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SUMMARY

Automatic annotation of error types
for grammatical error correction

Christopher Jack Bryant

Grammatical Error Correction (GEC) is the task of automatically detecting and correcting
grammatical errors in text. Although previous work has focused on developing systems that
target specific error types, the current state of the art uses machine translation to correct all error
types simultaneously. A significant disadvantage of this approach is that machine translation
does not produce annotated output and so error type information is lost. This means we can only
evaluate a system in terms of overall performance and cannot carry out a more detailed analysis
of different aspects of system performance.

In this thesis, I develop a system to automatically annotate parallel original and corrected
sentence pairs with explicit edits and error types. In particular, I first extend the Damerau-
Levenshtein alignment algorithm to make use of linguistic information when aligning parallel
sentences, and supplement this alignment with a set of merging rules to handle multi-token
edits. The output from this algorithm surpasses other edit extraction approaches in terms of
approximating human edit annotations and is the current state of the art. Having extracted the
edits, I next classify them according to a new rule-based error type framework that depends only
on automatically obtained linguistic properties of the data, such as part-of-speech tags. This
framework was inspired by existing frameworks, and human judges rated the appropriateness
of the predicted error types as ‘Good’ (85%) or ‘Acceptable’ (10%) in a random sample of 200
edits. The whole system is called the ERRor ANnotation Toolkit (ERRANT) and is the first
toolkit capable of automatically annotating parallel sentences with error types.

I demonstrate the value of ERRANT by applying it to the system output produced by the
participants of the CoNLL-2014 shared task, and carry out a detailed error type analysis of
system performance for the first time. I also develop a simple language model based approach
to GEC, that does not require annotated training data, and show how it can be improved using
ERRANT error types.
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CHAPTER 1

INTRODUCTION

Grammatical Error Correction (GEC) is the task of automatically detecting and correcting
grammatical errors in text. For example, given the sentence ‘This informations were very useful’,
the goal of a correction system would be to output the correct sentence ‘This information was
very useful’. The main application of a correction system is thus to assist humans with their
writing. In particular, native (L1) and non-native (L2) speakers both sometimes make mistakes,
and so a GEC system can help automatically detect and correct these mistakes.

This thesis primarily explores GEC in the context of non-native speakers of English. This
is because approximately 744 million people speak English as second language (compared to
378 million native speakers) (Simons and Fennig, 2018), and some sources even predict up to 2
billion speakers of English ‘at a useful level’ by 2020 (Howson, 2013). There is consequently a
growing need to develop new pedagogical technologies that can assist both students and teachers.
A GEC system could thus not only provide students with instant feedback without having to wait
for a teacher, but also reduce teacher workload and keep track of student progress.

1.1 Motivations

Motivated by this need, GEC has gained increased attention in recent years, thanks mainly to a
series of shared tasks between 2011 and 2014 that encouraged researchers to build and evaluate
their own correction systems on a common dataset (Dale and Kilgarriff, 2011; Dale et al., 2012;
Ng et al., 2013, 2014). Although this undoubtedly led to significant progress in the field, the
shared tasks also revealed weaknesses in the way systems were evaluated, which in turn resulted
in the development of new metrics (Felice and Briscoe, 2015; Napoles et al., 2015).

Despite these developments however, the new metrics were only able to evaluate a system in
terms of overall performance and could not produce more detailed scores for different aspects
of performance. This is significant because a robust specialised system may actually be more
desirable than a mediocre general system; for example a system that scores 90% on determiner
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errors but 5% on all other error types may actually be more useful than a system that scores
40% on all error types. Without an error type analysis however, this information is completely
unknown.

The main reason a detailed error type analysis has not been done before in GEC is because
system output is usually unannotated. In particular, there is a mismatch between an unannotated
hypothesis and an annotated reference. Manual annotation is a slow, laborious and expensive
process however, and so it is impractical to manually annotate a hypothesis at every stage
of system development. Automatic annotation, on the other hand, is a much more attractive
prospect, and is hence the main topic of this thesis.

In addition to facilitating detailed error type evaluation, automatic annotation also has several
other advantages. For example, it can be used to simplify the annotation of new data and even
standardise existing corpora. In particular, human annotators will no longer need to learn the
intricacies of complicated error type frameworks when annotating data and can instead focus
entirely on just correcting the text. Similarly, existing corpora that were annotated under different
conditions using different frameworks can also all be automatically standardised, facilitating
cross-corpora comparison for the first time.

Automatic error types can also be useful in teaching, where a teacher might first correct a
student essay and then receive automatic feedback concerning the types and quantity of errors
that were made. This information could then be used to track individual student progress or
even influence future lesson plans. On a larger scale, researchers will also be able to more
systematically analyse the errors made by different L1 learners and adapt their systems or lesson
plans as appropriate (cf. Shatz, 2017).

Finally, another advantage of automatic error type annotation is that error types can be used
as parameters in GEC systems. For example, words that are identified as morphology errors can
be restricted such that a correction system only proposes morphological variants as corrections
and not other possibilities such as synonym changes or deletions. Since the majority of recent
work in GEC has focused on developing supervised machine learning systems however, I instead
investigate the contribution of error types in the context of unsupervised correction systems.1

Since it is unlikely that annotated data will ever contain all possible corrections for all error types,
it is still important to develop methods that make use of more abundant quantities of unannotated
data.

1.2 Aims

Having introduced the potential benefits of automatic annotation, the main aims of this thesis are
as follows:

1Error types can likely be used in both supervised and unsupervised systems.
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1. Develop a method capable of automatically extracting edits from parallel data and annotat-
ing them with error types. This involves:

(a) Preprocessing and standardising the most commonly used GEC corpora. In particular,
character edits in untokenized essays must be converted to token edits in tokenized
sentences.

(b) Developing a novel alignment algorithm to align parallel sentences in as linguistically
intuitive a way as possible. The quality of the alignment will directly affect the quality
of the automatically extracted edits.

(c) Designing a new rule-based error type framework based solely on automatically
obtainable properties of the data; e.g. part-of-speech tags and parse information. This
framework will be used to classify the automatically extracted edits.

2. Apply the above method to the output produced by the teams in the CoNLL-2014 shared
tasks to carry out a detailed evaluation of system performance for the first time. This will
help identify the strengths and weaknesses of particular systems which may be informative
for future research.

3. Build a baseline language model based correction system without using annotated training
data. The emphasis on supervised machine learning systems in current GEC research
means unsupervised approaches have been largely neglected.

4. Investigate how to incorporate error type information into the baseline language model
system to improve performance. This will demonstrate that error types are not only useful
for annotation and evaluation, but can also be exploited in a correction model.

1.3 Structure

After this introduction, Chapter 2 first provides an overview of GEC as a field. Specifically, it
introduces the corpora most commonly used to train and test GEC systems, and also outlines
the evolution of different approaches and their strengths and weaknesses. It next describes the
three most popular ways to evaluate correction systems, before finally summarising the results
of the recent shared tasks that popularised GEC. It concludes with a review of state-of-the-art
developments since the end of the shared tasks.

Chapter 3, Chapter 4 and Chapter 5 are the core chapters of this thesis that mainly describe a
method to automatically annotate parallel data with error types. Specifically, Chapter 3 opens with
a discussion of the different formats of various corpora and introduces a method to standardise
them, Chapter 4 describes a linguistically enhanced alignment algorithm that automatically
extracts edits from parallel sentences in as human-like a way as possible, and Chapter 5 finally
outlines how the extracted edits can be classified according to a new dataset-agnostic rule-based
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classifier. The final system, called the ERRor ANnotation Toolkit (ERRANT), is then applied to
the system output produced by the teams in the most recent CoNLL-2014 shared task; Chapter 6
presents a detailed evaluation of system error type performance for the first time in GEC.

Having demonstrated one application of ERRANT, Chapter 7 next introduces a baseline
unsupervised language model based approach to GEC and describes how it can be improved
using ERRANT error types. Chapter 8 finally concludes the thesis and outlines future work.
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CHAPTER 2

BACKGROUND

This chapter provides a general overview of GEC as a field and introduces the previous work
that is most pertinent to this thesis. Specifically:

• Section 2.1 describes the most commonly used datasets and error type frameworks.

• Section 2.2 summarises the main approaches to GEC.

• Section 2.3 shows how GEC systems can be evaluated.

• Section 2.4 outlines the GEC shared tasks and more recent work.

2.1 Datasets

Although annotated learner corpora are not a prerequisite for GEC research, they nevertheless
provide some valuable insights into non-native errors. In particular, there is no better way
to calculate robust error type statistics than to analyse genuine errors made by real learners.
Alternative ways of computing error type statistics, such as from native or artificially generated
data, are generally not as informative (Foster and Andersen, 2009; Felice and Yuan, 2014; Felice,
2016), although recent work has made some progress in this area (Rei et al., 2017; Ge et al.,
2018b).

In this section, I will hence introduce several of the most commonly used datasets in GEC and
describe their different characteristics. For example, some corpora are annotated with detailed
error type information and other metadata, while others consist only of parallel original and
corrected sentence pairs. The differences between datasets are also one of the main motivations
for developing an automatic error type classifier capable of standardising disparate datasets in
this thesis.
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Exam Statistics Learner Statistics
Scripts 131,777 Gender # Scripts
Answers 206,476 Male 63,660
Exams 23 Female 65,599
L1s 130

Age # Scripts
Test Year # Scripts 0-10 1,367
1990-1995 9,016 11-15 53,803
1996-2000 13,491 16-20 28,727
2001-2005 41,965 21-30 33,682
2006-2010 63,454 31-50 12,394
2011+ 3,851 51+ 761

Table 2.1: Various statistics about the data in the CLC. A script may contain more than one
answer depending on the exam. Each exam may have multiple sittings in each test year. Learner
metadata is occasionally missing from some scripts.

2.1.1 The Cambridge Learner Corpus

The Cambridge Learner Corpus (CLC) is a proprietary collection of over 130 thousand English
language exam scripts collected by Cambridge Assessment English1 in collaboration with
Cambridge University Press2 (Nicholls, 2003). It contains over 200 thousand student answers to
questions from 23 different Cambridge exams (some exams require students to answer more than
one question) and comprises roughly 29 million words. The majority of answers were written
by learners aged 11-30 between 2000 and 2010, but in total, learners from 130 different first
language backgrounds (L1s) are represented in the corpus. The essay scores and grades awarded
to each learner are also provided with each answer. See Table 2.1 for more details about the
composition of the corpus.

In addition to metadata, each answer in each script has also been annotated with corrections
and error types in the following format:

This <e type="AGV"><i>are</i><c>is</c></e> an annotated sentence.

In this XML structure, the error annotation <e> contains both the original incorrect text <i>
and the annotator’s proposed correction <c>. In this example, the error is also typed AGV which
indicates a verb agreement error.3 Since one of the main aims of this thesis is to develop a new
automatic error type annotation framework, it is worth introducing the CLC framework in more
detail. Table 2.2 hence shows all the error codes in the full CLC along with their meanings and
frequencies.

1http://www.cambridgeenglish.org/
2http://www.cambridge.org/gb/cambridgeenglish
3See Section 3.1 for more information about the CLC data format
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Code Meaning Freq. Code Meaning Freq.
AG Agreement 1,645 MC Missing conjunction 26,522
AGA Pronoun agreement 11,537 MD Missing determiner 176,782
AGD Determiner agreement 8,813 MJ Missing adjective 4,702
AGN Noun agreement 35,605 MN Missing noun 20,286
AGQ Quantifier agreement 1,427 MP Missing punctuation 235,877
AGV Verb agreement 56,747 MQ Missing quantifier 8,656
AS Argument structure 7,366 MT Missing preposition 81,749
CD Determiner countability 115 MV Missing verb 47,377
CE Compound error 12,207 MY Missing adverb 14,392
CL Collocation 1,203 QL Question prompt error 368
CN Noun countability 9,495 R Replacement 78,546
CQ Quantifier countability 3,688 RA Replacement pronoun 33,753
DA Pronoun derivation 8,612 RC Replacement conjunction 12,785
DC Conjunction derivation 974 RD Replacement determiner 38,716
DD Determiner derivation 5,888 RJ Replacement adjective 49,657
DI Determiner inflection 577 RN Replacement noun 112,763
DJ Adjective derivation 37,728 RP Replacement punctuation 285,323
DN Noun derivation 35,091 RQ Replacement quantifier 8,966
DQ Quantifier derivation 734 RT Replacement preposition 195,008
DT Preposition derivation 1,627 RV Replacement verb 172,070
DV Verb derivation 10,508 RY Replacement adverb 46,115
DY Adverb derivation 21,613 S Spelling (non-word) 264,538
FA Pronoun form 1,109 SA American spelling 15,241
FD Determiner form 7,060 SX Spelling (real word) 48,307
FJ Adjective form 3,612 TV Verb tense 183,310
FN Noun form 61,148 U Unnecessary 13,450
FQ Quantifier form 776 UA Unnecessary pronoun 21,739
FV Verb form 88,343 UC Unnecessary conjunction 11,888
FY Adverb form 907 UD Unnecessary determiner 82,371
IA Pronoun inflection 454 UJ Unnecessary adjective 3,682
ID Idiom 10,564 UN Unnecessary noun 11,130
IJ Adjective inflection 5,502 UP Unnecessary punctuation 115,214
IN Noun inflection 10,566 UQ Unnecessary quantifier 2,876
IQ Quantifier inflection 1,091 UT Unnecessary preposition 56,246
IV Verb inflection 21,106 UV Unnecessary verb 24,002
IY Adverb inflection 174 UY Unnecessary adverb 16,998
L Register 18,874 W Word order 76,586
M Missing 28,290 X Negation 4,180
MA Missing pronoun 56,081 Total 3,191,028

Table 2.2: The error codes, meanings and frequencies of all 77 error types in the CLC.
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In general, the CLC error typology is fairly modular. 10 part-of-speech (POS) based codes
for pronouns (A), conjunctions (C), determiners (D), adjectives (J), nouns (N), punctuation
(P), quantifiers (Q), prepositions (T), verbs (V) and adverbs (Y) can all be prefixed by 3 edit
operation codes for missing (M), replacement (R) and unnecessary (U) or 5 morphological codes
for agreement (AG), countability (C), derivation (D), form (F) and inflection (I) where applicable.
If none of these codes are appropriate however, a further 12 separate codes are available for
argument structure (AS), compound errors (CE), collocations (CL), idioms (ID), register (L),
question prompt errors (QL), spelling (S, SA and SX), verb tense (TV), word order (W) and
negation (X) errors.

The modularity of this system is one of the main strengths of the CLC as it is very easy to
extract examples of specific error types based only on the error code. For example, all preposition
errors can be extracted by searching for codes that end with T. It is worth noting that this system
is not perfect however, and there are also some inconsistencies in the labelling. For example, we
might expect ID to denote a determiner inflection error (based on the prefix + POS pattern), but
it instead denotes an idiom error, while DI denotes a determiner inflection error. Similarly, codes
C and D have both been used twice to denote conjunction and countability errors, and determiner
and derivation errors respectively.

The main weakness of the CLC framework is its size. Although more error types tend to
mean greater expressiveness, the trade-off is that this also increases the complexity of the system
and results in rarer categories. For example, 50 of the 77 categories each account for less than 1%
of the total corpus. This not only means human annotators must learn the precise definitions of
increasingly subtle error type distinctions before they can start annotating, but also that machine
learning algorithms may struggle to differentiate between larger numbers of rarer categories
that become under-represented in training data. A better framework would hence be one that
compromises between expressiveness and complexity.

2.1.2 Public First Certificate in English

Although the main CLC is private, a small subsection of it is publicly available online for non-
commercial purposes. Specifically, Yannakoudakis et al. (2011) released 1,244 scripts containing
2,488 answers to First Certificate in English (FCE) exams from 2000 and 2001.4 This subsection
comprises roughly 530 thousand words and was similarly annotated with metadata, corrections
and error type information. The only difference between the format of the public FCE and the
full CLC is that the former a) does not include the gender of the learner, b) explicitly splits the
text into paragraphs on a <p> tag, and c) uses <NS> rather than <e> to denote an error. In all
other ways, annotations in the public FCE are identical to the CLC.

4https://ilexir.co.uk/datasets/index.html
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Code Meaning Freq. Code Meaning Freq.
ArtOrDet Article or determiner 6,637 Ssub Subordinate clause 356
Cit Citation 547 Trans Transitions 1,352
Mec Mechanical (orthography) 3,028 Um Unclear meaning 1,141
Nn Noun number 3,764 V0 Missing verb 413
Npos Noun possessive 239 Vform Verb form 1,443
Others Others 1,458 Vm Modal verb 431
Pform Pronoun form 185 Vt Verb tense 3,199
Pref Pronoun reference 925 WOadv Adj/Adv word order 347
Prep Preposition 2,413 WOinc Word order 696
Rloc- Local redundancy 4,680 Wa Acronyms 48
SVA Subject-verb agreement 1,523 Wci Word choice or idiom 5,300
Sfrag Sentence fragment 186 Wform Word form 2,159
Smod Dangling modifier 47 Wtone Tone or register 581
Spar Sentence parallelism 518 Total 44,482
Srun Run-on sentence 866

Table 2.3: The error codes, meanings and frequencies of all 28 error types in NUCLE v3.2.

2.1.3 NUCLE

The first version of the National University of Singapore Corpus of Learner English (NUCLE)
was a public collection of 1,414 student essays written by non-native (mainly South-East Asian)
undergraduates at the National University of Singapore (Dahlmeier et al., 2013). It was collected
in collaboration with the Center for English Language Communication at the same university
and comprised roughly 1.2 million words. Each essay was also annotated with corrections and
error types, but unlike the CLC, did not include metadata about the student or exam. The latest
version of NUCLE (v3.2)5 differs from the original in that it is not only slightly smaller (1,397
essays), but also contains 28 rather than 27 error types.6 These error types, their meanings and
frequencies are all shown in Table 2.3.

Compared to the CLC, one advantage of the NUCLE framework is that it is a lot smaller; 28
error types are a lot more manageable than 77. In fact NUCLE error types are also a lot more
productive, and only 9 out of the 28 categories each account for less than 1% of the corpus. That
said, a significant drawback to the NUCLE framework is that it is a lot less modular than the
CLC and error categories are sometimes inconsistent in scope.

For example, while it is straightforward to extract all missing word errors from the CLC by
searching for error codes prefixed by M, the same is not possible in NUCLE. Instead, there is
only one category that exclusively contains missing words (missing verbs: V0) and all other
missing words are variously subsumed under other categories, such as prepositions (Prep) or
others (Others). Similarly, although the local redundancy category (Rloc-) is roughly analogous

5http://www.comp.nus.edu.sg/~nlp/corpora.html
6Preposition errors were originally classified under word choice errors (Wcip) but were separated out and given

their own category.
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to a general unnecessary word category, certain unnecessary words are again subsumed under
other categories such as article or determiner (ArtOrDet) or preposition (Prep). This ultimately
means it is very difficult to extract errors with similar properties from NUCLE and different error
types are unpredictably more expressive than others.

In fact some of the error types themselves are also fairly questionable. For example, citation
errors (Cit) only really apply to formal university essays, and so are not technically grammat-
ical errors, while dangling modifiers (Smod) and acronym errors (Wa) are extremely specific
categories given their infrequency. A better framework would hence be one that only contains
categories that are both frequent and generalisable; this is one of the core principles behind the
new framework I developed.

2.1.4 CoNLL-2013 and CoNLL-2014

Since the National University of Singapore also hosted the Conference on Natural Language
Learning (CoNLL) GEC shared tasks of 2013 and 2014 (Ng et al., 2013, 2014), it was also
responsible for creating new test data (see Section 2.4.2). The CoNLL-2013 and CoNLL-2014
test sets were thus annotated in roughly the same conditions as NUCLE and respectively consist
of 50 annotated essays of about 600 words each.

The CoNLL-2014 test set is particularly noteworthy because it was also the first dataset to be
doubly annotated by two different annotators, and in fact Bryant and Ng (2015) and Sakaguchi
et al. (2016) both subsequently annotated it a further 8 times each for a total of 18 sets of
overlapping annotations. This test set is currently one of the most popular benchmarks for GEC
systems.

2.1.5 Lang-8

Lang-8 is an online language learning social networking service that enables non-native learners
to post text in the language they are trying to learn in the hope that native users will post replies
with corrections.7 The website was crawled in December 2010 by Mizumoto et al. (2012), who
subsequently made two different versions of the data available online as research corpora.8

Specifically, the Lang-8 Learner Corpus v2.0 is the full multilingual version of the corpus
that has not been preprocessed in any way, while the Lang-8 Corpus of Learner English v1.0
(Tajiri et al., 2012) is an English-only subset that has been cleaned using various preprocessing
techniques (Mizumoto et al., 2011). The full corpus contains approximately 8.2 million sentences
in many different L2 languages, while the English-only corpus contains roughly 1 million
sentences of L2 English alone. Neither corpus has been explicitly annotated with error type
annotations and instead both consist of only parallel original and corrected sentence pairs. It

7http://lang-8.com/
8http://cl.naist.jp/nldata/lang-8/
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is worth noting that in addition to the official corpora, different research groups have also
independently scraped the Lang-8 website and created their own non-public Lang-8 corpora
(Junczys-Dowmunt and Grundkiewicz, 2016; Ge et al., 2018a).

Finally, it is also worth mentioning that preprocessing is especially important in a corpus like
Lang-8 because it has not been annotated to the same standards as NUCLE or the CLC. Instead,
Lang-8 users were free to post anything in response to learners’ queries, and so “corrections”
often include in-line comments, suggestions, emoticons and other artefacts that are not strictly
part of the sentence. Consequently, the main advantage of Lang-8 is that it provides a large
quantity of lower quality parallel data that can bolster the small amount of higher quality
annotated data used in certain GEC paradigms.

2.1.6 JFLEG

The GUG corpus is a small collection of 3,129 learner sentences annotated for grammaticality
on an ordinal scale by Heilman et al. (2014). Napoles et al. (2017) subsequently reannotated
1,501 of these sentences9 with four sets of overlapping corrections to create the Johns Hopkins
University Fluency-Extended GUG corpus (JFLEG). The corpus was then split roughly in half
to create a development and test set of 754 and 747 sentences respectively, both of which are
currently used as popular benchmarks. Like Lang-8 however, the corpus only consists of parallel
sentence pairs and does not contain any explicit annotations or metadata.

The main difference between JFLEG and other GEC corpora is that JFLEG advocates fluency
rather than minimally corrected sentences. Specifically, Sakaguchi et al. (2016) argued that
forcing annotators to make minimal edits within the confines of an error type framework often led
to unidiomatic sentences, and that it was instead more natural to allow annotators to completely
rewrite sentences if necessary. JFLEG was thus an attempt to encourage researchers to build
systems that were capable of producing idiomatic rather than just grammatical output.

The fluency vs. minimal edit debate still continues today, but it is likely that the level of
feedback a GEC system provides ultimately depends on the target user. For example, although
native or advanced learners might benefit from fluency corrections, beginner or intermediate
learners may be disheartened if a fluency system continually suggests they rewrite everything
using more complicated grammatical constructions.

2.2 Approaches to GEC

As GEC has evolved, so too have the systems and approaches designed to tackle it. In this
section I will hence introduce the most popular paradigms and describe their various strengths
and weaknesses.

9The paper says 1,511 sentences but the data itself is 1,501
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2.2.1 Rules

The oldest and simplest GEC systems depended entirely on hand-coded rules. For example,
sentences in English typically begin with a capital letter and end with a full stop, so it is
straightforward to write a rule that enforces these constraints. Rules based on string matching
alone are rather limited however, and so most rule-based systems additionally make use of
automatically obtained part-of-speech (POS) tags and parse information to detect and correct
errors (McCoy et al., 1996; Park et al., 1997; Schneider and McCoy, 1998; Michaud et al., 2000;
Dodigovic, 2007).

To show how this information can be useful, consider the case of subject-verb agreement
(SVA), where the grammatical number of a subject must agree with the grammatical number of
the verb it is governed by.10

• The cat often chases the mouse.
• *The cats often chases the mouse.
• *The cat often chase the mouse.
• The cats often chase the mouse.

To detect the erroneous combinations, we hence need to determine 1) the subject of the verb,
2) the number of the subject, and 3) the number of the verb. Although this information is not
explicit in raw text, it can be obtained from a parser and a POS tagger. Specifically, a parser
annotates the grammatical relations between words at arbitrary levels of distance (here, the
subject and verb are separated by ‘often’), while a POS tagger assigns part-of-speech tags that
often encode grammatical number (Figure 2.1). Examples of open-source software that can do
this include: RASP11 (Briscoe et al., 2006), NLTK12 (Bird et al., 2009), CoreNLP13 (Manning
et al., 2014), and spaCy14 (Honnibal and Johnson, 2015). Note that each of these toolkits might
also assign labels at different levels of granularity; e.g. there are 36 main POS tags in the English
Penn Treebank tagset (Marcus et al., 1993), but 12 in the Google Universal Tagset (Petrov et al.,
2012).

For rule-based GEC, it then becomes a case of i) extracting the subject and verb from the
parse and ii) checking whether their POS tags have the same number agreement or not. Rules for
other error types can similarly be constructed in an analogous way.

The main advantage of rule-based methods over other approaches is that they are often easy
to implement and usually very precise. Since rules are defined manually by humans, humans
have direct control over when they activate. This can be a double-edged sword however, and

10It is linguistic convention to mark ungrammatical text with an asterisk.
11https://www.ilexir.co.uk/rasp/index.html
12https://www.nltk.org/
13https://stanfordnlp.github.io/CoreNLP/
14https://spacy.io/
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The cat often chases the mouse .
DT NN RB VBZ DT NN .

det

nsubj

advmod

punct

dobj

det

Figure 2.1: The parse reveals “cat” is the nominal subject (nsubj) of “chases” and the POS tags
show that both words are singular (NN and VBZ rather than NNS and VBP).

some rules may become so complicated that they are laborious to create and maintain. There is
hence a trade-off between rule precision and rule complexity.

Another advantage of rule-based methods is that they do not rely on training data and so can
be applied to any language. For example, in addition to English, rule-based grammar checkers
have also been developed for German (Weischedel et al., 1978), Spanish and Greek (Bustamante
and Leon, 1996), Swedish (Arppe, 2000; Birn, 2000; Domeij et al., 2000), Punjabi (Gill and
Lehal, 2008), Persian (Ehsan and Faili, 2010), and Mandarin Chinese (Wu et al., 2015), amongst
others. The disadvantage of this approach, however, is that new rules had to be written for each
new language, and so rules are typically not very generalisable.

2.2.2 N-gram language models

The intuition behind using language models (LMs) in GEC is that lower probability sequences
are more likely to be ungrammatical than higher probability sequences. For example, it is
intuitive that ‘I eated the cake’ is less likely than ‘I ate the cake’ because the former contains an
error. In order to quantify this difference however, we need a language model.

The most common way to build a language model is to compute the probabilities of short
windows of text (n-grams) from a large corpus of monolingual text, such as Wikipedia15

(Pasternack and Roth, 2008) or Common Crawl16 (Buck et al., 2014). For example, the 4-gram
probability of ‘I ate the cake’ can be computed as the number of times ‘I ate the cake’ appeared
in a corpus divided by the number of times ‘I ate the’ appeared in the same corpus. This is also
the probability of the word ‘cake’ given ‘I ate the’ (Equation 2.1).

P(I ate the cake) = P(cake | I ate the)

=
Count(I ate the cake)

Count(I ate the)

(2.1)

If we instead compute the probability of this sequence using bigrams (n = 2) however,
we must apply the chain rule of probability to obtain the overall probability of the sequence
(Equation 2.2).

15https://dumps.wikimedia.org/
16http://commoncrawl.org/

25

https://dumps.wikimedia.org/
http://commoncrawl.org/


P(I ate the cake) = P(ate | I)×P(the |ate)×P(cake | the)

=
C(I ate)

C(I)
×C(ate the)

C(ate)
×C(the cake)

C(the)

(2.2)

In the general case, the probability of any window of N words (from word wn−N+1 to word
wn) can be expressed as Equation 2.3 and the chain rule can be applied to calculate probabilities
of sequences longer than N. We refer the reader to Jurafsky and Martin (2009, Ch. 4) and Chelba
et al. (2014) for a more comprehensive introduction to language modelling.

P(wn|wn−1
n−N+1) =

C(wn−1
n−N+1wn)

C(wn−1
n−N+1)

(2.3)

In relation to GEC, the most common application of a LM is to detect improbable sequences
of words and score alternative suggestions (Turner and Charniak, 2007; Gamon et al., 2008;
Bergsma et al., 2009; Heilman et al., 2012; Lee et al., 2014; Yeh et al., 2017; Zhao et al.,
2017; Bryant and Briscoe, 2018; Lin and Chen, 2018). Specifically, having detected a low
probability sequence, a correction system might propose an alternative that maximally increases
the overall probability above some threshold. A significant advantage of this approach is that it
is theoretically able to handle every error type provided a suitable correction can be generated.

One disadvantage, however, is that probability is not always a good proxy for grammaticality.
For example, consider the following joke:

Student: I is ...
Teacher: No, you must always say ‘I am’.
Student: Ok. I am the ninth letter of the alphabet.

This example shows one of the very few cases where it is grammatical to say ‘I is’, so
researchers should be aware that LMs may fail when handling rare words or constructions.
Despite this weakness, LMs are prolific in GEC because they i) are fairly simple to implement,
ii) only require native training data and iii) are highly versatile. It is not uncommon therefore to
find LMs used in combination with other approaches.

2.2.3 Statistical classifiers

In machine learning, a classifier is an algorithm that attempts to classify an input x ∈ X into a
category y ∈ Y. Since the size of all possible corrections Y is extremely large in error correction
however, most GEC classifiers instead focus only on specific error types where Y is a lot smaller.
In particular, there has been a lot of work on article, preposition, and verb errors:
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• Article classifiers: Han et al. (2006); De Felice (2008); De Felice and Pulman (2008);
Gamon et al. (2008); Rozovskaya and Roth (2010b); Dahlmeier and Ng (2011); Seo et al.
(2012); Rozovskaya and Roth (2013); Xiang et al. (2013); Rozovskaya and Roth (2014).

• Preposition classifiers: Chodorow et al. (2007); De Felice and Pulman (2007); De Felice
(2008); De Felice and Pulman (2008); Gamon et al. (2008); Tetreault and Chodorow
(2008); Tetreault et al. (2010); Rozovskaya and Roth (2010a); Dahlmeier and Ng (2011);
Cahill et al. (2013); Rozovskaya and Roth (2013, 2014).

• Verb classifiers: Gamon et al. (2008); Lee and Seneff (2008); Tajiri et al. (2012); Ro-
zovskaya and Roth (2013, 2014); Rozovskaya et al. (2014b).

More specifically, article classifiers attempt to predict one of {ε,a, the} in front of noun
phrases (ε is a null article), preposition classifiers attempt to predict one of the top n most
frequent prepositions (n ranges between 5 and 36 depending on the study), and verb classifiers
attempt to predict the form or tense of a verb (e.g. {eat,eats,ate,eating,eaten}). The input to
all these classifiers is hence the word or context in which each of these error types occurs.

Unlike a deterministic rule-based system which requires explicit instructions concerning how
the properties of input x map to output y however, a classifier rather learns a function f that
maps x to y automatically. In order to do this however, the properties of x must first be converted
into a machine readable format in a process known as feature extraction. Specifically, all the
properties of x that humans think will help the classifier, such as the current word, its POS tag,
syntactic position, etc., must be encoded as a vector.

It is then up to the classifier to determine how useful each encoded feature is and hence weight
its importance. This process is called training and such weights are learnt from a large number
of examples xtrain for which we know the correct answer ytrain. The details of training vary
depending upon the classification algorithm, but popular examples include naive Bayes, logistic
regression, decision trees (Quinlan, 1986), support-vector machines (Cortes and Vapnik, 1995),
maximum entropy models (Berger et al., 1996; Ratnaparkhi, 1996), the averaged perceptron
(Freund and Schapire, 1999), and conditional random fields (Lafferty et al., 2001).

These algorithms also sometimes have additional configurational parameters, called hyper-
parameters, which control variables such as model complexity and maximum training time.
These parameters are external to the training process and must be optimised separately on a
small set of held-out data called the development set. The predictions ŷdev are thus compared
against the correct answers ydev using some metric (Section 2.3), and the classifier iteratively
updates until the parameters converge on an optimum solution. The system is finally evaluated
on another set of held-out data, the test set, which is entirely independent from both the training
and development set, and this score is treated as the true performance of the classifier.

One advantage of classifiers over rules is that humans do not need to explicitly define the
relationship between features and output, and can instead rely on machine learning to determine
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the importance of each feature. This somewhat overcomes the problem of having to maintain
a large number of rules with increasing complexity. That said, humans still need to decide
which features to include in their system (feature engineering) which may not be trivial. This
is especially significant given that some, or too many, features may actually harm classifier
performance.

Finally, as mentioned at the start of this section, another limitation of classifiers is that they
only target very specific error types with small confusion sets. They hence do not extend well
to other error types, such as synonym errors, or a more general solution. In fact if we were to
build multiple classifiers for multiple error types, a related issue is that classifier order matters,
and results will vary depending on whether you apply, e.g., the article classifier before the
preposition classifier or vice versa. Given the 28 error types in NUCLE, let alone the 77 in the
CLC, classifiers quickly become impractical.

2.2.4 Statistical machine translation

The traditional goal of statistical machine translation (SMT) is to automatically translate one
language to another; e.g. English to French. When applied to GEC however, the goal is to
translate “bad” English to “good” English. Although these two tasks may seem somewhat
different, they can both be viewed in terms of the noisy channel model (Shannon, 1948).
Specifically, we can imagine a correct signal C as having passed through some noisy channel
to produce an erroneous signal E, and the goal is to reconstruct the correct signal given the
erroneous signal (Figure 2.2).

This can be formulated mathematically using Bayes’ rule, where Ĉ is the most likely predic-
tion of what the original signal C was given the noisy signal E (Equation 2.4):

Ĉ = argmax
C

P(C|E) = argmax
C

P(E|C)P(C)

P(E)
= argmax

C
P(E|C)P(C) (2.4)

The core components of a SMT system are thus a language model that computes P(C), and a
translation model that computes P(E|C). Since LMs were already introduced in Section 2.2.2, I
will only describe the translation model here.

Fundamentally, the translation model is a model that predicts the probability that a word
or phrase maps to another word or phrase. For example, the word pamplemousse in French is
more likely to map to grapefruit than banana in English because that is what it means, while
the phrase discuss about in “bad English” is more likely to map to talk about than walk about

in “good English” because that is a more likely correction. Since these mappings are rarely
deterministic however, for example discuss about might also map to discuss, they are instead
learnt automatically from parallel data. Exactly how these mappings are learnt is beyond the
scope of this thesis, but the summary is that the Expectation-Maximisation algorithm (Dempster
et al., 1977) finds the most probable alignment between words and phrases in parallel sentences
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C E

Figure 2.2: The noisy channel model (Shannon, 1948).

based on IBM models 1-5 (Brown et al., 1993) and a more sophisticated phrasal alignment
(Koehn et al., 2003). See Koehn (2010) for more information on this and SMT in general.

In relation to GEC, the earliest work using SMT was highly varied, with one system correcting
only a specific error type (Brockett et al., 2006) and another correcting errors via round-trip
translation (Madnani et al., 2012). In fact Dahlmeier and Ng (2012a) even advocated against using
SMT in GEC after obtaining poor results, and so it was only much later when larger quantities
of training data became available that SMT became a more dominant approach (Mizumoto
et al., 2012; Chang et al., 2013; Wu et al., 2013; Susanto et al., 2014; Junczys-Dowmunt and
Grundkiewicz, 2016; Rozovskaya and Roth, 2016; Chollampatt et al., 2016a; Chollampatt and
Ng, 2017; Napoles and Callison-Burch, 2017; Grundkiewicz and Junczys-Dowmunt, 2018). It
is worth mentioning, however, that this reliance on parallel training data is one of the main
weaknesses of SMT in GEC, as annotated correction corpora are typically a lot smaller and
harder to obtain than multilingual translation corpora.

Nevertheless, the main advantage of SMT over other approaches is that it can theoretically
correct all error types without expert knowledge or feature engineering. Furthermore, it can also
handle interacting errors and even produce an n-best list of alternative corrections for a single
sentence. This has led to much work on n-best list re-ranking, which aims to determine whether
the best correction for a sentence is not the single most likely candidate (i.e. n=1), but is rather
somewhere further down in the top n most likely candidates (Hoang et al., 2016; Mizumoto and
Matsumoto, 2016; Yuan et al., 2016; Yannakoudakis et al., 2017).

Finally, although SMT generalises well to all error types, one of its biggest weaknesses is
that it is not very customisable. In particular, while classifiers can be improved by simply adding
new features, it is a lot harder to add constraints that target specific error types in SMT systems.

2.2.5 Neural machine translation

Neural networks are a general class of model that learn how to map an input x to an output
y via a number of hidden states h. In GEC, the most common type of neural model uses the
encoder-decoder framework (Xie et al., 2016; Yuan and Briscoe, 2016; Ji et al., 2017; Sakaguchi
et al., 2017b; Chollampatt and Ng, 2018a; Ge et al., 2018a; Grundkiewicz and Junczys-Dowmunt,
2018; Junczys-Dowmunt et al., 2018), but other types of model have also been used (Chollampatt
et al., 2016a,b; Chollampatt and Ng, 2017; Yannakoudakis et al., 2017). The encoder-decoder
framework was originally developed for neural machine translation (NMT) (Cho et al., 2014;
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Figure 2.3: An overview of the encoder-decoder framework used in neural machine translation.
An input sequence is encoded as a vector s which a decoder then translates based on this vector
and all previously predicted words. The same principle applies to GEC.

Sutskever et al., 2014), but like SMT, it can also be adapted for GEC.
In NMT, an encoder first encodes a sequence of words x = (x1,x2, ...,xT ) as a vector

s = q(h1,h2, ...,hT ), where q is a non-linear function, and ht is an activation function f (xt ,ht−1)

at time t. The activation function f is traditionally just a sigmoid function, but other more
sophisticated functions can also be used; e.g. the Long-Short Term Memory (Hochreiter and
Schmidhuber, 1997) and Gated Recurrent Units (Cho et al., 2014). Having encoded an input
sentence, the decoder next tries to predict the output sequence y = (y1,y2, ...,yT ) based on both
the encoded input sequence and all previously predicted words {y1,y2, ...,yt−1} (Equation 2.5).
An overview of this process is shown in Figure 2.3.

p(y) =
T ′

∏
t=1

p(yt |y1,y2, ...,yt−1,s) (2.5)

Like SMT, one of the main advantages of neural approaches to GEC is that NMT models can
theoretically handle all error types. They also contain many more parameters than regular SMT
models, and so can typically make more nuanced decisions. It is primarily for this reason that the
encoder-decoder approach is currently the state of the art in GEC, but it is worth mentioning that
this has only been made possible because of greater access to larger corpora. Without sufficient
parallel data, SMT systems typically outperform NMT systems (Junczys-Dowmunt et al., 2018).

One of the main disadvantages of the NMT approach, however, is that models are not partic-
ularly transparent and do not generalise well to unseen data. In particular, neural models abstract
away from linguistically motivated features, and instead learn their own feature representations
which are not interpretable by humans. This makes it very difficult to diagnose why a model
made a mistake when it encounters something it has not seen before. Nevertheless, NMT is one
of the most popular paradigms in current GEC research, with the highest reported results using a
combination of both NMT and SMT (Grundkiewicz and Junczys-Dowmunt, 2018).
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2.3 Evaluation metrics

Regardless of the approach, evaluation is an important part of GEC system development. Specifi-
cally, without a reliable means of evaluation, it is impossible to quantify system performance.

Although the most intuitive way to do this might be to manually inspect system output and
keep track of how many times a system was right and wrong, this approach quickly becomes
impractical for large datasets. Specifically, manual inspection takes a lot of time and effort, and
must also be carried out on a large enough sample of data to overcome statistical bias. Instead, it
is much more practical to rely on automatic metrics that can estimate performance a lot more
quickly and cheaply. In this section, I will hence introduce the three most popular metrics in
GEC, although note that other metrics are also available (Bryant and Ng, 2015; Grundkiewicz
et al., 2015; Napoles et al., 2016c; Asano et al., 2017; Choshen and Abend, 2018b).

2.3.1 MaxMatch

The MaxMatch (M2) scorer (Dahlmeier and Ng, 2012b) is the current de facto evaluation metric
in GEC. It was developed in response to shortcomings in the scorer used in the Helping Our
Own shared tasks (Section 2.4.1), and subsequently became the official metric in the Conference
on Natural Language Learning shared tasks (Section 2.4.2). It is based on the F-score (van
Rijsbergen, 1979).

To explain the F-score, consider the following aligned original, hypothesis and reference
sentences:

Original Let ’s discuss about the softwares .
Hypothesis Let ’s discuss ε the software .
Reference Let ’s talk about the software .

Starting from left to right, the first difference between the hypothesis and the reference is the
word ‘discuss’ (in red). Specifically, the hypothesis kept the word ‘discuss’ while the reference
changed it to ‘talk’. This mismatch is called a false negative (FN) because the system did not
change something it should have. In contrast, the next difference shows a case where the system
changed something it should not have. Specifically, the system deleted ‘about’ but the reference
kept it (in purple). This is called a false positive (FP). Finally, since both the hypothesis and
reference agreed that ‘softwares’ should be changed to ‘software’ (in green), this is called a true
positive (TP).

Having totalled the TP, FP and FN, we can then calculate precision (P) and recall (R), where
precision measures the proportion of hypothesis edits that were correct, while recall measures
the proportion of reference edits that were missed. They are calculated as follows:
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P =
T P

T P+FP
(2.6) R =

T P
T P+FN

(2.7)

We can then use P and R to calculate the Fβ score (Equation 2.8). The value of β controls
the relationship between P and R where β < 1 weights towards precision while β > 1 weights
towards recall. β = 1 is the harmonic mean of precision and recall and weights them equally.
Values for P, R and Fβ all fall within the range 0 and 1.

Fβ = (1+β
2)× P×R

(β 2×P)+R
(2.8)

One shortcoming of measuring performance in terms of edit overlap between the hypothesis
and the reference however, is that there is often more than one way to define an edit span. For
example, the edit [has eating→ was eaten] can also be realised as [has→ was] and [eating

→ eaten]. If the hypothesis combines them, but the reference does not, the edit will not be
counted as a TP even though it produces the same valid correction. A similar thing happens
when reference annotations include words that do not change; e.g. [the cat→ the dog] vs. [cat

→ dog]. This ultimately results in underestimated system performance.
Dahlmeier and Ng (2012b) hence designed the M2 scorer to overcome this problem by

dynamically calculating the different ways of combining edits based on a Levenshtein alignment
(Levenshtein, 1966). They also introduced a parameter u, which controls the maximum number
of unchanged words allowed in an edit, to handle cases where reference edits contain unchanged
words (this parameter was arbitrarily set to 2). This gives the M2 scorer the ability to maximally

match the intersection between the hypothesis edits {e1, ...,en} and the gold reference edits
{g1, ...,gn}, and hence calculate P and R as follows:

P =

n
∑

i=1
| ei∩gi |
n
∑

i=1
| ei |

(2.9) R =

n
∑

i=1
| ei∩gi |
n
∑

i=1
| gi |

(2.10)

These equations are consistent with Equation 2.6 and 2.7 and can also be used to calculate
the F-score (Equation 2.8).

2.3.2 I-measure

Although the M2 scorer overcame some of the problems of previous scorers, it also suffered
from a number of other limitations; for example:

32



Tokens Classification
Original Hypothesis Reference Detection Correction

a a a TN TN
a a b FN FN
a a - FN FN
a b a FP FP
a b b TP TP
a b c TP FP, FN, FPN
a b - TP FP, FN, FPN
a - a FP FP
a - b TP FP, FN, FPN
a - - TP TP
- a a TP TP
- a b TP FP, FN, FPN
- a - FP FP
- - a FN FN

Table 2.4: How to classify a token in a 3-way alignment based on the extended Writer-Annotator-
System scheme.

1. The unchanged word parameter set to 2 is arbitrary yet still affects results.

2. A system that has no TPs means P = 0, R = 0 and F = 0, and is hence indiscriminable from
a do-nothing baseline.17

3. The lack of a true negative (TN) count means we cannot calculate accuracy, which would
help in discriminating against systems where F = 0.

This prompted Felice and Briscoe (2015) to develop the I-measure, a metric designed to
evaluate a system in terms of overall text Improvement rather than edit overlap. They thus carried
out a 3-way alignment of the original, hypothesis and reference texts and classified every token
according to an extended version of the Writer-Annotator-System (WAS) evaluation scheme by
Chodorow et al. (2012) (Table 2.4). Since cases where original 6= hypothesis 6= re f erence are
both a FP and FN in correction, they also introduced a False Positive and Negative term (FPN).
This scheme enabled them to calculate accuracy, which they further modified by weighting TPs
and FPs to more intuitively reward or punish a system (Equation 2.11). This weight w was set to
2 by default.

WAcc =
w ·T P+T N

w · (T P+FP)+T N +FN− (w+1) · FPN
2

(2.11)

Having computed system weighted accuracy, they then compared this against baseline
weighted accuracy to produce an improvement score I (Equation 2.12). This I score falls within
the range -1 and 1, where I < 0 indicates text degradation and I > 0 indicates text improvement.

17Note that if TP = FP = 0, there is a division by 0 error and P = 1 by definition.
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I =



bWAccsysc ifWAccsys =WAccbase

WAccsys−WAccbase

1−WAccbase
ifWAccsys >WAccbase

WAccsys

WAccbase
−1 otherwise

(2.12)

Despite overcoming several problems with the M2 scorer, the I-measure has not been
widely adopted in GEC. This is because several studies found it negatively correlated with
human judgements at the corpus level (Grundkiewicz et al., 2015; Napoles et al., 2015, 2016c;
Sakaguchi et al., 2016; Chollampatt and Ng, 2018b), although two of these studies also found it
more strongly correlated with human judgements at the sentence level (Napoles et al., 2016c;
Chollampatt and Ng, 2018b). This perhaps suggests the default weight parameter must be tuned
to more properly reflect human intuition.

2.3.3 GLEU

One limitation of both the M2 scorer and the I-measure is that they both rely on explicit reference
annotations. Specifically, a system can only be evaluated if the edits that transform the source
sentence to the reference sentence are well-defined. In an effort to overcome this reliance
on human edit spans, Napoles et al. (2015) introduced the Generalised Language Evaluation
Understanding (GLEU) metric, a variation of the Bilingual Evaluation Understudy (BLEU)
metric commonly used in machine translation (Papineni et al., 2002).

Specifically, while BLEU calculates precision pn by measuring the overlap between hy-
pothesis n-grams H = {h1, ...,hk} and reference n-grams R = {r1, ...,rk}, GLEU extends the
calculation to not only reward hypothesis n-grams that overlap with the reference but not the
original (R\O), but also penalise hypothesis n-grams that overlap with the original but not the
reference (O \R). Although the original formulation of GLEU also included a weight λ that
required tuning based on the number of references, Napoles et al. (2016b) subsequently released
a new version, GLEU+, that removed this weight (Equation 2.13).

p∗n =

(
∑

ngram∈{H∩R}
countH,R(ngram)− ∑

ngram∈{H∩O}
max[0,countH,O(ngram)− countH,R(ngram)]

)
∑

ngram∈{H}
countH(ngram)

countA(ngram) = # occurrences of ngram in A

countA,B(ngram) = min(# occurrences of ngram in A,# occurrences of ngram in B)
(2.13)
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BP =

1 if h > r

exp(1− r/h) if h≤ r
(2.14)

GLEU(O,H,R) = BP · exp

(
1
N

N

∑
n=1

log p∗n

)
(2.15)

The final GLEU score for parallel original, hypothesis and reference texts is hence calculated
according to Equation 2.15, where the maximum size of the n-gram window N is typically set to
4. Like BLEU, this equation also includes a brevity penalty (BP) which penalises hypotheses
that are shorter than the references (Equation 2.14).

In terms of reliability, although several studies found GLEU correlated more strongly with
human judgements than the M2 scorer (Napoles et al., 2015; Asano et al., 2017; Choshen and
Abend, 2018a), several other studies found lower or mixed correlations (Napoles et al., 2016b;
Sakaguchi et al., 2017a; Chollampatt and Ng, 2018b). In fact Choshen and Abend (2018a) also
raised several methodological issues concerning how these correlations were calculated, citing
large differences between Grundkiewicz et al. (2015) and Napoles et al. (2015) who independently
carried out the same correlation experiments using different sets of human judgements.

Ultimately, robust evaluation of GEC systems is still an active area of research.

2.4 Shared tasks and beyond

The series of shared tasks between 2011-2014 arguably spearheaded research into GEC and are
largely responsible for the current state of the field today. They not only promoted GEC to a
wider audience, but also facilitated the evaluation of many different approaches on a level playing
field. This section hence introduces each of the shared tasks and comments on the evolution of
approaches to GEC up to the present day. It is also worth mentioning that similar shared tasks
have driven the field for Arabic (Mohit et al., 2014; Rozovskaya et al., 2015) and Mandarin
Chinese (Yu et al., 2014; Lee et al., 2015, 2016; Rao et al., 2017, 2018).

2.4.1 Helping Our Own

The Helping Our Own (HOO) shared task of 2011 (Dale and Kilgarriff, 2011) was the first to
encourage researchers to work together on general purpose error correction. It was motivated
by the observation that non-native English speakers tended to have more trouble writing formal
academic papers than native speakers, and so HOO-2011 was advertised as an opportunity
to build software that could assist non-native researchers with their writing. The organisers
hence released roughly 20,000 words of annotated text fragments from 19 academic papers as a
development set, and kept a similar amount of data aside as a test set.
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HOO-2011
Team Approach P R F1 Reference
JU CL, RB 10.4 3.8 5.5 Bhaskar et al. (2011)
LI RB 20.9 3.2 5.6 Ivanova et al. (2011)
NU CL, LM 29.1 7.4 11.8 Dahlmeier et al. (2011)
UD LM 5.0 2.0 2.8 Zesch (2011)
UI CL, RB 50.7 13.3 21.1 Rozovskaya et al. (2011)
UT LM 5.0 4.1 4.5 Boyd and Meurers (2011)

HOO-2012
Team Approach P R F1 Reference
CU CL 70.00 4.64 8.70 Kochmar et al. (2012)
ET CL, LM, RB - - - Heilman et al. (2012)
JU CL, RB 2.52 2.65 2.58 Bhaskar et al. (2012)
KU CL 1.45 15.45 2.65 Lee et al. (2012)
LE CL, LM, RB 31.15 22.08 25.84 Quan et al. (2012)
NA CL, LM 29.43 20.53 24.19 Sakaguchi et al. (2012a)
NU CL, LM 45.45 20.97 28.70 Dahlmeier et al. (2012)
TC CL, LM 2.66 12.80 4.41 Lynch et al. (2012)
TH CL 9.44 25.61 13.79 Wu et al. (2012)
UD CL, LM 1.20 4.19 1.87 Zesch and Haase (2012)
UI CL, RB 26.39 28.26 27.29 Rozovskaya et al. (2012)
UT LM 21.95 15.89 18.44 Boyd et al. (2012)
VA CL 6.16 7.51 6.77 van den Bosch and Berck (2012)
VT LM, RB 8.76 4.19 5.67 Daudaravicius (2012)

Table 2.5: Table showing the teams, approaches, and their scores for correction in the HOO-2011
and HOO-2012 shared tasks. CL = classifier, LM = language model, RB = rule-based. ET in
HOO-2012 only submitted output for detection and not correction.

Systems were evaluated in terms of detection, recognition, and correction, or rather the extent
to which they a) correctly identified a word that needed changing, b) correctly identified the
exact span of a word or words that needed changing, and c) correctly identified the exact span of
a word or words that needed changing and also edited the text to match the reference. All scores
were reported in terms of F1 (Section 2.3.1).

The task ultimately proved extremely challenging however, and of the 6 teams that took
part, the best correction system scored just 21.1 F1 using a combination of classifiers and rules
(Rozovskaya et al., 2011). In contrast, the team that came second scored 11.8 F1 using classifiers,
a language model and spell checking software (Dahlmeier et al., 2011), while all other teams
scored less than 6 F1, similarly using combinations of classifiers, language models and rules
(Bhaskar et al., 2011; Ivanova et al., 2011; Zesch, 2011; Boyd and Meurers, 2011).

In light of the difficulty of the full correction task, the organisers of HOO-2012 (Dale
et al., 2012) subsequently decided to simplify the second iteration of the task and instead asked
participants to only correct determiner and preposition errors. This was because these error types
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had previously been extensively studied (cf. Section 2.2.3) and so it was hoped that more teams
would participate. Since all the existing systems for these error types were usually evaluated
on different datasets however, HOO-2012 also presented a good opportunity to more formally
evaluate existing approaches under controlled conditions. To that end, HOO-2012 moved away
from the academic domain and the academic papers that were annotated for HOO-2011, and
instead used the public FCE (Section 2.1.2) as official training, development and test data. This
dataset was considerably larger than that in HOO-2011, and so it was hoped teams could better
exploit this new annotated resource to produce better systems.

The second HOO shared task was thus more successful than the first, and of the 26 different
teams that registered interest, 14 submitted output. The top team still only achieved a score of
28.7 F1 for correction, using a combination of classifiers and a language model (Dahlmeier et al.,
2012), but the competition was a lot closer, with 3 other teams scoring above 24 F1 (Quan et al.,
2012; Rozovskaya et al., 2012; Sakaguchi et al., 2012a). Despite this improvement however, half
of all teams still scored less than 9 F1 (Bhaskar et al., 2012; Daudaravicius, 2012; Kochmar et al.,
2012; Lee et al., 2012; Lynch et al., 2012; van den Bosch and Berck, 2012; Zesch and Haase,
2012).

Across both HOO tasks, classifiers were the most popular approach by far, and almost all
teams used at least one in their system. It might therefore be surprising that so many teams
achieved such a wide range of results, but this can be accounted for by the fact that both
the features chosen and overall system architecture can have a significant effect on system
performance. Finally, language models were also reasonably popular, appearing in just over half
of all systems, while rules were only used in a quarter of all systems. All teams, their approaches
and results for both HOO tasks are shown in Table 2.5.

2.4.2 Conference on Natural Language Learning

Following on from HOO-2012, the organisers of the Conference on Natural Language Learning
(CoNLL) 2013 shared task (Ng et al., 2013) decided to increase the difficulty of the task by
requiring participants to correct noun number, subject-verb agreement (SVA) and verb form
errors in addition to determiner and preposition errors. They also released NUCLE (Section 2.1.3)
as the official training data and changed the official metric to the M2 scorer (Section 2.3.1).

Despite the increased difficulty, CoNLL-2013 was also a success, and of the 54 teams that
registered interest, 17 ultimately submitted system output. Classifiers were again the most
popular approach, with more than half of all teams using at least one in their systems, but four
teams also tried applying statistical machine translation SMT for the first time in a shared task
(Buys and van der Merwe, 2013; Wilcox-O’Hearn, 2013; Yoshimoto et al., 2013; Yuan and
Felice, 2013). A pure classifier approach still came first overall however, achieving a score of
31.2 F1 (Rozovskaya et al., 2013), while a purely language model based approach came second
with 25.01 F1 (Kao et al., 2013).
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CoNLL-2013
Team Approach P R F1 Reference
CAMB MT 39.15 10.10 16.06 Yuan and Felice (2013)
HIT CL, RB 35.65 16.56 22.61 Xiang et al. (2013)
IITB CL, RB 28.18 4.99 8.48 Kunchukuttan et al. (2013)
KOR CL 43.88 3.71 6.85 Yi et al. (2013)
NARA MT, CL, LM 27.39 18.62 22.17 Yoshimoto et al. (2013)
NTHU LM 23.80 26.35 25.01 Kao et al. (2013)
SAAR CL, RB 27.69 1.10 2.11 Putra and Szabo (2013)
SJT1 CL, LM 40.18 10.96 17.22 Jia et al. (2013)
SJT2 - 13.33 0.24 0.48 -
STAN RB 25.50 4.69 7.92 Flickinger and Yu (2013)
STEL MT 27.00 13.33 17.85 Buys and van der Merwe (2013)
SZEG CL 5.52 3.16 4.02 Berend et al. (2013)
TILB CL 6.25 7.24 6.71 van den Bosch and Berck (2013)
TOR MT 17.67 4.81 7.56 Wilcox-O’Hearn (2013)
UAB RB 12.42 1.22 2.22 Sidorov et al. (2013)
UIUC CL 46.45 23.49 31.20 Rozovskaya et al. (2013)
UMC CL, LM, RB 28.49 17.53 21.70 Xing et al. (2013)

CoNLL-2014
Team Approach P R F0.5 Reference
AMU MT, LM 41.62 21.40 35.01 Junczys-Dowmunt and Grundkiewicz (2014)
CAMB MT, LM, RB 39.71 30.10 37.33 Felice et al. (2014)
CUUI CL 41.78 24.88 36.79 Rozovskaya et al. (2014a)
IITB MT, CL 30.77 1.39 5.90 Kunchukuttan et al. (2014)
IPN LM, RB 11.28 2.85 7.09 Hernandez and Calvo (2014)
NARA - 21.57 29.38 22.78 -
NTHU CL, LM, RB 35.08 18.85 29.92 Wu et al. (2014)
PKU CL, LM, RB 32.21 13.65 25.32 Zhang and Wang (2014)
POST LM, RB 34.51 21.73 30.88 Lee and Lee (2014)
RAC LM, RB 33.14 14.99 26.68 Boroş et al. (2014)
SJTU CL, RB 30.11 5.10 15.19 Wang et al. (2014a)
UFC RB 70.00 1.72 7.84 Gupta (2014)
UMC MT 31.27 14.46 25.37 Wang et al. (2014b)

Table 2.6: Table showing the teams, approaches, and their scores for correction in the CoNLL-
2013 and CoNLL-2014 shared tasks. MT = machine translation, CL = classifier, LM = language
model, RB = rule-based. SJTU2 in CoNLL-2013 and NARA in CoNLL-2014 did not submit
system description papers.

Finally, having now given the community several years to prepare, the organisers of CoNLL-
2014 (Ng et al., 2014) again decided to increase the difficulty of the task and this time required
participants to correct all error types as in HOO-2011. They also changed the official metric from
F1 to F0.5, which weights precision twice as much as recall, in an effort to encourage system
submissions to be more precise than to necessarily correct every error. This time, participation
was a lot higher than in HOO-11, and of the 45 teams that registered interest, 13 submitted output.
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Despite their success in previous tasks, classifiers were not as common in CoNLL-2014
as they had been before. This is likely because classifiers do not extend well to general error
correction and it is impractical to build lots of separate classifiers for multiple error types. Instead,
rule-based and language model approaches were most common, being employed by more than
half of all teams.

The most significant result however, was that of the top 3 teams, the teams that came first
and third respectively both used SMT in their approach; specifically, they scored 37.33 F0.5

(Felice et al., 2014) and 35.01 F0.5 (Junczys-Dowmunt and Grundkiewicz, 2014). In contrast, a
purely classifier approach came a close second with 36.79 F0.5 (Rozovskaya et al., 2014a) and a
language model and rule-based approach came a distant fourth with 30.88 F0.5 (Lee and Lee,
2014). Although the use of SMT may not be particularly surprising given its ability to correct all
error types simultaneously, this result nevertheless paved the way for SMT to become dominant
in the years after the shared task. The approaches and results of all the teams are summarised in
Table 2.6.

2.4.3 Recent work

Since the end of the shared tasks, almost all new GEC systems have incorporated machine
translation into their approach. Whilst the earliest approaches did this by means of system
combination with SMT and classifiers (Susanto et al., 2014; Rozovskaya and Roth, 2016),
there has also been a lot of work on re-ranking n-best lists (Hoang et al., 2016; Mizumoto and
Matsumoto, 2016; Yuan et al., 2016; Yannakoudakis et al., 2017). Although the best system
combination approach improved the F-score on the CoNLL-2014 test set by over 10 F0.5 (from
37.33 to 47.40), it did so using non-public Lang-8 data so results are incomparable. In contrast,
most re-ranking approaches only improved performance by under 5 F0.5, although these were also
trained on different combinations of public and private datasets. The only exception to the above
is Yannakoudakis et al. (2017), who used a neural detection system (Rei and Yannakoudakis,
2016) to re-rank their output instead of a more conventional classifier, and ultimately reported a
score of 51.08 F0.5.

All the other approaches to GEC using SMT either focus on tuning the system (Junczys-
Dowmunt and Grundkiewicz, 2016) or else adding new features (Chollampatt et al., 2016a,b;
Chollampatt and Ng, 2017). Specifically, Junczys-Dowmunt and Grundkiewicz (2016) achieved
49.49 F0.5 by tuning their system on public data with a large language model, while the current
best SMT approach combines SMT with a neural joint model and large language model to reach
53.14 F0.5 (Chollampatt and Ng, 2017).

In addition to SMT, there has also been a growing trend towards using neural machine transla-
tion (NMT) (or other sequence-to-sequence models) in GEC. Although the first of these systems
was purely token-based (Yuan and Briscoe, 2016), subsequent work found that incorporating
character-based information into the model tended to improve scores by up to 8 F0.5, most likely
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CoNLL-2014
Name Approach Data P R F0.5 GLEU Reference
Statistical Machine Translation
CU16smt MT, RR CLC - - 38.08 65.68

Yuan et al. (2016)
NU14 MT, CL NUCLE, Lang-8en.v1, wiki 53.55 19.14 39.39 -

Susanto et al. (2014)
TU16 MT, RR NUCLE, Lang-8v2, GW 45.80 26.60 40.00 66.10

Mizumoto and Matsumoto
(2016)

NU16rank MT, RR NUCLE, Lang-8en.v1, wiki 50.35 23.84 41.19 -
Hoang et al. (2016)

NU16glm MT, NJM,
NGLM

NUCLE, Lang-8en.v1, wiki 52.34 23.07 41.75 -
Chollampatt et al. (2016b)

CU17CU16.smt MT, NRR NUCLE, Lang-8en.v1, CLC,
JFLEG

51.09 25.30 42.44 66.42
Yannakoudakis et al. (2017)

NU16 jm MT, NJM NUCLE, Lang-8v2, FCE,
wiki

- - 44.27 -
Chollampatt et al. (2016a)

VT16 MT, CL NUCLE, Lang-8priv, wiki,
Web1T

60.17 25.64 47.40 -
Rozovskaya and Roth (2016)

AM16pub MT NUCLE, Lang-8en.v1, CC 61.27 27.98 49.49 -
Junczys-Dowmunt and Grund-
kiewicz (2016)

CU17AM16.pub MT, NRR NUCLE, Lang-8en.v1, CLC,
JFLEG

59.88 32.16 51.08 68.69
Yannakoudakis et al. (2017)

AM16priv MT NUCLE, Lang-8priv, CC 63.52 30.49 52.21 -
Junczys-Dowmunt and Grund-
kiewicz (2016)

NU17 MT, NJM NUCLE, Lang-8v2, wiki,
CC

62.74 32.96 53.14 -
Chollampatt and Ng (2017)

Neural Machine Translation
CU16nmt NMT CLC - - 39.90 65.59

Yuan and Briscoe (2016)
SU16 NMT NUCLE, Lang-8en.v1, CC 49.24 23.77 40.56 -

Xie et al. (2016)
HU17 NMT NUCLE, Lang-8v2 - - 41.37 -

Schmaltz et al. (2017)
MS17 NMT NUCLE, Lang-8en.v1, CLC,

CC
- - 45.15 -

Ji et al. (2017)

MS18 NMT NUCLE, Lang-8en.v1, Lang-
8priv, CLC, wiki

61.24 37.86 54.51 -
Ge et al. (2018a)

NU18 NMT NUCLE, Lang-8v2, wiki,
CC

65.49 33.14 54.79 -
Chollampatt and Ng (2018a)

AM18nmt NMT NUCLE, Lang-8v2, CC 61.90 40.20 55.80 -
Junczys-Dowmunt et al.
(2018)

AM18hyb NMT, MT NUCLE, Lang-8v2, CC 66.77 34.49 56.25 -
Grundkiewicz and Junczys-
Dowmunt (2018)

Table 2.7: A summary of all results on the CoNLL-2014 test set for various groups in various
years since the end of the shared task. MT = machine translation, RR = re-ranking, CL =
classifier, JM = joint model, GLM = global lexicon model. Any of these prefixed with N =
neural. Most datasets are described in Section 2.1. Of those that are not, GW = Gigaword,
wiki = English Wikipedia and CC = CommonCrawl. In addition to Web1T, these are all large
monolingual English corpora used to create language models.

because this enhanced the model’s ability to handle spelling and morphological errors (Xie et al.,
2016; Schmaltz et al., 2017; Ji et al., 2017). To further improve upon these systems, most recent
work either uses large quantities of non-public data (Ge et al., 2018a) or else highly optimises
every component of their system, e.g. word embeddings and language models (Chollampatt and
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JFLEG test
Name Approach Data P R F0.5 GLEU Reference
NU16 jm MT, NJM NUCLE, Lang-8v2, FCE,

wiki
68.08 32.30 55.73 50.13

Chollampatt et al. (2016a)

CU16nmt NMT CLC 65.66 35.93 56.34 52.05
Yuan and Briscoe (2016)

JH17 NMT NUCLE, Lang-8en.v1, FCE,
JFLEG

65.80 40.96 58.68 53.98
Sakaguchi et al. (2017b)

NU17 MT, NJM NUCLE, Lang-8v2, wiki,
CC

- - 64.25 56.78
Chollampatt and Ng (2017)

NU18 NMT NUCLE, Lang-8v2, wiki,
CC

- - 66.80 57.47
Chollampatt and Ng (2018a)

MS18 NMT NUCLE, Lang-8en.v1, Lang-
8priv, CLC, wiki

- - - 57.74
Ge et al. (2018a)

AM18nmt NMT NUCLE, Lang-8v2, CC - - - 59.90
Junczys-Dowmunt et al.
(2018)

AM18hyb MT, NMT NUCLE, Lang-8v2, CC - - - 61.50
Grundkiewicz and Junczys-
Dowmunt (2018)

FCE test
Name Approach Data P R F0.5 GLEU Reference
CU16smt MT, RR CLC 63.27 31.95 52.90 70.15

Yuan et al. (2016)
CU16nmt NMT CLC - - 53.49 71.16

Yuan and Briscoe (2016)
CU17CU16.smt MT, NRR NUCLE, Lang-8en.v1, CLC,

JFLEG
64.25 36.13 55.60 71.76

Yannakoudakis et al. (2017)

CU17AM16.pub MT, NRR NUCLE, Lang-8en.v1, CLC,
JFLEG

43.34 19.88 35.07 64.78
Yannakoudakis et al. (2017)

Table 2.8: A summary of all results on the JFLEG and FCE test sets for various groups in various
years since the end of the shared task. See Table 2.7 for acronym definitions.

Ng, 2018a; Junczys-Dowmunt et al., 2018). The current state-of-the-art score on CoNLL-2014
also does this, ultimately achieving a score of 56.25 F0.5 using a combination of NMT and SMT
(Grundkiewicz and Junczys-Dowmunt, 2018). The results for all these systems, as well as what
data they were trained on, are shown in Table 2.7.

Although most of these systems are typically only evaluated on CoNLL-2014, a handful have
also been evaluated on JFLEG and the FCE. These systems are typically identical to the systems
tested on CoNLL-2014, except they have been trained and tuned on different combinations
of public and private data using different metrics. In particular, since JFLEG was originally
released alongside the GLEU metric, it is unsurprising that most systems evaluate on JFLEG
using GLEU rather than M2. This ultimately means, however, that researchers may build two
different versions of the same system, one tuned for each metric, depending on the target test set.
The generalisability of these systems is hence unclear.

Nevertheless, the same NMT and SMT system combination that scored highest on CoNLL-
2014 also has the highest GLEU score of 61.50 on JFLEG test (Grundkiewicz and Junczys-
Dowmunt, 2018). In contrast, although very few systems are evaluated on the public FCE, the
current highest score is 55.60 F0.5 and 71.76 GLEU (Yannakoudakis et al., 2017). Table 2.8
shows all the results and datasets used in systems evaluated on both JFLEG and the FCE.
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CHAPTER 3

CORPUS PREPROCESSING

One of the main goals of this thesis is to develop a system capable of automatically annotating
parallel text with error types. For example, given the following original and corrected sentence
pair:

He only can look at the TV in the night.
He can only watch TV at night.

We want to extract the edits that transform the former to the latter and classify them:

He only can look at the TV in the night .
He can only watch TV at night .

R:WO R:VERB U:DET R:PREP U:DET

Before we can do this however, we must first consider existing datasets and decide how to
preprocess them. This is not a trivial task because all the datasets introduced in Section 2.1
are variously available in different file formats that are either tokenized or untokenized, with or
without explicit error annotations. Since another goal of this thesis is to automatically standardise
different corpora, it is important that we deal with these differences as consistently as possible.

This chapter hence covers topics such as how to extract in-line character edits from XML text,
how to convert character edits to token edits, and how to tokenize sentences when annotators
change sentence boundaries. Much of the work presented in this chapter has previously been
reported in Bryant and Felice (2016).

3.1 The CLC and Public FCE

As the full CLC is not publicly available, this first section mainly describes the format of the
public FCE. Both datasets have very similar formats however, and so much of this section also
applies to the CLC.
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The public FCE is available online in two different formats: one which contains the raw data
(Yannakoudakis et al., 2011), and one which was processed for error detection (Rei and Yan-
nakoudakis, 2016).1 Since the raw data release is not explicitly split into training, development
and test sets however, I recovered this split using the file IDs in the error detection release. This
means there are 1,061 files for training, 80 for development and 97 for testing (1,238 total).2

Each file in the training, development and test sets contains two essays written by the same
author on various topics. Each essay is enclosed by <coded answer> tags which are further
subdivided into paragraphs on <p> tags. The CLC differs in this regard in that it a) stores essay
text between <text> tags rather than <coded answer> tags and b) does not split essays into
paragraphs.

One feature of the FCE XML structure is that the edit tags are built directly into the essay text:

<p>

This

<NS type="AGV">

<i>are</i>

<c>is</c>

</NS>

a paragraph.

</p>

Figure 3.1: Example XML paragraph structure in the public FCE.

Here, <NS> denotes the start of an edit (<e> in the CLC), <i> denotes the incorrect original
string, and <c> denotes the correction string. This structure hence encodes the edit [are→ is] in
the context “This are a paragraph.” The error type has also been labelled AGV, which is a verb
agreement error (see Table 2.2 for the complete list of error types in the CLC).

In all, there are four basic types of XML edit in any given <NS> tag:

1. No <i> or <c> : <NS>text</NS>

2. Only <i> : <NS><i>text</i></NS>

3. Only <c> : <NS><c>text</c></NS>

4. Both <i> and <c> : <NS><i>text</i><c>text</c></NS>

Specifically, 1 denotes a mistake that an annotator identified but was unable to correct, while
2, 3 and 4 respectively denote unnecessary, missing and replacement word errors. The CLC and
FCE also permit nested edits (i.e. edits within edits), and so it is also possible for other <NS>
tags to appear inside any of these four types. An example of a nested edit is shown in Figure 3.2,
where the string entery is first identified as a spelling error and corrected to entry and second
identified as a replacement noun error and corrected to entrance. This nesting, while fairly rare,

1https://ilexir.co.uk/datasets/index.html
2The remaining 6 files were only used for validity testing in Yannakoudakis et al. (2011) and are discarded.

44

https://ilexir.co.uk/datasets/index.html


<p>

I will wait at the

<NS type="RN">

<i>

<NS type="S">

<i>entery</i>

<c>entry</c>

</NS>

</i>

<c>entrance</c>

</NS>

.

</p>

Figure 3.2: Example nested edit in the public FCE.

None <i> <c> <i><c> <NS> <i><NS> <c><NS> <i><c><NS> Total
CLC 92,306 295,227 618,614 1,883,647 17,007 2,967 4 119,879 3,029,651
FCE train 1,328 4,410 8,224 28,510 245 38 0 1,767 44,522
FCE dev 105 304 761 2,218 20 3 0 126 3,537
FCE test 209 458 907 2,931 51 4 0 216 4,776

Table 3.1: Table showing the counts for XML edit types in both the public FCE and full CLC. For
example, there are 304 regular unnecessary word errors in FCE dev (<i>), but also 3 unnecessary
word errors that contain a nested edit (<i><NS>).

makes processing this data much more complicated as there is also no limit to the amount of
nesting that can occur.

The parallel original and corrected paragraphs in an FCE essay can thus be regenerated as
follows:

• Any text inside an <i> tag is saved in the original paragraph alone.

• Any text inside a <c> tag is saved in the corrected paragraph alone.

• All other text inside or outside an <NS> tag is saved on both sides.

The only exception to this is if the edit is a nested edit, in which case only the outermost <i>
and <c> text is saved and the intermediate corrections are ignored. In Figure 3.2, this means the
outermost edit [entery→ entrance] is saved and the intermediate edit [entery→ entry] is ignored.
The character edit spans that map the original to the corrected paragraphs are also saved.

The total counts of all the XML edit types in both the public FCE and full CLC are shown in
Table 3.1. Note that this table only counts the outermost <NS> tags so nested edits are not counted
twice (or more). In total, roughly 5% of all edits in each dataset contain at least one nested
error. While there are no instances of nested edits appearing inside a lone <c> tag anywhere in
the public FCE (column <c><NS>), this does happen 4 times in the CLC. It seems unlikely that
annotators found errors within their own corrections however, so this is most likely the result of
annotator error.
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<TEXT>

<P>

This are a sentence.

</P>

</TEXT>

<ANNOTATION>

<MISTAKE start_par="0" start_off="5" end_par="0" end_off="8">

<TYPE>SVA</TYPE>

<CORRECTION>is</CORRECTION>

</MISTAKE>

</ANNOTATION>

Figure 3.3: Example SGML paragraph structure

S This are a sentence .

A 1 2|||SVA|||is|||REQUIRED|||-NONE-|||0

Figure 3.4: Example M2 sentence structure

3.2 NUCLE and CoNLL

The NUCLE corpus is also available online, but can only be obtained after submitting a signed
license form agreeing to use it only for research purposes.3 In contrast, the CoNLL-2013 and
CoNLL-2014 test sets are freely available. All these datasets are also available in two different
formats: SGML and M2.

In SGML format (Figure 3.3), the original essay text is enclosed by <TEXT> tags which
are further subdivided by title <TITLE> and paragraph <P> tags. Unlike the FCE however,
edits are not incorporated into the main text and are instead represented as a list of <MISTAKE>
tags enclosed by <ANNOTATION> tags. Each <MISTAKE> thus contains both the character and
paragraph offsets of the edit, as well as the error type <TYPE> and correction <CORRECTION>.

In contrast, M2 format (Figure 3.4) is the cleaner, preprocessed version of the SGML where
the paragraphs have not only been word and sentence tokenized, but the character edits have also
been converted to token edits. An edit line in M2 format thus contains the start and end token
offset of the edit, the error type, the tokenized correction string, a flag indicating whether the edit
is required or optional, a comment field, and a unique annotator ID.4 This format was also the
official format used in the CoNLL shared tasks.

With respect to edit types, the same four edit operations in the FCE are also available in
NUCLE with the following differences:

1. Identified but not corrected edits are labelled Unclear Meaning (Um).
2. Missing word edits must span and repeat an adjacent unchanged word in the correction.
3. Nested edits are not allowed.
3https://www.comp.nus.edu.sg/~nlp/conll14st.html
4In practice, the optional edit and comment fields often contain dummy values and are not used.
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SGML Total M2 Total
NUCLE 44,912 44,482
CoNLL-2013 3,424 3,412
CoNLL-2014.0 2,397 2,391
CoNLL-2014.1 3,331 3,317

Table 3.2: Counts for the total number of edits in NUCLE and CoNLL.

The reason unchanged words must be repeated in missing word edits is because the NUCLE
annotation platform did not allow empty strings on the original side of an edit. This meant, for
example, that an annotator had to change [want→ want to] or [go→ to go] to fix the missing
word error in the sentence “I want go home”. One consequence of this, however, is that missing
word errors look similar to substitution errors, and so Table 3.2 just reports the total number of
edits in NUCLE and CoNLL. Note that CoNLL-2014 features twice in this table because it was
doubly annotated by two different annotators, and that the counts respectively represent the total
number of SGML and M2 edits before and after official shared task preprocessing.

3.3 From characters to tokens

Although the character edits in NUCLE and CoNLL have already been converted to token edits
in M2 format, the same cannot be said of the CLC and FCE. This meant I had to develop my own
method to convert character edits to token edits, and so I also took the opportunity to reprocess
NUCLE and CoNLL in an effort to standardise corpus preprocessing. I hence first modified or
removed several SGML edits that met certain undesirable criteria:

• The correction string of all Unclear Meaning (Um) edits was set to be the same as the
original string because we do not want to delete text that an annotator was unable to
correct.

• All Citation (Cit) edits were removed because they are not only extremely rare, but also
inconsistent in terms of whether the error is corrected or not. It is also debatable whether
citation errors qualify as grammatical errors given that many genres, such as fiction or
correspondence, do not require citations.

• Edits that cross paragraph boundaries or select entire paragraphs were also removed
because they normally consist of annotator comments that suggest an essay or paragraph
be rewritten.

• Edits that contain an ellipsis ‘...’ in the correction were removed because some annotators
occasionally used this to denote a long sequence of unchanged text. Such corrections
would be interpreted literally however.

• Edits that overlapped with any previously seen edits were removed because overlapping
edits were not allowed in NUCLE; these were assumed to be the result of annotator error.
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While the majority of the remaining character edits in both NUCLE and the FCE mapped
cleanly to token edits, several exceptions made this conversion more complicated. For example,
consider the following tokens and character edits:

1. Token: WORD. Edit: [. → ,]

2. Token: Forest’view Edit: [Forest’→ Forest’s]

3. Token: dancing Edit: [ing→ ed]

4. Token: klever Edit: [kleve→ clever]

5. Token: To Edit: [T → to]

In the first example, the annotator wanted to change a full stop into a comma, but the tokenizer
did not separate it from the previous word. This is mostly likely because the previous word is
entirely in upper case and so the tokenizer mistook it for an acronym or proper noun, but the
result is that the character edit does not cleanly map to a token edit. A similar thing happens in
the second example, where the missing whitespace between Forest’ and view causes these two
tokens to be erroneously merged. While the annotator was able to mentally tokenize this string
when making their correction however, automatic tokenizers are unable to do the same.

Although annotators are typically instructed to only annotate whole words when making
corrections, they do not always do this in practice. The third example hence shows a case where
an annotator wanted to change the form of a token [dancing → danced], but did so only by
editing its morphology [ing→ ed]. Such edits naturally do not precisely map to tokens.

Finally, the last two cases are examples of annotator error. Specifically, the annotators
accidentally omitted a character from their edit spans but still provided a complete correction.
Applying the character level edit in the fourth example hence produces the word cleverr, while
applying the edit in the fifth example produces the word too; in other words, the omitted character
is duplicated on the end of the correction string. The last case is particularly noteworthy because
it also unintentionally produces a valid word.

3.3.1 Word tokenization

In an effort to resolve the above tokenization problems, I tokenized the original text with spaCy5

v1.9.0, an open source NLP library (Honnibal and Johnson, 2015). One advantage of spaCy over
other libraries is that it performs non-destructive tokenization, which means it also keeps track
of the character offsets of the tokens it separates; this makes it a lot easier to map characters to
tokens.

Before counting the number of mismatches between character spans and token spans in each
dataset, I also stripped the leading and trailing whitespace from the character edits to minimise
the error rate; in the same way that annotators sometimes omit characters from the end of their

5https://spacy.io/
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Mismatches Total Edits Percent
CLC 22,515 3,029,651 0.74%
FCE train 168 44,522 0.38%
FCE dev 20 3,537 0.57%
FCE test 14 4,776 0.29%
NUCLE 2,538 44,912 5.65%
CoNLL-2013 2 3,424 0.06%
CoNLL-2014.0 8 2,397 0.33%
CoNLL-2014.1 2 3,331 0.06%

Table 3.3: The total number of character-to-token mismatches in relation to the total number of
edits in various datasets.

edit spans, they also sometimes add extra characters. The total number of character-to-token
mismatches in each annotated dataset is hence shown in Table 3.3.

Although character mismatches typically account for fewer than 1% of all edits in most
datasets, the most surprising result is that this figure rises to over 5.5% in NUCLE. Upon closer
inspection however, the main reason for this seems to be that NUCLE contains many more
morphological edits (e.g. [ing→ ed]) than other datasets, which perhaps indicates ambiguity in
the annotation guidelines.

3.3.2 Just add whitespace

One solution to the character-to-token alignment problem is to artificially surround each edit
with whitespace before tokenization. In particular, if we make the assumption that annotators
only edit complete tokens, this implies there is a token boundary before and after each edit.
Consequently, artificially surrounding each edit with additional whitespace ensures that the
tokenizer will tokenize the text at these positions and that character edit spans will always map
to token edit spans.

One disadvantage to this approach, however, is that whilst it correctly handles the WORD.

and Forest’view cases mentioned at the start of this subsection, it fails to handle the other three
cases. Specifically, the edits [dancing → danced], [klever → clever] and [To → to] are all
respectively realised as [danc ing→ danc ed], [kleve r→ clever r] and [T o→ to o]. Although
this may be acceptable given that the last two cases are caused by annotator error anyway, an
additional side effect of inserting whitespace around each edit is that it fundamentally changes
the original text for each annotator.

To give an example, again consider the string Forest’view; while one official CoNLL annotator
edited the substring [Forest’→ Forest’s] as previously discussed, the other edited the whole
string [Forest’view→ Forest’s view]. If we now insert whitespace around each edit however,
the original text for the first annotator becomes Forest’ view (i.e. with whitespace), but remains
Forest’view for the second annotator (i.e. without whitespace). This ultimately means we end up
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with two different tokenized versions of the same original text.
This is highly undesirable however, as we do not want the annotations of one annotator to

affect the tokenization of all other annotators.

3.3.3 Growing character spans

An alternative to adding whitespace around an edit is to instead grow its character span to align
with the nearest token boundary. To give an example, consider the token dancing, which an
annotator wanted to change into danced by means of the correction [ing → ed]. While the
character span of the edit is 4 to 7, the character span of the token is 0 to 7, so we must grow the
edit span to agree with the token span.

We can do this by calculating the character difference between the edit start span and the
token start span to learn the extent of the mismatch: in this case 4−0 = 4. By subtracting this
value from the character start span, we hence obtain a new character span that corresponds to a
token boundary. While this solves the character alignment problem, the second step is to also
update the correction string. Specifically, as we have now increased the size of the edit span by 4
characters, we must also add these 4 characters to the start of the correction string. In this case,
this means we add danc to both the original and corrected side of the edit to produce [dancing

→ danced]. Note that a similar process can be applied to the end of an edit span.
One extremely rare complication to the above concerns a token that has been partially

annotated more than once. For example, perhaps the annotator wanted to change [dancing

→ Danced] by means of 2 edits: [d → D] and [ing→ ed]. Since neither of these edits maps
to a complete token however, growing the character span will produce 2 edits for the same
token: [dancing→ Dancing] and [dancing→ danced]. As it is more complicated to recover the
intended edit [dancing→ Danced] however, I arbitrarily chose to just keep the first edit when
this happened.

The main advantage of this approach over the whitespace approach is that it correctly handles
all the cases where annotators only edited morphology or capitalization. Since this happens most
frequently in NUCLE, it should hence be no surprise that this was also the approach adopted in
the CoNLL shared tasks where NUCLE was the training data.

The disadvantage of this approach, however, is that character span expansion can also have
unintended consequences. For example, growing [Forest’→ Forest’s] in the string Forest’view,
results in the edit [Forest’view→ Forest’sview] which, unlike the whitespace approach, is not
what the annotator intended. Having said that, at least this approach does not modify the original
text in any way and is hence more compatible with multiple annotators.

Ultimately, although neither option is perfect, the growing character span method has fewer
disadvantages than the adding whitespace method and so that is what I used to convert character
spans to token spans.
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S Back to a hundred years ago , water was never a concern .

A 0 2|||Rloc-||||||REQUIRED|||-NONE-|||0

A 2 3|||Mec|||A|||REQUIRED|||-NONE-|||0

A 12 13|||Mec|||,|||REQUIRED|||-NONE-|||0

S While , today it is different .

A 0 1|||Mec|||while|||REQUIRED|||-NONE-|||0

A 1 2|||Mec||||||REQUIRED|||-NONE-|||0

Figure 3.5: An example “sentence” pair in NUCLE where the annotator wanted to combine the
two original strings as a single sentence.

3.4 From paragraphs to sentences

Having converted character edits to token edits, the next step is to sentence tokenize each
paragraph and redefine the edits in terms of sentences. This can be non-trivial however, because
annotators can also change sentence boundaries.

To give an example, consider Figure 3.5, which shows two adjacent sentences in NUCLE
(M2 format). Although these sentences were separated by the tokenizer, the edits suggest that the
annotator actually wanted to combine them. Specifically, the annotator changed the first sentence
final full stop into a comma [. → ,], and lower cased the first character of the next sentence
[While→ while]. We must thus decide whether it is better to separate these sentences, as in
the original text, or combine them, as in the corrected text. In fact this is especially important
given that most GEC systems are sentence-based, yet we may not want them to learn that it is
acceptable to end a sentence with a comma or begin one with a lower case character.

Although it might hence seem more intuitive to merge sentences such that the original and
corrected text constitutes at least one full sentence on both sides, it is also worth remembering
that this is only possible because we already have access to the corrected text. This is not the
case in a realistic grammar checking scenario however, and so it is inadvisable to artificially
condition systems to expect full sentences. I consequently decided to sentence tokenize based
solely on the original text in order to remain as faithful to the task as possible.

3.4.1 Paragraph edits to sentence edits

Having tokenized the original paragraph, the next step is to update the edit spans. Specifically,
there are three different types of scenario when mapping paragraph edits to sentence edits:

1. Edit starts and ends inside a tokenized sentence.

2. Edit starts and ends on a sentence boundary.

3. Edit starts in one sentence and ends in another.

While the majority of edits fall into the first category and hence straightforwardly map to
sentence edits, the other two categories are a little more complicated. The second category
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in particular is especially problematic given that missing token edits on a sentence boundary
ambiguously belong to either the end of one sentence or start of the next. I nevertheless resolved
this problem by assigning edits that ended with a punctuation character to the end of the sentence
and to the start of the next sentence otherwise. The intuition behind this was that English
sentences rarely start with punctuation characters, so missing punctuation is much more likely to
occur at the end of a sentence. Finally, I simply ignored edits that crossed sentence boundaries
(less than half a percent of all edits); it is very difficult to automatically split an edit such that the
span and correction still makes sense on both sides.

This is the final stage of preprocessing, at which point I have now transformed untokenised
text with character edits into tokenized sentences with token edits.

3.5 Lang-8 and JFLEG

Although most of this section has focused on how to preprocess untokenized datasets with
character edits, not all datasets are available in this format. The Lang-8 Corpus of Learner
English v1.0 (Tajiri et al., 2012) is a good example of this, in that it has not only already been
word and sentence tokenized, but it also does not contain explicit error annotations of any kind.6

Instead, the corpus has the following format:

<cor count> <serial id> <URL> <sent num> <orig sent> [<cor sent1> ...]

Specifically, <cor count> represents the total number of alternative corrections for a sen-
tence, <serial id> and <URL> identify the serial number and URL of the sentence, <sent num>

is the ID of the sentence in the text (0 is the title), <orig sent> is the original sentence itself,
and [<cor sent1> ...] is a list of corrected sentences for the original sentence (if any) that
total <cor count>. The original and corrected sentences have also already been tokenized by
an unknown tokenizer. I consequently do not need to preprocess Lang-8 because I can simply
extract the parallel original and corrected sentence pairs.

The JFLEG corpus7 is similarly straightforward to process in that it already consists of
parallel original and corrected text files and does not contain any additional metadata. The text
has also already been word and sentence tokenized.

Perhaps the only disadvantage of Lang-8 and JFLEG is that by being tokenized, we cannot
properly globally standardise all GEC corpora using the same tokenization. This ultimately
means different corpora may have different tokenization, which may have a small effect on
system performance.

6http://cl.naist.jp/nldata/lang-8/
7https://github.com/keisks/jfleg
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3.6 Summary

In this chapter, I described how to preprocess various corpora and keep track of the token edits
that map an original sentence to a corrected sentence. Specifically, I discussed how to regenerate
parallel original and corrected paragraphs from various file formats and also convert character
edit spans into token edit spans. Although character-to-token span mismatches typically occur
in less than 1% of all edits, this rises to over 5.5% in NUCLE, which shows it is important to
resolve this problem rather than simply ignore the affected edits. Having thus converted character
edits to token edits, a second step described how to sentence tokenise the text and recalculate the
edit spans even when annotators changed sentence boundaries. The next chapter will describe
how to automatically align the preprocessed original and corrected sentences in a linguistically
intuitive manner.
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CHAPTER 4

LINGUISTICALLY ENHANCED SENTENCE

ALIGNMENT

Having preprocessed various datasets, I now have access to all the parallel original and corrected
tokenized sentence pairs in all corpora. Although I also have the set of gold edits that explicitly
map the former to the latter in the CLC, public FCE, NUCLE and CoNLL, I do not have such a
set of edits for Lang-8 and JFLEG. This meant I had to extract these edits automatically from the
text. Ultimately, this is an alignment problem (Table 4.1).

We took a guide tour on center city .
We took a guided tour of the city center .

Table 4.1: A sample alignment between parallel original and corrected sentences.

While I could use tools such as GIZA++ (Och and Ney, 2003), a sentence alignment toolkit
more commonly used in SMT, to align the parallel original and corrected sentences, the problem
in GEC is unlike SMT in that it involves the alignment of text in the same language. This
simplifies the task somewhat, given that the majority of tokens in the parallel GEC sentences
remain the same on both sides, and so we can instead use something less sophisticated. This
also means we do not have to rely on parallel training data which might inherently learn corpus
biases.

This chapter hence introduces a linguistically enhanced sentence alignment algorithm de-
signed to extract edits in as human-like a way as possible. Specifically, the algorithm is an
extension of the Levenshtein alignment algorithm (Levenshtein, 1966) that also takes linguistic
features such as lemmas and POS tags into account. It is further enhanced by a set of merging
rules to capture multi-token edits, and was evaluated on several datasets, achieving 80-85 F1

when compared against human edits (Felice et al., 2016).1

1The scores in this thesis are different from the paper because I extended and re-ran the experiments using more
up-to-date software.
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It is worth mentioning that although the original motivation for this approach was to extract
edits from Lang-8 and JFLEG, this is not its only application. For example, automatic annotation
is more consistent than human annotation and so can also be used to standardise existing edit
spans. In particular, errors such as has eating are inconsistently corrected as [has→ was] or [has

eating→ was eating] even though they equate to the same thing, while edits such as [has eating

→ was eaten] are also variously realised as one or two edits: [has→ was] and [eating→ eaten].
The advantage of automatic alignment is hence that we can regularise whether such edits are
split or merged and thus reduce ambiguity in the data.

Another advantage of automatic alignment is that it simplifies the annotation of new data. For
instance, Sakaguchi et al. (2016) claimed that forcing annotators to annotate within the confines
of an error scheme often led to unnatural sounding sentences and so they instead advocated freer
annotation. With automatic alignment, we can hence allow annotators to freely edit the text yet
still extract the edits afterwards.

Finally, another application of automatic alignment is to extract the edits from system output.
Since it is unlikely that researchers will have the resources to manually annotate the output after
every iteration of system development, it is much more efficient to do this automatically instead.
This information can then be used to determine how system edits differ from human edits.

4.1 Previous approaches

Although there is very little previous work on automatic sentence alignment in GEC, one of the
first attempts was made by Swanson and Yamangil (2012), who built a system to align sentences
and classify the extracted edits for the purposes of EFL feedback. In particular, they used the
Levenshtein algorithm to align the sentences and then classified the edits according to the CLC
error scheme using a maximum entropy classifier.

One limitation of the approach however, as noted by the authors themselves, is that gram-
matical edits sometimes involve multiple tokens; for example reordering errors (e.g. [only can

→ can only]) or phrasal verb errors (e.g. [look at→ watch]) necessarily involve more than one
token on at least one side of the edit. The Levenshtein algorithm, however, only aligns individual
tokens and so some alignments must be merged in order to obtain multi-token edits. Swanson
and Yamangil hence experimented with some basic merging strategies and found that simply
merging all adjacent non-match alignments more closely approximated human alignments.

Building on this foundation, Xue and Hwa (2014) analysed Swanson and Yamangil’s output
and found that approximately 70% of all errors in their error type classifier were caused by bad
alignments (merged or otherwise). In order to improve on the simple all-merge alignment strategy,
they hence trained a binary maximum entropy classifier to predict whether edits should be merged
or not. They tested this merging classifier on several datasets, including NUCLE and the FCE,
and ultimately reported improvements of between 5-10% for both alignment and classification.

56



This wide spread propaganda benefits only to the companys .
This widespread publicity only benefits their companies .

Table 4.2: A linguistically unintuitive Levenshtein alignment.

Despite these improvements however, there is still a considerable performance margin
between automatic and human edit annotations. Furthermore, Xue and Hwa’s approach also
requires training on existing annotations, which may be inconsistent across corpora. A better
edit extraction algorithm should hence be independent of any training corpus.

4.2 Automatic alignment

The most common way to align sequences of text in NLP is to use the Levenshtein algorithm,
which calculates the cheapest way to transform one string into another by means of insertions,
deletions and substitutions. As Levenshtein does not take linguistic information into account
however, it often produces alignments that are sub-optimal in terms of human intuition, even
if they are optimal in terms of cost (Table 4.2). We hence propose to incorporate linguistic
information into the algorithm.

4.2.1 Damerau-Levenshtein

First however, as noted by Xue and Hwa, another limitation of Levenshtein is that it is unable
to handle word order errors. For example, [only can → can only] is realised as [only → ε],
[can→ can] and [ε → only]; i.e. reorderings are treated as deletions followed by insertions of
identical tokens. Since we want to preserve word order errors however, we hence propose using
Damerau-Levenshtein (Damerau, 1964) rather than Levenshtein, because Damerau-Levenshtein
also takes token transpositions into account.

In particular, Damerau-Levenshtein factors the transposition of two adjacent items into the
alignment cost, and is hence more appropriate for our task because most word order errors only
involve two tokens.2 That said, we should not ignore the longer word order errors, because the
algorithm will otherwise split them into smaller, less meaningful edits that only contribute to the
overall system error rate.

To solve this problem, we hence extend the Damerau-Levenshtein distance to allow for
transpositions of arbitrary length, as shown in Figure 4.1. This is achieved by traversing a
diagonal back from the current cell in the cost matrix and looking for a source sequence that
matches the target sequence in any order. More specifically, if source token srci does not match
target token tgt j at any given point in the matrix, and the previous source token srci−1 similarly
does not match the previous target token tgt j−1, we next check whether the sorted lower-cased

2Specifically, approximately 50-60% of all word order errors involve two tokens in NUCLE and FCE train.
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function DL_distance_extended(a, b):

declare d[0..length(a), 0..length(b)]

for i := 0 to length(a) inclusive do

d[i, 0] := i

for j := 0 to length(b) inclusive do

d[0, j] := j

for i := 1 to length(a) inclusive do

for j := 1 to length(b) inclusive do

if a[i] = b[j] then

d[i, j] := 0

else

d[i, j] := min(d[i-1, j ] + del_cost(a[i]),

d[i , j-1] + ins_cost(b[j]),

d[i-1, j-1] + sub_cost(a[i], b[j]))

// Damerau-Levenshtein extension for multi-token transpositions

k = 1

while i > 1 and j > 1 and (i - k) >= 1 and (j - k) >= 1 and

d[i-k, j-k] - d[i-k-1, j-k-1] > 0 do

if sorted(lowercase(a[i-k:i+1])) = sorted(lowercase(b[j-k:j+1])) then

d[i, j] := min(d[i, j], d[i-k, j-k] + trans_cost(a[i-k:i+1], b[j-k:j+1])

break

k += 1

return d[length(a), length(b)]

Figure 4.1: Damerau-Levenshtein distance allowing for transpositions of arbitrary length.

strings of all these tokens, (srci,srci−1) and (tgt j, tgt j−1), are the same. If they are, we iteratively
increase the size of the sequences (srci,srci−1, ...,srci−k) and (tgt j, tgt j−1, ..., tgt j−k), provided
tokens srci−k and tgt j−k still do not match, until either the extended sequences do not match, or
at least one of the indices i− k or j− k reaches the first token in the source or target sentence
respectively. It is important to make sure tokens srci−k and tgt j−k never match to prevent matched
tokens from being included in the transposition. The cost of a matched transposition sequence of
length n is finally defined as n−1, which is compatible with the original definition.

4.2.2 Linguistic alignment

In an effort to incorporate linguistic information into the alignment, we replaced the substitution
cost in Damerau-Levenshtein with the function shown in Figure 4.2. In this function, we set the
cost to 0 if the original and corrected tokens differ only in case (e.g. [the→ The]), otherwise,
the substitution cost is the sum of sub-costs for lemma, part of speech and character differences.
Each of these sub-costs is defined as follows:
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function substitution(a, b):

if lowercase(a) = lowercase(b) then

return 0

else

return lemma_cost(a, b) + pos_cost(a, b) + char_cost(a, b)

Figure 4.2: Our linguistically motivated token substitution function.

This wide spread propaganda benefits only to the companys .
(a) This widespread publicity only benefits their companies .
(b) This widespread publicity only benefits their companies .

Table 4.3: The difference between (a) standard Levenshtein and (b) linguistically-enhanced
Damerau-Levenshtein in relation to the original sentence.

lemma cost: 0 if tokens share the same lemma or derivationally related form (e.g. ‘met’ and
‘meeting’), otherwise 0.499.

part-of-speech cost: 0 if tokens share the same part of speech, otherwise 0.25 if both tokens
are content words (adjectives, adverbs, nouns or verbs) and 0.5 in all other cases.

character cost: the proportion of character mismatches between 0 and 1, computed as the
character-level Damerau-Levenshtein distance between the tokens divided by the length of
their alignment.

To increase the likelihood of aligning derivationally related forms, we lemmatise each token
several times as if it were an adjective, adverb, noun and verb. We do this because if we only
lemmatise for a single part of speech, then we might overlook certain derivationally related words.
For example, while the lemma of the verb ‘met’ is ‘meet’, the lemma of the noun ‘meeting’
is ‘meeting’, which suggests these words are not related. By also lemmatising ‘meeting’ as a
verb however, we find that the two tokens do share a common lemma, ‘meet’, which instead
correctly suggests they are related and should align. Ultimately, we consider two tokens to be
derivationally related if their respective sets of lemmas intersect.

The sub-costs are also set in such a way that the overall substitution function always yields
values in the [0,2) range. Keeping the cost asymptotic to 2 is important to enforce a preference
for substitutions over insertions and deletions (both cost = 1); this is why we use a lemma cost
of 0.499 instead of 0.5. We tried different combinations of these costs, provided they met this
condition, but did not find any significant differences in the results.

By incorporating all this additional linguistic information into the cost, we improve the
likelihood that tokens with similar etymology, spelling and function align. We hence argue
this approach is not only more robust than the simple surface matching alignment calculated
by Levenshtein, but also produces more natural, human-like alignments (Table 4.3). The final
alignment is retrieved by collecting the operations that make up the optimal path in the cost
matrix. Given that the cost is now dependent upon a variable function, it is often the case that
there is just a single optimal alignment.
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Sents Edits Min. Edits
FCE train 30,200 44,257 42,657
FCE dev 2,371 3,511 3,383
FCE test 2,805 4,748 4,485
NUCLE 59,586 43,854 42,671
CoNLL-2013 1,390 3,411 3,371
CoNLL-2014.0 1,341 2,395 2,382
CoNLL-2014.1 1,341 3,318 3,273

Table 4.4: The number of sentences, edits and minimised edits in various datasets.

Alignment Lev Lev DL
Reference Gold Gold-min Gold-min
FCE train 60.10 64.36 72.22
FCE dev 60.75 64.55 73.36
FCE test 58.25 63.28 73.10
NUCLE 37.26 51.18 54.77
CoNLL-2013 49.03 62.42 70.82
CoNLL-2014.0 50.91 60.29 66.93
CoNLL-2014.1 48.36 63.08 69.49

Table 4.5: Table showing how minimised references edits (Gold-Min) and our linguistically
enriched Damerau-Levenshtein algorithm (DL) perform against standard Levenshtein (Lev) and
unmodified references (Gold). All scores are F1.

4.2.3 Alignment experiments

We evaluated our improved alignment algorithm on NUCLE, CoNLL and the public FCE. All
datasets were preprocessed and tokenized using the method described in Chapter 3. Tokens
were then POS tagged and lemmatised by spaCy v1.9.0. Table 4.4 provides some additional
information about the properties of the processed datasets.

Since another aim of this work is to standardise edit annotations, we also minimised the gold
edit spans by recursively removing unchanged words from both sides. For example, [has eating

→ was eating] was reduced to [has → was] and [look at → look for] was reduced to [at →
for]. If we did not do this, our automatic edits would never match these human edits because
automatic edits can only ever consist of unmatched tokens. This step also removed uncorrected
edits from the references and hence reduced the total number of edits in each dataset (Table 4.4).

In order to quantify the effect of edit minimisation, our first experiment simply compared the
performance of standard Levenshtein against the unmodified and minimised references. Table 4.5
hence shows that even when the alignment algorithm remains the same, minimised references
can have a significant effect on the results, with scores increasing by 4 to 15 F1 on all datasets.
Although the large gains in NUCLE and CoNLL can also be attributed to the fact that their
annotation guidelines necessarily required missing word edits to include an unchanged word in
their correction (Section 3.2), minimised gold edit spans nevertheless show improvements in the
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M S D S T D S S M
This wide spread propaganda benefits only to the companys .
This widespread publicity only benefits their companies .

Table 4.6: Individual operations obtained from automatic alignment: (M)atch, (I)nsertion,
(D)eletion, (S)ubstitution and (T)ransposition.

FCE train NUCLE
Edit Size Cum. Freq % Cum. Freq. %

1 : 1 22,110 51.83% 17,633 41.32%
0 : 1 30,375 71.21% 24,905 58.37%
1 : 0 34,946 81.92% 30,744 72.05%

0-2 : 0-2 40,291 94.45% 38,116 89.33%
0-3+ : 0-3+ 42,657 100.00% 42,671 100.00%

Table 4.7: Distribution of edits in minimised gold FCE train and NUCLE in terms of how many
tokens are on either side of the edit.

FCE as well. These results hence highlight the importance of edit standardisation in GEC and so
we only use minimised references in all subsequent experiments.

In our second experiment, we compared Levenshtein against our own linguistically enhanced
Damerau-Levenshtein alignment (Table 4.5). Scores again increased by an average of 7 F1 across
all datasets, with several datasets achieving greater than 70 F1. These scores are particularly
significant given we do not yet merge any edits and so currently fail to match all multi-token
edits. This also might explain why the results for NUCLE are significantly lower than the other
datasets; we hypothesise the annotators had a preference for longer edits.

4.3 Alignment merging

One limitation of Damerau-Levenshtein is that other than for transpositions, alignments max-
imally involve only a single token on either side; i.e. insertions are always 0:1, deletions are
always 1:0 and substitutions are always 1:1. While this is sufficient in most cases, e.g. [pro-

paganda→ publicity] and [companys→ companies], it is not in others, e.g. [wide spread→
widespread] is split into [wide→ widespread] and [spread→ ε] (Table 4.6).

Table 4.7 hence shows that 20-30% of all edits in NUCLE and FCE train contain more than
one token on at least one side of the edit, and that none of these are currently captured by our
approach. This table also shows that NUCLE contains almost 10% more multi-token edits than
FCE train, which confirms our theory as to why it performed so poorly in the previous section.
Regardless, multi-token edits are still an important class of learner errors that we should attempt
to handle.
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4.3.1 Merging rules

In order to capture multi-token edits and improve performance, we hence implemented a recursive
rule-based merging function. Specifically, we analysed the relationship between human edits and
automatic edits and found that the most common multi-token errors involve, for example, phrasal
verbs [look at→ watch], possessive nouns [friends→ friend ’s], and orthographic changes [wide

spread→ widespread]. We thus wrote rules to merge or split alignments based on these observed
patterns.

The complete list of rules and their priority is as follows:3

1. Split a sequence into subsequences of matches (M) and non-matches and only process the
non-matches; e.g. MDDSMMTMSI becomes DDS, T and SI.

2. Merge any adjacent operations that consist of punctuation followed by a case change; e.g.
[,→ .] + [we→ We] = [, we→ . We].

3. Split transpositions (T) from all other sequences of non-matches; e.g. IITSS becomes II, T
and SS.

4. Merge any adjacent operations that consist of a possessive suffix preceded by anything
else; e.g. [friends→ friend] + [ε → ’s] = [friends→ friend ’s].

5. Merge any adjacent operations that differ only in terms of whitespace; e.g. [sub→ subway]
+ [way→ ε] = [sub way→ subway].

6. Split substitutions (S) that share > 70% of the same characters, e.g. [writting→ writing],
unless they have the same POS as the previous alignment. This exception prevents edits
such as [eated→ have eaten] being split into [ε → have] + [eated→ eaten].

7. Split substitutions that are preceded by other substitutions; e.g. DDSSII becomes DDS, S
and II.

8. Merge any consecutive operations that involve at least one content word; e.g. [On→ In] +
[the→ ε] + [other→ ε] + [hand→ addition] = [On the other hand→ In addition].

9. Merge any consecutive operations that involve tokens with the same POS; e.g. [(look) at

→ (look) up] + [ε → to] = [(look) at→ (look) up to].

10. Split any determiner edits at the end of a sequence; e.g. [saw→ seen the] becomes [saw

→ seen] + [ε → the].

Each sequence of alignment operations between two sentences (e.g. MSDSTDSSM) is
processed recursively using the above rules in a top-down fashion. Rules are applied in order,
with priority relative to their position in the list. Every time an edit is returned by one of the rules,
we process the remaining sub-sequences individually until they are exhausted or no more rules
can be applied (see Figure 4.3). It should be noted that rules that iteratively grow the merge range

3Note that the latest version of the rule logic is slightly different from that which is reported here and in Felice
et al. (2016). See https://github.com/chrisjbryant/errant/blob/master/changelog.md.

62

https://github.com/chrisjbryant/errant/blob/master/changelog.md


Original This wide spread propaganda benefits only to the companys .
Correction This widespread publicity only benefits their companies .
Operation M S D S T D S S M

Rule 1 wide spread propaganda benefits only to the companys
widespread publicity only benefits their companies

Rule 5 wide spread propaganda benefits only to the companys
widespread publicity only benefits their companies

Rule 3 propaganda benefits only to the companys
publicity only benefits their companies

Remainder propaganda to the companys
publicity their companies

Rule 6 to the companys
their companies

Rule 10 to the
their

Remainder to

Figure 4.3: A step-by-step edit extraction example.

of the alignment (e.g. #8) can be overridden by others with higher priority (e.g. #4), causing the
remaining operations in the truncated subsequence to be reprocessed from scratch.

4.3.2 Merging experiments

We evaluated our rule-based merging method on the same datasets as before, and contrasted it
against the following alternative merging strategies:

all-split: All consecutive non-matches are split: DDSI→ D, D, S, I.

all-merge: All consecutive non-matches are merged: DDSI→ DDSI.

all-equal: All consecutive same operation non-matches are merged: DDSI→ DD, S, I.

The results (Table 4.8) showed that while the all-split strategy tends to have a high number
of true positives (TPs) and low number of false negatives (FNs), it also has the highest number
of false positives (FPs). In contrast, all-merge tends to have a low number of both TPs and
FPs, but the highest number of FNs. All-equal, meanwhile, falls somewhere between the two
extremes. These results hence show that different merging strategies have different strengths and
weaknesses.

Since we designed our rule-based merging function to be more sophisticated than the others
however, we were pleased to see improvements of between 4 and 12 F1 over the second best
approach, all-merge, on all but one dataset. Specifically, all-merge on NUCLE outperformed
our rules by 3 F1. The most likely reason for this however, is again because NUCLE annotators
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Edit Extraction Extraction + Classification
Dataset Method TP FP FN P R F1 TP FP FN P R F1

FCE train

All-split 34,448 18,291 8,209 65.32 80.76 72.22 - - - - - -
All-merge 30,494 7,454 12,163 80.36 71.49 75.66 - - - - - -
All-equal 32,153 13,609 10,504 70.26 75.38 72.73 - - - - - -
Rules 36,308 7,598 6,349 82.69 85.12 83.89 - - - - - -

FCE dev

All-split 2,766 1,392 617 66.52 81.76 73.36 2396 1762 987 57.62 70.82 63.55
All-merge 2,345 652 1,038 78.24 69.32 73.51 1997 1000 1386 66.63 59.03 62.60
All-equal 2,544 1,080 839 70.20 75.20 72.61 2225 1399 1158 61.40 65.77 63.51
Rules 2,883 600 500 82.77 85.22 83.98 2469 1014 914 70.89 72.98 71.92

FCE test

All-split 3,663 1,874 822 66.15 81.67 73.10 3095 2442 1390 55.90 69.01 61.76
All-merge 3,147 764 1,338 80.47 70.17 74.96 2597 1314 1888 66.40 57.90 61.86
All-equal 3,378 1,411 1,107 70.54 75.32 72.85 2867 1922 1618 59.87 63.92 61.83
Rules 3,850 740 635 83.88 85.84 84.85 3207 1383 1278 69.87 71.51 70.68

NUCLE

All-split 30,155 37,282 12,516 44.72 70.67 54.77 - - - - - -
All-merge 33,007 8,006 9,664 80.48 77.35 78.88 - - - - - -
All-equal 31,115 20,414 11,556 60.38 72.92 66.06 - - - - - -
Rules 34,407 13,872 8,264 71.27 80.63 75.66 - - - - - -

CoNLL-2013

All-split 2,709 1,570 662 63.31 80.36 70.82 2072 2207 1299 48.42 61.47 54.17
All-merge 2,199 642 1,172 77.40 65.23 70.80 1629 1212 1742 57.34 48.32 52.45
All-equal 2,414 1,145 957 67.83 71.61 69.67 1836 1723 1535 51.59 54.46 52.99
Rules 2,789 571 582 83.01 82.74 82.87 2077 1283 1294 61.82 61.61 61.71

CoNLL-2014.0

All-split 1,863 1,322 519 58.49 78.21 66.93 1274 1911 1108 40.00 53.48 45.77
All-merge 1,690 401 692 80.82 70.95 75.56 1095 996 1287 52.37 45.97 48.96
All-equal 1,726 874 656 66.38 72.46 69.29 1150 1450 1232 44.23 48.28 46.17
Rules 1,922 534 460 78.26 80.69 79.45 1274 1182 1108 51.87 53.48 52.67

CoNLL-2014.1

All-split 2,636 1,678 637 61.10 80.54 69.49 2046 2268 1227 47.43 62.51 53.93
All-merge 2,429 551 844 81.51 74.21 77.69 1779 1201 1494 59.70 54.35 56.90
All-equal 2,447 1,170 826 67.65 74.76 71.03 1890 1727 1383 52.25 57.75 54.86
Rules 2,846 599 427 82.61 86.95 84.73 2122 1323 1151 61.60 64.83 63.17

Table 4.8: Performance of different merging methods on the edit extraction and full error
classification task. TP: true positives, FP: false positives, FN: false negatives, P: precision, R:
recall.

seemed to have a higher preference for longer edits than the other datasets; this also explains
why all-split performed the worst on NUCLE.

In addition to evaluating edit extraction alone, we also retrained Xue and Hwa’s (2014)
publicly available implementation of their maximum entropy error type classifier4 to replicate
results for an end-to-end classification system. Specifically, we trained one classifier to predict
FCE error types based on FCE train, and another to predict NUCLE error types based on
NUCLE. These classifiers were then evaluated on FCE dev and FCE test, and CoNLL-2013 and
CoNLL-2014 respectively.

Table 4.8 hence also reports results for error type classification given different edit extraction
and merging strategies. The scores are consistent with edit extraction alone, but are otherwise ex-
pectedly lower by an average of 19 F1 because the full classification task is more complex than the
edit extraction task. That said, classification using our rule-based merging method was still best
overall, with scores improving by an average of 7 F1 compared to the next best merging method.

One interesting result is that although the FCE and CoNLL datasets score similarly in terms of
edit extraction alone, there is a large difference between their classification scores. In particular,

4https://github.com/xuehuichao/correction_detector
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Edit Extraction
Extraction

+ Classification
Dataset Method P R F1 P R F1

FCE dev
S&Y 77.85 67.93 72.55 66.06 57.64 61.56
X&H 78.65 79.93 79.28 67.22 68.31 67.76
Our work 82.77 85.22 83.98 70.89 72.98 71.92

FCE test
S&Y 80.02 68.76 73.97 65.70 56.45 60.73
X&H 78.21 79.87 79.03 65.17 66.56 65.86
Our work 83.88 85.84 84.85 69.87 71.51 70.68

CoNLL-2013
S&Y 78.24 64.52 70.72 58.42 48.18 52.80
X&H 78.25 70.22 74.02 58.74 52.71 55.57
Our work 83.01 82.74 82.87 61.82 61.61 61.71

CoNLL-2014.0
S&Y 80.56 68.89 74.27 52.53 44.92 48.43
X&H 77.82 72.04 74.82 51.88 48.03 49.88
Our work 78.26 80.69 79.45 51.87 53.48 52.67

CoNLL-2014.1
S&Y 80.76 72.32 76.31 59.09 52.92 55.83
X&H 81.16 76.84 78.94 60.21 57.01 58.57
Our work 82.61 86.95 84.73 61.60 64.83 63.17

Table 4.9: Performance of our proposal vs. previous methods in an end-to-end edit extraction and
classification task. S&Y used Levenshtein with an all-merge strategy (Swanson and Yamangil,
2012) while X&H used Levenshtein with a maximum entropy merging classifier (Xue and Hwa,
2014).

the FCE scores an average of 10 F1 better than CoNLL. This is especially surprising given we
would expect the FCE error type classifier to perform worse than the NUCLE classifier because
it has a much larger confusion set (77 vs. 28 categories). Since both classifiers were trained on
an almost identical number of edits however, other possible explanations for this effect include
either that the classifier feature set is more highly optimised for the FCE rather than NUCLE, or
else NUCLE annotations are more inconsistent than FCE annotations.

4.4 System comparison

To further validate the efficacy of our approach, we also compared it against previous work.
Specifically, we reimplemented Swanson and Yamangil’s Levenshtein + all-merge strategy, and
Xue and Hwa’s Levenshtein + maximum entropy merging classifier strategy; in the latter case,
the merging classifier was trained on NUCLE and FCE train respectively.

Table 4.9 hence shows that our approach achieves state-of-the-art performance on all tasks
and datasets, improving upon X&H by an average of 6 F1 for edit extraction alone and an average
of 4.5 F1 in the full extraction and classification task. In most cases, this improvement is also
higher in terms of both precision and recall.
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Single-Token Edits Multi-Token Edits
Dataset Method P R F1 P R F1

FCE dev
S&Y 92.84 70.34 80.04 39.45 56.28 46.38
X&H 83.13 84.62 83.87 56.83 57.31 57.07
Our work 87.16 90.86 88.97 59.96 58.00 58.97

FCE test
S&Y 95.29 70.18 80.83 43.44 62.17 51.14
X&H 82.01 84.48 83.23 59.59 58.39 58.98
Our work 88.09 91.12 89.58 63.04 61.29 62.15

CoNLL-2013
S&Y 95.83 65.89 78.09 39.17 57.98 46.75
X&H 90.59 73.21 80.98 42.23 55.92 48.12
Our work 89.22 87.84 88.52 55.28 58.32 56.76

CoNLL-2014.0
S&Y 96.01 70.10 81.04 46.46 63.85 53.78
X&H 89.39 75.94 82.12 44.95 55.84 49.81
Our work 83.57 87.66 85.56 54.07 51.73 52.88

CoNLL-2014.1
S&Y 94.02 74.14 82.91 47.68 64.52 54.83
X&H 90.59 80.21 85.09 51.60 62.42 56.50
Our work 86.54 93.55 89.91 63.08 58.71 60.82

Table 4.10: Performance of our proposal vs. previous methods in terms of single and multi-token
edits. S&Y used Levenshtein with an all-merge strategy (Swanson and Yamangil, 2012) while
X&H used Levenshtein with a maximum entropy merging classifier (Xue and Hwa, 2014).

4.4.1 Single vs. multi-token evaluation

We additionally carried out a more detailed evaluation of all approaches in terms of single and
multi-token edits (Table 4.10). Here, we define a multi-token edit as any edit that has more than
two tokens on either the original or corrected side of the edit.

The results show that while our method tends to have a lower precision in the single-token
setting, it makes up for this by always having a much higher recall. In contrast, our method
always has the highest precision in the multi-token setting, but recall is variable. In particular,
although our method has the highest recall in FCE dev and CoNLL-2013, it has the worst recall
in both CoNLL-2014 datasets.

Ultimately, our method still performs the best in almost all settings. The only exception is
CoNLL-2014.0 where Swanson and Yamangil’s Levenshtein + all-merge strategy performed
better than our own method by less than 1 F1. Since they achieved this result by means of a much
higher recall however, we can conclude that this annotator simply had a much higher preference
for multi-token edits than the other annotators.

4.5 Discussion

It is worth stating that many of our reported results are actually an underestimate of true
performance. This is because despite gold reference minimisation, there is a high degree of
variability in the way humans annotate GEC data. For instance, as shown by Bryant and
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Ng (2015), human annotators often have very different perceptions of grammaticality, and
it is linguistically plausible that, for example, [has eaten → was eating] is annotated either
as one edit (as above) or two edits ([has → was] + [eaten → eating]) by different, or even
the same, annotators. This means the all-split merging strategy will never match the former
while the all-merge merging strategy will never match the latter, even though the annotations
fundamentally equate to the same thing. Due to this inconsistency, system performance will thus
be underestimated regardless of which merge strategy you choose.

In contrast, we consider merge consistency a strength of our rule-based approach. Even if
our alignment does not agree with the gold standard, at least the decision to merge or split is
consistent across all similar cases. In this way, a desirable property of our approach is that it can
be used to standardise ambiguous annotations where splits or merges are equally plausible.

In addition to a quantitative analysis, we also carried out an informal qualitative analysis of
the errors made by our system. In particular, we found one source of errors concerns tokens that
are affected by more than one mistake; e.g. [wide spraed → widespread]. While our system
includes a rule to merge adjacent alignments where the only difference is white space, this rule
does not activate in the above case because one of the tokens also contains a misspelling. This
consequently means the alignments are not merged and do not match the gold standard; such
cases are difficult to handle.

A related issue is that reference minimisation is unable to handle cases where unchanged
tokens occur in the middle of a human edit; e.g. [can easily been→ could easily be]. As an
automatic alignment will always consider easily a matched token, the remaining non-matches
[can→ could] and [been→ be] become isolated and are never merged. Although this might be
construed as a limitation of the alignment algorithm, I would instead argue that the algorithm
is actually more informative than the human reference in this case because the gold references
should generally not contain unchanged words.

Finally, another strength of a rule-based approach is that it is easier to diagnose which rules
are responsible for producing a given output sequence. This is in contrast with machine learning
techniques where it is often much more difficult to determine why certain edits were merged in a
certain way. Considering only about 30% of all edits (at most) in any dataset require merging
anyway, a rule-based approach seemed a more cost-effective solution.

4.6 Summary

In this chapter, I presented a method to automatically align parallel original and corrected
sentence pairs and extract the edits in a linguistically informed manner. Since up to 30% of all
edits contain more than one token on either side of the edit, I also implemented a rule-based
merging strategy to capture multi-token edits. This approach outperformed all other alignment
and merging strategies and consistently achieved the highest F1 scores in almost all experiments.
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It also outperformed the previous best approach by 6 F1 in terms of edit extraction and 4.5 F1 in
terms of edit extraction and classification (Xue and Hwa, 2014), and can hence be considered the
state of the art.
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CHAPTER 5

AUTOMATIC ERROR TYPING

Now that we can automatically align parallel sentences and extract the edits, the next step is to
classify them according to an error type framework. Specifically, while CLC edits are classified
according to the CLC error type framework and NUCLE edits are classified according to the
NUCLE error type framework, our automatically aligned Lang-8 and JFLEG edits are currently
unclassified.

Although one solution to this problem might be to train an error type classifier to predict
types, as we did in the previous section, we must first decide which framework to train it on. For
example, should we train on CLC error types or NUCLE error types? Or should we consider
other error type frameworks; e.g. Izumi et al. (2005); Darus and Subramaniam (2009); Chan
(2010); Maharjan (2010); Giri (2011); Nagata et al. (2011)? Unfortunately, there is no definitive
answer to this question, given that most frameworks are largely arbitrary in design, and so it is
very difficult to quantify their effectiveness.

One reason against using an existing framework however, is that it introduces a bias towards
the source dataset. For example, a CLC classifier is likely to perform better on CLC data than
NUCLE data, while a NUCLE classifier is likely to perform better on NUCLE data than CLC
data. Xue and Hwa (2014) actually tested this hypothesis and reported drops of up to 10% F1

when training and testing on different corpora. This is undesirable if we want to standardise
datasets, and so we instead prefer a more dataset-agnostic approach.

This chapter hence introduces our new rule-based classifier which was designed to be a
dataset-agnostic compromise between both NUCLE and the CLC. Combined with the automatic
alignment method outlined in the previous chapter, the whole program was called the ERRor
ANnotation Toolkit (ERRANT)1 and was publicly released as part of this thesis (Bryant et al.,
2017).

1https://github.com/chrisjbryant/errant
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5.1 A rule-based error type framework

The intuition behind our rule-based classifier comes from the observation that a) most error types
are based on POS tags, and b) all errors involve either a missing, unnecessary or replacement
word; a minimal framework could hence simply combine these two properties. Such a framework
would also be very easy to implement because POS tags can be obtained from a POS tagger, and
the edit operation can be inferred from whether one side of the edit is empty or not.

While this approach goes a long way towards reliably classifying most edits, not all edits are
well-characterised by POS tags alone, e.g. spelling or word order errors. We thus extended this
framework with additional rules and error types using other automatically obtained properties of
the data.

Ultimately, the final framework contains 25 main error types and relies on roughly 50 rules.
All these error types are described in Table 5.1. Note that many of them can be prefixed by
‘M:’, ‘R:’ or ‘U:’, depending on whether they describe a Missing, Replacement, or Unnecessary
edit, and that the full list of all 55 valid combinations is shown in Table 5.2. Like the CLC,
the typology was designed to be modular to facilitate extracting specific error types at different
levels of granularity.

Finally, one caveat of error scheme design is that it is always possible to add new categories;
for example, we currently label [could → should] a tense error, when it might otherwise be
considered a modal error. The reason we do not call it a modal error, however, is because it
would then become less clear how to handle other cases such as [can→ should] and [has eaten

→ should eat], which might otherwise be considered more complex combinations of modal
and tense errors. As it is impractical to create new categories and rules to differentiate between
increasingly narrow distinctions however, our final framework aims to be a compromise between
informativeness and practicality.

This concept was also noted by Nagata et al. (2011):

“No matter how well an annotation scheme is designed, there will always be excep-
tions. Every time an exception appears, it becomes necessary to revise the annotation
scheme. Another issue we have to remember is that there is a trade-off between the
granularity of an annotation scheme and the level of the difficulty in error annotation.
The more detailed an annotation scheme is, the more information it can contain and
the more difficult identifying errors is, and vice versa.”

5.2 Framework prerequisites

Since we deliberately designed our framework to be dataset-agnostic, the only prerequisites
for our classifier are that each token in both the original and corrected sentence is POS tagged,
lemmatised, stemmed and dependency parsed. We again use spaCy v1.9.0 for all but the
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Code Meaning Description / Example
ADJ Adjective big→ wide

ADJ:FORM Adjective Form
Comparative or superlative adjective errors.
biggerest→ biggest, bigger→ biggest

ADV Adverb speedily→ quickly
CONJ Conjunction and→ but
CONTR Contraction n’t→ not
DET Determiner the→ a

MORPH Morphology
Same lemma but nothing else in common.
quick (adj)→ quickly (adv)

NOUN Noun house→ building

NOUN:INFL Noun Inflection
Count-mass noun errors.
informations→ information

NOUN:NUM Noun Number cat→ cats
NOUN:POSS Noun Possessive friends→ friend’s

ORTH Orthography
Case and/or whitespace errors.
Bestfriend→ best friend

OTHER Other
Unclassified errors; e.g. paraphrases
at his best→ well, job→ professional

PART Particle (look) in→ (look) at
PREP Preposition of→ at
PRON Pronoun ours→ ourselves
PUNCT Punctuation ! → .
SPELL Spelling recieve→ receive, color→ colour
UNK Unknown Detected but not corrected errors
VERB Verb ambulate→ walk

VERB:FORM Verb Form
Infinitives, gerunds and participles.
to eat→ eating, dancing→ danced

VERB:INFL Verb Inflection
Misapplication of tense morphology.
getted→ got, fliped→ flipped

VERB:SVA Subject-Verb Agreement (He) have→ (He) has

VERB:TENSE Verb Tense
Inflectional, periphrastic, modals and passives.
eats→ ate, eats→ has eaten, eats→ can eat

WO Word Order only can→ can only

Table 5.1: The list of 25 main error categories in our new framework with examples and
explanations.

stemming, which is performed by the Lancaster Stemmer in NLTK (spaCy does not contain
a stemmer). Since fine-grained POS tags are often too detailed for the purposes of error type
classification, we also map spaCy’s Penn Treebank style tags to the coarser set of Universal
Dependency tags (Nivre et al., 2016).2 We use the latest Hunspell GB-large word list3 to help
classify non-word errors. The marked-up tokens in an edit span are then input to the classifier.

2http://universaldependencies.org/tagset-conversion/en-penn-uposf.html
3https://sourceforge.net/projects/wordlist/files/speller/2018.04.16/
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Operation Tier
Type Missing Unnecessary Replacement

Pa
rt

O
fS

pe
ec

h
Ti

er
Adjective M:ADJ U:ADJ R:ADJ
Adverb M:ADV U:ADV R:ADV
Conjunction M:CONJ U:CONJ R:CONJ
Determiner M:DET U:DET R:DET
Noun M:NOUN U:NOUN R:NOUN
Particle M:PART U:PART R:PART
Preposition M:PREP U:PREP R:PREP
Pronoun M:PRON U:PRON R:PRON
Punctuation M:PUNCT U:PUNCT R:PUNCT
Verb M:VERB U:VERB R:VERB

To
ke

n
Ti

er

Contraction M:CONTR U:CONTR R:CONTR
Morphology - - R:MORPH
Orthography - - R:ORTH
Other M:OTHER U:OTHER R:OTHER
Spelling - - R:SPELL
Word Order - - R:WO

M
or

ph
ol

og
y

Ti
er

Adjective Form - - R:ADJ:FORM
Noun Inflection - - R:NOUN:INFL
Noun Number - - R:NOUN:NUM
Noun Possessive M:NOUN:POSS U:NOUN:POSS R:NOUN:POSS
Verb Form M:VERB:FORM U:VERB:FORM R:VERB:FORM
Verb Inflection - - R:VERB:INFL
Verb Agreement - - R:VERB:SVA
Verb Tense M:VERB:TENSE U:VERB:TENSE R:VERB:TENSE

Table 5.2: There are 55 total possible error types. This table shows all of them except UNK,
which indicates an uncorrected error. A dash indicates an impossible combination.

5.3 Error type definitions

This section provides a detailed description of all the error types in our new framework and lists
the rules that capture them. Note that the error types are introduced alphabetically in terms of
granularity (coarse to fine) and that the rules are ordered differently in the actual implementation.
See Section 5.3.5 for more details on rule order.

5.3.1 Operation tier

All edits are minimally classified in terms of edit operation; i.e. whether tokens are missing (M),
replaced (R) or unnecessary (U) (Table 5.3).

A special case concerns edits such as [Man→ The man] or [The man→Man], which ostensi-
bly look like replacement edits, but actually denote missing or unnecessary words. We hence treat
them as such and ignore the orthographic case change. They are detected by the following rule:
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Type Form
Missing [ε → B]
Replacement [A→ B]
Unnecessary [A→ ε]

Table 5.3: The forms of edits in terms of operation.

1. The number of tokens on each side of the edit is not equal, and

2. The lower cased form of the last token is the same on both sides, and

3. Removing the last token on both sides results in an empty string on one side.

Finally, any gold edit of the form [A→ A] or [ε → ε] is labelled Unknown (UNK), since
it ultimately has no effect on the text. These are normally gold edits that humans detected, but
were unable or unsure how to correct. UNK edits are analogous to Unclear Meaning (Um) edits
in NUCLE.

5.3.2 Part-of-speech tier

POS-based error types are generally assigned based on the Universal Dependency POS tags of
the tokens in the edit. Since some Universal tags are not as informative as others however, we
ignore the following tags: interjections (INTJ), numerals (NUM), symbols (SYM) and other (X).
We also renamed adpositions (ADP) to prepositions (PREP) and treat proper nouns (PROPN) as
regular nouns (NOUN). By basing the error types on language-agnostic Universal POS tags, it is
hoped that at least some of the framework might extend to other languages in future (cf. Boyd,
2018; Kempfert and Köhn, 2018).

In the majority of cases, an edit may hence be assigned a POS-based error type if it meets the
following conditions:

1. All tokens on both sides of the edit have the same POS tag, and

2. The edit does not meet any criteria for a more specific type.

Since POS and parse errors are generally unavoidable in learner text however (cf. Foster
et al., 2008; Wagner and Foster, 2009; Sakaguchi et al., 2012b; Napoles et al., 2016a; Sakaguchi
et al., 2017a), we also make use of other information to capture additional POS-based errors. For
example, the following special rule uses dependency parse labels to recover errors when a purely
POS-based comparison is uninformative; e.g. [two (NUM, advmod)→ too (ADV, advmod)] in
the context “I like cake two/too”.
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Dep. Label POS
acomp ADJ
amod ADJ
advmod ADV
det DET
prep PREP
prt PART
punct PUNCT

Table 5.4: A mapping between some parse and POS tags.

1. The POS tags of all tokens on both sides of the edit are not the same, and

2. The dependency labels of all tokens on both sides map to the same POS in Table 5.4.

Note that this rule is generally activated only as a last resort, as if the POS tags were incorrect,
it is also likely that the dependency parse labels were incorrect.

There are also special rules for specific POS:

VERB

The following special VERB rule captures edits involving infinitival to and/or phrasal verbs;
e.g. [to eat→ ε], [consuming→ to eat] and [look at→ see].

1. All tokens on both sides of the edit are either PART or VERB, and

2. The last token on each side has a different lemma.

PART

The following special PART rule captures edits where the tagger or parser confuses a
preposition for a particle or vice versa; e.g. [(look) at→ (look) for].

1. There is exactly one token on both sides of the edit, and

2. (a) The set of POS tags for these tokens is PREP and PART, or

(b) The set of dependency labels for these tokens is prep and part.

DET and PRON

The following special rule differentiates between determiners and pronouns that have the
same surface form; e.g. ‘His book’ (DET) vs. ‘This book is his’ (PRON).

1. There is exactly one token on both sides of the edit, and

2. The set of POS tags for these tokens is DET and PRON, and
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3. (a) The corrected token dependency label is poss (possessive determiner); i.e. DET, or

(b) The corrected token dependency label is nsjub or nsubjpass (nominal subject), dobj

(direct object), or pobj (prepositional object); i.e. PRON because determiners cannot
be subjects or objects.

PUNCT

The following special PUNCT rule captures edits where a change in punctuation also affects
the case of the following word; e.g. [. Because→ , because] and [Because→ , because].

1. The lower cased form of the last token is the same on both sides, and

2. All remaining tokens are punctuation.

5.3.3 Token tier

Contractions: CONTR

Contraction errors are mainly edits that involve expanding contractions to their full form; e.g.
[n’t→ not] or [’ve→ have]. The full list of contractions includes: {’d, ’ll, ’m, n’t, ’re, ’s, and

’ve}. They are captured by the following rule:

1. There is no more than one token on both sides of the edit, and

2. All tokens have the same POS, and

3. At least one token on either side is a member of the above set of 7 contractions.

An additional rule captures special case auxiliaries in contractions. Specifically, can, shall

and will are respectively shortened to ca, sha and wo in ca n’t, sha n’t and wo n’t. To prevent
them being flagged as spelling errors, the following rule captures cases such as [can→ ca] or
[wo→ will].

1. There is exactly one token on both sides of the edit, and

2. The set of strings for these tokens is ca and can, sha and shall, or wo and will.

Morphology: MORPH

The morphology error type mainly captures derivational morphology edits, e.g. [quick (ADJ)

→ quickly (ADV)], and cases where the POS tagger made a mistake, e.g. [catch (NOUN)→
catching (VERB)]. They are captured by the following rule:

1. There is exactly one token on both sides of the edit, and

2. Both tokens have the same lemma or stem, and

3. Both tokens have nothing else in common.
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Other: OTHER

Edits that are not captured by any rules are classified as OTHER. They typically include
edits such as [at (PREP)→ the (DET)], which have perhaps been improperly aligned, or else
multi-token edits such as [at his best→ well] which are much more semantic in nature.

Orthography: ORTH

Although the definition of orthography can be quite broad, we use it here to only refer to edits
that involve case and/or whitespace changes; e.g. [first→ First] or [Bestfriend→ best friend].

1. The lower cased form of both sides of the edit with all whitespace removed results in the
same string.

Spelling: SPELL

We use the latest British English Hunspell word list to identify spelling errors (see Section 5.2).
It is straightforward to replace this word list with one for other varieties of English if needed.
We assume the corrected side of an edit is always a valid word. Spelling errors must meet the
following conditions:

1. There is exactly one token on both sides of the edit, and

2. The original token is entirely alphabetical (i.e. no numbers or punctuation), and

3. The original token is not in the Hunspell word list, and

4. The lower cased form of the original token is also not in the Hunspell word list, and

5. The original and corrected tokens do not have the same lemma, and

6. The original and corrected tokens share at least 50% of the same characters in the same
relative order.

We check the dictionary twice with the original and lower cased form of a token because
casing can produce false positives. For example Cat is not in the word list, but cat is, while
France is in the word list, but france is not. We do not want edits such as [Cat→ Cats] to be
called spelling errors however, so must make sure both forms of the original word are invalid
before considering the spelling error category.

Similarly, the character comparison condition is an approximation designed to filter out more
complex edits such as [greatful→ pleased]. While greatful is indeed a misspelling of grateful,
it is ultimately replaced with a synonym pleased, and so is more a replacement adjective error
rather than a spelling error. When spelling errors hence fail to meet the character comparison
condition, they are classified according to their POS if they both have the same POS tag, or are
else labelled OTHER.
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Word Order: WO

We restrict our definition of word order errors to only include edits whose tokens exactly
match on both sides of the edit; e.g. [house white→ white house]. We also investigated allowing
majority matches, e.g. [I saw the man → the man saw me], but found exact matches were
qualitatively more reliable in practice.

1. The alphabetically sorted lists of lower cased tokens on both sides of the edit are identical.

5.3.4 Morphology tier

Adjective Form: ADJ:FORM

Adjective form edits involve changes between bare, comparative and superlative adjective
forms; e.g. [big→ biggest] or [smaller→ small]. They are captured as followed:

1. There is exactly one token on both sides of the edit, and

2. Both tokens have the same lemma, and

3. (a) Both tokens are POS tagged as ADJ, or

(b) Both tokens are parsed as acomp or amod.

A second rule captures multi-token adjective form errors; e.g. [more big→ bigger]:

1. There are no more than two tokens on both sides of the edit, and

2. The first token on either side is more or most, and

3. The last token on both sides has the same lemma.

Noun Inflection: NOUN:INFL

Noun inflection errors are usually count-mass noun errors, e.g. [advices→ advice], but also
include cases such as [countrys→ countries] and [childs→ children]. They are a special kind of
non-word error that must meet the following criteria:

1. There is exactly one token on both sides of the edit, and

2. The original token is entirely alphabetical (i.e. no numbers or punctuation), and

3. The original token is not in the Hunspell word list, and

4. The lower cased form of the original token is also not in the Hunspell word list, and

5. The original and corrected tokens have the same lemma, and

6. The original and corrected tokens are both POS tagged as NOUN.
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Noun Number: NOUN:NUM

Noun number errors all involve count nouns that have been changed from singular to plural
or vice versa; e.g. [cat→ cats] or [dogs→ dog]. They are captured by the following rule:

1. There is exactly one token on both sides of the edit, and

2. Both tokens have the same lemma, and

3. Both tokens are POS tagged as NOUN.

Since it is fairly common for the POS tagger to confuse nouns that look like adjectives, e.g.
musical, a separate rule uses fine-grained POS tags to classify mis-tagged edits such as [musical

(ADJ)→ musicals (NOUN)]:

1. There is exactly one token on both sides of the edit, and

2. Both tokens have the same lemma, and

3. The original token is POS tagged as ADJ, and

4. The corrected token is POS tagged as a plural noun (NNS).

Note that this second rule was only found to be effective in the singular to plural direction
and not the other way around.

Noun Possessive: NOUN:POSS

Noun possessive errors typically involve edits that change a possessive suffix on a noun
phrase; e.g. [(Tom) ε → (Tom) ’s] or [(Chris) ’s→ (Chris) ’]. They are captured by the following
rule:

1. There is exactly one token on both sides of the edit, and

2. At least one side of the edit is POS tagged as a possessive suffix (POS)

While the above rule handles possessive suffixes that have become separated from their
dependent nouns as a result of an automatic alignment, the following rule handles multi-token
edits where this is not the case; e.g. [friends→ friend ’s]:

1. There are exactly two tokens on at least one side of the edit, and

2. (a) The original tokens are POS tagged sequentially as NOUN and PART, or

(b) The corrected tokens are POS tagged sequentially as NOUN and PART, and

3. The first token on both sides of the edit has the same lemma.

78



Verb Form: VERB:FORM

Verb form errors involve corrections between members of the set of bare infinitive, to-
infinitive, gerund and participle forms; e.g. {eat, to eat, eating, eaten}. Since infinitives tend to
have exactly the same form as non-3rd-person present tense forms however (cf. ‘I want to eat

cake’ versus ‘I eat cake’), we must use fine-grained POS tags to differentiate between them. The
majority of verb form errors are hence captured by the following rule:

1. There is exactly one token on both sides of the edit, and

2. Both tokens have the same lemma, and

3. (a) i. Both tokens are POS tagged as VERB, and

ii. Both tokens are preceded by a dependent auxiliary verb, or

(b) i. Both tokens are POS tagged as VERB, and

ii. At least one token is POS tagged as a gerund (VBG) or participle (VBN), or

(c) i. Both tokens do not have the same POS tag, and

ii. The corrected token is POS tagged as a gerund (VBG) or participle (VBN).

Since tense and agreement always fall on the first auxiliary within a verb phrase, if any, this
means all other 1:1 verb edits with the same lemma can only be form errors; e.g. [(has) eating

→ (has) eaten] and [(has) be (eaten)→ (has) been (eaten)]. In most other cases, a verb form
error involves a gerund and/or participle. When the original token POS tag is not a verb, we
instead defer to the corrected token POS tag to classify the edit; e.g. [watch (NOUN)→ watching

(VBG)].
Other types of verb form errors involve infinitival to. The next rule hence captures missing or

unnecessary to particles that are not prepositions:

1. There is only one token on one side of the edit, and

2. That token is to, and

3. That token is POS tagged as PART, and

4. That token is not parsed as prep.

Finally, infinitival to may also be involved in more complex, multi-token edits; e.g. [to eat

→ eating]. These are captured by the following rule:

1. All tokens on both sides of the edit are POS tagged as PART or VERB, and

2. The last token on both sides has the same lemma.
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Verb Inflection: VERB:INFL

Verb inflection errors are classified in a similar manner to noun inflection errors, and are a
special kind of non-word error. Examples include: [getted→ got], [danceing→ dancing] and
[fliped→ flipped].

1. There is exactly one token on both sides of the edit, and

2. The original token is entirely alphabetical (i.e. no numbers or punctuation), and

3. The original token is not in the Hunspell word list, and

4. The lower cased form of the original token is also not in the Hunspell word list, and

5. The original and corrected tokens have the same lemma, and

6. The original and corrected tokens are both POS tagged as VERB.

Subject-Verb Agreement: VERB:SVA

Subject-verb agreement errors involve edits where the grammatical number of the subject
does not agree with the grammatical number of the verb; e.g. [(I) has→ (I) have]. They are
captured as follows:

1. There is exactly one token on both sides of the edit, and

2. Both tokens have the same lemma, and

3. (a) Both tokens are was and were, or

(b) i. Both tokens are POS tagged as VERB, and

ii. At least one token is POS tagged as a 3rd-person present tense verb form (VBZ),
or

(c) i. Both tokens do not have the same POS tag, and

ii. The corrected token is POS tagged as 3rd-person present tense verb form (VBZ).

While most subject-verb agreement errors are detected based on the VBZ POS tag, was and
were are exceptional in that they are the only past tense verbs that have agreement morphology.
As with verb form errors, we again rely on the corrected token POS tag alone when the original
token POS tag is not a verb; e.g. [watch (NOUN)→ watches (VBZ)].

Tense: VERB:TENSE

Verb tense errors are the most complicated out of all other error types and thus require the
most rules. The main reason for this is because although tense can be inflectional, e.g. [eat→
ate], it can also be expressed periphrastically by means of auxiliary verbs; e.g. [ate→ has eaten].
This does not mean all auxiliary verbs are tense errors however, and auxiliary verbs can also be
verb form or agreement errors; e.g. [(is) be (eaten)→ (is) being (eaten)] and [(it) are (eaten)→
(it) is (eaten)]. The majority of tense errors are hence captured by the following rules:
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1. There is exactly one token on both sides of the edit, and

2. (a) i. Both tokens have the same lemma, and

ii. Both tokens are POS tagged as VERB, and

iii. At least one token is POS tagged as a past tense verb form (VBD), or

(b) i. Both tokens have the same lemma, and

ii. Both tokens are POS tagged as VERB, and

iii. Both tokens are parsed as an auxiliary verb (aux or auxpass), or

(c) i. Both tokens have the same lemma, and

ii. Both tokens do not have the same POS tag, and

iii. The corrected token is POS tagged as a past tense verb form (VBD), or

(d) i. Both tokens do not have the same lemma, and

ii. Both tokens are parsed as an auxiliary verb (aux or auxpass).

Similar to verb form and agreement errors, most tense errors are detected based on the VBD
POS tag. If an auxiliary verb is not a form or agreement error however, we can use the parse to
label it a tense error instead. Auxiliaries with different lemmas are usually edits such as [has

(eaten)→ was (eaten)].
We also have a special rule for certain auxiliaries in contractions (cf. Section 5.3.3). Specif-

ically, the following rule captures edits such as [ca (n’t)→ could (n’t)] and [sha (n’t)→ wo

(n’t)].

1. There is exactly one token on both sides of the edit, and

2. (a) If one side is ca, the other is not can, or

(b) If one side is sha, the other is not shall, or

(c) If one side it wo, the other is not will.

A further rule captures missing or unnecessary auxiliaries; e.g. [ε (eaten)→ has (eaten)]. In
particular, missing or unnecessary auxiliaries can never be form or agreement errors because
those are always replacement errors.

1. There are no tokens on one side of the edit, and

2. All tokens on the other side are parsed as auxiliary verbs (aux or auxpass).

A related rule captures multi-token edits such as [has been (eaten)→ is (eaten)]:

1. There is more than one token on at least one side of the edit, and

2. All tokens on both sides are parsed as auxiliary verbs (aux or auxpass).
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Finally, another rule captures multi-token edits such as [has eaten→ was eating], where
both the auxiliaries and verb forms are different:

1. There is more than one token on at least one side of the edit, and

2. All tokens on both sides of the edit are POS tagged as VERB, and

3. The last token on both sides has the same lemma.

5.3.5 Rule order

As mentioned at the start of this section, the above rules have been presented in isolation and
are actually carefully ordered in the implementation. This is because several rules interact and
certain subsections of each error type are captured at different points in the code. For example,
single-token replacement errors are handled before multi-token replacement errors, but instances
of some error types, such as adjective form errors, meet both conditions; e.g. [biggerer →
biggest] and [most big→ biggest].

Another complex example concerns verb morphology errors. For example, while errors in-
volving gerunds (VBG) or participles (VBN) are usually considered FORM, and errors involving
past tense forms (VBD) are usually considered TENSE, edits such as [VBG→ VBD], or vice
versa, might ambiguously be FORM or TENSE. Similarly, errors involving a 3rd-person present
tense form (VBZ) are usually considered subject-verb agreement, but edits such as [VBZ →
VBN] might ambiguously be SVA or FORM. Although such cases are often caused by a POS
tagging error, we ultimately resolved this issue by manually inspecting the data to determine an
order of precedence. Specifically, we decided ambiguous errors are first considered FORM if
one side is VBG or VBN, second considered SVA if one side is a present tense form (VBP or
VBZ), and third considered TENSE if one side is VBD. In our experiments, this order seemed to
produce the most reliable results, but must still be recognised as an approximation.

The final rule ordering was thus determined in a similar way, and so whenever it was
ambiguous as to whether one rule should precede another or not, we simply tried both options
and manually inspected the output to decide which order was better. Given there are roughly 50
rules in the code, it is hence very difficult to coherently describe the full rule order here, and so
we instead refer the reader to the code for more information.4

5.4 Classifier evaluation

As this new error scheme is based entirely on automatically obtained properties of the data, there
are no gold standard labels against which to evaluate. This makes it very difficult to formally
quantify classifier performance.

4Specifically, we refer the reader to the functions named getOneSidedType and getTwoSidedType in
scripts/cat-rules.py available here: https://github.com/chrisjbryant/errant
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Figure 5.1: The classifier evaluation interface. Researchers were asked to rate the appropriateness
of the error type for the circled edit in context.

Rater Good Acceptable Bad
1 92.0% 4.0% 4.0%
2 89.5% 6.5% 4.0%
3 83.0% 13.0% 4.0%
4 84.5% 11.0% 4.5%
5 82.5% 15.5% 2.0%

OVERALL 86.3% 10.0% 3.7%

Table 5.5: The percent distribution for how each researcher rated the appropriateness of the
predicted error types. E.g. Rater 3 considered 83% of all predicted types to be ‘Good’.

This also means the classifier was only ever evaluated qualitatively during development. In
particular, when a new rule or error type was added, I would simply print out and manually
inspect the captured edits in order to verify rule reliability. While a more formal evaluation would
have been preferable, it was impractical to repeatedly annotate the data with a gold standard
while the error scheme was in flux.

Instead, we only carried out a more formal evaluation when the framework was finalised.
Specifically, we randomly selected 100 edits from both FCE test and CoNLL-2014 (200 in
total) and asked 5 GEC researchers to rate the appropriateness of the predicted error type in
context as ‘Good’, ‘Acceptable’ or ‘Bad’ (Figure 5.1). ‘Good’ meant the chosen type was the
most appropriate for the given edit, ‘Acceptable’ meant the chosen type was appropriate, but
probably not optimum, while ‘Bad’ meant the chosen type was not appropriate for the edit. The
researchers were warned that the edit boundaries had been determined automatically and hence
might be unusual, but that they should focus on the appropriateness of the error type regardless
of whether they agreed with the boundary or not.

The results for this evaluation are shown in Table 5.5. Significantly, all 5 raters considered at
least 95% of the predicted error types to be either ‘Good’ or ‘Acceptable’, despite the degree
of noise introduced by automatic edit extraction. Furthermore, whenever raters judged an edit
as ‘Bad’, this could usually be traced back to a POS or parse error; e.g. [ring→ rings] might
ambiguously be a NOUN:NUM or VERB:SVA error. Inter-annotator agreement was also good
at 0.724 κ f ree (Randolph, 2005).
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Finally, it is worth stating that the main purpose of this evaluation was not to determine
the specific strengths and weaknesses of the classifier, but rather to ascertain how well humans
believed the predicted error types characterised each edit. GEC is known to be a highly subjective
task (Bryant and Ng, 2015) and so we were more interested in overall judgements than specific
disagreements.

5.5 Summary

In this chapter, we introduced a new rule-based classifier designed to automatically classify
edits using a new error type framework. One of the key strengths of this classifier is that by
being dependent only upon automatically obtained mark-up information, it is entirely dataset
independent and does not require labelled training data. This is in contrast with machine learning
approaches which not only learn dataset specific biases, but also require large quantities of
training data. We evaluated this classifier by asking 5 GEC researchers to rate the appropriateness
of the error type for 200 randomly chosen edits in context, and found that 95% of the predicted
types were considered either ‘Good’ (85%) or ‘Acceptable’ (10%). Combined with the automatic
alignment method introduced in the previous chapter, the full system was named the ERRor
ANnotation Toolkit (ERRANT) and released as part of this thesis.
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CHAPTER 6

ERROR TYPE EVALUATION

Having described the ERRANT annotation system, we can now demonstrate its value by applying
it to data. In particular, although one application of ERRANT is to standardise existing datasets,
another is to annotate system output for the purposes of evaluation. This is significant because
most systems are only ever evaluated in terms of overall performance, yet a system that performs
poorly overall may still outperform another at specific error types. In fact a robust specialised
system may actually be more desirable than a mediocre general system because precision is
typically more important than recall in GEC. Without an error type analysis however, this
information is completely unknown.

This chapter hence introduces the ERRANT scorer, a variant of the M2 scorer, and uses it to
carry out a detailed evaluation of system error type performance for the first time. Specifically,
we applied ERRANT to the system output produced by the 13 teams in the CoNLL-2014 shared
task (Section 2.4.2) and compared the error type performance at different levels of granularity
(Bryant et al., 2017). This is significant, because no other scorer is currently capable of doing
this.

6.1 The ERRANT scorer

Given that existing scorers in GEC were unable to produce error type scores, I had to develop my
own. Although it might be possible to adapt the M2 scorer to report error types, error type scoring
is likely beyond the capabilities of both the I-measure and GLEU. In particular, multi-token error
types such as word order errors do not fit well into the token-based I-measure, while n-gram
based GLEU contains no concept of span or error type anyway.

Fortunately however, one benefit of explicitly annotating system hypotheses with ERRANT
is that evaluation becomes much more straightforward. For example, while the M2 scorer
must dynamically extract the edits that maximally match the reference using a Levenshtein
alignment, ERRANT has already extracted and defined these edits for us. This means we only
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need to compare the set of hypothesis edits H = {h1, ...,hn} against the set of reference edits
R = {r1, ...,rn} for each sentence. Specifically, the intersection of hypothesis and reference edits
are the true positives |H∩R|, while the remaining hypothesis edits are false positives |H−R|
and the remaining reference edits are false negatives |R−H|. These counts can then be used to
calculate precision, recall and F-score in the standard way as described in Section 2.3.1. The
results can then be grouped by error type for the purposes of error type evaluation.

It is worth noting that when there is more than one reference sentence, we compare the
hypothesis against each reference individually and choose the one that a) produces the highest
F-score, b) has the highest number of TPs, c) has the lowest number of FPs and d) has the lowest
number of FNs. This allows us to differentiate between references that have the same F-score,
such as when there are no true positives. The M2 scorer takes the same approach, although this
is not officially documented.

Finally, it is also worth stating that this scorer is much simpler than other scorers which
typically incorporate edit extraction or alignment directly into their algorithms. Our approach,
on the other hand, treats edit extraction and evaluation as separate tasks.

6.1.1 Gold references vs. auto references

Before evaluating an automatically annotated hypothesis against a reference, we must also address
another mismatch: namely that hypothesis edits are extracted and classified automatically with
ERRANT, while reference edits are extracted and classified manually according to different
frameworks. Since our scorer reduces evaluation to a straightforward comparison between two
sets of edits however, it is especially important that both the hypothesis and reference edits are
processed in the same way. For example, if ERRANT extracts the hypothesis edit [have eating

→ has eaten] but the reference contains [have→ has] and [eating→ eaten], the scorer will
erroneously count this as 1 FP and 2 FNs. This mismatch is the same problem the M2 scorer was
designed to fix.

Since we can now automatically annotate the hypothesis edits however, we can solve this
problem simply by reprocessing the references in the same way as the hypothesis. Specifically,
we can apply ERRANT to the references such that each reference edit is subject to the same
automatic extraction and classification criteria as each hypothesis edit. While it may seem
unorthodox to discard gold references in favour of automatic references, this is necessary
to minimise the difference between hypothesis and reference edits and also standardise the
annotations to use the same error type framework.

To show that automatic references are viable alternatives to gold references, we re-evaluated
each team in the CoNLL-2014 shared task using gold and auto references with both the M2
scorer and the ERRANT scorer. Table 6.1 hence shows that there is little difference between
the overall scores for each team, and we formally validated this hypothesis for precision, recall
and F0.5 by means of bootstrap significance testing (Efron and Tibshirani, 1993). Ultimately,
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M2 Scorer ERRANT
Team Gold Auto Gold Auto
AMU 35.01 35.02 31.95 32.26
CAMB 37.33 37.33 33.34 33.97
CUUI 36.79 37.54 33.32 34.59
IITB 5.90 5.96 5.67 5.74
IPN 7.09 7.80 5.87 6.15
NTHU 29.92 29.69 25.61 25.61
PKU 25.32 25.33 23.40 23.61
POST 30.88 30.99 27.55 28.02
RAC 26.68 26.94 22.85 23.24
SJTU 15.19 15.37 14.85 15.03
UFC 7.84 7.91 7.84 7.91
UMC 25.37 25.45 23.07 23.45

Table 6.1: Overall scores for each team in CoNLL-2014 using gold and auto references with
both the M2 scorer and the ERRANT scorer. All scores are F0.5.

we found no statistically significant difference between automatic and gold references (1,000
iterations, p > .05) which leads us to conclude that our automatic references are qualitatively as
good as human references.

6.1.2 Comparison with the M2 scorer

Despite using the same F-score metric, Table 6.1 also shows that the M2 scorer tends to produce
slightly higher F0.5 scores than the ERRANT scorer. We initially suspected the ERRANT scorer
was underestimating performance somehow, but subsequently found instead that the M2 scorer
actually tends to overestimate performance (cf. Felice and Briscoe (2015) and Napoles et al.
(2015)).

In particular, given a choice between matching [have eating→ has eaten] from Annotator
1 or [have→ has] and [eating→ eaten] from Annotator 2, the M2 scorer will always choose
Annotator 2 because two true positives are worth more than one. Similarly, whenever the
scorer encounters two false positives within a certain distance of each other (controlled by the
max unchanged words parameter which is set to 2 by default), it merges them and treats them
as one false positive; e.g. [is a cat→ are a cats] is selected over [is→ are] and [cat→ cats]
even though these edits are best handled separately. In other words, the M2 scorer exploits
its dynamic edit boundary prediction to artificially maximise true positives and minimise false
positives and hence produce slightly inflated scores.
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AMU CAMB CUUI IITB
Type P R F0.5 P R F0.5 P R F0.5 P R F0.5
Missing 43.94 14.08 30.85 46.32 29.40 41.54 26.37 17.82 24.06 15.38 0.58 2.52
Replacement 37.22 26.99 34.59 37.37 28.24 35.10 45.90 23.06 38.31 29.85 1.50 6.23
Unnecessary - - - 25.46 27.53 25.85 33.98 33.48 33.88 46.15 1.56 6.86

IPN NTHU PKU POST
Type P R F0.5 P R F0.5 P R F0.5 P R F0.5
Missing 2.94 0.29 1.04 34.59 11.30 24.49 33.33 4.29 14.16 31.33 12.97 24.41
Replacement 9.87 3.88 7.54 27.61 19.27 25.41 29.62 18.36 26.38 33.16 19.38 29.03
Unnecessary 0.00 0.00 0.00 33.86 15.80 27.56 0.00 0.00 0.00 26.32 33.26 27.46

RAC SJTU UFC UMC
Type P R F0.5 P R F0.5 P R F0.5 P R F0.5
Missing 1.54 0.27 0.79 62.50 4.40 17.16 - - - 40.08 23.35 35.06
Replacement 29.50 20.92 27.27 50.54 3.43 13.47 72.00 2.65 11.55 34.71 9.73 22.94
Unnecessary 0.00 0.00 0.00 18.04 11.73 16.29 - - - 16.59 17.14 16.70

Table 6.2: Precision, recall and F0.5 for missing, unnecessary, and replacement errors for each
team. A dash indicates the team’s system did not attempt to correct the given error type (TP+FP
= 0).

6.2 CoNLL-2014 shared task analysis

To demonstrate the value of ERRANT, we applied it to the system hypotheses and references of
all teams in the CoNLL-2014 shared task (Section 2.4.2). Although ERRANT can be applied
to any parallel dataset, we chose to evaluate on CoNLL-2014 because it constitutes the largest
collection of publicly available GEC system output to date. The following sections hence analyse
the error type performance of each participating system.

6.2.1 Operation error types

In the first category experiment, we simply investigated the performance of each system in terms
of missing, replacement and unnecessary edits. The results are shown in Table 6.2 while the raw
TP, FP and FN counts are shown in Appendix A, Table A.1.

Overall, the most surprising result was that five teams (AMU, IPN, PKU, RAC, UFC) failed
to correct any unnecessary token errors at all. This is significant because unnecessary token
errors account for roughly 25% of all errors in CoNLL-2014 and so failing to address them
significantly limits a system’s maximum performance. While the reason for this is clear in some
cases, e.g. UFC’s rule-based system was never designed to tackle unnecessary tokens (Gupta,
2014), it is less clear in others, e.g. there is no obvious reason why AMU’s SMT system failed
to learn when to delete tokens (Junczys-Dowmunt and Grundkiewicz, 2014). AMU’s result is
especially remarkable given that their system still came 3rd overall despite this limitation.

In contrast, CUUI’s classifier approach (Rozovskaya et al., 2014a) was the most successful at
correcting not only unnecessary token errors, but also replacement token errors, while CAMB’s

88



hybrid MT approach (Felice et al., 2014) significantly outperformed all others in terms of missing
token errors. It would hence make sense to combine these two approaches, and indeed recent
research has shown this improves overall performance (Rozovskaya and Roth, 2016).

6.2.2 Main error types

In the second experiment, we computed precision, recall and F0.5 for each of the 24 main error
types for each team. The results are shown in Table 6.3, on the next page, while the raw TP, FP
and FN counts are shown in Appendix A, Table A.2. The raw counts are sometimes more helpful
in this case as they let us differentiate between error types that are more common than others.
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AMU CAMB CUUI IITB IPN NTHU PKU POST RAC SJTU UFC UMC

ADJ
P 7.14 8.77 - 0.00 0.00 0.00 66.67 0.00 12.50 0.00 - 0.00
R 9.09 12.82 - 0.00 0.00 0.00 6.67 0.00 3.23 0.00 - 0.00

F0.5 7.46 9.36 - 0.00 0.00 0.00 23.81 0.00 7.94 0.00 - 0.00

ADJ:FORM
P 55.56 75.00 75.00 100.00 0.00 25.00 100.00 50.00 4.17 - - 75.00
R 62.50 60.00 33.33 40.00 0.00 25.00 14.29 14.29 20.00 - - 60.00

F0.5 56.82 71.43 60.00 76.92 0.00 25.00 45.45 33.33 4.95 - - 71.43

ADV
P 6.25 11.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.76 - 8.62
R 3.23 21.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.12 - 12.82

F0.5 5.26 12.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.31 - 9.23

CONJ
P 6.25 0.00 - - 0.00 0.00 - - - 0.00 - 0.00
R 7.14 0.00 - - 0.00 0.00 - - - 0.00 - 0.00

F0.5 6.41 0.00 - - 0.00 0.00 - - - 0.00 - 0.00

CONTR
P 29.17 40.00 46.15 - 0.00 - - 33.33 0.00 66.67 - 28.57
R 100.00 33.33 85.71 - 0.00 - - 57.14 0.00 40.00 - 33.33

F0.5 33.98 38.46 50.85 - 0.00 - - 36.36 0.00 58.82 - 29.41

DET
P 33.55 36.16 30.71 21.43 0.00 35.57 28.72 26.05 0.00 43.88 - 36.07
R 14.17 42.93 51.80 0.92 0.00 28.42 7.87 49.76 0.00 12.65 - 23.66

F0.5 26.34 37.34 33.43 3.92 0.00 33.87 18.78 28.80 0.00 29.37 - 32.64

MORPH
P 54.88 58.33 50.00 28.57 2.22 26.23 19.53 26.47 31.48 66.67 36.36 41.94
R 50.00 48.28 21.84 5.48 2.82 20.78 30.12 11.69 21.79 2.74 5.13 15.12

F0.5 53.83 56.00 39.75 15.50 2.32 24.92 21.01 21.13 28.91 11.76 16.39 30.95

NOUN
P 20.90 25.56 0.00 25.00 4.35 0.00 0.00 11.11 15.79 0.00 - 28.57
R 12.28 19.01 0.00 2.22 2.22 0.00 0.00 1.96 2.94 0.00 - 9.71

F0.5 18.32 23.91 0.00 8.20 3.65 0.00 0.00 5.75 8.43 0.00 - 20.58

NOUN:INFL
P 60.00 55.56 55.56 - 25.00 100.00 71.43 66.67 66.67 0.00 - -
R 85.71 62.50 71.43 - 16.67 33.33 62.50 57.14 66.67 0.00 - -

F0.5 63.83 56.82 58.14 - 22.73 71.43 69.44 64.52 66.67 0.00 - -

NOUN:NUM
P 49.23 43.68 44.20 41.18 14.47 44.25 29.31 30.84 29.00 54.29 - 44.93
R 56.64 54.26 59.75 3.91 11.40 48.08 42.92 56.67 36.79 10.38 - 17.13

F0.5 50.55 45.45 46.63 14.17 13.73 44.96 31.29 33.93 30.28 29.41 - 33.92

NOUN:POSS
P 20.00 66.67 - - - - 14.29 - 0.00 25.00 - 50.00
R 15.00 11.11 - - - - 5.56 - 0.00 4.76 - 5.26

F0.5 18.75 33.33 - - - - 10.87 - 0.00 13.51 - 18.52

ORTH
P 60.00 66.67 73.81 - 3.45 0.00 28.57 49.32 16.67 - - 50.00
R 11.11 41.18 59.62 - 4.55 0.00 6.90 64.29 49.12 - - 17.24

F0.5 31.91 59.32 70.45 - 3.62 0.00 17.54 51.72 19.20 - - 36.23

OTHER
P 19.30 23.03 10.34 0.00 2.38 1.43 16.67 9.76 0.00 0.00 - 11.83
R 6.47 9.49 0.85 0.00 0.31 0.58 0.58 1.13 0.00 0.00 - 3.21

F0.5 13.82 17.91 3.18 0.00 1.02 1.11 2.56 3.86 0.00 0.00 - 7.69

PART
P 71.43 25.00 0.00 - - 12.50 - - - 40.00 - 15.38
R 18.52 14.81 0.00 - - 16.67 - - - 9.52 - 10.00

F0.5 45.45 21.98 0.00 - - 13.16 - - - 24.39 - 13.89

PREP
P 47.62 41.89 33.98 75.00 0.00 10.95 - 21.74 0.00 40.00 - 20.27
R 16.33 35.77 13.67 1.42 0.00 12.70 - 2.16 0.00 7.55 - 12.88

F0.5 34.42 40.51 26.20 6.61 0.00 11.26 - 7.74 0.00 21.51 - 18.18

PRON
P 43.75 20.37 0.00 0.00 10.00 50.00 100.00 30.00 4.76 0.00 - 22.45
R 10.00 13.92 0.00 0.00 1.75 2.94 1.59 4.84 1.56 0.00 - 14.86

F0.5 26.12 18.64 0.00 0.00 5.15 11.90 7.46 14.71 3.38 0.00 - 20.37

PUNCT
P 25.00 57.78 37.21 100.00 0.00 44.83 - 27.27 0.00 5.00 - 43.02
R 3.57 15.76 10.60 1.87 0.00 9.15 - 6.38 0.00 0.98 - 23.42

F0.5 11.36 37.68 24.77 8.70 0.00 25.19 - 16.48 0.00 2.75 - 36.85

SPELL
P 76.92 77.55 0.00 0.00 25.00 0.00 44.17 68.63 73.98 - - 100.00
R 63.83 41.76 0.00 0.00 4.23 0.00 71.29 71.43 85.85 - - 1.37

F0.5 73.89 66.20 0.00 0.00 12.61 0.00 47.81 69.17 76.09 - - 6.49

VERB
P 18.31 17.58 - 0.00 7.14 0.00 12.50 0.00 0.00 0.00 - 18.52
R 7.93 9.82 - 0.00 0.70 0.00 0.68 0.00 0.00 0.00 - 6.49

F0.5 14.51 15.18 - 0.00 2.51 0.00 2.78 0.00 0.00 0.00 - 13.51

VERB:FORM
P 35.48 35.82 66.67 0.00 8.93 36.46 31.43 23.08 35.48 28.57 - 28.89
R 22.68 24.24 23.66 0.00 5.62 36.08 35.48 3.33 33.00 4.55 - 14.44

F0.5 31.88 32.70 48.89 0.00 7.99 36.38 32.16 10.56 34.96 13.89 - 24.07

VERB:INFL
P 100.00 100.00 - - 50.00 100.00 50.00 100.00 100.00 - 0.00 -
R 100.00 100.00 - - 50.00 50.00 50.00 50.00 100.00 - 0.00 -

F0.5 100.00 100.00 - - 50.00 83.33 50.00 83.33 100.00 - 0.00 -

VERB:SVA
P 50.00 44.58 56.57 50.00 24.53 51.40 63.33 36.73 35.96 59.09 84.21 61.54
R 27.00 31.90 71.22 1.14 13.68 66.19 19.59 18.00 30.77 13.83 29.91 15.69

F0.5 42.72 41.29 59.00 5.21 21.17 53.80 43.78 30.41 34.78 35.71 61.78 38.83

VERB:TENSE
P 20.55 26.96 62.50 66.67 3.70 21.43 9.52 19.05 22.78 15.38 - 32.20
R 8.82 17.92 2.99 1.26 0.62 1.85 3.68 2.34 20.69 2.50 - 11.66

F0.5 16.23 24.49 12.56 5.85 1.86 6.88 7.23 7.84 22.33 7.58 - 23.81

WO
P - 38.89 0.00 66.67 - - - 0.00 0.00 - - 41.18
R - 33.33 0.00 14.29 - - - 0.00 0.00 - - 35.00

F0.5 - 37.63 0.00 38.46 - - - 0.00 0.00 - - 39.77

Table 6.3: Precision, recall and F0.5 for each team and error type. A dash indicates the team’s
system did not attempt to correct the given error type (TP+FP = 0). The highest F-score for each
type is highlighted.
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The first conclusion we can draw from this table is that CAMB was the most successful
team overall in terms of error types, achieving the highest F-score in 11 categories, followed
by AMU who scored highest in 5 categories. Only two teams (IPN and POST) did not achieve
the best score in at least 1 category, which suggests different approaches and implementations
complement different error types. Only CAMB attempted to correct at least one error from every
category, although other teams typically only neglected a handful of categories.

Other notable results include:

• Content word errors (ADJ, ADV, NOUN and VERB) were unsurprisingly amongst the
hardest to correct for all teams. This is likely because the confusion set for these errors is
typically much larger than for other error types.

• Pronoun errors (PRON) were similarly difficult, probably because no system explicitly
modelled coreference.

• Conjunction errors (CONJ) are not very common, but only AMU managed to correct any
of them.

• Despite several teams building specialised classifiers for determiner and preposition errors
(DET and PREP), CAMB’s hybrid SMT approach still outperformed them. This might
be because the classifiers were trained on a different error type framework however (i.e.
NUCLE).

• CUUI’s classifiers did however significantly outperform all other approaches on orthogra-
phy (ORTH) and verb form errors (VERB:FORM), which perhaps suggests classifiers are
particularly well-suited for these error types.

• Although spellcheckers are widespread nowadays, almost half of all teams did not seem to
use them. This would have been an easy way to boost overall performance and perhaps
even win the shared task for CUUI.

• Although UFC’s rule-based approach was the best at verb agreement errors (VERB:SVA),
CUUI and NTHU’s classifiers were not very far behind.

• Conjunction (CONJ), possessive nouns (NOUN:POSS), particles (PART) and word order
(WO) errors were each not handled at all by almost half of all participating teams. This
may not be because these error types are difficult to correct however, but rather because
they are all fairly rare.

6.2.3 Detailed error types

In addition to analysing operation tier and general error types, the modular design of our
framework also allows us to evaluate error type performance at an even greater level of detail.
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AMU CAMB CUUI
Type P R F0.5 P R F0.5 P R F0.5

M:DET 54.39 24.22 43.54 44.05 51.39 45.34 23.86 45.00 26.34
R:DET 21.43 27.63 22.44 19.21 34.94 21.11 27.03 24.10 26.39
U:DET - - - 43.18 40.00 42.51 35.77 66.52 39.41

DET 33.55 14.17 26.34 36.16 42.93 37.34 30.71 51.80 33.43

Table 6.4: Detailed breakdown of determiner (DET) errors for the top three teams overall. The
highest precision, recall and F-score for each error type is shown in bold.

For example, Table 6.4 shows the breakdown of determiner errors (DET) for the top three teams
in terms of missing, replacement and unnecessary edits.

Note that this table is a representative example of detailed error type performance as an
analysis of all error type combinations for all teams would take up too much space and may
not be informative. The main application of a detailed error type analysis is to inform system
developers about the specific strengths and weaknesses of their models rather than formally rank
different approaches.

While CAMB’s hybrid SMT approach achieved a higher score than either AMU’s SMT
approach or CUUI’s classifier approach overall, our more detailed evaluation reveals that each
of these approaches actually has different strengths and weaknesses. For example, although
AMU and CAMB both achieved a similar F-score for missing determiners (M:DET), the detailed
analysis reveals that AMU was generally more precise than CAMB, but CAMB had twice the
recall. In contrast, CUUI had a slightly lower recall than CAMB, but also a much lower precision.

Similarly, although CAMB performed the worst at replacement determiners (R:DET) out of
these three teams, it nevertheless had the highest recall, with CUUI having the highest precision.
Finally, although CAMB slightly outperformed CUUI in terms of unnecessary determiners
(U:DET), the detailed analysis shows that CUUI actually had a much higher recall than CAMB.

The conclusion we can draw from this analysis is hence that different approaches tend to
struggle with replacement determiners more than missing or unnecessary determiners, but that
classifiers and SMT may be able to complement each other in different ways.

6.2.4 Single vs. multi token

Another benefit of explicitly annotating all hypothesis edits is that edit spans become fixed; this
means we can evaluate system performance in terms of edit size. Table 6.5 hence shows the
overall performance for each team in terms of single and multi-token edits, where a multi-token
edit is an edit with more than two tokens on at least one side. Roughly 220 out of the 2,100 edits
in the CoNLL-2014 references are multi-token edits.

In general, teams did not do well at multi-token edits. In fact only three teams achieved
scores greater than 10% F0.5 and all of them used MT (AMU, CAMB, UMC). This is significant
because recent work has suggested the main goal of GEC should be to produce fluent-sounding,
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Single Token Edits Multi Token Edits
Team P R F0.5 P R F0.5
AMU 39.14 24.02 34.77 16.90 5.31 11.76
CAMB 36.58 32.67 35.73 27.22 17.06 24.32
CUUI 39.60 28.69 36.80 15.69 3.65 9.46
IITB 30.23 1.58 6.53 28.57 0.94 4.15
IPN 9.78 3.16 6.89 3.23 0.47 1.49
NTHU 30.18 21.06 27.78 0.00 0.00 0.00
PKU 29.83 15.67 25.26 25.00 1.40 5.70
POST 31.13 25.28 29.75 12.50 2.80 7.39
RAC 33.09 16.80 27.72 2.93 2.80 2.90
SJTU 29.56 6.34 17.05 10.00 0.47 1.98
UFC 72.00 2.16 9.66 - - -
UMC 29.83 15.71 25.28 19.09 9.38 15.81

Table 6.5: Each team’s performance in terms of single and multi token edits. A multi token edit
contains two tokens on at least one side of the edit.

rather than just grammatical sentences (Sakaguchi et al., 2016), even though this often requires
complex multi-token edits. As no system is particularly adept at correcting multi-token errors
however, robust fluency correction will likely require more sophisticated methods than are
currently available.

6.2.5 Detection vs. correction

Another important aspect of GEC that is seldom reported in the literature is that of error detection;
i.e. the extent to which a system can identify erroneous tokens in text. We calculate this at two
different levels: the span level and the token level. To give an example, consider the following
reference edits (Table 6.6):

Start End Type Correction
Edit 1 2 2 M:DET the
Edit 2 3 5 R:WO can only

Table 6.6: Two sample edits with start and end token spans, error types and corrections.

In correction, a hypothesis edit must exactly match the start offset, the end offset, and
the correction string in order to be rewarded. Span level detection is thus a simplification of
correction in that a hypothesis must instead only match the start and end span regardless of

the correction. This is also how Recognition scores were calculated in the HOO shared tasks
(Section 2.4.1). Token level detection is a variant of span level detection where a system is instead
rewarded simply for identifying an edited token regardless of the exact span and correction.
Since missing word edits start and end on a token boundary however, a token detection system is
instead rewarded for flagging the token on the right as an error; i.e. the system should detect
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Figure 6.1: The difference between detection and correction scores for each team overall.

token 2-3 as an error in Table 6.6. Similarly, the system would be rewarded for detecting each of
tokens 3-4 and 4-5 in Table 6.6 in a multi-token edit.

Figure 6.1 hence shows how each team performed in terms of token-based detection, span-
based detection and span-based correction. It is interesting to note that while CAMB scored
best overall in terms of both token-based and span-based detection, CUUI actually performed
slightly better than CAMB at correction. This suggests CUUI was more successful at correcting
errors than CAMB. In contrast, IPN and PKU are notable for detecting many more errors than
they were able to correct, which suggests their approaches may be more valuable as detection
systems. Ultimately, detection is an important part of GEC, and it is still valuable to know the
location of an error in text, even if a system is unable to correct it.

Although we do not do so here, the ERRANT scorer can also evaluate error type detection
scores for system output provided the text has also been corrected.

6.3 Summary

In this chapter, we demonstrated how ERRANT can be used to carry out a detailed error-type
evaluation of system output. This enabled us to determine, for example, that almost half of
all teams in the CoNLL-2014 shared task failed to correct any unnecessary word errors or use
spellcheckers in their systems. We also found that different approaches have different strengths
and weaknesses which we hope researchers will exploit to further improve performance in the
future.
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CHAPTER 7

LANGUAGE MODEL BASED CORRECTION

Although the main aim of this thesis was to develop a system capable of automatically annotating
parallel data with error types as described in the previous chapter, a secondary aim was to also
investigate how these error types could be used in a GEC system. For example, if we predict a
verb form error at a given point in a text, we can restrict the set of correction candidates to only
consider verb forms and not other types of correction such as unnecessary words or synonyms.

Furthermore, given that the majority of recent work has focused on developing supervised
correction systems, I also chose to explore error types in the context of unsupervised correction
systems. In particular, large amounts of training data are not always available for all languages,
but it is still important to develop unsupervised correction systems that do not rely on manually
annotated data. I hence developed my own unsupervised language model (LM) based system,
motivated by the fact that LM based systems achieved competitive second and fourth places in
the CoNLL-2013 and CoNLL-2014 shared tasks respectively (Kao et al., 2013; Lee et al., 2014).

Section 7.1 thus introduces the baseline system, which was previously reported in Bryant
and Briscoe (2018),1 while Section 7.2 describes how this system was tuned with error type
thresholds at different levels of granularity. Final results are then reported in Section 7.3.

7.1 Baseline system

As described in Section 2.2.2, the core idea behind language modelling in GEC is that low
probability sequences are more likely to contain grammatical errors than high probability
sequences. For example, ‘*discuss about the problem’ is expected to be a low probability
sequence because it contains an error, while ‘discuss the problem’ or ‘talk about the problem’
are expected to be higher probability sequences because they do not contain errors. The goal of
LM based GEC is thus to determine how to transform the former into the latter based on LM
sequence probabilities.

1https://github.com/chrisjbryant/lmgec-lite
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Step Sentence Probability
1 I am looking forway to see you soon . -2.71

2 and 3 I

was -2.67 look -2.91 forward -1.80 of -2.98 seeing -3.09

you

sooner -3.05

. -
be -3.09 looks -2.93 Norway -2.36 in -2.99 saw -3.25 soonest -3.20
are -3.10 looked -2.95 foray -2.70 ε -3.00 sees -3.39

. . . . . . . . . . . . . . .
4 I am looking forward to see you soon . -1.80
5 I am looking forward to seeing you soon . -1.65

Table 7.1: A step-by-step example of the baseline LM methodology. All scores are log probabili-
ties.

With this in mind, our approach is fundamentally a simplification of the algorithm proposed
by Dahlmeier and Ng (2012a). It consists of 5 steps and is illustrated in Table 7.1:

1. Calculate the normalised log probability of an input sentence.

2. Build a confusion set, if any, for each token in that sentence.

3. Re-score the sentence substituting each candidate in each confusion set.

4. Apply the single best correction that increases the probability above a threshold.

5. Iterate steps 1-4.

7.1.1 Sequence probabilities

Hypothesis corrections are calculated in terms of normalised log probabilities at the sentence
level. Normalisation by sentence length is necessary to help overcome the tendency for shorter
sequences to have higher probabilities than longer sequences. Dahlmeier and Ng (2012a)
similarly used normalised log probabilities to evaluate hypotheses, but did so as part of a more
complex combination of other features. In contrast, Kao et al. (2013) and Lee et al. (2014) both
evaluated hypotheses in terms of sliding five word windows (5-grams).

7.1.2 Confusion sets

One of the defining characteristics of LM-based GEC is that the approach does not necessarily
require annotated training data. For example, spellcheckers and rules both formed key parts of
Dahlmeier and Ng’s and Lee et al.’s systems. While Lee et al. did additionally make use of
annotated training data however, Dahlmeier and Ng instead employed separate classifiers for
articles, prepositions and noun number errors trained only on native text.

In our baseline system, we focus on correcting the following error types in English: non-
words, morphology, and articles and prepositions. These error types were chosen because they
not only constitute a large group of errors in learner text, but were also relatively straightforward
to build confusion sets for.2 We additionally force the first character of every input sentence to
be upper case.

2Note that targeting other error types may be more appropriate in other languages; e.g. Mandarin Chinese
contains very little morphology.
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• Non-words: We use CyHunspell3 v1.3.0 with the latest British English Hunspell dictio-
naries4 to generate correction candidates for non-word errors. Non-words include genuine
misspellings, such as [freind→ friend], and inflectional errors, such as [advices→ advice].
Although CyHunspell is not a context sensitive spell checker, the proposed corrections are
evaluated in a context sensitive manner by the language model.

• Morphology: Examples of morphological errors include noun number [cat→ cats], verb
tense [eat→ ate] and adjective form [big→ bigger]. To generate correction candidates for
morphological errors, we use an Automatically Generated Inflection Database (AGID),5

which contains all the morphological forms of many English words. The confusion set for
a word is hence derived from this database.

• Articles and Prepositions: Since articles and prepositions are closed class words, we
defined confusion sets for these error types manually. Specifically, the article confusion
set consists of {ε , a, an, the}, while the preposition confusion set consists of the top ten
most frequent prepositions: {ε , about, at, by, for, from, in, of, on, to, with}. Both sets also
contain a null character which represents a deletion.

Unlike Dahlmeier and Ng and Lee et al., we do not handle missing word errors (∼20% of all
errors) because it is often difficult to know where to insert them. For example, it is impractical to
try inserting every kind of determiner or preposition in front of every single word in a sentence.

7.1.3 Iteration

The main reason to iteratively correct only one word at a time is because errors sometimes
interact. For example, correcting [see→ seeing] in Table 7.1 initially reduces the log probability
of the input sentence from -2.71 to -3.09. After correcting [foray→ forward] however, [see→
seeing] subsequently increases the probability of the sentence from -1.80 to -1.65 in the second
iteration. Consequently, correcting the most serious errors first, in terms of language model
probability increase, often helps facilitate the correction of less serious errors later. Dahlmeier
and Ng and Lee et al. also both used iterative correction strategies in their systems, but did so as
part of a beam search and pipeline approach respectively.

7.2 Tuning

Although our LM based approach does not require annotated training data, it does require a
small amount of annotated development data for tuning purposes. For example, although the edit
[am→ was] in Table 7.1 increases the normalised sentence log probability from -2.71 to -2.67,

3https://pypi.python.org/pypi/CyHunspell
4https://sourceforge.net/projects/wordlist/files/speller/2018.04.16/
5http://wordlist.aspell.net/other/
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this is such a small improvement that it is likely to be a false positive. In order to minimise false
positives, we hence set thresholds such that a candidate correction must improve the average
token probability of the sentence by at least X% before it is applied. While it may be unusual
to use percentages in log space, this is just one way to compare the difference between two
sentences which we found worked well in practice.

7.2.1 Error type thresholds

Since one of the main goals of this chapter is to show how error types can be used in a GEC
system, we experimented with four different types of threshold at different levels of granularity:

1. Global: A single threshold for all errors.

2. Operation: A threshold for replacement (R) and unnecessary (U) errors.

3. Main: A threshold for each of the 25 main error types in ERRANT; e.g. determiners
(DET).

4. Detailed: A threshold for each of the 54 detailed error types in ERRANT; e.g. replacement
determiners (R:DET).

Specifically, the global threshold is the baseline threshold that treats all error types equally,
while the operation thresholds split the global threshold into two thresholds for replacement and
unnecessary errors. We did not include a threshold for missing word errors at this stage because
the baseline system is unable to correct them. In contrast, the main and detailed thresholds are
the more sophisticated thresholds that make finer distinctions between error types.

While it is possible to exhaustively test all the combinations of global and operation thresholds
where the total number of thresholds is relatively small (i.e. ≤ 2), this quickly becomes impracti-
cal for larger numbers of thresholds. I thus developed the following method to automatically
optimise the main and detailed error type thresholds:

1. Initialise all error type thresholds as the global optimum and evaluate using ERRANT.

2. Sort the error types by frequency, largest to smallest, in terms of the sum of true positives
(TP), false positives (FP) and false negatives (FN).

3. Iteratively increase or decrease the threshold of the most frequent error type until the
overall F0.5 performance decreases or remains the same.

4. Repeat step 3 for the next most common error type until all thresholds are optimised.
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Dataset Tokenizer Sentences References Edits
CoNLL-2013 NLTK 1381 1 3404
CoNLL-2014 NLTK 1312 2 6104
FCE-dev spaCy 2371 1 4419
FCE-test spaCy 2805 1 5556
JFLEG-dev NLTK 754 4 10576
JFLEG-test NLTK 747 4 10082

Table 7.2: Various statistics about the development and test datasets we use.

Weights are initialised according to the best global threshold in order to approximate a
good starting point in the search space. This hopefully increases the chance of the algorithm
converging on an optimum threshold combination. Thresholds were then optimised by frequency
because the most common error types typically have a greater impact on overall performance
than the rarer error types. Note however that error types where T P+FP = 0 were not optimised
because this implies they were not handled by the baseline system; there is no point tuning a
parameter that has no effect on the final score.

7.2.2 Data and resources

In all our experiments, we used a 5-gram language model trained on the One Billion Word
Benchmark dataset6 (Chelba et al., 2014) with the KenLM7 language modelling toolkit (Heafield,
2011). While a neural language model would likely perform better than an n-gram model,
efficient training on such a large amount of data is still an active area of research (Grave et al.,
2017).

We used the following small datasets to tune and test our system: CoNLL-2013 and CoNLL-
2014 (Ng et al., 2013, 2014), the public FCE (Yannakoudakis et al., 2011), and JFLEG (Napoles
et al., 2017) (see Section 2.1). All the datasets were also preprocessed and standardised with
ERRANT. This preprocessing is especially important for JFLEG, which does not contain explicit
error annotations and so otherwise cannot be evaluated in terms of F-score. Finally, note that
results on CoNLL-2014 and JFLEG are typically higher than on other datasets because they
contain more than one set of reference annotations. See Table 7.2 for more information about
each of the development and test sets.

7.2.3 Tuning experiments

In our first experiment, we simply investigated global thresholds in the range of 0-10% on the
development sets. The results were calculated using the ERRANT scorer and are presented in
Figure 7.1.

6http://www.statmt.org/lm-benchmark/
7https://github.com/kpu/kenlm
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Figure 7.1: The effect of changing the global threshold on all errors, noun number errors and
unnecessary determiner errors. The detailed error types are representative of all error types.

The first observation we can make from this figure is that the globally optimum threshold for
CoNLL-2013 (2%) is very different from that of FCE-dev (5%) and JFLEG-dev (6%). This is
most likely because each dataset has a different error type distribution; for example, spelling
errors make up just 0.3% of all errors in CoNLL-2013, but closer to 10% in FCE-dev and
JFLEG-dev. This suggests that different error types contribute to the overall score in different
ways.

To test this hypothesis, Figure 7.1 also shows the effect of changing the global threshold on
noun number (R:NOUN:NUM) and unnecessary determiner (U:DET) errors. In particular, the
graphs show that R:NOUN:NUM errors tend to prefer higher valued thresholds, while U:DET
errors tend to prefer lower valued thresholds; this supports the idea that error type thresholds
can improve system performance. It is also worth noting that these error type graphs are also a
lot less smooth than the global graph. This is because the sample size of the error type results
is significantly smaller than the global result, and so F0.5 scores are much more sensitive to
threshold variation. This highlights the importance of having enough samples to calculate reliable
thresholds.

Having motivated the need for error type thresholds, Table 7.3 shows the tuned results for all
development sets using the different tuning strategies. The threshold values used to make this
table are shown in Appendix B, Table B.1 and B.2.

These results first show that increasing the number of error type thresholds at finer levels
of granularity almost always improves the overall performance of the system. Although the
difference between the scores for the global and operation thresholds is typically small, this
can be explained by the fact that the discriminative power between 1 and 2 thresholds is also
small. Additionally, the baseline system only handles very specific unnecessary word errors
(namely U:DET and U:PREP), so the U threshold is further limited by the fact that it regulates
significantly fewer errors than the R threshold.

100



Dataset Setting TP FP FN P R F0.5

CoNLL-2013

Global (1) 372 1053 2998 26.11 11.04 20.51
Operation (2) 302 634 3068 32.26 8.96 21.23
Main (24) 359 729 3011 33.00 10.65 23.25
Detailed (54) 367 716 3003 33.89 10.89 23.82

FCE-dev

Global (1) 419 495 3064 45.84 12.03 29.35
Operation (2) 426 510 3057 45.51 12.23 29.47
Main (24) 442 431 3041 50.63 12.69 31.68
Detailed (54) 446 438 3037 50.45 12.81 31.77

JFLEG-dev

Global (1) 407 131 1207 75.65 25.22 54.04
Operation (2) 407 131 1207 75.65 25.22 54.04
Main (24) 440 121 1202 78.43 26.80 56.61
Detailed (54) 445 128 1200 77.66 27.05 56.52

Table 7.3: Table showing how different error type thresholds affect system performance in three
different development sets.

In contrast, there is a large improvement between 2 and 24 thresholds. Although there is
again only a small performance difference between 24 and 54 thresholds, this can again be
explained by the fact that, for example, 15 of the detailed ERRANT error type thresholds regulate
missing word errors which are not corrected by the system. Consequently, the most detailed error
type thresholds may only be useful for discriminating between a small number of categories,
such as R:DET and U:DET. It may nevertheless be helpful to preserve all category thresholds in
the system in case they are handled by future upgrades.

Ultimately, these results show that error type thresholds can be successfully integrated into a
GEC system, and so I only report scores using the the global and detailed thresholds on the main
test sets.

7.3 Results and discussion

The main results applying tuned development thresholds to their respective test sets are shown in
Table 7.4 and are compared against several state of the art systems. Unfortunately, we cannot
compare results with Dahlmeier and Ng (2012a) because this system is neither publicly available
nor has it previously been evaluated on these test sets. Results are reported in terms of ERRANT
F0.5, M2 F0.5, and GLEU. Results are not available in all cases because system output was never
made available.

It is worth reiterating that our main intention was not to necessarily improve upon the state
of the art, but rather i) quantify the extent to which a minimally supervised LM based approach
could compete against more sophisticated models trained on millions of words of annotated
text, and ii) investigate whether error type thresholds could increase baseline performance. This
is significant because minimally supervised systems may be particularly attractive to GEC
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ERRANT M2 Scorer
Test Set System P R F0.5 P R F0.5 GLEU

CoNLL-2014

Global 36.01 19.91 31.00 40.00 20.89 33.81 59.30
Detailed 41.58 18.71 33.41 44.46 19.03 35.08 59.63
POST14 31.01 20.79 28.23 34.51 21.73 30.88 57.28
AMU14 37.97 20.21 32.29 41.62 21.40 35.01 58.96
CU17CU16 - - - 51.09 25.30 42.44 66.42
CU17AMU16 - - - 59.88 32.16 51.08 68.69
AMU18 - - - 66.77 34.49 56.25 -

FCE-test

Global 44.85 11.85 28.81 47.63 12.27 30.21 59.80
Detailed 46.28 12.48 30.03 48.97 12.90 31.40 60.16
CU17CU16 - - - 64.25 36.13 55.60 71.76
CU17AMU16 - - - 43.34 19.88 35.07 64.78

JFLEG-test

Global 77.55 25.61 55.17 79.07 26.39 56.51 48.16
Detailed 76.94 27.31 56.43 78.92 28.08 57.94 48.81
JHU17 - - - 65.80 40.96 58.68 53.98
NUS18 - - - - - 66.80 57.47
AMU18 - - - - - - 61.50

Table 7.4: Table showing ERRANT, M2 and GLEU scores for our LM approach (using a
global or detailed error type threshold) compared against state of the art results on several test
sets. POST14 is the LM system that came 4th on the CoNLL-2014 shared task (Lee and Lee,
2014), while AMU14 is the SMT system that came 3rd (Junczys-Dowmunt and Grundkiewicz,
2014). The CU17 systems are different versions of reranked SMT systems originally reported
in Yannakoudakis et al. (2017), while JHU17, AMU18 and NUS18 are all state of the art NMT
systems (Sakaguchi et al., 2017b; Grundkiewicz and Junczys-Dowmunt, 2018; Chollampatt and
Ng, 2018a). Out of all these systems, only ours does not use annotated training data.

researchers who work with low-resource languages.
With this in mind, we were first pleased to improve upon the previous best LM approach in

the CoNLL-2014 shared task by POST14 (Lee and Lee, 2014); this is especially significant since
we also did so without any annotated training data. While this would have still placed our global
threshold system third overall however, the detailed error type threshold system further improved
performance just enough to beat AMU14 (Junczys-Dowmunt and Grundkiewicz, 2014) to third
place (35.08 F0.5 vs. 35.01 F0.5). This not only shows how error types can improve a GEC
system, but also how a minimally supervised approach could even beat an early SMT system
that relied on large amounts of annotated training data.

We were also surprised by the high performance on JFLEG-test, where the detailed error type
threshold system came to within 1 F0.5 of one of the best supervised systems JHU17 (Sakaguchi
et al., 2017b). This is especially surprising given our system only corrects a limited number of
error types (roughly 14 out of the 55 in ERRANT8), and so can maximally correct only 40-60%
of all errors in each test set.

8R:ADJ:FORM, R:DET, R:MORPH, R:NOUN:INFL, R:NOUN:NUM, R:ORTH, R:PREP, R:SPELL,
R:VERB:FORM, R:VERB:INFL, R:VERB:SVA, R:VERB:TENSE, U:DET, U:PREP
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One possible explanation for this, however, is that unlike CoNLL-2014 and FCE-test which
were corrected with minimal edits, JFLEG was corrected for fluency (Sakaguchi et al., 2016),
and so it intuitively makes sense that LM based approaches perform better with fluent references.
An alternative and more likely explanation however, is that JFLEG’s error type distribution
simply happens to correlate with our LM system’s capabilities more than the other test sets. For
example, forcing sentences to start with an upper case character increases performance by only
0.3 F0.5 in CoNLL-2014 and FCE-test, but by over 5 F0.5 in JFLEG-test. This shows that even
the simplest of correction strategies can have a significant effect on results depending on the
error type distribution of the test set. This motivates the need for larger, more balanced test sets
in the future.

Finally, although we did not perform as well against the latest state-of-the-art results on
CoNLL-2014 and FCE-test, we also note a large discrepancy between results tuned on different
datasets. For example, while CU17AMU16 tuned on CoNLL-2013 achieves significantly better
scores than CU17CU16 tuned on FCE-dev on the CoNLL-2014 test set (51.04 vs. 42.44 F0.5),
it achieves significantly worse scores than CU17CU16 on FCE-test (35.07 vs. 55.60 F0.5). This
highlights the possibility that systems may be overfitting to their training corpora and that systems
may not be very generalisable. It is hence unfortunate that the current best system AMU18
(Grundkiewicz and Junczys-Dowmunt, 2018) only reports specific metrics on specific test sets
and generalisability cannot be determined.

7.4 Summary

In this chapter, I motivated the need to re-examine unsupervised approaches in GEC and
consequently developed a new prototype language model based system. Although this system
was only able to correct non-words, morphology and certain determiner and preposition errors, it
was still somewhat competitive with more sophisticated approaches that relied on large quantities
of training data. This suggests that the distance between supervised and unsupervised systems
is not as large as was previously thought and that it should still be possible to build correction
systems for low-resource languages.

In addition to developing a baseline unsupervised system, I also investigated how to incorpo-
rate different error type thresholds into the system to improve performance. The results showed
that the biggest gains were made by using the most detailed error types in ERRANT, typically
increasing scores by roughly 2 F0.5 on several datasets. This hence demonstrates that ERRANT
can also be used to improve a system, as well as in preprocessing and evaluation.
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CHAPTER 8

CONCLUSION

This thesis has explored automatic error type annotation in the context of grammatical error
correction (GEC). Its main contribution is the ERRor ANnotation Toolkit (ERRANT), which
automatically aligns parallel original and corrected sentence pairs in as linguistically intuitive a
way as possible and then classifies the edits according to a new rule-based error type framework.
Possible applications of this toolkit include:

• standardising existing corpora,

• reducing annotator workload,

• quickly annotating system output,

• facilitating detailed error type evaluation,

• improving existing GEC systems.

In order to build this toolkit, Chapter 3 first discussed various preprocessing issues in several
of the largest and most popular GEC corpora and described how to overcome them. In particular,
human annotators typically annotate essays at the character level, but GEC systems typically
process sentences at the token level, so the first challenge was to transform character edits in
essays into token edits in sentences. This was achieved by expanding character spans that did
not precisely map to tokens and sentence tokenising essay paragraphs. This process was not
flawless however, and a small number of edits, such as those that crossed sentence boundaries,
were lost during the transformation. Future work might explore how to recover some of these
lost edits, but as they usually account for less than 1% of all edits, preprocessing is largely a
solved problem.

Having preprocessed the input corpora, Chapter 4 described a method to automatically
align the parallel sentences according to human linguistic intuition. In particular, conventional
alignment algorithms such as Levenshtein do not take linguistic information into account, and so
we incorporated features such as part of speech, lemma and character difference into a custom
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substitution cost function. While this somewhat improved performance in terms of comparison
with human edits, up to 30% of all human edits also involve more than one token on either side,
and so we additionally implemented a rule-based merging strategy to combine certain edits. This
new alignment and merging strategy outperformed all previous approaches by approximately 6
F1 on several datasets and is the current state of the art. Although machine learning approaches
might produce better results in future, statistical classifiers would also learn corpus specific
biases and human inconsistencies, and so we consider our rule-based approach to be conceptually
more robust.

After aligning the sentence pairs, the edits were next extracted and classified according
to a new dataset-agnostic rule-based error type framework (Chapter 5). This framework was
designed to be a compromise between informativeness and practicality and was inspired by the
best characteristics of the NUCLE and CLC error type frameworks. One of the benefits of a
rule-based approach in this context is that the classifier does not require annotated training data
and so does not suffer from any corpus bias. To validate the efficacy of this classifier, we asked 5
researchers to rate the appropriateness of the automatic error types in 200 randomly chosen edits,
and found 95% of all types were considered either ‘Good’ (85%) or ‘Acceptable’ (10%).

With respect to the aims of this thesis, this means I was successful in building the first fully
automatic error type annotation system. Future work might investigate the contribution of new
rules or error types to the framework, although it is worth stating that the number of rules and rule
interactions is already fairly complex. Since the vast majority of rules depend only on universal
dependency POS tags however, it should nevertheless be fairly straightforward to extend the
framework to other languages, as has recently been done for German (Boyd, 2018; Kempfert
and Köhn, 2018).

In terms of the other aims of this thesis, I also applied ERRANT to the output produced by
each team in the CoNLL-2014 shared task to carry out a detailed error type analysis of system
performance for the first time (Chapter 6). Results showed that almost half of all participants
failed to correct spelling errors, despite the prevalence of online spellcheckers, and only one
team attempted to correct at least one error of every type. This suggests researchers may be
overlooking some of the most obvious ways to improve their systems, which is something
significant that would otherwise be unknown without our error type analysis. Most teams
nevertheless still achieved the best score in at least one category however, which suggests better
results might be obtained by combining systems with complementary strengths. It is hoped that
researchers will make similar use of ERRANT to diagnose weaknesses and identify avenues for
improvement when developing their own systems in the future.

In addition to automatic annotation, Chapter 7 also introduced a baseline language model
based approach to GEC to highlight the fact that unsupervised methods have largely been
neglected in GEC. Although supervised approaches have become increasingly successful in
terms of what they can correct, they also suffer from the fact that no training corpus will
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ever completely represent the space of all possible corrections. Consequently, unsupervised
approaches may be vital for helping systems adapt to unseen errors and can additionally be
used to develop correction systems for low-resource languages. With this in mind, I not only
succeeded in my goal to build an unsupervised correction system, but also created a system that
was surprisingly competitive with state-of-the-art systems on several datasets, despite significant
limitations in terms of the types of errors it could correct. One of the most obvious ways to
improve this system would hence be to add new resources that enable the system to correct
additional error types such as missing and unnecessary word errors and synonyms (e.g. via
WordNet1).

On a similar topic, I also fulfilled another aim of this thesis by showing how my baseline
language model system could be further improved by means of error type information. In
particular, I showed that different error type corrections improve sentence probabilities by
different amounts and that we can use error type thresholds to control whether a particular
candidate correction is applied or not. More concretely, the system that used the most detailed
error type thresholds increased performance over the baseline system by roughly 2 F0.5 on several
datasets. This ultimately validated the hypothesis that automatic annotation is not only useful in
terms of system evaluation, but can also be used in system development.

Finally, it is worth stating that my experiments with language model based correction are
fairly preliminary and that there is certainly room for improvement. For example, neural language
models have been shown to be more reliable than n-gram models (Bengio et al., 2003), so there
is definitely scope to increase the fidelity of the sentence probability statistics. In fact it may
also be desirable to abstract away from language model probabilities and instead estimate edit
quality by means of a more complex function that takes, for example, part-of-speech tags or
parse probabilities into account. Additionally, another possible extension could be to redefine the
problem in terms of a finite state transducer (FST) to allow for a more efficient representation
and exploration of the search space. Ultimately, these experiments showed that unsupervised
approaches to GEC are still a promising area of research that deserves to be explored further.

To summarise, the main contribution of this thesis, ERRANT, is a system capable of auto-
matically annotating error types in parallel text. ERRANT can not only be used to carry out
detailed error type analyses of system performance and hence inform system development, but
can also be incorporated into a correction system itself to improve performance. It is hoped that
ERRANT will be a valuable tool in helping to drive the field forward in future.

1https://wordnet.princeton.edu/
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APPENDIX A

ERROR TYPE COUNTS FOR CONLL-2014
ANALYSIS

AMU CAMB CUUI IITB
Type TP FP FN TP FP FN TP FP FN TP FP FN
Missing 58 74 354 132 153 317 77 215 355 2 11 343
Replacement 428 722 1,158 475 796 1,207 381 449 1,271 20 47 1,317
Unnecessary 0 0 407 125 366 329 157 305 312 6 7 379

IPN NTHU PKU POST
Type TP FP FN TP FP FN TP FP FN TP FP FN
Missing 1 33 343 46 87 361 16 32 357 52 114 349
Replacement 53 484 1,314 299 784 1,253 279 663 1,241 312 629 1,298
Unnecessary 0 2 384 64 125 341 0 1 391 155 434 311

RAC SJTU UFC UMC
Type TP FP FN TP FP FN TP FP FN TP FP FN
Missing 1 64 374 15 9 326 0 0 342 99 148 325
Replacement 326 779 1,232 47 46 1,325 36 14 1,322 143 269 1,326
Unnecessary 0 5 403 46 209 346 0 0 376 73 367 353

Table A.1: True positive, false positive and false negative counts for each team in CoNLL-2014
in terms of missing, replacement and unnecessary edits. The total number of edits may vary
for each system as this depends on the individual references that are chosen during evaluation.
These results were used to make Table 6.2.
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AMU CAMB CUUI IITB IPN NTHU PKU POST RAC SJTU UFC UMC

ADJ
TP 3 5 0 0 0 0 2 0 1 0 0 0
FP 39 52 0 3 1 3 1 4 7 7 0 22
FN 30 34 32 25 26 28 28 35 30 23 22 28

ADJ:FORM
TP 5 6 3 2 0 2 1 1 1 0 0 3
FP 4 2 1 0 1 6 0 1 23 0 0 1
FN 3 4 6 3 5 6 6 6 4 5 5 2

ADV
TP 1 9 0 0 0 0 0 0 0 1 0 5
FP 15 69 1 1 2 2 1 1 4 20 0 53
FN 30 32 32 32 30 32 34 37 36 31 32 34

CONJ
TP 1 0 0 0 0 0 0 0 0 0 0 0
FP 15 18 0 0 1 1 0 0 0 6 0 26
FN 13 16 13 11 12 13 12 14 12 13 12 13

CONTR
TP 7 2 6 0 0 0 0 4 0 2 0 2
FP 17 3 7 0 1 0 0 8 1 1 0 5
FN 0 4 1 5 5 5 5 3 5 3 5 4

DET
TP 52 179 230 3 0 106 27 210 0 43 0 88
FP 103 316 519 11 13 192 67 596 6 55 0 156
FN 315 238 214 324 322 267 316 212 342 297 324 284

MORPH
TP 45 42 19 4 2 16 25 9 17 2 4 13
FP 37 30 19 10 88 45 103 25 37 1 7 18
FN 45 45 68 69 69 61 58 68 61 71 74 73

NOUN
TP 14 23 0 2 2 0 0 2 3 0 0 10
FP 53 67 3 6 44 12 28 16 16 17 0 25
FN 100 98 109 88 88 102 104 100 99 93 91 93

NOUN:INFL
TP 6 5 5 0 1 2 5 4 4 0 0 0
FP 4 4 4 0 3 0 2 2 2 1 0 0
FN 1 3 2 6 5 4 3 3 2 6 6 6

NOUN:NUM
TP 128 121 141 7 22 100 97 136 78 19 0 31
FP 132 156 178 10 130 126 234 305 191 16 0 38
FN 98 102 95 172 171 108 129 104 134 164 176 150

NOUN:POSS
TP 3 2 0 0 0 0 1 0 0 1 0 1
FP 12 1 0 0 0 0 6 0 38 3 0 1
FN 17 16 20 18 19 21 17 21 20 20 19 18

ORTH
TP 3 14 31 0 1 0 2 36 28 0 0 5
FP 2 7 11 0 28 1 5 37 140 0 0 5
FN 24 20 21 21 21 26 27 20 29 24 21 24

OTHER
TP 22 35 3 0 1 2 2 4 0 0 0 11
FP 92 117 26 7 41 138 10 37 46 11 0 82
FN 318 334 352 323 321 342 340 350 344 322 324 332

PART
TP 5 4 0 0 0 4 0 0 0 2 0 2
FP 2 12 3 0 0 28 0 0 0 3 0 11
FN 22 23 23 20 21 20 23 21 20 19 17 18

PREP
TP 40 93 35 3 0 31 0 5 0 16 0 30
FP 44 129 68 1 2 252 0 18 3 24 0 118
FN 205 167 221 208 209 213 220 226 218 196 209 203

PRON
TP 7 11 0 0 1 2 1 3 1 0 0 11
FP 9 43 1 5 9 2 0 7 20 22 0 38
FN 63 68 60 55 56 66 62 59 63 59 59 63

PUNCT
TP 5 26 16 2 0 13 0 9 0 1 0 37
FP 15 19 27 0 15 16 0 24 36 19 0 49
FN 135 139 135 105 112 129 121 132 130 101 108 121

SPELL
TP 60 38 0 0 3 0 72 70 91 0 0 1
FP 18 11 1 1 9 2 91 32 32 0 0 0
FN 34 53 74 68 68 74 29 28 15 70 70 72

VERB
TP 13 16 0 0 1 0 1 0 0 0 0 10
FP 58 75 0 6 13 11 7 4 6 17 0 44
FN 151 147 171 139 142 158 147 170 156 146 137 144

VERB:FORM
TP 22 24 22 0 5 35 33 3 33 4 0 13
FP 40 43 11 1 51 61 72 10 60 10 0 32
FN 75 75 71 89 84 62 60 87 67 84 84 77

VERB:INFL
TP 2 2 0 0 1 1 1 1 2 0 0 0
FP 0 0 0 0 1 0 1 0 0 0 1 0
FN 0 0 2 2 1 1 1 1 0 2 2 2

VERB:SVA
TP 27 37 99 1 13 92 19 18 32 13 32 16
FP 27 46 76 1 40 87 11 31 57 9 6 10
FN 73 79 40 87 82 47 78 82 72 81 75 86

VERB:TENSE
TP 15 31 5 2 1 3 6 4 36 4 0 19
FP 58 84 3 1 26 11 57 17 122 22 0 40
FN 155 142 162 157 160 159 157 167 138 156 157 144

WO
TP 0 7 0 2 0 0 0 0 0 0 0 7
FP 0 11 10 1 0 0 0 2 1 0 0 10
FN 12 14 14 12 12 11 12 12 12 11 11 13

Table A.2: True positive, false positive and false negative counts for each team in CoNLL-2014
for the main error types. The total number of edits may vary for each system as this depends
on the individual references that are chosen during evaluation. These results were used to make
Table 6.3.
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APPENDIX B

TUNED ERROR TYPE THRESHOLDS

Setting Threshold CoNLL-2013 FCE-dev JFLEG-dev
Global All 0.02 0.05 0.06

Operation
R 0.03 0.05 0.06
U 0.00 0.02 0.06

Main

ADJ 0.04 0.05 0.06
ADJ:FORM 0.03 0.07 0.06
ADV 0.03 0.05 0.06
CONJ 0.02 0.05 0.06
CONTR 0.02 0.06 0.06
DET 0.02 0.06 0.06
MORPH 0.03 0.04 0.07
NOUN 0.02 0.06 0.06
NOUN:INFL 0.04 0.04 0.05
NOUN:NUM 0.00 0.06 0.05
NOUN:POSS 0.02 0.05 0.06
ORTH 0.02 0.07 0.05
OTHER 0.04 0.06 0.06
PART 0.04 0.05 0.06
PREP 0.04 0.05 0.08
PRON 0.02 0.05 0.06
PUNCT 0.02 0.05 0.06
SPELL 0.05 0.02 0.04
VERB 0.02 0.05 0.06
VERB:FORM 0.03 0.04 0.08
VERB:INFL 0.02 0.05 0.06
VERB:SVA 0.03 0.03 0.07
VERB:TENSE 0.05 0.10 0.09
WO 0.02 0.05 0.06

Table B.1: Optimum tuned error type thresholds for three development sets in the global,
operation and main error type setting. These values were used to make the results in Table 7.3.

137



Setting Threshold CoNLL-2013 FCE-dev JFLEG-dev

Detailed

M:ADJ 0.02 0.05 0.06
M:ADV 0.02 0.05 0.06
M:CONJ 0.02 0.05 0.06
M:CONTR 0.02 0.05 0.06
M:DET 0.02 0.05 0.06
M:NOUN 0.02 0.05 0.06
M:NOUN:POSS 0.02 0.05 0.06
M:OTHER 0.02 0.05 0.06
M:PART 0.02 0.05 0.06
M:PREP 0.02 0.05 0.06
M:PRON 0.02 0.05 0.06
M:PUNCT 0.02 0.05 0.06
M:VERB 0.02 0.05 0.06
M:VERB:FORM 0.02 0.05 0.06
M:VERB:TENSE 0.02 0.05 0.06
R:ADJ 0.04 0.05 0.06
R:ADJ:FORM 0.03 0.07 0.06
R:ADV 0.03 0.05 0.06
R:CONJ 0.02 0.05 0.06
R:CONTR 0.02 0.06 0.06
R:DET 0.03 0.06 0.06
R:MORPH 0.03 0.04 0.07
R:NOUN 0.02 0.06 0.06
R:NOUN:INFL 0.04 0.04 0.05
R:NOUN:NUM 0.00 0.06 0.05
R:NOUN:POSS 0.02 0.05 0.06
R:ORTH 0.02 0.07 0.05
R:OTHER 0.04 0.06 0.06
R:PART 0.04 0.05 0.06
R:PREP 0.04 0.05 0.08
R:PRON 0.02 0.05 0.06
R:PUNCT 0.02 0.05 0.06
R:SPELL 0.05 0.02 0.04
R:VERB 0.02 0.05 0.06
R:VERB:FORM 0.03 0.04 0.08
R:VERB:INFL 0.02 0.05 0.06
R:VERB:SVA 0.03 0.03 0.07
R:VERB:TENSE 0.05 0.10 0.07
R:WO 0.02 0.05 0.06
U:ADJ 0.02 0.05 0.06
U:ADV 0.02 0.05 0.06
U:CONJ 0.02 0.05 0.06
U:CONTR 0.02 0.05 0.06
U:DET -0.01 0.05 0.06
U:NOUN 0.02 0.05 0.06
U:NOUN:POSS 0.02 0.05 0.06
U:OTHER 0.02 0.05 0.06
U:PART 0.03 0.05 0.06
U:PREP 0.01 0.03 0.06
U:PRON 0.02 0.05 0.06
U:PUNCT 0.02 0.05 0.06
U:VERB 0.02 0.05 0.06
U:VERB:FORM 0.02 0.05 0.06
U:VERB:TENSE 0.02 0.05 0.06

Table B.2: Optimum tuned error type thresholds for three development sets in the most detailed
error type setting. These values were used to make the results in Table 7.3. Thresholds that are
equal to the global threshold often indicate error types that are uncorrected by the system.
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