
Technical Report
Number 935

Computer Laboratory

UCAM-CL-TR-935
ISSN 1476-2986

Distributed consensus revised

Heidi Howard

April 2019

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

https://www.cl.cam.ac.uk/

c© 2019 Heidi Howard

This technical report is based on a dissertation submitted
September 2018 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Pembroke
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Distributed consensus revised

Heidi Howard

Summary

We depend upon distributed systems in every aspect of life. Distributed consensus, the abil-

ity to reach agreement in the face of failures and asynchrony, is a fundamental and powerful

primitive for constructing reliable distributed systems from unreliable components.

For over two decades, the Paxos algorithm has been synonymous with distributed consensus.

Paxos is widely deployed in production systems, yet it is poorly understood and it proves to

be heavyweight, unscalable and unreliable in practice. As such, Paxos has been the subject

of extensive research to better understand the algorithm, to optimise its performance and

to mitigate its limitations.

In this thesis, we re-examine the foundations of how Paxos solves distributed consensus.

Our hypothesis is that these limitations are not inherent to the problem of consensus

but instead specific to the approach of Paxos. The surprising result of our analysis is a

substantial weakening to the requirements of this widely studied algorithm. Building on

this insight, we are able to prove an extensive generalisation over the Paxos algorithm.

Our revised understanding of distributed consensus enables us to construct a diverse

family of algorithms for solving consensus; covering classical as well as novel algorithms

to reach consensus where it was previously thought impossible. We will explore the wide

reaching implications of this new understanding, ranging from pragmatic optimisations to

production systems to fundamentally novel approaches to consensus, which achieve new

tradeoffs in performance, scalability and reliability.

Acknowledgments

First, and foremost, I would like to sincerely thank my advisor, Jon Crowcroft, for his

tireless enthusiasm and support since our paths first crossed six years ago. Without his

encouragement, I would not have believed it possible for to me to pursue a PhD.

It takes a village to raise a child and it takes a research group to raise a graduate student.

Since my first steps into the world of research, the Systems Research Group (SRG) at the

Computer Lab has been my home. I am indebted to my mentor, Richard Mortier, for his

counsel and patience, particularly during the longer than expected final stretch of my PhD.

I am also indebted to Tim Harris for insightful feedback on this thesis which substantially

helped toward improving the clarity and readability. I am thankful for the friendship of my

former fellow students, Natacha Crooks, Malte Schwarzkopf, Matthew Grosvenor, Shehar

Bano and my current fellow students, Krittika D’Silva, Zahra Tarkhani, Mohibi Hussain

and Marco Caballero. In addition to those already mentioned, I am sincerely grateful to my

friends beyond the SRG, especially Laura Scriven, Shreedipta Mitra and Jeunese Payne,

for keeping me sane over the years. I am grateful to my colleague Martin Kleppmann for

our discussions on distributed systems during key points of this PhD.

I am deeply grateful to my 2nd supervisor, Anil Madhavapeddy, for adopting me into the

OCaml labs community and regularly feeding me. Over the years, I have enjoyed many

lively lunchtime discussions and trips to the food park with Gemma Gordon, David Allsopp

and my office mates, KC Sivaramakrishnan and Stephen Dolan. I am also thankful to my

former colleagues, Mindy Preston and Amir Chaudhry for their companionship during

their time with me at the computer lab.

I have been extremely privileged to work with Dahlia Malkhi, my mentor in the field

of distributed systems. Thanks are also due to the friends, new and old, who kept me

company during my time in California; Nick Spooner, Diego Ongaro, Jenny Wolochow

and Igor Zablotchi. Without you all my time away from Cambridge could have been very

lonely.

Last but not least, I’d like to thank my husband, Olly Andrade, for the joy you have brought

to my life over the last seven years as well as the countless hours spend proofreading this

thesis. This thesis is dedicated to my father, Daniel Howard, who raised me and supported

me throughout my life but sadly passed away after a short battle with cancer before the

completion of this PhD.

Contents

1 Introduction . 13

1.1 State of the art . 14

1.2 Historical background . 14

1.3 Motivation . 16

1.4 Approach . 17

1.5 Contributions . 18

1.5.1 Publications . 19

1.5.2 Follow up research . 19

1.6 Scope & limitations . 19

2 Consensus & Classic Paxos . 21

2.1 Preliminaries . 21

2.1.1 Single acceptor algorithm . 23

2.2 Classic Paxos . 27

2.2.1 Proposer algorithm . 29

2.2.2 Acceptor algorithm . 31

2.3 Examples . 32

2.4 Properties . 38

2.5 Non-triviality . 39

2.6 Safety . 39

2.7 Progress . 45

2.8 Summary . 47

3 Known revisions . 49

3.1 Negative responses (NACKs) . 49

3.2 Bypassing phase two . 52

3.3 Termination . 55

3.4 Distinguished proposer . 59

3.5 Phase ordering . 60

3.6 Multi-Paxos . 60

3.7 Roles . 61

3.8 Epochs . 62

3.9 Phase one voting for epochs . 63

5

3.10 Proposal copying . 65

3.11 Generalisation to quorums . 68

3.12 Miscellaneous . 69

3.13 Summary . 73

4 Quorum intersection revised . 75

4.1 Quorum intersection across phases . 75

4.1.1 Algorithm . 76

4.1.2 Safety . 76

4.1.3 Examples . 78

4.2 Quorum intersection across epochs . 78

4.2.1 Algorithm . 81

4.2.2 Safety . 81

4.2.3 Examples . 83

4.3 Implications . 85

4.3.1 Bypassing phase two . 86

4.3.2 Co-location of proposers and acceptors 86

4.3.3 Multi-Paxos . 88

4.3.4 Voting for epochs . 90

4.4 Summary . 90

5 Promises revised . 91

5.1 Intuition . 91

5.2 Algorithm . 92

5.3 Safety . 92

5.4 Examples . 94

5.5 Summary . 96

6 Value selection revised . 97

6.1 Epoch agnostic algorithm . 97

6.1.1 Safety . 101

6.1.2 Progress . 104

6.1.3 Examples . 105

6.2 Epoch dependent algorithm . 106

6.2.1 Safety . 108

6.2.2 Progress . 109

6.3 Summary . 111

7 Epochs revised . 113

7.1 Epochs from an allocator . 114

7.2 Epochs by value mapping . 115

6

7.3 Epochs by recovery . 118

7.3.1 Intuition . 118

7.3.2 Algorithm . 120

7.3.3 Safety . 122

7.3.4 Progress . 125

7.3.5 Examples . 126

7.4 Hybrid epoch allocation . 134

7.4.1 Multi-path Paxos using allocator 135

7.4.2 Multi-path Paxos using value-based allocation 136

7.4.3 Multi-path Paxos using recovery . 136

7.5 Summary . 137

8 Conclusion . 141

8.1 Motivation . 141

8.2 Summary of contributions . 142

8.3 Implications of contributions . 143

8.3.1 Greater flexibility . 143

8.3.2 New progress guarantees . 144

8.3.3 Improved performance . 145

8.3.4 Better clarity . 146

Bibliography . 147

7

List of Figures

2.1 Single acceptor algorithm (Alg. 1,2) . 25

2.2 Classic Paxos with serial proposers, p1 then p2 (Alg. 3,4) 33

2.3 Classic Paxos with serial proposers, p2 then p1 (Alg. 3,4) 34

2.4 Classic Paxos with a failed proposer, proposal is not recovered (Alg. 3,4) . 35

2.5 Classic Paxos with a failed proposer, proposal is recovered (Alg. 3,4) 36

2.6 Classic Paxos with duelling concurrent proposers (Alg. 3,4) 37

3.1 Classic Paxos with NACKs (Alg. 5,6) . 52

3.2 Classic Paxos with bypass (Alg. 4,7) . 53

3.3 Classic Paxos with termination (Alg. 8,9) 58

3.4 Classic Paxos with voting (Alg. 3,10) . 64

3.5 Classic Paxos with proposal copying from NACKs (Alg. 4,11) 68

3.6 Classic Paxos with non-majority quorums (Alg. 4,12) 70

4.1 Paxos revision A with serial proposers (Alg. 4,13) 79

4.2 Paxos revision A with concurrent proposers (Alg. 4,13) 80

4.3 Paxos revision B with successfully phase one skipping (Alg. 4,14) 84

4.4 Paxos revision B with unsuccessfully phase one skipping (Alg. 4,14) 85

5.1 Paxos revision C with early phase one completion (Alg. 4,15) 95

7.1 Paxos for binary consensus (Alg. 23,22) . 117

7.2 Epochs by recovery with simple serial proposers (1) (Alg. 24,29) 131

7.3 Epochs by recovery with simple serial proposers (2) (Alg. 24,29) 132

7.4 Epochs by recovery with simple serial proposers (3) (Alg. 24,29) 133

7.5 Epochs by recovery with concurrent identical proposals (Alg. 24,29) 134

8

List of Tables

2.1 Reference table of notation. 24

2.2 Messages exchanged in Classic Paxos . 29

2.3 Use of algorithm properties to prove the safety of Classic Paxos 44

2.4 Comparison between SAA & Classic Paxos 47

4.1 Example quorums for All aboard Paxos with three acceptors U = {a1, a2, a3}. 87

4.2 Alternative phase one while conditions . 90

5.1 Simplified while conditions for line 6, Algorithm 15. 94

7.1 Examples of the counting quorums for epochs by recovery 130

7.2 Approaches to epoch allocation . 134

9

10

List of Algorithms

1 Proposer algorithm for SAA . 25

2 Acceptor algorithm for SAA . 25

3 Proposer algorithm for Classic Paxos . 30

4 Acceptor algorithm for Classic Paxos . 31

5 Proposer algorithm for Classic Paxos with NACKs 50

6 Acceptor algorithm for Classic Paxos with NACKs 51

7 Proposer algorithm for Classic Paxos with phase two bypass 54

8 Proposer algorithm for Classic Paxos with termination 56

9 Acceptor algorithm for Classic Paxos with termination 57

10 Acceptor algorithm for Classic Paxos with voting 63

11 Proposer algorithm for Classic Paxos with proposal copying 66

12 Proposer algorithm for Classic Paxos with generalised quorums 71

13 Proposer algorithm for Paxos revision A . 77

14 Proposer algorithm for Paxos revision B . 82

15 Proposer algorithm for Paxos revision C. 93

16 Proposer algorithm for Revision A using possibleValues. 98

17 Classic algorithm for possibleValues. 99

18 Quorum-based algorithm for possibleValues. 100

19 Proposer algorithm for Revision B/C using possibleValues. 106

20 Quorum-based algorithm for possibleValues (Revision B/C). 107

21 Allocator algorithm . 114

22 Proposer algorithm for binary decision . 116

11

23 Acceptor algorithm for binary decision . 118

24 Acceptor algorithm for epochs by recovery. 120

25 Proposer algorithm for Revision A with epochs by recovery. 121

26 Algorithm for possibleValues with epochs by recovery (Revision A). 122

27 Proposer algorithm with epochs by recovery and a fixed quorum. 126

28 Proposer algorithm with epochs by recovery and fixed quorums. 128

29 Proposer algorithm with epochs by recovery and counting quorums. 129

30 Phase zero of Multi-path Paxos with an allocator 135

31 Fast path - Proposer algorithm for Multi-path Paxos with recovery 137

32 Slow path - Proposer algorithm for Multi-path Paxos with recovery 138

12

Chapter 1

Introduction

We depend upon computer systems in every aspect of life. We expect systems to respond

quickly, to behave as expected, and to be available when needed. However, the components

which make up these systems, such as computers and the networks which connect them,

are not reliable. Distributed consensus is the problem of how to reliably reach agreement

in the face of failures and asynchrony. This longstanding challenge is fundamental to

distributed systems and, when solved, gives us the power to construct reliable distributed

systems from unreliable components.

Lamport’s Paxos algorithm [Lam98] has been synonymous with distributed consensus

for two decades [Mal]. It is widely deployed in production, and has been the subject

of extensive research to optimise, extend and better understand the algorithm. Despite

its popularity, Paxos performs poorly in practice, its inflexible approach is heavyweight,

unscalable and can be unavailable in the face of asynchrony and failures.

This thesis re-examines the problem of distributed consensus and how we approach it.

Firstly, we prove that Paxos is, in fact, one point on a broad spectrum of approaches to

solving distributed consensus, opening the door to a new breed of performant, scalable

and resilient consensus algorithms. Then, we explore some of the new algorithms made

possible by this result; some of which are even able to achieve consensus where it was

previously thought impossible.

In the next section, we describe the de facto approach to consensus in modern distributed

systems (§1.1). For readers who are unfamiliar with the field, we then outline the historical

context of this research, focusing on how early formulations of the problem of distributed

consensus shaped (and arguably limited) how it is solved today (§1.2). This is followed by

our critiques of this widely adopted approach and thus our motivation for re-examining

how we can solve consensus (§1.3). Next, we describe the methodology we chose for the

investigation into consensus (§1.4) and highlight the surprising contributions made to the

field of consensus as a result (§1.5).

13

14 1.1. STATE OF THE ART

1.1 State of the art

The ability to reach an agreement between parties is a fundamental necessity of modern

society, whether it is deciding a time for a meeting or whom will govern a country. The

same is true for distributed computer systems where agreement is necessary for hosts

to share consistent state for vital functions such as addressing, resource allocation, file

systems, primary election, routing, locking, ordering and coordination.

Agreement covers a broad spectrum of decision problems in distributed systems. Dis-

tributed consensus is one such problem which is characterised by two guarantees: firstly

that all decisions are final, without assuming reliability or synchrony (safety guarantee)

and secondly that eventually a decision will be reached (progress guarantee). It is known to

be impossible to guarantee progress without making assumptions regarding synchrony or

reliability [FLP85]. Therefore, algorithms which solve consensus aim to guarantee progress

under the weakest liveness assumptions possible.

The Paxos algorithm, originally proposed by Leslie Lamport in 1998 [Lam98] and later

refined [Lam01a], is at the heart of how we achieve distributed consensus today1. Broadly

speaking, its approach operates in two stages, each requiring agreement by the majority

of participants. The first stage establishes one of the participants as the leader, preventing

past leaders from making any further decisions. Once the majority of participants have

agreed on who will lead, the leader proceeds to the second stage where decisions are made

by getting the backing of the majority of participants. The leader is responsible for ensuring

that all past decisions, learned during the first stage of the algorithm, are preserved and

only proposes new values if it is safe to do so. This algorithm is guaranteed to reach

a decision provided that at least a majority of participants are up and communicating

synchronously. This approach is now widely adopted as the foundation of many production

systems.

1.2 Historical background

The problem of distributed consensus emerged in the academic literature in the early

1980s. Originally, distributed consensus was a generalisation of a widely studied transac-

tion commit problem from the field of distributed databases. Somewhat surprisingly, the

problem of distributed consensus was popularised by a proof of its impossibility. Fischer,

Lynch and Paterson [FLP85] demonstrated in 1985 that it is not possible for any dis-

tributed consensus algorithm to guarantee termination in an asynchronous system where

participants may fail. The proof is notable for the surprisingly strong model under which

1For now, we use the term Paxos to refer to the algorithm as it is commonly used today, instead of as

it was first described by Lamport. Often the term Multi-degree Paxos or just Multi-Paxos is used for this

purpose.

CHAPTER 1. INTRODUCTION 15

it holds; namely reliable exactly-once out-of-order message delivery, a bound of at most

one participant failing and agreement over a single binary value. This is known as the

FLP result.

Now that it has been established that some assumptions regarding synchrony were nec-

essary to guarantee termination of any distributed consensus algorithm, the question

naturally arises of what these assumptions are and what are the weakest possible as-

sumptions. These questions were considered by works such as Dolev, Dwork and Stock-

meyer [DDS87] and Dwork, Lynch and Stockmeyer [DLS88]. The difficulty of reaching

distributed consensus lies with the inability to reliably detect failures. However, despite

the fact that failure detectors are unreliable, they are still useful for achieving distributed

consensus [CT96, CHT96]. An atomic broadcast is a broadcast which guarantees that all

participants in a system eventually receive the same sequence of messages. It is also a

powerful primitive in distributed systems and was shown to be equivalent to distributed

consensus [CT96].

Early solutions to consensus can be found in the systems such as Viewstamped Repli-

cation [OL88], Gbcast [Bir85, BJ87] and in the work of Dwork et al. [DLS88]. At the

same time, state machine replication, introduced by Lamport [Lam78b] and popularised

by Schneider [Sch90], emerged as a technique to make applications fault-tolerant by repli-

cating the application state and coordinating its operations using consensus.

Eight years after its submission in 1990, the infamous Part-Time parliament paper [Lam98]

describing Paxos was published, by which time attempts to explain the algorithm in simpler

terms had already begun [PLL97] and continue today [Lam01a, Lam01b, VRA15]. Paxos

became the de facto approach to distributed consensus and thus became the subject of

extensive follow-up research, examples of particular relevance to this thesis include Disk

Paxos [GL03], Cheap Paxos [LM04], Fast Paxos [Lam05a] and Egalitarian Paxos [MAK13].

The common foundation between Paxos and earlier proposed solutions to consensus has

been noted elsewhere in the academic literature [Lam96, vRSS15, LC12].

In 2007, Google published a paper documenting their experience of deploying Paxos at

scale [CGR07] in the Chubby locking service [Bur06]. Chubby was in turn used for dis-

tributed coordination and metadata storage by Google systems such as GFS [GGL03]

and Bigtable [CDG+08]. This was shortly followed by the Zookeeper coordination ser-

vice [JRS11, HKJR10], referred to by some as the open source implementation of Chubby.

The project became very popular and is credited with bringing distributed consensus to the

masses. Meanwhile, the idea of utilising Paxos for state machine replication was improving

community understanding and adoption of distributed consensus [BBH+11, LC12, OO14].

The result has been a recent resurgence of distributed consensus in production today2 to

2Implementations include Zookeeper (zookeeper.apache.org), Consul (www.consul.io) and Etcd

(coreos.com/etcd).

zookeeper.apache.org
www.consul.io
coreos.com/etcd

16 1.3. MOTIVATION

provide key-value stores and coordination services3.

1.3 Motivation

Despite becoming the de facto approach to consensus in distributed systems, Paxos is not

without its limitations.

Firstly, Paxos is notoriously difficult to understand, leading to much follow up work, ex-

plaining the algorithm in simpler terms [PLL97, Lam01a, OO14, VRA15] and filling

the gaps in the original description, necessary for constructing practical implementa-

tions [CGR07, BBH+11]. This dissonance between the theory and the systems communities

is best illustrated by the following quotes:

The Paxos algorithm, when presented in plain English, is very simple.

[Paxos] is among the simplest and most obvious of distributed algorithms.

- Leslie Lamport [Lam01a]

Paxos is exceptionally difficult to understand. The full explanation is noto-

riously opaque; few people succeed in understanding it, and only with great

effort. . . . In an informal survey of attendees at NSDI 2012, we found few people

who were comfortable with Paxos, even among seasoned researchers.

We concluded that Paxos does not provide a good foundation either for system

building or for education. - Diego Ongaro and John Ousterhout [OO14]

Secondly, the reliance on majority agreement means that the Paxos algorithm is slow to

reach decisions, as each requires a round trip to/from many participants. By involving most

participants in each decision, a high load is placed upon the network between participants

and the leader itself. As a result, systems are limited in scale, often to three or five

participants4, as each additional participant substantially decreases overall performance5.

It is widely understood that Paxos is unable to reach an agreement if the majority of

participants have failed. However, this is only part of the overall picture, failure to reach

agreement can result not only from unavailable hosts but also network partitions, slow

hosts, network congestion, contention for resources such as persistent storage, clock skew,

packet loss and countless other scenarios. Such issues are commonplace in some systems,

3Applications include databases such as HBase (hbase.apache.org) or MongoDB (mongodb.com) and

orchestration tools such as Kubernetes (kubernetes.io), Docker Swarm (github.com/docker/swarm)

and Mesos (mesos.apache.org)
4For example, Chubby reaches consensus between a small set of servers, typically five [CGR07]. Likewise,

Raft clusters typically contain five servers [OO14, §5.1]
5This effect can be seen for example in [MJM08, Figure 8]

hbase.apache.org
mongodb.com
kubernetes.io
github.com/docker/swarm
mesos.apache.org

CHAPTER 1. INTRODUCTION 17

they are often correlated and escalated by one another. In practice, deploying Paxos does

not guarantee availability since the algorithm’s progress depends on satisfying synchrony

and liveness conditions which cannot be guaranteed by today’s systems.

Paxos’s approach to consensus establishes one participant as the leader and makes that

participant responsible for decisions. This centralised approach provides simplicity as a

single point of serialisation yet it also bottlenecks the algorithm’s performance to that of a

single highly congested participant. Since the leader is responsible for decision making, all

requests for decisions must be forwarded to and handled by the leader, further increasing

decision latency. The leader introduces a single point of failure in the distributed system.

Whilst Paxos is able to recover from leader failure under given conditions, such a recovery

may be slow and cumbersome and usually results in a period of unavailability.

The limitations are widely known, yet few alternatives to Paxos are utilised in practice. The

vast academic literature in distributed consensus generally focuses on mitigating these lim-

itations though optimisation, extension and pragmatic implementation. Given the limita-

tions we have discussed thus far, production systems such as Amazon’s Dynamo [DHJ+07]

and Facebook’s TAO [BAC+13, LVA+15] opt to sacrifice strong consistency guarantees in

favour of high availability.

1.4 Approach

The question naturally arises of whether these limitations are inherent to the problem

of consensus or specific to the approach taken by the Paxos algorithm? Likewise, is the

Paxos algorithm the optimal solution to consensus? These are the questions which will

guide our research.

Our approach is to re-examine the problem of distributed consensus and how we as a com-

munity approach it. In contrast to previous work, we undertake an extensive examination

of how to achieve consensus over a single value. Due to the wide spread adoption of Paxos

and our focus on the underlying theory of consensus, the results of our analysis could have

wide-reaching implications, which are agnostic (thus not limited in scope) to particular

systems, hardware, workloads or deployment scenarios.

We begin by developing a framework for proving the correctness of a consensus algorithm

and apply it to the Paxos algorithm. The purpose of the framework is to be explicit about

how the properties of the algorithm are used within the proof of correctness. This allows

us to modify the algorithm and verify correctness without re-proving the whole algorithm.

The surprising results of this approach are twofold: firstly, the proof of correctness did not

use the full strength of the properties provided and secondly, there are many approaches

which satisfy the same properties. These observations formed the basis of our progressive

generalisation of the Paxos algorithm. At each stage, we were able to verify correctness

by building upon the original proof.

18 1.5. CONTRIBUTIONS

1.5 Contributions

This thesis is divided into 8 chapters, over which we construct novel generalised algorithms

for solving distributed consensus by progressively generalising the popular Paxos algorithm.

Overall, we make the following key contributions:

Chapter 2 We begin by defining the problem of distributed consensus and outline two

known solutions, a simple straw-man algorithm and the widely used Paxos algorithm.

We prove that both algorithms satisfy the necessary requirements to solve consensus.

Chapter 3 In this systematisation of knowledge chapter, we outline the most common

refinements to the Paxos algorithm, separating the underlying algorithmic contri-

butions from the particulars of the framing and terminology used in the literature,

which often differs greatly between publications.

Chapter 4 We generalise the Paxos algorithm by weakening the quorum intersection

requirements to permit non-intersecting quorums within each of the algorithm’s two

phases. We then propose a further generalisation by weakening the quorum intersec-

tion requirements to permit non-intersecting quorums between the algorithm’s first

phase and subsequent second phases.

Chapter 5 We prove that quorum intersection is transitive and can be reused, allowing

in some scenarios decisions to be reached with fewer participants.

Chapter 6 We generalise the Paxos algorithm by weakening the value selection rules

by utilising knowledge from the algorithm’s first phase. This generalisation allows

participants more flexibility when choosing a value to propose.

Chapter 7 We further extend our generalisation permitting various mechanisms for the

sharing of phases to best take advantage of the generalisation thus far. We present

algorithms which provide new progress guarantees and can reach decisions in few

phases.

The result of this thesis is a family of approaches to achieving distributed consensus,

which generalises over the most popular existing algorithms such as Paxos and Fast

Paxos [Lam05a]. We aim to further understanding of this often poorly understood field

and demonstrate the breadth of possible correct approaches to solving consensus. Later

in the thesis, we explore the wide-reaching implications of our revised understanding of

consensus. We focus on how to improve the performance and reliability of consensus al-

gorithms and thus the distributed systems built on top of them. Distributed systems are

famous for the need to compromise between desirable properties, largely due to popular

formulations such as CAP theorem. However, such formulations are crude. In contrast, we

aim to quantify the specific tradeoffs available for consensus and demonstrate algorithms

which achieve these properties.

CHAPTER 1. INTRODUCTION 19

1.5.1 Publications

Parts of the research described in this thesis have been published in the following peer-

reviewed conference and journal papers:

Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. Flexible Paxos: Quorum inter-

section revisited. In Proceedings of the 20th International Conference on Principles of

Distributed Systems (OPODIS), 2016

The following publications are outside scope for inclusion:

Heidi Howard, Malte Schwarzkopf, Anil Madhavapeddy, and Jon Crowcroft. Raft Refloated:

Do we have consensus? SIGOPS Operating Systems Review, 49(1):1221, January 2015

Amir Chaudhry, Jon Crowcroft, Heidi Howard, Anil Madhavapeddy, Richard Mortier,

Hamed Haddadi, and Derek McAuley. Personal data: Thinking inside the box. In Pro-

ceedings of The Fifth Decennial Aarhus Conference on Critical Alternatives, AA 15, pages

2932. Aarhus University Press, 2015

1.5.2 Follow up research

This research in this thesis is by no means the final word on distributed consensus. In fact,

it leaves many more doors open then it closes. Paxos revision A, which we will describe

in §4.1, was published under the name Flexible Paxos and at the time of writing, follow

up research and systems development by the community has already begun:

1. Formal specification of Flexible Paxos in Pluscal [Dem] and mechanised formal

verification of Flexible Paxos using decidable logic [PLSS17].

2. Consensus protocols for graphically distributed systems using Flexible Paxos’s weak-

ened quorum intersection requirements such as WPaxos [ACDK17] and DPaxos [NAEA18]

3. Various implementation including Trex [Tre], a Flexible Paxos prototype for JVM

and the adaption of Apache Zookeeper to use Flexible Paxos [Mel17].

1.6 Scope & limitations

Our approach has the following limitations:

Byzantine fault tolerance – We assume that algorithms are implemented and executed

correctly. Participants and the network between them cannot act arbitrarily or

maliciously. Consensus algorithms which do not assume this are known as byzantine

fault tolerant. PBFT [CL99] is an example of such an algorithm.

20 1.6. SCOPE & LIMITATIONS

Reconfiguration – We assume a fixed and known set of participants each with a unique

identifier. Reconfiguration is discussed extensively in the literature and is a compo-

nent of many algorithms. Examples include Stoppable Paxos [MLZ08], VRR [LC12,

§7], Raft[OO14, §6].

Weakened semantics – We do not support operations with weakened semantics such as

stale reads or operations which rely on synchrony or bounded clock drift for safety

such as master leases [Bur06, VRA15].

Implementation details – We assume unbounded storage, representation of arbitrary

values, no corruption to state or messages. Participants may stop and restart. Upon

restarting, the persistent state is unchanged, non-persistent state is re-initialised and

the algorithm is executed again from the beginning. The pseudocode provided in

this thesis is assumed to be executed in order by a single thread and each line is

executed atomically. Writes to state must be completed before proceeding, including

writes to persistent storage. This can be achieved by techniques such as Write-ahead

logging [MHL+92]. Reads from state must always return an up to date value.

Partial ordering – Our algorithms decide a single value (or decide a totally ordered,

infinite sequence of values). We do not consider agreement over multiple series of

values, partially ordered sequences [Lam05b] or finite sequences [MLZ08].

Progress in practice – Participants may operate at arbitrary speeds. Messages are

eventually delivered but there is no bound on the time for the communication

channel to deliver messages. Messages may be delivered out-of-order or multiple

times. However, the progress of the algorithms depends on extensive assumptions,

including synchrony and timing. We prove the progress for our algorithms under

these assumptions however they are not minimal.

Specific systems – All algorithms are provided as high-level representations, not concrete

protocols or implementations. To remain applicable to a range of existing and further

systems, we do not optimise for particular systems or workloads as has been the

subject of extensive research. For example, Ring Paxos[MPSP10] and Multi-Ring

Paxos[MPP12] optimise for networks providing IP multicast.

Chapter 2

Consensus & Classic Paxos

We begin our study of distributed consensus by first considering how to decide upon a

single value between a set of participants. This task, whilst seemingly simple, will occupy

us for the majority of this thesis. Single-valued agreement is often overlooked in the

literature as already solved or trivial and is seldom considered at length, despite being a

vital component in distributed systems which is infamously poorly understood.

This chapter is broadly divided into three parts. We begin by defining the requirements

for an algorithm to solve distributed consensus (§2.1). Secondly, we outline two existing

algorithms which solve single valued consensus: the single acceptor algorithm (§2.1.1), a

näıve straw man solution and Classic Paxos (§2.2, §2.3, §2.4), the widely adopted solution

which lies at the foundation of a broad range of complex distributed systems. Thirdly and

finally, we go on to prove that both algorithms satisfy all of the requirements of distributed

consensus as defined in the first part (§2.5,2.6,2.7).

2.1 Preliminaries

Single valued distributed consensus is the problem of deciding a single value v ∈ V between

a finite set of n participants, U = {u1, u2, . . . , un}.

Definition 1. An algorithm is said to solve distributed consensus only if it satisfies the

following three safety requirements:

Non-triviality The decided value must have been proposed by a participant.

Safety If a value has been decided, no other value will be decided.

Safe learning If a participant learns a value, it must learn the decided value.

21

22 2.1. PRELIMINARIES

In addition to the following two progress requirements1:

Progress Under a specified set of liveness conditions, if a value has been proposed by a

participant then a value is eventually decided.

Eventual learning Under a specified set of liveness conditions, if a value has been decided

then a value is eventually learned.

Together, these five requirements prevent many trivial algorithms from satisfying dis-

tributed consensus. Without the safety and safe learning requirement, then a consensus

algorithm could decide/learn all values proposed by participants. If non-triviality was

not required, then a consensus algorithm could simply decide a fixed value. If progress

and eventual learning were not required, then a consensus algorithm could never decide

a value, rejecting all proposals it receives or never allowing any participant to learn the

value. These trivial approaches are of little interest thus all five of the stated requirements

are necessary.

It is important to note that the safety requirements do not rely on any liveness conditions.

In other words, failures or asynchrony cannot lead to a violation of safety thus the algorithm

cannot depend upon bounded clock drift, message delay, or execution time.

In contrast, progress can rely upon specified liveness conditions such as partial synchrony.

The liveness conditions are always sufficient for the algorithm to make progress, regardless

of the state of the system. In other words, the algorithm cannot become indefinitely stuck

in deadlock (or livelock).

Notice that none of the requirements restrict which proposal value is decided. Specifically,

an algorithm for distributed consensus is free to choose from any of the proposed values,

regardless of which participant proposed the value, the proposal order, the number of par-

ticipants proposing the same value or the proposed values themselves. The only restriction

is that, under the progress condition, a value must eventually be decided if at least one

value has been proposed. Therefore, from the non-triviality condition, we observe that if

only one value is proposed then it must eventually be chosen.

In this chapter, we will formulate the problem of consensus in the usual manner adopted

in the academic literature2. Each participant in the system is assigned one or both of the

following two roles.

• Proposer - A participant who wishes to have a particular value chosen.

1Note, that this definition of progress is more general than the one commonly found in the literature

which is specific to majorities. This generalisation aims to decouple majorities (a common aspect of

consensus algorithms) from the problem definition.
2This approach is taken to aid readers who are already familiar with the field, although, it can be

ambiguous at times.

CHAPTER 2. CONSENSUS & CLASSIC PAXOS 23

• Acceptor - A participant who agrees and persists decided values.

In a system U of n participants, we will denote the set acceptors as A = {a1, a2, . . . }
where A ⊆ U and |A| = na and the set of proposers as P = {p1, p2, . . . } where P ⊆ U

and |P | = np. A consensus algorithm defines the process by which a value v is chosen by

the acceptors from the proposers. We refer to the point in time when the acceptors have

committed to a particular value as the commit point. After this point in time, v has been

decided and cannot be subsequently altered. The proposers learn which value has been

decided, this must always take place after the commit point has been reached.

If we are able to reach agreement over a single value, we are able to reach agreement over

an infinite sequence of values v1, v2, v3, . . .
3 by independently reaching consensus over each

value in the sequence in turn. This sequence could represent updates to a re-writeable

register, operations for a replicated state machine, messages for atomic broadcast, a shared

log or state changes in a primary-backup system.

All notation introduced in this section and the remainder of the thesis is summarised for

reference in Table 2.1.

2.1.1 Single acceptor algorithm

In the section, we introduce a straw-man algorithm which solves distributed consensus.

The algorithm, which we will refer to as the single acceptor algorithm (SAA), requires

that exactly one participant be assigned the role of acceptor4. The liveness conditions for

SAA are that the acceptor and at least one proposer are up and can exchange messages

reliably. This algorithm is included here to familiarise the reader with the terminology

and methodology before we progress to more advanced algorithms.

The single acceptor algorithm chooses the first value proposed by the proposers. A proposer

who has a candidate value γ will propose the value to the acceptor using the message

propose(γ). If this is the first proposal the acceptor has received, it will write γ to persistent

storage (known as accepting) and notify the proposer that the value has been decided

using the message accept(γ). Otherwise, if this is not the first proposal to be received, the

acceptor will reply to the proposer with the already decided value γ′ using accept(γ′). In

either case, provided that the acceptor is available then the proposer will learn the decided

value. See algorithm 1 and algorithm 2 for pseudocode descriptions of this approach5.

3The sequence of values will always be 1-indexed.
4We are not the first to use this straw-man solution to explain the problem of consensus [Lam01a, §2.2]
5Note that for all pseudocode in this thesis, variables are stored in volatile memory and are initially

nil unless otherwise stated. Also note that all pseudocode in this thesis favours clarity and consistency

over performance.

24 2.1. PRELIMINARIES

Notation Description First use:

u1, u2, . . . participants 2.1

a1, a2, . . . /p1, p2, . . . specific acceptors/proposers 2.1

n/na/np number of participants/acceptors/proposers 2.1

v, w, x, . . . values 2.1

v1, v2, . . . sequence of values 2.1

a, a′, . . . /p, p′, . . . acceptors/proposers 2.1.1

A,B,C . . . concrete values 2.1.1

γ, γ′ candidate values 2.1.1

vacc last accepted value 2.1.1

e, f, g, . . . epochs 2.2

(e, v) proposal with epoch e and value v 2.2

emin/emax minimum/maximum epoch 2.2

epro/eacc last promised/accepted epoch 2.2

vdec decided value 3.3

pid/sid/vid proposer ID/sequence ID/version ID 3.8

plst last proposer 3.9

U/A/P set of participants/acceptors/proposers 2.1

V set of values 2.1

E set of epochs 2.2

E set of unused epochs 2.2

QP/QA set of acceptors which have promised/accepted 2.2

QV set of acceptors which have promised with emax 3.2

Γ set of candidate values 2.2

Q,Q′, . . . quorums (set of acceptors) 3.11

Q,Q′, . . . quorum set 3.11

Qe
i quorum set for phase i and epoch e 4.1

Vdec set of values which maybe decided 6.1

R mapping from acceptors to a promise, no or (e, v) 6.1

D mapping from quorums to decisions 6.1

min(E) returns minimum epoch in E 2.2

succ(e) returns successor of epoch e 3.8

only(V) returns the only element in singleton set V 6.1

Table 2.1: Reference table of notation.

CHAPTER 2. CONSENSUS & CLASSIC PAXOS 25

Algorithm 1: Proposer algorithm for SAA
state :

• γ: candidate value (configured, persistent)

1 send propose(γ) to acceptor

2 case accept(v) received from acceptor

/* proposer learns that v was decided so return v */

3 return v

p1 a1 p2

propose(A)

vacc:A

accept(A)
propose(B)

accept(A)

Figure 2.1: Example run of SAA between one acceptor {a1} and two proposers {p1, p2}.

Algorithm 2: Acceptor algorithm for SAA
state :

• vacc: accepted value (persistent)

1 while true do

2 case propose(v) received from proposer

3 if vacc = nil then

4 vacc ← v

5 send accept(vacc) to proposer

Figure 2.1 is a message sequence diagram (MSD) for an example execution of the single

acceptor algorithm. We will make extensive use of MSDs to illustrate the messages ex-

changed and state updates which occur over time. Note that the time axis (the negative

y-axis) is not assumed to be linear. In this example, proposer p1 has candidate value γ = A

and proposer p2 has candidate value γ = B. The acceptor receives propose(A) first and

therefore the value A is decided.

26 2.1. PRELIMINARIES

Safety

Informally, we can see that this simple algorithm satisfies the three safety conditions for

distributed consensus. The acceptor chooses the first proposal it receives thus it satisfies

non-triviality. After accepting its first proposal, the acceptor accepts no other proposals

from proposers thus this algorithm satisfies safety. If a proposer returns a value, then the

value must have been received from the acceptor and therefore must be decided, satisfying

safe learning. We will now consider these in more detail.

Theorem 1 (Non-triviality of SAA). If the value v is decided, then v must have been

proposed by a proposer

Proof of theorem 1. Assume the value v is decided. For v to be decided, the acceptor must

have accepted the proposal propose(v). Thus since messages cannot be corrupted, v must

have been proposed by some proposer

Theorem 2 (Safety & safe learning of SAA). For any two proposers p, p′ ∈ P , which

learn that the decided value v is γ and γ′ respectively then γ = γ′.

Proof of theorem 2. A proposer p learns that the decided value v is γ as a result of receiving

accept(γ) from the single acceptor. The same is true for any other participant p′.

Since the events of sending accept(γ) and sending accept(γ′) occur on one participant, the

single acceptor, the two events cannot have occurred concurrently. Thus one event must

happen before the other.

Assume that the event send accept(γ) is before send accept(γ′).

The acceptor determines the values γ, γ′ by reading the accepted value vacc. If γ 6= γ′ then

the value vacc would have changed from γ to γ′ between sending the two accepted messages.

The only mechanism for the accepter to update vacc to γ′ is by receiving accept(γ′).

Updating vacc is conditional on vacc being nil, since vacc is persistent, it cannot be nil as it

has previously been set to γ. Therefore vacc cannot have been updated between the two

sending events so γ = γ′.

The same applies when send accept(γ′) is before send accept(γ).

Progress

Informally, we can see that this simple algorithm also satisfies the two progress conditions

for distributed consensus, under the liveness conditions that the acceptor and at least

one proposer must be up. Note, that though we use the assumption that messages are

eventually delivered, we do not require time bounds on message delivery or operating

speed.

CHAPTER 2. CONSENSUS & CLASSIC PAXOS 27

Theorem 3 (Progress of SAA). If a proposer p ∈ P proposes the value γ and the liveness

conditions are satisfied for a sufficient period then a value v is eventually decided.

Proof of theorem 2. Assume proposer p sends propose(γ) to the acceptor. Under the live-

ness conditions, this message will be eventually received by the acceptor. Under the liveness

conditions, this acceptor must be up and handle the message. Either no decision has yet

been reached thus the proposal is accepted and v = γ, otherwise a decision has already

been reached and v = vacc.

Summary

This simple algorithm provides consensus in one round trip (two messages) to the acceptor

and one synchronous write to persistent storage, provided the acceptor is up. If the acceptor

is down, then the system cannot progress until the acceptor is up. This algorithm works

as all value proposals intersect at a single point, the acceptor. The result is that proposals

are totally ordered so choosing a proposal is trivial. However, this reliance on a single

acceptor is also this algorithm’s downfall. Should this acceptor fail, the algorithm could

not make progress until it recovers.

The acceptor in SAA is a single point of failure, the obvious step to address this is to have

multiple acceptors. However, we can no longer guarantee a total ordering over proposals

so the single acceptor algorithm is no longer suitable6. In the next section, we instead

describe Classic Paxos, a consensus algorithm which is able to handle multiple acceptors.

2.2 Classic Paxos

Classic Paxos [Lam98]7 is an algorithm8 for solving the problem of distributed consensus.

In the best case, the unoptimised algorithm is able to reach agreement in two round trips

to the majority of acceptors and three synchronous writes to persistent storage, though

in some cases more time will be needed. The liveness conditions is that bna/2c + 1 of

na acceptors and one proposer must be up and communicating synchronously. These

conditions are both necessary and sufficient for progress.

The approach taken by Classic Paxos to deciding a value has two phases. Phase one can

be viewed as the reading phase, where the proposer learns about the current state of the

system and takes a type of version number to detect changes in the future. Phase two can

be viewed as the writing phase, where the proposer tries to get a value accepted. If, after

phase one of the algorithm, the proposer is certain that a value has not yet been decided,

6Assuming the network does not provide atomic broadcast.
7Also known as Synod or Single-degree Paxos
8More correctly, it is a family of algorithms

28 2.2. CLASSIC PAXOS

the proposer can propose the candidate value γ. If the outcome of phase one is that a

value might already be decided, then that value must be proposed in phase two instead.

Each of these two phases requires a majority of acceptors to agree in order to proceed.

We now define the terms epoch and proposal and then use these to summarise the Classic

Paxos algorithm.

Definition 2. An epoch e is any member of the set of epochs E. E is any infinite totally

ordered set such that the operators <, > and = are always defined 9.

Definition 3. A proposal (e, v) is any epoch and value pair10.

Classic Paxos Phase 1

1. A proposer chooses a unique epoch e and sends prepare(e) to the acceptors.

2. Each acceptor stores the last promised epoch and last accepted proposal. When an

acceptor receives prepare(e), if e is the first epoch promised or if e is equal to or

greater than the last epoch promised, then e is written to storage and the acceptor

replies with promise(e,f,v). (f,v) is the last accepted proposal (if present) where f is

the epoch and v is the corresponding proposed value.

3. Once the proposer receives promise(e, ,) from the majority of acceptors, it proceeds

to phase two. Promises may include a last accepted proposal which will be used by

the next phase.

4. Otherwise if the proposer times out, it will retry with a greater epoch.

Classic Paxos Phase 2

1. The proposer must now select a value v using the following value selection rules :

i If no proposals were returned with promises in phase one, then the proposer will

choose its candidate value γ.

ii If one proposal was returned, then its value is chosen.

iii If more than one proposal was returned then the proposer must choose the value

associated with the greatest epoch.

The proposer then sends propose(e,v) to the acceptors.

9Epochs are also referred to as terms [OO14, §5.1], view numbers [LC12, §3], round numbers [MPSP10,

§3], instance values/epoch [HKJR10, §1] or ballot numbers in the literature
10Proposals are also referred to as ballots in the literature

CHAPTER 2. CONSENSUS & CLASSIC PAXOS 29

2. Each acceptor receives a propose(e,v). If e is the first epoch promised or if e is equal

to or greater than the last promised epoch, then the promised epoch and accepted

proposal is updated and the acceptor replies with accept(e).

3. Once the proposer receives accept(e) from the majority of acceptors, it learns that

the value v is decided.

4. Otherwise if the proposer times out, it will retry phase 1 with a greater epoch.

Message Description Sent by: Received by:

Phase 1 prepare(e) e: epoch proposers acceptors

promise(e,f,v) e: epoch acceptors proposers

f : last accepted epoch*

v: last accepted value*

*maybe nil

Phase 2 propose(e,v) e: epoch proposers acceptors

v: proposal value

accept(e) e: epoch acceptors proposers

Table 2.2: Messages exchanged in Classic Paxos

For reference, Table 2.2 gives an overview of the four messages used in Classic Paxos11.

We will now look at this process in more detail.

2.2.1 Proposer algorithm

Algorithm 3 describes the Classic Paxos algorithm for participants with the role of a

proposer. The key input to this algorithm is a candidate value γ to propose and the

output is the decided value v. The decided value may or may not be the same as the

candidate value, depending upon the state of acceptors when the algorithm is executed.

The proposer will only propose its candidate value γ if it is sure that another value has not

already been chosen. Once the proposer learns that a value has been decided, no proposer

will learn that a different value has been decided.

After initialising its variables (Algorithm 3, lines 1-2), the algorithm begins by selecting

a epoch e to use (Algorithm 3, line 3). To remain general, we do not specify how the set

of available epochs, E ⊆ E, should be generated. However, the algorithm does require

that each proposer is configured with an infinite disjoint set of epochs. The algorithm

ensures that each epoch is used only once, by removing the current epoch, e, from the set

11These message are often referred to as 1a, 1b, 2a and 2b respectively. Confusingly, the propose message

is called prepare in VRR [LC12, §4.1]

30 2.2. CLASSIC PAXOS

Algorithm 3: Proposer algorithm for Classic Paxos
state :

• na: total number of acceptors (configured, persistent)

• e: current epoch

• v: current proposal value

• emax: maximum epoch received in phase 1

• E : set of unused epochs (configured, persistent)

• QP : set of acceptors who have promised

• QA: set of acceptors who have accepted

/* (Re)set variables */

1 v, emax ← nil

2 QP , QA ← ∅
/* Select and set the epoch e */

3 e← min(E)

4 E ← E \ {e}
/* Start Phase 1 for epoch e */

5 send prepare(e) to acceptors

6 while |QP | < bna/2c+ 1 do

7 switch do

8 case promise(e,f,w) received from acceptor a

9 QP ← QP ∪ {a}
10 if f 6= nil ∧ (emax = nil ∨ f > emax) then

/* (emax, v) is the greatest proposal received */

11 emax ← f , v ← w

12 case timeout

13 goto line 1

14 if v = nil then

/* no proposals were received thus propose γ */

15 v ← γ

/* Start Phase 2 for proposal (e,v) */

16 send propose(e,v) to acceptors

17 while |QA| < bna/2c+ 1 do

18 switch do

19 case accept(e) received from acceptor a

20 QA ← QA ∪ {a}
21 case timeout

22 goto line 1

23 return v

CHAPTER 2. CONSENSUS & CLASSIC PAXOS 31

of available epochs (Algorithm 3, line 4). For simplicity, we have the proposers try epochs

in-order, though it is safe for the proposer to use any unused epoch.

The message prepare(e) is sent to all acceptors (Algorithm 3, line 5) and the proposer waits

for responses. As promises are received, the proposer tracks the maximum epoch, emax,

received in a proposal and its associated value, v (Algorithm 3, lines 8-11). If a promise

does not include a proposal then the maximum epoch, emax, and its associated value, v,

are not updated (Algorithm 3, line 10). The set QP tracks which acceptors have promised

thus far. If promises are not received from a majority of acceptors before a timeout then

the algorithm retries (Algorithm 3, lines 6, 12-13). If no proposals were received with

promises, the proposal value v is set to the candidate value γ (Algorithm 3, lines 14-15).

The proposer then sends propose(e,v) to the acceptors (Algorithm 3, line 16). The proposer

will return value v (Algorithm 3, line 23) after the majority of acceptors accept the proposal

(e, v) (Algorithm 3, lines 17-20) and retry otherwise (Algorithm 3, lines 21-22).

Note that all other messages which are received by the proposer but do not match a switch

statement (such as messages from previous epochs or promises during phase two) can be

safely ignored.

2.2.2 Acceptor algorithm

Algorithm 4: Acceptor algorithm for Classic Paxos
state :

• epro: last promised epoch (persistent)

• eacc: last accepted epoch (persistent)

1 while true do

2 switch do

3 case prepare(e) received from proposer

4 if epro = nil ∨ e ≥ epro then

5 epro ← e

6 send promise(e,eacc,vacc) to proposer

7 case propose(e,v) received from proposer

8 if epro = nil ∨ e ≥ epro then

9 epro ← e

10 vacc ← v, eacc ← e

11 send accept(e) to proposer

The acceptors in Classic Paxos are responsible for handling incoming prepare and propose

messages. The logic for this is described in Algorithm 412. All messages, whether prepare(e)

12Algorithm 4 uses the variable vacc, however it is not included in the state list. Due to space limitations,

32 2.3. EXAMPLES

or propose(e,v), must have an epoch e greater than or equal to epro to be processed by the

acceptor (Algorithm 4, lines 4,8). If this is the first message the acceptor has received then

epro is nil and this test is always successful. If the test is successful then epro is updated

to e (Algorithm 4, lines 5,9).

If the message was prepare(e), then the acceptor replies with promise(e,eacc,vacc) (Algo-

rithm 4, line 6). If the acceptor has not yet accepted a proposal then eacc and vacc will be

nil. When an acceptor sends a promise message, we say that the acceptor has promised

epoch e13.

If the message was propose(e,v) then the acceptor will set eacc and vacc to the proposal

(e, v) (Algorithm 4, line 10) and reply with accept(e) (Algorithm 4, lines 11). In this case,

we say that the acceptor has accepted the proposal (e, v).

Definition 4. In Classic Paxos, a proposal (e, v) is decided if the proposal (e, v) has been

accepted by the majority of acceptors.

Note that this definition does not require that the proposal is still the last accepted

proposal on a majority of acceptors. A value v ∈ V is said to be decided if there exists an

epoch e ∈ E such the proposal (e, v) has been decided. This is also described as value v is

decided in e. The commit point is the first time a proposal is decided.

2.3 Examples

In this section, we will consider example message sequence diagrams (MSDs) for a sample

of possible executions of Classic Paxos. For simplicity, messages are omitted if their receipt

will have no effect. Each example system is comprised of three acceptors A = {a1, a2, a3}
and two proposers P = {p1, p2}, thus bna/2c+ 1 = 2. Initially, γ = A for proposer p1 and

γ = B for proposer p2.

In our examples, epochs are natural numbers E = N0, which have been divided round robin

between the proposers. Therefore initially E = {0, 2, 4, . . . } on p1 and E = {1, 3, 5, . . . } on

p2.

Figure 2.2 gives an example of two proposers executing Classic Paxos in serial. Firstly,

proposer p1 executes Classic Paxos and the proposal (0, A) is decided. Then proposer p2

executes Classic Paxos and the proposal (1, A) is decided. Both proposers are able to

complete Classic Paxos in two phases. This represents the best case scenario for Classic

Paxos.

the state list for each algorithm only includes new variables. The descriptions of variables such as vacc

can be found in Table 2.1.
13The term adopts is sometimes used in the literature instead of promised, for example in [VRA15]

CHAPTER 2. CONSENSUS & CLASSIC PAXOS 33

(0, A) decided

(1, A) decided

p1 a1 a2 a3 p2

e : 0, E : {2, . . . }

prepare(0)

epro:0

epro:0

epro:0

promise(0,nil,nil)

QP : {a1}

promise(0,nil,nil)

QP : {a1, a2}, v : A

propose(0,A)

eacc:0

vacc:A
eacc:0

vacc:A
eacc:0

vacc:A

accept(0)

QA : {a1}

accept(0)

QA : {a1, a2}
e : 1, E : {3, . . . }

prepare(1)

epro:1

epro:1

epro:1

promise(1,0,A)

QP : {a3}, emax : 0, v : A

promise(1,0,A)

QP : {a2, a3}

propose(1,A)

eacc:1

eacc:1

eacc:1

accept(1)

QA : {a3}

accept(1)

QA : {a2, a3}

Figure 2.2: Example run of Classic Paxos with two serial proposers. Proposer p1 executes

Classic Paxos followed by the proposer p2.

34 2.3. EXAMPLES

(2, B) decided

p1 a1 a2 a3 p2

epro:1

eacc:1

vacc:B

epro:1

eacc:1

vacc:B

epro:1

eacc:1

vacc:B

e : 0, E : {2, . . . }

prepare(0)

timeout

e : 2, E : {4, . . . }

prepare(2)

epro:2

epro:2

epro:2

promise(2,1,B)

QP : {a1}, emax : 1, v : B

promise(2,1,B)

QP : {a1, a2}

propose(2,B)

eacc:2

eacc:2

eacc:2

accept(2)

QA : {a1}

accept(2)

QA : {a1, a2}

Figure 2.3: Example run of Classic Paxos with two serial proposers. Proposer p2 has

finished executing Classic Paxos before proposer p1 begins.

CHAPTER 2. CONSENSUS & CLASSIC PAXOS 35

(1, B) decided

p1 a1 a2 a3 p2

epro:0

eacc:0

vacc:A

epro:0 epro:0

e : 1, E : {3, . . . }

prepare(1)

epro:1

epro:1

epro:1

promise(1,nil,nil)

QP : {a3}

promise(1,nil,nil)

QP : {a2, a3}

propose(1,B)

eacc:1

vacc:B

eacc:1

vacc:B

eacc:1

vacc:B

accept(1)

QP : {a3}

accept(1)

QP : {a2, a3}

Figure 2.4: Example run of Classic Paxos where proposer p1 stops during phase two prior

to reaching the commit point. Proposer p2 does not observe the proposal from p1.

Initially, in Figure 2.3, proposer p2 has executed Classic Paxos and the proposal (1, B) has

been decided and accepted by all acceptors. Subsequently the proposer p1 executes phase

one for epoch 0, however this phase is unsuccessful. The proposer p1 retries Classic Paxos

and the proposal (2, B) is decided. Unlike before, proposer p1 in this example required

three phases to learn the decided value.

Figures 2.4 and 2.5 illustrate two possible outcomes if a proposer (in this case p1) stops

after making a proposal (in this case (0, A)) but prior to reaching the commit point. In

Figure 2.4, proposer p2 does not observe the proposal (0, A) during its phase one thus the

proposal (1, B) is subsequently decided. In contrast, in Figure 2.5 the proposer p2 does

observe the proposal (0, A) during its phase one thus the proposal (1, A) is subsequently

decided.

The examples thus far have demonstrated proposers executing Classic Paxos in serial. In

Figure 2.6, we observe the worst case scenario of Classic Paxos when concurrent proposers

36 2.3. EXAMPLES

(1, A) decided

p1 a1 a2 a3 p2

epro:0

eacc:0

vacc:A

epro:0 epro:0

e : 1, E : {3, . . . }

prepare(1)

epro:1

epro:1

epro:1

promise(1,nil,nil)

QP : {a3}

promise(1,0,A)

QP : {a1, a3}, emax : 0, v : A

propose(1,A)

eacc:1

vacc:A

eacc:1

vacc:A

eacc:1

accept(1)

QP : {a3}

accept(1)

QP : {a2, a3}

Figure 2.5: Example run of Classic Paxos where proposer p1 stops during phase two prior

to reaching the commit point. Proposer p2 does observe the proposal from p1.

duel such that neither proposer is able to make progress. Proposer p1 executes phase one

for epoch 0 then proposer p2 executes phase one for epoch 1. Proposer p1 is unsuccessful

at phase two for proposal (0, A) thus executes phase one for epoch 2. Proposer p2 is

then unsuccessful at phase two for proposal (1, B). Though unlikely, this situation could

continue indefinitely. Note that this situation can still occur when both proposers are

proposing the same value or after a decision has been reached.

CHAPTER 2. CONSENSUS & CLASSIC PAXOS 37

p1 a1 a2 a3 p2

e : 0, E : {2, . . . }

prepare(0)

epro:0

epro:0

epro:0

promise(0,nil,nil)

QP : {a1}

promise(0,nil,nil)

QP : {a1, a2}
e : 1, E : {3, . . . }

prepare(1)

epro:1

epro:1

epro:1

promise(1,nil,nil)

QP : {a3}

promise(1,nil,nil)

QP : {a2, a3}

propose(0,A)

timeout

e : 2, E : {4, . . . }

prepare(2)

epro:2

epro:2

epro:2

promise(2,nil,nil)

QP : {a1}

promise(2,nil,nil)

QP : {a1, a2}
propose(1,B)

timeout

Figure 2.6: Example run of Classic Paxos with two concurrent proposers duelling.

38 2.4. PROPERTIES

2.4 Properties

Before we reason about the safety and liveness of Classic Paxos, we divide the algorithm

into a set of properties. These properties will identify how specific components of the

algorithm are utilised in subsequent proofs. In later chapters, we will modify the Classic

Paxos algorithm, using these properties we will be able to determine which proofs are still

valid and which need revising.

The key properties of the Classic Paxos proposer algorithm are as follows:

Property 1. Proposers use unique epochs for each proposal.

Property 2. Proposers only propose a value after receiving promises from bna/2c + 1

acceptors.

Property 3. Proposers only return a value after receiving accepts from bna/2c+ 1 accep-

tors.

Property 4. Proposers must choose a value to propose according to the value selection

rules. If no previously accepted proposals were returned with promises then any value can be

chosen. If one or more previously accepted proposals were returned then the value associated

with the highest epoch is chosen.

Property 5. Each epoch used by a proposer is greater than all previous epochs used by

the proposer.

The key properties of the acceptor algorithm are:

Property 6. For each prepare or propose message received by an acceptor, the message is

processed by the acceptor only if epoch received is greater than or equal to the last promised

epoch.

Property 7. For each prepare or propose message received, the acceptor’s last promised

epoch is set to the epoch received. This is after Property 6 has been satisfied.

Property 8. For each prepare message received, the acceptor replies with promise. This

is after Properties 6 & 7 have been satisfied.

Property 9. For each propose message received, the acceptor replies with accept after

updating its last accepted proposal. This is after Properties 6 & 7 have been satisfied.

Property 10. Last promised epoch and last accepted proposal are persistent and only

updated by Properties 7 & 9

In the following three sections (§2.5, §2.6 & §2.7), we prove that the Classic Paxos algorithm

satisfies the requirements of non-triviality, safety and progress and thus is a solution to

distributed consensus.

CHAPTER 2. CONSENSUS & CLASSIC PAXOS 39

2.5 Non-triviality

Firstly, for Classic Paxos to solve distributed consensus it must satisfy non-triviality. Let

Γ denote the set of candidate values proposed by proposers, thus non-triviality is specified

as follows:

Theorem 4 (Non-triviality of decided values). If the value v is decided then v ∈ Γ.

In Classic Paxos, for a value to be decided, it is necessary for the value to first be proposed.

Therefore a stronger version of theorem 4 is:

Theorem 5 (Non-triviality of proposed values). If the value v is proposed then v ∈ Γ.

Proof of theorem 5. Consider a proposer in phase two which proposes the value v with

epoch e. We will let V denote the set of values which have been proposed so far, thus

initially V = ∅.

We show by induction over the set of proposed values V that all proposed values are

candidate values, thus V ⊆ Γ

Base case (initial state): Initially, before any values are proposed, V = ∅ and ∅ ⊆ Γ.

Base case (the first proposal): Consider the first proposer to propose a value. We will

denote this value as v. The value v must have been chosen according to the algorithm’s

value selection rules. Since no values have yet been proposed, no proposals will be received

with the promises in the proposer’s phase one. The first proposer will therefore always

propose its own candidate value, v ∈ Γ thus V = v and V ⊆ Γ (Property 4).

Inductive case: We assume that V ⊆ Γ and that the next proposer proposes the value w.

We will show that w ∈ Γ thus V ⊆ Γ remains true.

The value w must have been chosen according to the algorithm’s value selection rules.

It is either the case that no proposals were received during the proposer’s phase one so

the proposer proposed its own candidate value, w ∈ Γ; or one (or more) proposals were

received with the promises in the proposer’s phase one. The proposer will therefore propose

the value w associated with highest epoch returned (Property 4). All proposals received

must have been first proposed by a proposer. Therefore V remains unchanged and V ⊆ Γ

remains true.

2.6 Safety

In order for the Classic Paxos algorithm to solve distributed consensus we must show

that all possible executions of the algorithm are safe. In other words, if a value has been

decided then no other value can also be decided. In this section, we will prove this property

40 2.6. SAFETY

of Classic Paxos, but first we begin by proving some simple properties of the algorithm,

which will be of use to us later on.

Lemma 6 (Monotonicity of promises). The last promised epoch stored by each acceptor

is monotonically increasing.

Proof of lemma 6. The last promised epoch is initially nil and can only be updated by

acceptors in response to receiving prepare or propose from proposers (Property 10). The

last promised epoch is only updated to the epoch received if the epoch received is greater

than or equal to last promised epoch (Properties 6 & 7).

Therefore the last promised epoch is strictly increasing.

Lemma 7 (Relation between acceptor epochs). The last promised epoch is always greater

than (or equivalent to) the last accepted epoch on each acceptor.

Proof of lemma 7. Whenever the last accepted proposal is updated, the last promised

epoch has always been updated to the same value (Properties 9 & 10). As a result, the last

accepted proposal is never updated to a value strictly greater than the last promised epoch.

Lemma 6 shows that the last promised epoch is monotonically increasing thus the last

promised epoch is never updated to a value less than the last accepted epoch. Therefore,

it is always the case that the last promised epoch ≥ last accepted epoch.

The proof of lemma 7 highlights the importance of ensuring the steps in the Classic Paxos

algorithm are executed in-order. If the last accepted proposal was written prior to writing

the last promised epoch then an acceptor failure between these two writes could violate

lemma 7.

Lemma 8 (General promise format). For all promises sent by acceptors of the form

promise(e,f,v), where f 6= nil then it is the case that e ≥ f .

Proof of lemma 8. An acceptor would send promise(e,f,v) in response to receiving pre-

pare(e) from a proposer (Property 8). Therefore e ≥ the last promised epoch when the

prepare message was received. From lemma 7 the last promised epoch ≥ the last accepted

epoch f . By transitivity on the ≥ relation, e ≥ f

One implication of lemma 8 is that acceptors may send promises of the form promise(e,e,v).

This might occur if an acceptor was to receive a proposer’s propose(e,v) before prepare(e)

due to out-of-order delivery. However, a promise of this form will never be used by a

proposer to complete phase one. This is because the proposer of e will have already

completed phase one since (e, v) had already been proposed.

Corollary 8.1 (Useful promise format). All promises that are used by proposers towards

a decision are either of the forms promise(e,nil,nil) (without a proposal) or promise(e,f,v)

where e > f (with a previous proposal).

CHAPTER 2. CONSENSUS & CLASSIC PAXOS 41

From this, we know that the greatest promise a proposer in e could receive is from the

predecessor epoch14. Therefore according to the value selection rules (Property 4):

Corollary 8.2 (Predecessor proposals). If a proposer in e receives promise(e,f,v) where

e = succ(f) during its phase one then the proposer will propose value v.

Lemma 9 (Value uniqueness). If the value v is proposed in epoch e then no other value

can also be proposed in e.

Proof of lemma 9. At most one proposer is able to use each epoch (Property 1). Each

proposer will decide a value to propose and send a propose message to the acceptors with

that value. A proposer will not use the same epoch twice. If a proposer fails during the

proposal and does not have knowledge of the value chosen then it will start again with a

new epoch.

As a consequence of lemma 9:

Corollary 9.1 (Value uniqueness in promises). For any two promises, promise(,f,v) and

promise(,g,w), if f = g then v = w.

As a result, we know that a proposer will not receive multiple proposals in its phase one

which have the same epoch but different values.

Lemma 10 (Message ordering). If a series of messages has been sent by an acceptor15,

then the message epochs are a partial ordering on the order in which the messages were

sent. This applies regardless of whether the messages are all promises, all accepts or a

combination of both.

Proof of lemma 10. Consider two messages which have been sent by a acceptor with epochs

e and f such that e < f . Assume that the message with epoch f was sent first.

When the acceptor sent the first messages, the last promised epoch, epro, will have been

set to f , regardless of whether the message was promise or accept (Property 7). Lemma 6

shows that the last promised epoch is monotonically increasing so henceforth epro ≥ f .

The second message has epoch e and is sent by the acceptor in response to a prepare

or propose request, provided that e ≥ epro (Properties 6,8 & 9). This requires e = f ,

contradicting the assumption that e < f . Therefore the message with epoch f must be

sent after the message with epoch e.

Lemma 11 (Quorum intersection). If a value v is decided in epoch e then at least one

acceptor which accepted proposal (e, v) will be required to promise in any future proposals

> e.
14Note that when e = min(E) no such predecessor exists.
15Whilst we do not prove it here, message ordering also applies to proposers.

42 2.6. SAFETY

Proof of lemma 11. Both phases of Classic Paxos require participants from a majority of

acceptors (Property 2). Any two majorities of acceptors will intersect, in other words they

will have at least one acceptor in common.

We can build upon lemma 11 to show the following:

Lemma 12 (Weakened safety of future proposals). If a value v is decided in epoch e and

value w is proposed in f where f > e then w must have been proposed in g where e ≤ g < f

Proof of lemma 12. Assume value v is decided in epoch e and value w is proposed in f

where f > e.

The proposer in f will have proposed w after completing phase one and choosing w as a

result of the value selection rules.

From lemma 11, at least one acceptor must have sent both accept(e,v) to the proposer in

e and promise(f, ,) to the proposer in f since e < f .

From lemma 10, we know that this acceptor sent accept(e,v) prior to sending promise(f, ,)

as e < f .

Before the acceptor sent accept(e,v), they will have set their last promised epoch (Property

7) and last accepted epoch to e and set the last accepted value to v (Property 9).

Since the last promised epoch was set to e and it is monotonically increasing (lemma 6),

then the acceptor could only have accepted proposals for ≥ e after sending accept(e,v).

Conversely, before sending promise(f, ,) the acceptor could only have accepted proposal

for ≤ f (from lemma 8). Therefore, the proposer will only have updated its last accepted

value for a proposal from e to f . Therefore the acceptor will have sent promise(f,g,x) where

e ≤ g < f and x is the value proposed in g.

According to the value selection rules (Property 4), the proposer in f will only not choose

proposal x if it also receives a proposal with a higher epoch which must also be < f so

either way w must have been proposed in g where e ≤ g < f

Using lemma 9 and considering the case that f = succ(e) in lemma 12 then g = e so it

follows that:

Corollary 12.1 (Base case for safety of future proposals). If the value v is decided in

epoch e and the value w is proposed succ(e) then v = w.

Definition 5. We say that an epoch e is limited to value v if e must decide on v if a

decision is reached.

Therefore, corollary 12.1 can also be stated as if v is decided in epoch e then succ(e) is

limited to v.

Corollary 12.1 can be extended as follows:

CHAPTER 2. CONSENSUS & CLASSIC PAXOS 43

Corollary 12.2 (Inductive case for safety of future proposals). If the value v is decided

in epoch e and the proposals from e (exclusive) to f (inclusive) are limited to the value v

then if value w is proposed in g such that g = succ(f) then v = w.

Theorem 13 (Safety of future proposals). If the value v is decided in epoch e and the

value w is proposed in epoch f such that e < f then v = w

Theorem 13 specifies that once a value is decided in epoch e then all subsequent epochs

> e which reach a decision, will decide upon the same value.

Proof of theorem 13. Assume the value v is decided in epoch e. We will prove this by

induction.

Firstly, we will demonstrate that no proposer will propose a different value using proposal

succ(e). We cannot know if a decision will be reached in epoch succ(e) but if one is reached,

it will always decide on v, the same value as e. In other words, the successor of proposal e

is limited to v.

(Base case) If the value w is proposed in epoch f such that f = succ(e) then v = w.

This was proven by corollary 12.1.

Next, we will demonstrate that the successor of a sequence of limited proposals following

a decided proposal is also limited to the same value.

(Inductive case) If the proposals from e to f are limited to the value v then if value w

is proposed in epoch g such that g = succ(f) then v = w.

This was proven by corollary 12.2.

By induction, we see that if the value v is decided in epoch e then all subsequent proposals

will be limited to value v. Therefore proving theorem 13 and thus theorem 14.

Proof of safety of Classic Paxos

Overall, to prove the safety of Paxos, we show the following:

Theorem 14 (Safety for Classic Paxos). If the value v is decided in epoch e and the value

w is decided in epoch f then v = w

This could also be stated as if a value v is decided then all epochs are limited to v.

Proof of theorem 14. Consider the case that e = f .

44 2.6. SAFETY

Lemma 9 shows that at most one value will be proposed with any given epoch. Since it

is necessary for a value to be proposed before it is decided, this means that at most one

value can be decided with any epoch too.

Consider the case that e 6= f .

Since there is a total ordering on epochs then either e < f or e > f . From the symmetry

of theorem 14, we can assume e < f and derive e > f by swapping e and f .

For a value to be decided, it must first be proposed, therefore a stronger theorem is theorem

13.

Now that we have proven the safety of the decided values, we will prove that only decided

values will be returned by the proposers.

Lemma 15 (Safety of learning). If the value v is returned by a proposer then v has been

decided.

Proof of Lemma 15. Consider a proposer p who has returned v.

Prior to returning v, p must have received accept(e) for some epoch e from a majority of

acceptors (Property 3).

We know accept(e) must have been sent in response to propose(e,v) from proposer p

(Property 1).

Therefore the majority of acceptors must have accepted the proposal (e, v) so by definition

the value v must have been decided (Property 9).

Result Properties: Other results:

Monotonicity of promises (6) 6, 7, 10

Relation between acceptor epochs (7) 8, 10 6

General promise format (8) 8 7

Value uniqueness (9) 1

Message ordering (10) 6, 7, 8, 9 6

Quorum intersection (11) 2

Weakened safety of future proposals (12) 4, 7, 9 11, 8, 10, 6

Base case for safety of future proposals (12.1) 9, 12

Inductive case for safety of future proposals (12.2) 9, 12

Safety of future proposals (13) 12.1, 12.2

Safety for Classic Paxos (14) 9, 13

Safety of learning (15) 1, 3, 9

Table 2.3: Use of algorithm properties to prove the safety of Classic Paxos

CHAPTER 2. CONSENSUS & CLASSIC PAXOS 45

Table 2.3 outlines how we divided up our proof of Safety for Classic Paxos (Theorem 14).

Our approach of using multiple layers of intermediate results will allow us to revise this

proof throughout this thesis, without reproducing the complete proof.

It is worthwhile noting that lemmas 6, 7, 8 and 10 are properties of the acceptor algorithm

for Classic Paxos. Their proofs do not rely upon any properties of the proposer algorithm

and thus these lemmas still hold if the proposers behave arbitrarily. Likewise lemmas 11

and 9 are properties of the proposer algorithm for Classic Paxos and do not reply upon

the acceptor algorithm.

2.7 Progress

The proof of safety for Classic Paxos does not depend on any liveness conditions such

as bounded message delay or execution time. In contrast, the proof of progress, the sub-

ject of this section, must depend upon some liveness conditions, as proved by the FLP

result [FLP85]. We will formulate progress as follows: from time 0 to Global Stabilisation

Time (GST), a system of participants have been executing Classic Paxos. No assumptions

regarding liveness are made during this time. The system may be in any reachable state

at GST.

From GST, the following liveness conditions must apply for a sufficient period:

• At least a majority of acceptors are live and reply to messages from proposers, if

specified by the algorithm, within the known upper bound δa
16.

• Exactly one (fixed) proposer is live and its relative clock is no faster than δd ahead

of global time. We assume that no messages from other proposers are delivered17.

• Messages between the proposer and majority of acceptors are delivered within the

known bound δm.

This model of initial asynchrony, eventually followed by synchrony is sometimes known as

partial synchrony [DLS88].

As expected, we require that a majority of acceptors are up and able to communicate as the

proposer will need to get majority agreement to complete the two phases of Classic Paxos.

We also need to require that exactly one proposer is executing the algorithm to prevent

proposers duelling indefinitely, as illustrated in Figure 2.6 (§2.3). The requirements for

bounded execution time, message delay and clock drift are to ensure that the acceptors will

have a chance to respond to messages from the proposer prior to the proposer restarting

the proposal.

16This need not be a fixed group, but we will assume it is to simplify our proof.
17This assumption is not necessary for guaranteeing progress but it does simplify our proof.

46 2.7. PROGRESS

Theorem 16. Provided the liveness conditions are satisfied, a proposer will eventually

terminate and return a value v.

Proof of Lemma 16. Consider a system which has reached GST. The proposer p may be

at any stage of the proposer algorithm.

Consider the case that p is at the start of the proposer algorithm.

The proposer p will generate an epoch e ∈ E and dispatch prepare(e) to all acceptors. It

follows from the liveness conditions that the majority of acceptors will receive prepare(e)

within δm. Likewise, if e is greater than or equal to an acceptor’s last promised proposal

number then it will promise within δa. Otherwise, the acceptor will not reply to the prepare

message. Any promises sent by acceptors will be received within δm.

If the proposer does not receive promises from a majority of acceptors after δa + 2δm + δd,

the proposer will abandon epoch e and restart the proposer algorithm. The proposer p will

generate a new epoch f where f > e (Property 5) and repeat phase one. As the acceptors

will not receive any messages from other proposers, the last promised proposal number

will not increase, except in response to p.

Eventually, the proposer p will have generated a sufficiently large epoch that the majority

of the acceptors will promise within δa + 2δm. The proposer will proceed to choosing a

value.

If no accepted proposals were returned by acceptors then the proposer is free to choose

its own value. Otherwise, the proposer must choose the value associated with the highest

epoch. Since the epochs are totally ordered and values are unique to epochs (Lemma 9.1)

then proposer will always be able to choose a value v.

The proposer then dispatches propose(e,v) to the acceptors and it is received within δm.

Since the acceptors will not have updated their last promised epoch (as there are no other

proposers) then the acceptors will accept the proposal. Since the proposer will receive

accepts from the majority of acceptors within δa + 2δm, the value v is returned.

Consider that case that p is elsewhere in the proposer algorithm.

If the proposer p is in phase one of the proposer algorithm then it will proceed as described

in the first case. If the proposer is in phase two of the proposer algorithm then it may

timeout if its epoch is less then the majority of acceptors. In this case, the proposer will

not receive accepts from the majority of acceptors before δa+2δm+δd, thus it will abandon

the proposal and restart the proposer algorithm, as described in the first case.

From Lemma 15, a weaker form of Lemma 16 is:

Corollary 16.1. Provided the liveness conditions are satisfied, a value v will eventually

be decided.

CHAPTER 2. CONSENSUS & CLASSIC PAXOS 47

Note how these liveness conditions differ from the liveness conditions for SAA (§5). SAA

requires that the single acceptor is up whereas Classic Paxos requires a majority of

acceptors to be up. Classic Paxos, however, requires exactly one proposer is up, whereas

SAA only requires that at least one proposer is up. Classic Paxos also requires bounds on

execution time (for acceptors only) and message delay, unlike SAA which only requires

eventual execution and message delivery.

This proof of progress requires that proposers know the bounds δa, δm and δd. If the proposer

does not wait long enough before retrying then the system may not make progress. If

the bound is unknown, this can be addressed using backoff timers as new epochs are

generated.

2.8 Summary

Single-valued distributed consensus is the problem of deciding a single value between a set

of participants. An algorithm is said to solve distributed consensus provided it guarantees

safety, so that decisions are final and progress, so that eventually a decision will be reached.

Algorithms operating in an asynchronous, unreliable distributed system cannot guarantee

progress without assumptions regarding the liveness and/or synchrony of the system.

SAA Classic Paxos

Number of acceptors 1 na

Conditions for progress:

Number of live proposers 1 or more exactly 1

Number of live acceptors All (1) bna/2c+ 1 or more

Synchrony no yes

Number of messages 2 2na + 2 or more

Number of round trips 1 2 or more

Number of persistent writes 1 3 or more

Table 2.4: Comparison between SAA & Classic Paxos

This chapter introduced two known distributed algorithms: the Single acceptor algorithm

(SAA) and Classic Paxos. Both algorithms guarantee safety and progress thus both solve

distributed consensus, however, their liveness conditions for progress differ. Both algorithms

divide participants in a system into proposers, which propose values to be decided and

acceptors, which choose and store values. SAA requires that the single acceptor and at

least one proposer are live. Classic Paxos requires that a strict majority of acceptors

and exactly one proposer is live and that these participants are operating synchronously.

Under these conditions, a proposer in SAA is guaranteed to terminate in one round trip to

the acceptor, whereas, a proposer in Classic Paxos is guaranteed to terminate in a finite

48 2.8. SUMMARY

number of steps, with a minimum of two round trips to a strict majority of acceptors.

These differences are summarised in Table 2.4.

Classic Paxos has been the subject of extensive study in recent decades and the next

chapter discusses the wide range of consensus algorithms within the Paxos family.

Chapter 3

Known revisions

Thus far, we have considered Classic Paxos as a single concrete algorithm to solve single

valued distributed consensus. Instead however, Paxos is a broad family of algorithms for

distributed consensus. In this systematisation of knowledge chapter, we survey some of

the most commonly used refinements to the Classic Paxos algorithm.

3.1 Negative responses (NACKs)

Classic Paxos as has been detailed so far, could be described as following the idea that “If

you can’t say something nice, don’t say nothing at all”1. More specifically, acceptors will

not reply to proposers whose epoch e is less than their last promised epoch epro. The result

is that proposers must wait for their prepare to timeout and retry with a new epoch.

This can be improved by adding negative responses, such as no-promise(e) and no-accept(e).

These negative responses would be sent by acceptors to proposers upon receipt of prepare

or propose messages where e < epro. When a proposer receives negative responses, it can

opt to restart the proposal with a higher epoch. Otherwise, the proposer can ignore the

negative responses and wait to see if they receive positive responses from a majority of

participants. If a proposer receives negative responses from a majority of acceptors, then

its proposal will not be successful and the proposer should restart the proposal. It is safe

for a proposer to abandon or restart a proposal at any stage, since this is functionally

equivalent to a proposer failing and restarting.

The acceptors can include additional information in the negative responses such as the

no-promise(e,f) and no-accept(e,f), where f is the acceptor’s last promised epoch or even

no-promise(e,f,g,v) and no-accept(e,f,g,v), where (g, v) is the acceptor’s last accepted

proposals2.

1Quote from Thumper in the Disney film Bambi.
2For example, in the Raft algorithm acceptors include their last promised epoch (referred to as cur-

49

50 3.1. NEGATIVE RESPONSES (NACKS)

Algorithm 5: Proposer algorithm for Classic Paxos with NACKs

1 v, emax ← nil

2 QP , QA ← ∅
3 e← min(E)

4 E ← E \ {e}
/* Start Phase 1 for epoch e */

5 send prepare(e) to acceptors

6 while |QP | < bna/2c+ 1 do

7 switch do

8 case promise(e,f,w) received from acceptor a

9 QP ← QP ∪ {a}
10 if f 6= nil ∧ (emax = nil ∨ f > emax) then

11 emax ← f , v ← w

12 case no-promise(e,f) received from acceptor

/* abandon e and restart with epoch > f */

13 E ← {n ∈ E|n > f}
14 goto line 1

15 if v = nil then

16 v ← γ

/* Start Phase 2 for proposal (e,v) */

17 send propose(e,v) to acceptors

18 while |QA| < bna/2c+ 1 do

19 switch do

20 case accept(e) received from acceptor a

21 QA ← QA ∪ {a}
22 case no-accept(e,f) received from acceptor

/* abandon e and restart with epoch > f */

23 E ← {n ∈ E|n > f}
24 goto line 1

25 return v

Algorithms 5 and 6 give an example of how this might work in practice. The lines in grey

are unchanged from the Classic Paxos proposer and acceptor algorithms. If the proposer

receives either no-promise(e,f) or no-accept(e,f) then it restarts the algorithm and skips

over all epochs ≤ f as these are unlikely to be successful (Algorithm 5, lines 12-14 &

22-24).

Figure 3.1 gives an example of Algorithms 5 & 6 in practice. In this scenario, initially

rent term) in negative responses to prepare and propose messages (referred to as AppendEntries and

RequestVote respectively) [OO14, Figure 2].

CHAPTER 3. KNOWN REVISIONS 51

Algorithm 6: Acceptor algorithm for Classic Paxos with NACKs

1 while true do

2 switch do

3 case prepare(e) received from proposer

4 if epro = nil ∨ e ≥ epro then

5 epro ← e

6 send promise(e,eacc,vacc) to proposer

7 else

/* e < epro so reply with NACK */

8 send no-promise(e,epro) to proposer

9 case propose(e,v) received from proposer

10 if epro = nil ∨ e ≥ epro then

11 epro ← e

12 vacc ← v, eacc ← e

13 send accept(e) to proposer

14 else

/* e < epro so reply with NACK */

15 send no-accept(e,epro) to proposer

proposal (5, B) has been accepted by all three acceptors (and thus has been decided). The

proposer p1 begins phase one by dispatching prepare(0) to all acceptors. In Classic Paxos,

this proposer would need to wait for a timeout and retry with proposal numbers 2, 4 and

6, thus requiring at least 4 round trip times. However, with NACKs the acceptor a1 can

notify the proposer that its last proposed proposal number is 5 and the proposer p1 thus

skips proposal numbers 2 and 4, allowing phase one to be completed in 2 round trips.

NACK’s have replaced timeouts as we assume that messages are eventually delivered. We

can therefore remove the synchrony assumptions from our progress proof. However, we

still require there to be exactly one proposer for guaranteed progress, which we will later

show can be implemented assuming synchrony (§3.4).

Note that these two optimisations of restarting a proposal and skipping over epochs are

distinct and could be used separately. For example, a proposer recovering after a long

failure could opt to skip over some epochs to increase its likelihood of completing the

proposer algorithm during its first try. It is also worthwhile noting that NACKs need not

include the proposer’s epoch nor do we need separate messages for each phase. In fact,

our existing accept message could be used for this purpose instead. We have chosen this

approach for consistency with the existing messages and to ensure each message serves a

single clearly defined purpose.

52 3.2. BYPASSING PHASE TWO

(6, B) decided

p1 a1 a2 a3 p2

epro:5

eacc:5

vacc:B

epro:5

eacc:5

vacc:B

epro:5

eacc:5

vacc:B

e : 0, E : {2, . . . }

prepare(0)

no-promise(0,5)

E : {6, 8, . . . }

e : 6, E : {8, . . . }

prepare(6)

epro:6

epro:6

epro:6

promise(6,5,B)

QP : {a1}, emax : 5, v : B

promise(6,5,B)

QP : {a1, a2}

propose(6,B)

eacc:6

eacc:6

eacc:6

accept(6)

QP : {a1}

accept(6)

QP : {a1, a2}

Figure 3.1: Classic Paxos with NACKs (Alg. 5,6)

3.2 Bypassing phase two

The proposer algorithm for Classic Paxos is doing more work then is strictly necessary to

meet the requirements of distributed consensus. In practice, if a proposer learns that a

value has already been decided, because a majority of acceptors return the same proposal

during phase one, then the proposer may skip phase two and return the value in the

proposal.

CHAPTER 3. KNOWN REVISIONS 53

p1 a1 a2 a3 p2

epro:0

eacc:0

vacc:A

epro:0

eacc:0

vacc:A

epro:0

eacc:0

vacc:A

e : 1, E : {3, . . . }

prepare(1)

epro:1

epro:1

epro:1

promise(1,0,A)

QP : {a3}, QV : {a3}, emax : 0, v : A

promise(1,0,A)

QP : {a2, a3}, QV : {a2, a3}

Figure 3.2: Classic Paxos with bypass (Alg. 4,7)

There are therefore three possible outcomes of the proposer’s phase one:

Decision not reached - No proposals were received with promises during phase one,

therefore no value has yet been decided. The proposer will propose its candidate

value in phase two.

Decision reached - All promises received in phase one agreed on a value. This value

has been decided and the proposer has learned the chosen value. No further action

is necessary.

Uncertainty - Some proposals were returned in phase one. The proposer is uncertain

if commit point has been reached. If reached, then the decided value is the value

returned with the highest epoch so the proposer therefore proposes this value.

Algorithm 7 gives a version of the proposer algorithm which bypasses phase two when it

learns that a decision has been reached. This is achieved by maintaining a set of acceptors,

QV , who have promised and returned the proposal (emax, v) with their promise (lines

3,12,15,16). Once phase one is completed, if QV includes the majority of acceptors then

phase two can be bypassed (lines 18-19). Note that the acceptor algorithm is unchanged.

Figure 3.2 demonstrates how our first Classic Paxos example (Figure 2.2) could be improved

using phase two bypass. Proposer p2 is able to skip over phase two as it learns that the

proposal (0, A) has already been decided since it has been accepted by a majority of

acceptors.

54 3.2. BYPASSING PHASE TWO

Algorithm 7: Proposer algorithm for Classic Paxos with phase two bypass
state :

• QV : set of acceptors who have promised with (emax, v)

1 v, emax ← nil

2 QP , QA ← ∅
3 QV ← ∅
4 e← min(E)

5 E ← E \ {e}
/* Start Phase 1 for epoch e */

6 send prepare(e) to acceptors

7 while |QP | < bna/2c+ 1 do

8 switch do

9 case promise(e,f,w) received from acceptor a

10 QP ← QP ∪ {a}
11 if f 6= nil then

12 if emax = nil ∨ f > emax then

13 QV ← {a}
14 emax ← f , v ← w

15 else if f = emax then

16 QV ← QV ∪ {a}
17 case timeout

18 goto line 1

19 if |QV | ≥ bna/2c+ 1 then

/* proposer has learned that (emax, v) is decided */

20 return v

21 else

22 if v = nil then

23 v ← γ

/* Start Phase 2 for proposal (e,v) */

24 send propose(e,v) to acceptors

25 while |QA| < bna/2c+ 1 do

26 switch do

27 case accept(e) received from acceptor a

28 QA ← QA ∪ {a}
29 case timeout

30 goto line 1

31 return v

CHAPTER 3. KNOWN REVISIONS 55

We can increase the likelihood of phase two bypass using the following techniques:

• If a proposer has received many of the same proposals in phase one but not quite

reached the bna/2c+ 1 copies needed to bypass phase two then it may opt to wait

for further promises before proceeding. The timeout would be required to limit this

wait to maintain progress guarantees.3

• A proposer can concurrently start phase two and continue waiting for promises in

phase one. If sufficient promises with the same proposal are received before phase

two is completed then the remainder of phase two can be bypassed.

• Instead of tracking whether the greatest proposal is returned by the majority, pro-

posers could track all proposals returned.

• Proposers could re-use promises from previous epochs when tracking the propos-

als returned for phase two bypass. This could involve storing previously received

proposals to persistent storage, however this is not necessary.

• Proposers could include proposals from NACKs, again regardless of epoch or message

name, when tracking the proposals returned for phase two bypass.

• Acceptors could store all accepted proposals instead of just the last accepted proposal.

Acceptors could then include all previously accepted proposals in promise messages

(and NACKs), providing proposers with additional information about the state of

the system4.

3.3 Termination

In Classic Paxos, even with bypassing phase two enabled, a proposer must communicate

with a majority of acceptors to learn the decided value. This means that the liveness condi-

tions for progress are necessary as well as sufficient for progress. In other words, regardless

of the state of the system, the majority of acceptors must be up and communicating for a

proposer to execute its algorithm and return a decided value.

We can improve this by adding an optional phase three to Classic Paxos in which the

acceptors learn the value has been decided. The acceptors can then notify future proposers

that the value has been decided, enabling the proposer to return a decided value without

waiting upon the majority of acceptors. Adding phase three to Classic Paxos serves

an important purpose that may not be immediately apparent, namely that the liveness

conditions are no longer necessary for progress. With this variant, Classic Paxos can make

progress provided either a majority of acceptors are up or at least one acceptor who has

3In the previous section on negative responses (§3.1), we saw that a proposer may opt to retry a

proposal early, prior to timing out. We now see that a proposer may opt to wait longer before proceeding

to phase two.
4Some papers such as [VRA15] described this approach as Paxos and describe storing only the last

accepted proposals as an optimisation.

56 3.3. TERMINATION

Algorithm 8: Proposer algorithm for Classic Paxos with termination

1 v, emax ← nil

2 QP , QA ← ∅
3 e← min(E)

4 E ← E \ {e}
/* Start Phase 1 for epoch e */

5 send prepare(e) to acceptors

6 while |QP | < bna/2c+ 1 do

7 switch do

8 case promise(e,f,w) received from acceptor a

9 QP ← QP ∪ {a}
10 if f 6= nil ∧ (emax = nil ∨ f > emax) then

11 emax ← f , v ← w

12 case decided(w) received from acceptor

/* skip the remainder of phase one & phase two */

13 v ← w

14 goto line 29

15 case timeout

16 goto line 1

17 if v = nil then

18 v ← γ

/* Start Phase 2 for proposal (e,v) */

19 send propose(e,v) to acceptors

20 while |QA| < bna/2c+ 1 do

21 switch do

22 case accept(e) received from acceptor a

23 QA ← QA ∪ {a}
24 case decided(w) received from acceptor

/* skip the remainder of phase two */

25 v ← w

26 goto line 29

27 case timeout

28 goto line 1

29 return v

30 /* Start of Phase 3 for decided value v */

31 send decided(v) to acceptors

CHAPTER 3. KNOWN REVISIONS 57

Algorithm 9: Acceptor algorithm for Classic Paxos with termination
state :

• vdec: decided value

1 while true do

2 switch do

3 case prepare(e) received from proposer

4 if vdec 6= nil then

/* notify proposer that decision has been reached */

5 send decided(vdec) to proposer

6 else if epro = nil ∨ e ≥ epro then

7 epro ← e

8 send promise(e,eacc,vacc) to proposer

9 case propose(e,v) received from proposer

10 if vdec 6= nil then

/* notify proposer that decision has been reached */

11 send decided(vdec) to proposer

12 else if epro = nil ∨ e ≥ epro then

13 epro ← e

14 vacc ← v, eacc ← e

15 send accept(e) to proposer

16 case decided(v) received from proposer

/* save decided value */

17 vdec ← v

been notified of decision is up. As a result, the proposer may return a decided value after

communicating with just one acceptor. Algorithms 8 and 9 provide an example of how

this could be implemented into Classic Paxos.

Algorithm 9 adds vdec, the decided value state to acceptors. In algorithm 8, once a proposer

learns that a value v is decided, it sends decided(v) to all acceptors5. Upon receipt of

decided(v), an acceptor can set the decided value vdec to v and henceforth reply to incoming

messages (regardless of message type or epoch) with decided(v). All other state on the

acceptor can now be safely discarded. This approach is taken by algorithms such as

Mencius [MJM08, §4.2].

Figure 3.3 demonstrates how this additional phase can allow future proposers (in this case

p2) to learn the decided value after communicating with just one acceptor a3. Figure 3.3

uses the same scenario as our first Classic Paxos example (Figure 2.2).

This approach requires the proposer to send the value, which could be large, to all acceptors,

5This message is sometimes called learn.

58 3.3. TERMINATION

(0, A) decided

p1 a1 a2 a3 p2

e : 0, E : {2, . . . }

prepare(0)

epro:0

epro:0

epro:0

promise(0,nil,nil)

QP : {a1}

promise(0,nil,nil)

QP : {a1, a2}, v : A

propose(0,A)

epro:0

vacc:A
epro:0

vacc:A
epro:0

vacc:A

accept(0)

QA : {a1}

accept(0)

QA : {a1, a2}

decided(A)

vdec:A

vdec:A

vdec:A

e : 1, E : {3, . . . }

prepare(1)

decided(A)

Figure 3.3: Classic Paxos with termination (Alg. 8,9)

despite the fact that at least a majority of the acceptors will already have a copy of value.

Alternatively, the proposer could send decided(e) where e is the epoch in which the value

v was decided. If an acceptor receives decided(e) and has accepted a proposal from e (or

a subsequent epoch) then the acceptor learns that the value in that proposal has been

decided. This follows from Value Uniqueness (Lemma 9) and the Safety of future proposals

(Theorem 13).

Alternatively, if a proposer learns that a decision has been reached but does not know

the decided value then it can learn the decided value by executing phase one of Classic

CHAPTER 3. KNOWN REVISIONS 59

Paxos. From the Safety of future proposals (Theorem 13), if a decision has been reached,

the value chosen by the value selection rules will be the decided value.

Most consensus algorithms utilise some form of termination. Mencius [MJM08] and Ring

Paxos [MPSP10, §4] use explicit phase three messages (called learn and decision respec-

tively). Whereas algorithms such as Raft and VRR [LC12, §4.1] use a commit index in

future messages instead of an explicit phase three to notify acceptors that a decision has

been reached. Once an acceptor learns that a proposal has been decided, it is safe for this

information to be shared with other participants including acceptors [MJM08, §4.5].

3.4 Distinguished proposer

In Figure 2.6 (§2.3), we observed the issue of duelling proposers where multiple proposers

conflict over the proposal to be decided. This problem of duelling proposers is why our

proof of progress (§2.7) assumed that exactly one proposer was executing Classic Paxos.

In practice, algorithms can minimise the likelihood of duelling proposers by designating one

proposer as the distinguished. By modifying the proposer algorithm of non-distinguished

proposer to forward candidate values to this proposer, the distinguished proposer becomes

a point of serialisation, minimising the chance of duelling6. This mechanism improves

reliability of performance by making it more likely that exactly one proposer is executing

Classic Paxos at a given time.

If the distinguished proposer appears to be slow or unresponsive, another proposer can

become a distinguished proposer and thus propose values directly. It is always safe for

there be to no distinguished proposer, multiple distinguished proposers or inconsistent

knowledge of the distinguished proposer7. However to guarantee progress, there should

be exactly one distinguished proposer at a given time and all proposers should be aware

of its identity. To satisfy this condition, we require reliable failure detection, which is

not possible in an asynchronous distributed system [FLP85]. Instead we can approximate

reliable failure detectors with heartbeats and timeouts, this does however require us to

strengthen the liveness conditions for progress to bound message delay, clock drift and

operating speed between proposers. The weakest liveness conditions for failure detection

are studied elsewhere in the literature [CHT96, MOZ05].

This optimisation, known as the distinguished proposer, is widely utilised [Lam01a, §2.4][LC12,

6In practice, candidate values often originate from external clients who can try to send values directly

to the distinguished proposer. Examples of algorithms which take this approach include VRR [LC12, §4]

and Raft [OO14, §8]. Alternatively, clients can broadcast values to all proposers, an approach taken by

Moderately Complex Paxos [VRA15, §2.1]
7In other words, choosing a distinguished proposer is not a leader election problem and does not itself

require distributed consensus

60 3.5. PHASE ORDERING

§4.2][OO14, §5.1][VRA15, §3][MPSP10, §3], usually in combination with Multi-Paxos (dis-

cussed in §3.6).

3.5 Phase ordering

During phase one of Classic Paxos, the proposer does not require knowledge of the value

γ which they will propose if possible, in phase two. It is therefore possible for a proposer

to execute phase one prior to knowledge of a value to propose. When the proposer then

learns the value to propose, it may now decide this value in one round trip instead of

two, provided no other proposer has also executed the proposer algorithm for a greater

epoch. We can increase the likelihood that this will occur by also making this proposer a

distinguished proposer.

This observation is widely utilised [Lam01a, §3][MPSP10, §4], usually in combination with

a distinguished proposer and Multi-Paxos (discussed in §3.6)

3.6 Multi-Paxos

Thus far, we have considered how to reach consensus over a single value. In practice,

these algorithms are usually utilised to reach consensus over an infinite sequence of values.

Broadly speaking, we can divide existing algorithms for consensus over a sequence into

two families:

Classic Paxos algorithms which are based upon executing multiple distinct instances

of single valued consensus. Examples include Classic Paxos, Mencius [MJM08] and

Fast Paxos [Lam05a]. These approaches are rarely used in production systems.

Multi-Paxos algorithms where one proposer takes the role of leader by executing

phase one over the sequence and then coordinates decisions until a new leader

takes over. This approach is widely utilised in production systems. Examples include

Chubby [Bur06, CGR07], Zookeeper [HKJR10, JRS11], Ring Paxos [MPSP10], View-

stamped Replication [OL88, LC12] and Raft [OO14].

Multi-Paxos is an optimisation of Classic Paxos for consensus over a sequence. Multi-Paxos

differs from successive instances of Classic Paxos in one key way. The phase one of Classic

Paxos is shared by all instances. Each acceptor needs only to store the last promised epoch

once. Prepare and promise messages are not instance-specific and therefore do not need

an index included in the phase one messages.

This is combined with distinguished proposer (§3.4) and phase ordering (§3.5) optimisations

as follows. Phase one is executed by a proposer prior to knowledge of the values to propose.

CHAPTER 3. KNOWN REVISIONS 61

Once phase one is completed, we will refer to this proposer as the Leader 8. The leader is the

distinguished proposer and thus is responsible for reaching decisions. If another proposer

suspects that the leader has failed, the proposer can take over as leader by executing phase

one, we refer to this process as leader election9 and thus become the next distinguished

proposer.

The key advantages of Multi-Paxos is that during steady state, each decision is reached

in one round trip to the majority of acceptors and one synchronous write to persistent

storage. The system is in steady state when exactly one of the proposers (the leader) is in

the replication phase and a majority of acceptors are up and responsive. A system should

be operating in this state most of the time.

Multi-Paxos places substantial load on the leader. In the steady state, this single proposer

is responsible for receiving candidate values, assigning values to indexes, proposing values

to acceptors, collecting accept messages, learning decided values and notifying participants

of decisions. For this reason, the leader is often the bottleneck in Multi-Paxos systems.

This unbalanced approach leads to high pressure on the leader and its network links, whilst

leaving the other participants and other areas of the network under-utilised. Furthermore,

whilst the system is now able to achieve consensus in one round trip instead of two, there is

also only one proposer who can achieve this. Candidate values must therefore be forwarded

to the leader (or clients redirected) which can add an additional round trip. These reasons

are the motivation for algorithms such as Mencius [MJM08, §3].

3.7 Roles

So far in this thesis, we have divided the responsibilities in Classic Paxos into two distinct

roles: acceptors and proposer10. This approach was adopted as it is widely used in the

academic literature, however this distinction is also quite arbitrary.

We could for example have only one role called replica which co-locates proposer and

acceptor into one participant. The replica would benefit from a reduction in the number of

acceptors it needs to communicate with by one and the proposer could use the acceptors

last promised epoch when generating the next epoch.

This approach is widely discussed in the academic literature and adopted in practice, exam-

ples include Simple Paxos [Lam01a, §3], Chubby [CGR07], Mencius [MJM08], VRR [LC12],

Raft [OO14] and Moderately Complex Paxos [VRA15, §4.4].

8The leader is also known in the literature as master, primary [LC12] or coordinator [MPSP10]. Non-

leader proposers are also known as backups [LC12] and followers [OO14, §5.1]. The term leader here

should not be confused with leaders, which is sometimes used as an alternative term for proposers, for

example by Renesse and Altinbuken [VRA15].
9This is referred to view change in Viewstamped Replication [OL88, LC12]

10Proposer can be subdivided into distinguished and non-distinguished or leaders and non-leaders

62 3.8. EPOCHS

Conversely, we could increase the number of roles, for example we could add a reader

role, a participant who asks acceptors for the last accepted proposal to try to determine if

the value has been decided and what that value is or a recovery proposer who acts like a

proposer except if no values are returned in phase one then they exit instead of returning

a value.

3.8 Epochs

Earlier we specified that epochs, E, are required to be an infinite totally ordered set

(Definition 2) and that each proposer should be given a disjoint subset of the epochs. Our

pseudocode remains general and does not specific how epoch such be generated. Many

different mechanisms could be utilised to allocate epochs.

The approach used in our examples is that epochs are natural numbers E = N0, which

have been divided round robin between the proposers.

Alternatively, epochs could be lexicographically ordered tuples of the form (sid, pid), where

sid is the proposal sequence number (persistent state) and pid is the unique proposer id

(config). The current sid must be written to persistent storage before use by the proposer

to ensure proposal uniqueness. Since sid is monotonically increasing, only the most recent

sid need be stored11.

Both these approaches require each proposal to begin with a synchronous write to persistent

storage. This can be avoided by instead using epochs of the form (sid, pid, vid), where sid

is the sequence number (volatile state), pid is the unique proposer id (config) and vid is

the proposer version number (persistent state). Proposers must increment vid each time

they restart to ensure uniqueness of epochs, without writing sid updates to persistent

storage.

Alternatively, we can avoid most synchronous writes by writing an upper bound on epoch

e to persistent storage and only updating it as needed12. Epochs could otherwise be of

the form (sid, pid), where sid is stored in volatile state but an upper bound is stored on

persistent state.

This approach of writing an upper bound on a epoch to persistent storage can also be

applied to the last promised epoch on acceptors. This removes the need for a synchronous

writing to persistent each time an acceptor promises.

In practice, the write to persistent storage does not need to be completed until the start

of phase two to maintain proposal uniqueness. As such, updating E and execution of

phase one can be completed concurrently, mitigating the latency of a synchronous write

to persistent storage.

11Note that with this scheme, pid and sid would replace E .
12This is equivalent to batch pre-executing the writes to persistent storage.

CHAPTER 3. KNOWN REVISIONS 63

Various mechanisms for allocating epochs are demonstrated by algorithms such as Sim-

ple Paxos [Lam01a, §2.5], Chubby [CGR07], VRR [LC12, §4] and Moderately Complex

Paxos [VRA15]

3.9 Phase one voting for epochs

It has long been known that Classic Paxos does not require that epochs are unique if

acceptors require that a proposer’s epochs be strictly greater than the last promised

proposal. This means that at most one proposer will reach phase two for a given epoch,

since reaching phase two requires a proposer to have already reached majority agreement

for phase one, thus guaranteeing uniqueness.

Algorithm 10: Acceptor algorithm for Classic Paxos with voting
state :

• plst: last proposer promised to, plst ∈ P (persistent)

1 while true do

2 switch do

3 case prepare(e) received from proposer p

4 if (epro = nil) ∨ (e > epro) ∨ (e = epro ∧ p = plst) then

5 epro ← e, plst ← p

6 send promise(e,eacc,vacc) to proposer

7 case propose(e,v) received from proposer

8 if epro = nil ∨ e ≥ epro then

9 epro ← e

10 vacc ← v, eacc ← e

11 send accept(e) to proposer

We can implement exclusive epochs by voting by adding the requirement to promises

that if the epoch from the prepare message e is equal to the last promised epoch epro

then the proposer p must be the same as the proposer who was previously promised plst.

This revised acceptor algorithm is show in Algorithm 10. The proposer algorithm remains

almost unchanged, except that proposers no longer need to be allocated a disjoint subset

of epochs, thus proposer can use any epoch E = E.

Figure 3.4 gives an example of Classic Paxos with voting. In contrast to our first Classic

Paxos example (Figure 2.2), proposer p2 initially uses proposal number 0 (instead of 1).

Proposer p2 times out as p1 has already completed phase one for proposal number 0. The

proposer p2 then tries proposal number 1 and proceeds as before.

Recall that in the proof of safety of Classic Paxos we used the following lemma:

64 3.9. PHASE ONE VOTING FOR EPOCHS

(0, A) decided

p1 a1 a2 a3 p2

e : 0, E : {1, . . . }

prepare(0)

epro:0

plst:p1
epro:0

plst:p1
epro:0

plst:p1

promise(0,nil,nil)

QP : {a1}

promise(0,nil,nil)

QP : {a1, a2}, v : A

propose(0,A)

epro:0

vacc:A
epro:0

vacc:A
epro:0

vacc:A

accept(0)

QA : {a1}

accept(0)

QA : {a1, a2} e : 0, E : {1, . . . }

prepare(0)

timeout

e : 1 E : {2, . . . }

prepare(1)

epro:1

plst:p2

epro:1

plst:p2

epro:1

plst:p2

promise(1,0,A)

Qp : {a3}, emax:0 v:A

promise(1,0,A)

Qp : {a2, a3}

Figure 3.4: Classic Paxos with voting (Alg. 3,10)

CHAPTER 3. KNOWN REVISIONS 65

Lemma 9 (Value uniqueness). If the value v is proposed in epoch e then no other value

can also be proposed in e.

We will now revise the proof of lemma 9 as follows.

Lemma 17. Each acceptor will promise to at most one proposer for each epoch e.

Proof of Lemma 17. Assume an acceptor has received prepare(e) and replied with promise(e,. . .).

The acceptor will have set its last promised epoch to e prior to sending the promise. Since

the last promised epoch is monotonically increasing (lemma 6), then the acceptor’s last

promised epoch will henceforth be ≥ e.

Assume the acceptor receives prepare(e) from another proposer. For the acceptor to promise

in e it must be have case that e > last promised epoch, yet last promised epoch is ≥ e

thus the acceptor cannot accept the promise.

Revised proof of lemma 9 using exclusive epochs by voting. It follows from Lemma 17 and

the phase one quorum intersection requirement that:

Corollary 17.1. At most one proposer will propose a value for a epoch.

From this it follows that since each proposer will propose only one value for a given epoch

then at most one value will be proposed for each epoch.

Voting is used to allocate epochs in consensus algorithms such as Raft [OO14, §5.1].

3.10 Proposal copying

The pre-allocation of epochs in Classic Paxos (or exclusive access to epochs by voting)

ensures that a unique proposer uses each epoch. It is important for safety (Lemma 9) to

ensure that at most one value is used with each epoch. However, there is no requirement

that only one proposer uses each epoch. Upon receipt of propose(e,v), an acceptor learns

two important facts. Firstly, that a proposer has successfully executed phase one with

epoch e and secondly, that the outcome of the value selection rules was that value v was

chosen to be associated with epoch e. Given this information, another proposer can not only

reuse the proposal mapping (e, v) but they can also skip phase one and proceed directly

to phase two by dispatching propose(e,v) to the acceptors. We refer to this technique as

proposal copying13. Below are two examples of how a proposer may learn (and therefore

copy) past proposals.

66 3.10. PROPOSAL COPYING

Algorithm 11: Proposer algorithm for Classic Paxos with proposal copying

1 v, emax ← nil

2 QP , QA ← ∅
3 e← min(E)

4 E ← E \ {e}
5 send prepare(e) to acceptors

6 while |QP | < bna/2c+ 1 do

7 switch do

8 case promise(e,f,w) received from acceptor a

9 QP ← QP ∪ {a}
10 if f 6= nil ∧ (emax = nil ∨ f > emax) then

11 emax ← f , v ← w

12 case no-promise(e,f,g,w) received from acceptor a

13 E ← {n ∈ E|n > f}
14 if (g, w) 6= nil ∧ f = g then

/* copy proposal (g, w) and skip rest of phase one */

15 e← g, v ← w, QA ← {a}
16 goto line 21

17 else

18 goto line 1

19 if v = nil then

20 v ← γ

21 send propose(e,v) to acceptors

22 while |QA| < bna/2c+ 1 do

23 switch do

24 case accept(e) or no-promise(, ,e,v) or no-accept(, ,e,v) received from

acceptor a

25 QA ← QA ∪ {a}
26 case no-accept(e,f,g,w) received from acceptor a

27 E ← {n ∈ E|n > f}
28 if (g, w) 6= nil ∧ f = g then

/* copy proposal (g, w) and restart phase two */

29 e← g, v ← w, QA ← {a}
30 goto line 21

31 else

32 goto line 1

33 return v

CHAPTER 3. KNOWN REVISIONS 67

Example: Efficient recovery from NACKs

Earlier (in §3.1) we learned that negative responses (NACKs) could be used to provide

proposers with additional information about the state of the acceptors. In Algorithm

5, the proposer restarted the proposer algorithm if a no-promise(e,f) or no-accept(e,f)

was received. We also discussed that the NACKs could also include the last accepted

proposal (g, w), for example no-promise(e,f,g,w) or no-accept(e,f,g,w), but at this time

this additional information was of no benefit.

Proposal copying allows proposers to utilise this information. If a negative response includes

a proposal (g, w) that is not nil, then the proposer has learned that epoch g maps to value

w. Instead of retrying the proposal from line 1, the proposer may jump to phase two of

the proposal (g, w). This is shown in lines 14-16 and 28-30 of algorithm 1114.

Furthermore, from negative responses to previous proposals which include the proposal

(e, v), the proposer learns that the proposal (e, v) has been accepted by the acceptor thus

this acceptor can count towards the phase two quorum (line 24, Algorithm 11).

Figure 3.5 shows a revised version of Figure 3.1 where proposer p1 copies the proposal

(5, B) and thus skips phase one of epoch 5. For simplicity, this scenario assumes that the

no-promise from acceptor a2 is lost or delayed. As usual the proposer sent their requests

to all acceptors, however in this case there is no need for proposer p1 to send propose(5,B)

to acceptor a1 as p1 already knows that a1 has accepted the proposal (5, B).

Example: Efficient recovery on co-located systems

Consider a system where proposers and acceptors are co-located on each participant and

phase three is used for termination. If a participant has accepted a proposal (e, v) but

not learned that a decision has been reached within a timeout, it could start a recovery

proposer. Using proposal copying, the participant can skip phase one and proceed to phase

two where it sends propose(e,v) to all other participants. Not only may the participant

decide the value in only a single phase (phase two) but also there will be no conflict

between the original proposer and the copying proposers.

In summary to copy the proposal (e, v), a participant first must learn that at some point

propose(e,v) had been dispatched. This means that the value v has been chosen to corre-

spond with the epoch e. In the next section, we explore what happens if instead values

are statically pre-allocated to epochs.

13This is a generalisation of phase two bypass (§3.2).
14Algorithm 11 also includes the requirement that f = g otherwise proposal copying is unlikely to be

successful.

68 3.11. GENERALISATION TO QUORUMS

p1 a1 a2 a3 p2

epro:5

eacc:5

vacc:B

epro:5

eacc:5

vacc:B

epro:5

eacc:5

vacc:B

e : 0, E : {2, . . . }

prepare(0)

no-promise(0,5,5,B)

e : 5, v : 5, E : {6, . . . }, QA : {a1}

propose(5,B)

accept(5)

accept(5)

QA : {a1, a2}

Figure 3.5: Classic Paxos with proposal copying from NACKs (Alg. 4,11)

3.11 Generalisation to quorums

Recall that we assume a finite set of acceptors A = {a1, a2, . . . , ana}, with |A| = na.

Definition 6. A quorum Q is defined as a non-empty subset of acceptors, Q ∈ P(A) \ ∅.

Definition 7. A quorum set Q is a non-empty set of quorums, Q ⊆ P(A) \ ∅.

Classic Paxos as described thus far uses strict majority quorums. Formally we define the

quorum set as follows:

Q = {Q ∈ P(A)| |Q| ≥ bna/2c+ 1}

Classic Paxos cannot make progress without majority participation, thus it is able to

handle up to a minority dna/2e − 1 of acceptors failing. This approach tightly couples the

total number of acceptors, the number of acceptors needed to participate in consensus and

the number of failures tolerated. Ideally, we would like to minimise the number of acceptors

in the system and the number required to participate in consensus, as the proposer must

wait upon the acceptors to reply and send more messages. Conversely, we would like to

CHAPTER 3. KNOWN REVISIONS 69

maximise the number of failures handled by the systems. When using majorities, to handle

f failures, the quorums must be of at least size f + 1 in a system of 2f + 1 acceptors. This

approach quickly limits the scalability and fault tolerance of a system.

The purpose of using strict majorities is to ensure that all quorums intersect, therefore it

has been noted elsewhere [Lam78a, §1.4][Lam01a, §2.2][Lam05a][JRS11, §2] that majorities

can be generalised to use any quorum system Q, provided that all quorums Q ∈ Q intersect.

Therefore, we revise our definition of decided as follows:

Definition 8. A proposal (e, v) is decided if the proposal (e, v) has been accepted by a

quorum of acceptors.

Formally, the quorum intersection requirement for Classic Paxos is specified as follows:

∀Q,Q′ ∈ Q : Q ∩Q′ 6= ∅ (3.1)

A generalised version of the proposer algorithm is given by Algorithm 12. The acceptor

algorithm remains unchanged.

Figure 3.6 gives an example of this generalisation in practice. In this scenario, the sys-

tem is comprised of 4 acceptors, A = {a1, a2, a3, a4} and the quorum system is Q =

{{a1, a2}, {a1, a3}, {a1, a4}, {a2, a3, a4}}. Compared to strict majority quorums, which would

require three acceptor to form a quorum, the proposer p1 in this example is able to complete

both phases using a quorum of only two acceptors, a1 and a2
15.

Strict majorities are just one example of a quorum set which satisfies Classic Paxos’s

quorum intersection requirement. There are many quorum sets that could be utilised with

Classic Paxos, offering different tradeoffs in sizes of quorums, number and diversity of

quorums, number of participants as well as number and types of failures tolerated. The

flexibility to choose a quorum set allows us to loosen the coupling between the number of

acceptors, the number of acceptors participating in each phase and the number of failures

tolerated. However, since all quorums are required to intersect, there remain fundamental

limitations on what can be achieved. For example, Classic Paxos cannot reach a decision

whilst any whole quorum has failed. As such, quorum systems other than strict majority

are rarely utilised in practice.

3.12 Miscellaneous

Other variants and optimisations include:

15Equally, acceptors a1 and a3 or acceptors a1 and a4 could have be used. Different quorums may be

used by each phase.

70 3.12. MISCELLANEOUS

(0, A) decided

p1 a1 a2 a3 a4 p2

e : 0, E : {2, . . . }

prepare(0)

epro:0

epro:0

epro:0

epro:0

promise(0,nil,nil)

QP : {a1}

promise(0,nil,nil)

QP : {a1, a2}, v : A

propose(0,A)

epro:0

vacc:A
epro:0

vacc:A
epro:0

vacc:A epro:0

vacc:A

accept(0)

QA : {a1}

accept(0)

QA : {a1, a2} e : 1, E : {3, . . . }

prepare(1)

epro:1

epro:1

epro:1

epro:1

promise(1,0,A)

QP : {a4} emax:0 v:A

promise(1,0,A)

QP : {a3, a4}

promise(1,0,A)

QP : {a2, a3, a4}

propose(1,A)

Figure 3.6: Classic Paxos with non-majority quorums (Alg. 4,12)

CHAPTER 3. KNOWN REVISIONS 71

Algorithm 12: Proposer algorithm for Classic Paxos with generalised quorums
state :

• Q: set of quorums (configured, persistent)

1 v, emax ← nil

2 QP , QA ← ∅
3 e← min(E)

4 E ← E \ {e}
/* Start Phase 1 for epoch e */

5 send prepare(e) to acceptors

6 while ∀Q ∈ Q : QP 6⊇ Q do

7 switch do

8 case promise(e,f,w) received from acceptor a

9 QP ← QP ∪ {a}
10 if emax = nil ∨ f > emax then

11 emax ← f , v ← w

12 case timeout

13 goto line 1

14 if v = nil then

15 v ← γ

/* Start Phase 2 for proposal (e,v) */

16 send propose(e,v) to acceptors

17 while ∀Q ∈ Q : QA 6⊇ Q do

18 switch do

19 case accept(e) received from acceptor a

20 QA ← QA ∪ {a}
21 case timeout

22 goto line 1

23 return v

Learning

When discussing Paxos, a third role, referred to as a learner, is often considered. The

learner is simply a participant wishing to learn the decided value. A learner is similar to a

proposer, in that they wish to learn. Unlike a proposer, they are passive and do not have

a value of their own to propose. Learners could be notified by either the proposers or the

acceptors, once they learn that a value has been decided and what the decided value is.

More options for learning are discussed elsewhere [Lam01a, §2.3]

72 3.12. MISCELLANEOUS

Messages

In this chapter so far, proposers in Classic Paxos sent their prepare and propose messages

to all na acceptors and waited for a majority to respond. If all acceptors are up then this

approach generates 2na messages per phase. This approach is taken by systems such as

Chubby [Bur06], VRR [LC12, §4.1], Raft [OO14] and Moderately Complex Paxos [VRA15].

Since proposers need only a majority of acceptors to respond, they can safely just send

messages to a majority of acceptors and send further messages only if needed, for example

if one or more acceptors do not reply. In the best case, when all acceptors are up, this

method generates 2(bna/2c+ 1) messages. If we wish to reduce the likelihood of needing

to send further messages, we can send more than a majority in the first place. This is the

approach taken in Ring Paxos [MPSP10, §4].

If we wish to minimise the number of messages further, we can have acceptors forward

messages in a chain or ring. In the best case, this approach reduces messages to bna/2c+2,

however latency increases from 2 hops to bna/2c+ 2 hops. This is similar to the approach

taken in phase two of Ring Paxos [MPSP10, §3].

Stricter epoch conditions

The Classic Paxos acceptor algorithm as described will promise/accept if a prepare/propose

message has an epoch e greater than or equal to the last promised epoch epro. Some

algorithms have stricter requirements such as [MPSP10, §4] which requires that e > epro

to promise and Moderately Complex Paxos [VRA15] which requires both that e > epro to

promise and e = epro to accept. These restrictions are always safe, as they are equivalent

to dropping a message but may effect the liveness conditions for progress.

Fail-stop model

We could avoid writing to persistent storage by not permitting participants to restart

after a failure. This would however mean that number of participants decreases over time

and the system would need reconfiguration to maintain its fault tolerance. This is the

approach taken by VRR [LC12, §4.3]. Alternatively, we could require that no more than

a majority of acceptors fail [MPSP10, §4.2].

Virtual sequences

When reaching consensus on a value as part of a sequence, it is useful to note that there

is not necessarily a 1-to-1 correspondence between the values in the sequence and indexes

used by the application. We can improve this by deciding at each index a sequence of values

instead of a single value. This batching of values into decisions reduces decision latency

CHAPTER 3. KNOWN REVISIONS 73

and need not be exposed externally as values can be re-assigned consequence (virtual)

indexes. Batching is used extensively in consensus, examples include Chubby [CGR07],

Mencius [MJM08], VRR [LC12, §6.2] and Raft [OO14]. This abstraction means that a

sequence of length zero is a nil value which can be decided. We see no-ops like this utilised

in various algorithms such as Simple Paxos [Lam01a, §3] and Mencius [MJM08].

Fast Paxos

Fast Paxos [Lam05a] is a variant of Classic Paxos whereby for a subset of epochs, if an

acceptor receives no proposals within its phase one (and thus could propose its own value)

then it can notify all other acceptors and any acceptor can propose their own value in phase

two directly, without executing phase one again. The literature refers to these epochs as

fast and all other epochs as classic. In addition to requiring that all quorums intersect, to

preserve safety, Fast Paxos requires that any two fast and a classic quorum must intersect.

Fast Paxos uses counting quorum of size kf for fast epochs and kc for classic epochs such

that16:

na < 2kc

2na < 2kf + kc

3.13 Summary

Classic Paxos has been the subject of extensive study and this chapter only begins to discuss

the wide range of consensus algorithms within the Classic Paxos family. All algorithms in

this family share three key characteristics: epochs, two phases and majority (or intersecting

quorum) agreement. Over the next three chapters, we will revise each of these aspects,

beginning with quorum intersection.

16These expressions are re-arranged from §3.4.1 of [Lam05a]

74 3.13. SUMMARY

Chapter 4

Quorum intersection revised

In this chapter, we prove that the usual description of Classic Paxos (as given in Chapter 2)

is more conservative than is necessary. More specifically, we will demonstrate that the

quorum intersection requirement for Classic Paxos, which requires all quorums to intersect

(formally stated by eq. 3.1 in §3.11), can be substantially weakened. This result has wide-

ranging implications, which will be explored throughout this thesis. In particular, we will

demonstrate that it provides much greater flexibility in how we reach distributed consensus.

This chapter progressively refines the quorum intersection requirements in two distinct

stages: revision A (§4.1) & revision B (§4.2). We begin with the Classic Paxos generalisation

to quorums (§3.11). Each stage generalises over the previous revision by further weakening

the quorum intersection requirements.

4.1 Quorum intersection across phases

We begin by differentiating between the quorums used by phase one of Classic Paxos,

which we will refer to as Q1 and the quorums for phase two, referred to as Q2. We could

use different quorum sets of each of the two phases of Classic Paxos.

As before, we begin by revising our definition of decided :

Definition 9. A proposal (e, v) is decided if the proposal (e, v) has been accepted by a

phase two quorum of acceptors.

Since Classic Paxos requires that all quorums intersect, regardless of the phase of the

algorithm, the quorum sets Q1,Q2 must satisfy all the following three intersection require-

ments:

∀Q,Q′ ∈ Q1 : Q ∩Q′ 6= ∅ (4.1)

∀Q,Q′ ∈ Q2 : Q ∩Q′ 6= ∅ (4.2)

∀Q1 ∈ Q1,∀Q2 ∈ Q2 : Q1 ∩Q2 6= ∅ (4.3)

75

76 4.1. QUORUM INTERSECTION ACROSS PHASES

Our first finding is that it is only necessary for phase one quorums (Q1) and phase two

quorums (Q2) to intersect. There is no need to require that phase one quorums intersect

with each other nor that phase two quorums intersect with each other. Since no intersection

is required within phases, quorums within each phase of Classic Paxos can be disjoint. We

will refer to this generalisation of Classic Paxos as Paxos revision A. In the literature, we

referred to this as Flexible Paxos (FPaxos).

Formally, the revision A quorum intersection requirement can be stated as:

∀Q1 ∈ Q1,∀Q2 ∈ Q2 : Q1 ∩Q2 6= ∅ (4.4)

4.1.1 Algorithm

Algorithm 13 gives the generalised pseudo-code for Classic Paxos. Only the proposer

algorithm is provided here as the acceptor algorithm is unchanged from Algorithm 4. We

could configure the algorithm with the quorums sets Q1 and Q2, or we can provide one of

the quorums sets and calculate the other as needed. The latter is the approach taken in

Algorithm 13.

4.1.2 Safety

We will now consider why it is safe to relax the quorum intersection requirement by

examining how the intersection of quorums was utilised in the earlier safety proof for

Classic Paxos (§2.6).

Recall the following properties (originally defined §2.4):

Property 2. Proposers only propose a value after receiving promises from bna/2c + 1

acceptors.

Property 3. Proposers only return a value after receiving accepts from bna/2c+ 1 accep-

tors.

We will now replace them with the following properties for Paxos revision A. All other

properties remain unchanged.

Property 11. Proposers only propose a value after receiving promises from a phase one

quorum of acceptors, Q ∈ Q1.

Property 12. Proposers only return a value after receiving accepts from a phase two

quorum of acceptors, Q ∈ Q2.

CHAPTER 4. QUORUM INTERSECTION REVISED 77

Algorithm 13: Proposer algorithm for Paxos revision A
state :

• Q2: set of quorums for phase two (configured, persistent)

1 v, emax ← nil

2 QP , QA ← ∅
3 e← min(E)

4 E ← E \ {e}
/* Start Phase 1 for epoch e */

5 send prepare(e) to acceptors

6 while ∃Q ∈ Q2 : QP ∩Q = ∅ do

7 switch do

8 case promise(e,f,w) received from acceptor a

9 QP ← QP ∩ {a}
10 if f 6= nil ∧ (emax = nil ∨ f > emax) then

11 emax ← f , v ← w

12 case timeout

13 goto line 1

14 if v = nil then

15 v ← γ

/* Start Phase 2 for proposal (e,v) */

16 send propose(e,v) to acceptors

17 while ∀Q ∈ Q2 : QA 6⊇ Q do

18 switch do

19 case accept(e) received from acceptor a

20 QA ← QA ∪ {a}
21 case timeout

22 goto line 1

23 return v

From Table 2.3, we learn revising our proof of Lemma 11 is sufficient to prove the safety

Paxos revisions A.

Recall Lemma 11 from our safety proof for Classic Paxos (§2.6):

Lemma 11 (Quorum intersection). If a value v is decided in epoch e then at least one

acceptor which accepted proposal (e, v) will be required to promise in any future proposals

> e.

Lemma 11 proved that at least one acceptor which accepted a decided proposal will be

required to promise in any subsequent proposals. This was trivially proven by Classic

Paxos’s requirement that a quorum of acceptors participate in each phase of the algorithm

78 4.2. QUORUM INTERSECTION ACROSS EPOCHS

and by the requirement that any two quorums will intersect. We can however also prove

lemma 11 using the weaker revision A quorum intersection from equation 4.4:

Revised proof of lemma 11. Assume the value v is decided in epoch e, thus some phase

two quorum of acceptors Q2 ∈ Q2 would have accepted the proposal (e, v).

Before a value is proposed in phase two, a phase one quorum Q1 ∈ Q1 of acceptors must

promise to the proposer (Property 11). From equation 4.4, these two quorums will always

intersect therefore the quorums will always have at least one acceptor in common.

The proof of lemma 11 was the only occasion that quorum intersection was utilised in the

proof of Classic Paxos. Therefore, we can substitute the above into the original proof of

Classic Paxos, for proof of safety for Paxos revision A. For the sake of brevity, we do not

reproduce the full proof here. The proof of non-triviality for Classic Paxos (§2.5) did not

utilise quorum intersection and therefore still applies for Paxos Revisions A.

4.1.3 Examples

Figures 4.1 and 4.2 illustrate two example executions of Paxos revision A. In both cases, the

system is comprised of four acceptors A = {a1, a2, a3, a4} and two proposers P = {p1, p2}.
The quorum system is as follows: Q1 = {{a1, a2}, {a3, a4}} and Q2 = {{a1, a3}, {a2, a4}}.
This quorum system has been chosen as it has the minimum intersection to satisfy the

revised quorum intersection requirements. For simplicity, the acceptors in this example

only send messages to one quorum for each phase instead of all possible quorums. Figure

4.1 shows the two proposers executing Paxos revision A in serial. Proposer p1 decides

the proposal (0, A) prior to proposer p2 starting the proposer algorithm. As expected, the

proposer p2 decides the proposal (1, A). Figure 4.2 shows the two proposers executing

Paxos revision A concurrently. Both proposers are able to complete phase one as the two

phase one quorums used are disjoint. However, only p2 is able to complete phase two due

to the intersection between p1’s phase two quorum and p2’s phase one quorum at acceptor

a3. Proposer p1 subsequently retries with epoch 2 and (2, B) is decided.

4.2 Quorum intersection across epochs

In the previous section, we differentiated between the quorums for each phase of Paxos.

We continue this refinement by differentiating between the quorums by their associated

epochs, e ∈ E as well as their phase. We use Qe
n to denote the quorum set for phase n

with epoch e. Thus far we have used the same quorum set regardless of the epoch. If we

used epoch specific quorums sets, we would require the following for each epoch e:

∀Q ∈ Qe
1,∀f ∈ E,∀Q′ ∈ Qf

2 : Q ∩Q′ 6= ∅ (4.5)

CHAPTER 4. QUORUM INTERSECTION REVISED 79

(0, A) decided

(1, A) decided

p1 a1 a2 a3 a4 p2

e : 0, E : {2, . . . }

prepare(0)

epro:0

epro:0promise(0,nil,nil)

QP : {a1}

promise(0,nil,nil)

QP : {a1, a2}, v : A

propose(0,A)

epro:0

vacc:A
epro:0

eacc:0

vacc:A

accept(0)

QA : {a1}

accept(0)

QA : {a1, a3} e : 1, E : {3, . . . }

prepare(1)

epro:1

epro:1

promise(1,nil,nil)

QP : {a4}

promise(1,0,A)

QP : {a3, a4} emax:0 v:A

propose(1,A)

epro:1

eacc:1

vacc:A

eacc:1

vacc:A

accept(1)

QA : {a4}

accept(1)

QA : {a2, a4}

Figure 4.1: Example run of Paxos revision A with disjoint quorums within each phase and

two serial proposers.

80 4.2. QUORUM INTERSECTION ACROSS EPOCHS

(1, B) decided

(2, B) decided

p1 a1 a2 a3 a4 p2

e : 0, E : {2, . . . }

prepare(0)

epro:0

epro:0promise(0,nil,nil)

QP : {a1}

promise(0,nil,nil)

QP : {a1, a2}

propose(0,A)

epro:0

vacc:A

accept(0)

QA : {a1}

e : 1, E : {3, . . . }

prepare(1)

epro:1

epro:1

promise(1,nil,nil)

QP : {a4}

promise(1,nil,nil)

QP : {a3, a4}

propose(1,B)

epro:1

eacc:1

vacc:B

eacc:1

vacc:B

accept(1)

QA : {a4}

accept(1)

QA : {a2, a4}
timeout

e : 2, E : {4, . . . }

prepare(2)

epro:2

epro:2promise(2,0,A)

QP : {a1}, emax:0 v:A

promise(2,1,B)

QP : {a1, a2}, emax:1 v:B

propose(2,B)

eacc:2

vacc:B

epro:2

eacc:2

vacc:B

accept(2)

QA : {a1}

accept(2)

QP : {a1, a3}

Figure 4.2: Example run of Paxos revision A with disjoint quorums within each phase and

two concurrent proposers.

CHAPTER 4. QUORUM INTERSECTION REVISED 81

As before, we begin by revising our definition of decided :

Definition 10. A proposal (e, v) is decided if the proposal (e, v) has been accepted by a

phase two quorum of acceptors for epoch e.

Our next result observes that we can further weaken the quorum intersection requirement.

We require only that a phase one quorum of the epoch e (Qe
1) intersects with the phase two

quorums (Qf
2) for all smaller epochs, {f ∈ E|f < e}1. There is no requirement that the

acceptors for the phase one and phase two quorums for a given epoch intersect. Likewise,

there is no requirement that a phase one quorum of the epoch must intersect with the

phase two quorums for all greater epochs.

This newly revised quorums intersection requirement, referred to as the revision B quorum

intersection requirement, can be specified as follows for each epoch e:

∀Q ∈ Qe
1,∀f ∈ E : f < e =⇒ ∀Q′ ∈ Qf

2 : Q ∩Q′ 6= ∅ (4.6)

4.2.1 Algorithm

Algorithm 14 gives the revised generalised pseudo-code for Classic Paxos. Only the proposer

algorithm is provided here as the acceptor algorithm is unchanged from Algorithm 4. Note

that it is now possible for a phase one quorum to be empty (as we will discuss later) thus

we can add the option to skip phase one in this case.

4.2.2 Safety

Similar to the case of revision A (Equation 4.4), the safety of this result is derived from

the observation that the proof of safety for Classic Paxos does not use the full strength of

the assumptions made regarding quorum intersection.

Recall the following properties (originally defined §2.4):

Property 2. Proposers only propose a value after receiving promises from bna/2c + 1

acceptors.

Property 3. Proposers only return a value after receiving accepts from bna/2c+ 1 accep-

tors.

As before, we begin by redefining Properties 2 & 3. All other properties remain unchanged.

1Or equivalently, that a phase two quorum of an epoch e intersects with the phase one quorums from

all greater epochs.

82 4.2. QUORUM INTERSECTION ACROSS EPOCHS

Algorithm 14: Proposer algorithm for Paxos revision B
state :

• Qe
2: for each e ∈ E, set of quorums for phase two (configured, persistent)

1 v, emax ← nil

2 QP , QA ← ∅
3 e← min(E)

4 E ← E \ {e}
/* Start Phase 1 for epoch e */

5 send prepare(e) to acceptors

6 while ∃z ∈ E : z < e ∧ ∃Q ∈ Qz
2 : QP ∩Q = ∅ do

7 switch do

8 case promise(e,f,w) received from acceptor a

9 QP ← QP ∩ {a}
10 if f 6= nil ∧ (emax = nil ∨ f > emax) then

11 emax ← f , v ← w

12 case timeout

13 goto line 1

14 if v = nil then

15 v ← γ

/* Start Phase 2 for proposal (e,v) */

16 send propose(e,v) to acceptors

17 while ∀Q ∈ Qe
2 : QA 6⊇ Q do

18 switch do

19 case accept(e) received from acceptor a

20 QA ← QA ∪ {a}
21 case timeout

22 goto line 1

23 return v

Property 13. Proposers only propose a value in epoch e after receiving promises from a

phase one quorum of acceptors for epoch e, Qe
1.

Property 14. Proposers only return a value after receiving accepts from a phase two

quorum of acceptors for epoch e, Qe
2.

Recall Lemma 11 from our safety proof for Classic Paxos (§2.6):

Lemma 11 (Quorum intersection). If a value v is decided in epoch e then at least one

acceptor which accepted proposal (e, v) will be required to promise in any future proposals

> e.

CHAPTER 4. QUORUM INTERSECTION REVISED 83

Similar to the safety proof of Paxos revision A (§4.1.2), we now provide a revised proof of

lemma 11 which can be substituted into the proof of Classic Paxos for a proof of safety

for Paxos revision B.

Revised proof of lemma 11. Assume the value v is decided in epoch e, thus some phase

two quorum of acceptors Q ∈ Qe
2 would have accepted the proposal (e, v).

Consider a proposal in epoch f where f > e. Before a value could be proposed in f , a

phase one quorum of acceptors for proposal in epoch f , Q′ ∈ Qf
1 must promise to the

proposer of f (Property 13). Since f > e, we can apply equation 4.6 to see that any two

quorums will intersect therefore the quorums will always have at least one acceptor in

common.

Revision A generalises over Classic Paxos by weakening the quorum intersection require-

ments depending on the algorithm phase the quorum is used with. In turn, Revision

B generalises over Revision A (and therefore Classic Paxos) by weakening the quorum

intersection requirements depending on the epoch and phase that the quorum is used with.

Like our proof of safety for Classic Paxos, Lamport’s original proof did not use the full

strength of the assumptions that were made, namely that all quorums will intersect. This

result does not dispute that Classic Paxos is a solution to distributed consensus but does

demonstrate that the algorithm is needlessly conservative in its approach. Classic Paxos is

a specific case of Paxos revision A and in turn of, Revision B, which adds the requirement

for quorum intersection within each phase and regardless of epoch.

4.2.3 Examples

A key implication of this result is that for the minimum epoch emin where emin = min(E),

there is no phase one quorum intersection requirement. The practical application of this

is that a proposer with epoch emin may skip phase one and proceed directly to proposing

their own value γ in phase two using propose(emin,γ). As epochs are unique to proposers,

only one proposer will be able to take advantage of this. Assuming this proposer is the

first to propose a value and no other proposers try to propose concurrently, this proposer

can decide a value in one round trip, as demonstrated in Figure 4.3. Figure 4.3 shows the

same example as Figure 2.2, however the proposer p1 is now able to skip phase one and

reach agreement in just one phase.

This result is functionally equivalent to starting a system in a state such that one proposer

has already executed phase one with all acceptors. This technique was utilised in the

Coordinated Paxos algorithm in Mencius [MJM08, §4.2]

Counterintuitively, it is now possible that the commit point may have already been reached

and that a proposer (with a lower epoch such as emin) does not see the chosen value during

84 4.2. QUORUM INTERSECTION ACROSS EPOCHS

(0, A) decided

(1, A) decided

p1 a1 a2 a3 p2

e : 0, E : {2, . . . }

propose(0,A)

epro:0

eacc:0

vacc:A
epro:0

eacc:0

vacc:A
epro:0

eacc:0

vacc:A

accept(0)

QA : {a1}

accept(0)

QA : {a1, a2} e : 1, E : {3, . . . }

prepare(1)

epro:1

epro:1

epro:1

promise(1,0,A)

QP : {a3}, emax:0 v:A

promise(1,0,A)

QP : {a2, a3}

propose(1,A)

eacc:1

eacc:1

eacc:1

accept(1)

QA : {a3}

accept(1)

QA : {a2, a3}

Figure 4.3: Example of a proposer successfully skipping phase one using the minimum

epoch.

its phase one. This proposer may then propose a value, different to the decided value during

its phase two. This situation does not cause a violation in safety since the proposer’s phase

two will be unsuccessful since the phase two quorum will intersect with the phase one of

the higher epoch. An example of this case is shown in Figure 4.4. Figure 4.4 shows the

same execution as Figure 2.3, however now the proposer p1 skips over the first phase one.

More generally, the implication of this result is that phase one quorums are required only

to intersect with the phase two quorums of previous epochs, instead of all phase two

quorums. One application of this result is that if we vary phase two quorums with epochs

CHAPTER 4. QUORUM INTERSECTION REVISED 85

(2, B) decided

p1 a1 a2 a3 p2

epro:1

eacc:1

vacc:B

epro:1

eacc:1

vacc:B

epro:1

eacc:1

vacc:B

e : 0, E : {2, . . . }

propose(0,A)

timeout

e : 2, E : {4, . . . }

prepare(2)

epro:2

epro:2

epro:2

promise(2,1,B)

QP : {a1}, emax:0 v:B

promise(2,1,B)

QP : {a1, a2}

propose(2,B)

eacc:2

eacc:2

eacc:2

accept(2)

QA : {a1}

accept(2)

QA : {a1, a2}

Figure 4.4: Example of a proposer proposing a value different to the decided value, after

the commit point has been reached.

then we can reduce the phase one quorum depending on the epoch.

4.3 Implications

Thus far we have weakened the quorum intersection requirement of Paxos and discussed

the implications for Classic Paxos, as described in Chapter 2. In this section, we will

explore the implication of our revised understanding of consensus on the known variants

of Paxos, as surveyed in Chapter 3.

86 4.3. IMPLICATIONS

4.3.1 Bypassing phase two

In section 3.2, we discuss how a Classic Paxos proposer can bypass phase two when a

majority of acceptors return the same proposal (e, v) with promises in phase one. This is

safe as (e, v) has already has been decided. The analogous optimisation is to return the

value v when a phase two quorum Qe
2 of acceptors return the proposal (e, v). This can

result in not only skipping phase two but also skipping the remainder of phase one, if a

Qe
2 of acceptors return the same proposal before a Qf

1 of acceptors return promises.

4.3.2 Co-location of proposers and acceptors

In section 3.7, we discuss the option of co-locating both a proposer and an acceptor in

each participant. We will now look at three algorithms which arise from combining this

co-location with our weakened quorum intersection requirements.

Example: All aboard Paxos

One interesting implication of revision A that if we are willing to require all participants

be up for guaranteed progress (and co-locate proposers and acceptors) then we can reach

consensus in only one round trip. This is achieved by requiring all acceptors to accept in

phase two. It is then sufficient under revision A for any acceptor to promise in phase one,

as the intersection between the phases is still guaranteed. By co-locating the acceptors

and proposers phase one can be completed locally without any communication with other

participants.

For example, in a system of 3 acceptors A = {a1, a2, a3}, the following are valid quorum

sets:

Q1 = {{a1}, {a2}, {a3}}
Q2 = {{a1, a2, a3}}

In contrast, under Classic Paxos we would still require intersecting quorums, such as

majorities, for phase one so there is no advantage (only disadvantage) to requiring all

acceptors to participate in phase two.

Thus far, we have utilised revision A to achieve one round trip consensus provided all

acceptors participated in phase two. The primary limitation of All aboard Paxos compared

to Classic Paxos is that all participants must be live to guarantee progress instead of just

a majority. We will now utilise revision B to overcome this limitation as follows. We will

require all acceptors to accept in phase two for the epochs 0 to some epoch k. We will

only require majorities to accept in phase two for all epochs from k+ 1. Any value greater

CHAPTER 4. QUORUM INTERSECTION REVISED 87

Phase one quorums, Qe
1 = Phase two quorums, Qe

2 =

e = 0 {{}} {{a1, a2, a3}}
e ∈ [1, k] {{a1}, {a2}, {a3}} {{a1, a2, a3}}
e = k + 1 {{a1}, {a2}, {a3}} {{a1, a2}, {a2, a3}, {a1, a3}}
e ∈ [k + 2,∞] {{a1, a2}, {a2, a3}, {a1, a3}} {{a1, a2}, {a2, a3}, {a1, a3}}

Table 4.1: Example quorums for All aboard Paxos with three acceptors U = {a1, a2, a3}.

than or equal to 1 can be chosen for k. An example set of phase two quorums is shown in

the third column of Table 4.1.

Without revision B, we would require majority quorums for all phase ones, regardless of

the epoch, to ensure quorum intersection across phases. However, using the weakened

quorum intersection requirements for revision B, we can reduce the phase one quorums.

As we have already discussed, there is no phase one quorum intersection requirement for

epoch 0. For proposals numbers 1 to k + 1, any acceptor is a valid phase one quorum.

For epochs k + 2 onward, any majority of acceptors is a valid phase one quorum. The

result is that proposers can fall back to Classic Paxos if they do not receive responses

from all acceptors. An example set of phase one quorums is shown in the second column

of Table 4.1.

A decision can be reached in one round trip if all acceptors are available (and provided

no proposer has tried to propose in epoch > k) or two round trips if only a majority of

acceptors are available.

Example: Singleton Paxos

Alternatively, we could instead require that all acceptors promise in phase one thus allowing

any acceptor to accept a value in phase two. For example, in a system of 3 acceptors

A = {a1, a2, a3}, the following are also valid quorum sets:

Q1 = {{a1, a2, a3}}
Q2 = {{a1}, {a2}, {a3}}

The phase two could also include a phase three to store the decided value, as described in

§3.3.

Example: Majority quorums for co-location

The idea of using different quorums for different epochs, as proposed in §4.2 may seen

unusual, however this is already common place. Consider a Classic Paxos system of 5 par-

ticipants U = {u1, u2, u3, u4, u5}, where each participant is both an acceptor and proposer.

88 4.3. IMPLICATIONS

Epochs are pre-allocated in a round robin fashion such that participant u1 may use epochs

E = {0, 5, 10, . . . }, participant u2 may use epoch E = {1, 6, 11, . . . } and so on. We assume

our system is using majority quorums, therefore regardless of phase or epoch, our quorums

are as follows:

Q = {{u1, u2, u3}, {u1, u2, u4}, {u1, u2, u5}, {u1, u3, u4}, {u1, u3, u5},
{u1, u4, u5}, {u2, u3, u4}, {u2, u3, u5}, {u2, u4, u5}, {u3, u4, u5}}

In practice, however each participant will include itself in its quorums. Therefore the phase

two quorums will be of the form:

Q0
2 = {{u1, u2, u3}, {u1, u2, u4}, {u1, u2, u5}, {u1, u3, u4}, {u1, u3, u5}, {u1, u4, u5}}

Q1
2 = {{u1,u2, u3}, {u1,u2, u4}, {u1,u2, u5}, {u2, u3, u4}, {u2, u3, u5}, {u2, u4, u5}}

The insight from revision B is that the phase one quorums need only intersect with the

phase two quorums of smaller epochs. We are therefore able to refine the first few phase

one quorums as follows:

Q0
1 = {{}}

Q1
1 = {{u1}, {u2, u3, u4}, {u2, u3, u5}, {u2, u4, u5}, {u3, u4, u5}}
Q2

1 = {{u1, u2}, {u1, u3, u4}, {u1, u3, u5}, {u1, u4, u5},
{u2, u3, u4}, {u2, u3, u5}, {u2, u4, u5}, {u3, u4, u5}}

We could generalise this example across any quorum system to say that the set of all

participants associated with previous epochs < e is a valid phase one quorum for epoch

e. In this specific example, the phase one quorums of the first three epochs have been

improved, however, this insight it not helpful for epochs > 3 since any set of 3 or more

participants is already a valid quorum. We address this in the next section.

4.3.3 Multi-Paxos

In Multi-Paxos (§3.6), the steady state of the algorithm is a proposer executing phase two

with a majority of acceptors. If we assume that failures occur rarely, then phase one of

Classic Paxos would be seldom executed compared to phase two. From Paxos revision A,

we learned that quorum intersection is required only between phase one and phase two

quorums. As a result, we can tradeoff between quorums sets for the phase one and phase

CHAPTER 4. QUORUM INTERSECTION REVISED 89

two. We can reduce the size (and/or increase the number) of phase two quorums at the

cost of increasing the size (and/or reducing the number) of phase one quorums.

Multi-Paxos with majority quorums tightly couples performance, system size and fault

tolerance. Systems may now choose the most suitable trade-offs for a given scenario.

This modification optimises for the steady-state performance, whilst increasing the cost of

recovering from failure. One exception to this rule is known as the even nodes optimisation.

When the number of acceptors, na is even then the quorum size for Multi-Paxos is na

2
+ 1

thus existing Multi-Paxos systems recommend against deploying on an even number of

acceptors. With Paxos revision A, we can reduce the phase two quorum to na

2
for even na,

making deployment on an even number of acceptors a viable option. This improvement

to the phase two quorum size has no penalties elsewhere thus is effectively free.

The leader learns that a decision has been successfully reached once it receives accepts

from a majority of acceptors. If we assume that propose messages are sent to all acceptors,

the latency is therefore bounded by the round trip time to the fastest majority of acceptors.

By reducing the size of the phase two quorum (and/or increasing the number of quorums),

this latency is reduced (or, in the worst case, latency is unchanged). Reducing the decision

latency thus increases the throughput which can be achieved under load2. Multi-Paxos

is already widely deployed in practice. As such this optimisation to Multi-Paxos, even if

marginal, can have wide-reaching impact with minimal implementation effort.

As previously discussed (§3.12), it is necessary only for the proposer to send propose

messages to a phase two quorum of acceptors, provided the proposer can retry with

another phase two quorum if an acceptor does not respond. This approach (almost) halves

the number of messages sent per decision during the steady state of Classic Paxos, thus

reducing the load on the leader and on the network. By having only the minimum number

of acceptors accept each value, the overall storage requirement is also reduced. However,

compared to sending propose messages to all acceptors, decision latency is increased both

with and without failures. By reducing the size of the phase two quorum (and/or increasing

the number of quorums), we can further reduce the number of messages and copies of

accepted value.

One approach would be to alternate between groups in a set of disjoint quorums. This

approach could vastly improve the throughput. This approach also reduces the space re-

quirements for storing the sequence and is similar to sharding the sequence. An alternative

approach would be to have a leader use a small fixed quorum of acceptors for the phase

two. The remaining acceptors would be standbys since they are only needed in the case

of failure.

2This is assuming the algorithm has some bound on the number of concurrent decisions and ignores

the effects of batching decisions.

90 4.4. SUMMARY

4.3.4 Voting for epochs

Previously, we discussed how Classic Paxos’s phase one can be used to ensure uniqueness of

epochs (§3.9). This observation can also apply to our revisions, provided phase one quorums

for a given epoch intersect. This requires us to add the following quorum intersection

requirement:

∀Q,Q′ ∈ Qe
1 : Q ∩Q′ 6= ∅ (4.7)

This mechanism allows any proposer to try to use any epoch, including emin. However,

this quorum intersection restriction means that we are no longer able to skip phase one

for emin.

4.4 Summary

Classic Paxos (§3.11) requires proposers to wait to complete phase one until they have

received a promise from every quorum, regardless of the phase or epoch. In this chapter,

we introduced revision A, proving that a proposer could complete phase one once it has

received a promise for every phase two quorum, regardless of the epoch. Subsequently, we

further weakened the Paxos intersection requirements in revision B, by proving that a

proposer using epoch e can complete phase one once it has received a promise from each

phase two quorum for epoch less than e.

Classic Paxos ∃Q ∈ Q : QP ∩Q = ∅
Revision A ∃Q ∈ Q2 : QP ∩Q = ∅
Revision B ∃f ∈ E : f < e ∧ ∃Q ∈ Qf

2 : QP ∩Q = ∅

Table 4.2: Alternative phase one while conditions

Table 4.2 summaries how the three stages of generalisation have weakened the quorum

intersection requirements. The expressions in Table 4.2 are alternative while conditions

for completion of phase one.

Chapter 5

Promises revised

Classic Paxos (Chapter 2) requires proposers to wait until they have received promises

from a majority of acceptors before proposing a value in phase two of the algorithm. In

the last chapter (Chapter 4), we refined this to require proposers to wait until they have

received promises from a phase two quorum of acceptors for each previous epoch before

proceeding. Classic Paxos, and our revisions thus far, all require a proposer to wait for

sufficient promises before proceeding, regardless of the content of the promises received1.

In this chapter, we will demonstrate that the information learned from the promises

received can be utilised to improve the flexibility of these algorithms. We will prove that

proposers can safely proceed to phase two early depending on the content of the promises

received in phase one.

5.1 Intuition

Paxos revision B requires that a proposer’s phase one quorum must intersect with all

possible phase two quorums for each previous epoch. This is because the proposer has

no knowledge of which phase two quorums were used by other proposers. Consider what

happens when a proposer receives promise(e,f,v) from an acceptor during phase one for

epoch e. This proposer has learned that if a decision was reached in epoch f then the value

chosen was v. This proposer need not wait for promises from all phase two quorums of f ,

Qf
2 , as they will not return a promise with same epoch but a different value (Corollary 9.1).

Moreover, now that the proposer knows that value v was proposed in epoch f then the

proposer does not need to intersect with phase two quorums associated with previous

epochs < f .

1The exception to this statement is bypassing phase two when a majority of proposers promise with

the same proposal (§3.2).

91

92 5.2. ALGORITHM

Specifically, if a proposer with epoch e learns the outcome of the value selection rule of

epoch f , then the quorum intersection requirement for Paxos revision B can be reduced

to:

∀Q ∈ Qe
1,∀g ∈ E : f < g < e =⇒ ∀Q′ ∈ Qg

2 : Q ∩Q′ 6= ∅ (5.1)

This is known as the revision C quorum intersection requirement.

Recall that the purpose of phase one in Paxos is twofold: Firstly, to learn if a value may

have already been decided and secondly, to prevent values from being decided between

this phase and the next. If a proposer in e receives promise(e,f,v) then it learns that all

epochs ≤ f are limited to value v. This is because the proposer of f must have received

promises from a quorum of acceptors in its phase one. The proposer of e can essentially

reuse the phase one that was successfully executed by the proposer in f as the outcome

of phase one in epoch f is known to be value v.

5.2 Algorithm

Algorithm 15 gives the revised proposer algorithm for Paxos revision C. In contrast to

the Paxos revision B (Algorithm 14), emax, the greatest epoch received with a promise is

used as an (exclusive) lower bound on the quorum intersection requirement for completing

phase one (line 6, Algorithm 15).

5.3 Safety

We will prove the safety of Paxos revision C using the same approach that we adopted for

our proof of safety for Classic Paxos (§2.6).

Recall the following property (originally defined §4.2.2):

Property 13. Proposers only propose a value in epoch e after receiving promises from a

phase one quorum of acceptors for epoch e, Qe
1.

We revised Property 13 as follows and all other properties remain unchanged.

Property 15. Proposers only propose a value in epoch e after receiving sufficient promises

from the acceptors. For each previous epoch f < e, this is satisfied by either promises from

at least one acceptor in each phase two quorum for f , Qf
2 or a promise from any acceptor

including a proposal from epoch f or a subsequent epoch (promise(e,g,) where g ≥ f).

Lemma 11 no longer holds. We begin by proving a weaker version of Lemma 11

CHAPTER 5. PROMISES REVISED 93

Algorithm 15: Proposer algorithm for Paxos revision C.

1 v, emax ← nil

2 QP , QA ← ∅
3 e← min(E)

4 E ← E \ {e}
/* Start Phase 1 for epoch e */

5 send prepare(e) to acceptors

6 while ∃z ∈ E,∃Q ∈ Qz
2 : (emax = nil ∨ emax < z) ∧ z < e ∧ (QP ∩Q = ∅) do

7 switch do

8 case promise(e,f,w) received from acceptor a

9 QP ← QP ∩ {a}
10 if f 6= nil ∧ (emax = nil ∨ f > emax) then

11 emax ← f , v ← w

12 case timeout

13 goto line 1

14 if v = nil then

15 v ← γ

/* Start Phase 2 for proposal (e,v) */

16 send propose(e,v) to acceptors

17 while ∀Q ∈ Qe
2 : QA 6⊇ Q do

18 switch do

19 case accept(e) received from acceptor a

20 QA ← QA ∪ {a}
21 case timeout

22 goto line 1

23 return v

Lemma 18 (Weakened quorum intersection for Paxos revision C). If a value v is decided

in epoch e then in all subsequent epochs either:

• at least one acceptor which accepted proposal (e, v) will promise, or

• an acceptor will promise with the proposal (e, v) or a proposal from a subsequent

epoch.

Proof of lemma 18. Assume the value v is decided in epoch e, thus some phase two quorum

of acceptors Q ∈ Qe
2 would have accepted the proposal (e, v).

Consider a proposal in epoch f where f > e. Before a value could be proposed in f , a

phase one quorum of acceptors for proposal in epoch f must promise to the proposer of f

(Property 15).

94 5.4. EXAMPLES

Thus we must provide a revised proof for Lemma 12 to verify the safety of Paxos revision

C.

Lemma 12 (Weakened safety of future proposals). If a value v is decided in epoch e and

value w is proposed in f where f > e then w must have been proposed in g where e ≤ g < f

Revised proof of lemma 12. Assume value v is decided in epoch e and value w is proposed

in f where f > e.

The proposer in f will have proposed w after completing phase one and choosing w as a

result of the value selection rules.

From theorem 18, we know that either at least one acceptor which accepted proposal (e, v)

will be required to promise in f or an acceptor will promise with a proposal from epoch e

or a subsequent epoch.

In either case, the acceptor will reply with promise(f,g,x) where e ≤ g < f and x is the

value proposed in g (Lemmas 6 & 10, Corollary 8.1).

According to the value selection rules (Property 4), the proposer of f must therefore

propose either the value x or another value y from the proposal (h, y) such that h > g.

Regardless of whether w = x or w = y, w must have been proposed in an epoch between

e (inclusive) and f (exclusive).

The proof of non-triviality for Classic Paxos (§2.5) still applies to Paxos revision C.

5.4 Examples

The implications of this result apply even when the quorum system used is agnostic to

the epoch. For example, we can extend the proposer algorithm for Classic Paxos to test

whether a promise message includes a proposal for the predecessor of the current epoch.

If this is the case, the proposer can proceed directly to phase two without waiting for a

phase one quorum. Table 5.1 shows how line 6 of Algorithm 15 can be simplified if phase

two quorums are epoch agnostic.

Revision A ∃Q ∈ Q2 : QP ∩Q = ∅
Revision B same as A and e 6= emin

Revision C same as B and e 6= succ(emax)

Table 5.1: Simplified while conditions for line 6, Algorithm 15.

Figure 5.1 shows a simple example of this using the same scenario as our first Classic Paxos

example (Figure 2.2). The proposer p2 proceeds to phase two of epoch 1 after receiving

a promise from one acceptor a3 since this promise included the proposal (0, A) from the

predecessor epoch.

CHAPTER 5. PROMISES REVISED 95

(1, A) decided

a1 a2 a3 p2

epro:0

eacc:0

vacc:A

epro:0

eacc:0

vacc:A

epro:0

eacc:0

vacc:A

e : 1, E : {3, . . . }

prepare(1)

epro:1 epro:1

epro:1

promise(1,0,A)

QP : {a3}, emax:0 v:A

propose(1,A)

eacc:1

eacc:1

eacc:1

accept(1)

QA : {a3}

accept(1)

QA : {a2, a3}

Figure 5.1: Example of a proposer completing phase one early after learning the previous

proposal.

Cont. example: Colocating proposers and acceptors

Recall our example of a system of 5 participants, each of which is both an acceptor and

proposer (§4.3.2). Paxos revision B allowed us to use the set of acceptors associated only

with all previous epochs as a phase one quorum. This is useful in reducing the size of

phase one quorums for the first few epochs but quickly becomes useless as the number of

previous quorums grows.

We can use Paxos revision C to address this. In our previous systems, consider participant

u4 executing phase one with epoch 3. u4 can proceed to phase two with less than three

promises in the following five scenarios:

• u4 receives promise(3,2,) from any participant. [1 promise]

• u4 receives promise(3,1,) from u3. [1 promise]

• u4 receives a promise from participant u3 and promise(3,1,) from any participant.

[2 promises]

• u4 receives a promise from participants u3 and promise(3,0,) from u2. [2 promises]

• u4 receives a promise from participants u2 and promise(3,0,) from u3. [2 promises]

96 5.5. SUMMARY

5.5 Summary

In this chapter, we prove that proposers may use the transitivity of quorum intersection to

re-use the intersection of previous epochs and thus complete phase one prior to satisfying

the usual quorum intersection requirement. If a proposer receives a promise with the

proposal (e, v) then the proposer no longer needs to intersect with the phase two quorums

from epoch up to and including e.

Chapter 6

Value selection revised

In Classic Paxos and our revisions, the value v proposed in phase two is the value associated

with the highest epoch, emax received from the acceptors. Initially, emax and v were set to

nil and they were updated each time a promise was received which included a proposal

with a higher epoch. Once phase one was completed, v was proposed provided it was not

nil, otherwise, the proposer’s candidate value was proposed. For now on, we refer to this

approach as classic value selection.

In this section, however, we generalise over the classic value selection rules, by exploiting

the additional insight that a proposer gains from each promise it receives. We refer to

our revised technique as Quorum-based value selection and it can give proposers more

flexibility when choosing a value to propose. We divide our discussion into two sections,

firstly we consider the simpler case of epoch agnostic quorums (§6.1) before generalising

to epoch dependent quorums (§6.1).

6.1 Epoch agnostic algorithm

Algorithm 16 shows an alternative version of Paxos revision A proposer algorithm (Algo-

rithm 13). The acceptor algorithm (Algorithm 4) is unchanged.

Unlike the original algorithm, our new algorithm tracks the promises received from each

acceptor in response to prepare(e) using R. R is a mapping from each acceptor a ∈ A to

either no, meaning that no promise has yet been received or to a proposal (f, w), meaning

that promise(e,f,w) has been received. Note that as per usual, (f, w) may be nil. Initially,

R is set to no for all acceptors (line 5, Algorithm 16) and is updated each time a promise

is received (line 10, Algorithm 16). Phase one is completed when the proposer has received

a promise from at least one acceptor in each phase two quorum (line 7, Algorithm 16).

After which possibleValues is passed the set of promises, R, and it returns the set of values

97

98 6.1. EPOCH AGNOSTIC ALGORITHM

Algorithm 16: Proposer algorithm for Revision A using possibleValues.
state :

• R: for each acceptor a ∈ A, either:

– no: no promise received yet from a

– (e, v): the proposal received with a promise from a, maybe nil

• Vdec: set of values which may have been decided

1 v ← nil

2 QA ← ∅
3 e← min(E)

4 E ← E \ {e}
5 ∀a ∈ A : R[a]← no

/* Start Phase 1 for epoch e */

6 send prepare(e) to acceptors

7 while ∃Q ∈ Q2,∀a ∈ Q : R[a] = no do

8 switch do

9 case promise(e,f,w) received from acceptor a

10 R[a]← (f, w)

11 case timeout

12 goto line 1

13 Vdec ← possibleValues(R)

14 if Vdec = ∅ then

15 v ← γ

16 else

17 v ← only(Vdec)

/* Start Phase 2 for proposal (e,v) */

18 send propose(e,v) to acceptors

19 while ∀Q ∈ Q2 : QA 6⊇ Q do

20 switch do

21 case accept(e) received from acceptor a

22 QA ← QA ∪ {a}
23 case timeout

24 goto line 1

25 return v

CHAPTER 6. VALUE SELECTION REVISED 99

which may have been decided, Vdec (line 13, Algorithm 16)1. If Vdec is empty, then no

decision has been reached and the candidate value is proposed (lines 14-15, Algorithm 16).

Otherwise, Vdec is a singleton and its only value is proposed (lines 16-17, Algorithm 16).

The function only returns the only member from a singleton set.

Classic value selection

Algorithm 17: Classic algorithm for possibleValues.

1 func possibleValues(R):

2 return {v ∈ V |∃f ∈ E : R[] = (f, v)

3 ∧(∀a ∈ A : R[a] = no ∨ ∃g ∈ E : R[a] = (g,) ∧ f ≥ g)}

Algorithm 17 demonstrates the expected implementation of possibleValues, which is equiv-

alent to Classic Paxos and our revisions. The algorithm returns either a set containing the

value associated with the greatest proposal or an empty set if all proposals were nil2.

Revised value selection

Algorithm 18 gives the Quorum-based implementation of possibleValues. This algorithm

is divided into two stages: firstly, it determines whether a decision may have been reached

by each quorum and stores the result in D (lines 2-9, Algorithm 18). Then it uses D to

determine whether an overall decision may have been reached (line 10, Algorithm 18).

This algorithm for calculating quorum decision (lines 2-9, Algorithm 18) is not simply

calculating the highest proposal in each quorum. Instead, it utilises the following two

results:

Lemma 19. If an acceptor a sends promise(f,e,w) where (e, w) = nil then no decision is

reached in epochs up to f (exclusive) by the quorums containing a

Lemma 19 is utilised by lines 3-4 (Algorithm 18) where a proposer sets the decision for a

quorum to no if any of its acceptors returned nil promises.

Lemma 20. If acceptors a1 and a2 send promise(g,e,w) and promise(g,f,x) (respectively)

where e < f and w 6= x then no decision is reached in epochs up to g (exclusive) by the

quorums containing a1.

1It is not necessary at this point to return a set as it will be either empty or a singleton but we will

utilise this later
2This algorithm cannot return a set of two or more values since the proposer must have received

multiple proposals with the same epoch but different values. We have already shown that this is not

possible (Corollary 9.1).

100 6.1. EPOCH AGNOSTIC ALGORITHM

Algorithm 18: Quorum-based algorithm for possibleValues.
state :

• D: for each quorum, Q, the outcome of previous proposals, either:

– no: no decisions have been reached in Q

– v: if decision(s) were reached in Q, value v was decided

1 func possibleValues(R):

2 foreach Q ∈ Q2 do

3 if ∃a ∈ Q : R[a] = nil then

/* if acceptor in quorum returns nil then no decision */

4 D[Q]← no

5 else if ∃a ∈ Q, ∃f, g ∈ E,∃w, x ∈ V :

6 R[a] = (f, w) ∧R[] = (g, x) ∧ g > f ∧ x 6= w then

/* if two acceptors return proposals with different

values then no decision for quorums containing the

acceptor with the lower proposal */

7 D[Q]← no

8 else

/* all proposals returned by quorum are for the same

value thus this value maybe decided */

9 D[Q]← only({w ∈ V |∃a ∈ Q : R[a] = (, w)})
10 return {w ∈ V |∃Q ∈ Q2 : D[Q] = w}

Lemma 20 is utilised by lines 5-7 (Algorithm 18) where a proposer sets the decision for a

quorum to no if any acceptor returned a proposal with a greater epoch and different value

to one returned by an acceptor within the quorum.

For a given quorum,Q, if neither of the previous cases (lines 3-7, Algorithm 18) are satisfied

then a decision may have been reached in Q. When this case is reached (lines 8-9), then

exactly one value has been returned with all the promises from acceptors in Q. We know

this because at least one acceptor in Q has promised3, all acceptors in Q which promised

returned a non-nil proposal and if two acceptors returned different values then this case

would not be reached.

If a value has been decided, then both implementations of possibleValues will return the

decided value. If no value has been proposed, both approaches will return an empty set.

If exactly one acceptor from each quorum promises then both approaches return same

results.

However, if more promises are received, the classic implementation of possibleValues may

return a value, where the quorum-based implementation may return an empty set. In other

3Since possibleValues is only called after at least one acceptor from each quorum has replied.

CHAPTER 6. VALUE SELECTION REVISED 101

words, the classic approach may propose a value that the quorum-based approach knows

to be undecided4. In this implementation, the proposer always proposes its candidate value

if no decisions had been reached. However, the proposer could safely propose any value

it has seen thus quorum-based value selection is a generalisation over the classic value

selection rules.

6.1.1 Safety

We will begin by proving the safety of our epoch agnostic, quorum-based value selection

algorithm. Recall that all our earlier proofs of safety depend upon Property 4:

Property 4. Proposers must choose a value to propose according to the value selection

rules. If no previously accepted proposals were returned with promises then any value can be

chosen. If one or more previously accepted proposals were returned then the value associated

with the highest epoch is chosen.

This property is implemented by our näıve implementation of possibleValues (Algorithm 17)

but not by our quorum-based implementation (Algorithm 18). For quorum-based Paxos,

we revise the value selection rule as follows. All other Paxos revision A properties still

hold.

Property 16. Proposers must choose a value to propose in epoch e according to the value

selection rules. If Vdec is an empty set then any value can be chosen. Otherwise if Vdec is

a singleton then its only value is chosen.

We begin be revising our proof of Corollary 12.1.

Corollary 12.1 (Base case for safety of future proposals). If the value v is decided in

epoch e and the value w is proposed succ(e) then v = w.

Revised proof of Corollary 12.1. Assume that (e, v) has been decided and (succ(e), w) has

been proposed.

Since (e, v) has been decided, there exists a quorum Q ∈ Q2 such that all acceptors have

accepted (e, v).

The value w which is proposed in succ(e) will have been chosen in one of two ways: either

Vdec was empty (and w was the proposer’s candidate value) or Vdec = {w} (Property 16).

The former case requires that D[Q] = no and the latter requires that either D[Q] = no

or D[Q] = w when the proposer of succ(e) finishes phase one. We will now consider each

case:

Consider the case that D[Q] = no.

4The converse is not true.

102 6.1. EPOCH AGNOSTIC ALGORITHM

There are two routes for setting D[Q] = no, firstly if any acceptor in Q returns a nil

proposal (Algorithm 18, lines 3-4) and secondly if a proposal for a greater epoch with

a different value is returned (Algorithm 18, lines 6-7). Since all acceptors in quorum Q

have accepted (e, v) prior to promising in succ(e) (Lemma 10) then none will return nil

proposals ruling out the former (Lemmas 6 & 7). From lemma 8.1, we know that epoch

e is the greatest epoch which will be returned in the proposals thus ruling out the latter.

Therefore D[Q] 6= no.

Consider the case that D[Q] = w.

This case requires that an acceptor in Q has accepted w in some epoch ≤ e (Lemma 8.1).

Since all accepters in Q have accepted (e, v) then v = w due to value uniqueness (Lemma 9)

and monotonicity of accepted epochs (Lemmas 6 & 7).

Next we revise our proof of Corollary 12.2.

Corollary 12.2 (Inductive case for safety of future proposals). If the value v is decided

in epoch e and the proposals from e (exclusive) to f (inclusive) are limited to the value v

then if value w is proposed in g such that g = succ(f) then v = w.

Revised proof of Corollary 12.2. Assume that (e, v) has been decided thus there exists

Q ∈ Q2 such that all acceptors have accepted (e, v). Assume that all proposals in epochs

from e to f (inclusive) are for v also.

Assume that (succ(f), w) has been proposed. The value w will have been chosen in one of

two ways: either Vdec was empty (and w was the proposer’s candidate value) or Vdec = {w}
(Property 16). The former case requires that D[Q] = no and the latter requires that either

D[Q] = no or D[Q] = w when the proposer of succ(f) finishes phase one. We will now

consider each case:

Consider the case that D[Q] = no.

There are two possibilities for setting D[Q] = no, firstly if any acceptor in Q returns a nil

proposal (Algorithm 18, lines 3-4) and secondly if a proposal for a greater epoch with a

different value is returned (Algorithm 18, lines 6-7).

All acceptors in quorum Q have accepted (e, v) prior to promising in succ(f) as succ(f) > e

(Lemma 10). Therefore none will return nil proposals, thus ruling out the former (Lemmas 6

& 7). From lemma 8.1, we know that epoch f is the greatest epoch which will be returned

in the proposals. Likewise, from the monotonicity of accepted proposals (Lemmas 6 & 7),

we know that acceptors in Q will return proposals from epochs ≥ e. Since the epochs e to

f are limited to value v then a different value cannot be returned, ruling out the latter.

Therefore D[Q] 6= no.

Consider the case that D[Q] = w.

CHAPTER 6. VALUE SELECTION REVISED 103

This case requires that an acceptor in Q has accepted value w in some epoch ≤ f

(Lemma 8.1). Since all acceptors in Q have accepted (e, v) from the monotonicity of

accepted proposals (Lemmas 6 & 7), we know that acceptors in Q will return proposals

from epochs ≥ e. Since the epochs e to f are limited to value v then proposals returned

by acceptors in Q must be for value v. Therefore v = w.

In this section, we have proven the safety of our new revision A algorithm using quorum-

based value selection (Algorithm 16). We could extend this algorithm to utilise the results

of revisions B and C by bypassing phase one when e = min(E) and finishing phase one if

a proposal with the predecessor of e is received.

Next, we will prove the correctness of the two results (Lemmas 19 & 20) utilised by

Quorum-based value selection (§3).

Lemma 19. If an acceptor a sends promise(f,e,w) where (e, w) = nil then no decision is

reached in epochs up to f (exclusive) by the quorums containing a

Proof of Lemma 19. Assume that an acceptor a sends promise(f,e,w) where (e, w) = nil.

Prior to sending promise(f,e,w), the acceptor a cannot have accepted any proposal for

epochs up to f since (e, w) = nil. As such no quorum containing a can have decided a

proposal with an epoch up to f .

Subsequently to sending promise(f,e,w), the acceptor a will not have accepted any proposal

for epoch up to f as its last promised epoch will always be f or greater. As such no quorum

containing a will have decided a proposal with epoch up to f .

Recall Theorem 13:

Theorem 13 (Safety of future proposals). If the value v is decided in epoch e and the

value w is proposed in epoch f such that e < f then v = w

For a proposal to be accepted it must have been proposed, therefore it follows that:

Corollary 20.1. If an acceptor a sends promise(f,e,w) where (e, w) 6= nil then if a

decision is reached in epochs ≤ e then value w is chosen.

Lemma 21. If two acceptors a1 and a2 send promise(g,e,w) and promise(g,f,x) (respec-

tively) where e < f and w 6= x then no decision is reached in epochs up to e (inclusive).

Proof of Lemma 21. Assume that acceptor a1 replies to prepare(g) with promise(g,e,w)

where (e, w) 6= nil. Likewise, assume that acceptor a2 replies to prepare(g) with promise(g,f,x)

where (f, x) 6= nil. Assume that e < f and w 6= x.

104 6.1. EPOCH AGNOSTIC ALGORITHM

From Corollary 20.1, if a value v is decided with epoch ≤ e then v = w. Likewise, if a

value v is decided with epoch ≤ f then v = x.

Since e < f , then if a value v is decided with epoch ≤ e then v = w and v = x. This is

only satisfied if w = x. Hence we have a contradiction.

Lemma 20. If acceptors a1 and a2 send promise(g,e,w) and promise(g,f,x) (respectively)

where e < f and w 6= x then no decision is reached in epochs up to g (exclusive) by the

quorums containing a1.

Proof of Lemma 20. Assume that acceptor a1 sends promise(g,e,w) and acceptor a2 sends

promise(g,f,x). Show that a decision (or decisions) could be reached in epoch up to g

(exclusive) by a quorum Q containing a1.

From Lemma 21, we know that no decision could be reached in epoch ≤ e. Since acceptor

a1 has sent promise(g,e,w) then it cannot accept proposals from e to g (exclusive) thus

no decision can be reached by quorum Q as a1 ∈ Q.

6.1.2 Progress

Our epoch agnostic, quorum-based value selection algorithm relies on the fact that a set

is a singleton, each time it uses the only function. This occurs in two places: line 17 of

Algorithm 16 and line 9 of Algorithm 18. If this is not the case, the proposer algorithm

will halt, reaching deadlock and violating our progress guarantees. In this section we will

prove that this cannot occur.

Lemma 22. A value is always returned by the assignment on line 9 of Algorithm 18.

Proof of Lemma 22. We require that the set passed to only must be a singleton. We will

prove this by contradiction by showing that neither an empty set or a set of cardinality

> 1 could be passed to only on line 9 of Algorithm 18.

Consider the case that for some quorum Q, {w ∈ V |∃a ∈ Q : R[a] = (, w)} = ∅.

This requires that for all acceptors in the quorum Q,R[a] = nil orR[a] = no. possibleValues

is only called after R[a] 6= no for least one acceptor from each quorum. The if-statement

on line 3 was false, thus for all acceptors in Q, R[a] 6= nil. Thus this case cannot occur.

Consider the case that for some quorum Q, |{w ∈ V |∃a ∈ Q : R[a] = (, w)}| > 1.

This requires that (at least) two acceptors in the same quorum return proposes for different

values. Since the if-statement on line 5 was false, these acceptors must have returned

proposals for the same epoch (due to the total ordering of epochs). This case cannot occur

due to value uniqueness (Corollary 9.1).

Lemma 23. A value is always returned by the assignment on line 17 of Algorithm 16.

CHAPTER 6. VALUE SELECTION REVISED 105

Proof of Lemma 23. We require that Vdec, the set passed to only on line 17 of Algorithm 16

must be a singleton. Since the if-statement on line 14 was false, Vdec 6= ∅. We must therefore

prove that |{w ∈ V |∃Q ∈ Q2 : D[Q] = w}| ≤ 1 (line 10, Algorithm 18).

Proof by contradiction. Assume that two (or more) quorums, Q and Q′, have different

values for D[Q]. This requires that two acceptors, one in Q and one in Q′, promised with

proposals for different values (line 9, Algorithm 18). If the epoch of these proposals are

different, then the quorum with lower epoch would have D[Q] = no. Therefore, we require

that the epochs of these proposals are the same, however, this cannot occur due to value

uniqueness (Corollary 9.1).

6.1.3 Examples

Consider the following example whereA = {a1, a2, a3, a4, a5} andQ2 = {{a1, a2, a3}, {a4, a5}}.
A proposer is in epoch 5 and receives the following promises (in order):

• promise(5,3,A) from a1, followed by

• promise(5,nil,nil) from a2, followed by

• promise(5,2,B) from a4

In Classic Paxos, the proposer must propose the value associated with the highest epoch,

in this case A. However, utilising quorum-based value selection a proposer can learn that

no decision has been reached in the epochs 0− 4 and thus the proposer is free to choose

any value for phase two. As a2 returned a nil proposal, the quorum {a1, a2, a3} cannot

reach a decision in epochs 0− 4. Likewise, since a1 returned the proposal (3, A) then the

proposer learns that (2, B) cannot have been decided thus the quorum {a4, a5} also cannot

reach a decision in epochs 0− 4.

Note that this generalisation is also useful when no promises include nil proposals. Consider

the case when the proposer instead receives the following promises (in order):

• promise(5,3,A) from a1, followed by

• promise(5,1,A) from a2, followed by

• promise(5,2,B) from a4.

As before, the usual Paxos algorithm would require the proposer to propose A, however,

with quorum-based value selection, the proposer is free to propose any value. This is

because the quorum {a1, a2, a3} cannot have reached a decision since the proposal (2, B)

means that the proposal (1, A) from a2 cannot have been decided. Likewise the quorum

{a4, a5} cannot have reached a decision due to the proposal (3, A).

106 6.2. EPOCH DEPENDENT ALGORITHM

6.2 Epoch dependent algorithm

Thus far we have introduced quorum-based value selection as an alternative to Paxos’s

classic value selection rule. Our algorithm for this utilises our earlier work on Paxos revision

A. However, we were only able to make limited use of revision B and C since the same

quorums are used for all epochs. In this section, we see how proposers can track promises

not only by quorum but also by epochs. This generalisation allows us to vary quorums

depending on the epoch.

Algorithm 19: Proposer algorithm for Revision B/C using possibleValues.

1 v ← nil

2 QA ← ∅
3 e← min(E)

4 E ← E \ {e}
5 ∀a ∈ A : R[a]← no

6 Vdec ← possibleValues(R,e)

/* Start Phase 1 for epoch e */

7 send prepare(e) to acceptors

8 while |Vdec| > 1 do

9 switch do

10 case promise(e,f,w) received from acceptor a

11 R[a]← (f, w)

12 Vdec ← possibleValues(R,e)

13 case timeout

14 goto line 1

15 if Vdec = ∅ then

16 v ← γ

17 else

18 v ← only(Vdec)

/* Start Phase 2 for proposal (e,v) */

19 send propose(e,v) to acceptors

20 while ∀Q ∈ Q2 : QA 6⊇ Q do

21 switch do

22 case accept(e) received from acceptor a

23 QA ← QA ∪ {a}
24 case timeout

25 goto line 1

26 return v

Algorithms 19 and 20 gives an implementation of quorum-based value selection for Paxos

CHAPTER 6. VALUE SELECTION REVISED 107

Algorithm 20: Quorum-based algorithm for possibleValues (Revision B/C).

state :

• D: for each quorum, Q, in each epoch, e, the outcome of previous proposals, either:

– no: no decision has been reached in Q during e

– v: if a decision was reached in Q during e, value v was decided

– nil: no information known on whether a decision was reached in Q during e

1 func possibleValues(R,e):

2 foreach f ∈ {f ∈ E|f < e} do

3 foreach Q ∈ Qf
2 do

4 if ∃a ∈ Q : R[a] = nil then

/* if an acceptor in the quorum returns nil then no

decision */

5 D[Q]← no

6 else if ∃a ∈ Q, ∃g ∈ E : g < f ∧R[a] = (g,) then

/* if an acceptor in the quorum returns lower

proposal then no decision */

7 D[Q]← no

8 else if ∃g, h ∈ E,∃w, x ∈ V : R[] = (g, w) ∧R[] = (h, x) ∧ f ≤
g ∧ f ≤ h ∧ w 6= x then

/* if two (or more) different proposals returned with

≥ f then no decisions */

9 D[Q]← no

10 else if ∃g ∈ E,∃w ∈ V : R[] = (g, w) ∧ f ≤ g then

/* if one (or more) same proposals returned with ≥ f

then quorum may decide its value */

11 D[Q]← w

12 else

13 D[Q]← nil

14 if ∃f ∈ E,∃Q ∈ Qf
2 : f < e ∧D[Q] = nil then

15 return V

16 else

17 return {v ∈ V |∃f ∈ E,∃Q ∈ Qf
2 : f < e ∧D[Q] = v}

108 6.2. EPOCH DEPENDENT ALGORITHM

revisions B and C.

6.2.1 Safety

In this section, we will prove the safety of our epoch dependent, quorum-based value

selection algorithm. As with our safety proof for the epoch agnostic algorithm (§6.1.1), we

will substitute Property 4 with Property 16.

Property 4. Proposers must choose a value to propose according to the value selection

rules. If no previously accepted proposals were returned with promises then any value can be

chosen. If one or more previously accepted proposals were returned then the value associated

with the highest epoch is chosen.

Property 16. Proposers must choose a value to propose in epoch e according to the value

selection rules. If Vdec is an empty set then any value can be chosen. Otherwise if Vdec is

a singleton then its only value is chosen.

We begin be revising our proof of Corollary 12.1.

Corollary 12.1 (Base case for safety of future proposals). If the value v is decided in

epoch e and the value w is proposed succ(e) then v = w.

Revised proof of Corollary 12.1. Assume that (e, v) has been decided and (succ(e), w) has

been proposed.

Since (e, v) has been decided there exists a quorum Q ∈ Qe
2 such that all acceptors have

accepted (e, v).

The value w which is proposed in succ(e) will have been chosen in one of two ways: either

Vdec was empty (and w was the proposer’s candidate value) or Vdec = {w} (Property 16).

Consider the case that Vdec = ∅.

This requires that for all quorums, for epochs less than succ(e), D[Q] = no, including

the quorum Q which accepted (e, v). Due to message ordering (Lemma 10) and the

monotonicity of promises (Lemmas 6 & 7), D[Q] will not be assigned by either lines 4-5

or 6-7. Due to value uniqueness (Lemma 9) and promise format (Lemma 8.1), D[Q] will

not be assigned by lines 8-9. Therefore, Vdec = ∅ cannot occur.

Consider the case that Vdec = {w}.

This requires that for all quorums, for epochs less than succ(e), either D[Q] = w or

D[Q] = no. We have already shown that for the quorum which accepted (e, v), D[Q] 6= no

thus D[Q] = w. Since e is the greatest epoch which will be returned with a promise

(Lemma 8.1) then w = v.

CHAPTER 6. VALUE SELECTION REVISED 109

Next we revise our proof of Corollary 12.2.

Corollary 12.2 (Inductive case for safety of future proposals). If the value v is decided

in epoch e and the proposals from e (exclusive) to f (inclusive) are limited to the value v

then if value w is proposed in g such that g = succ(f) then v = w.

Revised proof of Corollary 12.2. Assume that (e, v) has been decided thus there exists

Q ∈ Q2 such that all acceptors have accepted (e, v). Assume that all proposals in epochs

from e to f (inclusive) are for v also.

The value w which is proposed in succ(f) will have been chosen in one of two ways: either

Vdec was empty (and w was the proposer’s candidate value) or Vdec = {w} (Property 16).

Consider the case that Vdec = ∅.

This requires that for all quorums, for epochs less than succ(e), D[Q] = no, including

the quorum Q which accepted (e, v). Due to message ordering (Lemma 10) and the

monotonicity of promises (Lemmas 6 & 7), D[Q] will not be assigned to no by either lines

4-5 or 6-7.

Since f is the greatest epoch which will be returned with a promise (Lemma 8.1) and

all proposals for epochs e to f are for value v, D[Q] will not be assigned by lines 8-9.

Therefore, the case that Vdec = ∅ cannot occur.

Consider the case that Vdec = {w}.

This requires that for all quorums, for epochs less than succ(e), either D[Q] = w or

D[Q] = no. We have already shown that for the quorum Q which accepted (e, v),D[Q] 6= no

thus D[Q] = w. As before, f is the greatest epoch which will be returned with a promise

(Lemma 8.1). Therefore at least one acceptor in Q will have promised with the proposal

(h,w) for some h where e ≤ h ≤ f and some value w. As all proposals for epochs e to f

are for the value v then it must be case that v = w.

6.2.2 Progress

Unlike our epoch agnostic algorithm, in our new algorithm (Algorithm 19) the proposer

re-calculates Vdec after each promise is received. The proposer then uses the cardinality

of Vdec to determine when phase one is completed. In contrast to the algorithms thus far,

it is not clear that the algorithm will always make progress under the expected liveness

conditions. In this section, we therefore prove that the proposer’s phase one will terminate

once the quorum intersection requirements have been satisfied.

Lemma 24. If a proposer in epoch e has received sufficient promises to satisfy revision

C quorum intersection, then for all quorums of previous epochs D[Q] 6= nil.

110 6.2. EPOCH DEPENDENT ALGORITHM

Proof of lemma 24. Consider any epoch f where f < e and any one of its phase two

quorums Q where Q ∈ Qf
2 . Prove that D[Q] 6= nil. There are two mechanisms by which

the revision C quorum intersection requirement with Q may be satisfied.

Consider the case that an acceptor has promised in e with the proposal (g, w) for some

epoch g where g ≥ f and for some value w.

D[Q] will be set to either no or w, depending on whether additional proposals for epochs

≥ f and with different value have been received (Algorithm 20, lines 8-11).

Consider the case that an acceptor a ∈ Q has promised in e with the proposal (g, w) for

some epoch g and some value w.

Consider the case that (g, w) = nil.

D[Q] will be set to no (Algorithm 20, lines 4-5).

Consider the case that (g, w) 6= nil.

Due to the total ordering of epochs, either g < f or g ≥ f . If g < f then D[Q] will be set

to no (Algorithm 20, lines 6-7). Otherwise g ≥ f and we have another instance of our first

case.

Lemma 25. If a proposer in epoch e has received sufficient promises to satisfy revision

C quorum intersection, then Vdec is either an empty set or a singleton set.

Proof of lemma 25. Vdec is set to the output of possibleValues (Algorithms 19, line 12).

From lemma 24, we know that the if-statement on line 14 of Algorithm 20 will be false.

Thus, the output of possibleValues is determined by the return statement on line 17 of

Algorithm 20.

Proof by contradiction. Assume that there exist two quorums, from epochs f and g where

D[Q] has values, w and x such that w 6= x. From the total ordering of epochs, it must

either be the case that f = g, f > g or f < g.

Consider the case that f = g.

From value uniqueness (Lemma 9), we know that only one value can be proposed per

epoch thus w = x.

Consider the case that f > g.

For the quorum in epoch g, D[Q] will only be set to value x if there is no proposal with a

higher epoch and different value (Algorithm 20, lines 8-9). This cannot be true since we

have assumed that w 6= x.

The same applies to epoch f if f < g.

CHAPTER 6. VALUE SELECTION REVISED 111

6.3 Summary

Classic Paxos (and our revisions) require that, after receiving sufficient promises to satisfy

the quorum intersection requirement, the proposer proposes the value associated with the

greatest epoch received or its own candidate value if no such values are received.

We proved that by tracking the status of each quorum, proposers can utilise additional

promises to remove the requirement that a particular value is proposed in phase two. In

this case, the proposer may propose its own candidate value or any previously seen value.

Quorum-based value selection generalises over Classic Paxos’s value selection rules. The

original rules are a quick and safe approximation of the more complete quorum-based rules.

This relationship is analogous to that of Classic Paxos’s quorum intersection requirement

and Paxos version B requirement.

112 6.3. SUMMARY

Chapter 7

Epochs revised

In this chapter, we consider the alternatives to requiring pre-allocated unique epochs, as

specified in the earlier description of Classic Paxos (Chapter 2). Thus far, we have relied on

the fact that the proposers will not dispatch propose(e,v) for the same epoch e and different

values v. This could be achieved by a priori allocation of epochs between the proposers,

thus each proposer may use only a disjoint subset of epochs and requiring each proposer

to use each epoch only once. We have also shown that this can be achieved by voting

for epochs during phase one of the proposer algorithm (introduced in §3.9, generalised in

§4.3.4).

However, the need to allocate epochs to proposers limits what we can achieve with single-

valued consensus. In particular, it is desirable for any proposer to be able to decide a value

with only one round trip in the best case. Classic Paxos allows any proposer to decide a

value in two round trips, though one round trip can be executed prior to knowledge of the

value. Paxos revision B enabled the proposer which is able to use the minimum epoch to

skip phase one due to the lack of a phase one quorum intersection requirement. However,

at most one of the proposers is able to utilise this.

This chapter explores how to overcome this limitation by removing the requirement to

pre-allocate or vote for unique epochs, thus providing proposers with more flexibility over

the epochs they use. The three approaches discussed are:

• Using an allocator to dynamically allocate epochs (§7.1).

• Pre-allocation of epochs based on the value to be proposed in phase two (§7.2).

• Allowing different values to be proposed with the same epoch but requiring phase

two intersection and strengthened intersection requirements across phases (§7.3).

These approaches, in addition to the original techniques (unique epochs by pre-allocation

and voting) can be combined on a per-epoch basis to create a hybrid algorithm (§7.4). We

will now consider each approach in more detail.

113

114 7.1. EPOCHS FROM AN ALLOCATOR

7.1 Epochs from an allocator

Thus far we have assumed that the epochs, E, have been allocated a priori between

proposers. Instead, we could use an allocator to dynamically allocate epochs between

proposers. The allocator need be no more complex than a simple counter, starting at emin.

We replace the selection of the next epoch (Lines 3-4 in Algorithm 3) with a message

exchange with the allocator. The allocator must guarantee that each epoch is allocated at

most once1.

Algorithm 21: Allocator algorithm
state :

• sid: sequence number

• vid: service version number (persistent, initially 0)

1 sid ← 0, vid ← vid + 1

2 while true do

3 switch do

4 case generate-next() received from proposer

5 sid ← sid + 1

6 send allocate((vid,sid)) to proposer

Algorithm 21 gives a näıve algorithm to implement the allocator on a single participant.

Epochs are an ordered tuples of the form (vid, sid) such as:

E = {(1, 1), (1, 2), (1, 3), . . . , (2, 1), (2, 2), (2, 3), . . . }

The algorithm is effectively a simple counter, sid, with a version number, vid, to ensure

uniqueness of epochs assigned in the case of failure. The service version number, vid, is

stored in persistent storage and incremented on each restart. The sequence number, sid,

is stored in volatile storage and incremented on each allocation.2 Given that an allocator

will assign each epoch at most once and will assign epochs in increasing order, our safety

proofs still hold without revisions as all previous properties still hold.

We could extend this näıve approach to have proposers include their candidate value in

their request to the allocator. The allocator could store the epoch to value mapping. This

would enable the allocator to re-allocate epochs to other proposers on the condition that

they propose the same value as was originally assigned. This could allow for conflict-free

recovery for slow/failed proposers. In this case, emin would be the only epoch allocated

by the allocator. The allocator would equivalent to a single write-once register, which is

1Note that allocation need not be in-order nor does every epoch need to be allocated for safety. However,

similar to Classic Paxos, using epochs in-order does simplify our proof of progress.
2This algorithm implements unique epochs without synchronous writes to persistent storage for each

proposal, this technique was first described in §3.8.

CHAPTER 7. EPOCHS REVISED 115

initially set to nil3. This algorithm is the same as the acceptor algorithm for SAA (2.1.1).

As before, the safety proofs still hold as all previous properties still hold.

These two simple mechanisms, exclusive epochs from an allocator and a shared epoch

from an allocator, allows any proposer to be allocated the minimum epoch, enabling them

to bypass phase one. This does, however, require an extra phase to request and receive

an epoch. Furthermore, the liveness of the system now also depends on the availability

of the allocator, introducing a single point of failure, meaning the algorithms are of little

practical use. We will address this limitation later in §7.4.

7.2 Epochs by value mapping

The reason for requiring unique epochs is to ensure proposers cannot dispatch propose(e,v)

for the same epoch e and different values v. Another mechanism for achieving this is to

pre-allocate epochs to their associated value instead of to proposers. A proposer wishing

to propose a value v will use its first epoch. If the proposer is unable to choose its own

value after executing phase one, it will need to retry phase one with the epoch associated

with its expected value.

The advantages of this approach are that proposers do not need to store epochs in persistent

storage (as is the case for epochs by pre-allocation) or phase one quorum intersection (as

is the case for epochs by voting). The result of this is that any proposer who wishes to

propose the value corresponding with the minimum epoch emin may skip phase one.

However, phase one now requires knowledge of the value to be proposed. This also means

that the phase one cannot be pre-executed (as described in §3.5). As such more phases

may be needed in situations where the proposer changes the value they wish to propose

as an outcome of phase one. This approach does not satisfy the problem of distributed

consensus as it can only be applied to systems where the values which may be decided are

to be within a finite known set, we will address this limitation later in §7.44.

Example: Binary consensus algorithm

This approach is best illustrated by considering an algorithm to reach consensus over a

binary value, for example on whether a transaction should be committed (v = 1) or aborted

(v = 0). Algorithms 22 and 23 give example pseudocode for this. We will let odd epochs

correspond to v = 1 and even epochs correspond to v = 0. Since emin = 0, we can utilise

skipping phase one (from Paxos revision B) so an abort decision could be achieved in

3This statement assumes that the value is stored in persistent storage. Otherwise, the allocator would

need to allocate new epochs on recovery.
4Known infinite value sets can also be supported provided the epoch set is divisible into an infinite

number of infinite subsets.

116 7.2. EPOCHS BY VALUE MAPPING

Algorithm 22: Proposer algorithm for binary decision
state :

• γ: candidate value, 1 or 0

• e: current epoch (initially nil)

1 emax ← nil

2 QP , QA ← ∅
3 if e = nil then

4 if γ = 0 then

5 e ← 0, goto line 25

6 else

7 e ← 1

8 else

9 e ← e + 1

10 if e mod 2 6= γ then

11 e ← e + 1

/* Start of Phase 1 for proposal e */

12 send prepare(e) to acceptors

13 while ∃Q ∈ Q2 : QP ∩Q = ∅ ∧ emax 6= e− 1 do

14 switch do

15 case promise(e,f) received from a

16 QP ← QP ∪ {a}
17 if f 6= nil ∧ (emax = nil ∨ f > emax) then

18 emax ← f

19 case timeout

20 goto line 1

21 if emax 6= nil ∧ (emax mod 2 6= e mod 2) ∨ emax = nil ∧ (e mod 2 = γ) then

/* proposal value does not match epoch so try again */

22 emax ← nil

23 QP ← ∅
24 e ← e + 1, goto line 12

/* Start of Phase 2 for proposal (e) */

25 send propose(e) to acceptors

26 while ∀Q ∈ Q2 : QA 6⊇ Q do

27 switch do

28 case accept(e) received from a

29 QA ← QA ∪ {a}
30 case timeout

31 goto line 1

32 return e mod 2

CHAPTER 7. EPOCHS REVISED 117

(0, 0) decided

(2, 0) decided

p1 a1 a2 a3 p2

e : 0

propose(0)

epro:0

eacc:0

epro:0

eacc:0

epro:0

eacc:0

accept(0)

QA : {a3}

accept(0)

QA : {a2, a3}e : 1

prepare(1)

epro:1

epro:1

epro:1

promise(1,0)

QP : {a1}, emax:1

promise(1,0)

QP : {a1, a2}, e : 3

prepare(2)

epro:2

epro:2

epro:2

promise(2,0)

QP : {a1}, emax:1

promise(2,0)

QP : {a1, a2}

propose(2)

eacc:2

eacc:2

eacc:2

accept(2)

QA : {a1}

accept(2)

QA : {a1, a2}

Figure 7.1: Paxos for binary consensus (Alg. 23,22)

118 7.3. EPOCHS BY RECOVERY

Algorithm 23: Acceptor algorithm for binary decision

1 while true do

2 switch do

3 case prepare(e) received from proposer

4 if epro = nil ∨ e ≥ epro then

5 epro ← e

6 send promise(e,eacc) to proposer

7 case propose(e) received from proposer

8 if epro = nil ∨ e ≥ epro then

9 epro ← e

10 eacc ← e

11 send accept(e) to proposer

only one phase (phase one) by any proposer (Algorithm 22, lines 4-5). Likewise, we are

able to skip the remainder of phase one if a promise is received with a proposal from the

predecessor epoch (Algorithm 22, line 13). As the epochs directly correspond to values,

v = e mod 2, the proposed/accepted value can also be omitted. Figure 7.1 shows an

example of this in practice where proposer p1 wishes to commit and p2 wishes to abort.

7.3 Epochs by recovery

In this chapter so far, we have proposed various techniques to maintain value uniqueness

(lemma 9). In this section, however, we will consider how to remove the requirement that

values are unique to epochs. Our approach which we will refer to as epochs by recovery,

allows proposers to use any epoch by adding mechanisms to recover if multiple values are

proposed for the same epoch.

7.3.1 Intuition

We will now derive an algorithm with shared epochs by considering what will go wrong if

we were to simply permit epochs to be shared in Classic Paxos. To maintain generality,

we use Paxos revision B as our starting point5.

Problem 1: Firstly, it is possible that multiple values are committed by different proposers

with the same epoch, since each value can be accepted by non-intersecting phase two

quorums.

5Later, we will consider whether we can also apply revision C as it directly uses the value uniqueness

lemma.

CHAPTER 7. EPOCHS REVISED 119

Solution 1: Therefore, we require that the phase two quorums of a given epoch intersect,

stated as:

∀Q,Q′ ∈ Qe
2 : Q ∩Q′ 6= ∅ (7.1)

Problem 2: Secondly, a value which has already been accepted by a phase two quorum

can be overwritten by different values with the same epoch, violating protocol safety.

Solution 2: This can be addressed by adding a condition to phase two that a proposal

(e, v) is only accepted if either the new proposal epoch is higher than the previous one

e > eacc or the new proposal is the same as the previous one (e, v) = (eacc, vacc). In other

words, an acceptor cannot overwrite an accepted value with the same epoch.

Problem 3: Thirdly, the approach described thus far may reach a state from which it

is unable to make progress under the usual liveness conditions. We refer to this as value

collision.

Recall that the value selection rules of Paxos require that a proposer chooses the value

associated with the highest epoch received in phase one. In the example, the proposer

has received two promises in phase one of the algorithm, with the same epoch but two

different values. The proposer must choose which of the two values to propose in its phase

two. When choosing a value, a proposer must know for certain that no other value has

been decided. In this case, however, the proposer cannot know which order the prepare

messages were received by other acceptors, if they have been received at all. Therefore,

since the proposer cannot safely proceed through the algorithm, it cannot make progress.

Solution 3: This example demonstrates the case for strengthening the quorum intersection

requirements when using shared epochs. The previous quorum intersection requirement

4.6 is not necessarily sufficient to make progress as we have seen. The following intersection

rule, given in 7.2 is sufficient to always make progress. In Paxos revisions B, we required

that a phase one quorum intersects with any previous phase two quorums.

Now, we require that a phase one quorum intersects with the intersection of any phase two

quorums for a previous epoch. More formally, for each epoch e the following intersection

requirement is sufficient:

∀Q ∈ Qe
1,∀f ∈ E : f < e =⇒ ∀Q′, Q′′ ∈ Qf

2 : Q ∩Q′ ∩Q′′ 6= ∅ (7.2)

It is worthwhile noting that this quorum intersection rule is an upper bound on the phase

one quorum needed in the worst case scenario. The usual weaker requirement 4.6 may be

sufficient, depending upon the promises received. As with 4.6, the result of this requirement

is that for epoch emin, the minimum epoch, there is no phase one quorum intersection

requirement. The result is that any proposer may skip phase one for emin.

120 7.3. EPOCHS BY RECOVERY

7.3.2 Algorithm

Algorithm 24: Acceptor algorithm for epochs by recovery.

1 while true do

2 switch do

3 case prepare(e) received from proposer

4 if epro = nil ∨ e ≥ epro then

5 epro ← e

6 send promise(e,eacc,vacc) to proposer

7 case propose(e,v) received from proposer

8 if epro = nil ∨ e ≥ epro ∧(e 6= eacc ∨ v = vacc) then

9 epro ← e

10 vacc ← v, eacc ← e

11 send accept(e,v) to proposer

Algorithm 24 outlines an acceptor algorithm for epochs by recovery. The only two differ-

ences between this and the Classic Paxos acceptor algorithm are that accept messages

now include the value (line 11) and an extra condition on accepting proposals (line 8).

Specifically, acceptors do not overwrite accepted proposals with proposals of the same

epoch but a different value. This is implemented on line 8 whereupon receiving a propose,

the acceptor must check that they have not already accepted a proposal with this number

but a different value.

Algorithm 25 outlines a phase one for the proposer algorithm for Revision A with epochs

allocated by recovery6. We have switched to epoch agnostic, quorum-based value selection

(§6.1) as this approach is better suited to efficiently expressing epochs by recovery.

There are three key differences between this algorithm and Revision A with quorum-based

value selection (Algorithm 16)7.

Firstly, as proposers are no longer required to choose from disjoint sets of epochs and track

which have been used, E has been removed. Instead, epoch e is initially set to nil and is

incremented before each use (line 4-7, Algorithm 25)89.

Secondly, our implementation of possibleValues (Algorithm 26) includes an extra case to

6For simplicity, we are not varying quorums depending upon epoch thus Revisions B and C do not

apply.
7Whilst not explicitly represented in the pseudocode, this algorithm also requires that phase two

quorums of a given epoch must intersect.
8In contrast to our previous algorithms which were general to any epoch set E, it is now the case that

E = N0. This approach has been chosen for simplicity however the algorithms could easily be generalised

to any epoch set E.
9The current epoch e does not need to be in persistent storage for correctness, however, it would help

proposers recovery quickly after failure.

CHAPTER 7. EPOCHS REVISED 121

Algorithm 25: Proposer algorithm for Revision A with epochs by recovery.
state :

• e: current epoch (persistent, initially nil)

1 v ← nil

2 QA ← ∅
3 Vdec ← ∅
4 if e = nil then

5 e ← 0, v ← γ, goto line 21

6 else

7 e ← e + 1

8 ∀a ∈ A : R[a]← no

/* Start Phase 1 for epoch e */

9 send prepare(e) to acceptors

10 while (∃Q ∈ Q2,∀a ∈ Q : R[a] = no) ∨ |Vdec| > 1 do

11 switch do

12 case promise(e,f,w) received from acceptor a

13 R[a]← (f, w)

14 Vdec ← possibleValues(R)

15 case timeout

16 goto line 1

17 if Vdec = ∅ then

18 v ← γ

19 else

20 v ← only(Vdec)

/* Start Phase 2 for proposal (e,v) */

21 send propose(e,v) to acceptors

22 while ∀Q ∈ Q2 : QA 6⊇ Q do

23 switch do

24 case accept(e ,v) received from acceptor a

25 QA ← QA ∪ {a}
26 case timeout

27 goto line 1

28 return v

122 7.3. EPOCHS BY RECOVERY

Algorithm 26: Algorithm for possibleValues with epochs by recovery (Revision

A).

1 func possibleValues(R):

2 foreach Q ∈ Q2 do

3 if ∃a ∈ Q : R[a] = nil then

/* if acceptor in quorum returns nil then no decision */

4 D[Q]← no

5 else if ∃a ∈ Q, ∃f, g ∈ E,∃w, x ∈ V :

6 R[a] = (f, w) ∧R[] = (g, x) ∧ g > f ∧ x 6= w then

/* if two acceptors return proposals with different

values then no decision for quorums containing the

acceptor with the lower proposal */

7 D[Q]← no

8 else if ∃a, b ∈ Q : ∃f ∈ E,∃w, x ∈ V :

9 R[a] = (f, w) ∧R[b] = (f, x) ∧ w 6= x) then

/* if two acceptors in the same quorum return proposals

with same number but different values then no

decision */

10 D[Q]← no

11 else

/* all proposals returned by quorum are for the same

value thus this value maybe decided */

12 D[Q]← only({w ∈ V |∃a ∈ Q : R[a] = (, w)})
13 return {w ∈ V |∃Q ∈ Q2 : D[Q] = w}

set D for quorum Q to no if two acceptors within the quorum have returned promises

with the same epoch but different values (line 7-8, Algorithm 26).

Thirdly, after satisfying the usual quorum intersection requirement, if there are multiple

possibly decided values then the proposer must wait for additional promises to rule out

values until only one or zero values remain. This is implemented by adding the condition

on the cardinality of Vdec (line 10, Algorithm 25).

7.3.3 Safety

We will prove the safety of Paxos revisions A with epochs allocated by recovery using

the usual method. Our usual properties still hold, except from properties 1 & 4, restated

below:

Property 1. Proposers use unique epochs for each proposal.

CHAPTER 7. EPOCHS REVISED 123

Property 4. Proposers must choose a value to propose according to the value selection

rules. If no previously accepted proposals were returned with promises then any value can be

chosen. If one or more previously accepted proposals were returned then the value associated

with the highest epoch is chosen.

However, we will add the following three additional properties for future use:

Property 17. For each propose message received by an acceptor where the epoch received

is the same as the last accepted epoch, the message is processed by the acceptor only if the

proposed value is the same as the last accepted value.

Property 18. Proposers only propose a value after receiving promises from sufficient

acceptors such that at most one value may have been decided.

Property 19. Proposers must choose a value to propose in epoch e according to the value

selection rules. If Vdec is an empty set then any value can be chosen. Otherwise if Vdec is

a singleton then its only value is chosen.

From property 17 it follows that:

Lemma 26. An acceptor will not accept more than one proposal with a given epoch. If

an acceptor accepts (e, v) and (e, w) for any epoch e ∈ E then v = w.

Proof of Lemma 26. Assume that an acceptor has accepted (e, v) then (e, w). From Prop-

erties 10, 6 & 9, the last accepted proposal must be (e, v) when (e, w) is accepted. From

Property 17, then v = w.

We can therefore show that:

Lemma 27. If the value v is decided in epoch e then no other value w where v 6= w will

also be decided in e.

Proof of lemma 27. Assume the proposal (e, v) has been decided therefore a phase two of

acceptors Q ∈ Q2 have accepted (e, v). Likewise for w to be decided, a phase two quorum

of acceptors Q′ ∈ Q2 must have accepted (e, w). As any two phase two quorums for a

given epoch intersect, then at least one acceptor must have accepted both proposals. From

lemma 26 then v = w, so no other value can be accepted.

We begin be revising our proof of Corollary 12.1.

Corollary 12.1 (Base case for safety of future proposals). If the value v is decided in

epoch e and the value w is proposed succ(e) then v = w.

124 7.3. EPOCHS BY RECOVERY

Revised proof of Corollary 12.1. Assume that (e, v) has been decided and (succ(e), w) has

been proposed.

Since (e, v) has been decided thus there exists a quorum Q ∈ Q2 such that all acceptors

have accepted (e, v).

The value w which is proposed in succ(e) will have been chosen in one of two ways: either

Vdec was empty (and w was the proposer’s candidate value) or Vdec = {w} (Property 19).

The former case requires that D[Q] = no and the later requires that either D[Q] = no or

D[Q] = w when the proposer of succ(e) finishes phase one. We will now consider each case

Consider the case that D[Q] = no.

Since all acceptors in quorum Q have accepted (e, v) then none will return nil proposals

with promises (lines 3/4). Likewise, acceptors will not accept another proposal from e

(lines 9/10). Thus another acceptor must have returned a proposal for an epoch > e (lines

8-10, Property 19). This epoch must be succ(e).

Consider the case that D[Q] = w.

Since all acceptors in quorum Q have accepted (e, v) either w = v or w = x where

(succ(e), x) has been proposed.

We have seen that either w = v or w = x where x is another value which has been proposed

in epoch succ(e). If this is first value proposed in succ(e) then it must be the case that

w = v. If all other values proposed in succ(e) are v then w = v. They we have proven 12.1

by induction.

Next we revise our proof of Corollary 12.2.

Corollary 12.2 (Inductive case for safety of future proposals). If the value v is decided

in epoch e and the proposals from e (exclusive) to f (inclusive) are limited to the value v

then if value w is proposed in g such that g = succ(f) then v = w.

Revised proof of Corollary 12.2. Assume that (e, v) has been decided thus there exists

Q ∈ Q2 such that all acceptors have accepted (e, v). Assume that all values proposed in

epochs from e to f are for v also.

Assume that value w has been proposed by a proposer in epoch succ(f). The value w will

have been chosen in one of two ways: either Vdec was empty (and w was the proposer’s

candidate value) or Vdec = {w}.

Consider the case that Vdec = ∅.

For all quorums including Q, D[Q] = no. Given that all acceptors in Q have accepted

(e, v), it is only possible for D[Q] = no if an acceptor returns promise(succ(f),h,x) where

h > e and x 6= v (Property 19). As all values proposed in epochs from e to f are for v

then h = succ(f). By induction, we can see that x = v thus this case cannot occur.

CHAPTER 7. EPOCHS REVISED 125

Consider the case that Vdec = {w}.

For all quorums including Q, D[Q] = no or D[Q] = w. As we have already shown it

cannot be the case that D[Q] = no thus D[Q] = w and therefore for some acceptor

∃a ∈ Q : R[a] = (h,w). This acceptor must have first accepted (e, v) thus h ≥ e. If h = e

then v = w (Lemma 26). Otherwise, if e < h ≤ f then v = w as all values proposed in

these epochs are v. Otherwise h = succ(f) and by induction we can see that w = v.

As before, theorems 12.1 and 12.2 will form the base and inductive case for proving

theorem 13.

Proof of safety of Classic Paxos

Overall, to prove the safety of Paxos, we wish to show that:

Theorem 14 (Safety for Classic Paxos). If the value v is decided in epoch e and the value

w is decided in epoch f then v = w

Revised proof of theorem 14. Consider the case that e = f .

Theorem 27 shows that at most once value will be decided in a given epoch.

Consider the case that e 6= f .

Since there is a total ordering on epochs then either e < f or e > f . From the symmetry

of theorem 14, we can assume e < f and derive e > f by swapping e and f .

For a value to be decided, it must first be proposed, therefore a stronger theorem is theorem

13.

7.3.4 Progress

Earlier, we claimed that the strengthened quorum intersection requirement in Equation 7.2

is always sufficient to make progress. Now we will examine this claim.

Lemma 28. After a proposer in epoch e has received sufficient promises to satisfy Equa-

tion 7.2, possibleValues always returns an empty or singleton set.

Proof of lemma 28. Consider a proposer in epoch e who is calling possibleValues after

receiving sufficient promises to satisfy Equation 7.2. Assume that possibleValues returns

a set of two or more values such as {v, v′, ...} where v 6= v′.

It is therefore the case that there are two quorums Q,Q′ ∈ Q2 such that D[Q] = v and

D[Q′] = v′.

This requires that ∀a ∈ Q : R[a] = no ∨ R[a] = (, v) and ∀a ∈ Q′ : R[a] = no ∨ R[a] =

(, v′).

126 7.3. EPOCHS BY RECOVERY

From equation 7.2, we know that ∃a ∈ A : R[a] 6= no ∧ a ∈ Q ∧ a ∈ Q′. Combining this

with the above result, we learn that ∃a ∈ A : R[a] = (, v) ∧ R[a] = (, v′). This requires

that v = v′ thus we have a contradiction.

7.3.5 Examples

We will now examine three examples of epochs by recovery using three different classes of

quorums systems.

Example: All aboard Paxos with epochs by recovery

Algorithm 27: Proposer algorithm with epochs by recovery and a fixed quorum.
state :

• Q: fixed phase two quorum

1 QA ← ∅
2 if e = nil then

3 e ← 0

4 else

5 e ← e + 1

/* Start of Phase 1 for proposal e */

6 send prepare(e) to acceptors

7 switch do

8 case promise(e, ,w) received from acceptor a ∈ Q
9 if w 6= nil then

10 v ← w

11 else

12 v ← γ

13 case timeout

14 goto line 1

/* Start Phase 2 for proposal (e,v) */

15 send propose(e,v) to acceptors

16 while QA 6⊇ Q do

17 switch do

18 case accept(e ,v) received from acceptor a

19 QA ← QA ∪ {a}
20 case timeout

21 goto line 1

22 return v

CHAPTER 7. EPOCHS REVISED 127

Algorithms which use epochs by recovery need not be complex. For example, the simplest

quorum system contains a single fixed quorum, Q. If we let Q2 = {Q} then one promise

from an acceptor in Q will always be sufficient to complete phase one, as shown in

Algorithm 27. This algorithm may be simple but it does require all acceptors in Q to be

up for liveness. This algorithm is similar to the first iteration of All aboard Paxos (§4.3.2)

with the added flexibility that acceptors may use any epoch.

Example: Fixed quorums for epochs by recovery

Instead, Algorithm 28 assigns a single quorum, Qe to each epoch e such that ∀e ∈ E :

Qe
2 = {Qe}. All phase two quorums in epoch e are guaranteed to intersect at all acceptors

in Qe, therefore a single promise from an acceptor in Qe is sufficient to satisfy the strength-

ened intersection requirement. We have also applied Paxos revision C to this algorithm.

Algorithm 27 is a special case of Algorithm 28 where each epoch is assigned the same

quorum.

Note that this proposer algorithm is very similar to Paxos revision C proposer algorithm

when each epoch has only one phase two quorum. The key difference here is that receiving

a proposal (f, v) is only sufficient to satisfy the quorum intersection requirement for epochs

strictly less than f , unlike Paxos revision C where this was sufficient for epoch less than

or equivalent to f . Aside from this, shared epochs are effectively free as no additional

promises are needed.

Example: Counting quorums for epochs by recovery

Our algorithm for epochs by recovery (Algorithm 25) was quorum system agnostic. In

this section, we specialise the algorithm for counting quorums, where any set of k or more

acceptors is a phase two quorum. A pseudocode proposer algorithm is shown in Algorithm

29. The acceptor remains unchanged. Since we require phase two quorum intersection

(Equation 7.1) then we require that 2k > na where na is the number of acceptors and k is

the quorum size.

There are two conditions which must be satisfied to complete phase one (line 9, Algorithm

29).

Firstly, at least na − k + 1 promises must have been received. This condition satisfies

the usual revision A quorum intersection requirement (Equation 4.6). Secondly, at most

one value can be a member of Vdec. After the first condition has been satisfied, then Vdec

represents the set of value which maybe decided in emax. A value v is only included in Vdec

if the proposal (emax, v) has been returned by sufficient acceptors that (emax, v) would be

decided if all remaining acceptors (na − |QP |) also return the proposal (emax, v).10

10This pseduocode is re-calculating Vdec after receiving each message, this could be done more effectively

by updating Vdec incrementally.

128 7.3. EPOCHS BY RECOVERY

Algorithm 28: Proposer algorithm with epochs by recovery and fixed quorums.
state :

• Qe: a fixed phase two quorum for each epoch ∀e ∈ E

1 v, emax ← nil

2 QP , QA ← ∅
3 if e = nil then

4 e ← 0, v ← γ, goto line 18

5 else

6 e ← e + 1

/* Start of Phase 1 for proposal e */

7 send prepare(e) to acceptors

8 while ∃z ∈ E : z < e ∧ (emax = nil ∨ emax ≤ z) ∧QP ∩Qe = ∅ do

9 switch do

10 case promise(e,f,w) received from acceptor a

11 QP ← QP ∩ {a}
12 if f 6= nil ∧ (emax = nil ∨ f > emax) then

13 emax ← f , v ← w

14 case timeout

15 goto line 1

16 if v = nil then

17 v ← γ

/* Start Phase 2 for proposal (e,v) */

18 send propose(e,v) to acceptors

19 while QA 6⊇ Qe do

20 switch do

21 case accept(e ,v) received from acceptor a

22 QA ← QA ∪ {a}
23 case timeout

24 goto line 1

25 return v

In the worst case, the proposals received are equally split between two values associated

with the highest epochs. As such we can place the following bound on the cardinality of

QP :

na − k + 1 ≤ |QP | ≤ 2na − 2k + 1

Table 7.111 shows examples of this relationship between the total number of acceptors

11The number of acceptors for phase one is shown for epoch 1 onwards since the proposer can always

CHAPTER 7. EPOCHS REVISED 129

Algorithm 29: Proposer algorithm with epochs by recovery and counting

quorums.
state :

• k: size of counting quorum (configured, persistent)

1 emax ← nil

2 QP , QA ← ∅
3 if e = nil then

4 e← 0, v ← γ, goto line 24

5 else

6 e← e+ 1

7 ∀a ∈ A : R[a]← no

8 Vdec ← ∅
/* Start of Phase 1 for proposal e */

9 send prepare(e) to acceptors

10 while
(
|QP | ≤ na − k

)
∨
(
|Vdec| > 1

)
do

11 switch do

12 case promise(e,f,w) received from acceptor a

13 QP ← QP ∪ {a}
14 if f 6= nil ∧ (emax = nil ∨ f > emax) then

15 emax ← f

16 R[a]← (f, w)

17 Vdec ←
{
v ∈ V

∣∣|{a ∈ A|R[a] = (emax, v)}| ≥ k + |QP | − na

}
18 case timeout

19 goto line 1

20 if Vdec = ∅ then

21 v ← γ

22 else

23 v ← only(Vdec)

/* Start Phase 2 for proposal (e,v) */

24 send propose(e,v) to acceptors

25 while |QA| < k do

26 switch do

27 case accept(e ,v) received from acceptor a

28 QA ← QA ∪ {a}
29 case timeout

30 goto line 1

31 return v

130 7.3. EPOCHS BY RECOVERY

na k |QP|
2 2 1

3 2 2 - 3

3 1

4 3 2 - 3

4 1

5 3 3 - 5

4 2 - 3

5 1

6 4 3 - 5

5 2 - 3

6 1

7 4 4 - 7

5 3 - 5

6 2 - 3

7 1

Table 7.1: Examples of the counting quorums for epochs by recovery

(na), the number of acceptors for phase two (k) and the number of acceptors for phase

one (|QP |).

We will now consider four possible executions of Algorithm 29. In each example, the system

is comprised of 3 acceptors (na = 3), 2 proposers (np = 2) and strict majority quorums are

used (k = 2). As before, epochs are used by proposers in sequence, starting from epoch

0. Since emin = 0 then any proposer using it can skip phase one and proceed directly to

phase two.

Firstly, we will examine Figures 7.2, 7.3 and 7.4 where the two proposers execute serially,

proposer p1 followed by proposer p2. All three executions begin after the proposer p1 has

proposed and decided the proposal (0, A). In Figure 7.2, the proposal (0, A) is accepted

by all acceptors. However, in Figures 7.3 and 7.4 the acceptor a3 has not accepted the

proposal (0, A), due to delay/loss of the message or a slow/failed acceptor. All three cases

begin with proposer p2 proposing (0, B) but p2 does not receive the two accepts necessary

to complete phase two as the value A has already been decided.

In Figure 7.2, the acceptor a3 does not accept the proposal (0, B) as it has already accepted

(0, A). In Figure 7.3, the acceptor a3 is able to accept the proposal (0, B) since it has not

yet accepted any proposals but does not do so due to loss/failure. In Figure 7.4, the

acceptor a3 accepts the proposal (0, B).

At this point in time, the three examples differ only by the state of acceptor a3. In Figure

bypass phase one for epoch 0.

CHAPTER 7. EPOCHS REVISED 131

(1, A) decided

a1 a2 a3 p2

epro:0

eacc:0

vacc:A

epro:0

eacc:0

vacc:A

epro:0

eacc:0

vacc:A

e : 0

propose(0,B)

timeout

e : 1

prepare(1)

epro:1

epro:1

epro:1

promise(1,0,A)

QP : {a3}, emax:0, Vdec : {A}

promise(1,0,A)

QP : {a2, a3}, v : A

propose(1,A)

eacc:1

eacc:1

eacc:1

accept(1,A)

QA : {a3}

accept(1,A)

QA : {a2, a3}

Figure 7.2: Example run of epochs by recovery with two serial proposers. The proposal

(0, A) was accepted by all acceptors before proposer p2 proposes (0, B).

7.2, the last accepted proposal on a3 is (0, A), in Figure 7.3, the last accepted proposal on

a3 is nil and in Figure 7.4, the last accepted proposal on a3 is (0, B). In all three examples,

the proposer p2 then retries the proposer algorithm with epoch 1 and p2 receives promises

from acceptors a2 and a3.

In Figure 7.2, both acceptors a2 and a3 return the proposal (0, A) with their promises so

Vdec = {A} thus proposer p2 can proceed to phase two and propose (1, A).

In Figure 7.3, only acceptor a2 returns a proposal (in this case (0, A)) with their promise

so Vdec = {A} thus proposer p2 can proceed to phase two and propose (1, A).

132 7.3. EPOCHS BY RECOVERY

(1, A) decided

a1 a2 a3 p2

epro:0

eacc:0

vacc:A

epro:0

eacc:0

vacc:A

e : 0

propose(0,B)

timeout

e : 1

prepare(1)

epro:1

epro:1

epro:1

promise(1,nil,nil)

QP : {a3}

promise(1,0,A)

QP : {a2, a3}, emax : 0, Vdec : {A}

propose(1,A)

eacc:1

eacc:1

eacc:1

vacc : A

accept(1,A)

QA : {a3}

accept(1,A)

QA : {a2, a3}

Figure 7.3: Example run of epochs by recovery with two serial proposers. Neither proposal

(0, A) or (0, B) is accepted by acceptor a3.

In Figure 7.4, the acceptors return two different proposals with the promises. The acceptor

a2 returns the proposal (0, A) and acceptor a3 returns the proposal (0, B). At this point,

|QP | = 2 and Vdec = {A,B}. This is a value collision thus the proposer p2 must wait for

further promises. The proposer p2 receives the promise from acceptor a1 with proposal

(0, A). It is now the case that |QP | = 3 and Vdec = {A} thus p2 is now able to proceed to

phase two and propose (1, A).

In contrast to earlier figures, Figure 7.5 shows two proposers executing concurrently. Both

are proposing the same proposal (0, A) and this proposal is quickly decided.

CHAPTER 7. EPOCHS REVISED 133

(1, A) decided

a1 a2 a3 p2

epro:0

eacc:0

vacc:A

epro:0

eacc:0

vacc:A

e : 0

propose(0,B)

epro:0

eacc:0

vacc:B

accept(0,B)

QA : {a3}

timeout

e : 1

prepare(1)

epro:1

epro:1

epro:1

promise(1,0,B)

QP : {a3} emax:0, Vdec : {B}

promise(1,0,A)

QP : {a2, a3}, Vdec : {A,B}

promise(1,0,A)

QP : {a1, a2, a3}, Vdec : {A} v : A

propose(1,A)

eacc:1

vacc:A

eacc:1

eacc:1 accept(1,A)

QA : {a3}

accept(1,A)

QA : {a2, a3}

Figure 7.4: Example run of epochs by recovery with two serial proposers. The proposal

(0, B) is accepted by acceptor a3.

134 7.4. HYBRID EPOCH ALLOCATION

p1 a1 a2 a3 p2

e : 0

propose(0,A)

epro:0

eacc:0

vacc:A

accept(0,A)

QA : {a1}

accept(0,A)

QA : {a1, a2}

e : 0

propose(0,A)

epro:0

eacc:0

vacc:A
epro:0

eacc:0

vacc:A accept(0,A)

QA : {a3}

accept(0,A)

QA : {a2, a3}

Figure 7.5: Example run of epochs by recovery with two concurrent proposers proposing

the same proposal (0, A).

7.4 Hybrid epoch allocation

Epoch allocation

approach

Epochs

unique to

values

Epochs

unique to

proposers

Epoch assignment

required

Pre-allocation Y Y Y, to proposers

Voting Y Y N

Allocator Y Y & N12 N

Value-based Y N Y, to values

Recovery N N N

Table 7.2: Approaches to epoch allocation

Thus far, we have described five mechanisms for handling the allocation of epochs: static

allocation, phase one voting, dynamic allocation by an allocator (§7.1), valued-based (§7.2)

or recovery-based allocation (§7.3). These mechanisms are summarised in Table 7.213.

However, algorithms for distributed consensus need not utilise only one of these mechanisms

but may use them in combination by allocating epochs to particular methods.

The ability for proposers to use any epoch is most powerful with the epoch emin, since

proposers using emin can skip phase one. Therefore a logical hybrid algorithm would consist

of combining either an allocator, value-based or recovery-based approach for emin (fast

12Epochs are only unique to proposers when an allocator is used if the proposal is not reallocated.
13Proposal copying (§3.10) can also be combined with each of these mechanisms.

CHAPTER 7. EPOCHS REVISED 135

path) and pre-allocation for all other epochs (slow path). We will now consider each of

these three algorithms.

7.4.1 Multi-path Paxos using allocator

One of the key limitations of allocating exclusive epochs using an allocator (§7.1) is that the

liveness of the system now depends on the availability of the allocator, a single participant.

This can be addressed by a hybrid approach consisting of using an allocator only for emin

(fast path) and pre-allocation for all other epochs (slow path)1415.

The fast path proposer algorithm begins with a message exchange with the allocator. If

the proposer is allocated emin then it can bypass phase one and propose its candidate

value in phase two of emin.

If the fast path is unsuccessful, either because the allocator is unavailable or another

proposer has already been allocated emin, then the proposer executes Paxos as usual16,

this is referred to as the slow path17.

Algorithm 30: Phase zero of Multi-path Paxos with an allocator

/* Start of Phase 0 */

1 send generate-next() to allocator

2 switch do

3 case allocate(emin) received

4 e← emin, v ← γ

5 goto phase two

6 case timeout or no-allocate() received

7 e← min(E)

8 E ← E \ {e}
9 goto phase one

10 . . .

Algorithm 30 gives an example of phase zero, the epoch selection phase. If epoch emin is

allocated to the proposer then it proceeds to phase two. Otherwise, if emin has already

been allocated or the allocator does not respond, the proposer uses one of its pre-allocated

epochs. The allocator could be implemented as a simple boolean flag to indicate whether

emin has been allocated.

14Equally, epochs by phase one voting could be used for all other epochs instead of pre-allocation.
15Note that we could extend this approach to the allocator for the first n epochs instead of just emin.
16Except that emin cannot be pre-allocated.
17In practice, the proposer may choose whether to first try the fast path or proceed directly to the slow

path.

136 7.4. HYBRID EPOCH ALLOCATION

As described in section 7.1, we could extend the allocator to store the value associated

with the epoch assigned by the service. Effectively, the allocator stores the primary copy

of the value and the acceptors store the backup copy. If the allocator is available, the

proposers can take the fast path. First, the proposers get/set the primary copy of the

value on the allocator (phase zero) then they back up the value to a quorum of acceptors

Qemin
2 (phase one)18. Otherwise, the proposer takes the slow path, executing the classic

two phase proposer algorithm over the acceptors to update the backup copies of the value.

Note, that this algorithm provides a new progress guarantee. If the system is synchronous

and both the allocator and an acceptor quorum Q ∈ Qemin
2 are live, then proposers are

guaranteed to terminate in two round trips (one to the allocator and one to acceptors)19.

This is because the allocator acts as a serialisation point, preventing duelling between

proposers.

7.4.2 Multi-path Paxos using value-based allocation

Value-based allocation of epochs requires that candidate values be limited to a known

range. This restriction can be weakened using Multi-path Paxos to permit values outside

the known range. The first n epochs are allocated to values within the known range of

size n, the most likely values should be allocated the lower epochs with the most common

value assigned to emin. All epochs after n are assigned to proposers by pre-allocation. If a

proposer has a candidate value from the known range then the proposer can use the value

assigned epoch. If this is unsuccessful or if the proposer has a candidate value outside the

known range then the proposer can fall back to using the epoch assigned by pre-allocation.

As before, this algorithm provides a new progress guarantee. If all proposers are proposing

the same value then they are guaranteed to terminate in two round trips (or one round

trip for the value associated with the minimum epoch) even in an asynchronous system20.

This is not the case for Classic Paxos where proposers proposing the same value could

duel indefinitely.

7.4.3 Multi-path Paxos using recovery

Algorithms 31 & 32 shows an example hybrid algorithm consisting of epochs by recovery

for emin (fast path) and pre-allocation for all other epochs (slow path). Algorithm 31 is a

fast path proposer algorithm, Algorithm 32 is the slow path proposer algorithm and the

acceptor algorithm is the same as for epochs by recovery (Algorithm 24).

18Note that unlike the SAA, proposer cannot always read the value stored on the allocator to learn the

decided value
19This requires the system to have been synchronous since startup.
20This statement assumes that NACKs are used instead of timeouts

CHAPTER 7. EPOCHS REVISED 137

Algorithm 31: Fast path - Proposer algorithm for Multi-path Paxos with

recovery

/* Start of Phase 2 for proposal (emin,γ) */

1 QA ← ∅
2 send propose(emin,γ) to acceptors

3 while |QA| <
⌈
3na

4

⌉
do

4 switch do

5 case accept(emin,γ) received from acceptor a

6 QA ← QA ∪ {a}
7 case timeout

8 goto slow path

9 return γ

By using counting quorums of size k =
⌈
3na

4

⌉
for emin then we can use strict majority

quorums for all other epochs. Such an algorithm would satisfy the same progress guarantees

as Classic Paxos but with an improved best case; a decision in one round trip to 3
4

of

acceptors. The proposer algorithm would first try to get acceptors to accept phase two

of emin (fast path) and fall back to majority agreement for both phases of a subsequent

epoch if unsuccessful (slow path).

We can utilise Paxos revision C to optimise algorithm 32. For all epochs e where e 6=
succ(emin), if a promise is received with a proposal (f, v) where e = succ(f) then the

proposer can proceed to phase two of epoch e to propose v.

Similarly, for the epoch succ(emin), we can also proceed to phase two when at least
⌊
na

4

⌋
+1

acceptors have promised; and at most one unique proposal was received with the promises.

Fast Paxos (outlined in §3.12) is a special case of Hybrid epochs, where fast epochs are

shared by recovery and classic epochs are pre-allocated/voted. In Fast Paxos, all phase

one quorums are of size kc, regardless of the promises returned during phase one. This is

equivalent to always waiting for the upper bound on the number of promises needed in

Paxos with epochs by recovery. Thus one of the implications of epochs by recovery (other

than its generality) is that phase one of Fast Paxos can be completed after fewer promises,

with a minimum of na − kf + 1 promises needed.

7.5 Summary

In this chapter, we have demonstrated various alternatives to pre-allocation or phase one

voting for allocation of epochs between proposers. The methods covered included dynamic

epoch allocation by an allocator, allocating epochs by value instead of by proposer and

sharing epochs by recovery. These methods can be used individually or in combination.

138 7.5. SUMMARY

Algorithm 32: Slow path - Proposer algorithm for Multi-path Paxos with

recovery

1 emax ← nil

2 QP , QA ← ∅
3 e← min(E)

4 E ← E \ {e}
5 ∀a ∈ A : R[a]← no

/* Start of Phase 1 for proposal e */

6 send prepare(e) to acceptors

7 while |QP | < bna/2c+ 1 do

8 switch do

9 case promise(e,f,w) received from acceptor a

10 QP ← QP ∪ {a}
11 if f 6= nil ∧ (emax = nil ∨ f > emax) then

12 emax ← f

13 R[a]← (f, w)

14 case timeout

15 goto line 1

16 if emax = emin then

17 Vdec ←
{
v ∈ V

∣∣|{a ∈ A|R[a] = (emax, v)}| ≥ dna/4e
}

18 else

19 Vdec ← {v ∈ V |R[] = (emax, v)}
20 if Vdec = ∅ then

21 v ← γ

22 else

23 v ← only(Vdec)

/* Start Phase 2 for proposal (e,v) */

24 send propose(e,v) to acceptors

25 while |QA| < bna/2c+ 1 do

26 switch do

27 case accept(e,v) received from acceptor a

28 QA ← QA ∪ {a}
29 case timeout

30 goto line 1

31 return v

CHAPTER 7. EPOCHS REVISED 139

Most notability, we have proposed epochs by recovery, which allows any proposer to use

any epoch, provided additional intersection requirements are satisfied. Epochs by recovery

generalises Fast Paxos by putting into practice our revised understanding of quorum

intersection (§4.2) and value selection (§6). Any proposer may decide a value in one round

trip compared to Classic Paxos in which any proposer may decide a value in two trips or

Multi-Paxos which allowed one proposer, the leader, to decide a value in one round trip.

Our motivation for re-examining how epochs are allocated was to overcome the limita-

tions of exclusive epoch allocation, particularly that only one proposer may utilise the

minimum epoch to bypass phase one. In pursuit of this goal, we have also found that these

techniques can provide stronger progress guarantees in particular scenarios, sometimes

these guarantees even held under weaker assumptions. For example, in epochs by recovery,

multiple proposers proposing the same value may not duel and will terminate in one round

trip, without assuming synchrony21.

21This statement assumes we are using NACKs instead of timeouts.

140 7.5. SUMMARY

Chapter 8

Conclusion

The most useful piece of learning for

the uses of life is to unlearn what is

untrue.

Antisthenes

Paxos has been synonymous with distributed consensus for over two decades. As such, it

has been extensively researched, taught and deployed in production. This thesis sought

to reconsider how we approach consensus in distributed systems and challenge the widely

held belief that the Paxos algorithm is an optimal solution to consensus.

8.1 Motivation

In section 1.3, we outline limitations of Paxos. Aside from the algorithm’s subtlety and

underspecification, decisions are slow as two round trips to the majority of acceptors is

needed for each decision. This approach leads to a high message overhead, which increases

linearly with the number of acceptors and is limited in scalability as each additional

acceptor increases the size of the majority and thus decreases performance. Paxos relies on

synchrony to avoid duelling between proposers and also relies on the majority of acceptors

being live to make progress.

Paxos tightly couples the number of participants, availability in the face of failures and

steady state performance. Paxos offers a one-size-fits-all solution to distributed consensus

which is highly symmetric, following a single set execution path, regardless of the state

of the system. Paxos guarantees that a proposer will terminate in two rounds given its

liveness conditions, namely synchrony, exactly one proposer is live and at least a majority

of acceptors are live. If these conditions are not satisfied, Paxos provides little in the way

of progress guarantees. If stronger conditions are satisfied then Paxos still requires two

rounds with majority agreement to make progress.

141

142 8.2. SUMMARY OF CONTRIBUTIONS

In practice, when reaching agreement over a sequence with Paxos, the Multi-Paxos opti-

misation is used almost exclusively. So much so that the terms Paxos and Multi-Paxos

are often used interchangeably. The academic literature has proposed agreeing upon a

sequence without Multi-Paxos, for example using Fast Paxos, however, such proposals

have seen little practical application. Multi-Paxos allows agreements to be reached in one

round trip to the majority of acceptors, ignoring the possible extra round trip to the leader

and back. Whats more, the leader in Multi-Paxos acts a point of serialisation, preventing

duelling between proposers, however, synchrony is needed to reliably detect and replace

failed leaders. The primary limitation of centralised approaches such as Multi-Paxos is

that the leader is the performance bottleneck.

8.2 Summary of contributions

This thesis proves that Paxos is conservative in its approach by weakening the requirements

for quorum intersection, phase completion, value selection and epoch allocation.

After outlining the widely known Classic Paxos algorithm in chapter 2, we begin with our

systemisation of knowledge study (chapter 3) which surveyed the key refinements to the

Classic Paxos algorithm.

In chapter 4, we revised the Paxos’s quorum intersection from:

∀Q,Q′ ∈ Q : Q ∩Q′ 6= ∅

to the following, for each epoch e:

∀Q ∈ Qe
1,∀f ∈ E : f < e =⇒ ∀Q′ ∈ Qf

2 : Q ∩Q′ 6= ∅

In other words, we have shown that it is not necessary to require that phase one quorums

intersect, nor that phase two quorums intersect nor that the phase one quorum intersects

with phase two quorums of subsequent epochs.

In chapter 5, we proved that if a proposer received a promise with the proposal (e, v)

then this is sufficient to satisfy the quorum intersection requirements for epochs up to e

(inclusive).

In chapter 6, we demonstrated that Paxos’s value selection rule of proposing the value

associated with the greatest epoch is a conservative approximation of quorum based value

selection. If more promises are received than is necessary to satisfy quorum intersection

then tracking quorums can allow a proposer to propose their candidate values, instead of

being required to propose a previous value.

CHAPTER 8. CONCLUSION 143

These revisions of quorum intersection, phase completion and value selection come together

in section 7.3, when we remove the requirement that epochs are unique to proposals. The

technique, referred to as epochs by recovery, generalises over the Fast Paxos algorithm by

weakening its quorum intersection requirements. Furthermore, it applies our quorum-based

value selection method to allow proposers to complete phase one with fewer promises and

provides greater flexibility over the value proposed.

We also proposed various alternatives to epoch allocation by recovery, such as epochs from

an allocator (§7.1) or epochs by value (§7.2). These can be used instead of or together

with the existing epoch allocation methods.

8.3 Implications of contributions

Over the course of this thesis, we have proposed a generalised algorithm for solving dis-

tributed consensus, a powerful primitive for architecting distributed systems. In §1.4, we

proposed the following two research questions:

Are the limitations of Paxos inherent to the problem of consensus or specific to the approach

taken by the Paxos algorithm?

Is the Paxos algorithm the optimal solution to distributed consensus?

We believe that we have improved over the Paxos algorithm and demonstrated that some

of its limitations are specific to its approach. We now discuss this further, divided into four

domains, greater flexibility, new progress guarantees, improved performance and better

clarity.

8.3.1 Greater flexibility

The algorithm we have proposed is no ‘silver bullet’ solution. Instead, it is a flexible family

of approaches for constructing a broad spectrum of consensus algorithms, suitable for many

deployment environments, optimised for different workloads and offering new tradeoffs

in performance and reliability. The breadth of algorithms proposed aims to reflect the

diverse landscape of today’s distributed systems. The algorithms we have proposed in this

thesis introduce asymmetry to Paxos, offering multiple pathways for proposers to reach

termination, varying depending on the state of the system.

We began by using our weakened quorum intersection requirements to introduce the notion

of varying quorums by epochs. For example, in §4.2, we presented All aboard Paxos, which

provided two routes for proposers (co-located with acceptors) to terminate:

• termination in one round trip to all acceptors using epochs 0 to k; or

• termination in two rounds trips to a majority of acceptors using epochs from k + 1.

144 8.3. IMPLICATIONS OF CONTRIBUTIONS

Likewise, we see another example of this multi-pathway approach in Paxos revision C

(Chapter 5), where a proposer in phase one of epoch e can satisfy its intersection require-

ment with the phase two of a previous epoch f either:

• by receiving promises from at least one acceptor in each quorum Q ∈ Qf
2 ; or

• by receiving a promise with a proposal from an epoch g where f ≤ g ≤ e.

In section 3.10, we allow proposers the option to copy an existing proposal instead of

starting a new proposal. In section 7.4, we propose a hybrid approach consisting of using

epoch allocation by an allocator, value mapping or recovery for the minimum epoch and

epoch allocation by pre-allocation or voting for all other epochs.

8.3.2 New progress guarantees

Paxos focuses on a single progress property: guaranteed progress regardless of an algo-

rithm’s current state. Whilst useful for comparing fault-tolerance of algorithms under

worst case conditions, this gives us little information regarding the overall availability of

the algorithms. Over the course of this thesis, we have demonstrated algorithms with new

progress properties depending on the system state. In this section, we will consider various

examples.

A proposer can terminate in one round trip to a phase two quorum of acceptors if phase

one has been completed and no acceptors in the quorum promise or accept since phase

one (§4.1). At the extreme, this quorum may only contain only one acceptor, as described

in §4.3.2. The tradeoff for optimising the phase two quorum is decreased performance and

availability for the phase one quorum. This tradeoff may be worthwhile when combined

with Multi-Paxos, which seldom executes phase one compared to phase two (§4.3.3).

A proposer can terminate in one round trip to a phase two quorum of acceptors if it is the

first to propose and has been allocated emin, since this proposer is able to bypass phase

one. More generally, since each proposer during phase one is required to intersect only

with the phase two quorums of previous epochs, the intersection requirements build up as

epochs increase (§4.2.3).

Our progress guarantee for Classic Paxos relies on a single proposer executing the proposer

algorithm. In practice, this is often achieved by designating one proposer as distinguished

and thus relying on synchrony to detect failure of the designated proposer.

In sections 7.2 and 7.3, we proposed the allocation of epochs to values and epochs allocation

by recovery. Both these new algorithms can guarantee termination when multiple proposers

are executing the proposer algorithm with the same candidate value. For example, this

was illustrated in Figure 7.5.

CHAPTER 8. CONCLUSION 145

In section 7.4, we proposed a hybrid algorithm consisting of using an allocator for the

minimum epoch and pre-allocation for all other epochs. Provided the allocator is live and

synchronous, then any number of proposers will terminate in two rounds trips (one to the

allocator, one to the acceptors).

8.3.3 Improved performance

Our generalisations provide the opportunity to improve the best case performance and/or

to increase the likelihood of the best case occurring in practice. Optimising for the steady

state has allowed us to improve overall performance. The tradeoff for this gain can be

decreased performance during the rarer failure case behaviour. Unlike Classic Paxos, we

do not enforce a particular tradeoff between performance and availability. Instead, this

tradeoff is an application specific decision.

This is best illustrated by combining Multi-Paxos with the weakened quorum intersection

between phases (§4.1). We can now choose our tradeoff between phase one quorums, which

are rarely used as they are only needed when replacing a leader and phase two quorums,

which are used for every decision.

The key motivation for Multi-Paxos is to reach agreement in one round trip, however, its

centralised approach is a substantial performance bottleneck. We have proposed various

other mechanisms to achieve one round trip agreement without centralisation, including

the following:

If proposers and acceptors are co-located on each participant:

• A participant can execute phase one locally, provided it uses all participants for

phase two (§4.1).

• A participant can complete phase one locally, provided the participant has accepted

a proposal from the predecessor epoch (§5).

Otherwise:

• One of the proposers can skip phase one if it has been allocated of the minimum

epoch (§4.2.3). When reaching agreement over a sequence, this proposer can be

rotated to avoid centralisation.

• A proposer can skip phase one to propose its candidate value if its candidate value

is assigned to the minimum epoch using epoch allocation by values (§7.2)

• Any proposer can skip phase one to propose its candidate value if the minimum

epoch is assigned by epoch allocation by recovery (§7.3)

146 8.3. IMPLICATIONS OF CONTRIBUTIONS

8.3.4 Better clarity

At the very least, we hope to have furthered understanding of this important and surpris-

ingly subtle field of distributed systems.

Bibliography

[ACDK17] Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik Kosar.

Multileader WAN paxos: Ruling the archipelago with fast consensus, 2017.

arXiv:1703.08905 [cs.DC].

[BAC+13] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Di-

mov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li,

Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat

Venkataramani. TAO: Facebook’s distributed data store for the social graph.

In Proceedings of the 2013 USENIX Annual Technical Conference, ATC’13,

pages 49–60, Berkeley, CA, USA, 2013. USENIX Association.

[BBH+11] William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P.

Kusters, and Peng Li. Paxos replicated state machines as the basis of a

high-performance data store. In Proceedings of the 8th USENIX Conference

on Networked Systems Design and Implementation, NSDI’11, pages 141–154,

Berkeley, CA, USA, 2011. USENIX Association.

[Bir85] Kenneth P. Birman. Replication and fault-tolerance in the ISIS system. In

Proceedings of the 10th ACM Symposium on Operating Systems Principles,

SOSP ’85, pages 79–86, New York, NY, USA, 1985. ACM.

[BJ87] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the

presence of failures. ACM Transactions on Computer Systems (TOCS), 5(1):47–

76, January 1987.

[Bur06] Mike Burrows. The Chubby lock service for loosely-coupled distributed sys-

tems. In Proceedings of the 7th Symposium on Operating Systems Design and

Implementation, OSDI ’06, pages 335–350, Berkeley, CA, USA, 2006. USENIX

Association.

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.

Bigtable: A distributed storage system for structured data. ACM Transactions

on Computer Systems (TOCS), 26(2):4:1–4:26, June 2008.

147

148 BIBLIOGRAPHY

[CGR07] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made

live: An engineering perspective. In Proceedings of the 26th Annual ACM

Symposium on Principles of Distributed Computing, PODC ’07, pages 398–407,

New York, NY, USA, 2007. ACM.

[CHT96] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest

failure detector for solving consensus. Journal of the ACM (JACM), 43(4):685–

722, July 1996.

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In

Proceedings of the 3rd Symposium on Operating Systems Design and Imple-

mentation, OSDI ’99, pages 173–186, Berkeley, CA, USA, 1999. USENIX As-

sociation.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for

reliable distributed systems. Journal of the ACM (JACM), 43(2):225–267,

March 1996.

[DDS87] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal syn-

chronism needed for distributed consensus. Journal of the ACM (JACM),

34(1):77–97, January 1987.

[Dem] Murat Demirbas. Modeling Paxos and Flexible Paxos in Plus-

cal and TLA+. http://muratbuffalo.blogspot.co.uk/2016/11/

modeling-paxos-and-flexible-paxos-in.html. [Online; accessed 17-

Jan-2018].

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-

pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter

Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value

store. In Proceedings of 21st ACM SIGOPS Symposium on Operating Systems

Principles, SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the pres-

ence of partial synchrony. Journal of the ACM (JACM), 35(2):288–323, April

1988.

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of

distributed consensus with one faulty process. Journal of the ACM (JACM),

32(2):374–382, April 1985.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file

system. In Proceedings of the 19th ACM Symposium on Operating Systems

Principles, SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.

http://muratbuffalo.blogspot.co.uk/2016/11/modeling-paxos-and-flexible-paxos-in.html
http://muratbuffalo.blogspot.co.uk/2016/11/modeling-paxos-and-flexible-paxos-in.html

BIBLIOGRAPHY 149

[GL03] Eli Gafni and Leslie Lamport. Disk Paxos. Distributed Computing, 16(1):1–20,

February 2003.

[HKJR10] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.

Zookeeper: Wait-free coordination for internet-scale systems. In Proceedings of

the 2010 USENIX Annual Technical Conference, ATC’10, pages 11–11, Berkeley,

CA, USA, 2010. USENIX Association.

[JRS11] Flavio P Junqueira, Benjamin C Reed, and Marco Serafini. Zab: High-

performance broadcast for primary-backup systems. In Proceedings of the

41st IEEE/IFIP International Conference on Dependable Systems & Networks

(DSN), pages 245–256. IEEE, 2011.

[Lam78a] Leslie Lamport. The implementation of reliable distributed multiprocess sys-

tems. Computer Networks, 2(2):95 – 114, August 1978.

[Lam78b] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM (CACM), 21(7):558–565, July 1978.

[Lam96] Butler W. Lampson. How to build a highly available system using consensus.

In Proceedings of the 10th International Workshop on Distributed Algorithms,

WDAG ’96, pages 1–17, London, UK, UK, 1996. Springer-Verlag.

[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions on Computer

Systems (TOCS), 16(2):133–169, May 1998.

[Lam01a] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Com-

puting Column), December 2001.

[Lam01b] Butler Lampson. The ABCD’s of Paxos. In Proceedings of the 20th Annual

ACM Symposium on Principles of Distributed Computing, PODC ’01, pages

13–, New York, NY, USA, 2001. ACM.

[Lam05a] Leslie Lamport. Fast Paxos. Technical Report MSR-TR-2005-112, Microsoft

Research, 2005.

[Lam05b] Leslie Lamport. Generalized consensus and Paxos. Technical Report MSR-

TR-2005-33, Microsoft Research, March 2005.

[LC12] Barbara Liskov and James Cowling. Viewstamped replication revisited. Tech-

nical Report MIT-CSAIL-TR-2012-021, MIT, July 2012.

[LM04] Leslie Lamport and Mike Massa. Cheap Paxos. In Proceedings of the 2004

International Conference on Dependable Systems and Networks, DSN ’04, pages

307–, Washington, DC, USA, 2004. IEEE Computer Society.

150 BIBLIOGRAPHY

[LVA+15] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt, Yee Jiun Song,

Wendy Tobagus, Sanjeev Kumar, and Wyatt Lloyd. Existential consistency:

Measuring and understanding consistency at Facebook. In Proceedings of the

25th Symposium on Operating Systems Principles, SOSP ’15, pages 295–310,

New York, NY, USA, 2015. ACM.

[MAK13] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more con-

sensus in egalitarian parliaments. In Proceedings of the 24th ACM Symposium

on Operating Systems Principles, SOSP ’13, pages 358–372, New York, NY,

USA, 2013. ACM.

[Mal] Dahlia Malkhi. ACM A.M. Turing award - Leslie Lamport 2013. https:

//amturing.acm.org/award_winners/lamport_1205376.cfm. [Online; ac-

cessed 23-April-2018].

[Mel17] Max Meldrum. Flexible Paxos: An industry perspective. Master’s thesis,

Blekinge Institute of Technology, 2017.

[MHL+92] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.

ARIES: A transaction recovery method supporting fine-granularity locking and

partial rollbacks using write-ahead logging. ACM Transactions on Database

Systems (TODS), 17(1):94–162, March 1992.

[MJM08] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: Building

efficient replicated state machines for WANs. In Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implementation, OSDI’08, pages

369–384, Berkeley, CA, USA, 2008. USENIX Association.

[MLZ08] Dahlia Malkhi, Leslie Lamport, and Lidong Zhou. Stoppable Paxos. Technical

Report MSR-TR-2008-192, Microsoft Research, April 2008.

[MOZ05] Dahlia Malkhi, Florin Oprea, and Lidong Zhou. Omega meets Paxos: Leader

election and stability without eventual timely links. In Proceedings of the 19th

International Conference on Distributed Computing, DISC’05, pages 199–213,

Berlin, Heidelberg, 2005. Springer-Verlag.

[MPP12] P.J. Marandi, M. Primi, and F. Pedone. Multi-ring Paxos. In Proceedings of

the 42nd Annual IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN), pages 1–12, June 2012.

[MPSP10] P.J. Marandi, M. Primi, N. Schiper, and F. Pedone. Ring Paxos: A high-

throughput atomic broadcast protocol. In Proceedings of the 2010 IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN), pages

527–536, June 2010.

https://amturing.acm.org/award_winners/lamport_1205376.cfm
https://amturing.acm.org/award_winners/lamport_1205376.cfm

BIBLIOGRAPHY 151

[NAEA18] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. DPaxos: Managing

data closer to users for low-latency and mobile applications. In Proceedings

of the 2018 International Conference on Management of Data, SIGMOD ’18,

pages 1221–1236, New York, NY, USA, 2018. ACM.

[OL88] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary

copy method to support highly-available distributed systems. In Proceedings

of the 7th Annual ACM Symposium on Principles of Distributed Computing,

PODC ’88, pages 8–17, New York, NY, USA, 1988. ACM.

[OO14] Diego Ongaro and John Ousterhout. In search of an understandable consensus

algorithm. In Proceedings of the 2014 USENIX Annual Technical Conference,

ATC’14, pages 305–320, 2014.

[PLL97] Roberto De Prisco, Butler W. Lampson, and Nancy A. Lynch. Revisiting

the Paxos algorithm. In Proceedings of the 11th International Workshop on

Distributed Algorithms, WDAG ’97, pages 111–125, London, UK, UK, 1997.

Springer-Verlag.

[PLSS17] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos made

EPR: Decidable reasoning about distributed protocols. Proceedings of the

ACM on Programming Languages, 1(OOPSLA):108:1–108:31, October 2017.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state ma-

chine approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319,

December 1990.

[Tre] Trex. An embeddable paxos engine for the JVM. https://github.com/

trex-paxos/trex. [Online; accessed 17-Jan-2018].

[VRA15] Robbert Van Renesse and Deniz Altinbuken. Paxos made moderately complex.

ACM Computing Surveys (CSUR), 47(3):42:1–42:36, February 2015.

[vRSS15] R. van Renesse, N. Schiper, and F. B. Schneider. Vive la difference: Paxos

vs. Viewstamped Replication vs. Zab. IEEE Transactions on Dependable and

Secure Computing, 12(4):472–484, July 2015.

https://github.com/trex-paxos/trex
https://github.com/trex-paxos/trex

	Introduction
	State of the art
	Historical background
	Motivation
	Approach
	Contributions
	Publications
	Follow up research

	Scope & limitations

	Consensus & Classic Paxos
	Preliminaries
	Single acceptor algorithm

	Classic Paxos
	Proposer algorithm
	Acceptor algorithm

	Examples
	Properties
	Non-triviality
	Safety
	Progress
	Summary

	Known revisions
	Negative responses (NACKs)
	Bypassing phase two
	Termination
	Distinguished proposer
	Phase ordering
	Multi-Paxos
	Roles
	Epochs
	Phase one voting for epochs
	Proposal copying
	Generalisation to quorums
	Miscellaneous
	Summary

	Quorum intersection revised
	Quorum intersection across phases
	Algorithm
	Safety
	Examples

	Quorum intersection across epochs
	Algorithm
	Safety
	Examples

	Implications
	Bypassing phase two
	Co-location of proposers and acceptors
	Multi-Paxos
	Voting for epochs

	Summary

	Promises revised
	Intuition
	Algorithm
	Safety
	Examples
	Summary

	Value selection revised
	Epoch agnostic algorithm
	Safety
	Progress
	Examples

	Epoch dependent algorithm
	Safety
	Progress

	Summary

	Epochs revised
	Epochs from an allocator
	Epochs by value mapping
	Epochs by recovery
	Intuition
	Algorithm
	Safety
	Progress
	Examples

	Hybrid epoch allocation
	Multi-path Paxos using allocator
	Multi-path Paxos using value-based allocation
	Multi-path Paxos using recovery

	Summary

	Conclusion
	Motivation
	Summary of contributions
	Implications of contributions
	Greater flexibility
	New progress guarantees
	Improved performance
	Better clarity

	Bibliography

