Technical Report A

Number 928

Computer Laboratory

Cut-through network switches:
architecture, design
and implementation

Noa Zilberman, fukasz Dudziak,
Matthew Jadczak, Thomas Parks,
Alessandro Rietmann,
Vadim Safronov and Daniel Zuo

November 2018

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 2018 Noa Zilberman, Lukasz Dudziak, Matthew Jadczak,
Thomas Parks, Alessandro Rietmann,
Vadim Safronov and Daniel Zuo

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Cut-through network switches: architecture, design
and implementation

Noa Zilberman Y.ukasz Dudziak Matthew Jadczak
Thomas Parks Alessandro Rietmann Vadim Safronov
Daniel Zuo

Abstract

Cut-through switches are increasingly used within data-centres and high-performance
networked systems. Despite their popularity, little is known of the architecture of cut-
through switches used in today’s networks. In this paper we introduce three different cut-
through switch architectures, designed over the NetFPGA platform. Beyond exploring
architectural and design considerations, we compare and contrast the different architec-
tures, providing insights into real-world switch design. Last, we provide an evaluation
of one successfully implemented cut-through switch design, providing constant switching
latency regardless of packet size and cross-traffic, without compromising throughput.

1 Introduction

The rise of cloud computing and the ever increasing amounts of data generated by user
applications have driven the development of high performance network switches. The perfor-
mance of these switches has increased by two orders of magnitude in less than a decade [21],
matching the market’s requirements. This class of high performance switches provides not
only superior throughput, but also low latency, in the order of hundreds of nanosecond for a
full-fledged layer two packet switch [20, 17].

Packet switches can be crudely divided to two classes of switches: store-and-forward and
cut-through. Store-and-forward switches wait for an entire packet to arrive and for a checksum
to be validated before a packet starts being processed. In contrast, cut-through switches start
processing the packet as soon as the first chunk of data arrives, and do not wait for any error-
detection process to be completed. By the time an error can be detected, the packet has already
propagated through the chip, and the design needs to attend to dropping or marking the packet
as faulty.

Cut-through switches go back over 40 years [15], in the days where networks were slow,
memory was fast and writing packets to the memory took “negligible” time. As time went
by, networks became significantly faster and memory access time was no longer negligible,
invalidating past cut-through designs. Newer designs have avoided memory access to en-
able higher performance [13], yet these designs are well over a decade old, and don’t capture
some current design considerations. Despite the importance of cut-through switches, little has

been published in this area in the recent years, and most advancements are covered by patents
(e.g., [18, 16, 4]).

High Performance Networking (P51), is a graduate course at the University of Cambridge
Department of Computer Science and Technology. In 2018, the students in the course were
challenged to develop a packet-switch that has a significantly higher performance than a base
reference design, running on the NetFPGA SUME platform [19]. As part of this work, three
architectures were proposed for cut-through switches. In this paper, we build upon this ex-
perience to inform the reader of cut-through switches design considerations and reflect on the
importance of different design trade-offs. In particular, we make the following contributions:

e we introduce three realistic cut-through packet switch architectures,

e we explore design considerations in each architecture and compare-and-contrast the three
different designs, and

e we provide an evaluation of one successfully implemented cut-through switch design.

The rest of this document is organized as follows: §2 provides a brief introduction to the
NetFPGA platform. §3 describes the three switch architectures, followed by a comparison of
the three in §4. We provide an evaluation of one of the architectures in §5, before discussing
related work in §6 and concluding in §7.

2 NetFPGA

NetFPGA (netfpga.org) is an open platform enabling researchers and instructors to
build high-speed, hardware-accelerated networking systems. The platform can be used by re-
searchers to prototype advanced services for next-generation networks. It can also be used
in the classroom to teach students how to build Ethernet switches and Internet Protocol (IP)
routers using hardware rather than software. The most prominent NetFPGA success is Open-
Flow, which in turn has reignited the Software Defined Networking movement. NetFPGA en-
abled OpenFlow by providing a widely available open-source development platform capable of
line-rate operation and was, until its commercial uptake, the reference platform for OpenFlow.

The NetFPGA SUME [19] is the third generation of NetFPGA platforms. The board is
a low-cost, PCle host adapter card able to support 40Gbps and 100Gbps applications, with a
Xilinx Virtex-7 690T FPGA at its core. The board uses four 10Gbps SFP+ Ethernet interfaces
and a PCIe Gen 3 x8 interface to the host. Other features include off-chip SRAM and DRAM
memories, MicroSD and two SATA interfaces for storage, debug interfaces and more.

NetFPGA supports three reference projects: Reference Network Interface Card (NIC), Ref-
erence Ethernet Switch and Reference IPv4 Router. The Reference Ethernet Switch is the basis
for the designs described in this paper. In its original form, the Reference Switch is a simple
store-and-forward switch, supporting packet sizes of 64B to 1518B. Its data-path architecture
is depicted in Figure 1. The control-plane is omitted from this drawing. Packets arrive to
the switch through one of four 10G Ethernet ports, implemented using Xilinx’s 10G Ether-
net subsystem and some wrapping logic (receive and transmit queues, clock domain crossing
and data-path width converter) or through the PCle interface from the host. Packets are ad-
mitted into the NetFPGA 256b-wide data-path in the Input-Arbiter module, using round-robin

4

netfpga.org

10G port 10G port
10G port 10G port
Output
Input Output
10G port Arbiter i Lcl)Dc?I:;clp > Queues 10G port
10G port 10G port
PCle & PCle &
DMA DMA

Figure 1: NetFPGA Reference Switch data-path

arbitration. Next, an output port is assigned to every packet in the Output Port Lookup mod-
ule, according to the destination MAC address. The destination address is matched against an
output port using a content addressable memory (CAM). If the destination does not exist in
the output port lookup table, the packet is broadcasted to all ports, excluding the source port.
Once the packet was assigned an output port, it is sent to the Output Queues module, where it
is queued until the transmit side of the 10G port module is available to process and send the
packet.

3 Switch Architectures

In this section we introduce three cut-through switch architectures, proposed by the authors
as part of the assessment in the High Performance Networking course. The main goal of all
designs was to provide constant, or close to constant, latency to all packets going through the
switch, regardless of packet size, and to minimize the effect of cross traffic on latency.

3.1 Architecture A: Slotted Pipeline

The first cut-through switch architecture, proposed by Dudziak and Jadczak, maintains the
main components of the original NetFPGA pipeline, and the same order of modules, but using
a slotted pipeline, as illustrated in Figure 2.

The architecture uses a single data-path, that all ports share. This data-path maintains the
256b width of the original Reference Switch. In each clock cycle, only a single port is allowed
to write a “fragment” of 256b to the data-path. The modules are modified to work on “frag-
ments”, rather than on packet granularity, and multiple packets may be interleaved within the
pipeline. The number of interleaved packets is at most four: as the number of 10G ports.

The 10G port module, used in the Reference Switch (Figure 1) remains largely unchanged:
the three modules indicated in Figure 3(a) as 10G Ethernet subsystem, Rx Queue and Gearbox
are the composing units of the 10G Port. While the Xilinx 10G Ethernet subsystem remains
the same, the Rx Queue (crossing clock domains using a BRAM-based FIFO) and the Gearbox
(converting from 64b to 256b and adding meta-data to the packet) are modified: while these
blocks were previously store-and-forward, each of them now works on a data-unit level without

5

10G port 8325:2 > Arbiter | 10G port

10G port gﬁéﬂzts —»| Arbiter | 10G port
Inout Output

10G port Arl?iter > Lpolzt > 8323:2 = Arbiter | 10G port
ookup

10G port 8:'2322 > Arbiter | 10G port

PCle & Output . PCle &

DMA Queues —» Arbiter 9> DMA

Figure 2: Architecture A: Standard Pipeline

1
64b | 64b, 256 Input To Input
106 _’{ Rx leeue H Gearbox }_b.{ QUEUE }'_’Arbiter /

Ethernet Output

I
1
—| Arbiter #N —»
Subsystem | 84b TxQ:ueue 845 | Gearbox |238E_ From (Output Queues #N
| Arbiter
T
156.25MHz 1 200MHz \

(a) 10G Port Module (b) Output modules

Arbiter —»

Figure 3: Architecture A: A zoom in on the 10G Port module (a) and the breakdown of output
queues and arbiter modules (b).

waiting for an entire packet to arrive. The gearboxes are followed by inputs queues, with one
queue per port, storing chunks of data until they can be admitted into the data-path. Under
normal circumstances (i.e., no back pressure) that means until the next free slot allocated to the
port.

The Input Arbiter governs the inputs to the internal data-path. It applies a simple round
robin between the ports to admit chunks of data. Unlike the Reference Switch’s input arbiter,
this module selects a new input port every clock, assuming the respective input queue is not
empty, rather than arbitrating on packet level. As a result, data within the pipeline after the
input arbiter is multiplexed on a fragment-level.

The output port lookup is modified to work on a fragment level rather than on a packet level.
This requires a change to the metadata going through the pipeline: while in the reference design
only the metadata in the first fragment of a packet is valid, here every fragment carries valid
metadata, indicating the source and destination port. Header processing is done on packet level:
as a new packet begins, its header is being processed and the output port is identified (using the
output port lookup table). Once the output port is identified, the information is latched per-port,
and updated in the metadata of all the following fragments from the same port, until an end of
packet indication is received'.

Cut-through switches implement, in a sense, store-and-forward of headers only. In this
architecture, as the switch is an Ethernet switch, the first fragment of data (256b, meaning 32B),
already carries the entire header. Where larger headers are in use, there may be an impact on
latency or resources. For example, had the lookup been done for, e.g., [Pv4 address, it would

'A TLAST signal on AXI-STREAM bus is used in the design

6

have been required to save the relevant header fields in the first fragment of data, until the entire
header has arrived on the second fragment of data.

While packets are going through the data-path in fragments, interleaved with other packets,
they are required to be reassembled into packets before being sent out. This is done in the output
queues module, shown in Figure 3(b), that is significantly modified to support this function.
While in the reference switch there is only a single queue in front of each output port, here
there is a queue in front of an output port per each source port. As in the NetFPGA SUME
design there are four 10G ports and a DMA port, this means that four queues are required in
front of each total port (destination port must always be different to the source port, thus four
rather than 5 ports are required). The overall number of queues in the Output Queues module
is therefore, including the DMA, twenty.

A fragment arriving from the Output Port Lookup to the Output Queues is placed, using a
demultiplexer, into one of the queues based on the combination of source and destination port.
By aggregating fragments of source-destination pairs inside queues, the packets are reassem-
bled. At the output of the Output Queues module there is a round-robin arbiter that sends each
time a packet from a different queue into the output port. Here already the operation is on
packet level, rather than fragments. The arbiter is work conserving, thus empty queues do not
delay the transmission of packets from non-empty queues. The Output Queues module does
not assert flow control under normal operating conditions: if an output port is over-subscribed,
as two queues or more are competing on sending packets to the same destination, the packets
(not just fragments) will be dropped rather than admitted to full queues.

As the 10G output port operates on the reassembled packets, there is conceptually no need
for it to be changed from the reference 10G port design. The only consideration is avoiding
any buffering of complete packets within the module, by handling every fragment as soon as it
is available. This is balanced with the requirement to continuously send data out through the
port, once a packet starts transmitting, and until the packet ends. The architecture guarantees
this property.

3.2 Architecture B: Parallel Pipelines

The second architecture, proposed by Parks and Rietmann, presents a completely different ap-
proach to a cut-through design. Instead of using a single data-path, it uses a dedicated data-path
per input port. Furthermore, instead of using 256b data-path, a 64-bit data-path is used. With
four pipelines running in parallel, this means that effectively every clock 256b are handled -
same as before. Another difference is the use of 156.25MHz clock across the design, the
same clock frequency used by the port, saving the need to cross clock domains, but also losing
speed up.

The core architectural decisions described above simplify a lot of the design considerations,
but complicate others. The 10G port is significantly simplified: first, there is no need to syn-
chronise between clock domains or to aggregate a bus from 64b to 256. This turns redundant
the Rx queue and gearbox within the 10G port, allowing the new architecture to connect (al-
most) directly from the 10G Ethernet subsystem to the data-path. Similar logic is applied also
on the transmit side of the 10G Port.

Instead of an Input Arbiter, the 10G port is followed by the Output Port Lookup module.
The Output Port Lookup maintains its functionality, except with one significant difference:
the output port lookup table, implemented in a CAM, is now shared between four different

7

10G port Output Port > QOutput Arbiter 9 10G port
Lookup Queues
10G port Output Port > QOutput Arbiter 9 10G port
Lookup Queues
[Al
10G port —P» Output Port > Qutput Arbiter 9 10G port
Lookup Queues
[[[afll
10G port —pp] OUtPULPOItL g | Output Arbiter »| 10G port
Lookup Queues
Orchestrator
Lookup Table

Figure 4: Architecture B: Reordered, Multiple Pipeline

pipelines. The reason for sharing is not simply to save resources: as this is a learning switch,
where the lookup table should be updated with every new MAC address learned, it is impera-
tive for the pipelines to share information: either by broadcasting newly learned entries to all
pipelines, or, as done here, by sharing a single table.

The property that enables the sharing of lookup resources is the data-path width: as the data-
path width is just 64b, and the minimum packet size is 64B, it is guaranteed that at least eight
clock cycles will pass between every pair of packets from the same input port. The architecture
builds upon this knowledge to orchestrate access to the lookup table. Whenever a new packet
starts and its header is parsed, the respective pipeline asserts a request signal to an orchestrator
module, with the destination address that requires lookup. The orchestrator is responsible to
access the lookup table (CAM) and return the reply (destination port) to the correct pipeline.
With eight clock cycles between queries from a given pipeline, and four parallel pipelines, the
maximum access rate to the lookup table is once every two clock cycles.

The Output Port Lookup is followed by the Output Queues. This module is unmodified
(except for the bus width), but there is one instance of it in every pipeline. As a result, there
are now four queues in front of each output port: one from each pipeline. The decision which
pipeline will be sending a packet next to the output port is taken by the Arbiter (similar to the
Input Arbiter), which operates on a packet level and is work conserving. While the operation
here is on packet boundary, the cut-through nature of the device is maintained, as two queues
will be competing on the same output port only if it is (momentarily or continuously) over-
subscribed.

3.3 Architecture C: Split Pipeline

Safronov and Zuo proposed a different approach to cut-through switch design, separating the
header from the data®. This architecture, illustrated in Figure 5, takes the “traditional” cut-
through approach [15]. Packets arriving at the Input Arbiter from the 10G Port, using the
internal 256b-wide bus, are split: the header of the packet is sent to the Output Port Lookup,

The description here slightly amends the original proposal.

> Output
10G port Input 3] - Q‘:epu“e | 10G port
=
> = Output =»| 10G port
10G port Queue p
Input Output
10G port Arbiter Crossbar 9 Queue —» 10G port
Lookup —
utpu
10G port ~> Queve ~» 10G port
PCle & Output PCle &
DMA > Queue > DMA

Figure 5: Architecture B: Split Pipeline

while concurrently the entire packet is stored in a queue. An Input Arbiter is responsible to
admit a header to the Output Port Lookup, arbitrating between the four 10G ports in a round
robin manner. The arbiter can admit a new header only once every two clock cycles, the time
required for an access to the output port lookup table. As far as the Output Port Lookup module
is concerned, little changes, except that every valid data cycle is a header, and no payload
goes through the module. The main difference is the output: the only significant output is
the packet’s metadata, which is now sent to the queue associated with the source port (noted
in the metadata). A queue holds two FIFOs: one with the packet and one with its associated
metadata, received from the Output port lookup. This structure is similar to the queue structure
in the reference Output Queues.

Once a packet receives the metadata information from the Output Port Lookup, it starts
sending the packet to the respective output queue. Sending to an output queue is done through
a crossbar, similar in implementation to the four output-arbiters used in the previous architec-
tures. At any given time, only a single input queue can send a packet to a given output queue,
but all four input queues can simultaneously send packets to output queues, for a given non-
congested permutation. Once a packet arrives at the output queue, it is transmitted through the
10G port to its destination.

While Output Queues may seem at first sight redundant under this scheme, given that pack-
ets are already stored in queues, they in fact serve an important role: avoiding head of line
(HOL) blocking and incorrect packet drop. Let us assume a scenario where packets from Port
1 are sent to Port 3, and that packets from Port 2 are sent either to Port 1 or to Port 3, with
an equal probability. In this scenario, Port 3 is over-subscribed, which means that packets will
need to be dropped as queues become full. If only the input queues had been used, packets
were dropped from both Input Queue 1 and Input Queue 2, with an equal probability of packets
destined to Port 1 and Port 3 being dropped. By using an output queue, only packets sent to
Port 3 will be dropped, and no packet that was destined to Port 1.

Note that this design maintains cut-through principles: unless two packets are contending
on the same port, at no point is a full packet buffered, nor does it need to wait for a packet from
another port to be admitted or dequeued. The maximum delay a packet may need to wait, in
a non-subscribed switch, is six clock cycles, as packet headers from N — 1 ports are admitted
ahead of it to the Output Port Lookup.

Table 1: Cut-Through Switch Architectures: A Comparison

A: Slotted B: Parallel C: Split
Number of pipelines 1x header+payload | 4 x header+payload | 1 x header + 1x payload
Data-path width 256b 64b 256b
Data-path frequency 200MHz 156.25MHz 200MHz
Number of lookup tables 1 1 1
Number of output queues 20 20 5
(assuming 4 output ports+ DMA)
“Penalty” Latency Logic resources Memory resources

4 Design Decisions

In this section we consider design decisions taken by each of the architectures. When we
compare the different architectures we consider aspects such as complexity, resource usage
and scalability. While complexity can be considered a one-time effort, it is usually reflected
in resource usage, maintainability and, unfortunately, the probability of bugs in the design.
Table 1 summarises the main differences between the three architectures.

A cut-through switch obviously means a change to the way incoming packets are handled
by the logic compared with a store-and-forward switch, as the logic needs to operate on a
header, or a fragment, rather than on a packet level. The important question then becomes
the treatment of multiple packets, arriving on multiple ports, at the same time. The reference
architecture, which used a single pipeline for the data-path, rotated between the ports while
handling one packet at a time. This approach is not applicable here, as we no longer operate at
the packet level: every competing packet “ahead” in the pipe can add hundreds of nanosecond
latency, leading to latency variability at the scale of traversing the entire switch. Our three
architectures demonstrate three different approaches here: (A) interleaving the packets within
a single pipeline, (B) keeping four separate pipelines, and (C) the mix of both approaches:
keeping packets separate and interleaving the headers.

The disadvantage of the first approach (A) is clear: latency. As the data-path is pipelined,
once a packet is admitted into the pipeline, the latency does not depends on the number of slots.
Still, the admission into the pipeline depends on the number of slots, meaning that the worst
case admission latency will be four times higher than in four parallel pipelines. In a design with
N ports, the admission latency will be x /N higher, which won’t provide reasonable scalability,
as switches already scale today to 260 ports [S]. In practice, however, the latency penalty is not
quite so significant: the output port lookup and output queues are not affected by this choice,
and the Input Arbiter will only incur N —1 clocks penalty. This leads to a second design choice:
“hard” slotting or “soft” slotting? ‘“hard” slotting, in this sense, is the constant assignment of
a port to a slot, regardless of traffic from other slots (so the pipeline may be idle on certain
slots), whereas a “soft” use of slots is work conserving, and a fragment is admitted on the next
available slot. “Soft” slotting obviously requires the metadata to indicate for each and every
fragment its source port (resource overhead).

The second approach (B) appears at first inspection to require significantly more resources
than the first approach, using four pipelines instead of one, but this is not completely accurate.
While the design uses four pipelines, each of them is just 64bit wide, rather than 256b. This

10

is directly reflected in the amount of logic resources required per pipeline. Further, the lookup
table is shared and not dedicated, meaning that memory resources are not replicated. There
is, of course, still resource overhead, such as the per-pipeline metadata bus. This design also
requires a queue for each source-destination queue pair, to prevent head of line blocking, yet
this requirement is shared also with architecture A.

The third approach (C) uses resources very conservatively. Its main disadvantage is the
use of memory resources for input queues. The solution, however, can be implemented using
shared memory resources instead of dedicated ones. Instead of reserving memory per-port
using a FIFO, the port can just hold pointers (descriptors) to the packets in the memory, saving
overall memory resources. It is not surprising that such a memory sharing approach is also
used in high-end network switches [12, 8].

Architecture C is not the only one to require more memory resources: so do both A and B,
which use multiple output queues per output port. The value of implementing these queues in a
shared memory is, however, questionable: these queues will be underutilized when a port is not
congested, and using a shared memory will incur an additional (and unnecessary) latency. On
the other hand, when the number of input ports is high, a naive implementation of an arbiter that
tries in a single clock cycle to check the status of all ports is unlikely to fit timing requirements.
It can instead be implemented using several clock cycles per decision (while the current packet
is being transferred), or use a more sophisticated arbitration algorithm. The decision whether to
use here shared or dedicated memory resources is therefore a question of scale, meeting timing
requirements and overall available resources.

This paper does not include a quantitative evaluation of resource usage as architectures A
and B were implemented using different design flows (Verilog vs Haskell/CAaSH), and archi-
tecture C was not implemented.

Scaling the number of ports has consequences that go beyond memory resources. While it
is common to assume that the limiting performance metric of a switch is bandwidth, it is often
packet rate. For a given clock frequency f, a single data-path can’t process more than f packets
every second, and as in our case every lookup takes two clocks, f/2 packets per second. This
means that all three architectures are bounded by a packet rate of f/2, as in all cases the access
to the lookup table is shared. Architectures A and C need to scale their data-path width with
the number of ports to N ports x 64b. This increase is beneficial for small packet sizes only as
long as the time it takes to process a single packet is the same or smaller than the time it takes
for the packet to pass through a given point in the design. For example, if the data-path width
is 64B, it will take one clock to pass a 64B packet. If a new packet can be processed only once
every two clock cycles, there is no gain in such a bus width from packet rate perspective, and
32B provide the same packet rate for less resources. Note that bandwidth-wise, a 64B data-path
will be able to support twice the bandwidth at the same clock frequency.

Scaling the number of ports will affect architecture B as well. Currently, the use of four
ports, with two clock cycles per lookup and eight clocks to propagate a 64B packet, provides an
optimal balance. The sharing of the lookup mechanism will not be as efficient when using, e.g.,
eight ports. With eight ports, each port will be able to access the lookup table only once every
16 clock cycles, therefore supporting the same maximum packet rate as with a four-port switch,
but with twice the maximum bandwidth (for packets of 128B or more). One way to scale the
packet rate is to use a small cache in each pipeline, keeping the last 2-4 lookup entries, reducing
the access rate to the shared table. This solution will improve the average packet rate for small
packet sizes, but will not provide a better packet rate guarantee. Furthermore, using multiple

11

caches will require maintaining coherency between the caches, as entries in the lookup table
may be updated during run time.

One aspect the three architectures do not address is error handling. An error can be detected
in an incoming frame only once it has fully arrived. In a 64b bus, for a 1518B packet, and using
156.25MHz clock (the 10G port parameters) that would mean 1.2 microseconds: in current
day cut-through switches, including the designs discussed in this paper, the switch would have
already started transmitting the packet to the destination by the time an error is detected. If the
packet is short, forwarding a detected error to a later stage along the path indicating a packet
should be dropped is possible, but it won’t help once the packet is longer than the number of
stages in the data-path. A concern here is not only that a faulty packet is forwarded, but also
that the lookup table will become corrupted. The switch is a learning switch, thus a new source
MAC address and its matching source port are learned every time a new source MAC address
and source port are identified. If an undetected error corrupted the source MAC address, the
lookup table may become corrupted. A solution to that may be to wait with updating the lookup
table with new entries until the checksum of the packet providing this entry is validated.

5 Performance

In this sections we cover several performance aspects of the three architectures. First, we
discuss the throughput speed-up provided by each design. Next, we discuss the latency within
each module. Last, we provide measurement-led evaluation results of architecture A.

5.1 Data-path speed-up

A common mistake in data-path design is to assume that a data-path will support full line rate
for all packet sizes if it can support some packet sizes. However, a fully utilized data-path can
provide significantly higher bandwidth than a partly utilized one. Consider a 256b data-path.
A data-path full of 64B packets will have 100% utilization, whereas if 65B packets are used,
every packet will require 3 clock cycles, the last one using just one byte of data, leading to
67.7% utilization. In this subsection we validate that the proposed designs provide the required
throughput for all packet sizes, by examining the speed-up of the data-path. We define the
data-path speed-up, as the ratio between the bandwidth required for a given packet size and the
bandwidth supported by the data-path. To serve all packet sizes at line rate the minimal speed-
up required is 1. A small speed-up benefit of the NetFPGA pipeline is that the Ethernet Frame
Check Sequence (FCS) is stripped in the MAC, saving four bytes per packet while passing
through the pipeline.

In Tables 2 and 3 we provide some examples of the packet rate and data-path speed-up
of the three different architectures. Architectures A and C are both represented by Table 2,
as they provide the same packet-rate performance. Figure 6 shows the data-path speed-up of
the different architectures. For small packet sizes, the effect of the last fragment is significant,
in terms of bus utilisation. This is evident more in architectures A and C, as more bytes are
unused in the data-path. For large packet sizes, the effect of the last fragment diminishes,
as its relative weight in the packet is smaller. It is important to note that architecture B uses
156.25MHz data-path clock, whereas A and C use 200MHz clock, and thus have a higher

12

2.0

1.5

1.0 |-

Speed Up

0.5 |

0.0

— Slotted/Split Architecture
— Parallel Architecture 1
— 10G Port

1 I

1 1

1 1

200

400 600

800

Packet Size[B]

1000 1200 1400 1600

(a) Different Architectures

2.0 ,

1.5

1.0

Speed Up

0.5 |

0.0 L

| | |

— 200MHz []
— 169MHz

L 1 1

200

(b) Different Clock Frequencies

400 600

800

Packet Size[B]

1000 1200 1400 1600

Figure 6: The data-path throughput speed-up of (a) the three architectures and (b) Slotted archi-
tecture using different data-path clock frequencies.

Table 2: Throughput Analysis, Slotted (A) and Split (C) architectures.

clock @200MHz, 10G Port clock @156.25MHz.

4 x 10GE, Core

Packet size | Max Packet | Packet size | Clocks/Packet| Max packet |Clocks/Packet| Max packet |Speed-up
(Wire) rate (Wire) | (Internal) | (10G Port®) |rate (10G Port)| (data-path) |rate (data-path)
64B 14.88Mpps 60B 8 19.53Mpps 2 100Mpps 1.68
69B 14.04Mpps 65B 9 17.36Mpps 3 66.67Mpps 1.19
128B 8.45Mpps 124B 16 9.77Mpps 4 50Mpps 1.48
133B 8.17Mpps 129B 17 9.19Mpps 5 40Mpps 1.22
261B 3.35Mpps 257B 33 4.73Mpps 9 22.22Mpps 1.25
1518B 0.81Mpps 1514B 190 0.82Mpps 42 4.17Mpps 1.28

Table 3: Throughput Analysis, Parallel (B) architecture. 4 x 10GE, Core clock @156.25MHz, 10G
Port clock @156.25MHz.

Packet size | Max Packet | Packet size | Clocks/Packet| Max packet |Clocks/Packet| Max packet | Speed-up

(Wire) rate (Wire) | (Internal) | (10G Port) |rate (10G Port)| (data-path) |rate (data-path) |(data-path)
64B 14.88Mpps 60B 8 19.53Mpps 8 78.13Mpps 1.31
69B 14.04Mpps 65B 9 17.36Mpps 9 69.44Mpps 1.24
128B 8.45Mpps 124B 16 9.77Mpps 16 39.06Mpps 1.16
133B 8.17Mpps 129B 17 9.19Mpps 17 36.76Mpps 1.13
261B 4.45Mpps 257B 33 4.73Mpps 33 18.94Mpps 1.06
1518B 0.81Mpps 1514B 190 0.82Mpps 190 3.29Mpps 1.01

speed-up. However, architecture B maintains a speed-up of more than 1 even at 156.25MHz,
whereas A and C require a clock frequency of at least 169MHz to support full line rate. Figure 6
shows the speedup gain of architectures A and C using 200MHz data-path frequency rather than

169MHz.

There are benefits to using a lower clock frequency: easier timing closure during the design,
lower power consumption and lower chances of errors during operation due to corner timing
issues. There are, however, benefits in using a higher clock frequency, including the ability to
absorb momentary flow control, and to infrequently send packets from the host to the network.

3In Tables 2 and 3, 10G Port excludes the Xilinx 10G Ethernet Subsystem.

13

Table 4: The latency in clock cycles of going through the data-path in a Slotted Architecture (A).

Module | Input Arbiter | Port Lookup | Output Queues| Total
Min| Max |[Min| Max |Min| Max |Min|Max
Latency| 3 6 2 5 3 147 8 | 155

Table 5: The latency in clock cycles of going through the data-path in a Parallel Architecture (B).

Module | Port Lookup | Output Queues | Arbiter Total
Min| Max |Min| Max |Min|Max|Min|Max
Latency| 5 8 4 574 5 5 | 13 | 587

5.2 Data-path latency

We consider the latency of a single data fragment traversing through the data-path. We omit
the discussion of the 10G port, but note that in Architecture B the latency will be lower as there
is no need to cross clock domains or use a gearbox. Architecture C was not implemented and
is therefore excluded.

Table 4 presents the latency, measured in clock cycles, through each of the data-path mod-
ules in the Slotted architecture (A). The minimum latency is extracted from simulation and
the maximum latency is based on design analysis. The minimum latency reflects the latency
through the pipeline when there is only one active source port. As can be seen, the propagation
time through the data-path is very short: only 8 clock cycles. The maximum latency shows the
variance of the design by exploring the worst case for each module. In the Input Arbiter, the
maximum latency is a result of four ports receiving packets at the same time. In the worst case,
a port will need to wait for three clock cycles for its slots, while the other ports have the right
to send data. The maximum latency in the Output Port Lookup module is five clocks, which
in fact are not experienced by the packet: this is the latency for learning a new entry. There
is no stall in the pipeline while an entry is being learned, instead a packet is being forwarded
according to the currently existing entries in the lookup table. The maximum latency within
the Output Queues module reflects the latency of momentary congestion, where all four ports
try to send a (single) packet to the same output*. As Output Queues send out data as packets,
rather than interleaved fragments of packets, in the worst case a packet will need to wait for
three other maximum-size packets ahead of it to finish sending, on top of the latency within the
module, adding up to 147 clock cycles. This delay is not in violation of cut-through principles,
but a result of congestion.

Table 5 presents the latency through each of the data-path modules in the Parallel archi-
tecture (B). The minimum latency is extracted from simulation and the maximum latency is
based on design analysis. The minimum latency reflects the latency through the pipeline when
there is only one active source port. When more than one port is active, the contention point
between parallel pipelines is the lookup table. The latency reflects the use of 64b bus within
the data-path, compared with 256b in the other architectures. Consequently, the minimum la-
tency through the data-path is slightly higher: 13 clock cycles. The maximum latency in the
Output Port Lookup module reflects the access pattern to the CAM: every clock cycles, one
pipeline can access the lookup table, meaning that in the worst case a request needs to “wait”
three clock cycles for the other ports. Note that the design is pipelined, and thus does not create

“We ignore the case of longer congestion, leading to packet drop.

14

1
T Reference Switch
[| - Slotted Switch

Latency [us]
—_
at
=
=

0 | | | |
64 256 512 1024 1514

Packet Size[B]

Figure 7: Measured Latency of Slotted Architecture (A) and Reference Switch, using 1 x 10GE
stimulus.

stalls. Even though a reply is not immediately returned, a new request can be issued while the
previous request is still processed, and pipelined replies are returned to the requesting pipelines
when ready. The scenario leading to a maximum latency in the output queues is similar to the
first architecture (i.e., momentary congestion), but the latency is almost four times higher, a
result of the data path being a quarter of the width. The latency through the arbiter at the end
of the data-path is not sensitive to the load, maintaining a constant latency through the module.

5.3 Measured Performance

The performance of the Slotted architecture (A) is evaluated in the lab. The NetFPGA SUME
platform [19] is used for the prototyping of the architecture, using Vivado 2016.4 and running
on Ubuntu 2016.4. An open source network tester (OSNT) [3] is used for traffic generation
and capture. OSNT is also prototyped on NetFPGA SUME which allows it to send and receive
traffic at line rate. Synthetic traffic (pcap files) are used for the testing, using a single packet
size at the time, ranging from 64B to 1518B. Special attention is paid to non-aligned packet
sizes, such as 65B, 69B, and 97B>. OSNT is connected to the switch under test using 4 x 10GE
ports. PCle access is not tested as part of the experiments. The switch supports full line rate
on all four ports, regardless of packet size. This is a non-trivial requirement of switches, as it
shows not just bandwidth but also packet rate requirements being fulfilled.

To demonstrate the cut-through nature of the switch, Figure 7 shows the latency of different
packet sizes traversing the NetFPGA Reference Switch and the cut-through switch, with only
one active port. As the figure shows, the latency through the cut-through switch is independent
of packet size, while in the reference design, a store-and-forward switch, the latency increases
with packet size. Figure 8 repeats the same experiment, but now two ports are sending traffic
into the switch: one is the monitored port, and the second serves as cross traffic (sent to a
different destination port). As the figure shows, the cut-through switch is not affected by the
cross traffic.

Last, we explore the latency variability as a function of cross traffic. In this experiment,

3The indicated packet sizes are ‘on the wire’, including FCS. 12 different packet sizes were evaluated.

15

3000 - r 3000 T
T Reference Switch
- Slotted Switch

] 2500

2500 H

2000

1500 n
1000 n

500 - 500 |- n

2000

1500

Latency [us]
Latency [us]

1000

0 I I I I 0 |
64 256 512 1024 1514 Slotted Switch Reference Switch

Packet Size[B]

(a) 2-Port cross traffic (b) 4-Port cross traffic, 64B test stream

Figure 8: The effect of cross traffic on the latency through the Slotted Architecture (A) and Ref-
erence Switch. (a) using one 10GE cross-traffic port of equal-sized packets. (b) using 3 x 10GF of
1514B packets and one monitored port of 64B packets.

1518B packets are injected at line rate traffic on three ports, each to a different destination port.
A fourth port, the one being monitored, injects 64B packets at low rate. The intention of this
experiment is to expose internal sensitivities and delays within the pipeline, and to corroborate
the results presented in the previous subsections. Figure 8 shows that under these conditions
the latency through the cut-through switch remains unchanged, with very little variance. This
result is in contrast with the Reference Switch, where the median latency is not only more
than twice, but also with variance of hundreds of nanoseconds. This experiment also nicely
demonstrates the effect of cross traffic when put in comparison to Figure 8, where the port
being monitored encountered cross traffic only from one other port, and using packets of the
same size. The effect of cross traffic on the cut-through switch was small: the slot-arbitration
delay between four active ports (a handful of cycles). The store-and-forward switch, on the
other hand, experiences significant variance caused by the input arbiter: in some cases the
monitored 64B packet is immediately admitted to the data-path, whereas in other cases it needs
to wait for up to three other 1514B packets. The delay is also linearly dependant of the data-
path clock frequency, thus the gain from increasing the data-path bus width and speed up is
also reducing the latency variance.

6 Related Work

The concept of the cut-through switch was first introduced in the days where memory access
was cheap (fast) and network communication was expensive (slow). The seminal work [15]
tried to attend to the communication across multiple nodes, and the need to buffer a packet
until it has arrived in its entirety. Instead Kermani and Kleinrock [15] suggested starting to
transmit a packet to the next node as soon as the header has arrived and the output port was
identified. While their work set a lot of the infrastructure to current day cut-through switches,
many of its assumptions (e.g., instantaneous acknowledgements) are no longer valid on today’s
scales.

While in the past research describing the internals of cut-through switches ([9, 2, 10, 1]
to name a few) was common, the last decade has seen little work published in this field. Iyer

16

et al. [14] work from 2008, discussing cut-through architecture within the switch as memory
became slower than the network, is in fact a revisit of their 2002 Technical Report [13]. As cut-
through switches became a commodity, innovation in cut-through switch architecture moved
to companies such as Mellanox, Intel and Broadcom, who chose to cover their knowledge
by patents [18, 6, 7, 16, 4, 11] rather than share it. With switch bandwidth increasing, time
scales rapidly decreasing and physical limitations pushing the boundaries of switch design, it
is important to keep exploring the considerations for cutting-edge switch designs.

7 Conclusion

Cut-through switches are commonly used in networks requiring high performance, such as
data-centre networks. While many works assume cut-through switch operation, little is known
of the architectures used in today’s commodity switches. This paper presented three different
approaches to the design of cut-through switches, adapted to today’s technology, proposed by
students as part of the High Performance Networking (P51) graduate course at the University
of Cambridge. The architectures, analysed and evaluated, support full line rate and low latency
regardless of packet size. Our work shows that while the architectures fit the requirements of
a 4 x 10G Ethernet switch, they are unlikely to scale to switches of 128 or 256 ports without
penalty: packet rate, latency or significant resource allocation.

8 Acknowledgements

We would like to thank Xilinx, Cypress and Micron for their continuing support of the NetF-
PGA project, and Andrew W Moore for his feedback on this paper. We acknowledge support
by the Leverhulme Trust (ECF-2016-289) and the Isaac Newton Trust.

References

[1] N. R. Adiga, G. Almasi, G. S. Almasi, Y. Aridor, R. Barik, D. Beece, R. Bellofatto,
G. Bhanot, R. Bickford, M. Blumrich, et al. An overview of the bluegene/l supercomputer.
In Supercomputing, ACM/IEEE 2002 Conference, pages 60—-60. IEEE, 2002.

[2] H. Ahmadi and W. E. Denzel. A survey of modern high-performance switching tech-
niques. IEEE Journal on Selected Areas in Communications, 7(7):1091-1103, 1989.

[3] G. Antichi, M. Shahbaz, Y. Geng, N. Zilberman, A. Covington, M. Bruyere, N. McKe-
own, N. Feamster, B. Felderman, M. Blott, A. W. Moore, and P. Owezarski. OSNT: Open
source network tester. IEEE Network, 28(5):6-12, 2014.

[4] S. Anubolu and M. V. Kalkunte. Scalable low-latency mesh interconnect for switch chips,
Aug. 10 2017. US Patent App. 15/063,387.

[5] Barefoot Tofino. https://www.barefootnetworks.com/products/
brief-tofino/, 2018.

17

https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/

[6] G. Bloch, D. Crupnicoff, M. Kagan, I. Bukspan, 1. Rabenstein, A. Webman, and
A. Marelli. High-performance adaptive routing, Nov. 5 2013. US Patent 8,576,715.

[7] G. Bloch, D. Crupnicoff, M. Kagan, I. Bukspan, A. Webman, and I. Rabenstein. Data
switch with shared port buffers, Feb. 4 2014. US Patent 8,644,140.

[8] Broadcom. BCM56980 series, 12.8 Tbps StrataXGS Tomahawk 3 Ether-
net switch series, dec 2017. https://www.broadcom.com/products/
ethernet—-connectivity/switching/strataxgs/bcm56980-series.

[9] W.J. Dally and C. L. Seitz. The torus routing chip. Distributed computing, 1(4):187-196,
1986.

[10] J. Duato, A. Robles, F. Silla, and R. Beivide. A comparison of router architectures for
virtual cut-through and wormhole switching in a now environment. Journal of Parallel
and Distributed Computing, 61(2):224-253, 2001.

[11] F. Gabbay, A. Marelli, A. Webman, and Z. Haramaty. Credit based low-latency arbitration
with data transfer, Feb. 28 2017. US Patent 9,582,440.

[12] V. Gurevich. Barefoot networks, programmable data plane at terabit speeds. In DXDD.
Open-NFP, 2016.

[13] S.Iyer, R. R. Kompella, and N. McKeown. Designing packet buffers for router line cards.
HPNG Technical Report-TRO2-HPNG-031001, Stanford University, 2002.

[14] S. Iyer, R. R. Kompella, and N. McKeown. Designing packet buffers for router linecards.
IEEE/ACM Transactions on Networking (ToN), 16(3):705-717, 2008.

[15] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer communication
switching technique. Computer Networks (1976), 3(4):267-286, 1979.

[16] B. H. Kwan, P. Agarwal, M. Kalkunte, and N. Kucharewski III. Scalable, low latency,
deep buffered switch architecture, Aug. 28 2014. US Patent App. 14/045,199.

[17] Mellanox. Mellanox Spectrum Ethernet Switch. http://www.mellanox.com/
page/products_dyn?product_family=218&mtag=spectrum_ic.

[18] D. Olson, G. B. Lindahl, and J. B. Rubin. Cut-through decode and reliability, Feb. 15
2011. US Patent 7,889,749.

[19] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore. NetFPGA SUME:
Toward 100 Gbps as research commodity. /[EEE MICRO, 34(5):32-41, Sept. 2014.

[20] N. Zilberman, M. Grosvenor, D. A. Popescu, N. Manihatty-Bojan, G. Antichi, M. W¢jcik,
and A. W. Moore. Where has my time gone? In International Conference on Passive and
Active Network Measurement, pages 201-214. Springer, 2017.

[21] N. Zilberman, A. W. Moore, and J. A. Crowcroft. From photons to big-data applications:
terminating terabits. Phil. Trans. R. Soc. A, 374(2062):20140445, 2016.

18

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
http://www.mellanox.com/page/products_dyn?product_family=218&mtag=spectrum_ic
http://www.mellanox.com/page/products_dyn?product_family=218&mtag=spectrum_ic

	Introduction
	NetFPGA
	Switch Architectures
	Architecture A: Slotted Pipeline
	Architecture B: Parallel Pipelines
	Architecture C: Split Pipeline

	Design Decisions
	Performance
	Data-path speed-up
	Data-path latency
	Measured Performance

	Related Work
	Conclusion
	Acknowledgements

