE, with the flexibility to configure port type and speed to suit any

highperformance networking application.

The StrataXGS Tomahawk switch series includes BroadView™ instrumentation, which

provides operators the telemetry to troubleshoot largescale networks, apply controls

for optimal performance, respond to potential problems before they happen and drive

down OPEX. This includes extensive application flow and debug statistics, link health

and utilization monitors, streaming network congestion detection and packettracing

capabilities.

FEATURES

Support for up to 32 × 100 GbE, 64 × 40/50 GbE or even 128 × 25 GbE ports with an aggregate
switching bandwidth of 3.2 Tbps

Integrated lowpower 25Ghz SerDes

Authoritative support for 25G and 50G Ethernet Consortiumspecification

Configurable pipeline latency enabling sub400 ns porttoport operation

Supports highperformance storage/RDMA protocols including RoCE and RoCEv2

BroadView instrumentation provides switch and networklevel telemetry

Highdensity FleXGS™ flow processing for configurable forwarding/match/action capabilities

OpenFlow 1.3+ support using Broadcom OFDPA™

Comprehensive overlay and tunneling support including VXLAN, NVGRE, MPLS, SPB

Flexible policy enforcement for existing and new virtualization protocols

Enhanced SmartHash™ loadbalancing modes for leafspine congestion avoidance

Integrated SmartBuffer™ technology with 5x greater performance vs. static buffering

Singlechip and multichip HiGig™ solutions for topofrack and scalable chassis applications

176 A.3. BROADCOM

A.3.2 High-Capacity StrataXGS Trident II Ethernet Switch Series

03/10/2016 High-Capacity StrataXGS® Trident II Ethernet Switch Series - BCM56850 Series | Broadcom

https://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series 1/1

HighCapacity StrataXGS® Trident II Ethernet Switch
Series
Product Code: BCM56850 Series

With support for up to 100+ 10Gigabit Ethernet (GbE) ports and full flexibility in

configuring 10GbE/40GbE ports, the StrataXGS® Trident II switch series can be used

to build highly scalable, featurerich, blade switch, topofrack (ToR) switches and

aggregation equipment to enable cloudscale networking.

As server interfaces transition to higher Ethernet speeds and as virtualization

continues to increase link utilization, data center networks are demanding switches

with dense 10GbE and 40GbE connectivity at the access and aggregation layers. In

addition, fabrics of BCM56750 with BCM56850 devices can be interconnected via the

HiGig2™ protocol to support multiterabit chassis designs for largescale data center,

enterprise and service provider applications. The StrataXGS Trident II switch with

integrated SmartSwitch™ has been designed to address performance, capacity and

service requirements for nextgeneration data centers, cloud computing applications,

enterprise campus backbone equipment and highdensity fabrics for access and

mobile core networks.

FEATURES

Singlechip solution for common fixed topofrack (ToR), aggregation and linecard switching
applications

Single design meets the needs of multiple markets including enterprise and cloud data centers as well
as carrieraccess applications

First switch to support VMWare® VXLAN and Microsoft® NVGRE tunneling protocols supported by
SmartNV™ technology

Enables spanningtreefree and CLOSstyle network topologies through TRILL, SPB and ECMP with
SmartHash™ technology

SmartTable and SmartBuffer technologies enable largescale data centers with 10,000+ end user
nodes

Up to 128x 10G integrated SerDes with Energy Efficient Ethernet for maximum port density per RU

Standardscompliant 10GbE/40GbE switch with support for up to 32 ports of 40GbE or up to 100+ ports
1GbE/10GbE

178 A.3. BROADCOM

A.3.3 BCM56850 StrataXGS Trident II Switching Technology

Source: https://www.broadcom.com/collateral/pb/56850-PB03-R.pdf

https://www.broadcom.com/collateral/pb/56850-PB03-R.pdf

About Broadcom
Broadcom Corporation (NASDAQ: BRCM),
a FORTUNE 500® company, is a global
leader and innovator in semiconductor
solutions for wired and wireless
communications. Broadcom® products
seamlessly deliver voice, video, data, and
multimedia connectivity in the home,

office, and mobile environments. With the
industry's broadest portfolio of state-of-
the-art system-on-a-chip and embedded
software solutions, Broadcom is changing
the world by Connecting everything®. For
more information, go to
www.broadcom.com.

Broadcom, the pulse logo, Connecting everything, and the Connecting everything logo, BroadSync™, ContentAware™, HiGig™, HiGig2™, StrataXGS®, and Warpcore™ are among the trademarks
of Broadcom Corporation and/or its affiliates in the United States, certain other countries and/or the EU. Any other trademarks or trade names mentioned are the property of their respective
owners.
July 3, 2013 • 56850-PB03-R

Deployment Scenarios

• Power-efficient, fully integrated
switching architecture.

• Low pin-to-pin latency in
Cut-Through and Store-and-Forward
Modes.

• Full IPv4 and IPv6 unicast and
multicast routing support.

• Smart-NV technology featuring
support for VMware VxLAN,
Microsoft NVGRE overlays, 802.1Qbg
Edge Virtual Bridging, 802.1BR
Bridge Port extension, and
per-virtual machine traffic shaping.

• SmartTable technology to
maximize L2 and L3 forwarding

database capacities for maximum
deployment flexibility.

• Advanced SmartHash engine for
optimal and resilient load
distribution across HiGig™, LAG, and
ECMP trunk groups.

• Integrated SmartBuffer supporting
lossless performance guarantees and
high-burst absorption using innova-
tive traffic load awareness and
dynamic allocation schemes.

• ContentAware™ Engine for scalable,
high-density ingress and egress
packet classification.

• Data Center Bridging support: PFC,
QCN, ETS.

• Dedicated FCoE forwarding engine
enabling FC-BB-5 and FC-BB-6
deployment models.

• Tagged and tagless virtual machine
switching support for leading server
and server virtualization switching
vendors.

• Hardware-based tunneling services
including MPLS, VPLS, ISATAP,
MAC-in-MAC, TRILL, SPB, and Q-in-Q.

• Energy Efficient Ethernet support
including customizable, low-power
idle (LPI) control policies.

• Per-port configurable
oversubscription to reduce peak
power.

• Integrated 1588v2 processor for
Precision Time Protocol and IEEE
802.1AS for Timing and
Synchronization.

Features (Cont.)

Ordering Information I/O BW Part Number
104 x 10GbE/32 x 40GbE 1280G BCM56850A0KFSBG
104 x 10GbE/32 x 40GbE 1280G BCM56851A0IFSBG
96x 10GbE/24 x 40GbE 960G BCM56852A0KFSBG
72 x 10GbE/18 x 40GbE 720G BCM56854A0IFSBG

180 A.4. CISCO

A.4 Cisco

A.4.1 Diffserv – The Scalable End-to-End Quality of Service Model

© 2006 Cisco Systems, Inc. All rights reserved.

Important notices, privacy statements, and trademarks of Cisco Systems, Inc. can be found on cisco.com.
Page 5 of 19

• The 3 bits restrict the number of possible priority classes to eight. Further, the network control and Internetwork control classes are usually
reserved for router-generated packets such as routing updates, ICMP messages, etc. This is done to protect the packets that are necessary for
the health of the network. However, this cuts down the usable classes for production traffic to six.

• IP-precedence and DTS bits (bits 3,4,5—the original type of service subfield) are not implemented consistently by network vendors today.
In addition, RFC-1349 redefines the type of service subfield, by utilizing bits 3,4,5, and 6, and eliminating the DTS concept.

All of the above reduce the chances of successfully implementing end-to-end QoS using this scheme.

THE SOLUTION

The Differentiated Services Architecture

The IETF completed the Request for Comments (RFCs) for DiffServ toward the end of 1998. As stated in the DiffServ working group objectives

[Ref-C], “There is a clear need for relatively simple and coarse methods of providing differentiated classes of service for Internet traffic, to support

various types of applications, and specific business requirements. The differentiated service approach to providing quality of service in networks

employs a small, well-defined set of building blocks from which a variety of aggregate behaviors may be built. A small bit-pattern in each packet,

in the IPv4 ToS octet or the IPv6 traffic class octet, is used to mark a packet to receive a particular forwarding treatment, or per-hop behavior, at

each network node. A common understanding about the use and interpretation of this bit-pattern is required for inter-domain use, multi-vendor

interoperability, and consistent reasoning about expected aggregate behaviors in a network. Thus, the working group has standardized a common

layout for a six-bit field of both octets, called the DS field. RFC 2474 and RFC 2475 define the architecture, and the general use of bits within the

DS field (superseding the IPv4 ToS octet definitions of RFC 1349).”

In order to deliver end-to-end QoS, this architecture (RFC-2475) has two major components—packet marking using the IPv4 ToS byte and PHBs.

Packet Marking

Unlike the IP-precedence solution, the ToS byte is completely redefined [Figure3]. Six bits are now used to classify packets. The field is now

called the Differentiated Services (DS) field, with two of the bits unused (RFC-2474). The six bits replace the three IP-precedence bits, and is

called the Differentiated Services Codepoint (DSCP). With DSCP, in any given node, up to 64 different aggregates/classes can be supported (2^6).

All classification and QoS revolves around the DSCP in the DiffServ model.

Per Hop Behaviors

Now that packets can be marked using the DSCP, how do we provide meaningful CoS, and provide the QoS that is needed? First, the collection

of packets that have the same DSCP value (also called a codepoint) in them, and crossing in a particular direction is called a Behavior Aggregate

(BA). Packets from multiple applications/sources could belong to the same BA. Formally, RFC-2475 defines a PHB as the externally observable

forwarding behavior applied at a DS-compliant node to a DS BA. In more concrete terms, a PHB refers to the packet scheduling, queuing, policing,

or shaping behavior of a node on any given packet belonging to a BA, and as configured by a Service Level Agreement (SLA) or policy. To date,

four standard PHBs are available to construct a DiffServ-enabled network and achieve coarse-grained, end-to-end CoS and QoS:

The Default PHB (Defined in RFC-2474)

The default PHB specifies that a packet marked with a DSCP value (recommended) of ‘000000’ gets the traditional best effort service from a

DS-compliant node (a network node that complies to all the core DiffServ requirements). Also, if a packet arrives at a DS-compliant node and

its DSCP value is not mapped to any of the other PHBs, it will get mapped to the default PHB.

182 A.4. CISCO

A.4.2 Cisco Nexus 5000 Series Architecture: The Building Blocks of the
Unified Fabric

03/10/2016 Cisco Nexus 5000 Series Architecture: The Building Blocks of the Unified Fabric - Cisco

http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5020-switch/white_paper_c11-462176.html 1/1

10 Gigabit Ethernet and Unified Fabric Features

The Cisco Nexus 5000 Series is first and foremost a family of outstanding access switches for 10 Gigabit
Ethernet connectivity. Most of the features on the switches are designed for high performance with 10 Gigabit
Ethernet. The Cisco Nexus 5000 Series also supports FCoE on each 10 Gigabit Ethernet port that can be used to
implement a unified data center fabric, consolidating LAN, SAN, and server clustering traffic.
Nonblocking LineRate Performance

All the 10 Gigabit Ethernet ports on the Cisco Nexus 5000 Series Switches can handle packet flows at wire
speed. The absence of resource sharing helps ensure the best performance of each port regardless of the traffic
patterns on other ports. The Cisco Nexus 5020 can have 52 Ethernet ports at 10 Gbps sending packets
simultaneously without any effect on performance, offering true 1.04Tbps bidirectional bandwidth.

SingleStage Fabric

The crossbar fabric on the Cisco Nexus 5000 Series Switches is implemented as a singlestage fabric, thus
eliminating any bottleneck within the switch. Singlestage fabric means that a single crossbar fabric scheduler
has full visibility of the entire system and can therefore make optimal scheduling decisions without building
congestion within the switch. With a singlestage fabric, the bandwidth you see is the bandwidth you get, and
congestion becomes exclusively a function of your network design; the switch does not contribute to it.
Low Latency

The cutthrough switching technology used in the Cisco Nexus 5000 Series ASICs enables the product to offer a
low latency of 3.2 microseconds, which remains constant regardless of the size of the packet being switched.
This latency was measured on fully configured interfaces, with access control lists (ACLs), quality of service
(QoS), and all other data path features turned on. The low latency on the Cisco Nexus 5000 Series enables
applicationtoapplication latency on the order of 10 microseconds (depending on the network interface card
[NIC]). These numbers, together with the congestion management features described next, make the Cisco
Nexus 5000 Series a great choice for latencysensitive environments.
Congestion Management

Keeping latency low is not the only critical element for a highperformance network solution. Servers tend to
generate traffic in bursts, and when too many bursts occur at the same time, a short period of congestion occurs.
Depending on how the burst of congestion is smoothed out, the overall network performance can be affected.
The Cisco Nexus 5000 Series offers a full portfolio of congestion management features to minimize congestion.
These features, described next, address congestion at different stages and offer maximum granularity of control
over the performance of the network.

Virtual Output Queues

The Cisco Nexus 5000 Series implements virtual output queues (VOQs) on all ingress interfaces, so that a
congested egress port does not affect traffic directed to other egress ports. But virtual output queuing does not
stop there: every IEEE 802.1p class of service (CoS) uses a separate VOQ in the Cisco Nexus 5000 Series
architecture, resulting in a total of 8 VOQs per egress on each ingress interface, or a total of 416 VOQs on each
ingress interface. The extensive use of VOQs in the system helps ensure maximum throughput on a peregress,
perCoS basis. Congestion on one egress port in one CoS does not affect traffic destined for other CoSs or other
egress interfaces, thus avoiding headofline (HOL) blocking, which would otherwise cause congestion to spread.
Lossless Ethernet (Priority Flow Control)

By default, Ethernet is designed to drop packets when a switching node cannot sustain the pace of the incoming
traffic. Packet drops make Ethernet very flexible in managing random traffic patterns injected into the network,
but they effectively make Ethernet unreliable and push the burden of flow control and congestion management up
at a higher level in the network stack.

IEEE 802.1Qbb Priority Flow Control (PFC) offers pointtopoint flow control of Ethernet traffic based on IEEE
802.1p CoS. With a flow control mechanism in place, congestion does not result in drops, transforming Ethernet
into a reliable medium. The CoS granularity then allows some CoSs to gain a nodrop, reliable, behavior while
allowing other classes to retain traditional besteffort Ethernet behavior. A networking device implementing PFC
makes an implicit agreement with the other end of the wire: any accepted packet will be delivered to the next hop
and never be locally dropped. To keep this promise, the device must signal the peer when no more packets can
reliably be accepted, and that, essentially, is the flow control function performed by PFC. The benefits are
significant for any protocol that assumes reliability at the media level, such as FCoE.

184 A.4. CISCO

A.4.3 Cisco Nexus 5548P Switch Architecture

03/10/2016 Cisco Nexus 5548P Switch Architecture - Cisco

http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html 1/2

Cisco Nexus 5500 Platform Features
The Cisco Nexus 5500 Series is the second generation of a family of outstanding access switches for 10 Gigabit
Ethernet connectivity. The Cisco Nexus 5500 platform provides a rich feature set that makes it well suited for top
ofrack (ToR), middleofrow (MoR), or endofrow (EoR) accesslayer applications. It protects investments in data
center racks with standardsbased 1 and 10 Gigabit Ethernet and FCoE features, and virtual machine awareness
features that allow IT departments to consolidate networks based on their own requirements and timing. The
combination of high port density, lossless Ethernet, wirespeed performance, and extremely low latency makes
the switch family well suited to meet the growing demand for 10 Gigabit Ethernet that can support unified fabric in
enterprise and service provider data centers, protecting enterprises' investments. The switch family has sufficient
port density to support single and multiple racks fully populated with blade and rackmount servers.

• High density and high availability: The Cisco Nexus 5548P provides 48 1/10Gbps ports in 1RU, and the
upcoming Cisco Nexus 5596 Switch provides a density of 96 1/10Gbps ports in 2RUs. The Cisco Nexus
5500 Series is designed with redundant and hotswappable power and fan modules that can be accessed
from the front panel, where status lights offer an ataglance view of switch operation. To support efficient
data center hot and coldaisle designs, fronttoback cooling is used for consistency with server designs.

• Nonblocking linerate performance: All the 10 Gigabit Ethernet ports on the Cisco Nexus 5500 platform can
handle packet flows at wire speed. The absence of resource sharing helps ensure the best performance of
each port regardless of the traffic patterns on other ports. The Cisco Nexus 5548P can have 48 Ethernet
ports at 10 Gbps sending packets simultaneously without any effect on performance, offering true 960Gbps
bidirectional bandwidth. The upcoming Cisco Nexus 5596 can have 96 Ethernet ports at 10 Gbps, offering
true 1.92terabits per second (Tbps) bidirectional bandwidth.

• Low latency: The cutthrough switching technology used in the applicationspecific integrated circuits (ASICs)
of the Cisco Nexus 5500 Series enables the product to offer a low latency of 2 microseconds, which remains
constant regardless of the size of the packet being switched. This latency was measured on fully configured
interfaces, with access control lists (ACLs), quality of service (QoS), and all other data path features turned
on. The low latency on the Cisco Nexus 5500 Series together with a dedicated buffer per port and the
congestion management features described next make the Cisco Nexus 5500 platform an excellent choice
for latencysensitive environments.

• Singlestage fabric: The crossbar fabric on the Cisco Nexus 5500 Series is implemented as a singlestage
fabric, thus eliminating any bottleneck within the switches. Singlestage fabric means that a single crossbar
fabric scheduler has full visibility into the entire system and can therefore make optimal scheduling decisions
without building congestion within the switch. With a singlestage fabric, the congestion becomes exclusively
a function of your network design; the switch does not contribute to it.

• Congestion management: Keeping latency low is not the only critical element for a highperformance network
solution. Servers tend to generate traffic in bursts, and when too many bursts occur at the same time, a short
period of congestion occurs. Depending on how the burst of congestion is smoothed out, the overall network
performance can be affected. The Cisco Nexus 5500 platform offers a full portfolio of congestion
management features to reduce congestion. These features, described next, address congestion at different
stages and offer granular control over the performance of the network.

• Virtual output queues: The Cisco Nexus 5500 platform implements virtual output queues (VOQs) on all ingress
interfaces, so that a congested egress port does not affect traffic directed to other egress ports. Every IEEE
802.1p class of service (CoS) uses a separate VOQ in the Cisco Nexus 5500 platform architecture, resulting
in a total of 8 VOQs per egress on each ingress interface, or a total of 384 VOQs per ingress interface on the
Cisco Nexus 5548P, and a total of 768 VOQs per ingress interface on the Cisco Nexus 5596. The extensive
use of VOQs in the system helps ensure high throughput on a peregress, perCoS basis. Congestion on one
egress port in one CoS does not affect traffic destined for other CoSs or other egress interfaces, thus
avoiding headofline (HOL) blocking, which would otherwise cause congestion to spread.

• Separate egress queues for unicast and multicast: Traditionally, switches support 8 egress queues per output
port, each servicing one IEEE 802.1p CoS. The Cisco Nexus 5500 platform increases the number of egress
queues by supporting 8 egress queues for unicast and 8 egress queues for multicast. This support allows
separation of unicast and multicast that are contending for system resources within the same CoS and
provides more fairness between unicast and multicast. Through configuration, the user can control the
amount of egress port bandwidth for each of the 16 egress queues.

• Lossless Ethernet with priority flow control (PFC): By default, Ethernet is designed to drop packets when a
switching node cannot sustain the pace of the incoming traffic. Packet drops make Ethernet very flexible in
managing random traffic patterns injected into the network, but they effectively make Ethernet unreliable and
push the burden of flow control and congestion management up to a higher level in the network stack.

186 A.4. CISCO

A.4.4 Cisco Nexus 5548P Switch Architecture

03/10/2016 Cisco Nexus 5548P Switch Architecture - Cisco

http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html 1/4

Cisco Nexus 5548P Architecture
The Cisco Nexus 5548P control plane runs Cisco NXOS Software on a dualcore 1.7GHz Intel Xeon Processor
C5500/C3500 Series with 8 GB of DRAM. The supervisor complex is connected to the data plane inband
through two internal ports running 1Gbps Ethernet, and the system is managed inband, or through the outof
band 10/100/1000Mbps management port. Table 1 summarizes the controlplane specifications.

Table 1. Cisco Nexus 5548P Control Plane Components

Component Specification

CPU 1.7 GHz Intel Xeon Processor C5500/C3500 Series
(dual core)

DRAM 8 GB of DDR3 in two DIMM slots

Program storage 2 GB of eUSB flash memory for base system storage

Boot and BIOS flash
memory

8 MB to store upgradable and golden image

Onboard fault log 64 MB of flash memory to store hardwarerelated fault and reset
reasons

NVRAM 6 MB of SRAM to store syslog and licensing information

Management interface RS232 console port and 10/100/1000BASET mgmt0

The Cisco Nexus 5500 platform data plane is primarily implemented with two custombuilt ASICs developed by
Cisco: a set of unified port controllers (UPCs) that provides dataplane processing, and a unified crossbar fabric
(UCF) that crossconnects the UPCs.

The UPC manages eight ports of 1 and 10 Gigabit Ethernet or eight ports of 1/2/4/8Gbps Fibre Channel. It is
responsible for all packet processing and forwarding on ingress and egress ports. Each port in the UPC has a
dedicated data path. Each data path connects to UCF through a dedicated fabric interface at 12 Gbps. This 20
percent overspeed rate helps ensure linerate throughput regardless of the internal packet headers imposed by
the ASICs. Packets are always switched between ports of UPCs by the UCF.The UCF is a singlestage high
performance 100by100 crossbar with an integrated scheduler. The scheduler coordinates the use of the
crossbar between inputs and outputs, allowing a contentionfree match between I/O pairs. The scheduling
algorithm is based on an enhanced iSLIP algorithm. The algorithm helps ensure high throughput, low latency,
and weighted fairness across inputs, and starvation and deadlockfree bestmatch policies across variablesized
packets.

The Cisco Nexus 5548P is equipped with seven UPCs: six to provide 48 ports at 10 Gbps, and one used for
connectivity to the control plane. Figure 6 shows the connectivity between the control plane and the data plane.

Figure 6. Cisco Nexus 5548P Data Plane and Control Plane Architecture

03/10/2016 Cisco Nexus 5548P Switch Architecture - Cisco

http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html 2/4

Unified Port Controller Details
The UPC has three major elements: media access control (MAC), forwarding control, and the buffering and
queuing subsystem.

The multimode MAC is responsible for the network interface packet protocol and flowcontrol functions. It
consists of encodingdecoding and synchronization functions for the physical medium, frame cyclic redundancy
check (CRC), and length check. The flowcontrol functions are IEEE 802.3x Pause, IEEE 802.1Qbb PFC, and
Fibre Channel buffertobuffer credit. The multimode MAC supports 1 and 10 Gigabit Ethernet and 1/2/4/8Gbps
Fibre Channel.

The forwarding controller is responsible for the parsing and rewrite function (FW), lookup (LU), and access
control list (ACL). Depending on the port mode, the parsing and editing element parses packets to extract fields
that pertain to forwarding and policy decisions; it buffers the packet while waiting for forwarding and policy results
and then inserts, removes, and rewrites headers based on a combination of static and perpacket configuration
results from the forwarding and policy decision. The lookup and ACL receive the extracted packet fields,
synthesize the lookup keys, and search a series of data structures that implement Fibre Channel, Ethernet,
FCoE, Cisco FabricPath, TRILL forwarding modes, QoS, and security policies.

The buffering and queuing components consists of bulk memory (BM) and the queue subsystem (QS). The bulk
memory is responsible for data buffering, congestion management, flow control, policing, ECN marking, and
Deficit Weighted RoundRobin (DWRR) link scheduling. Packets are sent from bulk memory to the crossbar
fabric through the fabric interface (FI). The queue subsystem is responsible for managing all queues in the
system. At ingress, it manages the VOQ and multicast queues. At egress, it manages the egress queues. Figure
7 shows the UPC block. Each dedicated data path element has its own components except the lookup and ACL,
which are shared among data path elements within the UPC.

Figure 7. Unified Port Controller

03/10/2016 Cisco Nexus 5548P Switch Architecture - Cisco

http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html 3/4

On ingress, a packet received through the MAC (Figure 8) goes through the parsing and editing element that is
responsible for parsing and editing fields out of the incoming packets. The parsed fields are then fed to the
lookup engine in the UPC for a forwarding decision. After the forwarding decision is received, the frame is edited
based on the forwarding decision result and sent to bulk memory. The parsing and editing logic understands
Ethernet, IPv4 and IPv6, IP Layer 4 transports (TCP and User Datagram Protocol [UDP]), Fibre Channel, FCoE,
Cisco FabricPath, and TRILL. The parsing and editing block feeds inputs to the forwarding engine as soon as the
relevant frame header fields have been extracted, enabling true cutthrough switching.

When a frame is present in bulk memory, the frame is queued in a unicast VOQ or multicast queue, and a
request is sent to scheduler to gain access the crossbar fabric. For unicast, each VOQ represents a specific CoS
for a specific egress interface, giving high flexibility to the unicast scheduler in selecting the best egress port to
serve an ingress at each scheduling cycle and completely eliminating headofline blocking. For multicast, there
are 128 queues on every ingress port; each multicast queue can be used by one or more multicast fanout. When
a grant is received from the scheduler, the packet is sent through the fabric interface to the crossbar fabric.

On egress, a packet received from the crossbar fabric is sent to bulk memory through the fabric interface. The
packet is queued in one of the 16 egress queues, allowing complete separation between unicast and multicast
traffic even within the same CoS. The packet then goes through the same forwarding and lookup logic before it is
transmitted out of the port.

Figure 8. Unified Port Controller Data Path

03/10/2016 Cisco Nexus 5548P Switch Architecture - Cisco

http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html 4/4

Unified Crossbar Fabric Details
The UCF is a singlestage, highperformance 100by100 nonblocking crossbar with an integrated scheduler
(Figure 9). The singlestage fabric allows a single crossbar fabric scheduler to have full visibility into the entire
system and therefore make optimal scheduling decisions without building congestion within the switch.

The crossbar provides the interconnectivity between input ports and output ports. Each row in the crossbar is
associated with an input port, and each group of four columns is associated with an egress port; thus, there are
four crosspoints per egress port. In addition, there are four fabric buffers with 10,240 bytes of memory buffer per
egress port. The four fabric buffers and four crosspoints per egress interface allow four different ingress ports to
simultaneously send packets to an egress port, allowing up to a 300 percent speedup rate for unicast or
multicast traffic. The four fabric buffers are shared between unicast and multicast traffic, with one reserved fabric
buffer for unicast, one reserved fabric buffer for multicast, and two fabric buffers shared.

Figure 9. Unified Crossbar Fabric

The scheduler coordinates the use of the crossbar between input and output ports. The original iSLIP algorithm,
which is based on iterative roundrobin scheduling, has been enhanced to accommodate cutthrough switching of
different packet sizes. There is a separate scheduler for unicast and a separate scheduler for multicast. The
scheduler uses a credit system when allocating bandwidth to each egress port. The credit system monitors fabric
buffer and egress buffer use per egress port before a grant is sent to an ingress port to give access to the fabric.
This approach helps ensure that the crossbar fabric is lossless, and it enables flow control to ingress ports when
congestion occurs.

APPENDIX A. WEB SOURCES 191

A.4.5 Cisco Nexus 3548 Switch

03/10/2016 Cisco Nexus 3548 Switch - Cisco

http://www.cisco.com/c/en/us/products/switches/nexus-3548-switch/index.html 1/2

Exceptional Performance with Flexible Deployments

Get wirerate, layer 2 and layer 3 switching with a comprehensive feature set, including Cisco Algo
Boost technology, with the lowest latency in the industry. The Cisco Nexus 3548/3548X Switch, part of
the Unified Fabric Family, is well suited for mainstream topofrack, (ToR) data center deployments. It comes in a
compact, 1rackunit (1RU) form factor.

Features and Capabilities

Algo Boost technology allows the Cisco Nexus 3548/3548X to achieve exceptionally low latencies of 250 nanoseconds (ns) or less
for all workloads. That includes unicast and multicast, and layer 2 and 3 switching, regardless of the features applied.

Benefits include:

Warp mode to further reduce latency to 190 ns for smalltomidsize layer 2 and 3 deployments

Warp SPAN to help enable stock market data delivery to trading servers in as little as 50 ns

Active Buffer Monitoring to help you take advantage of market volatility and handle micro bursts

Technology that supports Network Address Translation (NAT) for trade execution on any venue, without a latency penalty

Embedded Remote SPAN with nanosecond timestamps to help you monitor your traffic with superior precision

Multicast NAT and latency monitoring leading to simplified colocation integration and enhanced traffic visibility and
troubleshooting (only 3548X model).

Next generation 3548X offers lower power consumption further lowering operational cost

Comprehensive Feature Set with Cisco Nexus Operating System (NXOS)

The Cisco Nexus 3548/3548X is powered by the datacenterclass, Cisco NXOS. Features include:

Fullfeatured unicast protocols, including Border Gateway Protocol (BGP), Open Shortest Path First (OSPF), Enhanced
Interior Gateway Routing Protocol (EIGRP), and Routing Information Protocol (RIP)

Multicast protocols, including Protocol Independent MulticastSparse Mode (PIMSM), PIMSourceSpecific Multicast (PIM
SSM), and Multicast Source Discovery Protocol (MSDP)

Full support for access control lists (including port, VLAN, and routed) and quality of service (queueing and marking)

Full support for troubleshooting tools such as Switched Port Analyzer (SPAN) and Ethanalyzer

Switch management by Cisco Prime Data Center Network Manager (DCNM)

Specifications at a Glance

48 fixed 1/10 Gbps small form factor pluggable plus (SFP+) ports

Linerate layer 2 and layer 3 throughput of up to 480 Gbps

Compact 1RU form factor

Dual, redundant, colorcoded power supplies

Four redundant colorcoded fans

Video Data Sheet
Learn more about the Cisco Nexus 3548X Switch.

Read Data Sheet

Low Latency, More Visibility
Learn the benefits of Cisco Algo Boost technology. (4:59 min)

Watch Video

Pushing the Performance Envelope

APPENDIX A. WEB SOURCES 193

A.4.6 Cisco Nexus 3000 Configuration Guide

04/10/2016 Cisco Nexus 3000 Series NX-OS QoS Configuration Guide, Release 5.0(3)U5(1d) - Configuring Traffic Shaping [Cisco Nexus 3000 Series Switches] - C…

http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/qos/503_u5_1/b_3k_QoS_Config_Guide_503U51/b_3k_QoS_Config_Guide_503U51_… 1/1

Information About Traffic Shaping
Traffic shaping allows you to control the traffic going out an interface in order to match its flow to the speed of the
remote target interface and to ensure that the traffic conforms to policies contracted for it. Thus, traffic adhering to
a particular profile can be shaped to meet downstream requirements, thereby eliminating bottlenecks in
topologies with datarate mismatches.

Traffic shaping regulates and smooths out the packet flow by imposing a maximum traffic rate for each port's
egress queue. Packets that exceed the threshold are placed in the queue and are transmitted later. This is similar
to traffic policing; however, the packets are not dropped. Because packets are buffered, traffic shaping minimizes
packet loss (based on the queue length), thereby providing a better traffic behavior for TCP traffic.

Using traffic shaping, you can control access to available bandwidth, ensure that traffic conforms to the policies
established for it, and regulate the flow of traffic in order to avoid congestion that can occur when the sent traffic
exceeds the access speed of its remote, target interface. For example, you can control access to bandwidth
when policy dictates that the rate of a given interface should not, on average, exceed a certain rate even though
the access rate exceeds the speed.

The traffic shaping rate can be configured in Kilobits per second (Kbps) or packets per second (PPS) and is
applied to unicast queues. Queue length thresholds are configured using WRED configuration.

Traffic shaping can be configured at the system level or the interface level. System level queuing policies can be
overridden by interface queuing policies.

APPENDIX A. WEB SOURCES 195

A.4.7 Cisco IOS Quality of Service Solutions Configuration Guide, Re-
lease 12.2

10/10/2016 Cisco IOS Quality of Service Solutions Configuration Guide, Release 12.2 - Policing and Shaping Overview [Cisco IOS Software Releases 12.2 Mainlin…

http://www.cisco.com/c/en/us/td/docs/ios/12_2/qos/configuration/guide/fqos_c/qcfpolsh.html 1/3

Traffic Policing
Traffic policing allows you to control the maximum rate of traffic sent or received on an interface, and to partition a
network into multiple priority levels or class of service (CoS).

The Traffic Policing feature manages the maximum rate of traffic through a token bucket algorithm. The token
bucket algorithm can use the userconfigured values to determine the maximum rate of traffic allowed on an
interface at a given moment in time. The token bucket algorithm is affected by all traffic entering or leaving
(depending on where the traffic policy with Traffic Policing configured) and is useful in managing network
bandwidth in cases where several large packets are sent in the same traffic stream.

The token bucket algorithm provides users with three actions for each packet: a conform action, an exceed
action, and an optional violate action. Traffic entering the interface with Traffic Policing configured is placed in to
one of these categories. Within these three categories, users can decide packet treatments. For instance,
packets that conform can be configured to be transmitted, packets that exceed can be configured to be sent with
a decreased priority, and packets that violate can be configured to be dropped.

Traffic Policing is often configured on interfaces at the edge of a network to limit the rate of traffic entering or
leaving the network. In the most common Traffic Policing configurations, traffic that conforms is transmitted and
traffic that exceeds is sent with a decreased priority or is dropped. Users can change these configuration options
to suit their network needs.

The Traffic Policing feature supports the following MIBs:

• CISCOCLASSBASEDQOSMIB

• CISCOCLASSBASEDQOSCAPABILITYMIB

This feature also supports RFC 2697, A Single Rate Three Color Marker.

For information on how to configure the Traffic Policing feature, see the chapter"Configuring Traffic Policing" in
this book.

Benefits
Bandwidth Management Through Rate Limiting
Traffic policing allows you to control the maximum rate of traffic sent or received on an interface. Traffic policing is
often configured on interfaces at the edge of a network to limit traffic into or out of the network. Traffic that falls
within the rate parameters is sent, whereas traffic that exceeds the parameters is dropped or sent with a different
priority.

Packet Marking Through IP Precedence, QoS
Group, and DSCP Value Setting
Packet marking allows you to partition your network into multiple priority levels or classes of service (CoS), as
follows:

• Use traffic policing to set the IP precedence or differentiated services code point (DSCP) values for packets
entering the network. Networking devices within your network can then use the adjusted IP Precedence values
to determine how the traffic should be treated. For example, the DWRED feature uses the IP Precedence
values to determine the probability that a packet will be dropped.

• Use traffic policing to assign packets to a QoS group. The router uses the QoS group to determine how to
prioritize packets.

Restrictions
The following restrictions apply to the Traffic Policing feature:

10/10/2016 Cisco IOS Quality of Service Solutions Configuration Guide, Release 12.2 - Policing and Shaping Overview [Cisco IOS Software Releases 12.2 Mainlin…

http://www.cisco.com/c/en/us/td/docs/ios/12_2/qos/configuration/guide/fqos_c/qcfpolsh.html 2/3

• On a Cisco 7500 series router, traffic policing can monitor CEF switching paths only. In order to use the Traffic
Policing feature, CEF must be configured on both the interface receiving the packet and the interface sending
the packet.

• On a Cisco 7500 series router, traffic policing cannot be applied to packets that originated from or are destined
to a router.

• Traffic policing can be configured on an interface or a subinterface.

• Traffic policing is not supported on the following interfaces:

– Fast EtherChannel

– Tunnel

– PRI

– Any interface on a Cisco 7500 series router that does not support CEF

Prerequisites
On a Cisco 7500 series router, CEF must be configured on the interface before traffic policing can be used.

For additional information on CEF, refer to the Cisco IOS Switching Services Configuration Guide.

Traffic Shaping
Cisco IOS QoS software has three types of traffic shaping: GTS, classbased, and FRTS. All three of these traffic
shaping methods are similar in implementation, though their CLIs differ somewhat and they use different types of
queues to contain and shape traffic that is deferred. In particular, the underlying code that determines whether
enough credit is in the token bucket for a packet to be sent or whether that packet must be delayed is common to
both features. If a packet is deferred, GTS and ClassBased Shaping use a weighted fair queue to hold the
delayed traffic. FRTS uses either a custom queue or a priority queue for the same, depending on what you have
configured.

This section explains how traffic shaping works, then it describes the Cisco IOS QoS traffic shaping mechanisms.
It includes the following sections:

• About Traffic Shaping

• Generic Traffic Shaping

• ClassBased Shaping

• Distributed Traffic Shaping

• Frame Relay Traffic Shaping

For description of a token bucket and explanation of how it works, see the section "What Is a Token
Bucket?" earlier in this chapter.

About Traffic Shaping
Traffic shaping allows you to control the traffic going out an interface in order to match its flow to the speed of the
remote target interface and to ensure that the traffic conforms to policies contracted for it. Thus, traffic adhering to
a particular profile can be shaped to meet downstream requirements, thereby eliminating bottlenecks in
topologies with datarate mismatches.

Why Use Traffic Shaping?
The primary reasons you would use traffic shaping are to control access to available bandwidth, to ensure that
traffic conforms to the policies established for it, and to regulate the flow of traffic in order to avoid congestion that
can occur when the sent traffic exceeds the access speed of its remote, target interface. Here are some example
reasons why you would use traffic shaping:

198 A.5. CNET

A.5 CNet

A.5.1 Google uncloaks once-secret server

29/09/2016 Google uncloaks once-secret server - CNET

https://www.cnet.com/news/google-uncloaks-once-secret-server-10209580/ 1/9

Connect with us

Search Reviews News Video Smart Home Cars Deals US

Google uncloaks once-secret server
Unusually, the search giant designs its own servers. For the first time, Google unveils one

publicly, showing a surprise built-in battery.

CNET › Tech Industry › Google uncloaks once-secret server

December 11, 2009
11:37 AM PST

Tech Industry

by Stephen

Shankland

 @stshank

Google for the first time showed
off its server design. (Click to

enlarge)
Stephen Shankland/CNET

Updated at 4:08 p.m.
PDT April 1 with further
details about Google's
data center efficiency
and shipping
containers modules
and 6:30 a.m. April 2
to correct the time
frame of efficiency
statistics.

MOUNTAIN VIEW,
Calif.--Google is tight-lipped about its computing operations, but the company for
the first time on Wednesday revealed the hardware at the core of its Internet might
at a conference here about the increasingly prominent issue of data center
efficiency.

Most companies buy servers from the likes of Dell, Hewlett-Packard, IBM, or Sun
Microsystems. But Google, which has hundreds of thousands of servers and
considers running them part of its core expertise, designs and builds its own. Ben
Jai, who designed many of Google's servers, unveiled a modern Google server
before the hungry eyes of a technically sophisticated audience.

29/09/2016 Google uncloaks once-secret server - CNET

https://www.cnet.com/news/google-uncloaks-once-secret-server-10209580/ 2/9

Google server designer Ben Jai
Stephen Shankland/CNET

Google's big surprise: each server has its own 12-volt battery to supply power if
there's a problem with the main source of electricity. The company also revealed
for the first time that since 2005, its data centers have been composed of standard
shipping containers--each with 1,160 servers and a power consumption that can
reach 250 kilowatts.

It may sound geeky, but a number of attendees--the kind of folks who run data
centers packed with thousands of servers for a living--were surprised not only by
Google's built-in battery approach, but by the fact that the company has kept it
secret for years. Jai said in an interview that Google has been using the design
since 2005 and now is in its sixth or seventh generation of design.

"It was our Manhattan Project," Jai said of the design.

Google has an obsessive focus on energy efficiency and now is sharing more of its
experience with the world. With the recession pressuring operations budgets,
environmental concerns waxing, and energy prices and constraints increasing, the
time is ripe for Google to do more efficiency evangelism, said Urs Hoelzle, Google's
vice president of operations.

"There wasn't much benefit in trying to preach if people weren't interested in it,"
said Hoelzle, but now attitudes have changed.

29/09/2016 Google uncloaks once-secret server - CNET

https://www.cnet.com/news/google-uncloaks-once-secret-server-10209580/ 3/9

The rear side of Google's server.
Stephen Shankland/CNET

The company also focuses on data center issues such as power distribution,
cooling, and ensuring hot and cool air don't intermingle, said Chris Malone, who's
involved in the data center design and efficiency measurement. Google's data
centers now have reached efficiency levels that the Environmental Protection
Agency hopes will be attainable in 2011 using advanced technology.

"We've achieved this now by application of best practices and some innovations--
nothing really inaccessible to the rest of the market," Malone said.

Why built-in batteries?
Why is the battery approach significant? Money.

Typical data centers rely on large, centralized machines called uninterruptible
power supplies (UPS)--essentially giant batteries that kick in when the main supply
fails and before generators have time to kick in. Building the power supply into the
server is cheaper and means costs are matched directly to the number of servers,
Jai said.

"This is much cheaper than huge centralized UPS," he said. "Therefore no wasted
capacity."

Efficiency is another financial factor. Large UPSs can reach 92 to 95 percent
efficiency, meaning that a large amount of power is squandered. The server-
mounted batteries do better, Jai said: "We were able to measure our actual usage
to greater than 99.9 percent efficiency."

29/09/2016 Google uncloaks once-secret server - CNET

https://www.cnet.com/news/google-uncloaks-once-secret-server-10209580/ 4/9

Urs Hoelzle, Google's vice president of operations
Stephen Shankland/CNET

The Google server was 3.5 inches thick--2U, or 2 rack units, in data center

parlance. It had two processors, two hard drives, and eight memory slots mounted
on a motherboard built by Gigabyte. Google uses x86 processors from both AMD
and Intel, Jai said, and Google uses the battery design on its network equipment,
too.

Efficiency is important not just because improving it cuts power consumption costs,
but also because inefficiencies typically produce waste heat that requires yet more
expense in cooling.

Costs add up
Google operates servers at a tremendous scale, and these costs add up quickly.

Jai has borne a lot of the burden himself. He was the only electrical engineer on the
server design job from 2003 to 2005, he said. "I worked 14-hour days for two and a
half years," he said, before more employees were hired to share the work.

Google has patents on the built-in battery design, "but I think we'd be willing to
license them to vendors," Hoelzle said.

Another illustration of Google's obsession with efficiency comes through power
supply design. Power supplies convert conventional AC (alternating current--what
you get from a wall socket) electricity into the DC (direct current--what you get from

29/09/2016 Google uncloaks once-secret server - CNET

https://www.cnet.com/news/google-uncloaks-once-secret-server-10209580/ 5/9

Google's data center efficiency has been improving gradually.
Stephen Shankland/CNET

An excerpt from a video tour Google presented of its data center containers. Like
conventional data centers, Google's shipping containers have raised floors.

Stephen Shankland/CNET

a battery) electricity, and typical power supplies provide computers with both 5-volt
and 12-volt DC power. Google's designs supply only 12-volt power, with the
necessary conversions taking place on the motherboard.

That adds $1 or $2 to the cost of the motherboard, but it's worth it not just because
the power supply is cheaper, but because the power supply can be run closer to its
peak capacity, which means it runs much more efficiently. Google even pays
attention to the greater efficiency of transmitting power over copper wires at 12
volts compared to 5 volts.

Google also revealed new performance results for data center energy efficiency
measured by a standard called power usage effectiveness. PUE, developed by a
consortium called the Green Grid, measures how much power goes directly to
computing compared to ancillary services such as lighting and cooling. A perfect
score of 1 means no power goes to the extra costs; 1.5 means that ancillary services
consume half the power devoted to computing.

Google's PUE scores are enviably low, but the company is working to lower them
further. In the third quarter of 2008, Google's PUE was 1.21, but it dropped to 1.20
for the fourth quarter and to 1.19 for the first quarter of 2009 through March 15,
Malone said.

Older Google facilities generally have higher PUEs, he said; the best has a score of
1.12. When the weather gets warmer, Google notices is that it's harder to keep
servers cool.

Shipping containers
Most people buy computers one at a time, but Google thinks on a very different

29/09/2016 Google uncloaks once-secret server - CNET

https://www.cnet.com/news/google-uncloaks-once-secret-server-10209580/ 6/9

Tags: Tech Industry, Tech Culture

A diagram of a Google modular data center
Stephen Shankland/CNET

scale. Jimmy Clidaras revealed that the core of the company's data centers are
composed of standard 1AAA shipping containers packed with 1,160 servers each,
with many containers in each data center.

Modular data centers are not unique to Google; Sun Microsystems and Rackable
Systems both sell them. But Google started using them in 2005.

Google's first experiments had some rough patches, though, Clidaras said--for
example when they found the first crane they used wasn't big enough to actually lift
one.

Overall, Google's choices have been driven by a broad analysis on cost that
encompasses software, hardware, and facilities.

"Early on, there was an emphasis on the dollar per (search)
query," Hoelzle said. "We were forced to focus. Revenue per
query is very low."

Mainstream servers with x86 processors were the only
option, he added. "Ten years ago...it was clear the only way to
make (search) work as free product was to run on relatively
cheap hardware. You can't run it on a mainframe. The margins
just don't work out," he said.

Operating at Google's scale has its challenges, but it also has
its silver linings. For example, a given investment on research
can be applied to a larger amount of infrastructure, yielding
return faster, Hoelzle said.

Show Comments

DISCUSS: GOOGLE UNCLOAKS ONCE-SECRET SERVER

Log In

Featured Video

Autoplay: ONAutoplay: OFF

Comments2

APPENDIX A. WEB SOURCES 205

A.6 Datacenter Knowledge

A.6.1 Google Unveils Its Container Data Center

29/09/2016 Google Unveils Its Container Data Center | Data Center Knowledge

http://www.datacenterknowledge.com/archives/2009/04/01/google-unveils-its-container-data-center/ 1/3

GOOGLE

Google Unveils Its Container Data Center
Google’s containers are real. And it’s not an April Fool’s Joke.

Four years after the �rst reports of server-packed shipping containers lurking in parking garages, Google today con�rmed its
use of data center containers and provided a group of industry engineers with an overview of how they were implemented
in the company’s �rst data center project in the fall of 2005. “It’s certainly more fun talking about it than keeping it a secret,”
said Google’s Jimmy Clidaras, who gave a presentation on the containers at the �rst Google Data center E�ciency Summit
today in Mountain View, Calif.

The Google facility features a “container hanger” �lled with 45 containers, with some housed on a second-story balcony.
Each shipping container can hold up to 1,160 servers, and uses 250 kilowatts of power, giving the container a power density
of more than 780 watts per square foot. Google’s design allows the containers to operate at a temperature of 81 degrees in
the cold aisle. Those specs are seen in some advanced designs today, but were rare indeed in 2005 when the facility was
built.

Google’s design focused on “power above, water below,” according to Clidaras, and the racks are actually suspended from
the ceiling of the container. The below-�oor cooling is pumped into the hot aisle through a raised �oor, passes through the
racks and is returned via a plenum behind the racks. The cooling fans are variable speed and tightly managed, allowing the
fans to run at the lowest speed required to cool the rack at that moment.

“Water was a big concern,” said Urs Holzle, who heads Google’s data center operations. “You never know how well these
couplings (on the water lines) work in real life. It turns out they work pretty well. At the time, there was nothing to go on.”

Google was awarded a patent on a portable data centerin a shipping container in October 2008, con�rming a 2005 report
from PBS columnist Robert Cringley that the company was building prototypes of container-based data centers in a garage
in Mountain View. Containers also featured prominently in Google’s patent �ling for a �oating data center that generates its
own electricity using wave energy.

Holzle said today that Google opted for containers from the start, beginning its prototype work in 2003. At the time, Google
housed all of its servers in third-party data centers. “Once we saw that the commercial data center market was going to dry
up, it was a natural step to ask whether we should build one,” said Holzle.

The data center facility, referred to as Data Center A, spans 75,000 square feet and has a power capacity of 10 megawatts.
The facility has a Power Usage E�ectiveness (PUE) of 1.25, and when the container load is measured across the entire
hangar �oor space, it equates to a density of 133 watts per square foot. Google didn’t identify the facility’s location, but the
timeline suggests that it’s likely one of the facilites at Google’s three-building data center complex in The Dalles, Oregon.

Data center containers have been used for years by the U.S. military. The �rst commercial product, Sun’s Project Blackbox,
was announced in 2006. We noted at the time that the Blackbox “extends the boundaries of the data center universe, and
gives additional options to managers of fast-growing enterprises.”

It turns out that containers have developed as key weapons in the data center arms race between Google and Microsoft,
which last year announced its shift to a container model. Microsoft has yet to complete its �rst container data center in
Chicago,

OTHER COMMERCIAL CONTAINERS:

Rackable ICE Cube

HP POD (Portable Optimized Container)

Verari Forest Container

IBM Portable Modular Data Center (PMDC)

Sun MD S20 (Project Blackbox)

This content was printed from Data Center Knowledge

Fe
ed

b
ac

k

APPENDIX A. WEB SOURCES 207

A.6.2 Intel Designs Custom Chips for AWS’ New C4 Instances

29/09/2016 Intel Designs Custom AWS CPU for Fastest EC2 Instances Ever

http://www.datacenterknowledge.com/archives/2014/11/13/intel-designs-custom-aws-cpu-for-fastest-ec2-instances-ever/ 1/2

AMAZON, BLADES, CLOUD COMPUTING, INTEL

Intel Designs Custom Chips for AWS’ New C4 Instances
Intel has designed custom Xeon processors for Amazon Web Services that will power the cloud provider’s new server
instances optimized for high-octane computing. The chips will provide the highest level of CPU performance EC2 has ever
seen.

Amazon previewed the new type of instance, which is not yet available, at its re:Invent conference in Las Vegas Thursday.
Called C4, it comes in �ve di�erent con�gurations, ranging from two to 36 virtual CPU cores and from 3.75 Gigabytes to 60
Gigabytes of RAM.

The instances will use hardware virtualization, which is as close to bare-metal cloud as AWS gets, and run within Virtual
Private Cloud environments only, Je� Barr, chief evangelist at AWS, wrote in a blog post.

The custom AWS CPU, called Intel Xeon E5-2666 v3, is based on the chipmaker’s Haswell architecture and built using its
smallest-yet 22 nanometer process technology. The processor runs at base speed of 2.9 GHz, but with “Turbo boost” can go
up to 3.5 GHz, according to Amazon.

This is not the �rst time Intel has customized a processor for a big customer. Making tailored chips for cloud service
providers, Internet companies, and hardware vendors has grown into a big business for the company in recent years.

Another recent custom job was for Oracle’s massive database machines that came out in July.

Diane Bryant, general manager of Intel’s data center group, described a new approach the company had taken to tailoring
chips for hyper-scale customers using Field-Programmable Gate Arrays.

An FPGA is a recon�gurable semiconductor typically used to give a user the ability to test di�erent con�gurations beforeFPGA
they commit to a volume purchase of non-programmable chips. Intel plans to include an FPGA in a single Xeon package andFPGA
o�oad some of the CPU workload to the FPGA.FPGA

The chipmaker gives the customer the option of testing di�erent con�gurations and then order static System-on-Chips that
would use the con�guration that works best for them. Another option is to deploy Xeon packages with the FPGAs at scale soFPGA
you can recon�gure them in the future for di�erent workloads.

When Bryant talked about the o�ering in June, it was not yet available, and she did not say when it would hit the market. It
wasn’t clear whether Intel used the approach in designing the latest custom Oracle or AWS CPUs.

In June, Bryant said Intel had designed 15 custom CPUs in 2013 for di�erent customers, including Facebook and eBay. More
than double that amount was in the pipeline for 2014, she said.

This content was printed from Data Center Knowledge

Intel Xeon Processor E5-1600 v3 die shot (Photo: Intel)

Intel Xeon Processor E5-1600 v3 die shot (Photo: Intel)

SUBSCRIBE

Get Daily Email News from DCK!
Subscribe now and get our special report, "The World's Most Unique Data Centers."
Email*

Country*

Please select

Enter your email to receive messages about o�erings by Penton, its brands, a�liates and/or third-party partners, consistent with Penton's Privacy Policy.

Fe
ed

b
ac

k

APPENDIX A. WEB SOURCES 209

A.7 Datacenter Frontier

A.7.1 Inside Amazon’s Cloud Computing Infrastructure

29/09/2016 Inside Amazon's Cloud Computing Infrastructure

http://datacenterfrontier.com/inside-amazon-cloud-computing-infrastructure/ 2/13

As cloud computing has emerged as the new paradigm for computing at scale, Amazon has

�rmly established itself as the dominant player. After e�ectively creating the public cloud

market with the launch of Amazon Web Services in 2006, the retailer has built AWS into a $6

billion a year business.

Along the way, Amazon’s infrastructure has become critical to the uptime of more than 1

million customers. That’s why an outage at Amazon can create ripples across popular sites like

Net�ix, Reddit, Tinder and IMdB, which was the case on Sunday when Amazon experienced

problems at a data center in Virginia.

This week we’ll look at Amazon’s mighty cloud infrastructure, including how it builds its data

centers and where they live (and why).

Amazon operates at least 30 data centers in its

global network, with another 10 to 15 on the

drawing board. Amazon doesn’t disclose the full

scope of its infrastructure, but third-party

estimates peg its U.S. data center network at

about 600 megawatts of IT capacity.

Leading analysts view Amazon as the dominant

player in public cloud. “AWS is the overwhelming

(cloud computing) market share leader, with more

than �ve times the compute capacity in use than the aggregate total of the other 14 providers,”

writes IT research �rm Gartner in its assessment of the cloud landscape.

Lifting the Veil of Secrecy … A Bit

Amazon has historically been secretive about its data center operations, disclosing far less

about its infrastructure than other hyperscale computing leaders such as Google, Facebook

and Microsoft. That has begun to change in the last several years, as Amazon executives

Werner Vogels and James Hamilton have opened up about the company’s data center

operations at events for the developer community.

“There’s been quite a few requests from customers asking us to talk a bit about the physical

layout of our data centers,” said Werner Vogels, VP and Chief Technology O�ce for Amazon, in

a presentation at the AWS Summit Tel Aviv in July. “We never talk that much about it. So we

wanted to lift up the secrecy around our networking and data centers.”

A key goal of these sessions is to help developers understand Amazon’s philosophy on

redundancy and uptime. The company organizes its infrastructure into 11 regions, each

containing a cluster of data centers. Each region contains multiple Availability Zones, providing

customers with the option to mirror or back up key IT assets to avoid downtime. The “ripple
Share572 Tweet209 Share439 +1 89 Pin 106 1K

SHARES

29/09/2016 Inside Amazon's Cloud Computing Infrastructure

http://datacenterfrontier.com/inside-amazon-cloud-computing-infrastructure/ 3/13

e�ect” of outages whenever AWS experiences problems indicates that this feature remains

underutilized.

Scale Drives Platform Investment

In its most recent quarter, the revenue for Amazon Web Services was growing at an 81 percent

annual rate. That may not translate directly into a similar rate of infrastructure growth, but one

thing is certain: Amazon is adding servers, storage and new data centers at an insane pace.

“Every day, Amazon adds enough new server capacity to support all of Amazon’s global

infrastructure when it was a $7 billion annual revenue enterprise,” said James Hamilton,

Distinguished Engineer at Amazon, who described the AWS infrastructure at the Re:InventInvent

conference last fall. “There’s a lot of scale. That volume allows us to reinvest deeply into the

platform and keep innovating.”

Amazon’s data center strategy is relentlessly

focused on reducing cost, according to Vogels,

who noted that the company has reduced prices

49 times since launching Amazon Web Services in

2006.

Amazon CTO Werner Vogels (Image: YouTube)

“We do a lot of infrastructure innovation in our data centers to drive cost down,” Vogels said.

“We see this as a high-volume, low-margin business, and we’re more than happy to keep the

margins where they are. And then if we have a lower cost base, we’ll hand money back to you.”

Share572 Tweet209 Share439 +1 89 Pin 106 1K
SHARES

29/09/2016 Inside Amazon's Cloud Computing Infrastructure

http://datacenterfrontier.com/inside-amazon-cloud-computing-infrastructure/ 4/13

A key decision in planning and deploying cloud capacity is how large a data center to build.

Amazon’s huge scale o�ers advantages in both cost and operations. Hamilton said most

Amazon data centers house between 50,000 and 80,000 servers, with a power capacity of

between 25 and 30 megawatts.

“In our view, this is around the right number, and we’ve chosen to build this number for an

awfully long time,” said Hamilton. “We can build bigger. The thing is, the early advantages of

scale are huge, but there’s a point where these advantages go down. A really huge data

centers is only marginally less expensive per rack than a medium sized data center.”

How Big is Too Big?

As data centers get bigger, they represent a larger risk as a component of the company

network.

“It’s undesirable to have data centers that are larger than that due to what we call the ‘blast

radius’,” said Vogels, noting the industry term for assessing risk based on a single destructive

regional event. “A data center is still a unit of failure. The larger you built your data centers, the

larger the impact such a failure could have. We really like to keep the size of data centers to

less than 100,000 servers per data center.”

So how many servers does Amazon Web Services run? The descriptions by Hamilton and

Vogels suggest the number is at least 1.5 million. Figuring out the upper end of the range is

more di�cult, but could range as high as 5.6 million, according to calculations by Timothy

Prickett Morgan at the Platform.

Amazon leases buildings from a number of wholesale data center providers, including Digital

Realty Trust and Corporate O�ce Properties Trust. In the past the company typically leased

existing properties such as warehouses and then renovated them for data center use. In recent

years Amazon has begun focusing on new construction, which provides a “green�eld” that can

be customized to support all elements of its designs, from the grid to the server. In Oregon,

Amazon's Werner Vogels: We see (cloud computing) as
a high-volume, low-margin business.

CLICK TO TWEET

Amazon's Werner Vogels: We like to keep the size of
data centers to less than 100,000 servers

CLICK TO TWEET

Share572 Tweet209 Share439 +1 89 Pin 106 1K
SHARES

29/09/2016 Inside Amazon's Cloud Computing Infrastructure

http://datacenterfrontier.com/inside-amazon-cloud-computing-infrastructure/ 5/13

Amazon has used pre-fabricated “modular” data center components to accelerate its

expansion.

An interesting element of Amazon’s approach to data center development is that it has the

ability to design and build its own power substations. Tha specialization is driven by the need

for speed, rather than cost management.

“You save a tiny amount,” said Hamilton. “What’s useful is that we can build them much more

quickly. Our growth rate is not a normal rate for utility companies. We did this because we had

to. But it’s cool that we can do it.”

Custom Servers and Storage

In the early days of its cloud platform, Amazon bought its servers from leading vendors. One of

its major providers was Rackable Systems, an early player in innovative cloud-scale server

designs. Amazon bought $86 million in servers from Rackable in 2008, up from $56 million a

year earlier.

But as its operations grew, Amazon followed the lead of Google and began creating custom

hardware for its data centers. This allows Amazon to �ne-tune its servers, storage and

networking gear to get the best bang for its buck, o�ering greater control over both

performance and cost.

“Yes, we build our own servers,” said Vogels. “We could buy o� the shelf, but they’re very

expensive and very general purpose. So we’re building custom storage and servers to address

these workloads. We’ve worked together with Intel to make household processors available

that run at much higher clockrates. It allows us to build custom server types to support very

speci�c workloads.”

Share572 Tweet209 Share439 +1 89 Pin 106 1K
SHARES

29/09/2016 Inside Amazon's Cloud Computing Infrastructure

http://datacenterfrontier.com/inside-amazon-cloud-computing-infrastructure/ 6/13

(Image: James Hamilton, Amazon Web Services)

Amazon o�ers several EC2 instance types featuring these custom chips, a souped-up version

of the Xeon E5 processor based on Intel’s Haswell architecture and 22-nanometer process

technology. Di�erent con�gurations o�er optimizations for compute intensive, memory

intensive of IOPS intensive applications.

“We know how to build servers to a certain speci�cation, and as a consequence the

processors can be pushed harder.” said Hamilton.

AWS uses designs its own software and hardware for its networking, which is perhaps the

most challenging component of its infrastructure. Vogels said servers still account for the bulk

of data center spending, but while servers and storage are getting cheaper, the cost

of networking has gone up.

The Speed of Light Versus the Cloud

The “speed of light factor” in networking plays a signi�cant role in how Amazon designs its

infrastructure.

“The way most customers work is that an application runs in a single data center, and you

work as hard as you can to make the data center as reliable as you can, and in the end you

realize that about three nines (99.9 percent uptime) is all you’re going to get,” said Hamilton. “As

soon as you get a high-reliability app, you run it in two data centers. Usually they’re a long way

apart, so the return trip is very long. It’s excellent protection against a rare problem.”

“Building distributed development across multiple data centers, especially if they’re

geographically further away, becomes really hard,” said Vogels.

The answer was

Availability Zones:

clusters of data

centers within a region

that allow customers

to run instances in

several isolated

locations to avoid a

single point of failure.

If customers distribute

instances and data

across multiple

Availability Zones (AZs) and one instance fails, the application can be designed so that an

instance in another Availability Zone can handle requests. Each region has between two and

six Availability Zones.Share572 Tweet209 Share439 +1 89 Pin 106 1K
SHARES

APPENDIX A. WEB SOURCES 215

A.8 Endace

A.8.1 Endace DAG 9.2X2 Datasheet

Source: https://www.endace.com/dag-9.2x2-datasheet.pdf

https://www.endace.com/dag-9.2x2-datasheet.pdf

endace.compage 2
END_ds_endacedag_9.2X2_1.0_0216

© Copyright Endace Technology Limited, 2016. All rights reserved.

For more information on the Endace portfolio of products,

visit: endace.com/products

For further information, email: info@endace.com

This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to Part 15 of the Federal Communications Commission [FCC] Rules. These
limits are designed to provide reasonable protection against harmful interference when the
equipment is operated in a commercial environment. This equipment generates, uses, and
can radiate radio frequency energy and, if not installed and used in accordance with the
instruction document, may cause harmful interference to radio communications.

Endace™, the Endace logo and DAG™ are registered trademarks in New Zealand and/or
other countries of Endace Technology Limited. Other trademarks used may be the property
of their respective holders. Use of the Endace products described in this document is subject
to the Endace Terms of Trade and the Endace End User License Agreement (EULA).

DAG 9.2X2 – Technical Specifications

Monitoring
interfaces

2x SFP+ transceivers

Network type
IEEE 802.3ae LAN
IEEE 802.3ae WAN
IEEE 802.3ab

Packet
encapsulations

Ethernet

Hardware packet
processing

Enhanced Packet Processing v2

Time
synchronization

External: IEEE-1394 connector for RS-422
PPS and IRIG-B signal from GPS, CDMA or
TDS (using adapter)

Internal: Host PC clock

Other DAG cards

Packet timestamping 7.5ns

PCI interface x8 lane PCIe 2.0

Operating system
supported

Endace software is supported on the
following operating systems: Linux,
FreeBSD, and Windows Server 2003 and
2008

Power requirements Less than 20W

Operating temperature 0 to 55°C (32 to 131°F)

Airflow requirements 200 LFM (@50°C Ambient)

Operating humidity 5 to 95% non condensing

Physical dimensions
Half Height, Half Length
Height 64.25mm (2.53”)
Length 167.5mm (6.6”)

Companion Products

Transceivers

10GBase-SR optical SFP+ transceiver
850nm, Multi-mode with LC connectors

TXR-10G-850-
MM-SFP+

10GBase-LR optical SFP+ transceiver
1310nm, Single-mode with LC connectors

TXR-10G-1310-
SM-SFP+

10GBase-ER optical SFP+ transceiver
1550nm, Single-mode with LC connectors

TXR-10G-1550-
SM-SFP+

1000Base-SX optical Ethernet SFP transceiver
850nm, Multi-mode with LC connectors

TXR-1000SX

10GBase-ZR optical SFP+ transceiver 1550nm,
Single-mode with LC connectors

TXR-10G-1550-
SM-HS-SFP+

1000Base-LX optical Ethernet SFP transceiver
1310nm, Single-mode with LC connectors

TXR-1000LX

1000Base-ZX optical Ethernet SFP transceiver
1550nm, Single-mode with LC connectors

TXR-1000ZX

1/10 Gigabit LR (10km) SFP+ transceiver
1310nm, Single-mode

TXR-10G-1G-
SWCH-850-MM-
SFP+

1/10 Gigabit SR SFP+ transceiver
850nm, Multi-mode

TXR-10G-1G-
SWCH-1310-SM-
SFP+

Time Measurement Accessories

Trimble AcutimeTM Gold GPS receiver GPS-2

Endace 2-port Time Distribution Server, accepts
serial input from GPS/CDMA sources

TDS-2

Endace 6-port expansion module for TDS-2,
shares common reference time source

TDS-6

Endace 24-port Time Distribution Server, accepts
serial input from GPS/CDMA sources

TDS-24

APPENDIX A. WEB SOURCES 217

A.9 Exablaze

A.9.1 ExaLink Fusion

Source: http://exablaze.com/downloads/pdf/ExaLINK_Fusion_Brochure.
pdf

http://exablaze.com/downloads/pdf/ExaLINK_Fusion_Brochure.pdf
http://exablaze.com/downloads/pdf/ExaLINK_Fusion_Brochure.pdf

EXALINKFUSION

exablaze.com

5 nanoseconds tapping and patching. Dynamically tap the feed on any
input or output to any other port, replacing conventional optical taps.
Dynamically patch any port to any other port to create bidirectional layer 1
links. Clock and data recovery circuitry ensures signal integrity is
maintained throughout your network.

Patch and Tap

95 nanosecond aggregation. Aggregate multiple streams with extremely
low and deterministic latency by bypassing MAC address lookups, sharing
a single network resource fairly. Optionally, use layer 1 on the return path
to further reduce latency and jitter and guarantee response times.

Aggregate

110 nanoseconds port to port latency with full layer 2 switching. The
industry's lowest latency cut-through layer 2 switch. Supports ultra-low
latency multicast and broadcast.

Switch

It's your network, build it your way. The modular ExaLINK Fusion can be
shipped with a Xilinx Ultrascale FPGA module that allows you to
completely redefine the way your network operates. The layer 1
technology in the Fusion allows you to create dynamic circuits between
any and all front panel ports and the FPGA. Build custom packet
processing engines. Filter traffic. Switch based on packet content.
Experiment with new protocols. The Fusion makes all of this and more
possible.

Redefine

Latency, reduced.

High frequency trading
customers use the ExaLINK
Fusion to seamlessly reduce
the end to end latency in
their networks.

Share a single network
resource such as an order
line by taking advantage of
the Fusion's 95ns
aggregation latency, many
times lower than a
traditional switch.

On the return path,
optionally deliver order
acknowledgements to
clients by using layer 1 data
distribution, replicating
feeds at 5ns. In addition,
use layer 1 fanout to
distribute multicast to
consumers with ultra low
latency and negligible jitter.

This mode of operation
reduces the full round trip
time at the edge of your
network to 100ns.

Maximum reliability. Dual power
supplies and fan modules protect
against downtime.

Reconfigurable front panel

Three line card bays provide front a flexible front
panel, allowing for up to 48 SFP+ ports.

Layer 1 crosspoint
The heart of the Fusion. A layer 1 crosspoint allows you to
dynamically create circuits between any front panel port or
any internal module bay

With flexibility comes great complexity. The
management interface on the Fusion
provides an intuitive way to configure the
device.

Smart management

Fit two FPGA modules or x86
processors. Connect any high
speed transceiver to the front
panel by creating dynamic layer 1
circuits.

Redundant power suppliesDual module bays

Rethink your network architecture and application development using the ExaLINK Fusion.

SPECIFICATIONS

exablaze.com

Connectivity

Latency

Measured front panel port to port:

➔ 5 ns (Layer 1 tap/patch)

➔ 95 ns (Layer 2 aggregation)

➔ 110ns (Layer 2 switching)

Timestamping

➔ Any flow through the device can

be timestamped to nanosecond

resolution

➔ Pulse per second input for

synchronization

➔ 0.2 parts per billion holdover drift

with loss of external timing (with

optional timing upgrade)

➔ Local time synchronized by NTP or

PTP

➔ 3 x 16 SFP+ line cards

➔ SFP+ Fiber (10GBASE-SR,

10GBASE-LR, 10GBASE-LRM,

1000BASE-SX)

➔ SFP+ Copper Direct Attach

Physical, power, cooling

➔ 19” 1RU, rack mount

➔ Weight 11kg (24lbs)

➔ Dual, hot-swappable supplies

➔ Standard: AC 90-264V, 47-64 Hz,

included IEC C13-C14 cables

➔ Optional: DC 40-72V

➔ Typical consumption: 150W

➔ Dual hot-swappable fan modules

➔ Port side intake (front-to-back) or

port side exhaust (back-to-front) –

specify when ordering

FPGA development

➔ FPGA board installable in both module bays

➔ Xilinx Ultrascale KU115 FPGA with 52 high speed

transceivers

➔ 48 transceivers can be directly connected to

front panel ports via the internal layer 1

crosspoint

➔ 4 transceivers available on internal header, for

communication with adjacent module bay using

optional cable

➔ 288 Mbit QDR4 SRAM per FPGA board

➔ 2 x DDR4 DIMM slots (low profile)

➔ Thermally controlled oscillator (TCXO) standard

fit. Lower drift options available

➔ Optional TPM module for cryptographic

applications

Management

➔ Ethernet 10/100M management port

➔ Industry standard serial port

➔ Intuitive command line interface

➔ External JSON RPC scripting interface

➔ SSH

➔ Telnet

➔ SNMP

➔ Local and remote syslog

➔ PTP, NTP and pulse-per-second interfaces for

timing

➔ Firmware upgradeable via SFTP, TFTP or USB

➔ Custom FPGA firmware loaded and managed by

onboard processor

220 A.9. EXABLAZE

A.9.2 ExaNIC X10

04/10/2016 ExaNIC X10 - Sub-micro Latency Dual-Port 10GbE Network Interface Card | Exablaze

http://exablaze.com/exanic-x10 1/1

 PERFORMANCE

ExaNIC X10
SUB-MICRO TCP HALF RTT* DUAL-PORT 10GBE NETWORK INTERFACE CARD

Exablaze's ExaNIC X10 is an ultra low latency network interface card which delivers the lowest latency in the industry:
780ns application to application for small Ethernet frames (using the native API) and under a microsecond for small TCP
and UDP payloads (using the transparent socket acceleration library).

The ExaNIC X10 also has built in bridging functionality which allows it to function as a miniature switch, avoiding the extra
latency of a switch in some common use cases. Additionally, with hardware–based time stamping of every packet to 6 nanoseconds
resolution, users can rethink their approach to measurement and latency management.

The card features an SMA connector which can accept a PPS in or drive PPS out to further improve the accuracy of timestamps
taken throughout the system.

Typical latency, raw frames:
60 bytes: 780ns
300 bytes: 1μs

Typical latency, raw frames with pre-loaded TX buffer:
60 bytes: 710ns
300 bytes: 930ns

Typical latency, UDP:
14 bytes: 880ns
300 bytes: 1.2μs

Typical latency, TCP:
14 bytes: 930ns
300 bytes: 1.2μs

222 A.9. EXABLAZE

A.9.3 Reducing latency with Exasock

04/10/2016 Exablaze - Blog - Reducing latency with Exasock

https://exablaze.com/media/blog-exasock-acceleration 1/1

Reducing latency with Exasock
We've been working really hard lately to bring you our kernel bypass sockets library for the ExaNIC, and we're really pleased with
the results. We call it ExaNIC sockets - “exasock” - and it's a library that allows you to transparently improve the latency of your
existing applications without requiring a rebuild.

So just what is a kernel bypass sockets library and how could it help you? Lets say, like many of our customers, you have an
existing TCP or UDP networking application that is latency critical. In some cases, either the source code for that application isn't
available or the effort required to port it to a custom networking API is prohibitive. For these customers, an easy approach to get
instant performance gains is to use a library that intercepts regular socket calls, providing faster alternatives. This is exactly what
exasock does, and the latency boost is impressive.

For those in finance, the industry standard way of measuring latency is via benchmarking through STAC and we've certainly done
that for exasock, but the results are only available to STAC members. For those with access I'd recommend you check them out, but
in this post I'd like to show you the performance of exasock using sockperf, a fairly standard sockets benchmarking utility. At the
same time I'd like to show you how easy it is to get started with exasock. Let's get going!

First things first, lets start sockperf with exasock acceleration. To do this we simply prefix the application with exasock, like this:

$ exasock taskset -c 5 ./sockperf pp -i 192.168.4.11 -t 5 -m 12

Additionally, I'm using taskset to pin the sockperf process to an isolated CPU, which prevents the process from being interrupted by
the scheduler and allows us to get more consistent results. In this case, we're doing a UDP ping-pong latency test, running for 5
seconds with a message payload of 12 bytes. By prefixing sockperf with exasock, all socket calls are transparently accelerated. We
have a second machine running at 192.168.4.11 which runs sockperf in server mode, also accelerated by exasock. The results look
like this:

224 A.10. EXTREME TECH

A.10 Extreme Tech

A.10.1 Facebook, ARM, x86, and the future of the data center

29/09/2016 Facebook, ARM, x86, and the future of the data center | ExtremeTech

http://www.extremetech.com/extreme/146850-facebook-arm-x86-and-the-future-of-the-data-center 1/8

HOME (HTTP://WWW.EXTREMETECH.COM) COMPUTING (HTTP://WWW.EXTREMETECH.COM/CATEGORY/COMPUTING)
FACEBOOK, ARM, X86, AND THE FUTURE OF THE DATA CENTER

By Joel Hruska (http://www.extremetech.com/author/jhruska) on January 28, 2013 at 8:43 am
5 Comments (http://www.extremetech.com/extreme/146850-facebook-arm-x86-and-the-future-of-the-data-
center#disqus_thread)

Facebook, ARM, x86, and the future of the data center

Last week, Facebook announced a new motherboard/daughtercard design it dubbed “Group

Hug.” Thanks to innovative work from the Open Compute Platform, the new daughtercard allows

CPUs from ARM, Intel, or AMD to be plugged into a single motherboard. At least, that’s the plan —

for now, the hardware interconnects are still in the design phase, as is the framework required to

manage disparate CPUs from multiple vendors.

There are, in other words, huge questions left to settle. Adding different daughtercards to the

same server to optimize CPU usage is a great idea, but writing software that understands how to

manage the various assets is still a huge task. In the rush to herald the advent of a bold new era

for server commoditization and the advent of ARM servers, some significant factors are being

ignored.

0
shares ��×ƘǇ

(http://www.extremetech.com)

29/09/2016 Facebook, ARM, x86, and the future of the data center | ExtremeTech

http://www.extremetech.com/extreme/146850-facebook-arm-x86-and-the-future-of-the-data-center 2/8

(http://www.extremetech.com/wp-content/uploads/2013/01/OpenComputeRack.jpg)

Here’s the biggest: Contrary to what others have said, mobile SoCs will not “remake the server

world (http://www.wired.com/wiredenterprise/2013/01/facebook-arm-chips/).” Wired attempts to

draw a parallel between Facebook’s experiments with turning off chip cache and the idea of

replacing “brawny” CPU cores with “wimpy” ones. But it’s not that simple.

Take a look at ARM’s next-generation IP block for connecting up to 16 processors, their caches,

and a variety of additional system devices, as compared to the CCI-400 that’s currently shipping

for the Cortex-A15 (http://www.extremetech.com/computing/141873-cortex-a15-posts-impressive-

performance-threat-intel-amd).

(http://www.extremetech.com/wp-

content/uploads/2013/01/CoreLink_400_Series.jpg)

The CoreLink 400 runs at half CPU speed

Here’s the server variant.

APPENDIX A. WEB SOURCES 227

A.11 Facebook

A.11.1 Facebook Company Information

27/09/2016 Company Info | Facebook Newsroom

https://newsroom.fb.com/company-info/ 2/6

Headquarters

1 Hacker Way, Menlo Park, California 94025

Employees

14,495 employees as of June 30, 2016

Statistics

1.13 billion daily active users on average for June
2016

1.03 billion mobile daily active users on average
for June 2016

1.71 billion monthly active users as of June 30,
2016

1.57 billion mobile monthly active users as of
June 30, 2016

Approximately 84.5% of our daily active users
are outside the US and Canada

US offices

Atlanta, Austin, Boston, Chicago, Dallas, Detroit,
Denver, Los Angeles, Menlo Park, Miami, New York,
Reno, Seattle, Washington D.C.

International offices

Amsterdam, Auckland, Berlin, Brasilia, Brussels,
Buenos Aires, Dubai, Dublin, Gurgaon, Hamburg,
Hong Kong, Hyderabad, Jakarta, Johannesburg,
Karlsruhe, Kuala Lumpur, London, Madrid,
Melbourne, Mexico City, Milan, Montreal, Mumbai,
New Delhi, Paris, Sao Paulo, Seoul, Singapore,
Stockholm, Sydney, Tel Aviv, Tokyo, Toronto,
Vancouver, Warsaw

Data Centers

Altoona, Forest City, Lulea, and Prineville, with a
co-located facility in Ashburn

Stats

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Introduced.

Our Culture

APPENDIX A. WEB SOURCES 229

A.11.2 Introducing “Yosemite”: the first open source modular chassis for
high-powered microservers

29/09/2016 Introducing "Yosemite": the first open source modular chassis for high-powered microservers | Engineering Blog | Facebook Code | Facebook

https://code.facebook.com/posts/1616052405274961/introducing-yosemite-the-first-open-source-modular-chassis-for-high-powered-microservers-/ 1/4

10 March 2015 INFRA · DATA · PERFORMANCE · OPEN COMPUTE · OPEN SOURCE · COMPUTE · DATA CENTERS ·
HARDWARE

Introducing "Yosemite": the first open source modular
chassis for high-powered microservers

Hu Li

In hardware design, there are two approaches to solving the vast computing needs of a site like
Facebook. There's the approach of “scale up” — building ever-increasing amounts of computing
power in a given system. Or you can “scale out,” building an ever-increasing fleet of simple
systems, each with a moderate amount of computing power.

This especially applies to two-socket (2S) computing platforms, which have become scale-up
systems. 2S has been the mainstream server architecture for a long time for good reason. With
multiple high-performance processors, it's strong and versatile, but it's also bulky and power-
hungry. In other words, it's not optimized for scale-out uses. As we continued to evolve our
infrastructure, we realized 2S was the wrong tool for some of our needs. To provide our
infrastructure with capacity that scales out with the demand, we designed a modular chassis that
contains high-powered system-on-a-chip (SoC) processor cards, code-named “Yosemite.”
Today, we're proposing the Yosemite design as a contribution to the Open Compute Project for
all members of the community to build on and deploy.

Code Search

29/09/2016 Introducing "Yosemite": the first open source modular chassis for high-powered microservers | Engineering Blog | Facebook Code | Facebook

https://code.facebook.com/posts/1616052405274961/introducing-yosemite-the-first-open-source-modular-chassis-for-high-powered-microservers-/ 2/4

We started experimenting with SoCs about two years ago. At that time, the SoC products on the
market were mostly lightweight, focusing on small cores and low power. Most of them were less
than 30W. Our first approach was to pack up to 36 SoCs into a 2U enclosure, which could
become up to 540 SoCs per rack. But that solution didn't work well because the single-thread
performance was too low, resulting in higher latency for our web platform. Based on that
experiment, we set our sights on higher-power processors while maintaining the modular SoC
approach.

For Yosemite, we defined each server node as a pluggable module. Each module holds one SoC
targeting up to 65W TDP, multiple memory channels with standard DDR DIMM slots, at least one
local SSD interface, and a local management controller. We also standardized the module
interface such that compliant cards and systems can interoperate. This interface is an extension
from the original “Group Hug” OCP microserver interface, extended to provide more I/O through
an additional PCI-E x16 connector. The Yosemite system holds four SoC cards consuming up to
400W total power, which provides about 90W for each SoC card. In order to simplify the external
connectivity for this modular server system, we specify one shared network connection providing
both data and management traffic.

Diving into the Yosemite design, we consider the following design elements to be important to
the system:

A server-class SoC with multiple memory channels, which provides high-performance
computing in 65W TDP for SoC and 90W for the whole server card.
A standard SoC card interface to provide a CPU-agnostic system interface.

29/09/2016 Introducing "Yosemite": the first open source modular chassis for high-powered microservers | Engineering Blog | Facebook Code | Facebook

https://code.facebook.com/posts/1616052405274961/introducing-yosemite-the-first-open-source-modular-chassis-for-high-powered-microservers-/ 3/4

A platform-agnostic system management solution to manage the system and these 4 SoC
server cards, regardless of vendor.
A multi-host network interconnect card following OCP Mezzanine Card 2.0 specification,
which connects up to 4 SoC server cards through a single Ethernet port.
A cost-effective, flexible, and easy-to-service system structure.

This system will be fully compatible with Open Rack, which can accommodate up to 192 SoC
server cards in a single rack. We're happy to say that Mellanox has already enabled the multi-
host support in its next generation ConnectX®-4 OCP Mezzanine Card. With the design
proposed as a contribution for OCP, we're excited to see what the rest of the community builds
and deploys based on this submission.

Like

More to Read

Recommended

Facebook Open Switching System ("FBOSS") and Wedge in the open

Reflections on the Open Compute Summit

Introducing “6-pack”: the first open hardware modular switch

APPENDIX A. WEB SOURCES 233

A.11.3 Introducing data center fabric, the next-generation Facebook data
center network

04/10/2016 Introducing data center fabric, the next-generation Facebook data center network | Engineering Blog | Facebook Code

https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/ 1/3

Introducing the fabric

For our next-generation data center network design we challenged ourselves to make the entire
data center building one high-performance network, instead of a hierarchically oversubscribed
system of clusters. We also wanted a clear and easy path for rapid network deployment and
performance scalability without ripping out or customizing massive previous infrastructures every
time we need to build more capacity.

To achieve this, we took a disaggregated approach: Instead of the large devices and clusters, we
broke the network up into small identical units – server pods – and created uniform high-
performance connectivity between all pods in the data center.

There is nothing particularly special about a pod – it’s just like a layer3 micro-cluster. The pod is
not defined by any hard physical properties; it is simply a standard “unit of network” on our new
fabric. Each pod is served by a set of four devices that we call fabric switches, maintaining the
advantages of our current 3+1 four-post architecture for server rack TOR uplinks, and scalable
beyond that if needed. Each TOR currently has 4 x 40G uplinks, providing 160G total bandwidth
capacity for a rack of 10G-connected servers.

Figure 1: A sample pod – our new unit of network

What’s different is the much smaller size of our new unit – each pod has only 48 server racks, and
this form factor is always the same for all pods. It’s an efficient building block that fits nicely into
various data center floor plans, and it requires only basic mid-size switches to aggregate the
TORs. The smaller port density of the fabric switches makes their internal architecture very simple,
modular, and robust, and there are several easy-to-find options available from multiple sources.

Another notable difference is how the pods are connected together to form a data center network.
For each downlink port to a TOR, we are reserving an equal amount of uplink capacity on the
pod’s fabric switches, which allows us to scale the network performance up to statistically non-
blocking.

To implement building-wide connectivity, we created four independent “planes” of spine switches,
each scalable up to 48 independent devices within a plane. Each fabric switch of each pod
connects to each spine switch within its local plane. Together, pods and planes form a modular
network topology capable of accommodating hundreds of thousands of 10G-connected servers,
scaling to multi-petabit bisection bandwidth, and covering our data center buildings with non-
oversubscribed rack-to-rack performance.

04/10/2016 Introducing data center fabric, the next-generation Facebook data center network | Engineering Blog | Facebook Code

https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/ 2/3

Figure 2: Schematic of Facebook data center fabric network topology

For external connectivity, we equipped our fabric with a flexible number of edge pods, each
capable of providing up to 7.68Tbps to the backbone and to back-end inter-building fabrics on
our data center sites, and scalable to 100G and higher port speeds within the same device form
factors.

This highly modular design allows us to quickly scale capacity in any dimension, within a simple
and uniform framework. When we need more compute capacity, we add server pods. When we
need more intra-fabric network capacity, we add spine switches on all planes. When we need
more extra-fabric connectivity, we add edge pods or scale uplinks on the existing edge switches.

How we did it

When we first thought about building the fabric, it seemed complicated and intimidating because
of the number of devices and links. However, what we were able to achieve ended up being more
simple, elegant, and operationally efficient than our customary cluster designs. Here’s how we got
there.

Network technology

We took a “top down” approach – thinking in terms of the overall network first, and then translating
the necessary actions to individual topology elements and devices.

04/10/2016 Introducing data center fabric, the next-generation Facebook data center network | Engineering Blog | Facebook Code

https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/ 3/3

We were able to build our fabric using standard BGP4 as the only routing protocol. To keep things
simple, we used only the minimum necessary protocol features. This enabled us to leverage the
performance and scalability of a distributed control plane for convergence, while offering tight
and granular routing propagation management and ensuring compatibility with a broad range of
existing systems and software. At the same time, we developed a centralized BGP controller that
is able to override any routing paths on the fabric by pure software decisions. We call this flexible
hybrid approach “distributed control, centralized override.”

The network is all layer3 – from TOR uplinks to the edge. And like all our networks, it’s dual stack,
natively supporting both IPv4 and IPv6. We’ve designed the routing in a way that minimizes the
use of RIB and FIB resources, allowing us to leverage merchant silicon and keep the requirements
to switches as basic as possible.

For most traffic, our fabric makes heavy use of equal-cost multi-path (ECMP) routing, with flow-
based hashing. There are a very large number of diverse concurrent flows in a Facebook data
center, and statistically we are seeing almost ideal load distribution across all fabric links. To
prevent occasional “elephant flows” from taking over and degrading an end-to-end path, we’ve
made the network multi-speed – with 40G links between all switches, while connecting the servers
on 10G ports on the TORs. We also have server-side means to “hash away” and route around
trouble spots, if they occur.

Gradual scalability

While we need a clear and predictable path to scale our capacity, we don’t necessarily require a
non-blocking network in every deployment from day one.

To achieve the seamless growth capability, we’ve designed and planned the whole network as an
end-to-end non-oversubscribed environment. We’ve allocated all necessary physical resources
for full fabric device park, and we pre-built all the time-consuming passive infrastructure
“skeleton” components. But our current starting point is 4:1 fabric oversubscription from rack to
rack, with only 12 spines per plane, out of 48 possible. This level allows us to achieve the same
forwarding capacity building-wide as what we previously had intra-cluster.

When the need comes, we can increase this capacity in granular steps, or we can quickly jump to
2:1 oversubscription, or even full 1:1 non-oversubscribed state at once. All we need to do is add
more spine devices to each of the planes, and all physical and logical resources for that are
already in place to make it a quick and simple operation.

Physical infrastructure

Despite the large scale of hundreds of thousands of fiber strands, fabric’s physical and cabling
infrastructure is far less complex than it may appear from the logical network topology drawings.
We’ve worked together across multiple Facebook infrastructure teams to optimize our third-
generation data center building designs for fabric networks, shorten cabling lengths, and enable
rapid deployment. Our Altoona data center is the first implementation of this new building layout.

APPENDIX A. WEB SOURCES 237

A.11.4 Open networking advances with Wedge and FBOSS

30/09/2016 Open networking advances with Wedge and FBOSS | Engineering Blog | Facebook Code

https://code.facebook.com/posts/145488969140934 6/8

CPU, and soon enough we are no longer even able to keep up BGP peering sessions,
exacerbating the situation.

Now that the CPU has been protected, any situation that tries to send too much traffic to the
switch CPU — including this one — is no longer a problem.

Looking ahead

As exciting as the Wedge and FBOSS journey has been, we still have a lot of work ahead of us.
Eventually, our goal is to use Wedge for every top-of-rack switch throughout our data centers.

We've been working with a number of vendors and operators to help them start using Wedge
and to share our experience with deployment of OCP switches in order to create a bigger open
source ecosystem in networking. For example, Big Switch Networks now provides an Open
Network Linux image that includes everything you need to run FBOSS on a Wedge and start
programming it: http://opennetlinux.org/wedge.

We also don't plan to stop with the rack switch. Work is already underway in scaling our software
to operate at higher speeds and handle higher complexity. We are working on Wedge 100, a
32x100G switch that we are looking forward to sharing with the networking community soon. This
is in addition to our work adapting Wedge to a much bigger aggregation switch called 6-pack,
which uses Wedge as its foundation and stacks 12 of these Wedges in a modular and
nonblocking aggregation switch. FBOSS as a software stack runs across our growing platform of
network switches: Wedge, 6-pack, and now Wedge 100.

Thanks to the entire Wedge and FBOSS teams for all their hard work getting us to this scale so
quickly. We're looking forward to sharing even more with the community.

Like

More to Read

mention-bot

APPENDIX A. WEB SOURCES 239

A.11.5 Opening designs for 6-pack and Wedge 100

30/09/2016 Opening designs for 6-pack and Wedge 100 | Engineering Blog | Facebook Code

https://code.facebook.com/posts/203733993317833/opening-designs-for-6-pack-and-wedge-100/ 2/15

Wedge 100 – a 32x100G TOR switch

Wedge 100 is Facebook’s second-generation TOR switch:

Uses Broadcom’s Tomahawk ASICTom
Supports the OpenRack v2 bus bar
Now supports COM-E as the CPU module
Supports the 100G QSFP28 DAC cables and 55C CWDM4 optic transceivers

We did this as a critical step toward supporting 100G throughout our data centers, especially for
our new Yosemite servers.

A lot of what we’ve done in Wedge 100 is to accommodate 100G connectivity and support the
55C optic at an ambient 35C environment by having the five-fan tray, avoiding recycling air, and
having multiple on-board temperature sensors.

APPENDIX A. WEB SOURCES 241

A.11.6 Facebook IPv6 Public Group

Where are we now?

100%

of our hosts
we care about

respond
on IPv6

•  Hosts that
are not IPv6
ready are
going away

75%

of our internal
traffic is now

IPv6

•  100% Q3 2014
(or earlier)

98%

of traffic in &
out of HHVM

is IPv6

100%

of our
memcache

traffic is IPv6

100%

IPv6 only
(no RFC1918)
in 2-3 years

APPENDIX A. WEB SOURCES 243

A.11.7 The Road To IPv6: Bumpy – slides

30/09/2016 IPv6

https://www.facebook.com/groups/2234775539/10152303014725540/ 1/1

WorldIPv6Congress-IPv6_LH v2.pdf

RECENT ACTIVITY

Paul Saab uploaded a file.

By popular demand, here's the presentation I did at the world v6 congress yesterday.

21 March 2014

WorldIPv6Congress-IPv6_LH v2.pdf · version 1
Portable Document Format

Share

Download Preview

Like

APPENDIX A. WEB SOURCES 245

A.12 Frank McSherry

A.12.1 The impact of fast networks on graph analytics, part 1

30/09/2016 The impact of fast networks on graph analytics, part 1

http://www.frankmcsherry.org/pagerank/distributed/performance/2015/07/08/pagerank.html 1/1

The impact of fast networks on graph
analytics, part 1
Jul 8, 2015

This is a joint post with Malte Schwarzkopf, cross-blogged here and at the CamSaS blog.

tl;dr: A recent NSDI paper argued that data analytics stacks don’t get much faster at tasks
like PageRank when given better networking, but this is likely just a property of the stack
they evaluated (Spark and GraphX) rather than generally true. A different framework (timely
dataflow) goes 6x faster than GraphX on a 1G network, which improves by 3x to 15-17x
faster than GraphX on a 10G network.

I spent the past few weeks visiting the CamSaS folks at theUniversity of Cambridge Computer
Lab. Together, we did some interesting work, which we – Malte Schwarzkopf and I – are now
going to tell you about.

Recently, a paper entitled “Making Sense of Performance in Data Analytics Frameworks”
appeared at NSDI 2015. This paper contains some surprising results: in particular, it argues that
data analytics stacks are limited more by CPU than they are by network or disk IO. Specifically,

“Network optimizations can only reduce job completion time by a median of at most 2%. The
network is not a bottleneck because much less data is sent over the network than is transferred
to and from disk. As a result, network I/O is mostly irrelevant to overall performance, even on
1Gbps networks.” (§1)

The measurements were done using Spark, but the authors argue that they generalize to other
systems. We thought that this was surprising, as it doesn’t match our experience with other data
processing systems. In this blog post, we will look into whether these observations do indeed
generalize.

APPENDIX A. WEB SOURCES 247

A.13 Google

A.13.1 Efficient Data Center Summit 2009

29/09/2016 Efficient Data Center Summit 2009 – Data Centers – Google

https://www.google.co.uk/about/datacenters/efficiency/external/2009-summit.html#tab0=4 1/2

Standards from The Green
Grid
Insights Into Google's PUE
What's Next for the Industry
Best Practices
Google Data Center Video
Tour

Best Practices Q&A
Sustainable Data Centers
Data Center Water
Management

Google Data Center Video Tour

Presenter: Jimmy Clidaras, Google

Summary: A video tour of Google's highefficiency power distribution
architecture and cooling systems, traced from the equipment yard to
the container. Technological improvements such as Google's high
efficiency UPS are shown in a production environment, as well as an
explanation of closecoupled cooling, tight air flow management, and
temperature control.

 Data Centers

Efficient Data Center Summit 2009
On April 1, 2009, we hosted leaders of the IT industry to discuss best practices for improving data center
efficiency. We spent the day discussing how to significantly reduce resource use while meeting service
requirements. Not only is saving electricity and water good for the environment—it also makes good business
sense. Being greener reduces operating costs and keeps our industry competitive.

For those who could not attend in person, we've published slide decks and videos of the entire day here:

1: Green Grid, Google PUE,
Whats next

2: Best practices, data center
tour, Q&A

3: Sustainability, water
management

29/09/2016 Efficient Data Center Summit 2009 – Data Centers – Google

https://www.google.co.uk/about/datacenters/efficiency/external/2009-summit.html#tab0=4 2/2

Slide 16 Slides

250 A.13. GOOGLE

A.13.2 Compute Engine, Documentation, Networking and Firewalls

30/09/2016 Networking and Firewalls | Compute Engine Documentation | Google Cloud Platform

https://cloud.google.com/compute/docs/networks-and-firewalls 1/1

Google Compute Engine offers a configurable and flexible networking system that
enables you to permit connections between the outside world and your instances. You
can manage your Compute Engine network by configuring the network, firewall, and
instance settings.

Networks

Your Cloud Platform Console project can contain multiple networks, and each network
can have multiple instances attached to it. A network allows you to define a gateway IP
and the network range for the instances attached to that network. By default, every
project is provided with a defaultnetwork with preset configurations and firewall rules.
You can choose to customize the default network by adding or removing rules, or you
can create new networks in that project. Generally, most users only need one network,
although you can have up to five networks per project by default.

A network belongs to only one project, and each instance can only belong to one
network. All Compute Engine networks use the IPv4 protocol. Compute Engine currently
does not support IPv6. However, Google is a major advocate of IPv6 and it is an
important future direction.

Networking and Firewalls
Contents

Networks

Firewalls

Blocked traffic

IP Addresses

Routes

Egress throughput caps

What's next

252 A.14. HEWLETT PACKARD

A.14 Hewlett Packard

A.14.1 The Machine is coming

30/09/2016 The Machine: A new kind of computer

http://www.labs.hpe.com/research/themachine/ 1/1

Research The Machine

The Machine is coming
The Machine is a new kind of computer that allows you to do things you can’t even conceive
today. Imagine a computer with hundreds of petabytes of fast memory that remembers
everything about your history, helps inform real time situational decisions, and enables you to
predict, prevent, and respond to whatever the future brings.

For the past 60 years, we have been using the same computer systems and the only thing
changing has been the massive amounts of data growing exponentially from our online
world. By 2020, 30 billion connected devices will generate unprecedented amounts of data
our legacy systems cannot keep up.

Hewlett Packard Labs is committed to revolutionizing the computer from the ground up,
enabling computers of all sizes to take a quantum leap in performance and efficiency. It’s all
about turning all your big data into secure, actionable intelligence, using less energy and
lowering costs.

The Machine puts the data first. Instead of processors, we put memory at the core of what
we call “Memory-Driven Computing”. Memory-Driven Computing collapses the memory and
storage into one vast pool of memory called universal memory. To connect the memory and
processing power, we’re using advanced photonic fabric. Using light instead of electricity is
key to rapidly accessing any part of the massive memory pool while using much less energy.

With The Machine, we believe we can broaden and impact technical innovations and develop
new ways to extract knowledge and insights from large, complex collections of digital data
with unprecedented scale and speed, allowing us to collectively help solve some of the
world’s most pressing technical, economic, and social challenges.

254 A.15. IEEE 802 LAN/MAN STANDARDS COMMITTEE

A.15 IEEE 802 LAN/MAN Standards Committee

A.15.1 400GBASE-SR16

Source: http://www.intel.co.uk/content/dam/www/public/us/en/documents/
product-briefs/xeon-processor-d-brief.pdf. Accessed: 12 October 2016

http://www.intel.co.uk/content/dam/www/public/us/en/documents/product-briefs/xeon-processor-d-brief.pdf
http://www.intel.co.uk/content/dam/www/public/us/en/documents/product-briefs/xeon-processor-d-brief.pdf

Background
• 400G Ethernet (1st generation) is likely to use a 16 lane 25

Gb/s electrical interface (in each direction).
– 16x25G most favoured electrical interface in a straw poll at 29th April

2014 Ethernet Alliance 400Gb/s Subcommittee meeting.

• Lowest cost, lowest power, PMDs tend to have a 1:1 mapping
of electrical lanes to optical lane.

• Low initial volume for 400G MMF modules, probably
dominated by breakout applications.

• 2x16 fibre connector: physical contact and expanded beam
ferrules are in development.
– “400G Optical Interconnection Options”, Nathan Tracy, 29th April 2014,

Ethernet Alliance 400Gb/s Subcommittee meeting.

2

256 A.16. INTEL

A.16 Intel

A.16.1 Chip Shot: Custom Intel Xeon Sever Chip Boost Cloud Processing
Power for Amazon Web Services Customers

29/09/2016 Chip Shot: Custom Intel® Xeon® Sever Chip Boost Cloud Processing Power for Amazon Web Services Customers | Intel Newsroom

https://newsroom.intel.com/chip-shots/chip-shot-custom-intel-xeon-sever-chip-boost-cloud-processing-power-for-amazon-web-services-customers/ 1/4

Chip Shot (https://newsroom.intel.com/chip-shots/)
June 12, 2015

Share this Article

Contact Intel PR

CHIP SHOT: CUSTOM INTEL® XEON® SEVER CHIP BOOST CLOUD
PROCESSING POWER FOR AMAZON WEB SERVICES CUSTOMERS
Today, Amazon Web Services announced (https://aws.amazon.com/blogs/aws/the-new-m4-instance-
type-bonus-price-reduction-on-m3-c4/) it is using another customized Intel® Xeon® server processor
(http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e5-family.html) to deliver
M4 instances. M4 instances are a new Amazon Elastic Compute Cloud (Amazon EC2
(http://aws.amazon.com/ec2/)) instance designed for small and mid-size databases and memory-
intensive data processing tasks. The custom Intel Xeon processor E5-2676 v3 builds on the Amazon
and Intel collaboration to develop and deliver optimal experiences for customers of Amazon EC2, a
web service providing resizable compute capacity in the cloud. The custom Intel Xeon processor E5-
2676 v3 for AWS runs at a base frequency of 2.4 GHz and can deliver clock speeds as high as 3.0 GHz
with Intel® Turbo Boost. For more information on the AWS EC2 instances powered by Intel Xeon
processors, visit Amazon EC2 Instances (http://aws.amazon.com/ec2/instance-types/).

Tags: Amazon (https://newsroom.intel.com/tag/amazon/), Cloud
(https://newsroom.intel.com/tag/cloud/), Xeon (https://newsroom.intel.com/tag/xeon/)

Other News

August 25, 2016
Intel Unveils New 3D NAND Solid State Drives

All News Search Newsroom...

258 A.16. INTEL

A.16.2 Product brief, Intel Xeon Processor D-1500 Product Family, Ex-
tending Intelligence to the Edge

Source: http://www.intel.co.uk/content/dam/www/public/us/en/documents/
product-briefs/xeon-processor-d-brief.pdf.

http://www.intel.co.uk/content/dam/www/public/us/en/documents/product-briefs/xeon-processor-d-brief.pdf
http://www.intel.co.uk/content/dam/www/public/us/en/documents/product-briefs/xeon-processor-d-brief.pdf

INTEL® XEON® PROCESSOR D PRODUCT FAMILY OVERVIEW
Intel® Xeon® Processor Intelligence
in a Low-Power SoC

Up to 5.4x the networking performance8,3 and up to 6.06x the storage performance8,6 of the
Intel® Atom™ processor C2750.

Includes up to 16 cores (coming first quarter 2016), two integrated ports of 10 Gigabit Intel® Ethernet,
plus support for up to 128 GB of memory. Also includes Intel® 64-bit software support,9 L1 cache
(32K data, 32K instructions per core), L2 cache (256K per core), LLC cache (1.5 MB per core),
Intel® Turbo Boost Technology,9 and Intel® Hyper-Threading Technology.9

Industry-Leading 14 nm
Process Technology

Enables dense, low power system designs with thermal design points of ~20W to 45W and system
level performance per watt of up to 1.7x that of Intel Atom processor C2750-based solutions7,10.

Built-In Intel® Virtualization
Technology

Delivers near-native compute and I/O performance in virtualized data centers, network infrastructure,
and cloud computing, with advanced monitoring of cache and memory bandwidth for better service
level and infrastructure management.

Server-Class Reliability, Availability,
and Serviceability (RAS)

Provides high system reliability and data integrity with support for error correction code (ECC) memory,
single device data correction (SDDC), memory demand and patrol scrubbing, and much more.

Hardware-Enhanced Security
and Compliance

Intel Advanced Encryption Standard New Instructions (Intel AES-NI) provide integrated support for
fast, low-overhead encryption and Intel® Trusted Execution Technology (Intel® TXT) provides platform
verification (through authenticated boot) to enable strong security with reduced performance impact.

Server-Class Manageability Includes Intel® Node Manager Base for adaptive power management.

Intel® Platform Storage Extensions Enables fast data movement and high availability through integrated support for non-transparent
bridging (NTB), asynchronous DRAM self-refresh (ADR), and Intel® QuickData technology, which
provides a direct memory access (DMA) engine within the SoC.

INTEL® XEON® PROCESSOR D-1500 PRODUCT FAMILY SKU LIST
Processor Number

(Standard SKUs)
CPU
Cores Memory Speed

CPU
Speed

Max. DRAM
Capacity Intel Ethernet Power

Intel® Xeon® processor D-1577 16 DDR4-2400 1.30 GHz 128 GB 2 x 10 GbE 45 W

Intel® Xeon® processor D-1571 16 DDR4-2400 1.30 GHz 128 GB 2 x 10 GbE 45 W

Intel® Xeon® processor D-1567 12 DDR4-2400 2.10 GHz 128 GB 2 x 10 GbE 65 W

Intel® Xeon® processor D-1557 12 DDR4-2400 1.50 GHz 128 GB 2 x 10 GbE 45 W

Intel® Xeon® processor D-1548 8 DDR4-2400 2.00 GHz 128 GB 2 x 10 GbE 45 W

Intel® Xeon® processor D-1541 8 DDR4-2400 2.10 GHz 128 GB 2 x 10 GbE 45 W

Intel® Xeon® processor D-1537 8 DDR4-2133 1.70 GHz 128 GB 2 x 10 GbE 35 W

Intel® Xeon® processor D-1531 6 DDR4-2133 2.20 GHz 128 GB 2 x 10 GbE 45 W

Intel® Xeon® processor D-1528 6 DDR4-2133 1.90 GHz 128 GB 2 x 10 GbE 35 W

Intel® Xeon® processor D-1527 4 DDR4-2133 2.20 GHz 128 GB 2 x 10 GbE 35 W

Intel® Xeon® processor D-1521 4 DDR4-2133 2.40 GHz 128 GB 2 x 10 GbE 45 W

Intel® Xeon® processor D-1518 4 DDR4-2133 2.20 GHz 128 GB 2 x 10 GbE 35 W

On the Intel® Xeon® processor D product
family, visit www.intel.com/xeond.

MORE INFORMATION

3

PRODUCT BRIEF Intel® Xeon® Processor D-1500 Product Family

260 A.16. INTEL

A.16.3 The Intel Rack Scale Design Vision

Source: http://www.intel.com/content/www/us/en/architecture-and-technology/
rack-scale-design/rsd-vision-brochure.html.

http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design/rsd-vision-brochure.html
http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design/rsd-vision-brochure.html

8

Greater transparency and control is all about creating a
unified view of applications and resources, and this too
is a process that increases in scope and capability over
time as Intel® Rack Scale Design’s product roadmap
evolves.

» Glass Box Visibility is the where it starts. The current version of Intel® Rack
Scale Design will provide standards-based interfaces that enable a real-time
view into how and what storage, network, and compute resource are being
used across the data center.

» Elastic Security will transform how applications and networks are
secured. Intel® Rack Scale Design’s ability to dynamically reconfigure and
reallocate resources will enable vendors to instantly deploy virtual security
measures that will keep attackers out of any application or service they might
try to compromise.

» Intelligent Policy Pro iles will be the standard way to express security and
performance profiles, along with any critical nonfunctional requirements, like
measures of service availability and response levels. These profiles will
allow businesses to specify how they’d like applications to behave, and have
Intel® Rack Scale Design comply automatically.

» Enhanced Operations is the culmination of the vision for transparency and
control, because it will merge Glass Box Visibility, Elastic Security, and
Intelligent Policy Profiles with the ability to manage and operate assets that
exist outside of Intel® Rack Scale Design as well. This will radically simplify
operations because staff will have one place to go to see what’s happening and
make the infrastructure do what they need it to do. On top of that, this
capability will be open source, allowing unlimited extensibility and inclusion of
any vendor’s platform.

The acceleration of time-to-market means getting
your product into the market sooner by reducing
the barriers to product development and scaling.
To enable this, Intel® Rack Scale Design was designed
to closely match the needs and workflows of the Agile
Development, DevOps-driven organization. Intel® Rack
Scale Design will introduce capabilities to speed time-
to-market in a stepwise fashion, supporting companies
as they learn how to be more flexible and adaptable
over time.

» Dynamic Resource Allocation is the first step. Having the ability to
fluidly assign and change storage, network, and compute resources—
without having to physically rewire racks and servers—is a big benefit for
the enterprise.

 » Agile Infrastructure is what comes next. A big part of this agility comes
when rack scale tools alert operators to bottlenecks or hotspots in the
infrastructure, forecast and predict where these hotspots may occur, and
recommend changes to the allocation of particular resources.

 » Automated Infrastructure is the fulfillment of this part of the rack scale
vision. Imagine routine alterations to the configuration of the data
center—like responses to increased demand or graceful recovery from
partial failure—being conducted automatically, with minimal oversight by
staff. Better yet, imagine rack scale tools learning how to take action by
monitoring how the staff adapts and changes the infrastructure, and then
replicating best practices and even improvising better solutions, saving the
staff’s time and energy for the most interesting problems.

intel ® rack scale DESIGN evolution

262 A.16. INTEL

A.16.4 Intel Ethernet Controller XL710 Datasheet

Source: http://www.intel.co.uk/content/dam/www/public/us/en/documents/
datasheets/xl710-10-40-controller-datasheet.pdf.

http://www.intel.co.uk/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
http://www.intel.co.uk/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf

Ethernet Controller XL710 — Shared Resources

722

7.5.3.1.1 Initial setting of a linked list

Associating interrupt causes to an interrupt signal can be programmed by the software by any arbitrary
order. As long as interrupts are not generated, the linked list is considered as static any programming
order is acceptable.

7.5.3.1.2 Adding an interrupt cause to an active interrupt

Once an interrupt is active, its linked list is considered as dynamic resource. Special programming
ordering is required when adding an interrupt cause as follow:

• Program the cause register as required while the NEXTQ_INDX and NEXTQ_TYPE parameters point
to the next cause in the linked list.

• Update the NEXTQ_INDX and NEXTQ_TYPE parameters in the previous cause pointing to the added
one.

• Note that there is no need to disable the interrupt before these two steps.

7.5.3.1.3 Removing an interrupt cause from an active interrupt

Removing an interrupt cause from an interrupt linked list can be done in one of the following 2 cases:

Case 1 - the interrupt is disabled and it is guaranteed that this interrupt does not have any possible
pending interrupts. In this case, the linked list is considered static and there are no special programing
ordering. The software should simply update the NEXTQ_INDX and NEXTQ_TYPE parameters in the
previous cause to the next cause, skipping the cause that is removed from the linked list. At this point,
the software can modify the cause register of the removed interrupt cause if required.

Case 2 - the interrupt is active. In this case, the linked list is considered dynamic resource and the
software should follow a strict flow.

• Update the NEXTQ_INDX and NEXTQ_TYPE parameters in the previous cause to the next cause,
skipping the cause that is removed from the linked list. In case it is the first cause in the linked list
then update the FIRSTQ_INDX and FIRSTQ_TYPE parameters in the matched xxINT_LNKLSTx
register, skipping the cause that is removed from the linked list.

• Clear the CAUSE_ENA flag in the matched xINT_xQCTL register.
• The software should wait “long enough” time till it is guaranteed that the hardware fetched the

updated value of the previous cause. Waiting “long enough” time could be done by scheduling a
software interrupt and waiting for that interrupt that follows.

• At this point, the software can modify the cause register of the removed interrupt cause if required.
• Note that there is no need to disable the interrupt before starting the above sequence.

7.5.4 Interrupt Moderation

The XL710 is able to throttle interrupts in two layered methods: Interrupt Throttling (ITR) and Interrupt
Rate limiting (INTRL). These methods are detailed in the following subsections.

Shared Resources — Ethernet Controller XL710

723

7.5.4.1 Interrupt Throttling (ITR)

Interrupt throttling (ITR) is a mechanism that guarantees a minimum gap between two consecutive
interrupts (other than possible jitter caused by handling the interrupts). The XL710 counts the time
since the last interrupt is scheduled and compares it against the ITR setting. If an event associated with
this ITR happens before the ITR expires, the interrupt assertion is delayed until the ITR expires. If the
ITR expires before any event associated with this interrupt, the interrupt logic is armed and the
interrupt can be asserted the moment the event happens. The ITR intervals per vector are programmed
by the xxINT_ITRx registers (xx stands for PF or VF and x stands for 0 or N). The ITR is measured in
units of 2 µs.

The XL710 supports 3 ITRs per MSI-X vector as well as a NoITR option. The interrupt causes are
mapped to one of the ITRs by the ITR_INDX field (per cause). The ITR intervals can be programmed
directly to the xxINT_ITRx registers or via the xxINT_DYN_CTLx registers (‘xx’ stands for PF or VF and
‘x’ stands for ‘0’ or ‘N’). It might be useful to set the initial values using the xxINT_ITRx registers and
dynamic update by the xxINT_DYN_CTLx registers as explained in step #4 of the interrupt sequence
explained in Section 7.5.1.3. When any ITR interval of an interrupt with pending event is expired and
the INTRL(*) credit is positive, the hardware follows the following steps:

• Clear the other ITRs of the same interrupt
• Process all causes of the same interrupt (associated to all ITRs) as defined by the linked list

(described above in Section 7.5.3).
• (*) See next section for description of the interrupt rate limiting (INTRL)

7.5.4.2 Interrupt rate limiting (INTRL)

Interrupt rate limiting (INTRL) is a credit based mechanism that limits the maximum average number
of interrupts per second. The PF controls its interrupt rate limit by the PFINT_RATE0 and PFINT_RATEN
registers. The PF also controls its VF’s interrupt rate limit by the VPINT_RATE0 and VPINT_RATEN
registers. The control parameters of these registers are detailed below:

• INTRL_ENA: Enable / Disable option for the INTRL scheme. When disabled, interrupts can be
generated without rate limiting control.

• INTERVAL: The INTRL is a 6 bit interval defined in 4 usec units that controls the time gap on which
new interrupt credit is gained.

APPENDIX A. WEB SOURCES 265

A.16.5 Intel Ethernet Switch FM5000/FM6000 Datasheet

Source: http://www.intel.com/content/dam/www/public/us/en/documents/
datasheets/Ethernet-switch-fm5000-fm6000-datasheet.pdf.

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/Ethernet-switch-fm5000-fm6000-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/Ethernet-switch-fm5000-fm6000-datasheet.pdf

331496-001 43

Frame Processing—FM5000/FM6000 Datasheet

5.3 Frame Processor

The FM5000/FM6000 series frame processor is designed to handle wire-speed L2/L3/L4 switching in the
context of a single-chip or a multi-chip solution in a variety of topologies. The features offered are:

• Global Layer 3 (L3) routing over multiple devices in fat tree, ring or meshed topologies, with
support for Equal Cost Multipath (ECMP) route selection

• L2 switching with optional automatic address learning and security

• Tunneling support for protocols such as TRILL, MPLS, VPWS, VPLS, Q-in-Q, MAC-in-MAC

• DCB support for PFC, ETS, QCN and DCBx

• Server virtualization support for protocols such as VEPA+

• Basic and extended Access Control Lists (ACLs) for L2/L3/L4 and deep packet inspection

• Snooping of IGMP v1, v2, and v3

• Link aggregation across multiple links using various sources of information from the frame header
to derive the hashing function

• Trapping special frames

• Egress filtering and redirections including mirroring and logging

• Traffic policing with tricolor marking

• Congestion management

• IEEE 802.1ad provider bridging support

• Jumbo packet support (up to 15864 bytes)

• Cut through switching

The frame header pipeline is designed to process the following frame data:

• Source Port (7 bits)

• Source MAC Address (48 bits)

Figure 5-3 FM5000/FM6000 in a Tightly Coupled Clos Topology

APPENDIX A. WEB SOURCES 267

A.16.6 Intel 82599 10 GbE Controller Datasheet

Source: http://www.intel.co.uk/content/dam/www/public/us/en/documents/
datasheets/82599-10-gbe-controller-datasheet.pdf.

http://www.intel.co.uk/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.co.uk/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf

331520-004 33

Overview of New Capabilities Beyond the 82598—Intel® 82599 10 GbE Controller

1.4 Overview of New Capabilities Beyond
the 82598

1.4.1 Security

The 82599 supports the IEEE P802.1AE LinkSec specification. It incorporates an inline
packet crypto unit to support both privacy and integrity checks on a packet by packet
basis. The transmit data path includes both encryption and signing engines. On the
receive data path, the 82599 includes both decryption and integrity checkers. The crypto
engines use the AES GCM algorithm, which is designed to support the 802.1AE protocol.
Note that both host traffic and Manageability Controller (MC) management traffic might
be subject to authentication and/or encryption.

The 82599 supports IPsec offload for a given number of flows. It is the operating
system’s responsibility to submit (to hardware) the most loaded flows in order to take
maximum benefits of the IPsec offload in terms of CPU utilization savings. Main features
are:

• Offload IPsec for up to 1024 Security Associations (SA) for each of Tx and Rx

• AH and ESP protocols for authentication and encryption

• AES-128-GMAC and AES-128-GCM crypto engines

• Transport mode encapsulation

• IPv4 and IPv6 versions (no options or extension headers)

1.4.2 Transmit Rate Limiting

The 82599 supports Transmit Rate Scheduler (TRS) in addition to the Data Center
Bridging (DCB) functionality provided in the 82598. TRS is enabled for each transmit
queue. The following modes of TRS are used:

• Frame Overhead — IPG is extended by a fixed value for all transmit queues.

• Payload Rate — IPG, stretched relative to frame size, provides pre-determined data
(bytes) rates for each transmit queue.

1.4.3 Fibre Channel over Ethernet (FCoE)

Fibre Channel (FC) is the predominant protocol used in Storage Area Networks (SAN).
Fibre Channel over Ethernet (FCoE) enables a connection between an Ethernet storage
initiator and legacy FC storage targets or a complete Ethernet connection between a
storage initiator and a device.

Existing FC Host Bus Adapters (HBAs) used to connect between FC initiator and FC
targets provide full offload of the FC protocol to the initiator that enables maximizing
storage performance. The 82599 offloads the main data path of I/O Read and Write
commands to the storage target.

APPENDIX A. WEB SOURCES 269

A.17 Internet Society

A.17.1 Facebook’s Extremely Impressive Internal Use of IPv6

30/09/2016 Facebook’s Extremely Impressive Internal Use of IPv6 | Deploy360 Programme

http://www.internetsociety.org/deploy360/blog/2014/03/facebooks-extremely-impressive-internal-use-of-ipv6/ 1/1

Facebook’s Extremely Impressive Internal Use of IPv6
Wow! At the v6 World Congress this week in Paris (where Chris and Jan were), Facebook’s Paul Saab gave a very
impressive presentation about what Facebook has gone through to convert its internal network over to IPv6. Paul has now
posted his presentation online (in the IPv6 Group on Facebook, of course) and the story he relays with all the bumps and
issues is great to see. Here’s the key slide at the end showing where they are at:

UPDATE: To view the slides at the link above, you need a Facebook login because the slides were posted to the IPv6
Group inside of Facebook. For those who don’t have a Facebook login, here is a copy of the slides stored on our server.

Those statistics are:

100% of hosts they care about respond on IPv6 (Hosts that are not IPv6 ready are going away.)
75% of internal traffic is now IPv6 with a goal to be at 100% by Q3 2014 or earlier
98% of traffic in and out of HHVM is IPv6
100% of our memcache traffic is IPv6
A goal of being 100% IPv6only in 23 years

VERY impressive! Paul’s entire presentation is worth a read as he outlines a good number of the challenges they ran into,
from vendors equipment not supporting IPv6 to engineers always writing in IPv6 to some of the problems they had with
software. It’s all great info and good to have out there as a case study and for others to learn from.

I love that he ends noting that engineers are asking if they can start writing IPv6only code today! (I also enjoy that the

“solution” to stopping engineers from writing IPv4only code was simple: take away IPv4 on development systems!)

So… Facebook is going to be out in front of most other companies with having made the transition over to IPv6. What
are you waiting for? Check out our IPv6 resources and let us know if there is anything more we can do to help you!

APPENDIX A. WEB SOURCES 271

A.18 IPv6 World Congress 2014

A.18.1 THURSDAY 20 MARCH 2014 | CONFERENCE DAY TWO

30/09/2016 V6 World 2014: Conference Agenda

http://www.uppersideconferences.com/v6world2014/v6world2014program_day_2.html 1/1

IPv6 Content Session

 10.30 Linking in with IPv6 at Linkedin

Franck Martin | LINKEDIN

 10.50 The Road to IPv6: Bumpy

Paul Saab | FACEBOOK

 Panel/Debate

 11.10 IPv6 for Enterprise: at the Edge and Inside

MODERATOR

Yanick Pouffary | HP

PARTICIPANTS

Franck Martin | LINKEDIN
Paul Saab | FACEBOOK
Khalid Jawaid | CISCO

APPENDIX A. WEB SOURCES 273

A.19 Linux

A.19.1 Kernel Newbies – Linux 3.18 release notes

04/10/2016 Linux 3.18 - Linux Kernel Newbies

https://kernelnewbies.org/Linux_3.18 1/1

1. Prominent features

1.1. Overlayfs
An overlay filesystem combines two filesystems, an 'upper' filesystem and a 'lower' filesystem, into a single file system
namespace, modifications will be done to the upper filesystem. It has many uses, but it is most often used for live CDs, where a
readonly OS image is used as lower filesystem and a writeable RAMbacked filesystem is used as the upper one. Any
modifications will be done in the upper filesystem, thus allowing users to run the OS image provided normally. Overlayfs differs
from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or
upper, filesystems. This simplifies the implementation and allows native performance in these cases.

It is possible for both directory trees to be in the same filesystem and there is no requirement that the root of a filesystem be given
for either upper or lower. The lower filesystem can be any filesystem supported by Linux and does not need to be writable. The
lower filesystem can even be another overlayfs. The upper filesystem will normally be writable and if it is it must support the
creation of trusted.* extended attributes, and must provide valid d_type in readdir() responses, so NFS is not suitable.

Documentation: commit Code: commit

1.2. Radeon: mapping of user pages into video memory
Linux 3.16 added the ability to map users addresses into the video memory for Intel hardware. In this release, AMD Radeon has
also gained support for this feature. Normal application data can be used as a texture source or even as a render target
(depending upon the capabilities of the chipset). This has a number of uses, with zerocopy downloads to the GPU and efficient
readback making the intermixed streaming of CPU and GPU operations fairly efficient. This ability has many widespread
implications from faster rendering of clientside software rasterisers (chromium), mitigation of stalls due to read back (Mozilla
Firefox) and to faster pipelining of texture data (such as pixel buffer objects in OpenGL or data blobs in OpenCL).

Code: commit

1.3. bpf() syscall for eBFP virtual machine programs
bpf() syscall is a multiplexor for a range of different operations on eBPF which can be characterized as "universal inkernel virtual
machine". eBPF is similar to original Berkeley Packet Filter used to filter network packets. eBPF "extends" classic BPF in multiple
ways including ability to call inkernel helper functions and access shared data structures like eBPF maps. The programs can be
written in a restricted C that is compiled into eBPF bytecode and executed on the eBPF virtual machine or JITed into native
instruction set.

eBPF programs are similar to kernel modules. They are loaded by the user process and automatically unloaded when process
exits. Each eBPF program is a safe runtocompletion set of instructions. eBPF verifier statically determines that the program
terminates and is safe to execute. The programs are attached to different events. These events can be packets, tracepoint events
and other types in the future. Beyond storing data the programs may call into inkernel helper functions which may, for example,
dump stack, do trace_printk or other forms of live kernel debugging.

Recommended LWN article: The BPF system call API, version 14

ebfp() man page and design documentation can be read on the merge commit: commit

Code: commit 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

1.4. TCP: Data Center TCP congestion algorithm
This release adds the Data Center TCP (DCTCP) congestion control algorithm. DCTCP is an enhancement to the TCP
congestion control algorithm for data center networks. DCTCP has been designed for workloads typical of data center
environments to provide/achieve: high burst tolerance, low latency and high throughput.

For more details about DCTCP, see the DCTCP web page

Code: commit

APPENDIX A. WEB SOURCES 275

A.19.2 Linux Programmer’s Manual - LD.SO(8)

04/10/2016 ld.so(8) - Linux manual page

http://man7.org/linux/man-pages/man8/ld.so.8.html 1/1

 LD_PRELOAD
 A list of additional, user-specified, ELF shared objects to be
 loaded before all others. The items of the list can be
 separated by spaces or colons. This can be used to
 selectively override functions in other shared objects. The
 objects are searched for using the rules given under
 DESCRIPTION. In secure-execution mode, preload pathnames
 containing slashes are ignored, and shared objects in the
 standard search directories are loaded only if the set-user-ID
 mode bit is enabled on the shared object file.

 Within the pathnames specified in LD_PRELOAD, the dynamic
 linker understands the strings $ORIGIN, $LIB, and $PLATFORM
 (or the versions using curly braces around the names) as
 described above in Rpath token expansion.

APPENDIX A. WEB SOURCES 277

A.19.3 sendto(2) - Linux man page

04/10/2016 sendto(2): send message on socket - Linux man page

https://linux.die.net/man/2/sendto 1/1

ENOBUFS
The output queue for a network interface was full. This generally indicates that
the interface has stopped sending, but may be caused by transient congestion.
(Normally, this does not occur in Linux. Packets are just silently dropped when a
device queue overflows.)

APPENDIX A. WEB SOURCES 279

A.20 Metmako

A.20.1 MetaMux 48

Source: https://www.metamako.com/Data%20Sheets/MetaMux48_data_sheet.
pdf

https://www.metamako.com/Data%20Sheets/MetaMux48_data_sheet.pdf
https://www.metamako.com/Data%20Sheets/MetaMux48_data_sheet.pdf

FEATURE BENEFIT

 Fast 48:1 multiplexing
Aggregate streams from multiple sources into a single stream for hand-off to exchanges,
microwave links, or WAN links. Also configurable as multiple many-to-one multiplexers.

Integrated layer 1 switching
Patching, media conversion, tapping, replication and packet statistics. Wire-once to reduce visits
to the data centre. Use Layer 1 broadcast to implement a return path with a latency of just
5 ns and virtually no jitter.

Deterministic
Know and rely upon your system’s latency for fairness, or to get the best execution environment
for your orders. Without contention, the MetaMux aggregation latency varies by +/- 7 ns.

Precision timestamping with
synchronisation

Precisely timestamps packets on ingress using PPS or PTP synchronisation.

Flexible SFP/SFP+ support
Allows the use of less expensive modules, including direct attached copper cables, that are
boosted by MetaMux’s high performance signal recovery and regeneration.

Protocol flexibility
Protocol agnostic at layer 1 while layer 2 packet features support 1GbE and 10GbE with 100M.
100M Ethernet and rate conversion are planned for a future software release.

Fast filtering Cut-through filtering based on specific ACLs.

Packet statistics
Advanced monitoring. Captures high-level packet statistics across all ports. Supports detailed
switch statistics via SNMP or CLI. Provides tcpdump and LLDP on every port.

FPGA Development Flexible platform with all 48 ports connected to the onboard FPGA for custom applications.

x86-64 Linux management Uses open standards platform and MOS operating software to provide user extensible solutions.

APPENDIX A. WEB SOURCES 281

A.21 Microsoft

A.21.1 Microsoft’s Open CloudServer

Source: http://download.microsoft.com/download/B/1/7/B179029E-7AE8-447A-B8C9-B823B3DFC727/
Microsofts_Open_CloudServer_Strategy_Brief.pdf

http://download.microsoft.com/download/B/1/7/B179029E-7AE8-447A-B8C9-B823B3DFC727/Microsofts_Open_CloudServer_Strategy_Brief.pdf
http://download.microsoft.com/download/B/1/7/B179029E-7AE8-447A-B8C9-B823B3DFC727/Microsofts_Open_CloudServer_Strategy_Brief.pdf

Page 5Microsoft’s Open CloudServer

Microsoft’s CloudServer

Microsoft has been deploying online
services for over two decades and we

brought our experience and learnings
to develop the Open CloudServer V1,
which we shared with the Open Compute
Foundation and industry in early 2014. This
new architecture for hardware and software

converged all of our key cloud services, such
as Bing, Office 365, and the Microsoft Azure
platform on a common platform framework.
Reducing total cost of ownership (TCO)
was a key aspect. We strived to keep the
acquisition costs low and reduce operational
expenses, and we took a holistic look at the
full server lifecycle– from architecture design
through eventual decommissioning.

The result of this effort was a fully
integrated design from the silicon, to the

rack, and all the way to the datacenter
level. It incorporates the blade, storage,
network, systems management, and power
mechanicals. And it comes together in a

highly efficient single modular design. This
cloud server design has been optimized for
managing and operating an installed base
of more than one million servers across a

global footprint of Microsoft’s datacenters.

Performance results

The servers built against this design are currently in production in Microsoft datacenters
and are yielding significant advantages over the traditional enterprise servers they
replace:

• Up to 40% cost savings and 15% power efficiency benefits vs. traditional
enterprise servers

• Up to 50% improvement in deployment and service times

• Up to 75% improvement in operational agility vs. traditional enterprise servers

• Is expected to save 10,000 tons of metal and 1,100 miles of cable for a

deployment of one million servers

Page 6Microsoft’s Open CloudServer

Open CloudServer v2

In a sign of commitment to the Open
Compute project, we released the V2
specifications in October 2014. As with our
original design specification, we donated
the hardware specifications for the chassis,
the PCBA board, gerber files, and the
mechanical CAD models for the metal
chassis. In addition, we open sourced the
management software and the tools we use

during deployments, service, and repair.
Vendors will be able to build blades that
interoperate within the chassis and users
will be able to deploy, manage, and service
complete cloud systems.

The heart of the Open CloudServer V2
upgrade is a new compute blade. This blade
supports the latest Intel processor, enabling
28 cores per blade. More cores enable
more virtual machines, leading to a need

to rebalance the system. The new design
added capacity increases in all of the other
subsystems on the blade.

The V2 blade design supports the transition
from 10G networking to 40G networking.
The new design utilizes RDMA over
Converged Ethernet, or ROCE v2, to improve
network efficiencies moving data to and
from storage. It increases the SSD flash
capacity by 4 times by transitioning away
from SATA-based SSD flash storage to the
PCI-Express based M.2 form factor. The
M.2 flash cards are used in most laptops
and tablets today, and are transitioning
to the high performance NVMe interface.
The M.2’s small “stick” form factors enables
thermal efficiency improvements, resulting
in lower power consumption for cooling
fans.

To improve the efficiencies of the processors,
the design enables an expansion card that
can be accommodate items such as GPU
and FPGA accelerator cards.

In the chassis, the capacity of the power
supplies was increased and optimized
for our hyper-scale cloud datacenter
configurations. Utilizing a standard 19” EIA
rack was very important in creating a flexible
platform. To increase overall efficiency, the
management, cooling, and power is pooled
and shared across 24 blades. The blades can

be any combination of compute or storage
to meet flexible requirements.

Management of the blades and chassis is
through the Chassis Manager, essentially an
x86 PC. The Chassis Manager is responsible
for setting fan speeds, monitoring the health
of power supplies and fans, gathering event
logs, and for monitoring the minimum set

of out of band features required for running

the servers.

There are six shared power supplies that
allow for balanced three-phase power at the
datacenter, allowing full utilization. Six large

fans are used to reduce power consumption
and enable fault redundancy. The assembly
is designed for low-cost manufacturing and
pre-rack assembly before arriving at the
datacenter.

The overall result is that a full 52U rack with
96 servers can support 2688 cores, 48TB
memory, 2.3 PB disk storage, 3/4ths PB flash
storage, and 3.8 Tbps network bandwidth.

Microsoft Open

CloudServer V2

enhancements

284 A.21. MICROSOFT

A.21.2 Azure Purchase FAQ

30/09/2016 Azure Purchase FAQ | Microsoft Azure

https://azure.microsoft.com/en-gb/pricing/faq/ 1/2

Azure Purchase FAQ

EXPAND ALL COLLAPSE ALL

How can I edit my payment information for my Azure Subscription/s?

Which countries/regions is Azure commercially available in?

What currencies can be used to purchase Azure?

Can I try Azure for free, without any risk of being charged?

If I turn off the Spending Limit can I turn it on again?

Can I adjust the amount of the Spending Limit?

How do I optimise my Azure applications around billing charges?

I have server licences. Can I transfer them to Azure and run them on Virtual
Machines?

Are Azure and SQL Database available through SPLA?

What is the Azure SLA agreement?

What are the Azure SLA Credits?

How will Azure Service Level Agreements work with current onpremises
Microsoft licensing agreements?

Do we restrict resale of Azurebased service into countries under embargo?

How do we know in advance about service downtime for planned
maintenance?

Who can purchase Azure services?

What will the VAT rate charged for Azure purchases in the EU be?

Does Azure support IPv6?

Microsoft has played a leading role in helping customers to smoothly
transition from IPv4 to IPv6 for the past several years. To date, Microsoft
has built IPv6 support into many of its products and solutions like Windows
8 and Windows Server 2012 R2. Microsoft is committed to expanding the
worldwide capabilities of the Internet through IPv6 and enabling a variety of
valuable and exciting scenarios, including peertopeer and mobile
applications. The foundational work to enable IPv6 in the Azure
environment is well underway. However, we are unable to share a date
when IPv6 support will be generally available at this time. For more
information on IPv6 technologies and IPv6 support available in the Windows
operating system today, see Microsoft’s IPv6 information site which includes
business, technical, and developer
resources: http://technet.microsoft.com/enus/network/bb530961

286 A.21. MICROSOFT

A.21.3 Data Center Transmission Control Protocol (DCTCP)

30/09/2016 Data Center Transmission Control Protocol (DCTCP)

https://technet.microsoft.com/en-us/library/hh997028(v=ws.11).aspx 1/2

Data Center Transmission Control
Protocol (DCTCP)

Updated: May 9, 2012

Applies To: Windows Server 2012

Data Center Transmission Control Protocol (DCTCP)
Data centers host diverse applications, mixing on the same network a variety of workflows that require small,
predictable latency, while other applications require large, sustained throughput. In this environment, today’s
state‑of‑the‑art Transmission Control Protocol (TCP) congestion control mechanisms do not provide
sufficiently detailed congestion control settings. This results in queue formations in network switches leading
to delays, fluctuations in latency, and timeouts.

To reduce this problem, Windows Server 2012 introduces DCTCP, which uses Explicit Congestion Notification
(ECN) to estimate the extent of the congestion at the source, and reduce the sending rate only to the extent of
the congestion. This provides a more detailed control over network traffic, allowing DCTCP to operate with
very low buffer occupancies while still achieving high throughput.

The following illustration demonstrates the effectiveness of DCTCP in achieving full throughput while taking
up a very small footprint in an Ethernet switch packet buffer, as compared to traditional TCP. The graph
depicts the queue length in the network switch when using DCTCP and TCP. Two separate 1 gigabits per
second (Gbps) TCP/IP streams are directed into two separate switch ports, and are combined into a single
outgoing 1 Gbps port.

With traditional TCP, long‑lived, large volume TCP flows cause the length of the bottleneck queue to grow until
packets are dropped, resulting in the sawtooth pattern of the TCP traffic. When long and short flows traverse
the same queue, two impairments occur. First, packet loss on the short flows may occur as described above.
Second, there is a queue buildup even when no packets are lost. The short flows experience increased latency
as they are queued behind packets from the large flows.

DCTCP, however, provides earlier, more detailed responses to congestion, which effectively fine‑tune the
sending rates at each source to operate with much smaller message queue build‑up in the switch, while
maintaining the same aggregate throughput. The much lower queue lengths exhibited with DCTCP avoid the
latency and variation in latency that occur with TCP.

When used with commodity, shallow‑buffered switches, DCTCP delivers the same or better throughput than
TCP, while using 90% less buffer space in the network infrastructure. Unlike TCP, it also provides high burst
tolerance and low latency for short flows. While the limitations of TCP cause the mistransmission of traffic sent

288 A.22. NETCRAFT

A.22 Netcraft

A.22.1 September 2016 Netcraft Survey

27/09/2016 2016 | Netcraft

https://news.netcraft.com/archives/2016/ 1/9

September 2016 Web Server Survey

In the September 2016 survey we received responses from 1,285,759,146 sites and 6,118,785 webfacing
computers, reflecting large gains in both metrics: 132 million additional sites, and 138,000 more computers.

Microsoft made up the majority of this month's website growth, with the largest gain of 97 million sites, although it
showed only modest increases of 5,200 webfacing computers and 693,000 active sites.

Apache was responsible for most of this month's additional webfacing computers, increasing its count by 87,000 to
2.8 million (+3.2%). Similarly, nginx made a 3.0% gain of 30,000 computers. However, Microsoft's 0.3% gain was
not enough to stop its share falling by half a percentage point to 25.3% as a result of the gains made by Apache
and nginx.

Although nginx made a healthy gain in webfacing computers, it lost more than 5 million active sites and 5,600
sites within the topmillion. 27.6% of the busiest million sites now use nginx (0.56 pp from last month), while
Apache retains its lead with a 42.5% share.

Along with nginx, all of the major web server vendors suffered losses within the top million sites, largely due to the
growth of OpenResty this month. More than 10,000 of the top million sites are now using OpenResty, compared
with fewer than 4,000 last month, after millions of Tumblr blogs switched from nginx. As well as tumblr.com,
basecamp.com — the home of the Basecamp webbased project management tool — ranks amongst the most
visited sites to use OpenResty.

Tumblr's adoption of OpenResty has caused the web server to leap up the rankings to become the seventh largest
web server vendor by websites, and fifth by active sites. This month, 87% of all OpenResty sites appear under the
tumblr.com domain.

Although most OpenResty sites reside under the tumblr.com domain, the number of unique domains using

OpenResty also increased noticeably this month.

Switching from nginx to OpenResty is not such a paradigm shift as moving to, say, Apache or Microsoft IIS. The
OpenResty web application platform is built around the standard nginx core, which offers some familiarity, as well

Fair Use: Please note that use of the Netcraft site is subject to our Fair Use and Copyright policies. For more
information, please visit http://www.netcraft.com/aboutnetcraft/fairusecopyright/, or email
info@netcraft.com.

Home News AntiPhishing Security Testing

Internet Data Mining Performance About Netcraft

290 A.23. OPENCOMPUTE PROJECT

A.23 OpenCompute Project

A.23.1 Server/SpecsAndDesigns

29/09/2016 Server/SpecsAndDesigns - OpenCompute

http://www.opencompute.org/wiki/Motherboard/SpecsAndDesigns#Open_CloudServer 1/9

Open CloudServer (OCS) Chassis

Server/SpecsAndDesigns
From OpenCompute
(Redirected from Motherboard/SpecsAndDesigns)

Contents
1 Specs and Designs

1.1 Open CloudServer
1.2 System on Chip (SoC) Servers
1.3 Open Rack compatible server design
1.4 OCP Mezzanine Cards
1.5 1U/2U 19” Monolithic Servers

2 Specifications under review at the Incubation Committee
3 Specifications and Documents under review

3.1 To Review at Server Committee
3.2 Specifications requiring additional work

4 Retired Specifications

Specs and Designs
This page contains links to the current Specs and Designs that have been contributed to OCP.

Link to Server Committee wiki home http://www.opencompute.org/wiki/Server

A template specification is located here (http://files.opencompute.org/oc/public.php?
service=files&t=46e5ed20913f672865bb941c5c1f0285) . Be sure to ensure that you've got the correct license in place according to
your company's submission policies.

Open CloudServer

A chassis system that utilizes EIA 310-D 19" racks has been contributed by Microsoft. The system has been built with operational
knowledge gained by operating over a million servers. The 12U chassis has dedicated, hard-wired out of band management, phase-
balanced power, and high efficiency cooling. All of these are accepted by IC

29/09/2016 Server/SpecsAndDesigns - OpenCompute

http://www.opencompute.org/wiki/Motherboard/SpecsAndDesigns#Open_CloudServer 2/9

Open CloudServer OCS V2.1 Specification Version
Submit

Date
Contributor License Notes

Microsoft OCS Updates

Chassis Manager Update spec+collateral (aka CMv2)
(http://files.opencompute.org/oc/public.php?
service=files&t=111766962f86d4d65e20914917f756ca)

Blade spec update
(http://files.opencompute.org/oc/public.php?
service=files&t=dcc019cf49972add62d90d58a783ee41)

v2.1 Feb 09,
2016 Microsoft OWFa

1.0
Refresh for Future Intel® Xeon® Processor product
family

Open CloudServer OCS V2 Specification Version
Submit

Date
Contributor License Notes

Chassis (http://files.opencompute.org/oc/public.php?
service=files&t=795ec754e6c94de697fd79a6404730f1) v2.0 Oct 30,

2014 Microsoft OWFa
1.0

Chassis Management
(http://files.opencompute.org/oc/public.php?
service=files&t=7421ce14df325e8c48a2abd93d3d649c)

v2.0 Oct 30,
2014 Microsoft OWFa

1.0

Blade (http://files.opencompute.org/oc/public.php?
service=files&t=1c2ed966035b8b83aaeadc80b4a5b356) v2.0 Oct 30,

2014 Microsoft OWFa
1.0

Blade NIC Mezzanine
(http://files.opencompute.org/oc/public.php?
service=files&t=a3cc433a091c398b9b8c91be84b0e215)

v2.0 Oct 30,
2014 Microsoft OWFa

1.0

Tray Mezzanine
(http://files.opencompute.org/oc/public.php?
service=files&t=ee9283903f328a46731a0a480ea15c15)

v2.0 Oct 30,
2014 Microsoft OWFa

1.0

Chassis Manager Service Open Source Location

https://github.com/MSOpenTech/ChassisManager

OCS Operations Toolkit Open Source Location

https://github.com/MSOpenTech/OCSOperationsToolKit

OCS Mechanical Step Files

OCS_Mechanical_120314.zip, 66MB
(http://files.opencompute.org/oc/public.php?
service=files&t=749387d0a9e9420d7973f5f0db33f832)

OCS Tray backplane and power distribution board
collateral (Chassis Manager, use v1)

OCSv2_TBP_PDB.zip, 31MB
(http://files.opencompute.org/oc/public.php?
service=files&t=66ad36190d19eae3d3cf99e247d1acf8)

v2.0 Oct 30,
2014 Microsoft OWFa

1.0

OCS Open CloudServer Power Supply v2.0
(http://files.opencompute.org/oc/public.php?
service=files&t=4bb682624927b315b4f3d8a30f022c19)

OCS Open CloudServer Power Supply Mechanical v2.0
(http://files.opencompute.org/oc/public.php?
service=files&t=1a3206d2892a699cdf8f02c05dd180dd)

v2.0 Jan 20,
2015 Microsoft OWFa

1.0

Power Supply with integrated backup

Accepted by IC 11/6/2015

OCS Open CloudServer Solid State Drive v2.0
(http://files.opencompute.org/oc/public.php?
service=files&t=506cbcb9b88e35f335eb85c5a60be54a)

v2.0 Feb 28,
2015 Microsoft OWFa

1.0

M.2 NVME Solid State Flash Drive

Accepted by IC 11/6/2015

OCS Open CloudServer Solid State Drive v2.1
(http://files.opencompute.org/oc/public.php?
service=files&t=b58eb742adc395c1ed86f7f768989918)

v2.1
Aug
14,
2015

Microsoft OWFa
1.0

M.2 NVME Solid State Flash Drive

Capacity raised to 960GB and only NVME protocol

Accepted by IC 11/6/2015

Open CloudServer OCS V1 Specification Version
Submit

Date
Contributor License

Blade (http://files.opencompute.org/oc/public.php?
service=files&t=f479e4ad3f6ad681befe7c15bd200aaa) v1.0 Jan 28,

2014 Microsoft OWFa
1.0

Chassis (http://files.opencompute.org/oc/public.php?
service=files&t=15159413e31833aa7b51d1421d3e89c7) v1.0 Jan 28,

2014 Microsoft OWFa
1.0

Chassis Management
(http://files.opencompute.org/oc/public.php?
service=files&t=159797cbb4d43184213dec1fd6156e71)

v1.0 Jan 28,
2014 Microsoft OWFa

1.0

JBOD Blade
(http://files.opencompute.org/oc/public.php?
service=files&t=b6ef7174fe22e054302341aa7cc17d37)

v1.0 Jan 28,
2014 Microsoft OWFa

1.0

NIC Mezzanine
(http://files.opencompute.org/oc/public.php? v1.0 Jan 28,

2014 Microsoft OWFa
1.0

APPENDIX A. WEB SOURCES 293

A.23.2 Yosemite Platform Side Plane

Source: http://files.opencompute.org/oc/public.php?service=files&

t=7f5d8ba3c80744bc78a92d3cad46b7d2&download

http://files.opencompute.org/oc/public.php?service=files&t=7f5d8ba3c80744bc78a92d3cad46b7d2&download
http://files.opencompute.org/oc/public.php?service=files&t=7f5d8ba3c80744bc78a92d3cad46b7d2&download

Open	 Compute	 Project	 � 	 Yosemite	 Platform	 Design	 Specification	 	 	

	

8	 2/8/2016	

	
	

Figure	 5-‐2:	 Yosemite	 Platform	

	

5.2 Yosemite	 Platform	 Side	 Plane	
The	 Yosemite	 Platform	 contains	 a	 side	 plane	 to	 hold	 all	 connectors	 and	 common	 infrastructure	
pieces,	 including	 the	 1S	 server	 card	 connectors,	 OCP	 V2	 Mezzanine	 card	 adapter	 card,	 a	 12.5V	
inlet	 power	 connector	 (from	 the	 Cubby	 chassis),	 a	 BMC	 section,	 fan	 connectors,	 a	 hot-‐swap	
controller,	 and	 a	 front	 panel.	

The	 side	 plane	 is	 installed	 vertically	 on	 the	 side	 of	 a	 Cubby	 chassis.	 OCP-‐compliant	 1S	 server	
cards	 with	 height	 of	 110mm	 or	 160mm	 can	 be	 installed	 horizontally	 to	 the	 side	 plane.	

The	 side	 plane	 shall	 be	 implemented	 as	 a	 low-‐maintenance,	 robust,	 platform	 to	 reduce	 the	 need	
of	 service.	 A	 BMC	 (ASPEED	 AST1250)	 is	 the	 main	 control	 unit	 on	 the	 side	 plane.	 The	 Yosemite	
Platform	 uses	 an	 adapter	 card	 at	 the	 front	 of	 the	 sled	 as	 a	 carrier	 board	 for	 OCP	 2.0	 Mezzanine	
cards.	 The	 OCP	 2.0	 Mezzanine	 connectors	 on	 the	 adapter	 cards	 have	 been	 carefully	 designed	 in	
a	 hybrid	 way	 to	 take	 a	 PCIe-‐based	 multi-‐host	 OCP	 V2	 Mezzanine	 40GbE/50GbE	 card,	 or	 a	 40Gb	
capable	 KR	 retimer	 Mezzanine	 card	 or	 a	 50GbE	 KR	 Aggregation	 Mezzanine	 that	 connects	 to	 the	
1S	 server’s	 built-‐in	 10GBase-‐KR	 Network	 Interface	 Cards	 (NICs),	 as	 the	 Ethernet	 interface	 to	 the	
external	 world.	 Either	 way,	 the	 NIC	 will	 be	 used	 as	 a	 shared	 NIC,	 so	 that	 a	 BMC	 can	 be	 accessed	
via	 the	 OOB	 of	 the	 NIC,	 Network	 Controller	 Sideband	 Interface	 (NC-‐SI),	 or	 System	 Management	
Bus	 (SMBus).	

By	 sampling	 the	 sensors	 on	 the	 Yosemite	 Platform	 periodically,	 the	 BMC	 continuously	 monitors	
the	 system’s	 health	 status	 from	 function,	 power	 and	 thermal	 perspectives.	 The	 BMC	 shall	
implement	 sophisticated	 algorithms	 to	 control	 fans	 accordingly.	 	

The	 BMC	 is	 connected	 to	 a	 hot-‐swap	 controller	 thru	 an	 Inter-‐Integrated	 Circuit	 (I2C)	 bus	 so	 that	
it	 can	 get	 system-‐wide	 power	 consumption	 and	 maintain	 a	 healthy	 status.	 The	 BMC	 also	
controls	 12.5V	 power	 to	 each	 1S	 server.	 It	 is	 possible	 to	 let	 the	 BMC	 completely	 shut	 down	
12.5V	 to	 a	 1S	 server	 when	 the	 server	 needs	 a	 cold	 reboot.	

APPENDIX A. WEB SOURCES 295

A.23.3 OCP Summit IV: Breaking Up the Monolith

29/09/2016 Blog » Open Compute Project

http://www.opencompute.org/blog/author/frankovsky 3/22

Open Rack and Open Vault for use in cold-storage environments

and designs for a new, all-flash database server (codenamed

Dragonstone) and the latest version of its web server

(codenamed Winterfell).

But most exciting of all are a series of new developments that will

enable us to take some big steps forward toward better utilization of

these technologies. One of the challenges we face as an industry is that

much of the hardware we build and consume is highly monolithic -- our

processors are inextricably linked to our motherboards, which are in

turn linked to specific networking technology, and so on. This leads to

poorly configured systems that can't keep up with rapidly evolving

software and waste lots of energy and material.

To fix this, we need to break up some of these monolithic designs -- to

disaggregate some of the components of these technologies from each

other so we can build systems that truly fit the workloads they run and

whose components can be replaced or updated independently of each

other. Several members of the Open Compute Project have come

together today to take the first steps toward this kind of disaggregation:

Silicon photonics: Intel is contributing designs for its

forthcoming silicon photonics technology, which will enable 100

Gbps interconnects -- enough bandwidth to serve multiple

processor generations. This technology also has such low

latency that we can take components that previously needed to

be bound to the same motherboard and begin to spread them

out within a rack.

"Group Hug" board: Facebook is contributing a new common

slot architecture specification for motherboards. This

specification -- which we've nicknamed "Group Hug" -- can be

used to produce boards that are completely vendor-neutral and

will last through multiple processor generations. The

specification uses a simple PCIe x8 connector to link the SOCs to

the board.

29/09/2016 Blog » Open Compute Project

http://www.opencompute.org/blog/author/frankovsky 4/22

New SOCs: AMD, Applied Micro, Calxeda, and Intel have all

announced support for the Group Hug board, and Applied Micro

and Intel have already built mechanical demos of their new

designs.

Taken together, these announcements will enable data center operators

to build systems that better fit the workloads they need to run and to

upgrade through multiple generations of processors without having to

replace the motherboards or the in-rack networking. This should in turn

enable real gains in utilization and unlock even more efficiencies in data

center construction and operations.

There's a lot of work left to do here, but it's never been more important

for us to take these steps. As our lives become more connected, and as

more devices and applications generate more data, we will face

compute and storage challenges that existing technologies cannot

handle efficiently.

But we have one big advantage, as we face these challenges: We are

doing this work together, in the open, and everyone has a chance to

contribute -- to help ensure that all the technologies we develop and

consume are as scalable as possible, as efficient as possible, and as

innovative as possible.

298 A.24. SOLARFLARE

A.24 Solarflare

A.24.1 Hardware Platforms

04/10/2016 Platforms | Solarflare

http://www.solarflare.com/platforms 1/1

Flareon Ultra and Flareon 10/40GbE Server I/O Adapters

Flareon 10/40GbE PCIe 3.1 server I/O adapters deliver industryleading message rates with lowest
latency and jitter over standard Ethernet along with low CPU utilization, enabling the industry's best
performance and scalability for enterprise data center environments. Flareon server I/O adapters
enable the deployment of more services to more users to fully leverage multicore CPUs by providing
hardwareassisted features to efficiently distribute I/O processing workloads, which eliminate
bottlenecks, and optimize CPU utilization. Flareon server I/O adapters also provide application
compatibility and protocol compliance, bypassing kernel networking overhead, while featuring binary
compatibility with standard APIs and applications. Flareon server I/O adapters accelerate high
frequency trading applications, high performance computing, Hadoop, cloud, grid, database, social
networking and virtualized data centers.

Flareon Server I/O Adapters with AppFlex® technology provide a flexible platform for delivering
multiple network services with a single server adapter. With patent pending technology Flareon
adapters enable selectively adding and controlling a wide range of services such as innovative
instrumentation and capture tools to detect network problems quickly, precision time, tamperresistant
security, and application acceleration when deploying servers.

More on Flareon Ultra and Flareon 10/40GbE Server I/O Adapters

Onload/Performant 10GbE Server Adapters

Solarflare Onload server adapters deliver the highest performance, lowest latency, and most scalable
10GbE solution in the industry. Onload server adapters are ideal for the most demanding, latency
sensitive applications in environments requiring the highest message rates. They also support
OpenOnload® application acceleration middleware, which offers a unique combination of ultralow
latency and high message rate performance, with seamless application compatibility. Solarflare Onload
PTP server adapters combine the lowest latency at highest message rates with the highest precision
server clock accuracy – all in a single server slot operating over a single 10GbE network.

Solarflare Performant server adapters combine excellent performance with outstanding value to meet a
broad range of 10GbE networking needs, such as data center, SMB, cloud computing, HPC, grid, and
virtualized environments. Solarflare Performant adapter hardware and drivers are the same as those
found in Solarflare Onload server adapters.

More on Onload/Performant 10GbE Server Adapters

300 A.25. STATISTICS BRAIN

A.25 Statistics Brain

A.25.1 Google Annual Search Statistics (2016)

27/09/2016 STATS | Google Annual Search Statistics – Statistic Brain

http://www.statisticbrain.com/google-searches/ 1/3

º PREV DATA SET NEXT DATA SET »

Ɔ
TAKE OUR SUPER FUN AND EXTREMELY SHORT

CONSUMER BEHAVIOR POLL!
CONTRIBUTE TO STATISTIC BRAIN'S FREE ONLINE

DATA SETS!

� TRENDING
STATISTICS
High School Graduation
Rates by Country and
State

Homeless Veterans
Statistics

Crowdfunding Platform
Statistics

Job Turnover Rates by
Industry Statistics

Girl Scout Cookie
Statistics

Vegetable Consumption
and Production Statistics

ADVERTISEMENT

Ɣ BRAIN QUIZ

Weekly Quiz
Challenge! Take the
Statistic Brain "Film
Quiz" and see just how
much you know about
the movie industry.
Just 10 short

ADVERTISEMENT

Google Annual Search
Statistics

Year
Annual Number of
Google Searches

Average Searches Per
Day

2015 2,834,650,000,000 7,766,000,000

2014 2,095,100,000,000 5,740,000,000

2013 2,161,530,000,000 5,922,000,000

2012 1,873,910,000,000 5,134,000,000

2011 1,722,071,000,000 4,717,000,000

2010 1,324,670,000,000 3,627,000,000

2009 953,700,000,000 2,610,000,000

2008 637,200,000,000 1,745,000,000

2007 438,000,000,000 1,200,000,000

2000 22,000,000,000 60,000,000

1998
3,600,000 *Googles
official first year

9,800

S TAT I S T I C B R A I N

HOME Ú BUS I N E S S Ú MED I A Ú F I N ANC E Ú GEOGRAPH I C Ú

D EMOGRAPH I C Ú T E CHNO LOGY Ú S POR T S Ú

27/09/2016 STATS | Google Annual Search Statistics – Statistic Brain

http://www.statisticbrain.com/google-searches/ 2/3

Statistic Sources & References

F Sources: Google Official History, Comscore,
Statistic Brain Research Institute
Content Author: Statistic Brain

Date research was conducted: September 6, 2016

Google Annual Search Statistics

Digital Technology

ADVERTISEMENT

Related Statistic Brain Research

questions....
Click Here to Play

U HISTORIC
TIMELINES

Check out these visual
timelines that take you
from the beginning of a
companies history to
where they are today

FACEBOOK
COMPANY TIMELINE

NIKE COMPANY
TIMELINE

APPLE COMPANY
TIMELINE

SEARS COMPANY
TIMELINE

Information &

Support

About Us

Contact
Cite Statistics

FAQ

Privacy Policy

Advertisers

Statistic Brain

Extras

Statistical Trivia

Historic Timelines

Become a Statistic
Survey

Socialize With

Us

Receive Our

Monthly

Newsletter

EMAIL ADDRESS

S U B S C R I B E

APPENDIX A. WEB SOURCES 303

A.26 The Storage Networking Industry Association

A.26.1 Small Form Factor Committee - QSFP+ 28 Gb/s 4X Pluggable
Transceiver Solution

Source: ftp://ftp.seagate.com/sff/SFF-8665.PDF

ftp://ftp.seagate.com/sff/SFF-8665.PDF

 SFF specifications are available at http://www.snia.org/sff/specifications
 or ftp://ftp.seagate.com/sff

This specification was developed by the SFF Committee prior to it
becoming the SFF TA (Technology Affiliate) TWG (Technical Working

Group) of SNIA (Storage Networking Industry Association).

The information below should be used instead of the equivalent herein.

POINTS OF CONTACT:

 Chairman SFF TA TWG
 Email: SFF-Chair@snia.org

If you are interested in participating in the activities of the SFF TWG, the
membership application can be found at:
 http://www.snia.org/sff/join

The complete list of SFF Specifications which have been completed or are currently
being worked on can be found at:
 http://www.snia.org/sff/specifications/SFF-8000.TXT

The operations which complement the SNIA's TWG Policies & Procedures to guide the SFF
TWG can be found at:
 http://www.snia.org/sff/specifications/SFF-8032.PDF

Suggestions for improvement of this specification will be welcome, they should be
submitted to:
 http://www.snia.org/feedback

 Published SFF-8665 Rev 1.9

QSFP+ 28 Gb/s 4X Pluggable Transceiver Solution Page 1

 SFF Committee documentation may be purchased in electronic form.
 SFF specifications are available at ftp://ftp.seagate.com/sff

SFF Committee

SFF-8665

Specification for

 QSFP+ 28 Gb/s 4X Pluggable Transceiver Solution (QSFP28)

Rev 1.9 June 29, 2015

Secretariat: SFF Committee

Abstract: This specification defines a 28 Gb/s QSFP+ pluggable transceiver solution
popularly known as QSFP28. It gathers the appropriate/unique Base Electrical, Optical,
Common Management, Module/Plug Formfactor, Host connector and cage specifications into a
clearly delineated solution for users.

There are multiple generations of QSFP+

Forwarded to Standardization
 10 Gb/s QSFP10 EIA-964/SFF-8436
Continuing Projects
 10 Gb/s QSFP10 SFF-8635
 14 Gb/s QSFP14 SFF-8685
 28 Gb/s QSFP28 SFF-8665

Connectors compliant to SFF-8665 are also compliant to SFF-8685, and SFF-8635, but the
reverse is not necessarily true.

This document provides a common specification for systems manufacturers, system
integrators, and suppliers. This is an internal working document of the SFF Committee, an
industry ad hoc group.

This specification is made available for public review, and written comments are
solicited from readers. Comments received by the members will be considered for inclusion
in future revisions of this specification.

Support: This specification is supported by the identified member companies of the SFF
Committee.

POINTS OF CONTACT:

 Jay Neer I. Dal Allan
 Molex Incorporated Chairman SFF Committee
 2222 Wellington Court 14426 Black Walnut Court
 Lisle, IL 60532 Saratoga CA 95070

 Ph: 561-251-8016 Ph: 408-867-6630
 Jay dot neer at molex dot com endlcom at acm dot org

306 A.27. WIRED

A.27 Wired

A.27.1 How Facebook Changed the Basic Tech That Runs the Internet

30/09/2016 How Facebook Changed the Basic Tech That Runs the Internet | WIRED

https://www.wired.com/2015/03/facebook-got-even-apple-back-open-source-hardware/ 1/4

CAD& M&TZ #U4IN&44 03.11.15 7:00 AM

&V&N APPL& ADMIT4 țħě įđěǻ ẅǻș ǻ ģǿǿđ ǿňě.

Bǻčķ įň 2011, įň ǻ čǻfěțěřįǻ ǻț țħě ǿŀđ Fǻčěbǿǿķ ħěǻđqųǻřțěřș įň Pǻŀǿ Ǻŀțǿ,
Čǻŀįfǿřňįǻ, Mǻřķ Żųčķěřběřģ řěvěǻŀěđ țħǻț ħįș čǿmpǻňỳ ẅǻș bųįŀđįňģ ǻŀŀ șǿřțș
ǿf ňěẅ čǿmpųțįňģ ħǻřđẅǻřě țħǻț čǿųŀđ mǿřě ěffįčįěňțŀỳ řųň įțș vǻșț ǿňŀįňě
ěmpįřě. Bųț țħǻț ẅǻșň’ț țħě ǿňŀỳ șųřpřįșě. Fǻčěbǿǿķ, Żųčķěřběřģ șǻįđ, ẅǿųŀđ
șħǻřě įțș ňěẅ ħǻřđẅǻřě đěșįģňș ẅįțħ țħě řěșț ǿf țħě ẅǿřŀđ. Țħě Fǻčěbǿǿķ
șǿčįǻŀ ňěțẅǿřķįňģ ěmpįřě ħǻđ ģřǿẅň șǿ ŀǻřģě—șěřvįňģ ħųňđřěđș ǿf mįŀŀįǿňș
ǿf pěǿpŀě ǻčřǿșș țħě ģŀǿbě—įț ǿňŀỳ mǻđě șěňșě țħǻț țħě čǿmpǻňỳ ẅǿųŀđ ẅǻňț
țǿ șțřěǻmŀįňě țħě vǻșț șěřvěř fǻřmș țħǻț ųňđěřpįň įțș ǿpěřǻțįǿň. (Ňǿț țǿ
měňțįǿň țħǻț Ģǿǿģŀě ħǻđ ǻŀřěǻđỳ đǿňě șǿměțħįňģ șįmįŀǻř). Bųț fǿř mǻňỳ,
Fǻčěbǿǿķ’ș đěčįșįǿň țǿ “ǿpěň șǿųřčě” țħěșě ħǻřđẅǻřě đěșįģňș șěěměđ ǿvěřŀỳ
įđěǻŀįșțįč, įmpřǻčțįčǻŀ, ěvěň pǿįňțŀěșș.

Țħě įđěǻ ẅǻș țħǻț ǿțħěřș čǿųŀđ ųșě Fǻčěbǿǿķ’ș đěșįģňș țǿ bųįŀđ țħěįř ǿẅň
ǿňŀįňě ǿpěřǻțįǿňș, čřěǻțě ǻ břǿǻđ mǻřķěț fǿř țħě ģěǻř, ǻňđ řěđųčě Fǻčěbǿǿķ’ș
čǿșțș ěvěň fųřțħěř. Bųț țħě șķěpțįčș șǻẅ įț ǻș ŀįțțŀě mǿřě ǻ PŘ șțųňț: Fǻčěbǿǿķ
șħǿẅįňģ țħě ẅǿřđ ħǿẅ “ǿpěň” įț ẅǻș. Ǻfțěř ǻŀŀ, ħǿẅ mǻňỳ ǿțħěřș ẅěřě țħě
șįżě ǿf ǻ Ģǿǿģŀě ǿř ǻ Fǻčěbǿǿķ? Ħǿẅ mǻňỳ ǿțħěřș ẅǿųŀđ ẅǻňț țħįș ģěǻř
ěňǿųģħ țǿ čħǻňģě țħě ẅǻỳ țħěỳ’vě ǻŀẅǻỳș đǿňě țħįňģș? Ǻňđ ěvěň įf țħěỳ đįđ,
ħǿẅ čǿųŀđ įț pǿșșįbŀỳ ħěŀp Fǻčěbǿǿķ?

Fǿųř ỳěǻřș ǿň, țħįș șěěmįňģŀỳ qųįxǿțįč įđěǻ ħǻș pŀǻỳěđ ǿųț mųčħ ǻș Fǻčěbǿǿķ
șǻįđ įț ẅǿųŀđ. Ǻ șǿčįǻŀ-ňěțẅǿřķįňģ čǿmpǻňỳ ħǻș čħǻňģěđ țħě ẅǻỳ įňțěřňěț
čǿmpǻňįěș čǿňșųmě țħě ħǻřđẅǻřě ǿň ẅħįčħ țħěỳ řųň—ǻňđ țħě ẅǻỳ mǻňỳ ǿf
țħě ẅǿřŀđ’ș ħǻřđẅǻřě čǿmpǻňįěș bųįŀđ ǻňđ șěŀŀ įț.

Ǿň Țųěșđǻỳ, ǻț țħě ǻňňųǻŀ Șįŀįčǿň Vǻŀŀěỳ ģǻțħěřįňģ ǿf țħě Ǿpěň Čǿmpųțě
Přǿjěčț, țħě ňǿň-přǿfįț țħǻț ǿvěřșěěș Fǻčěbǿǿķ’ș ěffǿřț țǿ șħǻřě ħǻřđẅǻřě
ǻčřǿșș țħě țěčħ įňđųșțřỳ, Přǿjěčț čħǻįřmǻň ǻňđ ěx-Fǻčěbǿǿķěř Fřǻňķ
Fřǻňķǿvșķỳ ǻňňǿųňčěđ țħǻț Ǻppŀě ħǻș jǿįňěđ țħě ěffǿřț, fǿŀŀǿẅįňģ įň țħě
fǿǿțșțěpș ǿf Mįčřǿșǿfț, čŀǿųđ čǿmpųțįňģ ģįǻňț Řǻčķșpǻčě, ǻňđ șěvěřǻŀ ǿf țħě
čǿųňțřỳ’ș bįģģěșț fįňǻňčįǻŀ čǿmpǻňįěș, įňčŀųđįňģ Ģǿŀđmǻň Șǻčħș, Fįđěŀįțỳ,
ǻňđ Bǻňķ ǿf Ǻměřįčǻ.

30/09/2016 How Facebook Changed the Basic Tech That Runs the Internet | WIRED

https://www.wired.com/2015/03/facebook-got-even-apple-back-open-source-hardware/ 2/4

Ŀįķě țħěșě ǿțħěřș, Ǻppŀě įș ǻ čǿmpǻňỳ țħǻț ǿpěřǻțěș įțș ǿẅň ěňǿřmǿųș ǿňŀįňě
șěřvįčěș—ǻ čǿmpǻňỳ țħǻț ňěěđș țħě șǿřț ǿf ħǻřđẅǻřě Fǻčěbǿǿķ įș șħǻřįňģ.
Běħįňđ țħě șčěňěș, Ǻppŀě ħǻș ŀǿňģ ěxpŀǿřěđ țħě ųșě ǿf Fǻčěbǿǿķ’ș đěșįģňș.
Ǻňđ čǿňșįđěřįňģ țħě įňțěňșěŀỳ přįvǻțě ňǻțųřě ǿf țħě čǿmpǻňỳ, įțș pųbŀįč
įňvǿŀvěměňț įň țħě Ǿpěň Čǿmpųțě přǿjěčț șħǿẅș jųșț ħǿẅ mųčħ įț běŀįěvěș įň
țħįș bįģ įđěǻ.

Měǻňẅħįŀě, ǻț țħě Ǿpěň Čǿmpųțě Șųmmįț, țẅǿ bįģ-ňǻmě Ǻměřįčǻň ħǻřđẅǻřě
čǿmpǻňįěș řěvěǻŀěđ ňěẅ přǿđųčțș įň đįřěčț řěșpǿňșě țǿ Fǻčěbǿǿķ’ș ěffǿřțș—
přǿđųčțș țħǻț čǿųŀđ ħěŀp ǻŀŀ șǿřțș ǿf ǿțħěř čǿmpǻňįěș șțřěǻmŀįňě țħěįř
ǿpěřǻțįǿňș įň mųčħ țħě șǻmě ẅǻỳ Fǻčěbǿǿķ ħǻș đǿňě. ĦP řěŀěǻșěđ ǻ ňěẅ ŀįňě
ǿf čǿmpųțěř șěřvěřș bǻșěđ ǿň Fǻčěbǿǿķ’ș đěșįģňș, ǻňđ čħįp mǻķěř İňțěŀ
ųňvěįŀěđ ǻ ňěẅ șțřěǻmŀįňěđ șěřvěř přǿčěșșǿř đěșįģňěđ įň țǻňđěm ẅįțħ
Fǻčěbǿǿķ. Țħěỳ běŀįěvě įň țħě įđěǻ țǿǿ.

�eMpoke to �enefit verSone

30/09/2016 How Facebook Changed the Basic Tech That Runs the Internet | WIRED

https://www.wired.com/2015/03/facebook-got-even-apple-back-open-source-hardware/ 3/4

�eMpoke to �enefit verSone

İňțěŀ įșň’ț řěŀěǻșįňģ țħě đěșįģň ǿf įțș ňěẅ “șįňģŀě șǿčķěț” čħįp țǿ țħě ẅǿřŀđ ǻț
ŀǻřģě. Ǿțħěřș čǻň’ț bųįŀđ țħěįř ǿẅň, ǻș țħěỳ čǻň ẅįțħ Fǻčěbǿǿķ’ș ǿpěň șǿųřčě
șěřvěř đěșįģňș. Bųț İňțěŀ ẅįŀŀ ěvěňțųǻŀŀỳ șěŀŀ țħě čħįp țǿ ǻňỳǿňě, ňǿț jųșț țǿ
Fǻčěbǿǿķ. “Țħě įmpǿřțǻňț bįț ħěřě įș țħǻț Fǻčěbǿǿķ ǻňđ İňțěŀ ǻřě đǿįňģ țħįș įň
țħě ǿpěň,” șǻỳș Fǻčěbǿǿķ vįčě přěșįđěňț ǿf įňfřǻșțřųčțųřě ěňģįňěěřįňģ Jǻỳ
Pǻřįķħ, ẅħǿ ħěŀpěđ ǿvěřșěě țħįș 18-mǿňțħ ěffǿřț.

İț’ș ňǿț ǻň ěǻșỳ șįțųǻțįǿň țǿ ẅřǻp ỳǿųř ħěǻđ ǻřǿųňđ. Bųț pěřħǻpș mǿřě țħǻň
ǻňỳțħįňģ ěŀșě, țħįș pǻřțňěřșħįp șħǿẅș ħǿẅ ěffěčțįvěŀỳ Fǻčěbǿǿķ’ș fǿųňđǻțįǿň
ħǻș břǿųģħț țǿģěțħěř țħě čǿmpǻňįěș bųįŀđįňģ țħě ẅǿřŀđ’ș ǿňŀįňě șěřvįčěș țǿ
țħě běňěfįț ǿf ěvěřỳǿňě ẅħǿ ųșěș țħě įňțěřňěț.

30/09/2016 How Facebook Changed the Basic Tech That Runs the Internet | WIRED

https://www.wired.com/2015/03/facebook-got-even-apple-back-open-source-hardware/ 4/4

İň țħě pǻșț, İňțěŀ ẅǿųŀđ ẅǿřķ ẅįțħ ǻ Ģǿǿģŀě ǿř ǻ Fǻčěbǿǿķ țǿ mǿđįfỳ įțș čħįpș
țǿ běțțěř șųįț șųčħ ěňǿřmǿųș ǿpěřǻțįǿňș. Bųț țħěșě mǿđįfįčǻțįǿňș ẅěřě șmǻŀŀ,
řǻřě, ǻňđ ŀǻřģěŀỳ șěčřěț. İňțěŀ đįđň’ț ẅǻňț ěvěřỳǿňě ǻșķįňģ fǿř țħěįř ǿẅň
čųșțǿm čħįpș. İțș bųșįňěșș, ǻfțěř ǻŀŀ, įș bǻșěđ ǿň mǻșș přǿđųčțįǿň. Ňǿẅ, ẅįțħ ǻ
čǿmmųňįțỳ ǿf čǿmpǻňįěș—fřǿm Ǻppŀě țǿ Mįčřǿșǿfț ǻňđ běỳǿňđ—ģěțțįňģ
běħįňđ Fǻčěbǿǿķ’ș bǻșįč įđěǻș, İňțěŀ ħǻș řěǻșǿň țǿ čħǻňģě įțș ẅǻỳș.

Ǻș Fřǻňķǿvșķỳ pųțș įț, ǻ čǿmpǻňỳ ŀįķě İňțěŀ įș ňǿ ŀǿňģěř bųįŀđįňģ ǻ čųșțǿm
pǻřț fǿř jųșț ǿňě čǿmpǻňỳ. İț’ș bųįŀđįňģ fǿř “ǿňě ǻňčħǿř țěňǻňț ẅħǿ ǻŀșǿ ħǻș ǻ
vǿįčě ẅįțħįň ǻ břǿǻđěř čǿmmųňįțỳ.” İňđěěđ, Ķųșħǻģřǻ Vǻįđ—ẅħǿ ǿvěřșěěș
țħě đěșįģň ǿf țħě ħǻřđẅǻřě țħǻț đřįvěș Mįčřǿșǿfț’ș ǿňŀįňě șěřvįčěș—șǻỳș țħǻț
ħįș čǿmpǻňỳ įș bųįŀđįňģ ǻ ňěẅ čǿmpųțěř șěřvěř țħǻț řěqųįřěș ǻ șįňģŀě-șǿčķěț
čħįp. Țħě İňțěŀ-Fǻčěbǿǿķ’ș čřěǻțįǿň, ħě șǻỳș, čǿųŀđ bě țħǻț čħįp.

Open .ource Apple

İň șħǿřț, țħě ħǻřđẅǻřě mǻřķěț įșň’ț ẅħǻț įț ǿňčě ẅǻș. Ǻňđ ǿđđș ǻřě, ẅįțħ
Ǻppŀě įňvǿŀvěđ, țħě ŀǻňđșčǻpě ẅįŀŀ șǿǿň čħǻňģě ěvěň mǿřě. Ǿpěň Čǿmpųțě
Přǿjěčț čħǻįřmǻň Fřǻňķǿvșķỳ țěŀŀș ẄİŘĚĐ țħǻț Ǻppŀě ħǻș běěň įňvǿŀvěđ įň țħě
Ǿpěň Čǿmpųțě přǿjěčț “přěțțỳ đǻřň čŀǿșě țǿ đǻỳ ǿňě,” měǻňįňģ įț ħǻș ŀįķěŀỳ
ųșěđ Fǻčěbǿǿķ’ș đěșįģňș įň įțș ǿẅň đǻțǻ čěňțěřș. Mįčřǿșǿfț’ș Vǻįđ șǻỳș țħǻț
Ǻppŀě ħǻș ǻŀřěǻđỳ čǿňțřįbųțěđ țǿ șǿmě ǿf țħě přǿjěčț’ș ǿpěň șǿųřčě ħǻřđẅǻřě
přǿjěčțș. Ǻňđ Fřǻňķǿvșķỳ įňđįčǻțěș țħǻț Ǻppŀě ẅįŀŀ ěvěňțųǻŀŀỳ ǿpěň șǿųřčě
șǿmě ǿf įțș ǿẅň đěșįģňș .

“Țħěỳ ǻřě bųįŀđįňģ șțųff țħǻț ẅǿųŀđ bě řěǻŀŀỳ čǿǿŀ fǿř țħěm țǿ čǿňțřįbųțě țǿ
țħě čǿmmųňįțỳ,” ħě șǻỳș. “Měmběřșħįp įň Ǿpěň Čǿmpųțě įș țħě jųșț țħě fįřșț
pħǻșě, ǻňđ čǻň țħěň ŀěǻđ țǿ țħěm čǿŀŀǻbǿřǻțįňģ ǿųț įň țħě ǿpěň ǻň țħěň
čǿňțřįbųțįňģ đěșįģň ẅǿřķ.”

İň țħě ŀǿňģ řųň, țħįș čǻň ħěŀp ǻňỳǿňě ěŀșě bųįŀđįňģ mǿđěřň ǿňŀįňě șěřvįčěș.
Ǻňđ țħǻț įňčŀųđěș Fǻčěbǿǿķ, ẅħǿșě șěŀfŀěșșňěșș mįģħț ħǻvě țųřňěđ ǿųț țǿ bě ǻ
ŀįțțŀě bįț șěŀfįșħ ǻfțěř ǻŀŀ.

	Introduction
	Contributions
	Publications
	Dissertation Overview

	Background
	The Rise of Hyper-scale Datacenters
	TCP Congestion Control
	Network Interference in Datacenters
	Congestion Control in Datacenters
	Multiplexer Scheduling – In Theory and in Practice
	Conclusions
	Chapter Summary

	 Bounding Delay in Datacenter Networks
	A Model of a Datacenter Switch
	Bounding Delay in Datacenter Networks
	Relationship to PGPS Delay Bound
	Practical Considerations
	Conclusions
	Chapter Summary

	Implementing Predictable Datacenter Networks
	Throughput vs. Latency
	Jump the Queue with Prioritisation
	Implementation
	Configuration
	Evaluation
	Conclusions
	Chapter Summary

	Improvements and Future Work
	Automatic Application Configuration
	The problem of N
	Scalability
	The Dynamic Coordination Problem
	End-Host Network Coordination
	Centralised Network Coordination
	Distributed Network Coordination
	Conclusions
	Chapter Summary

	Conclusions
	List of Acronyms
	List of Figures
	List of Tables
	Bibliography
	Appendices
	Web Sources
	Amazon
	Arista
	Broadcom
	Cisco
	CNet
	Datacenter Knowledge
	Datacenter Frontier
	Endace
	Exablaze
	Extreme Tech
	Facebook
	Frank McSherry
	Google
	Hewlett Packard
	IEEE 802 LAN/MAN Standards Committee
	Intel
	Internet Society
	IPv6 World Congress 2014
	Linux
	Metmako
	Microsoft
	Netcraft
	OpenCompute Project
	Solarflare
	Statistics Brain
	The Storage Networking Industry Association
	Wired

