
Technical Report
Number 940

Computer Laboratory

UCAM-CL-TR-940
ISSN 1476-2986

Rigorous engineering
for hardware security:

formal modelling and proof
in the CHERI design and
implementation process

Kyndylan Nienhuis, Alexandre Joannou,
Anthony Fox, Michael Roe, Thomas Bauereiss,

Brian Campbell, Matthew Naylor,
Robert M. Norton, Simon W. Moore,

Peter G. Neumann, Ian Stark,
Robert N. M. Watson, Peter Sewell

September 2019

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

https://www.cl.cam.ac.uk/

c© 2019 Kyndylan Nienhuis, Alexandre Joannou,
Anthony Fox, Michael Roe, Thomas Bauereiss,
Brian Campbell, Matthew Naylor, Robert M. Norton,
Simon W. Moore, Peter G. Neumann, Ian Stark,
Robert N. M. Watson, Peter Sewell, SRI International

This work was supported by EPSRC programme grant
EP/K008528/1 (REMS: Rigorous Engineering for
Mainstream Systems). This work was supported by a Gates
studentship (Nienhuis). This project has received funding
from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme (grant agreement 789108). This work was
supported by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory
(AFRL), under contracts FA8750-10-C-0237 (CTSRD),
HR0011-18-C-0016 (ECATS), and FA8650-18-C-7809
(CIFV). The views, opinions, and/or findings contained in
this paper are those of the authors and should not be
interpreted as representing the official views or policies,
either expressed or implied, of the Department of Defense or
the U.S. Government. Approved for public release;
distribution is unlimited.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Contents
1 Introduction 4

1.1 The CHERI context . 5
1.2 The problems with traditional engineering methods 6
1.3 Contributions . 6

1.3.1 Lightweight rigorous engineering (§3) 6
1.3.2 Stating architectural security properties (§4) 7
1.3.3 Formal proofs of security properties (§5) 7

1.4 Non-goals and Limitations . 7

2 Background: CHERI 8
2.1 Fine-grained memory protection . 8
2.2 Software compartmentalisation . 10

3 Lightweight rigorous engineering 11
3.1 Using the models as design documents . 12
3.2 Using the models as oracles for hardware testing 14
3.3 Using the models for software bring-up . 14
3.4 Using the models for test generation . 15

4 Stating architectural security properties 15
4.1 Capability order . 16
4.2 Capturing the intention of instructions . 17

4.2.1 Defining security properties for the abstraction 19
4.2.2 Defining invariants of the execution step 20
4.2.3 Defining capability derivations . 20

4.3 Characterising reachable capabilities . 21
4.4 Isolating a user space compartment . 22

5 Proving the architectural security properties 24

6 Bugs found by proof work 25

7 Transition from L3 to Sail 26

8 Related work 26

A Additional property definitions 28

3

Abstract

The root causes of many security vulnerabilities include a pernicious combina-
tion of two problems, often regarded as inescapable aspects of computing. First,
the protection mechanisms provided by the mainstream processor architecture and
C/C++ language abstractions, dating back to the 1970s and before, provide only
coarse-grain virtual-memory-based protection. Second, mainstream system engi-
neering relies almost exclusively on test-and-debug methods, with (at best) prose
specifications. These methods have historically sufficed commercially for much of
the computer industry, but they fail to prevent large numbers of exploitable bugs,
and the security problems that this causes are becoming ever more acute.

In this paper we show how more rigorous engineering methods can be applied to
the development of a new security-enhanced processor architecture, with its accom-
panying hardware implementation and software stack. We use formal models of the
complete instruction-set architecture (ISA) at the heart of the design and engineer-
ing process, both in lightweight ways that support and improve normal engineering
practice – as documentation, in emulators used as a test oracle for hardware and for
running software, and for test generation – and for formal verification. We formalise
key intended security properties of the design, and establish that these hold with
mechanised proof. This is for the same complete ISA models (complete enough to
boot operating systems), without idealisation.

We do this for CHERI, an architecture with hardware capabilities that supports
fine-grained memory protection and scalable secure compartmentalisation, while of-
fering a smooth adoption path for existing software. CHERI is a maturing research
architecture, developed since 2010, with work now underway to explore its possi-
ble adoption in mass-market commercial processors. The rigorous engineering work
described here has been an integral part of its development to date, enabling more
rapid and confident experimentation, and boosting confidence in the design.

1 Introduction

Despite decades of research, memory safety bugs are still responsible for many security
vulnerabilities [1]. Microsoft estimates that 70% of the vulnerabilities they have patched
between 2006 and 2018 are caused by memory safety issues [2], MITRE considers classic
buffer overflows as the third most dangerous software error [3], and high-profile memory-
safety bugs such as Heartbleed [4] have become common in recent years.

There are two fundamental problems here. First, mainstream hardware architectures
and C/C++ language abstractions provide only coarse-grained memory protection, via
the memory management unit (MMU). This is hard to change: introducing fine-grained
memory protection in software, e.g. with software bounds-checking, is often too inefficient,
while the mass of legacy C/C++ code makes it infeasible to migrate everything to a type-
safe language, or to radically change hardware architectures.

Second, mainstream systems are typically developed using test-and-debug engineering
methods. While this often suffices to build systems that are sufficiently functionally
correct under normal use, it fails to build secure systems: it is easy to miss a small
mistake that manifests itself only in a corner case, but attackers will actively try to find
these, and one small bug can compromise the entire system.

CHERI is an ongoing research project that addresses the first problem with hardware
support for fine-grained memory protection and scalable software compartmentalisation,
aiming to provide practically deployable performance and compatibility [5, 6, 7]. CHERI

4

achieves this by extending commodity architectures with new security mechanisms, and
adapting a conventional software stack to make use of these.

This paper addresses the second problem: we show how more rigorous engineering
methods can be used to improve assurance and complement traditional methods, using the
CHERI project as a whole as a testbench for this. These include both lightweight methods
– formal specification and testing methods that provide engineering and assurance benefits
for hardware and software engineering without the challenges of full formal verification –
and more heavyweight machine-checked proof, establishing very high confidence that the
architecture design provides specific security properties.

1.1 The CHERI context

The CHERI design is based on two principles. The principle of least privilege [8] says
that each part of a program should run only with the permissions it needs to function.
For example, a conventional C/C++ program implicitly uses permission to its entire
memory region for accesses via a pointer, making it vulnerable to buffer overflows, but
in CHERI it can be limited to the permission to access the pointed-to object. On a
larger scale, the JavaScript execution engine of a browser does not need access to the
encryption keys used in SSL connections, so by restricting its permissions one can ensure
that even a compromised JavaScript engine cannot access these keys. The principle of
intentional use states that when a program performs an action, it should explicitly state
which permissions it uses to authorise that action. This helps avoid the confused deputy
problem [9]. For example, an operating system (OS) may need to hold permission to
access the entirety of a user process (e.g. for paging), but when that process makes a
read() system call, passing a pointer to a user-space buffer, CHERI makes it possible
for the relevant OS code to use the more restricted permission to just that buffer. The
CHERI design involves no lookup or searching for permissions, which is important both
to embody this principle and for performance.

These principles are realised in CHERI with hardware capabilities : to access memory,
one needs to possess a capability that authorises that access. A capability augments the
usual virtual address of a language-level pointer with bounds that specify the memory
region it relates to, and with permission bits that specify what kind of actions it can
authorise. To distinguish capabilities from data, CHERI uses tagged memory. Valid ca-
pabilities have their tag set, and if they are overwritten with a non-capability, their tag
is cleared, rendering them safely unusable. CHERI introduces new instructions that can
manipulate a capability without clearing its tag: to change its virtual address, shrink its
bounds, decrease its permissions, or copy it. It is crucial to the design that no instruction
can grow the bounds of a capability, or add permissions. To enable software compartmen-
talisation, CHERI provides additional mechanisms for mutually untrusting compartments
to communicate.

The CHERI design has been elaborated initially as CHERI-MIPS, extending 64-bit
MIPS [10] with capabilities. Our CHERI-MIPS architecture definition, including the de-
scription of the programmer-visible machine state and instruction behaviour that make
up the instruction-set architecture (ISA), is the central design artefact [6]. As usual
for a processor architecture, it defines the hardware/software interface: the envelope of
programmer-visible allowed behaviour of CHERI hardware implementations (that soft-
ware must be programmed above), but without any hardware-implementation (microar-
chitectural) specifics, e.g. of pipelines, cache hierarchies, etc. Then there is a Bluespec [11]

5

FPGA hardware implementation of the architecture, and a software stack above it, adapt-
ing LLVM [12] and FreeBSD [13] to CHERI-MIPS. All this has involved extensive work
on the interaction between the capability system and systems aspects of memory man-
agement (static and dynamic linking, process creation, context switching, page swapping
and signal delivery) [14]; on the overhead of compiling pointers to capabilities [5, 15]; on
compartmentalisation of legacy software [16]; and on the performance overhead of tagged
memory [17] and protection-domain switches [18]. The underlying ideas are portable, not
MIPS-specific, and work is underway on experimental RISC-V and ARM versions.

1.2 The problems with traditional engineering methods

CHERI-MIPS was initially developed using the traditional engineering methods men-
tioned above: the security properties that the architecture is intended to enforce were
described in prose; the architecture was described in prose and pseudocode; and the hard-
ware implementation of the architecture was validated with hand-written tests. This led
to the following problems, often accepted as inescapable aspects of normal practice.

First, the prose and pseudocode architecture description was not executable as a test
oracle, to check the hardware implementation behaviour against, or as an emulator, to
run software above. Hardware validation tests therefore required manual curation of their
intended outcomes, so tests could not be automatically generated, and it was not possible
to rerun software tests after changes in the architecture until the hardware implementation
was updated.

Second, while the designers had strong intuitions about the security properties the
architecture should provide, their prose statements were inevitably less precise than they
could be, and omitted crucial details. This led to unnecessary confusion in internal dis-
cussions of (for example) the concepts of capability provenance and monotonicity, central
to the design, and made it harder to explain these to others.

Third, it was very difficult to assess whether the architecture actually provided these
intended security properties. Architecture descriptions are large and complex, from 100s
to 1000s of pages, and security properties can depend on much or all of this. For example,
in CHERI-MIPS, a mis-specification of the interaction between user and system modes,
exceptions, address translation, or any of the 180-odd instructions could potentially break
its security protection. At the same time, CHERI’s correctness is crucially important: its
security protection will come under direct attack, and one mistake could be enough to
cancel out all the protection that CHERI offers. Moreover, if the architecture specifi-
cation is flawed, containing some security vulnerability, then any conforming hardware
implementation will inherit that vulnerability.

1.3 Contributions

We address these problems with three contributions.

1.3.1 Lightweight rigorous engineering (§3)

We show that prose-and-pseudocode ISA descriptions can be replaced in the architecture
design process with rigorous definitions, which are at once clearly readable, executable as
test oracles, and support automatic test generation. Importantly, developing such formal
definitions for CHERI-MIPS did not require any formal background, so the researchers
and engineers who would otherwise write a prose/pseudocode architecture document could

6

write and own them. As is familiar from other uses of formal specification, this low-cost
activity already brought several benefits, even before any proof work was undertaken.

1.3.2 Stating architectural security properties (§4)

We show how the intended security properties of the architecture can be precisely and
formally stated, in terms of the above rigorous definitions of instruction behaviour. Fur-
thermore, we express these properties in relatively simple terms, using basic operations
over sets and quantified formulas, so understanding them does not require extensive formal
background. This makes it possible to unambiguously communicate the guarantees that
CHERI-MIPS offers to the relevant audiences: to software users of the architecture, so
they understand the limits of its protection; to hardware engineers, so their implementa-
tions do not accidentally break said guarantees; and among the authors of the architecture
themselves, so they can ensure that the guarantees are as intended.

The properties we define for CHERI-MIPS (1) capture the memory access intentions of
the instructions, (2) capture a reachable-capability monotonicity property, that arbitrary
code, if given some initial permissions, cannot increase those during its execution (up
to the point of any domain transition); (3) capture the property that arbitrary code, if
not initially given permission to access particular system registers and memory regions,
leaves them invariant as that code is executed; and (4) capture the guarantees one has (and
the required assumptions) when executing an untrusted subprogram within a controlled
isolation boundary.

1.3.3 Formal proofs of security properties (§5)

Finally, we show how to mathematically prove these security properties, with machine-
checked proof, in a way that is scalable to the entire ISA and that can be integrated in
the ISA design process. This gives a level of confidence that is not achievable with testing
alone.

Fig. 1 illustrates the main artifacts of the CHERI engineering process. We have done
this for CHERI-MIPS, but the same problems exist for other security architecture features,
e.g. Intel SGX and ARM TrustZone, and we believe similar solutions could be applied.
CHERI started off with a hardware/software co-design approach, which is already unusual
but is necessary for improving security at the architectural interface. Here we show the
benefits of a three-way hardware/software/formal-semantics co-design approach.

1.4 Non-goals and Limitations

Our focus here is on the definition and proof of specific security properties of the CHERI
processor architecture: the specification of the hardware/software interface. This is an
essential step in increasing confidence in CHERI-MIPS, but we have not, of course, proved
that CHERI as a whole “is secure” (which is not even precisely statable). Our work has
helped validate the CHERI-MIPS hardware implementation, but it does not prove the
hardware implementation correct with respect to the architecture, or prove correctness
or security properties of system software above the architecture (though it is a necessary
precondition for any such proofs). Our security properties only address behaviour that is
visible at the architectural abstraction. As usual, this abstracts from timing behaviour
and power consumption, so our properties cannot talk about possible side-channel infor-
mation flow via these. How to manage side channels remains an open research area, but

7

Bluespec/FPGA

Isabelle

L3/Sail

Prover defns

Isabelle

Emulators

C/OCaml/SML

Tests

CHERI asm

CHERI C/C++

LaTeX

ISA documentation H/W design

auto−generate

prove

execute

execute
test

CHERI h/w impl

Security Properties

CHERI ISA spec

CHERI software

Figure 1: The main artifacts of the CHERI engineering process. Those in the central col-
umn are all automatically generated from the L3/Sail formal ISA specifications. The
CHERI hardware design is tested against the generated emulators, using both auto-
generated and (not shown) manually written tests. The CHERI software stack, including
adaptions of Clang and FreeBSD, is developed by running above the generated emulators,
the hardware, and (not shown) a QEMU emulator. The security properties are stated and
proved in terms of the automatically generated Isabelle version of the ISA specification.

the isolation properties that we establish are certainly necessary, even if not sufficient,
for whole-system security. There is ongoing non-formal work exploring side-channels
w.r.t. CHERI [19]. Moreover, the architecture is an intentionally loose specification,
to admit implementation variation, and therefore our properties also cannot talk about
architecturally visible information flow: a (compromised or adversarial) hardware im-
plementation could leak information while conforming to the architecture by exploiting
this looseness. Our properties do exclude architecturally visible capability flow, which is
likewise necessary, even if not sufficient, for whole-system security. Finally, the formal
semantics only covers the uniprocessor case.

2 Background: CHERI
CHERI aims to prevent or mitigate many security vulnerabilities. It does so by extending
commodity instruction-set architectures with a capability system, enabling fine-grained
memory protection and scalable software compartmentalisation, while offering a practical
gradual adoption path for existing software. In this section we explain the main aspects
of the CHERI capability system, with two examples. CHERI also supports a range of
other use-cases with additional features that we cannot explain here; for details of those
see [6].

2.1 Fine-grained memory protection

As highlighted at the start, many security vulnerabilities involve memory safety violations
arising from coding errors in unsafe languages. The CHERI hardware extensions make it

8

ISO C CHERI C
 x: signed int [@3, 0x14]

 1

 secret_key: signed int [@4, 0x18]
 4091

 p: signed int* [@5, 0x20]

 0x18

#include <stdio.h>
int x=1;
int secret_key = 4091;
int main() {
int *p = &x;
p = p+1;
int y = *p ;

printf("%d\n",y);
}

 x: signed int [@3, 0x14]
 1

 secret_key: signed int [@4, 0x18]
 4091

 p: signed int* [@5, 0x20]

address 0x18

base 0x14

length 0x4

perms R/W

tag 1

Figure 2: Comparing ISO C with CHERI C. In ISO C the (flawed) program on the left
has undefined behaviour, but in practice can leak the secret key. In CHERI C the same
program has defined behaviour and will always trap with a hardware exception, because
the address used for the *p access is not within the footprint of the capability.

possible to implement unsafe languages, notably C and C++, in ways that enforce spatial
memory safety – thus preventing or mitigating many vulnerabilities – while aiming to
keep performance and code-porting costs acceptable.

For example, consider the C program on the left of Fig. 2. This declares a secret_key,
but the programmer does not intend that the main() function access that, let alone leak
it. However, a coding error introduced code that creates a pointer p to another global,
x, increments p, and dereferences it with *p. In ISO C this program has undefined be-
haviour, because the *p access is to a location outside the x allocation, meaning that
conventional C implementations can assume that programs do not contain such accesses
(implementations are not required to trap or otherwise detect the error). In practice,
however, the machine representation of a pointer is typically just an integer address, and
a conventional implementation will typically output whatever is next to x in the memory
layout, which here can be, and often is, secret_key. The middle of Fig. 2 illustrates one
such execution, with x allocated at 0x14 and secret_key at 0x18. After the increment,
the value of p is just 0x18; a conventional C compiler will generate a simple machine load
instruction for the read *p, and a conventional processor implementation will simply load
from that address – turning that coding error into a security leak.

In CHERI, however, one can compile C or C++ source to represent pointer values
with capabilities instead of integer addresses, as shown on the right of Fig. 2. On a 64-bit
CHERI architecture, the value of p is a 256-bit or 128-bit capability that includes not
just a virtual address but also identifies the base, length, and permissions of the memory
region that the capability is allowed to access – here that of the original x allocation. A
compression scheme [15] can keep these and other data within a 128-bit representation,
exploiting the redundancy from allocation alignment, though the proofs later in this paper
are about the earlier uncompressed 256-bit version. C pointer arithmetic is compiled

9

to instructions that change capability virtual addresses, leaving their allowed memory
regions unchanged. All this means the hardware can do an efficient access-time check,
at the *p dereference, that the access is within that region, and deterministically trap
otherwise. So far, this is similar to software fat-pointer designs [20, 21, 22], but CHERI
capabilities are protected from accidental or malicious modification: an additional tag
bit, one per capability-sized and aligned 128-bit region of memory, keeps track of whether
that memory holds a valid capability. The hardware preserves the tag if valid capability
instructions are used, but clears it otherwise (e.g., if individual bytes are written); tags are
not independently addressable; and the ISA is designed so that no instruction can increase
the access rights of a capability. The hardware provides a universal capability at start-up,
and the OS, linker, compiler-generated code, and language runtime allocators gradually
construct appropriately smaller capabilities; in this example, the linker constructs precise
capabilities for the globals. Capabilities are also used to protect non-source pointers,
including code pointers such as PC values and return addresses.

This example illustrates the principles of least privilege and intentional use: the pro-
gram as a whole has the permission to load the secret key, but it was not the programmer’s
intention to do this when dereferencing p. In CHERI C this intention is preserved and
the capability which is the value of p has the least privilege required to access x, so it is
impossible to load the key through that memory access.

Porting legacy software to CHERI is eased by the fact that source changes are needed
only in rare cases, e.g. where code manipulates the representation bytes of pointers ex-
plicitly. This example requires none, just a re-compile. In other work we have ported
FreeBSD user-space to CHERI and analysed the changes required [14, 23]; we have also
ported other software, including WebKit. Porting does involve an ABI change, as pointer
sizes change, but one can also compile in a hybrid mode, with only selected pointers
represented with capabilities, or encapsulate legacy code compiled in the normal way by
running it with default data and code capabilities.

The above provides spatial but not temporal memory safety, but the fact that CHERI
pointers and integers can be reliably distinguished creates new possibilities for temporal
enforcement, currently being investigated.

2.2 Software compartmentalisation

At a larger granularity, and especially when running untrusted binaries, or code for which
the porting or performance costs of CHERI C (modest though they are) are not acceptable,
software compartmentalisation can help to make a system more robust against attacks by
mitigating the effects of successful exploits. Conventional systems do this with operating
system processes and hypervisor virtual machines, using hardware memory-management-
unit (MMU) protection, managed by trusted OS or hypervisor code, to enforce memory
isolation (or confinement) between arbitrary untrusted binaries. However, MMU pro-
tection scales poorly with larger numbers of compartments and operates only at page
granularity, limiting its applicability.

CHERI supports scalable compartmentalisation by extending the core capability sys-
tem described above with additional mechanisms for controlled communication between
mutually untrusting compartments. Memory isolation is achieved with the same mecha-
nism as above: if a compartment does not possess (and is not passed) a capability with
permission to access a region of memory, CHERI guarantees that it cannot access that
region. Controlled communication between compartments is achieved with sealed capa-

10

bilities. A capability can be sealed with an object type (currently an 18-bit field within the
compressed capability). A sealed capability has temporarily lost all authority for memory
accesses; it can only be passed around, unsealed (with permission), or invoked with a
CCall instruction. This takes two capabilities, one for code and one for data, which must
both be sealed and have the same object type. It supports two kinds of secure domain
transition: one via an exception to a trusted handler (which might manage a trusted
stack), and the other a direct jump to the address of the sealed code capability, that also
atomically unseals the sealed data capability.

For example, one compartment A might give a mutually untrusted compartment B a
sealed code capability to a particular entry point within A, and a sealed data capability
to the local data of A, both sealed with some particular object type o. Since these are
sealed, B cannot use them to directly access the code or data of A, but it can CCall them
to invoke that specific entry point. If it does so, A is back in control, and can again access
its local data using the now-unsealed data capability. B might also have passed in a
capability to a specific sub-region of its own local data, to let A operate on it. The sealing
and unsealing of capabilities is itself capability-controlled; for the above to be secure it is
essential that B is set up without the capability to unseal object type o.

In some compartmentalisation scenarios one trusts compartments to not leak their own
capabilities, but in others one wants to prevent (malicious or compromised) compartments
from cooperating. To support that, CHERI defines separate permissions for storing/load-
ing data and for storing/loading capabilities. For example, to allow two compartments
to communicate plain data while preventing them from exchanging their capabilities, one
could give them authority to load and store data (only) to a shared region. Additionally,
CHERI has a mechanism to allow some capabilities to be shared but not others: capabil-
ities can be flagged as local (as opposed to global). To store local capabilities one needs
an additional permission. By setting up compartments with just the authority to read
capabilities, and to store global capabilities to a shared region, they cannot exchange their
local capabilities.

These mechanisms can be used for secure encapsulation at various scales, from pro-
tection of individual C++ objects that call each other’s methods, to vulnerability-prone
compression or media code libraries, to whole processes within the same address space,
protected from each other using CHERI alone rather than with MMU protection.

3 Lightweight rigorous engineering
Formal specifications, in security and elsewhere, are often introduced solely to support
mechanised proofs, and the skills and techniques this needs often makes formal specifi-
cation divorced from normal engineering practice. For example, much (though not all)
of the large literature on security protocol verification only addresses abstract models of
protocols, disconnected from their actual implementations, and its techniques are often
not accessible to the engineers who code those.

In contrast, in bringing rigorous techniques to bear on the CHERI secure architecture
design, an important goal was to support the security, architecture, and operating systems
researchers and developers involved, who are not theorem-prover experts, by fitting in with
and complementing their normal engineering practice – while simultaneously enabling
formal statement and proof of security properties of their actual architecture design,
not just some idealised model thereof. We aimed to improve their engineering practice
in multiple lightweight ways, with immediate benefits long before the formal proof was

11

complete.
Industrial processor architecture specifications, including AMD64, IBM POWER, In-

tel 64, MIPS, RISC-V, and SPARC, usually define their envelopes of programmer-visible
allowed behaviour with documents containing a mix of prose and pseudocode [24, 25, 26,
27, 28]. These are typically multi-thousand-page books containing masses of detail, about
instruction behaviour, encodings, address translation, interrupts, etc. They are not com-
putational artefacts, so vendors typically also develop internal “golden” reference models to
use as oracles for hardware testing, often in conventional programming languages such as
C++. Arm, exceptionally, have recently transitioned to a machine-processed pseudocode,
so what is in their manual can actually be tested against [29].

A reference model could be written in almost any language, but a rigorous architecture
specification should be clear enough to also use as readable documentation of instruction
behaviour. For this, it is desirable to use as simple a language as possible, close in appear-
ance to the imperative pseudocode common in industrial architectures, with intentionally
limited expressiveness compared to general-purpose languages such as C or C++. Many
such Instruction Definition Languages (IDLs) have been developed [30]. Then, for use in
testing, it has to be possible to execute the definitions efficiently enough, and to support
proof, the IDL must have a straightforward semantics that can be mapped directly into
the input languages of theorem provers.

For CHERI, we started off in 2011 with traditional pseudocode descriptions, together
with experimental formal modelling (unpublished) of key instructions in PVS [31]. In
2014, starting the work reported on in this paper, we began work on complete formal
models in the L3 [32] IDL, and more recently in Sail [33], partly developed with CHERI
in mind.

L3 and Sail are both strongly typed, first-order imperative language that aim to be
accessible to engineers without a formal background. To illustrate this, Fig. 3 shows the L3
specification of the CHERI-MIPS CLB rd, rt, offset(cb) instruction, to load a byte via
the capability in register cb. This takes a capability from cb, calculates an effective address
(Line 15) by summing its virtual address, the value in register rt, and the sign-extended
offset, uses that to load a byte from memory (Line 29), and writes the appropriate value
(possibly sign-extended) back into rd. The instruction checks several conditions, e.g.
(Lines 5–10) that the capability has its tag set, is not sealed, and has permission to load,
and (Lines 23–27) that the address is within the bounds of the capability. If any of these
fail, the instruction raises a hardware exception.

The complete model includes everything that is necessary to boot an operating sys-
tem, including exceptions, the translation lookaside buffer (TLB), and the programmable
interrupt controller (PIC). The Sail specification is broadly similar; Sail differs from L3
mainly in providing a rich but decidable type system, with lightweight dependent types
to let computed bitvector lengths be statically checked. The L3 and Sail versions are each
around 7k lines of specification.

3.1 Using the models as design documents

Our first lightweight use of these rigorous models is as improved design documentation.
L3 and Sail parse and type-check their input, immediately catching errors that are easy
to make in non-mechanised pseudocode specifications, and they allow no ambiguity. For
example, Fig. 3 makes clear exactly what checks are done, which exceptions will be flagged
if they fail, and the priority among these. The Sail specifications of each instruction are

12

1 define CLoad (rd::reg, cb::reg, rt::reg, offset::bits(8),

2 s::bits(1), t::bits(2)) =

3 if not CP0.Status.CU2 then

4 SignalCP2UnusableException

5 else if not getTag(CAPR(cb)) then

6 SignalCapException(capExcTag,cb)

7 else if getSealed(CAPR(cb)) then

8 SignalCapException(capExcSeal,cb)

9 else if not getPerms(CAPR(cb)).Permit_Load then

10 SignalCapException(capExcPermLoad,cb)

11 else {

12 cap_cb = CAPR(cb);

13 cursor = getBase(cap_cb) + getOffset(cap_cb);

14 extOff = (([offset<7>]::bits(1))^3:offset) << [t];

15 addr = cursor + GPR(rt) + SignExtend(extOff);

16 var size; var access; var bytesel = ’000’;

17 match t {

18 case 0 => {

19 size <- 1;

20 access <- BYTE;

21 bytesel <- addr<2:0> ?? BigEndianCPU^3 }

22 [...OTHER CASES ELIDED, FOR 2,4,8-BYTE LOADS...] };

23 if (’0’:addr) + (’0’:size) >+

24 (’0’:getBase(cap_cb)) + (’0’:getLength(cap_cb)) then

25 SignalCapException(capExcLength,cb)

26 else if addr <+ getBase(cap_cb) then

27 SignalCapException(capExcLength,cb)

28 else {

29 data = LoadMemoryCap(access, true, [addr], false);

30 when not exceptionSignalled do {

31 data_list = [data]::bool list;

32 bottom = ([bytesel]::nat)*8;

33 top = ([bytesel]::nat)*8 + ([size]::nat)*8 - 1;

34 final_data = data_list<top:bottom>;

35 if s == 0 then

36 GPR(rd) <- [ZeroExtendBitString(64, final_data)]

37 else GPR(rd) <- [SignExtendBitString(64, final_data)]

38 } } }

Figure 3: The L3 specification of the CLB rd, rt, offset(cb) Load Integer via Capability
Register instruction, and variants.

13

now (2019) included verbatim in the CHERI architecture document [6], replacing earlier
informal pseudocode that had to be maintained separately.

3.2 Using the models as oracles for hardware testing

The second lightweight use is as oracles for testing our Bluespec FPGA hardware im-
plementations of CHERI processors against. L3 and Sail both automatically generate
emulators from ISA models, variously in SML, OCaml, and C. For CHERI-MIPS these
run at 300–400 KIPS, which is fast enough to boot FreeBSD in around four minutes, and
to run many hardware tests. Being able to automatically re-run such tests against the
architecture specification in a continuous integration environment has been invaluable, as
both the architecture and the hardware implementations have been developed in parallel.

The simplicity of the L3 and Sail IDLs enabled Computer Architecture and Security
researchers to directly edit and own the CHERI models, and to automatically see the
benefits in the continuous integration setup. In turn, this assisted in updating the other
artifacts in the project (FPGA implementation, software unit tests, etc.), which ultimately
led to the adoption of this approach by the whole research team.

Furthermore, executable specifications make it easier to experiment with design alter-
natives, as one can compute their behaviours without needing micro-architectural imple-
mentations. For example, early exploration of compression schemes for CHERI capabili-
ties and their potential architectural impacts were explored in the CHERI L3 model. We
also extended the models with some microarchitectural details, such as a cache hierarchy,
to rapidly explore potential uses of CHERI capabilities within the memory subsystem.
This is also an appealing feature to a Computer Architecture researcher.

We also wrote a traditional QEMU [34] CHERI emulator, by hand. This was useful,
with 100x the speed of the L3 model, and support for many devices, but it was in C, in
a not particularly readable style, and was quite error prone.

The L3 model and the original prose ISA specification do have some intentional subtle
differences, to ease comparison of hardware-implementation and L3 model traces in a few
cases where the former is non-deterministic. For example, the TLBWR instruction architec-
turally writes a random TLB entry, but our hardware implementation writes a certain
entry based on a counter, and the L3 model follows that.

3.3 Using the models for software bring-up

Being a whole-system project, CHERI involves extensive hardware and software work by
different sub-teams. This means that when something goes wrong, it may not be clear
whether the hardware is failing to meet the spec, or the software is making an invalid
assumption. A big benefit of the architecture specification being executable is that it
can help answer this question. For example, when first bringing up multicore CHERI on
FPGA, FreeBSD was getting stuck late in boot. It seemed most likely that this was a
hardware issue in the new cache coherency mechanism, but we could use our recently-
developed L3 model to reproduce the problem, suggesting a software issue. After exploring
the trace, we identified a kernel bug in which the programmable interrupt controller
was being mapped to an incorrect address, preventing inter-processor interrupts. Simply
narrowing down the source of the problem saved many futile hours of painful hardware
debugging. We now routinely bring up new software, e.g. CHERI compiler support, above
the formal models.

14

3.4 Using the models for test generation

Our initial hardware development relied on a manually (and painfully) written test suite.
With authoritative formal models, it is no longer necessary to manually specify the in-
tended outcomes of tests, as one can simply compare hardware vs model running arbitrary
code, so it becomes possible to autogenerate tests. To generate random sequences of in-
structions that achieve good coverage in the presence of a large number of security tests in
the capability instructions, it was important to control which instructions could generate
a processor exception and why. We used a combination of symbolic execution of the L3
specification and automatic constraint solving [35] to find an initial processor state where
only the chosen instruction would fault. A few thousand tests generated in this way were
sufficient to cover almost all of the instruction behaviour in the specification. These re-
vealed discrepancies between the L3, the hardware, and the QEMU simulator, including
bugs in the modelling and simulation of delay slots and exceptions (one in the upstream
QEMU MIPS), and a security-relevant bug in the hardware. This automatic technique
was easily adapted to changes as the ISA was developed.

4 Stating architectural security properties

Formal security properties have two main benefits over prose properties. First, prose
properties are prone to ambiguities, which may lead to security vulnerabilities if users,
designers, and implementers misunderstand each other. Formalisation helps by forcing
one to identify and resolve these ambiguities. Second, it is hard to establish that prose
properties actually hold, as they are not susceptible to either experimental validation
(by testing or model-checking) or mathematical proof. It is possible to formally state
properties about L3 or Sail specifications because these can be automatically exported to
theorem prover definitions: variously Isabelle/HOL [36], HOL4 [37] and/or Coq [38].

To illustrate the first benefit, we identify ambiguities in the prose definition of a funda-
mental property of CHERI’s capability system, namely capability monotonicity. The prose
documentation defines this as the property that “new capabilities must be derived from
existing capabilities only via valid manipulations that may narrow (but never broaden)
rights ascribed to the original capability” [39, §2.3.4]. But what constitutes broadening
the rights of a capability? Broadening its bounds and increasing its permissions are given
as examples, but does unsealing a capability also broaden its rights? This is left unclear.
Furthermore, the documentation states that “controlled violation of monotonicity can be
achieved via the exception delivery mechanism [. . .] and also by the CCall instruction”,
without specifying what “controlled violation” means. It continues with “monotonicity
allows reasoning about the set of reachable rights for executing code, as they are limited
to the rights in any capability registers, and inductively, the set of any rights reachable
from those capabilities”. This property describes an upper bound of the rights that (un-
trusted) code can use if we allow it to execute arbitrary instructions. This upper bound is
defined as the rights that are transitively reachable from the capabilities in the capability
registers. However, the documentation does not define when a right is reachable from a
capability, so one cannot know exactly what this upper bound is.

To illustrate the second benefit we discuss a security property that describes how
CHERI’s capability system can be used to protect a reference monitor from untrusted
code [39, §9.4]. The property describes the guarantees and the assumptions under which
they hold in great detail, but originally the property was verified only by a high-level

15

paper proof outline. During our work we discovered that the CHERI ISA does not satisfy
the property, not because of a bug in the ISA, but because of a mistake in the definition
of the security property: the property mistakenly states that after a domain transition to
the reference monitor, the reference monitor does not have permission to its own memory
anymore. While it would be easy to fix the mistake in the prose definition, it would
remain difficult to validate whether the property would then be correct, and whether the
CHERI ISA would satisfy it.

To show that it is possible to formally define and prove security properties over a
production scale architecture, in the remainder of this section we formally define the
following properties about CHERI, and formally prove (in Isabelle/HOL) that the CHERI
ISA satisfies them in §5.
• We define an order over capabilities, capturing when the authority of one capabil-

ity is contained in the authority of another capability (§4.1). This order clarifies
what “broadening the rights of a capability” should mean in the prose definition of
capability monotonicity.
• We define an abstraction of CHERI-MIPS with abstract actions for each type of

memory access and capability manipulation, capturing the intentions of CHERI-
MIPS instructions by mapping them onto these actions (§4.2). For each action, we
state under what conditions it can be performed, and what effects it has. Amongst
other things, this precisely states the effects of instructions that can broaden the
rights of a capability, clarifying what “controlled violation of capability monotonic-
ity” should mean. It also states properties that have no prose counterparts in the
CHERI documentation, but that are nonetheless crucial to the capability system.
• We characterise which capabilities a (potentially compromised) compartment could

access or construct if it is allowed to execute arbitrary code, and we state related
properties about which part of the memory and which registers the compartment
can overwrite (§4.3). This captures the “reachable rights for executing code”.
• Turning from properties about the capability system itself to use-cases thereof, we

state what assumptions need to be satisfied in order to isolate a compartment from
the rest of the program, and we state which guarantees CHERI-MIPS then offers
(§4.4). This property is inspired by the reference monitor example discussed above.

When formalising security properties one should consider which mathematical con-
cepts to use to express them: more sophisticated mathematics can let one state proper-
ties closer to one’s intention, or more elegantly, but it can also make them less accessible.
Here, we spell out properties in terms of concrete traces of the ISA model, for accessibility.

4.1 Capability order

We define an order, ≤, over capabilities, capturing when the authority of a capability is
contained in the authority of another capability. It is based on the following observations.
The authorities of sealed and unsealed capabilities are incomparable even if they have
the same bounds and permissions: the unsealed capability can authorise memory accesses
but the sealed capability cannot, while the sealed capability can be invoked (with the
right permissions) but the unsealed one cannot. We also observe that invalid capabilities
have no authority; sealed capabilities are immutable while they stay sealed; unsealed
capabilities can be restricted by shrinking their bounds or removing their permissions;
and the virtual address of unsealed capabilities can be changed to any value without
affecting the authority. This leads to the following.

16

Definition 1 (Order over capabilities). We say cap ≤ cap ′ if either cap is invalid (Line 2
below), or cap and cap ′ are equal (Line 3), or both capabilities are valid and unsealed
(Lines 4 and 5) and: the bounds of cap is contained in the bounds of cap ′ (Line 6),
the permissions of cap are less then or equal to those of cap ′ (Line 7) and similarly for
the user permissions (Line 8), their object types agree (Line 9), and their reserved bits
agree (Line 10). Note that Lines 4–10 do not constrain the virtual addresses. As usual in
Isabelle and in functional languages, we write function application just with juxtaposition,
e.g. IsSealed cap is just the IsSealed function (returning a boolean) applied to cap.

1 cap ≤ cap ′ is defined as
2 not Tag cap
3 or cap = cap ′
4 or Tag cap and Tag cap ′
5 and not IsSealed cap and not IsSealed cap ′
6 and CapBounds cap ⊆ CapBounds cap ′
7 and Perms cap ≤bitwise Perms cap ′
8 and UPerms cap ≤bitwise UPerms cap ′
9 and ObjectType cap = ObjectType cap ′
10 and Reserved cap = Reserved cap ′

This order is reflexive and transitive (a preorder). It is not antisymmetric: if cap and
cap ′ are valid, unsealed, and differ only by their virtual addresses, we can have cap ≤ cap ′,
cap ′ ≤ cap, and cap 6= cap ′. The preorder is also not total: if cap and cap ′ are respectively
the sealed and unsealed version of the same capability, then cap 6≤ cap ′ and cap ′ 6≤ cap.

4.2 Capturing the intention of instructions

We now define properties about the effects of a single execution step, abstracting from the
detailed behaviour of CHERI-MIPS instructions defined by the L3 (or Sail) model. Our
first goal is to capture the principle of intentional use: for example, if the intention of the
execution step is to load data using the authority of the capability in register 2, then our
properties should forbid this execution step if that does not have enough authority, even
if capabilities in other registers would be able to authorise the load. We capture the in-
tentions of each instruction by mapping them onto abstract actions: we define an abstract
action for each kind of memory access (loading data, storing data, loading capabilities,
and storing capabilities), one for each kind of capability manipulation (restricting, sealing,
unsealing, and invoking it), and one for hardware exceptions. Abstract actions contain
some extra information, for example the register index of the capability that is used as
authority (if applicable). By mapping the 180-odd CHERI-MIPS instructions onto these
nine actions we abstract away from many details but retain the ability to define different
security properties for different intentions.

Our second goal is that the properties defined in this subsection are strong enough to
imply the properties in §4.3 and §4.4. To achieve this we define invariants about address
translation, kernel mode, and the exception-control ‘CP0’ registers, and properties that
describe what happens when a certain abstract action is not intended, for example if
the instruction does not intend to store anything to an address a, then the memory at a
should remain unchanged.

We first define the non-domain-crossing abstract actions.

17

• LoadDataAction has parameters auth, the register of the capability that is used as
authority, a, the physical address of the data, and l , the length of the data that is
loaded. StoreDataAction is the analogue for stores.

• LoadCapAction has parameters auth, the register of the capability that is used
as authority, a, the physical address of the capability that is loaded, and r , the
destination register. StoreCapAction is the analogue for storing capabilities, except
here r is the source register and a the physical address of the destination.

• RestrictCapAction has parameters r , the source register, and r ′, the destination
register where a restricted version of the source is copied to.

• SealCapAction has parameters auth, the register of the capability that is used as
authority, r , the source register, and r ′, the destination register where a sealed
version of the source is copied to. UnsealCapAction is the analogue for unsealing
capabilities.

The following actions yield the execution to another domain:

• RaiseException has no parameters.

• InvokeCapability has parameters r, the register of the code capability, and r′, the
register of the data capability that is invoked.

An instruction intention can either be a single action that yields the execution, or a set
of actions that do not (e.g. for the CJALR “jump and link capability register” instruction,
which manipulates two capabilities in one execution step):

• SwitchDomain has parameter a, an action that yields the execution to another
domain,

• KeepDomain has parameter actions , a set of actions that continue the execution in
same domain.

Mapping instructions onto the abstraction is mostly straightforward. For example,
the CSeal instruction executed with parameters (cd , cs , ct) maps to

KeepDomain {SealCapAction ct cs cd}.

Instructions that access memory are less straightforward, as their parameters refer to vir-
tual memory, while the parameters of abstract actions refer to physical memory. When
mapping these instructions we therefore translate the addresses. Since CHERI-MIPS in-
structions only access memory from at most one page, these translated addresses form
a contiguous region of physical memory. Furthermore, instructions that load capabilities
map to both a LoadCapAction and a LoadDataAction because they can indirectly be
used to load data (for example, by loading data into a capability register and inspect-
ing the fields of the capability). Similarly, instructions that store capabilities map to a
StoreCapAction and a StoreDataAction.

18

4.2.1 Defining security properties for the abstraction

For each abstract action we define a property that states the prerequisites and effects of
that action. These are properties of an arbitrary CHERI-MIPS ISA semantics sem, which
we later prove hold of the actual semantics. The property about restricting capabilities
is the simplest, requiring only that the resulting capability is less than or equal to the
original:

Property 2 (Restricting capabilities). An ISA semantics sem satisfies this property if
Lines 2–6 below hold. Assume s is a valid machine state (Line 3). This is a technical
assumption: the type state can express things that are not supported by CHERI-MIPS,
e.g. little-endian mode, so we need to require that s does not. Then consider an execution
step from state s to s′ with the intention to keep the domain and perform a number of
actions (Line 4) and assume that RestrictCapAction r r′ is one of those (Line 5). The
property then requires that the capability in the destination register r′ in the resulting
state s′ is less than or equal (in the §4.1 order) to the capability in the source register r
in the original state s (Line 6).

1 RestrictCapProp sem is defined as
2 for all s s ′ actions r r ′.
3 if StateIsValid s
4 and (KeepDomain actions, s ′) ∈ sem s
5 and RestrictCapAction r r ′ ∈ actions
6 then CapReg s ′ r ′ ≤ CapReg s r

The next property states that to store data one needs a valid, unsealed capability with
the PermitStore permission, and the physical addresses stored to should correspond to
virtual addresses that lie within the bounds of the capability:

Property 3 (Storing data). A semantics sem satisfies this property if the following holds.
Assume s is a valid state (Line 3), consider an execution step from state s to s′ with the
intention to keep the domain and perform a number of actions (Line 4), and assume
that StoreDataAction auth a ln is one of those (Line 5). The property then requires the
capability used as authority has a tag (Line 6), is unsealed (Line 7), and has PermitStore
permission (Line 8); and that the length ln of the stored segment is non-zero (Line 9); that
the addresses of the segment are all translations of virtual addresses that the capability has
authority to (Line 10); and that the tag at address a has been stripped, or the capability
at that address remained unchanged (Line 13). The latter case allows the action to behave
as a no-op, relevant e.g. for stores to UART devices.

1 StoreDataProp sem is defined as
2 for all s s ′ actions auth a ln.
3 if StateIsValid s
4 and (KeepDomain actions, s ′) ∈ sem s
5 and StoreDataAction auth a ln ∈ actions
6 then Tag (CapReg s auth)

19

7 and not IsSealed (CapReg s auth)
8 and PermitStore (CapReg s auth)
9 and ln 6= 0
10 and MemSegment a ln
11 ⊆ TranslateAddresses (CapBounds (CapReg s auth))
12 Store s
13 and not Tag (MemCap s ′ (GetCapAddress a))
14 or MemCap s ′ (GetCapAddress a) =
15 MemCap s (GetCapAddress a)

For the other abstract actions we also define a property that describes the necessary
authority and the effects of the action, and we define two security properties that are
not directly linked to performing a specific action, but that are linked to the execute and
access-system-register permissions. For lack of space we define them in the appendix.

4.2.2 Defining invariants of the execution step

There are two invariants capturing what happens if certain abstract actions are not per-
formed. The first requires that if no action specifies that anything was stored to address
a, then the memory at a remains unchanged. The second requires that if no action has
capability register r as its destination register, the capability at r remains unchanged.
Their formal definitions are given in the appendix. Then there are invariants that require
that the address translation function, the kernel mode flag, and the CP0-access flag re-
main unchanged during execution steps that do not raise an exception and that start in
user mode.

4.2.3 Defining capability derivations

The CHERI documentation describes informal properties about capability derivations.
For example, capability provenance states that valid capabilities can only be “derived
from” other valid capabilities [39, §2.3.1], and capability monotonicity states that new
capabilities must be “derived from” existing capabilities via manipulations that do not
broaden the rights of the capability. But what “derive” precisely means is not defined.

We can now precisely define what derivations are, in terms of the abstract actions an
instruction maps to. For example, if an instruction maps to RestrictCapAction r r′, we say
the capability in register r′ in the resulting state is derived from the capability in r in the
original state. Capability provenance can then be formalised by stating that the derived
capability can only be valid if the capability it is derived from is valid, and capability
monotonicity can be formalised by stating that for all actions except SealCapAction,
UnsealCapAction, InvokeCapability , and RaiseException the derived capability is less
than or equal to the capability it is derived from.

Capability provenance and monotonicity capture properties about derivations that
should certainly hold and that help explain the capability system. Nevertheless, in our
proofs we did not find them useful as independent properties: whenever we needed to
relate a derived capability to the original capability, we also needed to know that the
capability that authorised the derivation had enough authority and, in the case of non-
monotonic derivations, what the resulting capability could be, which is not captured by
these. In other words, the proof forced us to identify more fundamental properties about
the design.

20

4.3 Characterising reachable capabilities

We now characterise which capabilities a (potentially untrusted) compartment can access
or construct if it is allowed to execute arbitrary code. This is a fundamental property
for compartmentalisation, as it allows reasoning about which memory or system registers
the compartment can access, whether it can delegate its own capabilities to other com-
partments, and which addresses in other compartments it can jump to. CHERI supports
many compartmentalisation scenarios, for example compartments that can communicate
via a region of shared memory, or that can only communicate via another compartment,
or that share the same code but work on isolated data, or have isolated code but share
their data. Much of what compartmentalisation means is common to all these.

Our definition of reachable capabilities depends on the capabilities in the current state.
The definition is inductive because reaching a capability can make other capabilities reach-
able. For example, a capability in a register might authorise loading another capability
from memory, and that capability might be able to authorise unsealing a capability, etc.

Definition 4. The set of reachable capabilities in a state s are inductively defined by the
following rules.

• The base case: if a register r is always accessible (either a normal register, or the
special registers DDC or TLSC) and the capability cap in that register is valid, then
cap is reachable.
• If cap is a reachable, unsealed capability with the PermitAccessSystemRegisters

permission, r is a special register, and the capability cap ′ in that register is valid,
then cap ′ is reachable.
• If cap is a reachable, unsealed capability with the PermitLoadCapability permission,
a is a physical address that is a translation of a virtual address within the bounds
of cap, and the capability cap ′ at address a is valid, then cap ′ is reachable.
• If cap is a reachable capability, and cap ′ is a valid capability less than or equal to
cap, then cap ′ is reachable.
• If cap is a reachable, unsealed capability, and sealer is a reachable, unsealed capa-

bility with the PermitSeal permission, and the object type t lies within its bounds,
then the capability that is the result of sealing cap with object type t is reachable.
• If cap is a reachable, sealed capability, and unsealer is a reachable, unsealed capa-

bility with the PermitUnseal permission, and the object type of cap lies within its
bounds, then the capability that is the result of unsealing cap is reachable.

The property that justifies the name “reachable capabilities” says that, until the execu-
tion is yielded to another domain, the set of reachable capabilities is monotonic. To avoid
confusion with capability monotonicity (above), we call that property intra-instruction
capability monotonicity and the property we define here reachable capability monotonicity :

Property 5 (Reachable capability monotonicity). An ISA semantics sem satisfies this if
the following holds. Assume s is a valid state, with no CP0 access and not in kernel mode.
Consider an execution trace from s to s′ and assume it is intra-domain (no instruction in
the trace yields the execution to another domain). Then the property requires that the
capabilities reachable in s′ were already reachable in s.

21

1 MonotonicityReachableCaps sem is defined as
2 for all s s ′ trace.
3 if s ′ ∈ FutureStates sem s trace
4 and IntraDomainTrace trace
5 and not AccessToCU0 s
6 and not KernelMode s
7 and StateIsValid s
8 then ReachableCaps s ′ ⊆ ReachableCaps s

From reachable capability monotonicity we can derive properties about which memory
a compartment can overwrite:

Property 6 (Intra-domain memory invariant). If each reachable capability in s either
does not have the PermitStore and PermitStoreCapability permissions, or does not contain
an address within its bounds that translates to a; the execution trace from s to s′ is intra-
domain; and s is valid and in user mode; then the memory at a in s′ is the same as in
s.

The memory does not change during execution steps that yield the execution, so we
define the same property for traces that are intra-domain except for the last step, which
yields the execution to another domain. For the invariance of memory tags and special
registers we define similar properties.

4.4 Isolating a user space compartment

Finally, we consider a simple compartmentalisation scenario, where a compartment is
isolated from the rest of the program. Isolation here means that the compartment can
only access its own region of memory, it cannot access any special registers, and when
it yields the execution it can jump only to a restricted set of addresses. CHERI only
guarantees this if the compartment is set up correctly. The definition below states the
required assumptions in detail. Due to space limitations we describe auxiliary definitions
only in prose.

Definition 7 (Isolation assumptions). Let addrs be the set of virtual addresses that we
grant to the compartment, types the set of object types we grant to the compartment,
and s an arbitrary state. Then the following defines when s can be used as a starting
state for the compartment.

1 IsolatedState addrs types s is defined as
2 CapabilityAligned addrs
3 and NoSystemRegisterAccess addrs types s
4 and ContainedCapBounds addrs types s
5 and ContainedObjectTypes addrs types s
6 and InvokableCapsNotUsable addrs types s
7 and not AccessToCU0 s
8 and not KernelMode s
9 and StateIsValid s

Line 2 requires that addrs is capability aligned. This means that for every a and a′

within the same capability (only differing in their last 5 bits) either both or neither are
in addrs .

22

Our aim is then to require that each unsealed capability the compartment can reach
(according to Definition 4) does not have authority outside the virtual addresses addrs
and types types that we granted to the compartment. We could directly assume this,
but the inductive definition of reachable capabilities is difficult to work with. Instead,
we overapproximate the authority of unsealed, reachable capabilities. First, consider the
set grantedCaps of capabilities that we granted to the compartment, consisting of the
program counter capability (PCC), the capability in the MIPS branch slot (if there is
one), capabilities in normal capability registers, capabilities in the special registers 0 and
1 (DDC and TLSC), and the capabilities in the physical region of memory that correspond
to the virtual addresses addrs . From that set, we take each capability whose authority
can be used by the compartment, namely each capability that has a tag, and that is
either unsealed, or sealed with an object type in types . The resulting set, grantedAuth, is
the overapproximation (the following lines do not claim that, but we prove it as part of
Theorem 12). Line 3 requires that capabilities in grantedAuth do not have the permission
to access system registers; Line 4 requires that the bounds of capabilities in grantedAuth
with permission to access memory are contained in addrs ; and Line 5 requires that ca-
pabilities in grantedAuth with permission to seal or unseal have authority only to object
types in types (a capability has authority to an 18-bit object type t if the unsigned ex-
tension of t to a 64-bit virtual address lies within its bounds). Line 6 is an assumption
on the capabilities that the compartment can invoke. The compartment can invoke any
capability in grantedCaps that has a tag and that has the PermitCCall permission. The
assumption requires that these capabilities are sealed and that their object type is not
contained in types . This ensures that the compartment cannot directly use the authority
of these capabilities. Finally, Line 7 requires that s does not have access to coprocessor
0, Line 8 requires that is is not in kernel mode, and Line 9 requires that s is a valid state.

We now define what isolation means in our scenario.

Definition 8 (Isolation guarantees). Let addrs , types , and s be as in the previous defi-
nition, and let s′ be a state. The following describes the guarantees that one expects if a
compartment starts in s and has yielded the execution in s′.

1 IsolationGuarantees addrs types s s ′ is defined as
2 Base (PCC s ′) + PC s ′
3 ∈ ExceptionPCs ∪ InvokableAddresses addrs s
4 and for all a.
5 if not a ∈ TranslateAddresses addrs Store s
6 then MemData s ′ a = MemData s a
7 and MemTag s ′ (GetCapAddress a) =
8 MemTag s (GetCapAddress a)
9 and for all r.
10 if r 6= 0 and r 6= 1 and r 6= 31
11 then SpecialCapReg s ′ r = SpecialCapReg s r

Lines 2–3 limit the exit points of the compartment. They state that the address of the
next instruction in s′ (given by the base of the PCC plus the PC) is either an exception
handler entry address (CHERI-MIPS has a fixed set of these) or an address that one of
the invokable capabilities point to.

Lines 4–8 state that the memory that is not granted to the compartment remained
unchanged. More precisely, if the physical address a is not a translation of a virtual

23

address in addrs (Line 5), then the memory value at a in s′ is still the same as it was in s
(Line 6), and the tag of the 32-byte region that a belongs to is still the same (Lines 7–8).

Finally, Lines 9–11 state that the special registers stayed the same, except for registers
0, 1, and 31 (DDC, TLSC, and EPCC). The DDC and TLSC are always accessible, while
the EPCC is overwritten if the compartment raises a hardware exception.

The property below precisely defines when CHERI offers the isolation guarantees.

Property 9 (Compartment isolation). An ISA semantics sem satisfies this property if
the following holds. Assume s is a state that satisfies the assumptions we defined before
(Line 3). Consider an execution trace consisting of a prefix trace that is intra-domain,
meaning none of its steps yield the execution (Line 4), and a final step that does yield
the execution (Line 5). Let s′ be the state after the latter (Line 6). Then the property
requires that the above isolation guarantees hold in s′ (Line 7).

1 CompartmentIsolation sem is defined as
2 for all addrs types s s ′ trace step.
3 if IsolatedState addrs types s
4 and IntraDomainTrace trace
5 and SwitchesDomain step
6 and s ′ ∈ FutureStates sem s (trace; step)
7 then IsolationGuarantees addrs types s s ′

5 Proving the architectural security properties

Mathematical proof can give much higher confidence than traditional testing-based meth-
ods, because it considers every possible corner case, not just those exercised by the tests.
This is especially important for security properties. However, there are three challenges
in proving security properties for production-scale architectures. The first is that archi-
tectures contain many low-level details that are easy to miss, so checking a paper proof
by hand would be unusably error-prone. To solve this we mechanised all our proofs in
Isabelle [36], an interactive theorem prover. Such tools (Isabelle, Coq, HOL4, and oth-
ers) let one write proof scripts – instructions for how to construct a proof, combining
automated and manual reasoning – and the machine checks that they do construct valid
proofs. To minimise the trusted computing base (TCB) Isabelle has an LCF-style infer-
ence kernel [40]: proof scripts generate a series of simple inference steps that are checked
by a small kernel. Because we use the Isabelle export of the L3 model as the definition of
CHERI-MIPS, our TCB consists only of this L3-to-Isabelle translation and the Isabelle
kernel. This gives very high assurance that the proved statements are indeed true in the
L3 definition of CHERI-MIPS (the user also has to read and understand the statements,
of course).

The second challenge is the scale of the proof development. Production-scale archi-
tecture specifications are large, and any part of the architecture could potentially break
security properties, even if it does not directly interact with the security mechanisms.
For example, in CHERI-MIPS, the majority of the 180-odd instructions do not interact
with capabilities, but could still break the properties of §4. To solve this challenge we
developed automated proof methods, tailored to L3 specifications, that reduce the need
for manual proof scripts. We used Eisbach [41], an extension of Isabelle’s proof language,
for these. Our custom tactics can automatically prove the security properties for most

24

CHERI-MIPS instructions that do not directly interact with the capability mechanisms,
and significantly simplify the proofs for the others.

The third challenge is that architectures keep evolving. As a research architecture,
CHERI has evolved rapidly, but industrial architectures such as Intel 64/IA-32 and
ARMv8-A do too, with new versions every six months or so. It would be infeasible
to continuously re-check whether a manual proof still holds for updated versions of the
architecture, but automated theorem provers can do this automatically, and will point
out any places where the proof fails. Our automatic proof tactics are somewhat resilient
to changes in the model. To further reduce the effort needed to change our proofs we
use python scripts to generate the statements and proofs of many lemmas. The Isabelle
LCF-style kernel means that these scripts are not part of our TCB.

We finished the proof of our first variant of monotonicity of reachable capabilities in
October 2016 and since then have rerun the proof regularly on new versions of the L3
model. In our experience the effort needed to adapt our proofs to changes in the ISA were
reasonable. Some changes caused us to invent new properties, for example the introduction
of capability invocation; and other changes involved refactoring properties and proofs, for
example when capability registers were split into normal and special registers; but for
most changes we only needed to update the scripts that auto-generate the majority of our
proofs. This did need prover expertise, though.

All this made it possible to integrate our proofs in the CHERI-MIPS design process.

Theorem 10. The L3 model of the CHERI-MIPS ISA satisfies the properties defined or
mentioned in §4.2, namely properties about execution, loading and storing data, loading,
storing, restricting, sealing, unsealing and invoking capabilities, accessing system registers,
and exceptions; and invariants about memory values, tags, valid states, CP0-access, kernel
mode and address translation.

Theorem 11. Any semantics that satisfies the security properties defined in §4.2, satis-
fies reachable capability monotonicity (Property 5), the intra-domain memory invariant
(Property 6), and the other properties mentioned in §4.3.

Together with Theorem 10 this shows that CHERI-MIPS satisfies the properties we
defined in §4.3.

Theorem 12. Any semantics that satisfies the security properties defined in §4.2, satisfies
the property about compartment isolation (Property 9).

The entire proof development is 33k lines of Isabelle/HOL, of which 16k lines are
generated. Checking the proof in Isabelle takes 25 minutes on a 16GB Intel i7-2600.

6 Bugs found by proof work

The point of our proof is to provide assurance that the properties hold of the CHERI-
MIPS architecture, not merely to find some bugs, but, unsurprisingly, we did find some
along the way. CHERI-MIPS was already reasonably mature when we started the proof,
so these are not very numerous – but each could lead to security vulnerabilities, and it
is instructive to see what can remain, even in a carefully considered and reviewed design,
without proof.

25

• The CLC instruction loads a capability cap if the capability cap ′ that is used as
authority has the PermitLoadCapability permission. If cap ′ does not have that
permission, the instruction still loads the byte representation of cap, but without
its tag. This does not violate our property about loading capabilities, but it does
violate our property about loading data, as CLC loads from the memory without
checking the PermitLoad permission. This bug was in the architecture document
and the L3 model.
• Legacy MIPS stores allowed writing one byte past the region of memory the code

had permission to, and, if the code had access to the end of the address space, stores
could write to the beginning of the address space. (In L3)
• In some cases, unaligned MIPS loads allowed loading from a region of memory

without permission. (In the L3 model and the Bluespec hardware implementation.)
• The CBuildCap instruction created a capability with the wrong base. (In L3)
• Exception return (ERET) could access a system register (the EPCC) without permis-

sion. (In L3)
• The CCallFast instruction, which invokes capabilities, exposed the unsealed code

capability, breaking isolation between compartments that can invoke each other’s
capabilities. (In L3)

We also found counter-intuitive behaviour that led to the discovery of a vulnerability
in CheriBSD, allowing a leak of an unsealed data capability. Throwing an exception just
after performing a “CCallFast” gave the exception handler access to the unsealed data
capability. By registering a signal handler to deal with segfaults and triggering a segfault
in the delay slot of CCallFast, the signal handler could obtain the unsealed data capability
of another protection domain and use it to access memory. One could conceivably fix this
in CheriBSD, but correct code would be harder to write and understand, so we removed
the CCallFast delay slot.

7 Transition from L3 to Sail

In another aspect of formal engineering maintenance, we are in the process of shifting
our ISA specifications from L3 to Sail [33], the design of which has been informed by
our experience with L3. Sail generates emulators in OCaml and C, as well as theorem
prover definitions for Isabelle/HOL, HOL4, and Coq, and Sail definitions can be integrated
with multicore relaxed memory models. Sail models include CHERI-MIPS (ported from
the L3 model and included in the CHERI architecture document [6]), a complete ISA
semantics for ARMv8-A (automatically derived from the Arm-internal definition), and
new hand-written models for RISC-V and CHERI-RISC-V. In ongoing and future work
(not part of the contribution of this paper) we aim to uniformly prove security properties of
multiple realisations of CHERI for different base architectures; we have already established
a version of intra-instruction capability monotonicity for Sail CHERI-MIPS.

8 Related work

In terms of formalising full-scale ISA definitions, using them in mainstream engineering,
and proving security properties of them, the closest related work is Reid et al.’s within
Arm, shifting essentially the entire ARMv8-M and ARMv8-A sequential ISA specifications

26

from pseudocode to machine-readable definitions, which are now used for documentation
and hardware verification [42, 29, 43]. These specifications are 10x or more larger, and
much more complex, than CHERI-MIPS. For ARMv8-M, he formalised 59 properties
about the ISA, based on prose statements in the architecture document, and used an
SMT model-checking approach to verify that they hold [44]. Some of these properties are
security-relevant, but they are much more specific than the whole-architecture properties
we consider, which are strong enough to prove a use case correct (Property 9). On the
other hand, his SMT approach is largely automated, while our proofs require theorem-
proving expertise. In earlier work we proved correctness of an abstraction of address
translation w.r.t. the Sail version of this ARMv8-A model [33].

Schwarz and Dam [45] use the HOL4 interactive theorem prover to verify noninterfer-
ence properties of MIPS and a fragment of ARMv7, showing that the contents of privileged
registers do not have observable effects during user-mode execution. These properties are
certainly necessary, but are not by themselves strong enough to prove the correctness of
use cases.

Turning to security properties for capability systems, the closest related work is by
Skorstengaard et al. [46]. Our properties give an upper bound on what (untrusted) code
can do until it yields the execution, but their capability safety result also allows reasoning
about intermingled trusted and untrusted execution. They use it to prove that a certain
calling convention guarantees control-flow correctness and encapsulation of local state.
This is a stronger result than ours, but it is w.r.t. an idealised capability machine, inspired
by CHERI but much simpler, rather than a complete ISA; their security properties are
defined in terms of a step-indexed Kripke logical relation, which is hard to understand for
practitioners; and their proofs are not mechanised. Ideally one would combine the two.

De Amorim et al. [47, 48] prove that their PUMP [49, 50] architecture, supporting
multiple hardware security policies, correctly implements a memory safety policy. This is
mechanised, but for an idealised PUMP, not a full ISA.

To reason about confidentiality in x86 SGX enclave programs, Sinha et al. [51] extend
BAP [52] with a model of the SGX instructions, mapped into BoogiePL [53], but they
do not discuss validation of this model, or its relationship with the complex x86 system
semantics.

Ferraiuolo et al. [54] describe a RISC-V-based processor implementation that enforces
secure information flow, including controlled timing channels, established using a security-
typed hardware description language. Zagieboylo et al. [55] discuss an ISA for this and
non-mechanised proofs, albeit somewhat idealised.

There is a very extensive literature discussing capabilities, access control, and infor-
mation flow control in general, both informally and formally, dating back to the 1960s.
We situate CHERI in that context in [6, Ch. 11]; space precludes detailed discussion here.
In the context of software capability systems, Doerrie [56, Ch. 12] illustrates the need for
proof mechanisation, identifying flaws in an earlier pen-and-paper proof of confinement for
an idealised capability machine [57]. Their “proof that the potential access of the system
is attenuating” is broadly similar to our Property 5 Reachable capability monotonicity.
Murray et al. [58] give a mechanised proof of information flow properties for seL4.

Leaving security aside, there is extensive work on formal ISA modelling for hardware
verification, e.g. for x86 in ACL2 [59, 60], in Coq [61], for RISC-V [62], and for Arm [29].

27

Acknowledgements

We thank Wes Filardo and Prashanth Mundkur for comments, and all the members of
the CHERI team for their work on the project as a whole.

This work was supported by EPSRC programme grant EP/K008528/1 (REMS: Rig-
orous Engineering for Mainstream Systems). This work was supported by a Gates stu-
dentship (Nienhuis). This project has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement 789108). This work was supported by the Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under con-
tracts FA8750-10-C-0237 (CTSRD), HR0011-18-C-0016 (ECATS), and FA8650-18-C-7809
(CIFV). The views, opinions, and/or findings contained in this paper are those of the au-
thors and should not be interpreted as representing the official views or policies, either
expressed or implied, of the Department of Defense or the U.S. Government. Approved
for public release; distribution is unlimited.

A Additional property definitions

In §4 we defined the properties about restricting capabilities (Property 2) and storing
data (Property 3). In this appendix we define some of the additional properties needed,
all of which have been established by our proof (Theorem 10).

The property for storing capabilities is similar to that for storing data, requiring both
the PermitStore and the PermitStoreCapability permissions, and describing the capability
flow:

Property 13 (Storing capabilities). A semantics sem satisfies this property if the fol-
lowing holds. Assume s is a valid state (Line 3), consider an execution step from state
s to s′ with the intention to keep the domain and perform a number of actions (Line 4),
and assume that StoreCapAction auth r a is one of those (Line 5). The property then
requires the capability used as authority has a tag (Line 6), is unsealed (Line 7), and has
PermitStore and PermitStoreCapability permissions (Line 8–9); that the addresses of the
capability-sized segment are all translations of virtual addresses that the capability has
authority to (Line 10); and that the capability in the memory of the resulting state equals
the capability in the source register in the original state (Line 13).

1 StoreCapProp sem is defined as
2 for all s s ′ actions auth r a.
3 if StateIsValid s
4 and (KeepDomain actions, s ′) ∈ sem s
5 and StoreCapAction auth r a ∈ actions
6 then Tag (CapReg s auth)
7 and not IsSealed (CapReg s auth)
8 and PermitStore (CapReg s auth)
9 and PermitStoreCapability (CapReg s auth)
10 and MemSegment (ExtendCapAddress a) 32
11 ⊆ TranslateAddresses (CapBounds (CapReg s auth))
12 Store s
13 and MemCap s ′ a = NormalCapReg s r

28

The properties about loading data and loading capabilities are analogues of respec-
tively the properties about storing data and storing capabilities. The property about
unsealing capabilities describes the necessary authority and the result of unsealing a ca-
pability:

Property 14 (Unsealing capabilities). A semantics sem satisfies this property if the
following holds. Assume s is a valid state (Line 3), consider an execution step from state
s to s′ with the intention to keep the domain and perform a number of actions (Line 4), and
assume that UnsealCapAction auth r r′ is one of those actions (Line 5). The property then
requires the capability that is used as authority has a tag (Line 6), is unsealed (Line 7),
and has the PermitUnseal permission (Line 8). Furthermore, it requires that the object
type of the capability that is being unsealed lies within the bounds of the capability that
is used as authority (Line 9), the capability that is being unsealed was sealed in state s
(Line 12), and the capability in the destination register r′ in the resulting state s′ is less
than or equal to the unsealed version of the original capability (Line 13).

1 UnsealCapProp sem is defined as
2 for all s s ′ actions auth r r ′.
3 if StateIsValid s
4 and (KeepDomain actions, s ′) ∈ sem s
5 and UnsealCapAction auth r r ′ ∈ actions
6 then Tag (CapReg s auth)
7 and not IsSealed (CapReg s auth)
8 and PermitUnseal (CapReg s auth)
9 and UCast
10 (ObjectType (NormalCapReg s r))
11 ∈ CapBounds (CapReg s auth)
12 and IsSealed (NormalCapReg s r)
13 and NormalCapReg s ′ r ′
14 ≤ NormalCapReg s r with
15 IsSealed ← False, ObjectType ← 0

29

The property about sealing capabilities is the analogue of the above. Then there
are two security properties that are not linked to performing a specific action, but to
the execute and access-system-register permissions. The first describes the authority the
PCC must have if an action was performed without raising an exception:

Property 15 (Executing). A semantics sem satisfies this property if the following holds.
Assume s is a valid state (Line 3), consider an execution step from state s to s′ (Line 4),
assume that no exception was raised (Line 5), and assume that if the domain was kept, at
least one action was performed (Line 6, note that ∅ denotes the empty set). The property
then requires that the PCC has a tag (Line 7), is unsealed (Line 8), has the PermitExecute
permission (Line 9), and that the address of the next instruction lies within its bounds
(Line 10).

1 ExecuteProp sem is defined as
2 for all s s ′ step.
3 if StateIsValid s
4 and (step, s ′) ∈ sem s
5 and step 6= SwitchDomain RaiseException
6 and step 6= KeepDomain ∅
7 then Tag (PCC s)
8 and not IsSealed (PCC s)
9 and PermitExecute (PCC s)
10 and Base (PCC s) + PC s
11 ∈ CapBounds (PCC s)

The second requires that if r is a special register (other than the DDC or TLSC) that
is the parameter of a performed action, then the PCC must have permission to access
system registers (the DDC and TLSC registers are accessible without that permission):

Property 16 (Special register access). A semantics sem satisfies this property if the
following holds. Assume s is a valid state (Line 3), that does not have access to CP0
(Line 4), and that is not in kernel mode (Line 5). Consider an execution step from state
s to s′ that keeps the domain and performs a number of actions (Line 6). Let r be a
register that is not equal to 0 or 1 (respectively the DDC and TLSC, Line 7) and that is
a parameter of an action that was performed (Line 8). The property then requires that
the PCC has the PermitAccessSystemRegisters permission (Line 11).

1 SpecialRegisterProp sem is defined as
2 for all s s ′ actions r.
3 if StateIsValid s
4 and not AccessToCU0 s
5 and not KernelMode s
6 and (KeepDomain actions, s ′) ∈ sem s
7 and r 6= 0 and r 6= 1
8 and exists action.
9 action ∈ actions
10 and r ∈ CapDerivationRegisters action
11 then PermitAccessSystemRegisters (PCC s)

30

Then there are two invariants about what happens when certain actions are not taken.
The auxiliary function CapDerivationTargets returns the target locations of an action.
For example, the target of StoreCapAction auth r a is the address a and the target of
SealCapAction auth r r′ is the register r′. The first invariant states that the capability
at location loc (either a register or a virtual address) remains invariant of none of the
performed actions has loc as their target:

Property 17 (Capability invariant). A semantics sem satisfies this property if the fol-
lowing holds. Assume s is a valid state (Line 3), consider an execution step from state
s to s′ with the intention to keep the domain and perform a number of actions (Line 4),
and assume that none of these actions has the location loc as their target (Line 5). The
property then requires that the capability at location loc in the resulting state equals the
capability at loc in the original state (Line 8).

1 CapabilityInvariant sem is defined as
2 for all s s ′ actions loc.
3 if StateIsValid s
4 and (KeepDomain actions, s ′) ∈ sem s
5 and not exists action.
6 action ∈ actions
7 and loc ∈ CapDerivationTargets action
8 then Cap s ′ loc = Cap s loc

The second invariant is very similar: if none of the performed actions has the address
a as their target, then the value at a in the memory remains invariant. This property is
more granular than the capability invariant. For example, if an action changes one byte
in the byte representation of a capability, the memory invariant requires that the other
31 bytes of the representation remain unchanged even though the capability (as a whole)
changes.

31

Finally, there are two properties about actions that yield the execution. The first
describes capability invocation:

Property 18 (Invoking capabilities). A semantics sem satisfies this property if the fol-
lowing holds. Assume s is a valid state (Line 3) and consider an execution step from state
s to s′ that invokes a pair of a code and a data capability (Line 4). The property then
requires that both code and data capability are valid (Line 8), sealed (Line 9), have the
permission to be invoked (Line 10–11), the code capability has the permission to execute
(Line 12), but the data capability does not (Line 13), and both capabilities have the
same object type (Line 14). Furthermore, it requires that the offset of the code capa-
bility is copied to the PC (Line 15), the unsealed code capability is copied to the PCC
(Line 16), the MIPS branch slots are cleared (Line 18–19), the unsealed data capability
is copied to the IDC (Line 20), all normal registers except register 26 (the IDC) remain
unchanged (Line 22), all special registers remain unchanged (Line 26), and the (entire)
memory remains unchanged (Line 28).

1 InvokeCapProp sem is defined as
2 for all s s ′ r r ′.
3 if StateIsValid s
4 and (SwitchDomain (InvokeCapability r r ′), s ′)
5 ∈ sem s
6 then let codeCap = NormalCapReg s r in
7 let dataCap = NormalCapReg s r ′ in
8 Tag codeCap and Tag dataCap
9 and IsSealed codeCap and IsSealed dataCap
10 and PermitCCall codeCap
11 and PermitCCall dataCap
12 and PermitExecute codeCap
13 and not PermitExecute dataCap
14 and ObjectType codeCap = ObjectType dataCap
15 and PC s ′ = Offset codeCap
16 and PCC s ′ = codeCap with IsSealed ← False,
17 ObjectType ← 0
18 and BranchDelay s ′ = None
19 and BranchDelayPCC s ′ = None
20 and IDC s ′ = dataCap with IsSealed ← False,
21 ObjectType ← 0
22 and for all cb.
23 if cb 6= 26
24 then NormalCapReg s ′ cb =
25 NormalCapReg s cb
26 and for all cb. SpecialCapReg s ′ cb =
27 SpecialCapReg s cb
28 and for all a. Mem s ′ a = Mem s a

32

The second describes the effects of a hardware exception:

Property 19 (Exceptions). A semantics sem satisfies this property if the following holds.
Assume s is a valid state (Line 3) and consider an execution step from state s to s′ that
raises an exception (Line 4). The property then requires that the exception flag is set
(Line 5), the address of the next instruction if one of a fixed set of exception entry
addresses (Line 6), the KCC is copied to the PCC (Line 7), all the normal capability
registers remain unchanged (Line 8), if the exception flag was not already set the PCC
is copied to the EPCC (Line 10), the special registers remain unchanged except for the
EPCC (Line 13), the (entire) memory remains unchanged (Line 16), and the MIPS branch
slots are cleared (Line 17–18).

1 ExceptionProp sem is defined as
2 for all s s ′.
3 if StateIsValid s
4 and (SwitchDomain RaiseException, s ′) ∈ sem s
5 then EXL s ′
6 and Base (PCC s ′) + PC s ′ ∈ ExceptionPCs
7 and PCC s ′ = KCC s
8 and for all r.
9 NormalCapReg s ′ r = NormalCapReg s r
10 and if EXL s
11 then EPCC s ′ = EPCC s
12 else EPCC s ′ = PCC s with Offset ← PC s
13 and for all r.
14 if r 6= 31
15 then SpecialCapReg s ′ r = SpecialCapReg s r
16 and for all a. Mem s ′ a = Mem s a
17 and BranchDelay s ′ = None
18 and BranchDelayPCC s ′ = None

33

References

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in memory,” in 2013
IEEE Symposium on Security and Privacy. IEEE, 2013, pp. 48–62.

[2] M. Miller, “Trends, challenge, and shifts in software vulnerability mitiga-
tion,” https://github.com/Microsoft/MSRC-Security-Research/tree/master/
presentations/2019_02_BlueHatIL, Februari 2019, microsoft Security Response
Center.

[3] B. Martin, M. Brown, A. Paller, D. Kirby, and S. Christey, “2011 CWE/SANS top
25 most dangerous software errors,” Common Weakness Enumeration, 2011.

[4] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver,
D. Adrian, V. Paxson, M. Bailey et al., “The matter of Heartbleed,” in Proceedings
of the 2014 conference on Internet Measurement. ACM, 2014, pp. 475–488.

[5] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson, B. Davis, B. Lau-
rie, P. G. Neumann, R. Norton, and M. Roe, “The CHERI capability model: Revis-
iting RISC in an age of risk,” in ACM/IEEE 41st International Symposium on Com-
puter Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014, 2014, pp.
457–468.

[6] R. N. Watson, P. G. Neumann, J. Woodruff, M. Roe, H. Almatary, J. Anderson,
J. Baldwin, D. Chisnall, B. Davis, N. W. Filardo, A. Joannou, B. Laurie,
A. T. Markettos, S. W. Moore, S. J. Murdoch, K. Nienhuis, R. Norton,
A. Richardson, P. Rugg, P. Sewell, S. Son, and H. Xia, “Capability hardware
enhanced RISC instructions: CHERI instruction-set architecture (version 7),”
University of Cambridge, Computer Laboratory, Tech. Rep., 2019. [Online].
Available: http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf

[7] “CHERI,” https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/.

[8] J. Saltzer, “Protection and the control of information sharing in Multics,”
Communications of the ACM, vol. 17, no. 7, pp. 388–402, July 1974. [Online].
Available: https://multicians.org/saltzer-pacisim.pdf

[9] N. Hardy, “The confused deputy (or why capabilities might have been invented),”
ACM SIGOPS Operating Systems Review, vol. 22, no. 4, pp. 36–38, 1988.

[10] I. T. LTD, “MIPS R© architecture for programmers volume II-A: The MIPS64 R© in-
struction set reference manual,” 2016.

[11] R. Nikhil, “Bluespec System Verilog: efficient, correct RTL from high level specifica-
tions,” in Proceedings. Second ACM and IEEE International Conference on Formal
Methods and Models for Co-Design, 2004. MEMOCODE’04. IEEE, 2004, pp. 69–70.

[12] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program
analysis & transformation,” in Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime optimization. IEEE
Computer Society, 2004, p. 75.

34

https://github.com/Microsoft/MSRC-Security-Research/tree/master/presentations/2019_02_BlueHatIL
https://github.com/Microsoft/MSRC-Security-Research/tree/master/presentations/2019_02_BlueHatIL
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://multicians.org/saltzer-pacisim.pdf

[13] M. K. McKusick, G. V. Neville-Neil, and R. N. Watson, The design and implemen-
tation of the FreeBSD operating system. Pearson Education, 2014.

[14] B. Davis, R. N. Watson, A. Richardson, P. G. Neumann, S. W. Moore, J. Bald-
win, D. Chisnall, J. Clarke, N. W. Filardo, K. Gudka et al., “CheriABI: Enforcing
valid pointer provenance and minimizing pointer privilege in the POSIX C run-time
environment,” University of Cambridge, Computer Laboratory, Tech. Rep., 2019.

[15] J. Woodruff, A. Joannou, H. Xia, B. Davis, P. G. Neumann, R. N. M. Watson,
S. Moore, A. Fox, R. Norton, and D. Chisnall, “Cheri concentrate: Practical com-
pressed capabilities,” IEEE Transactions on Computers, 2019.

[16] K. Gudka, R. N. Watson, J. Anderson, D. Chisnall, B. Davis, B. Laurie, I. Marinos,
P. G. Neumann, and A. Richardson, “Clean application compartmentalization with
SOAAP,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1016–1031.

[17] A. Joannou, J. Woodruff, R. Kovacsics, S. W. Moore, A. Bradbury, H. Xia, R. N.
Watson, D. Chisnall, M. Roe, B. Davis et al., “Efficient tagged memory,” in Computer
Design (ICCD), 2017 IEEE International Conference on. IEEE, 2017, pp. 641–648.

[18] R. N. Watson, R. M. Norton, J. Woodruff, S. W. Moore, P. G. Neumann, J. Anderson,
D. Chisnall, B. Davis, B. Laurie, M. Roe et al., “Fast protection-domain crossing in
the CHERI capability-system architecture,” IEEE Micro, vol. 36, no. 5, pp. 38–49,
2016.

[19] R. N. M. Watson, J. Woodruff, M. Roe, S. W. Moore, and P. G.
Neumann, “Capability Hardware Enhanced RISC Instructions (CHERI): Notes
on the Meltdown and Spectre Attacks,” University of Cambridge, Computer
Laboratory, Tech. Rep. UCAM-CL-TR-916, Feb. 2018. [Online]. Available:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-916.pdf

[20] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang,
“Cyclone: A safe dialect of C,” in USENIX Annual Technical Conference, General
Track, 2002, pp. 275–288.

[21] G. C. Necula, S. McPeak, and W. Weimer, “CCured: Type-safe retrofitting of legacy
code,” in ACM SIGPLAN Notices, vol. 37, no. 1. ACM, 2002, pp. 128–139.

[22] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound: Highly com-
patible and complete spatial memory safety for C,” ACM Sigplan Notices, vol. 44,
no. 6, pp. 245–258, 2009.

[23] K. Memarian, V. B. F. Gomes, B. Davis, S. Kell, A. Richardson, R. N. M. Wat-
son, and P. Sewell, “Exploring C semantics and pointer provenance,” in Proc.
46th ACM SIGPLAN Symposium on Principles of Programming Languages, Jan.
2019, proc. ACM Program. Lang. 3, POPL, Article 67. Also available as ISO/IEC
JTC1/SC22/WG14 N2311.

[24] AMD, “AMD64 Architecture Programmer’s Manual, Volumes 1–5,” http://
developer.amd.com/resources/developer-guides-manuals/, Mar. 2017, 3178 pages.

35

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-916.pdf
http://developer.amd.com/resources/developer-guides-manuals/
http://developer.amd.com/resources/developer-guides-manuals/

[25] IBM, “Power ISA Version 3.0,” Nov. 2015, 1246 pages.

[26] Intel Corporation, “Intel 64 and IA-32 Architectures Software Developer’s Manual.
Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4.” https://software.
intel.com/en-us/articles/intel-sdm, Jul. 2017, 325462-063US. 4744 pages.

[27] “The RISC-V Instruction Set Manual. Volume I: User-Level ISA; Volume II: Privi-
leged Architecture,” https://riscv.org/specifications/, May 2017, 236 pages.

[28] The SPARC Architecture Manual, Version 9. SPARC International, Inc., 1994,
sAV09R1459912.

[29] A. Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes, W. Keen, A. Pathirane,
O. Shepherd, P. Vrabel, and A. Zaidi, “End-to-end verification of processors with
ISA-Formal,” in International Conference on Computer Aided Verification. Springer,
2016, pp. 42–58.

[30] P. Misra and N. Dutt, Eds., Processor Description Languages. Morgan Kaufmann,
2008.

[31] “PVS specification and verification system,” http://pvs.csl.sri.com/, accessed 2019-
07-27.

[32] A. C. Fox, “Directions in ISA specification,” in ITP, 2012, pp. 338–344. [Online].
Available: https://doi.org/10.1007/978-3-642-32347-8_23

[33] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M. Norton,
P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I. Stark, N. Krishnaswami, and
P. Sewell, “ISA semantics for ARMv8-A, RISC-V, and CHERI-MIPS,” in POPL 2019:
Proc. 46th ACM SIGPLAN Symposium on Principles of Programming Languages,
2019.

[34] “QEMU: the FAST! processor emulator,” 2017, https://www.qemu.org/.

[35] B. Campbell and I. Stark, “Extracting behaviour from an executable instruction set
model,” in Formal Methods in Computer-Aided Design (FMCAD), 2016. IEEE,
2016, pp. 33–40.

[36] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, 2012.

[37] M. Gordon and A. Pitts, “The HOL logic and system,” in Real-Time Safety Critical
Systems. Elsevier, 1994, vol. 2, pp. 49–70.

[38] P. Castéran and Y. Bertot, “Interactive theorem proving and program development.
Coq’Art: The calculus of inductive constructions.” 2004.

[39] R. N. Watson, P. G. Neumann, J. Woodruff, M. Roe, J. Anderson,
J. Baldwin, D. Chisnall, B. Davis, A. Joannou, B. Laurie, S. W. Moore,
S. J. Murdoch, R. Norton, S. Son, and H. Xia, “Capability hardware enhanced
RISC instructions: CHERI instruction-set architecture (version 6),” University
of Cambridge, Computer Laboratory, Tech. Rep., 2017. [Online]. Available:
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-907.pdf

36

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://riscv.org/specifications/
http://pvs.csl.sri.com/
https://doi.org/10.1007/978-3-642-32347-8_23
https://www.qemu.org/
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-907.pdf

[40] M. Gordon, R. Milner, and C. Wadsworth, Edinburgh LCF: a mechanised logic of
computation. Springer-Verlag, 1979.

[41] D. Matichuk, T. Murray, and M. Wenzel, “Eisbach: A proof method language for
Isabelle,” Journal of Automated Reasoning, vol. 56, no. 3, pp. 261–282, 2016.

[42] A. Reid, “Trustworthy Specifications of Arm v8-A and v8-M system Level
Architecture,” in Proceedings of Formal Methods in Computer-Aided Design
(FMCAD 2016), October 2016, pp. 161–168. [Online]. Available: https:
//alastairreid.github.io/papers/fmcad2016-trustworthy.pdf

[43] ——, “Defining interfaces between hardware and software: Quality and performance,”
Ph.D. dissertation, School of Computing Science, University of Glasgow, March 2019.

[44] ——, “Who guards the guards? formal validation of the Arm v8-M architecture spec-
ification,” Proceedings of the ACM on Programming Languages, vol. 1, no. OOPSLA,
p. 88, 2017.

[45] O. Schwarz and M. Dam, “Automatic derivation of platform noninterference
properties,” in Software Engineering and Formal Methods - 14th International
Conference, SEFM 2016, Held as Part of STAF 2016, Vienna, Austria, July
4-8, 2016, Proceedings, ser. Lecture Notes in Computer Science, R. De Nicola
and eva Kühn, Eds., vol. 9763. Springer, 2016, pp. 27–44. [Online]. Available:
https://doi.org/10.1007/978-3-319-41591-8_3

[46] L. Skorstengaard, D. Devriese, and L. Birkedal, “Reasoning about a machine with
local capabilities,” in European Symposium on Programming. Springer, 2018, pp.
475–501.

[47] A. A. De Amorim, M. Dénes, N. Giannarakis, C. Hriţcu, B. C. Pierce, A. Spector-
Zabusky, and A. Tolmach, “Micro-policies: Formally verified, tag-based security mon-
itors,” in Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015, pp.
813–830.

[48] A. Azevedo de Amorim, N. Collins, A. DeHon, D. Demange, C. Hriţcu, D. Pichardie,
B. C. Pierce, R. Pollack, and A. Tolmach, “A verified information-flow architecture,”
in Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’14. New York, NY, USA: ACM, 2014, pp.
165–178. [Online]. Available: http://doi.acm.org/10.1145/2535838.2535839

[49] U. Dhawan, C. Hriţcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M. Smith, T. F.
Knight Jr, B. C. Pierce, and A. DeHon, “Architectural support for software-defined
metadata processing,” in ACM SIGARCH Computer Architecture News, vol. 43,
no. 1. ACM, 2015, pp. 487–502.

[50] U. Dhawan, N. Vasilakis, R. Rubin, S. Chiricescu, J. M. Smith, T. F. Knight Jr, B. C.
Pierce, and A. DeHon, “PUMP: a programmable unit for metadata processing,”
in Proceedings of the Third Workshop on Hardware and Architectural Support for
Security and Privacy. ACM, 2014, p. 8.

[51] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani, “Moat: Verifying confidential-
ity of enclave programs,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2015, pp. 1169–1184.

37

https://alastairreid.github.io/papers/fmcad2016-trustworthy.pdf
https://alastairreid.github.io/papers/fmcad2016-trustworthy.pdf
https://doi.org/10.1007/978-3-319-41591-8_3
http://doi.acm.org/10.1145/2535838.2535839

[52] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary analysis
platform,” in Computer Aided Verification - 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, 2011, pp. 463–469.
[Online]. Available: https://doi.org/10.1007/978-3-642-22110-1_37

[53] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino, “Boogie:
A modular reusable verifier for object-oriented programs,” in Formal Methods for
Components and Objects, 4th International Symposium, FMCO 2005, Amsterdam,
The Netherlands, November 1-4, 2005, Revised Lectures, 2005, pp. 364–387. [Online].
Available: https://doi.org/10.1007/11804192_17

[54] A. Ferraiuolo, M. Zhao, A. C. Myers, and G. E. Suh, “Hyperflow: A processor
architecture for nonmalleable, timing-safe information-flow security,” in 25th ACM
Conf. on Computer and Communications Security (CCS), October 2018. [Online].
Available: http://www.cs.cornell.edu/andru/papers/hyperflow

[55] D. Zagieboylo, G. E. Suh, and A. C. Myers, “Using information flow
to design an isa that controls timing channels,” in 32nd IEEE Computer
Security Foundations Symp. (CSF), June 2019. [Online]. Available: http:
//www.cs.cornell.edu/andru/papers/hyperisa

[56] M. S. Doerrie, “Confidence in confinement: An axiom-free, mechanized verification
of confinement in capability-based systems,” Ph.D. dissertation, Johns Hopkins Uni-
versity, 2015.

[57] J. S. Shapiro and S. Weber, “Verifying the EROS confinement mechanism,” in Pro-
ceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000. IEEE, 2000,
pp. 166–176.

[58] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein, “sel4: From general purpose to a proof of
information flow enforcement,” in 2013 IEEE Symposium on Security and Privacy,
SP 2013, Berkeley, CA, USA, May 19-22, 2013, 2013, pp. 415–429. [Online].
Available: https://doi.org/10.1109/SP.2013.35

[59] S. Goel et al., “Formal verification of application and system programs based on a
validated x86 ISA model,” Ph.D. dissertation, The University of Texas at Austin,
2016.

[60] W. A. Hunt, M. Kaufmann, J. S. Moore, and A. Slobodova, “Industrial hardware and
software verification with ACL2,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 375, 2017.

[61] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind, “Kami:
a platform for high-level parametric hardware specification and its modular
verification,” PACMPL, vol. 1, no. ICFP, pp. 24:1–24:30, 2017. [Online]. Available:
https://doi.org/10.1145/3110268

[62] C. Wolf, “End-to-end formal ISA verification of RISC-V processors with riscv-formal,”
In 7th RISC-V Workshop Proceedings, Nov. 2017, http://www.clifford.at/papers/
2017/riscv-formal/.

38

https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/11804192_17
http://www.cs.cornell.edu/andru/papers/hyperflow
http://www.cs.cornell.edu/andru/papers/hyperisa
http://www.cs.cornell.edu/andru/papers/hyperisa
https://doi.org/10.1109/SP.2013.35
https://doi.org/10.1145/3110268
http://www.clifford.at/papers/2017/riscv-formal/
http://www.clifford.at/papers/2017/riscv-formal/

	Introduction
	The CHERI context
	The problems with traditional engineering methods
	Contributions
	Lightweight rigorous engineering (§3)
	Stating architectural security properties (§4)
	Formal proofs of security properties (§5)

	Non-goals and Limitations

	Background: CHERI
	Fine-grained memory protection
	Software compartmentalisation

	Lightweight rigorous engineering
	Using the models as design documents
	Using the models as oracles for hardware testing
	Using the models for software bring-up
	Using the models for test generation

	Stating architectural security properties
	Capability order
	Capturing the intention of instructions
	Defining security properties for the abstraction
	Defining invariants of the execution step
	Defining capability derivations

	Characterising reachable capabilities
	Isolating a user space compartment

	Proving the architectural security properties
	Bugs found by proof work
	Transition from L3 to Sail
	Related work
	Additional property definitions

