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Abstract

The CHERI architecture allows pointers to be implemented as capabilities (rather than
integer virtual addresses) in a manner that is compatible with, and strengthens, the se-
mantics of the C language. In addition to the spatial protections offered by conventional
fat pointers, CHERI capabilities offer strong integrity, enforced provenance validity, and
access monotonicity. The stronger guarantees of these architectural capabilities must be
reconciled with the real-world behavior of operating systems, run-time environments, and
applications. When the process model, user-kernel interactions, dynamic linking, and
memory management are all considered, we observe that simple derivation of architec-
tural capabilities is insufficient to describe appropriate access to memory. We bridge this
conceptual gap with a notional abstract capability that describes the accesses that should
be allowed at a given point in execution, whether in the kernel or userspace. To investigate
this notion at scale, we describe the first adaptation of a full C-language operating system
(FreeBSD) with an enterprise database (PostgreSQL) for complete spatial and referential
memory safety. We show that awareness of abstract capabilities, coupled with CHERI ar-
chitectural capabilities, can provide more complete protection, strong compatibility, and
acceptable performance overhead compared with the pre-CHERI baseline and software-
only approaches. Our observations also have potentially significant implications for other
mitigation techniques.

This technical report extends our paper of the same title published at ASPLOS 2019 [17]
with a focus on implementation details of interest to operating system and compiler devel-
opers.

1 Introduction
Conventional architectures and C programming-language implementations provide only coarse-
grained protection against memory errors. At run time, they represent memory addresses sim-
ply as integers, and constrain how they can be used with page-based memory-management units
(MMUs). This coarseness is the enabling root cause of large classes of software vulnerabilities,
allowing simple bugs (which conventional engineering techniques cannot reliably exclude) to
be escalated to loss of data integrity and confidentiality and to arbitrary code execution [44].

The MMUs found in contemporary processors are the result of a long co-evolution with
the Multics (and then UNIX) process models [14, 38], to provide process-granularity fault
isolation. Programs reside in virtual memory, giving separate scopes to the pointers (integers)
used by each process. MMUs conflate protection and translation: the granularity of both is one
virtual page. When OS kernels act on userspace, e.g., via pointers passed in to system calls,
they must act on the correct set of physical pages corresponding to the process.

However, the table-driven approaches of modern MMUs do not scale easily to handle finer-
grain protection, e.g., for language-defined objects – often much smaller than a page or not
sized in whole pages. Besides, the MMU still does not distinguish virtual addresses from
arbitrary integers: while the MMU protects the structure of the virtual memory space, the
references to virtual memory (i.e., integers implementing pointers) are unprotected.

In thinking how we can improve this situation, we are guided by two underlying princi-
ples. The first is the principle of least privilege, a classic in computer security: greater security
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can be obtained by minimizing the privileges accessible to running software [40]. The second,
newly identified during our work, is the principle of intentional use: where a set of privileges
is available to a piece of software, an invoked privilege should be selected explicitly rather than
implicitly, e.g., by selecting a specific capability with just the required privileges, rather than
via an arbitrary table search. The principle of intentional use covers not only minimizing priv-
ileges overtly used, but also not discarding valuable information during program compilation.
For example, out-of-bounds speculative reads could be avoided if the length of a buffer were
available to the hardware without expensive and disruptive lookups.

The application of these principles limits the scope of attacker behavior when exploiting a
bug, and, in the context of C-language memory protection, limits the effectiveness of attackers
in injecting, manipulating, or abusing pointers in the run-time environment – whether explicit
(i.e., declared code or data pointers) or implied (e.g., as used in generated code to implement
global variables or return addresses, or by the runtime to implement cross-library control flow).
We envisage a conceptual model in which:

• memory accesses are not merely via arbitrary integers (checked against only the process
address space), but also require an abstract capability, conferring an appropriate set of
memory access permissions;

• these abstract capabilities are constructed only by legitimate provenance chains1 of oper-
ations, successively reducing permissions from initial maximally permissive capabilities
provided at machine reset; and

• code is not given access to excessive capabilities.
Importantly, we aim to provide this across whole-system executions, not just within the C-

language portion of user processes. This means that we have to capture the many ways that
pointer values are constructed and manipulated, including process creation, virtual memory
including swapping, system calls, dynamic linking, context switching, signal delivery, debug-
ging, and a host of C-language operations.

Considerable C-language memory-safety research (considered further in Section 7) has ex-
plored various software- and hardware-based mitigation techniques, both static and dynamic,
that protect the integrity of pointers, constrain control flow, and protect the code and data refer-
enced by pointers [35, 36, 12, 11, 13, 3, 18, 28, 31, 29, 24, 55, 10, 52, 45, 9, 25, 41]. This has
shown that while enforcing pointer-based protection can be helpful in mitigating bugs, it is also
potentially disruptive. Prior work has suffered from a range of practical limitations, including:
requiring large changes to existing codebases, using a unique OS or library infrastructure in-
stead of a full POSIX environment, being limited to statically linked code, lacking coverage in
run-time libraries or kernels, and incurring high performance costs.

The basic question here is whether it is practical to support a large-scale C-language soft-
ware stack with strong pointer-based protection (along the lines of the conceptual model above),
with only modest changes to existing C codebases, and with reasonable performance cost.
We answer this question affirmatively. We have adapted a complete C, C++, and assembly-
language software stack, including the open-source FreeBSD OS [33] (nearly 800 UNIX pro-
grams and more than 200 libraries including OpenSSH, OpenSSL, and bsnmpd) and Post-
greSQL database, to employ ubiquitous capability-based pointer and virtual-address protection.

1By provenance, we mean a series of correct operations like those we describe in [34], not to the attribution of
errors as in Bond [6].



5

Our approach implements abstract capabilities using Capability Hardware Enhanced RISC
Instructions (CHERI) [52] architectural capabilities: these are hardware-implemented run-
time capabilities that can be reduced but not forged by software. CHERI capabilities provide
spatial integrity (a capability cannot be used to access memory outside its intended bounds and
privileges) and referential integrity (capabilities may be neither forged nor corrupted to alter
their bounds).

Two key challenges arise in implementing abstract capabilities. First, CHERI architectural
capabilities are expressed in terms of virtual addresses, and have no meaning except in conjunc-
tion with a specific virtual-to-physical mapping. Given such a mapping, each capability allows
direct access to a specific subset of physical memory. However, these mappings change over
time (e.g., when the OS creates a new user process, maps additional memory, alters the backing
of a mapping, or context switches to other address spaces). Second, in a real system, pointer
values are created in a wide variety of ways, some of which require special intervention to
preserve the provenance chain of abstract capabilities, even though the architectural capability
chain is broken – for example, when memory is paged out, or during process debugging.

In this paper, we:

• Review the semantics of CHERI capabilities.
• Introduce the concept of an abstract capability that grants access to some system re-

source(s), and discuss its construction and application.
• Describe the adaptation of over 99% of the C-language userspace of a UNIX operat-

ing system and enterprise database to employ fine-grained CHERI memory protection
throughout userspace, while requiring only minimal source-code modification.

• Extend prior userspace pointer-protection work by enforcing language-defined memory
models in the OS kernel through construction and maintenance of abstract capabilities,
preventing confused-deputy attacks via the kernel. We consider numerous “edge cases”
in OS design often ignored in earlier work in memory protection, such as process startup,
dynamic linking, thread-local storage (TLS), signal delivery, management APIs such as
(ioctl), and debugging, all of which are essential to abstract capabilities.

• Utilize trace-based execution analysis to reconstruct the abstract capabilities of processes,
and quantify the increased granularity of architectural capabilities.

• Analyze the impact of pointer integrity, provenance, monotonicity, and spatial protection
across UNIX.

• Extend the CHERI ISA to enable generation of more efficient code for dynamically
linked programs, and improved compatibility with existing C code.

• Validate, on an FPGA-based platform, that the performance overhead of architectural
memory protection is acceptable for mainstream software.

• Discuss changes to the CHERI C compiler based on our experience in compiling and
running large amounts of software.

To our knowledge, this is the first complete UNIX system offering ubiquitous spatial and refer-
ential memory safety, granting us unique insights into the practicality of C-language protection
at scale. Supporting a substantial software stack that includes the entire UNIX OS has forced
us to explore many of the dark corners of C programming. However, once the run-time envi-
ronment has been updated, the vast majority of code can simply be recompiled.
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2 CHERI Background

The CHERI architecture adds a new hardware data type suitable to implement strongly pro-
tected C-language pointers, namely, the CHERI capability. CHERI capabilities extend integer
virtual addresses to control access to virtual memory by adjoining bounds constraining the
range of addresses and permissions limiting the use of each capability (e.g., load, store, or
instruction fetch). We previously described the initial CHERI architecture [48, 55], demon-
strated an efficient compartmentalization framework above it [52, 49], described a C-language
compilation mode where all pointers are capabilities [10], and demonstrated the use of those
abilities to implement a safer JNI [9]. The architecture enforces the following properties:
Provenance validation ensures that only capabilities derived via valid transformations of valid

capabilities using capability instructions can be used.
Capability integrity prevents direct in-memory manipulation of architectural capability en-

codings. Specifically, any direct store to memory containing a capability not via a capa-
bility store instruction renders the stored capability invalid.

Monotonicity prevents the permissions or bounds associated with a capability from being in-
creased. E.g. attempting to increase the length of a capability.

These properties collectively imply unforgeability of capabilities. All accesses to virtual mem-
ory are via capabilities. Instructions are fetched via the program-counter capability (PCC).
CHERI implementations add instructions to support explicit capability-relative load, store, and
jump, as well as to manipulate capabilities. Legacy instructions accessing memory via virtual
addresses are indirected through a default data capability (DDC) register.

On processor reset, initial global capabilities are made available via registers. Capabilities
may be stored from capability registers to memory and loaded back with dedicated instructions.
However, IO devices have not been extended to support capabilities; separate action must be
taken to preserve the validity of capabilities, for example, if they are swapped to persistent stor-
age and later restored. Capabilities in registers may be transformed with further instructions –
including duplication (just as one can copy an integer address), arithmetic address manipula-
tion (such as incrementing a pointer through an array), permission reduction (e.g., constructing
a read-only capability from a read-write one), and bounds reduction (yielding a capability au-
thorizing access to a smaller span of virtual addresses). Software can employ these features
to restrict use of derived pointers – e.g., by narrowing the bounds on a pointer to match an
allocation, or to prevent writing via a function pointer. In our prior work [55, 10, 52, 9], reduc-
tions in privilege were done via language-level objects or explicit capability instructions, rather
than the OS or C-language runtime. This left capabilities to the full address space available
outside sandboxes, and all kernel interactions were by unbounded and forgeable integer virtual
addresses.

In implementation, CHERI extends 64-bit addresses with metadata [51] in both the in-
register and in-memory representations, increasing the in-memory size of pointers to 128 bits [54],
plus an out-of-band tag bit.2 There is one tag bit per capability-sized and capability-aligned re-

2Achieving 128-bit pointers requires compression of each capability (e.g., including 64-bit position, lower
bound, upper bound; permission flags; and other metadata). An alternative implementation, which more directly
encodes capabilities, uses 256 bits per pointer (plus the tag bit). Compression exploits commonalities in position
and bounds values, but requires that large spans are aligned and sized at larger than byte granularity. Such con-
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gion of physical memory, to distinguish between data (i.e., integers) and capabilities. This tag
bit follows memory contents through the cache hierarchy and into (capability) registers and
indicates valid provenance of the capability therein. Violations of the architectural capability
semantics, including overwriting their representation with (integer) data, will clear the tag, pre-
venting subsequent interpretation as a capability. Tags may not be explicitly set by software; all
capabilities are transitively derived from the initial capabilities provided at reset; that is, valid
provenance is enforced.

We implemented the CHERI protection model as an extension to the 64-bit MIPS ISA,
including ISA-level emulation (Qemu) and hardware (FGPA) implementations. This allows for
both fast software simulation and more detailed microarchitectural studies.

The CHERI C compiler supports two modes of operation for pointers: a hybrid mode
in which only pointers annotated with __capability qualifiers become capabilities (un-
annotated pointers remain integers and are checked w.r.t. the DDC), and a pure-capability
mode in which all explicit (and implied) pointers are capabilities. Our prior work used the
pure-capability mode within sandboxes [52, 9]. By contrast to the present work, these sand-
boxes utilized only static linking, and provided no (or a limited) system-call layer – limiting
adaptability of code and evaluation at scale. Non-sandboxed code retained permissions, via
DDC, to the entire user-program address space.

The CheriBSD operating system is an adaptation of the FreeBSD operating system, with
added support for CHERI capabilities. In prior work, we implemented only the basic CheriBSD
kernel and runtime infrastructure necessary to run a (hybrid-mode) userspace program manip-
ulating capabilities: capability-register context switching, tagged memory, preserving capabil-
ities when copying memory, etc. Outside some limited code in sandboxes, capabilities were
used by the compiler only where explicitly annotated, and no implied virtual addresses (e.g., as
used in dynamic-linker-implemented Global Offset Tables (GOTs), return addresses, or v-table
pointers) were implemented as capabilities.

This paper extends pure-capability support to the full userspace process environment, ad-
dressing for the first time topics such as capability interactions with system calls, signals, dy-
namic linking, and process debugging. Critically, this allows DDC to be assigned a value of
NULL, eliminating legacy MIPS loads and stores utilizing DDC implicitly; all memory ac-
cesses are performed intentionally through explicit capabilities having reduced permissions
and narrowed bounds. With the exception of thread-local-storage, data pointers are restricted
to C-language objects.

3 Abstract capabilities
Our work is based on an abstract conceptual model in which every legitimate memory access
is via a deliberately constructed abstract capability (following the principle of intentional use),
which allows that access but (following the principle of least privilege) should not allow access
to unrelated data. Such capabilities are constructed by some legitimate chain of operations
rooted at primordial, omnipotent, capabilities.

straints affect memory allocators and stack layout, which must pad allocation sizes up to ensure that capability
references do not overlap.
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Thread stack

Userspace
Kernel

ELF aux args:
rtld binary

program binary
envv, argv

envv[]

argv[]

Process arguments

Capabilities in user registers:
  Code capability
  Default data capability
  Stack capability
  Argument capability

Capabilities copied 
into user memory:
  ELF aux args
  argv[] array
  envv[] array
  Program binary
  Run-time linker
  …

rtld binary

Program binary

Virtual memory mappings

Root user 
capability

Legend Capability points to Capability propagation

TCB 1

$csp

$args
…

$pcc

Figure 1: Process creation installs capabilities into both the user-thread register file and initial
memory mappings.

The abstract capability model is implemented with a subtle combination of architectural
capabilities (as provided by the hardware) and the critical systems code involved in managing
paging, context switching, linking, memory allocation, and suchlike. The model allows pro-
grammers to reason about the effective properties of capabilities without the need to understand
the details of each of these issues. This is analogous to the traditional Unix abstract process
model, where virtual memory, file descriptors, credentials, threads, and signals combine to
form a coherent programming environment in which programmers can reason about processes
in relatively simple terms, without knowing all the implementation details.

The main challenge in defining the concept of an abstract capability is the fact that our
architectural capabilities are expressed in terms of virtual addresses, and therefore have mean-
ing only in conjunction with a specific interpretation thereof. Given a fixed and total virtual-
to-physical mapping, each capability would authorize access to a specific subset of physical
memory. However, operating systems actually maintain partial mappings, relying on page
faults to provide illusory additional physical memory (e.g., by paging to and from storage, zero
filling on demand, or copying on writes). Moreover, these mappings are dynamic, as processes
request and release memory. We therefore introduce a model in which an abstract capability
contains a set of access rights to abstract memory and a conceptual abstract principal ID. Prin-
cipal IDs are freshly created for the kernel and each process address space, unique over the
entire execution. Abstract physical memory is an unbounded byte array, a source of never-
before-used addresses for each successive allocation. The OS is responsible for concretizing
this abstract model by implementing it using architectural features. That is, the OS maintains
invariants about its virtual-to-physical mappings and paging-related metadata, e.g., to prevent
an architectural capability from mistakenly being used to access private abstract memory of
another process either though virtual-to-physical aliasing or incorrect paging.

In our experimental system, abstract and architectural capabilities are constructed in the
following ways:
CPU reset At hardware reset, maximally permissive architectural capabilities are provided to
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Userspace
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Figure 2: Context switches preserve abstract capabilities using architectural capabilities or
capability rederivation.

the boot code. In CHERI-MIPS, DDC and PCC contain identical, omnipotent capabilities at
reset time. An architecture with fewer compatibility constraints could take a more aggressive
approach, e.g. making it impossible to encode a capability with both write and execute permis-
sions.
Kernel startup The kernel deliberately narrows these boot capabilities to ones separately cov-
ering userspace, kernel code, and kernel data.
Process address-space creation When a process address space is replaced by execve, the
kernel establishes new memory mappings for the contents of the address space. It subdivides
the previously created userspace capability into one for each mapped object (text, data, stack,
arguments, etc). The newly mapped virtual memory maps onto physical memory disjoint from
that currently mapped for any other process or the kernel, excepting mappings deliberately
shared between processes (including read- or execute-only and copy-on-write pages). Concep-
tually, we create a fresh principal ID, and the initial user abstract capability encompasses all
the physical-memory access rights of those architectural capabilities with regard to the new
memory mapping. (See Figure 1.)
Context switching The kernel saves and restores user-thread register capability state, and up-
dates the virtual-to-physical mappings if required. (Figure 2 illustrates this along with swapping
and signal handling.)
Swapping Any userspace page and some kernel pages may be swapped out to external storage,
which does not preserve tags. The swap subsystem scans evicted pages, recording tags in
the swap metadata. When pages are restored, the swap-in code derives a new architectural
capability from the saved values and an appropriate root capability. This preserves the abstract
capability, despite the break in the architectural capability chain.
Signals Signal delivery is similar to context switching, except that the register state is copied
to the signal stack for modification. Access to, and manipulation of, saved capability state by
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Userspace
Kernel

Memory mappings

User page
$c3

Buffer

Buffer capability 1. Capability to buffer 
loaded into register, 
passed as system-
call argument

Pseudo-terminal

File-descriptor layer

System-call layer

2. Kernel code dereferences 
user-provided capabilities 
when accessing user memory

$c3

Figure 3: The kernel observes abstract capabilities by accessing user memory only through user
capabilities.

the signal handler preserves the architectural capability chain.
System calls When a process makes a system call with a pointer argument (e.g., passing a
reference to a buffer), the kernel will use the passed-in capability when dereferencing that
pointer (rather than using its own, elevated, authority). We have altered all standard methods of
accessing process memory to use an explicit capability (respecting the principle of intentional
use). This ensures that the kernel accesses only the memory specified – and authorized – by
the user process. Figure 3 illustrates an example path for such a capability from userspace to a
copyin routine.
Automatic references As references are taken to automatic variables, compiler-generated code
derives bounded capabilities to those objects from the stack capability.
Dynamic linking The run-time linker creates subsets of the program and library data capabil-
ities for each global variable, and from code capabilities for each jump destination, and places
them in a capability-extended GOT.
PC-relative accesses Values installed in PCC are bounded to shared objects, constraining con-
trol flow and limiting potential for arbitrary code execution.
C/C++ function calls At C or C++ function calls and returns, the stack capability is updated
to the new stack frame, and both the previous stack frame and return capability are spilled to
the stack. The use of capabilities in the return path strongly limits attackers’ ability to leverage
memory-safety errors by requiring that these capabilities be overwritten with capabilities with
appropriate permissions in order to escalate an attack.
C pointer arithmetic C pointer arithmetic manifests as arithmetic on the address contained in
the architectural capability, leaving its bounds and permissions unchanged.
Memory allocation Each allocator (e.g., malloc and TLS) maintains a set of architectural
capabilities to regions allocated by mmap, from which it derives narrower responses to requests.
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Freed capabilities are used to look up internal capabilities and are then discarded.
Pointer propagation Architectural capabilities are maintained across various low-level C id-
ioms including explicit and implied memory copies (e.g., memory sorting and bitwise pointer
manipulations used in locking code).
Debugging Two processes are involved in debugging – the debugger and the target – and hence
two different principal IDs. Abstract capabilities belong to one or the other, and must not be
propagated between them. The debugger process may inspect capabilities from, or inject capa-
bilities into, the target memory or register file; these capabilities are derived from an appropriate
extant target or root architectural capability.
Legacy loads and stores We prohibit legacy (integer pointer) loads and stores by installing
a NULL capability in DDC. Every MIPS load/store is indirected and bounds-checked using
DDC; therefore, installing a NULL DDC will result in a trap being raised whenever such a
load/store is used.
Shared memory Shared memory is a key form of IPC on POSIX systems. While doing so
safely can be tricky, some applications do share pointers between processes after careful ar-
rangement to ensure that the shared pointers are valid in both address spaces (either due to a
parent-child relationship via fork or due to mapping the same contents in the same place) or
used only in one process. Without a flow control mechanism of some sort, it would be easy
for colluding processing to violate the integrity of the abstract capability; thus, we currently
disable storing or loading capabilites in shared memory.

We must ensure not just that the capability used for an access is legitimate and appropri-
ately minimal, but also that the whole set of capabilities available to the code is appropriately
minimal, otherwise we would provide weaker mitigation than desired. Most notably, each prin-
cipal’s abstract capability has a disjoint root. Specifically, while principals may have memory
mapped at the same virtual address, they do not share access to physical pages (with a few ex-
plicit exceptions involving the signal trampoline and programmer controlled shaped memory).

4 Implementation

Our goal is to compile, run, and evaluate the complete C-language userspace of the FreeBSD
operating system, compiled such that all dereferenceable pointers and implied virtual addresses
are implemented as capabilities having valid provenance and minimized bounds. The question
is then: by how much can we reduce bounds, given the constraints of compatibility with existing
code and system-call APIs?

To achieve our goal, we have made changes to the CHERI ISA, the C compiler, the C
language runtime, the virtual-memory APIs, and the CheriBSD kernel.

In our prior work [52, 10] on pure-capability C, we derived bounded capabilities on static,
global, automatic, and dynamic allocations from a single, address-space-covering capability.
Considered under the lens of the principle of least privilege, this is undesirable. In this work, we
set DDC to NULL, and place bounds on PCC and global references derived from capabilities
to regions mapped by the kernel in execve or mmap.

Our implementation extends our prior work on pure-capability code from a sandbox envi-
ronment [52] with limited POSIX compatibility to a new process Application Binary Interface
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(ABI), CheriABI. In CheriABI, all pointers are capabilities, and all kernel manipulations of pro-
cess memory are via explicitly delegated capabilities. In our prior work, the kernel interacted
with capabilities via inline assembly stubs. Our enhanced version of the CheriBSD kernel is
a hybrid C program where nearly all interactions with userspace are via explicitly annotated
capability pointers.3 Of the 675 C and 8 assembly language files in our test kernels, 26 were
created to support capabilities and 146 required adaptation for capabilities. In the full kernel
source, about 750 files were touched. Other than a single file, implementing the CHERI-MIPS
specific portions of CheriABI, the changes for CheriABI apply to any CHERI implementation.
We continue to support the large suite of “legacy” MIPS userspace applications that adhere to
the SysV ABI [47], alongside CheriABI userspace programs.

As part of our baseline we assume that the kernel ensures that the correct physical pages
are mapped when accessing user pages from the kernel. This places the kernel within the
trusted computing base (TCB) of the process (as does the fact that the kernel must have the
ability to create capabilities for new processes). Our changes to use capabilities for all access to
userspace limit the degree to which the kernel can be tricked into performing incorrect accesses.
FreeBSD MIPS (and most other architectures) reserves the low portion of the address space for
the current user virtual-memory map as an optimization for copyin and related functions. We
rely on that being correct and, currently, on the kernel using that mapping only via authorized
functions.

4.1 Implementation tradeoffs
In any large-scale systems project, implementation tradeoffs are inevitable. With CheriABI we
faced a number of choices, including:

• Method of handling system call capability arguments.

• Kernel capability programming model (inline assembly, hybrid C, or pure-capability C).

• Making CheriABI the default ABI vs a compatibility ABI.

These options intertwine with each other. We discuss these options and the evolution of our
implementation as our thinking evolved.

A spectrum of options exists for implementing system calls that take capability arguments.
At one end, requiring the least work by the kernel developers, language annotations or alterna-
tive system-call stubs can be used to call into the unmodified system-call vector with pointer
arguments being integers. At the other end, a pure-capability kernel would handle capability
system-call arguments directly. In the middle, capability pointers can be converted to integer
virtual addresses and passed to otherwise unmodified kernel functions, with or without vali-
dation of their range and permissions. Across this spectrum, more work yields more precise
enforcement of abstract capability properties. Table 4.1 summarizes some interesting points on
the spectrum.

When we started work on CheriABI, the kernel was a legacy (MIPS) C program with some
assembly stubs to manipulate capabilities. Before we started work, we rejected a declaration

3 The primary exception is in the code the copies argument and environment strings to the stack during
execve. This is correctable with some refactoring.
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Kernel implements Kernel acts via Issues
user memory model

Userspace none Virtual Address Wrappers are subject to races
wrappers

Pointer none Virtual Address Capabilities bypassed
translation

Capability tag, length, perms Virtual address Annotations must be correct
validation and Capability & Confused deputy issues

Capabilities all Capability Non-capability ABIs
in kernel require kernel changes

Table 1: Spectrum of system-call implementation options

annotation model, due to the principle that declarations should not be modified if compatibility
is to be maintained with existing – often poor – programming practices, and the fact that it
would not avoid the need to translate structures containing pointers – and thus would still
require kernel modifications or large userspace stubs duplication kernel code. We similarly
rejected the system-call stub model we had used in CHERI JNI [9], because that model can
enforce capability restrictions only if the caller is inside a sandbox and unable to make system
calls directly. The stub and proxy model can work, but it requires expensive copying semantics
to prevent concurrency vulnerabilities [50]. Due to a desire to avoid widespread modifications
to the kernel, our first system call implementation used a verification based approach where
generated code checked that the capabilities passed to system calls had appropriate bounds and
permissions. This approach had serious drawbacks. The most common issue was that capability
arguments without associated lengths (usually file paths) could not be checked at system-call
entry, because that would introduce a time-of-check to time-of-use vulnerability. Avoiding this
by copying at entry would have been enormously disruptive, so we initially skipped the checks.
Programming with assembly macros was also awkward. After a rejection forced us to consider
the work in new light, we took advantage of the fact that C compiler support for hybrid code
was significantly advanced from our start in 2015, and switched away from the validation model
to the model described in this paper, where capabilities are carried down the call stack and are
first class citizens in the kernel. In doing so, we converted the kernel to a hybrid program,
eliminating the use of inline assembly macros in favor of annotated capabilities and compiler
provided __builtin_* functions.

It’s worth noting that the approach of checking and translating at system call entry had one
major advantage. It took a few months of less than full-time effort to get basic pure-capability
binaries up and running while touching few files. This was aided by the fact that FreeBSD
generates many aspects of system-call tables using a script, so additional code generation could
be slotted in with relative ease.

By contrast, making a hybrid kernel was fairly invasive, and each system call needed to
be handled manually. Additionally, all code that handled user pointers needed to be modified
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to accept capabilities.4 Further, code that handles objects containing capabilities needed to be
modified to use annotated versions of the objects. Because we wanted to keep legacy binaries
working, this required us to perform transformations to unify the type of storage used between
legacy and CheriABI. In practice, this meant converting legacy virtual-address-based pointers
into capabilities. One complexity of these conversions is the practice of passing sentinels in
place of pointers. For example, the sigaction system call takes an action that is SIG_DFL
, SIG_IGN, or a signal handler function pointer. We do not want to turn SIG_IGN (defined
as ((__sighandler_t *)1)) into a valid pointer to the virtual address 1 in the thread’s
DDC. Instead we want it to be an untagged value of 1 (e.g. (char *)NULL + 1). As a
pragmatic compromise, we observed that sentinel values are generally in the kernel address
space (often represented as negative numbers) or within the first 4KiB of address space – which
is unmapped in all sensible ABIs to prevent NULL-pointer dereference bugs – and thus create
any such capabilities as offsets from the NULL capability rather than from the thread’s DDC.
This conversion is performed by explicit macros in the kernel.

This leads into the third tradeoff: making CheriABI the default ABI or a compatibility
ABI. In our initial model, it made a great deal of sense to make CheriABI a compatibility layer.
Most capability interaction occurred at the system call boundary so it was straightforward to
start from the 32-bit compatibility layer and convert it into a CheriABI layer. This allowed
the system to keep working with legacy binaries allowing us to debug from within the running
system rather than having to make init work before any other program. As we transitioned to
a hybrid kernel this became awkward. Where legacy object types were shared between kernel
and userspace (e.g., struct iovec, struct sigevent, and union sigval), we had to
add a new type that could hold capabilities and modify both legacy and CheriABI support code
to use the new types. An alternative approach we are currently exploring is to implement a
64-bit compatibility ABI and transitioning CheriABI to the default ABI. We are doing is this
work in the context of a port from a hybrid kernel to a pure-capability kernel.

4.1.1 Considerations for memcpy

The memcpy function must preserve capabilities in C objects that are copied. Since memcpy

does not know what is in the bytes being copied, it must conservatively preserve capabilities,
at a minimum when both source and destination have capability alignment. Due to the possible
use of memcpy for partial structure copying (and for better efficiency on large copies), we have
chosen to implement copying of capabilities for any capability aligned subset of the source and
destination buffers. Arguably, this leads to over-preservation in some cases, but the C language
aliasing rules make it hard to do better. For example, we could avoid copying capabilities for
arrays whose elements are less then the size of a capability, but must still preserve them for any
array of byte alignment since such an array can be promoted to any alignment via a cast.

4We found cases that required modification through a number of mechanisms, primarily adding annotations to
interfaces and searching for consumers, falling backed to letting the compiler help us propagate annotations down
to the point of use. The __user annotations used in Linux might provide some value here, but they annotate the
storage (e.g. char __user * buf) rather than the pointer (e.g. char * __capability buf) so
they are not directly usable.
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4.2 Limited precision of 128-bit capabilities

With compressed (128-bit) capabilities, placing bounds on capabilities poses some complica-
tions. Large, but oddly sized allocations must be rounded up so that returned capabilities have
a base and length that are precisely representable. In our original implementation, we used a
compressed capability format where the base and length could differ in at most 20 consecutive
bits. Given that most malloc implementations round up any allocation over a page in size
(4KiB here), this means that any allocation under 4GiB (2(20+12)) will be bounded to the un-
derlying allocation. Larger allocations at page granularity are certainly possible, but we did not
address the issue. Post publication we have switched to a new capability format where capabil-
ities covering more than 213 bytes have only 10 bits of precision. This will require significantly
more rounding up. Some allocators make this easy (e.g. malloc returning more than requested
is normal, but stack allocations may require run-time stack alignment).

4.3 Starting CheriABI processes with execve

CheriABI (and legacy) programs are mapped into the process address space by the execve

system call, along with command-line arguments, environment, an initial stack, and the run-
time linker as shown in Figure 1. Legacy programs store the argument, environment, and ELF
auxiliary argument arrays at the top of the stack, adjusting the initial stack pointer appropri-
ately [16, 47]. CheriABI processes have a similar set of arrays, the main difference being that
all pointers are bounded capabilities. We have currently left the contents of arrays alone includ-
ing carrying some unnecessary baggage such as stack canary initialization values (not needed
with strong, compiler-enforced stack bounds). We have altered the C run-time to take a pointer
to the ELF auxiliary argument array and extended it to contain pointers to the argument and
environment arrays (argv and environ) as well as argument and environment counts (argc
and envc), rather than using knowledge of the stack layout and walking off the end of the
environment array to find the auxiliary argument vector.

In addition to these arrays, the signal trampoline and the ps_strings structure sit at the
very top of the stack area. On most FreeBSD architectures the signal trampoline is located
in a special page that is shared between processes of the same ABI. This was not the case
with FreeBSD-MIPS due to limitations in the virtual memory subsystem on TLBs for certain
low-end MIPS CPUs and instead the signal trampoline was installed on the the stack. As our
evaluation platforms do not suffer from the underlying TLB limitations, we enabled shared-
page support in both BERI and Malta (Qemu) as well as CHERI configurations allowing us to
keep the executable signal trampoline separate from the stack. On platforms where the TLB
can protect against execution, this separation is critical as it prevents the stack from needing
execute permissions. MIPS is not such an architecture, but the separation seemed advisable.

Once loaded, the program drives further changes to the address space (including dynamic
loading) via system calls. The program refines both the initial capabilities provided at startup
and capabilities to later mappings.
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4.4 Run-time capability refinement
Capabilities used throughout the lifetime of the program are further bounded by the compiler
and the runtime linker (or C startup code for statically linked binaries).

Refining stack capabilities Compiler-generated code sets bounds on references to variables
on the stack. These prevent classic stack-based buffer overflows. Dynamic allocation (e.g.,
malloc is discussed later in this section).

Refining heap capabilities All capabilities for objects on the heap are created by malloc().
See section 4.10 for the modifications that need to be made to malloc so that each heap object
is tightly bounded and has bounds that do not overlap with other objects. If an application uses
a custom allocator, or further subdivides allocations performed by malloc(), it will also need
to be modified in the same way. It is worth noting that some sub-allocators use patterns that
result in the storage being unusable for capabilities. For example, the SQLite allocator returns
a pointer to a region aligned to a size_t due to allocation size metadata being stored at the
beginning of the block. Since size_t is 8-bytes and capabilities require 16-byte alignment,
capabilities can not be stored.

Refining global capabilities Capabilities for global variables (such const char* string
constants, etc.) are set-up at program startup by the runtime linker.5 This ensures that a pointer
to the string "Hello, World!" is represented by a capability of length 14 (spanning the string
data and the terminating NULL character). Section 4.6 explains how this can be done in more
detail.

4.5 Thread-local storage
We have added a CHERI-compatible TLS implementation modeled on the MIPS implementa-
tion. Bounds are per shared-object rather than per variable, to avoid an extra indirection, but
this is a marked improvement over the original, which provided no isolation of TLS segments.

The legacy MIPS implementation is a TLS Variant I [20] implementation where the read-
hardware-register instruction is used to retrieve a virtual address pointing to the current thread’s
TLS object from a reserved hardware register. On systems that do not support the instruction,
the trap handler emulates it. We extended CHERI-MIPS to include a capability read-hardware-
register instruction and return a capability to the TLS object from a new reserved hardware
capability register, rather than having to maintain access to all TLS objects via DDC.

The legacy MIPS implementation adds a bias of 0x7000 to this virtual address to allow
for more efficient use of the 16-bit signed immediate range of its load instructions. To ensure
the TLS object capability remains representable, we removed this bias for CheriABI, though a
smaller bias could be re-introduced based on the capability format.

Many of the optimizations used by models other than General Dynamic rely on adding a
(possibly computed) offset to a pointer, with varying ways in which the offset is computed and

5In statically linked binaries we still need to initialize these capabilities and therefore the subset of the runtime
linker that performs this initialization is embedded into each static binary as part of the C startup code
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initial pointer obtained. These would no longer be possible with tight bounds. Local Dynamic
would become identical to General Dynamic, but as with the existing Initial Exec and Local
Exec models, TLS accesses from executables could still be optimized to some extent by inlining
the accesses to the TLS object.

One possible design for tight bounds would be to modify the Dynamic Thread Vector (DTV)
such that each slot is a capability for a specific symbol, like a thread-local GOT. However, in the
presence of dlclose this could lead to significant fragmentation of the DTV. An alternative
scheme would be to keep one slot per module in the DTV, with each module’s capability then
indirecting through another vector of that module’s symbols. This would avoid fragmentation,
but at the cost of an extra level of indirection per TLS lookup. In both cases there would no
longer be a static TLS block after the Thread Control Block.

4.6 Dynamic linking
Global variables containing pointers are initialized during process startup, as tags are not pre-
served on disk. This adds overhead comparable to position-independent binaries (commonly
used to improve ASLR [46, 21]). We extended the dynamic linker (RTLD) to initialize external
symbol references using new dynamic relocations that initialize and bound the capability. We
use a new ELF relocation R_MIPS_CHERI_CAPABILITY for external symbol references; for
local (non-preemptible) symbols, we use a special section (__cap_relocs) that contains infor-
mation about the capabilities to be initialized. Although using two different mechanisms for
the same goal may not seem ideal, there is one advantage. Statically linked programs contain
only local symbols, allowing us to share the code to process the __cap_relocs section. While
some operating systems support dlopen() in static binaries (and therefore embed all the ELF
relocation processing code), this is not the case on FreeBSD. Therefore, we used a different
mechanism for capability initialization in static binaries. When we added support for dynamic
linking, we chose to reuse the existing code for local symbols and only treat references that
require a symbol lookup differently.

In the MIPS n64 ABI references to global variables and functions are made by loading the
virtual addresses of the symbol from a table in the binary, called the GOT (Global Offset Ta-
ble). For the pure-capability ABI we changed this table to contain tightly bounded capabilities
instead. This ensures that taking the address of a global variable in C (&my_global) will give
a capability spanning only the object and will not grant access to adjacent variables. In order
to add bounds for global variables, we parse the ELF symbol table and use the st_size field
in the Elf_Sym structure as the size of global variables. The st_size value is emitted by
the compiler and will correspond to the size of the C/C++ declaration6 and for functions it is
the size of all instructions in that function. However, we only use exact bounds for data sym-
bols and bound function symbols to the containing shared object’s code segment.7 While these
bounds are not minimal, this preserves the ability of code to use branches in place of jumps

6 We discovered that some C programs loop over ELF sections using the linker-generated __start<name
> and __stop_<name> symbols. This initially caused bounds violations at run-time since the st_size
value that the static linker emits was zero and therefore resulted in a zero-length capability. To fix this problem,
we modified the static linker to use the section size for linker-generated symbols.

7 We have an experimental compiler and linker mode that will bound code pointers to only the current function,
but do not use this by default.
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between functions. The wide bounds also facilitate the existing practice of referencing global
variables using program-counter-relative addressing. The same bounds logic is also used when
looking up a symbol at run-time with the dlsym() API.

4.7 System calls

Our implementation transforms the kernel into a hybrid C program where all access to userspace
for CheriABI processes is via explicitly annotated capability pointers. System calls use these
architectural capabilities to access process memory during a call. When acting on the address
space of a CheriABI process, non-capability versions of copyout and copyin return errors,
ensuring that all access to process memory is via explicit capabilities. Some of the tradeoffs in
converting to explicit capabilities are discussed above.

A few system calls take pointers and, rather than dereferencing them, store them in kernel
data structures for later return. In all such cases (including signal handling, asynchronous I/O,
and FreeBSD’s kevent), we have modified the kernel structures to store capabilities and the
legacy ABIs to convert pointers into capabilities for storage. Some of the tradeoffs involved are
discussed above.

To reduce the risk of accidental copying of capabilities between userspace and the kernel,
we strip tags from copied capabilities unless special interfaces are used. Our capability-copying
versions copyincap, copyoutcap, etc are the same as the ordinary versions except that they
preserve capabilities when copying between appropriately sized and aligned regions. It is usu-
ally obvious when these are needed, but ioctl and sysctl present challenges: it is not easy
to tell whether capabilities should be preserved for a given command. FreeBSD’s ioctl (as
opposed to Linux’s) centralizes the copying in and out of data passed to ioctl calls. This has
the upside that there are fewer opportunities for error, but the downside that we must always
use copyincap and copyoutcap because we can not tell from the 32-bit ioctl command if
a given object might contain capabilities. It may be possible to add a bit indicating the presence
of pointers in future ioctl commands, but compatibility would present challenges. Handling
ioctl commands which contain pointers requires either that the kernel use the pure-capability
object natively or that each command be audited by hand. Additionally, if the size encoded in
the ioctl command is 0 then a pointer to the raw system call argument is passed down and is
some cases is use as an argument to copyin or copyout. The sysctl interface is somewhat
easier to handle in this regard. Copying to or from userspace occurs in the sysctl handler;
thus, the types being copied are known (most importantly, it is known if the data being copied
contains pointers). Unfortunately, the code to do so is hard to find; all copy sites need to be
audited, because the object names do not appear in declaration macros. For one use case where
exporting a capability made sense, we have extended the sysctl interface to preserve capabil-
ities if the sysctl definition is annotated appropriately. Some management interfaces export
kernel pointers. Where we have encountered them, we have altered them to expose virtual
addresses rather than kernel capabilities. More work is likely required in this area.



4.8 Virtual-address management APIs 19

4.8 Virtual-address management APIs
POSIX programs add or extend memory mappings through three system calls: sbrk, mmap,
and shmat. The mmap and shmat system calls allocate (or alter the mappings of) regions of
memory, returning a reference to the new allocation. The sbrk API adjusts the heap size;
adding or removing mappings beyond the bss segment of the program binary.

4.8.1 mmap and shmat

While the interfaces differ, mmap and shmat system calls share many considerations with re-
gard to maintaining and preserving the integrity of the abstract capability so we discuss them
together. In CheriABI we have altered both to return capabilities that are bounded to the re-
quested allocation length, with permissions derived from the requested page permissions.

The first question that arises when implementing mmap or shmat is, where does the return
capability come from? In our implementation, we create a capability covering the potential
process address space during execve and attach it to the thread structure8 (propagated from
the parent thread when a new thread is created.) In the common case of allocation of previously
unallocated space, we use this per-thread capability to derive a capability to return to the user.
One significant exception is that both mmap and shmat allow the caller to specify a target
address for the mapping. In the case of mmap, the address can be an optional hint or a fixed
address for the mapping. With shmat, a fixed address is supported. If the fixed address is a
valid capability, we require that it have the vmmap user-defined capability permission. When a
capability is passed as the hint argument, the returned capability is derived from it, preserving
provenance. In mmap we allow untagged values and capabilities without the vmmap permissions
as hints; however, if the caller requests a fixed mapping, we allow it only if it would not replace
an existing mapping.9 These restrictions are necessary to ensure that one thread can not change
the mapping out from under another thread (gaining a valid capability to that memory in the
process). Without this, the abstract capability is not sound.

In the common case, the returned capability has permissions derived from OR of zero or
more of PROT_READ, PROT_WRITE, and PROT_EXEC values passed to the prot argument of
mmap ANDed with the permissions of the per-thread capability. These permission include –
as appropriate – load, store, and execute permissions as well as a user permission, vmmap,
which we use to control the ability to make future alterations to a mapping via a capability to
it. Where the user passes a capability we follow the same policy except that we use the passed
capability. An astute reader might notice that this would break the somewhat common pattern
(e.g., when establishing a VM address space) of reserving a region of memory with PROT_NONE
and then mapping things into in portions of it (e.g., a kernel binary.) We resolve this problem by
extending the mmap API with bits indicating the maximum permission the mapping could have
and returning a capability with those permissions. This requires a simple change to users of a
pattern that can usually be spotted by searching for PROT_NONE use. Another pattern where

8We attach the capability to the thread structure (vs. the process structure) on the theory that application
developers might choose to limit which threads can allocate from certain regions of memory. To support this
use case, we provide sysarch commands to query and reduce the bounds and permissions of the per-thread
capability. We have not yet explored such models.

9In CheriBSD, we do this by implying the FreeBSD-specific MAP_EXCL flag.
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JIT engines map a region writable and then convert it to executable will also require alteration.
We believe these small changes to low-level code, which colors well outside the lines of ISO
C, are well within the range of reasonable changes.10

Compressed capabilities pose precision challenges for mmap and shmat, similar to those
in malloc, discussed below. However, there are some differences. On the simplifying side,
allocations are always page sized, so only fairly large allocations are impacted. On the com-
plicating side, the mmap / munmap API works differently from the malloc / free API, in that
while passing values other then those returned from malloc to free is disallowed, munmap
can unmap any previously allocated page or range of pages, while unmaps always take an ex-
plicit length. This means that free can (and must) look up the size of the allocation in internal
data structures, but munmap must rely on the caller’s notation of the length. Because the mmap
interface provides no way to return the length actually mapped, if an allocation is rounded up
for representability, it will not be freed when the programmer calls munmap. We currently re-
ject unrepresentable allocation requests, requiring the programmer to round their requests up.
Alternatives are available, such as adding special padding to the end that can be unmapped if
the entire requested mapping is unmapped. We have not yet explored such an implementation.
In this regard, the interface of shmat is better designed. The shmat system call takes a shared
memory id allocated by shmget and shmdt looks up the length in the kernel shared memory
object to unmap pages.

In addition to the need to round up sizes, compressed capabilities require rounded up align-
ments for representability. In general, the kernel can just do the right thing, checking that
MAP_FIXED requests are properly aligned and requesting sufficiently aligned mappings from
the VM system in other cases. Because FreeBSD has an existing mmap extension for request-
ing both explicit minimum alignments and architecture independent super-page alignments, we
used this in our implementation and extended it with a flag for the user to request representable
alignment from legacy binaries (e.g. to support mapping memory sandbox address spaces).

4.8.2 sbrk

The sbrk interface predates modern APIs such as mmap – and is obsolete. Implementations
are possible with some limitations, but few programs require it – so we do not support it in our
prototype.

The interface of sbrk poses a number of challenges. As a reminder, its signature is void
* sbrk(int incr); and it takes a signed integer increment and adjusts the set of mapped

pages after (and immediately adjacent to) the bss segment up or down as required. It returns a
pointer to the so-called break. Based on our experience removing it from the FreeBSD RISC-V
and AArch64 ports, the vast majority of uses are not even for memory allocations. Instead,
consumers call sbrk(0) in an attempt to track heap usage. On systems where malloc is built
atop sbrk, this works, but with modern allocators based on mmap the result never changes and
is useless. A few systems (including GNU binutils) use it to implement internal allocators. In
almost all cases, we have found that these systems supported a mmap based allocator already

10The FreeBSD project is in the process of adopting the PROT_MAX() implementation to complement and
extend WˆX on even non-CHERI systems. By providing a way to express the maximum permission a page can
have, this change allows most pages to be mapped so that they can never become executable.
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(usually due to adding support for Windows at some point in the past), but some prefer the
sbrk implementation.11 Finally, and infamously, the Emacs editor’s unexec process depends
on sbrk as an allocator and upon assorted related baggage, including the end symbol, to pre-
compile Lisp code and dump it to disk as a new executable. Needless to say, if that image is
full of CHERI capabilities, it will not be possible to run without some additional infrastructure
to re-initialize those values. Fortunately, modern versions of Emacs have provided alternatives
to the un-portable and unsafe unexec due to ongoing maintenance issues in both Emacs and
glibc.

For consumers wanting to measure memory use, a version that returns NULL will be as
useful and accurate as the current implementation in practice. For allocator use of sbrk, a
simple version with a static pool should be straight forward. It seems likely that consumers
will assume that they can access any part of the heap from the pointer returned by sbrk, so an
implementation would likely want to return a capability to the whole pseudo-heap. Consumers
who need to access the whole binary as well as the heap are unlikely to see any benefit from
CheriABI, and should continue targeting the legacy ABI.

4.9 Signal handling
CheriABI signal handling is similar to legacy signaling, excepting adjustments for ABI differ-
ences in function calls and stack management, and the fact that the return trampoline capability
is a tightly bound capability to a read-only shared page mapped by execve rather than a pointer
to the top of the stack. The variety of ways signal handlers propagate values and function point-
ers poses compatibility challenges for the legacy ABI. In particular, it is difficult to know what
to extract from a union sigval when converting it to the kernel type, because only the caller
knows which part of the union was used. The use of sentinel values also adds complications and
requires careful use of casts to ensure the same values are generated between pure-capability
and hybrid code.

The main extension to the signal ABI was to extend ucontext_t with a pointer to capa-
bility registers. As FreeBSD has added new architectures (recently AArch64 and RISC-V), we
have ensured that ucontext_t is appropriately padded to allow extension.

4.10 Dynamic allocations
Dynamic allocations use a lightly modified version of JEMalloc, FreeBSD’s standard malloc.
We install bounds matching the requested allocation before return, and rederive pointers to
the underlying storage in the free and realloc paths using existing internal interfaces. In
addition to bounding the allocations, we strip the vmmap tag from returned pointers to prevent
the protections or mappings of the underlying memory from being changed by the process. In
the current version of JEMalloc, metadata is allocated separately from storage and located in
internal data structures, using the allocation’s virtual address as a key. This model makes it
easy to retrieve metadata and to access the original capability returned by mmap, e.g., when
realloc extends an allocation in place. In versions of JEMalloc prior to 5.0, metadata was

11GNU binutils has support for mmap, but prefers sbrk extremely aggressively. It will happily declare a
prototype for sbrk if one is not defined and use it over mmap so long as the symbol resolves.
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stored near to the allocation, and found by manipulating the pointer. This required a way to
obtain a pointer to the memory holding the metadata, without accessing the metadata. We
originally stored a copy of a capability to the whole address space for this purpose, but safer
schemes are certainly possible where allocators follow this pattern. This issue, coupled with
the long history of exploitation of malloc metadata overwrites [5, 23], suggests that the use of
local metadata storage in mallocs should be relegated to the past.

In our initial JEMalloc implementation, we made setting bounds on allocations optional and
controllable at run-time as a debugging aid. In practice, we never used this feature. Besides, it
came with a small, but measurable performance cost, so we have converted the run-time check
to a compile-time option (in the C standard library).

We have similarly altered the TLS allocators in libc and RTLD. These are trivial memory
allocators with power-of-two buckets.

4.11 Swapping
The current implementation of capability swapping extends the always-in-core swap metadata
structure with an array of tag bits. This conservative approach avoids new allocation on the
swap path, at the cost of a significant size increase. A better approach would include dy-
namically sized side-car storage, which would hold a compressed tag array. Our work on tag
caching [26] demonstrates that the potential space savings are significant based on real-world
capability distribution.

4.12 printf and scanf

Furthermore, we found that code parsing printf/scanf format strings and fetching variadic
arguments was often broken12. Some cases (e.g. the minimal printf used by libthr and
RTLD) would use va_arg(ap, unsigned long) instead of intptr_t to read the argu-
ment for %p. In CheriABI all variadic arguments are passed on the stack. Due to this imple-
mentation choice, reading an argument with the wrong size would then result in the remaining
arguments being read from the wrong offset from the stack. This would then cause either wrong
output for integers or CHERI traps when dereferencing an invalid capability for %s. While a
register-based variadic calling convention could avoid this kind of bug (at least for the first
few variadic arguments), we believe the stack-based variadic calling convention has security
benefits. Using the stack instead of registers allows us to tightly bound the variadic argument
block, and would therefore cause a bounds violation when the variadic function reads too many
arguments instead of reading an uninitialized value from the next argument registers.

Due to the reality that printf debugging is inevitable, we extended the %p format to accept
the # modifier and print a human-readable decoding of capabilities. The C standard would
allow us to make this the default, but we deemed that too confusing and likely to cause problems
in utilities that do things like printing kernel addresses using %p. It is an unfortunate feature
of the C standard that the use of %#p is undefined rather than implementation defined. It’s

12The FreeBSD source tree contains at least five implementation of printf/scanf-like format string pars-
ing code that needed changes. We also discovered that PostgreSQL and NGINX would use their own version of
printf (which do not handle %p correctly for CHERI) when being cross-compiled.
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worth noting that we don’t support creating tagged capabilities in scanf and make no effort to
support the seeming requirement of the standard to allow pointers to round trip through printf
and scanf.13 We deem this feature undesirable, and have not seen code that relies on it.

4.13 Additional changes
As we expanded the set of code run under the pure-capability ABI, we found that we needed to
extend qsort and other sorting routines (heapsort and mergesort) to preserve capabilities
when swapping array elements that might be (e.g.) structures containing pointers. We also
replaced use of Berkeley DB as an in-memory hash table, with uthash.h, because BDB does
not preserve the alignment of stored data, and thus does not preserve the integrity of stored
capabilities. Specifically, it assumes that any object being serialized can be stored by unaligned
byte-by-byte copies and preserved alignment no larger than 2-bytes. We also addressed a num-
ber of issues related to treating integers as pointers: casting pointers through integer types
other than intptr_t, and expecting to get pointers back; and integer manipulation of pointers
to store flags in unused bits, to adjust the alignment of pointers, or to access the virtual address.

These changes are discussed in more detail in section 5.3.

4.14 Debugging
Beyond supporting the ptrace system call under the pure-capability ABI, we have extended
the operating system’s debugging facilities to support capabilities. These extensions include
an additional ptrace operation to read the values of capability registers from a target thread
as well as a new per-thread core dump note containing the value of each thread’s capability
registers. However, there is currently no facility for examining tags stored in memory either via
ptrace or in core dumps.

We have modified GDB to add limited support for capabilities, including dereferencing
capability pointers interactively, annotating bounds and permissions on capability pointers, and
unwinding stacks. GDB has limited support for tags on capability registers used in single-
stepping, but is otherwise unaware of tags. Since GDB’s model of memory access is centered
on bare virtual addresses, the user interface does not enforce bounds or permissions, or check
the tag when dereferencing a capability pointer. Finally, we have not yet attempted to compile
and run GDB under the pure-capability ABI, though we have used a MIPS version of GDB to
examine live pure-capability ABI processes via ptrace.

One interesting aspect of debuggers is that they have the ability to write to memory in the
target address space. In some cases, developers want to inject pointers. With capabilities as
pointers, ptrace will need to be extended to manufacture and inject capabilities. We have
envisioned two models for this. In the first model, a capability description to something in
the user address space is constructed, and the kernel creates that pointer from the user process
capability. In the second, the capability is created by specifying a set of manipulations to
perform on a specific capability in the process. The latter would ensure monotonicity (but
not intentionality) within the target, while the former more closely models current debugger

13 Implementations of this are surely possible with limitations, but would almost certainly require unbounded
storage for escaped pointers in the standard library.
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behavior. We have not yet explored these options. As a result, GDB is currently unable to
modify pointers.

4.15 Limitations

Our implementation has a few limitations. We support nearly all system calls, but have ex-
cluded sbrk as a matter of principle, and have avoided a small number of administrative inter-
faces due to the tedium of translating pointer heavy argument structures. Where we have found
them necessary, ioctl and sysctl interfaces involving structs containing pointers have been
translated. However, we have skipped some cases – such as some storage-management inter-
faces. These limitations are not fundamental, and could be overcome with further engineering
effort. The exclusion of sbrk is likely correctable, but the FreeBSD Project has shipped the
Arm64 and RISC-V ports without it, with few reports of problems; emacs has since removed
the requirement for sbrk.

5 Evaluation
We evaluated CheriABI in several dimensions.

• To demonstrate the completeness of the CheriABI implementation, we ran the FreeBSD,
PostgreSQL, and LLVM libc++ test suites.

• We validated performance assumptions with system-call micro-benchmarks, synthetic
micro-benchmarks, and whole-application benchmarks.

• We examined the changes required to support CheriABI across FreeBSD userspace as
well as PostgreSQL.

• To demonstrate the practical value of capability restrictions, we examined a set of memory-
safety test cases that show the effectiveness of CHERI protections and relate to memory-
safety bugs found in real code.

• Finally, we used ISA-level traces to reconstruct the abstract capabilities of a process and
to study the increased granularity of capabilities in CheriABI programs.

Where suitable, we compare with LLVM Address Sanitizer [41]. While the overheads of this
software-based sanitizer are significant, it is widely used, primarily as a debugging tool. In an
ideal world, we would compare to HWASAN [42] rather than the software implementation, but
we do not have an implementation for MIPS.

We benchmark on FPGA, for microarchitectural realism, using a version of CHERI written
in Bluespec SystemVerilog, and synthesized for the Stratix IV FPGA at 100MHz. The pipeline
is in-order and single-issue, roughly similar to the ARM7TDMI. Our FPGA system has 32-KiB
L1 caches and a shared 256-KiB L2 cache, all set-associative, similar to widely shipped CPUs
such as many ARM Cortex A53 implementations, although without pre-fetching. Performance
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Pass Fail Skip Total

FreeBSD MIPS 3501 90 244 3835
FreeBSD CheriABI 3301 122 246 3669
PostgreSQL MIPS 167 0 0 167
PostgreSQL CheriABI 150 16 1 167
libc++ MIPS 5338 29 789 6156
libc++ CheriABI 5333 34 789 6156

Table 2: Test suite results

and memory scaling are broadly similar to these commercial implementations. Specific perfor-
mance is subject to the peculiarities of our microarchitecture. For ISA traces and tests, we use
a CHERI-extended version of QEMU.

In an effort to reduce unnecessary differences, benchmark software for CheriABI and MIPS
are both compiled with the CHERI compiler (based on LLVM 8.0) and use the CheriABI-
capable kernel. In particular, this ensures that the more efficent memcpy employing capability
registers is used in both cases.

5.1 Test suites

The FreeBSD test suite is part of the FreeBSD base system and provides tests for many pro-
grams and libraries. The test suite contains over 3500 programs (most of which test many
conditions). We ran the test suite on a mips64 system and CheriABI. The results are summa-
rized in Table 2. In addition to these tests, we use a CheriABI version of CheriBSD under
Qemu for daily development.

We also ran the PostgreSQL version 9.6 pg_regress test suite. Of the 16 test failures
8 fail because the outputs are sorted in a different order or the test assumes a pointer size of
4 or 8 bytes. One test is failing due to the use of under-aligned pointers, which will trap on
CHERI. The remaining failures are returning slightly different results and still need further
investigation.

Finally, we also ran the libc++ tests both for MIPS and CheriABI, and encountered only
five additional failures – due to a missing runtime library function for atomics – compared to
the MIPS baseline.

5.2 Performance

To evaluate the impact of pure-capability compilation, we have run the MiBench benchmarks [22],
which are intended to be commercially representative embedded programs. Each is composed
of a tight inner loop and spends very little time in the kernel, providing a sampling of perfor-
mance for pure-capability execution. Additionally, we have run portions of SPEC CPU2006.
Figure 4 shows the results of these runs, most of which are well within the noise level for
compiler and cache differences. We have excluded a number of bit-manipulation, compres-
sion, encryption, and image-processing benchmarks where the separate capability register file
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Figure 4: MiBench, SPEC CPU2006, and PostgreSQL benchmark median overheads relative
to MIPS baseline. Error bars are interquartile ranges (IQRs).

in CHERI-MIPS allows the compiler to generate more efficient code in the benchmark kernel
(the security-sha benchmark shows an example of this effect).

To determine the worst-case impact of our system-call interface changes, we ran the FreeBSD
system call timing benchmarks. Performance impact varies from 3.4% slower for fork, to
9.8% faster for select. We believe the latter is due to the cost of creating capabilities from
four pointer arguments in the CHERI kernel.

As a macro-benchmark, we use the PostgreSQL database initdb tool, which sets up a
new database. We chose PostgreSQL because it is a large real-world workload written in C.
Furthermore, it also makes use of various IPC mechanisms (including sockets, shared memory
and semaphores); it is the largest program that we have run dynamically linked so far. Overall,
PostgreSQL is only 6.8% slower as a CheriABI binary, even without any changes to reduce
the impact of pointer size on structure padding. In contrast to this, compiling the initdb
binary with Address Sanitizer instrumentation (but without instrumented library dependencies)
requires 3.29 times more cycles to complete.

Regarding the performance impact of CheriABI, we discovered that the immediate range
of the capability-relative load instruction (CLC) was often too small – leading to expensive
accesses to globals. We added a new CLC with larger immediate, allowing most GOT entries
to be accessed with a single instruction (as in MIPS). This reduces the code size of most binaries
by over 10%, and reduces the initdb overhead from 11% to 6.8%. Since submitting the final
ASPLOS 2019 paper we have further improved performance with optimizations such as refined
stack bounds (see section 4.4), improved use of the NULL register and other small compiler
changes. Therefore, these performance numbers are noticeably better than previously published
pure-capability CHERI results and in many cases even require fewer cycles than legacy MIPS
code – even though the increased pointer size results in more L2-Cache misses.

In the conference version of this paper, the compiler used a naive approach for setting stack
bounds: every use of a stack allocation (represented by an alloca instruction in the LLVM
IR) would instead use the result of a call to the llvm.cheri.cap.bounds.set() intrinsic,
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PP IP M PS I VA BF H A CC U

BSD headers 0 8 0 4 2 1 1 0 3 2 0
BSD libraries 5 18 4 19 22 20 11 6 19 42 19
BSD programs 1 11 1 3 13 0 0 0 7 11 2
BSD tests 0 0 0 0 2 0 0 0 2 7 2

Table 3: CheriABI changes. PP: pointer provenance, IP: integer provenance, M: monotonicity,
PS: pointer shape, I: pointer as integer, VA: virtual address, BF: bit flags, H: hashing, A: align-
ment, CC: calling convention, U: unsupported

which would return a correctly bounded capability. However, we discovered that this approach
was causing significantly increased stack-frame sizes for CHERI compared to MIPS. This was
caused by these bounded capabilities being spilled to the stack and reloaded, instead of being
re-derived from the stack capability. Instead, we have since changed the code-generation to
allow re-deriving the bounded capability from the stack pointer, which has noticeably reduced
the size of the code. Furthermore, the compiler will no longer create a bounded capability
for loads and stores to objects at fixed offsets from the current stack frame, and instead will
perform the operations relative to the stack pointer.

In JSC::Lexer::lex(), a frequently used function in QtWebkit, these two optimizations
reduced the CheriABI stack-frame size from 3232 to 672 bytes and the number of instructions
from 28320 to 27581, by no longer spilling and reloading of bounded capabilities to the stack.

5.3 Compatibility

CheriABI is almost entirely compatible with the de-facto standard POSIX programming en-
vironment used by modern UNIX-like systems. Most programs require no modifications to
compile and run successfully. Of the nearly 800 C programs in the FreeBSD source tree, we
exclude two management utilities that require compatibility shims to work with CheriABI and
the non-CHERI supporting toolchain. Table 3 includes a breakdown of the changes required,
summarizing the types of changes and compiler updates to find or address them.

There are three classes of provenance related issues. Pointer provenance (PP) covers at-
tempts to create a pointer to an object from a pointer to an unrelated object, or attempts to pass
pointers over IPC channels. An example of the former can be seen in listing 1. Integer prove-
nance (IP) relates to the loss of provenance as pointers are cast though integer types other than
uintptr_t and can be seen in listing 2. Monotonicity (M) refers to code that assumes it can
reach outside object bounds or increase permissions. We have generally found these through
debugging.

Pointer shape (PS) reflects changes due to the increased size of CHERI capabilities vs.
integer virtual addresses. Some objects must be enlarged or more strongly aligned; some struct
padding computations required tweaking. Existing alignment warnings help locate many of
these. A somewhat common incorrect assumption is that sizeof(void *) can be used to
compute the number of bits of available virtual address space. A more correct assumption for
conventional systems would be that sizeof(size_t) is directly related to the size of the
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if ((nstrings = realloc(we->we_strings, we->we_nbytes)) == NULL)
{
error = WRDE_NOSPACE;
goto cleanup;

}
for (i = 0; i < vofs; i++)

- if (we->we_wordv[i] != NULL)
- we->we_wordv[i] += nstrings - we->we_strings;
+ if (we->we_wordv[i] != NULL) {
+ we->we_wordv[i] = nstrings +
+ (we->we_wordv[i] - we->we_strings);
+ }

we->we_strings = nstrings;

Listing 1: Typical example of a pointer provenance bug. Here array of strings is extended
with realloc and the pointers are updated. The old code updated the old pointers rather than
deriving new pointers. This example is from lib/libc/gen/wordexp.c.

* situations where the API requires it, not to cast away string
- * constants. We don’t use *intptr_t on purpose here and we are
- * explicit about unsigned long so that we don’t have additional
- * dependencies.
+ * constants.

*/
-#define __UNCONST(a) ((void *)(unsigned long)(const void *)(a))
+#define __UNCONST(a) ((void *)(__uintptr_t)(const void *)(a))

Listing 2: Example of an integer provenance change, casting through when removing const
in a macro. An alternative change would explicitly use __uintcap_t (a primitive type in
CHERI C) in the pure-capability case, but we deem a dependency on __intptr_t to be ok.
This change was made in lib/libnetbsd/sys/cdefs.h.

address space.
Pointer as integer (I) covers storing sentinel integers or integer data in pointers (e.g.,

MAP_FAILED is (void *)-1).
There are a number of issues related to manipulating pointers as virtual addresses (VA).

Several are sufficiently common that we have broken them out: Bit flags (BF) refers to storing
flags (e.g., lock status) in the low bits of pointers. Hashing (H) means computing a hash from
a virtual address. Alignment (A) counts adjusting the alignment of a pointer (e.g., rounding up
a (char *) to permit storing a pointer) as seen in listing 3. We have added compiler warnings
for bitwise math and remainder operations on capabilities. Additionally, we have created a new
compiler mode and a supporting CGetAddr instruction in which casts of pointers to integers
produce the virtual address (rather than the offset used in prior work). For this paper, we
compile CheriBSD in the old mode, but have switched the default to use this mode – based on
our experience. This new mode would obviate many of our changes.
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label_done:
if (metadata_thp_madvise()) {

/* Set NOHUGEPAGE after unmap to avoid kernel defrag
. */

- assert(((uintptr_t)addr & HUGEPAGE_MASK) == 0 &&
+ assert(__builtin_is_aligned(addr, HUGEPAGE) &&

(size & HUGEPAGE_MASK) == 0);
pages_nohuge(addr, size);

}

Listing 3: An example of pointer alignment from JEmalloc

The calling convention (CC) for pure-capability code differs from the MIPS ABI: integer
and pointer arguments use different register files, and variadic arguments are always spilled to
the stack and passed via a capability. These require correct function prototypes to ensure that
values are passed as expected and that we handle variadic arguments directly. The implemen-
tation of system calls, including open and syscall, and a callback API in SunRPC, depends
on the overlap in calling conventions on existing architectures. For system calls other than
syscall, we handle the ‘optional’ argument as a variadic argument in the C library. In the
SunRPC case, programs declare their own callbacks; thus, fixing each one is the only possible
solution. The variadic calling convention has allowed us to find numerous bugs, but it does
pose compatibility issues. We have added warnings defaulting to errors when calling func-
tions without declared arguments,14 or converting between variadic and non-variadic function
pointers.

The unsupported (U) label covers an array of things CHERI or CheriABI does not support
– including XOR on pointers and the sbrk system call.

5.4 Memory protection benefit

To evaluate memory safety, we used the BOdiagsuite suite of 291 programs from Kratkiewicz [27]
and used by Hardbound [18]. These were intended for testing static analysis tools, but are also
useful for dynamic enforcement. The test suite consists of an assortment of C bounds viola-
tions, a small number of which use POSIX APIs such as getcwd with an incorrect length.

Each program has one variant with no memory-safety errors, and three variants that contain
bugs (shown as the column heads in Table 4).

• min has the smallest possible memory safety violation (typically off by one byte);

• med has an off-by-8-bytes error; and

• large has an off-by-4096-bytes error.

14Unlike -Wstrict-prototypes this warning also allows calls to legacy K&R declarations as long as the
declaration with the argument types is visible at the call site. We allow these calls since this style of C function
declarations is still very common throughout the FreeBSD source tree.
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min med large

mips64 4 8 175
cheriabi 279 289 291
asan 276 286 286

Table 4: BOdiagsuite tests with detected errors (among 291 total tests)

We compiled these variants with optimization disabled, because a number of cases had the vio-
lation in code that the optimizer removed (e.g., dead stores to variables not marked volatile
.) We verified that the variants without memory-safety errors ran correctly as CheriABI and
mips64 programs, and then ran all the variants for CheriABI, mips64, and Address Sani-
tizer [41]. The results are summarized in Table 4. For CheriABI, 279 of the “min” tests aborted
with a memory safety violation, while 12 tests contained intra-object memory safety violations.
The current CheriABI design does not protect against this, and it cannot be protected without
some impact on compatibility [10].

By way of comparison, only 4 mips64 programs fail in the “min” case, and Address Sani-
tizer fails to catch two cases. Many cases fail in the “large” variants for mips64, but even then
116 do not. Based on these results, CheriABI protection is significantly better than mips64, and
slightly better than Address Sanitizer – a scheme with very high overheads (3× stack memory,
12.5% total memory, around 50% performance).

In addition to finding test-suite issues, we have found and fixed dozens of bugs including
buffer bounds violations and variadic argument misuse in FreeBSD programs, libraries, and
tests. These include: a buffer underrun read in tcsh shell history expansion on an empty
command line; an out-of-bounds read by the kernel in the FreeBSD DHCP client due to un-
derallocation of the data argument to an ioctl call; small buffer overflows in the ttyname

and humanize_number functions and in a test case for the strvis function; and many cases
in the FreeBSD test suite where open was called with a missing permission argument. A re-
cently discovered information leak in kernel management interfaces was partially mitigated by
CheriABI. We have fixed these issues in FreeBSD.

5.5 Abstract capability analysis

Because capabilities are explicitly manipulated, we can use an instruction trace (from Qemu) to
track capability derivation and use, in order to reconstruct the abstract capability of a process.
We have done so for an openssl s_server implementation during a client connection set-
up and exchange of a small file. openssl is a small representative application that exercises
the majority of the changes we introduced with CheriABI: it uses thread-local storage, is dy-
namically linked with multiple libraries, performs considerable memory allocation and pointer
manipulation, and exercises system calls. Further, openssl is interesting due to a history of
memory-safety vulnerabilities including Heartbleed [4].

Figure 5 shows the granularity of capabilities from several sources. Each curve in the graph
shows the number of capabilities created during the program execution that have bounds size
up to the corresponding value on the x axis. Each line represents a different source of capabil-
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ities and terminates at the point corresponding to the size of the largest capability found. The
baseline for a legacy program would be a vertical line at the maximum user address, because
all pointers are implicitly bounded by DDC. As we bound more pointers, the line moves to-
wards the left of the plot, leaving almost no capabilities with large bounds. This is the case in
CheriABI openssl, where no capability grants access to more than 16MiB of memory, and
around 90% grant access to less than 1KiB. Capabilities created from the stack capability and
malloc are well bounded, and permit access to no more than 8MiB of address space: in con-
trast, pointers in legacy programs could be arbitrarily modified to point to any mapped memory
addresses. There are a few capabilities that originate in the kernel and are assigned to the pro-
cess at startup or returned by system calls. These capabilities point to relatively large objects,
such as mapped sections of the executable and are the broadest capabilities in the program.
The remaining broad capabilities are generated as temporary values that are then bounded to a
smaller size.

6 Future work
Sub-object and code bounds We do not tighten bounds on references to members of structs,
for compatibility with popular patterns including container_of. Old implementations of
flexible array members – in which the last member of a structure is declared as having length of
[1] rather than having an unspecified length ([]) – may present another complication. Like-
wise, the use of structs as headers without a flexible array member may pose some compatibility
issues. That being said, most references to struct members could be bounded safely. Exceptions
require further exploration and evaluation.

Similarly, bounds of code pointers are an area of ongoing research. Tightening the bounds
will require eliminating PC-relative addressing from generated code.

We have not yet examined these trade-offs in detail.

Temporal safety CHERI provides the minimum infrastructure required to implement accu-
rate garbage collection and temporally-safe memory reuse: atomic pointer updates and the
precise identification of pointers. Because system calls may pass user pointers into the kernel
that are then held for an extended duration, new interfaces will be required to expose this in-
formation to the garbage collector or heap allocator. Work on a CHERI-aware temporally-safe
allocator is ongoing.

Quantify the benefits of memory safety While it is self-evident that narrower bounds on
pointers reduce the impact of bugs and complicate attempts to leverage flow control, we do
not have a way to quantify how much harder reduced bounds make things for the attacker.
Similarly, we do not have an easy way to evaluate the value of a given mitigation. For example,
we could easily alter the stack capability on function entry to exclude directly access to the stack
before the current function, requiring a pointer to be restored from the stack before accessing
the caller’s stack, but this would have non-zero cost and not fundamentally alter the set of
reachable memory (the whole stack would still be accessible via a chain of loads). How can we
decide which such changes are worthwhile?
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Memory APIs The mmap API family has significant limitations when implementing least-
privilege policies. Combining capabilities, WˆX, and JIT compilation in an optimal manner
will require new interfaces. We believe that a model separating address space reservation from
mapping and retrieving pointers to reservations could help resolve the mismatches between the
mmap API and modern programming and mitigation models.

The mremap system call is commonly used by Linux allocators, but is not explored in
CheriBSD.

Debugging Existing debuggers encode a flat, integer address space model. More complex
models may be necessary for debugging, particularly with modern JIT-based debuggers. In-
jecting capabilities into debug targets requires further exploration.

Static analysis Our work on compiler warnings to locate code requiring changes for CHERI
C is a start, but more complex analysis is likely required to detect provenance bugs such as those
common with realloc misuse. Likewise, the ability to detect patterns common to custom
allocators (which would benefit from explicit CHERI support) would be useful.

Pure-capability kernels Our current, hybrid kernel allows all user-space pointers to be ca-
pabilities with appropriate bounds, but most kernel pointers remain unprotected. A pure-
capability kernel would increase protection and require a different set of changes. We hy-
pothesize that while the set of change will be significant, they will be more concentrated and
easier to maintain then the current hybrid model.

Formal model of abstract capabilities The abstract capability is currently a purely concep-
tual model, useful to enable programmers to reason about complex systems. A formalization
of the conceptual model is desirable, and we are working on portions of the problem including
models of components such as linkers.

Cache studies While our FPGA implementation resembles low-end commercially available
hardware, neither our cache hierarchy nor our pipeline resembles a modern super-scalar CPU.
A traced-based cache analysis (e.g. using Gem5) would be an appropriate way to address this
shortcoming.

Capabilities beyond the CPU CHERI capabilities act on virtual memory and protect access
by CPU instructions, but other system components such as DMA devices and IOMMUs also
interact with memory. Work on attacking systems with IOMMUs [30] shows the need for
strong memory protections beyond the CPU.

7 Related work
CheriABI imposes an abstract capability on the popular POSIX programming environment [32,
33, 43, 2]. This work builds upon the CHERI C environment [10], but substantially extends it
across a full real-world OS design.
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In the quest to address the array of memory-safety problems in C code [44], there is a
long history of memory-protection research adding bounds checking to C programs. The
CHERI [55], HardBound [18], and SoftBound [35] research systems add fine-grained memory
protection to C. Intel’s Memory Protection Extensions [24] provide an example of a commercial
hardware implementation of bounds checking – albeit with limited value in many environments
due to its fail-open policy. The Address Sanitizer framework [41] aims primarily at temporal
safety, but provides some protection for dynamic memory allocations, although with signifi-
cant performance overhead. Annotation- and proof-driven systems such as CCured [36, 12],
Deputy [11], and Checked C [45] attempt to prevent API misuse (which often results in buffer
overflows), prove buffer use correct, and insert checks where such proofs prove intractable.
Much of this work was inspired by Cyclone’s [25] safer (but incompatible) dialect of C. CHERI
draws from ideas proposed in the M-Machine [8], particularly object-granularity capabilities
protected by in-memory tags (and earlier by PSOS [37]). Unlike M-Machine, CHERI has a
stated design goal of source-code compatibility (so existing software benefits when recompiled)
and binary compatibility (so existing compiled code continues to work), enabling a transition
path from a flat memory model to a pure-capability system. Applications of memory-safety
technologies have typically focused on either userspace or kernels, with the majority targeting
userspace applications. Notable exceptions are Mondrix [53] (applying Mondriaan to Linux),
Safe TinyOS [13] (applying Deputy to TinyOS), and KernelAddressSanitizer[15].

Our use of CHERI capabilities as pointers treats all pointers much as WILD pointers in
CCured, similar to the treatment in HardBound. Like HardBound, our tags prevent arbitrary
overflows from altering pointers. Our approach of increasing the pointer size in-place requires
recompilation, but avoids involving the overhead of additional pages beyond those required for
tags and the need for transactional memory in HardBound. CheriABI uses CHERI to enforce
memory bounds along with stronger protections including integrity, provenance validity, and
monotonic access on all pointers in userspace. Memory allocated by the kernel is bounded
when returned rather than relying on the runtime to place bounds. In addition to bounding
explicit pointers in C source code, we bound implicit pointers including those used for runtime
linking. Additionally, CheriABI brings this memory safety into the kernel, requiring the kernel
to honor the same protections when accessing userspace. This begins to bridge the memory-
safety gap between the kernel and userspace.

Some mitigations aim to limit attacker’s ability to jump to arbitrary code locations to limit
the impact of attacks such as return-oriented programming[7]. They include Control-Flow In-
tegrity (CFI) [3], Code-Pointer Integrity (CPI) [28], and Cryptographic Control-Flow Integrity
(CCFI) [31] CheriABI limits vectors for such attacks, but does not explicitly model control-
flow graphs as in CFI.

Other work on hardware stack protection includes Roessler et al. [39], which utilizes con-
figurable tagged-memory policies similar to Pump [19]. Both are capable of implementing
pointer-oriented protection, but have not been applied to complete software stacks.
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8 Conclusion

We have demonstrated a complete memory-safe UNIX system that is practical for general use.
We support critical real-world technologies such as dynamic linking, and provide protection all
the way into the kernel – even to dark corners including ioctl.

We have introduced the abstract capability as a new abstraction for memory safety in oper-
ating systems. The maintenance and enforcement of appropriately minimal abstract capabilities
for pure-capability processes is implemented on FreeBSD as CheriABI. Our implementation al-
lows most application software to be recompiled without change, and obtains significant mem-
ory safety benefits while preserving acceptable performance – even in a minimally optimized
prototype.

Our evaluation of compatibility of existing C code with the pure-capability C-language
model, FreeBSD and PostgreSQL test suites, and micro- and macro-benchmarks demonstrates
that this approach is feasible. Our use of the BOdiagsuite shows that constraints allow us to
catch C-language bugs, and our trace-based abstract capability reconstruction shows that we
substantially improve the granularity of pointer bounds.

While preserving support for legacy software, our implementation of CheriABI shows the
existence of a path forward from our current run-time foundations set on the shifting sands of
integer pointers, to a future where strong referential integrity enforces the principles of least
privilege and intentionality even on lowest-level software.
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10 Availability

We have released the CHERI hardware and software stacks, specifications, and manuals, as
open source on the CHERI CPU website [1].
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