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Abstract
OpenDTrace is a dynamic tracing facility offering full-system instrumentation, a high degree of
flexibility, and portable semantics across a range of operating systems. Originally designed and
implemented by Sun Microsystems (now Oracle), user-facing aspects of OpenDTrace, such as
the D language and command-line tools, are well defined and documented. However, OpenD-
Trace’s internal formats – the DTrace Intermediate Format (DIF), DTrace Object Format (DOF)
and Compact C Trace Format (CTF) – have primarily been documented through source-code
comments rather than a structured specification. This technical report specifies these formats
in order to better support the development of more comprehensive tests, new underlying exe-
cution substrates (such as just-in-time compilation), and future extensions. We not only cover
the data structures present in OpenDTrace but also include a complete reference of all the
low level instructions that are used by the byte code interpreter, all the built in global variables
and subroutines. Our goal with this report is to provide not only a list of what is present in the
code at any point in time, the what, but also explanations of how the system works as a whole,
the how, and motivations for various design decisions that have been made along the way, the
why. Throughout this report we use the name OpenDTrace to refer to the open-source project
but retain the name DTrace when referring to data structures such as the DTrace Intermediate
Format. OpenDTrace builds upon the foundations of the original DTrace code but provides
new features, which were not present in the original. This document acts as a single source of
truth for the current state of OpenDTrace as it is currently implemented and deployed.
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Chapter 1

Introduction

OpenDTrace is a dynamic tracing facility integrated into the Solaris, FreeBSD, and macOS
operating systems—with ports also available for Linux and Windows. Dynamic tracing allows
system administrators and software developers to develop short scripts (in the D programming
language) that instruct OpenDTrace to instrument aspects of system operation, gather data, and
present it for human interpretation or mechanical processing. While there is excellent documen-
tation available for the D programming language, command-line tools, and OpenDTrace-based
investigation and operation, the internal formats to OpenDTrace are generally documented via
the source code. This report acts as a de facto specification for those formats, including the
DTrace Intermediate Format (DIF), which is a bytecode that D scripts are compiled into for
safe execution within the kernel, and the DTrace Object Format (DOF), which bundles together
complete scripts along with their associated constants and metadata.

1.1 Background
The original DTrace code was designed and developed by Sun Microsystems to solve a partic-
ular problem, being able to instrument systems that were currently deployed, without requiring
the recompilation of any code [2]. The DTrace system was written in a portable style typical of
code from the Sun Microsystems Kernel Development group in the early 2000s. Shortly after
the release of the original DTrace system a port was made, by John Birrell, to the FreeBSD
Operating System. A port was also made by Apple to their macOS at about the same time.
DTrace gained popularity as a dynamic tracing system throughout the first decade of the 21st
Century and its usage is well documented [5][6][3].

The OpenDTrace system is meant to capture information about systems at run time, with-
out the need to stop the program or kernel being investigated. A tracing system captures the
program state of a running program and can show changes in that state over time. The person
who is initiating the trace must decide before starting what information they wish to capture.
Tracing systems have an important design constraint, which is the need to make the tracing
system itself have as low an impact on overall system performance as possible.

From the perspective of the user the OpenDTrace model is one of Plan, Capture and An-
alyze. The Plan phase is where the user writes brief scripts, in the D language, that describe
the probe points from which they wish to capture data. Conditions can be placed upon when
these probe points are active, so that the amount of data captured in the next phase, can be nar-
rowed down to only what is absolutely necessary to feed the analysis and answer the question
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we are asking of the system. The Capture phase is triggered by the dtrace program pushing
the plan, in the form of compiled code, into the operating system’s kernel which activates the
required probe points. The OS kernel captures the data into buffers which are eventually fed
out to user space, where they can be analyzed. The Analysis is undertaken in user space where
the previously written plan, in the form of D scripts, directs the OpenDTrace library to extract,
display and or aggregate the captured data. Many workflows currently require some form of
post-processing of the data captured for analysis, and this post-processing is currently carried
out on unstructured text.

OpenDTrace is made up of several components, including kernel code, user space libraries,
and command line tools. The OpenDTrace system uses information generated during code
compilation to expose a set of trace points with which users and programs can interact. These
trace points can be the entry and exit points of functions as well as system calls, or they can be
arbitrary points in the instruction stream, marked out with a set of standardized macros. From
the user’s point of view tracing is activated by a command line program, dtrace, but any
program that is compiled with the OpenDTrace libraries may initiate tracing, so long as it has
sufficient privileges.

The OpenDTrace privilege model is relatively simple, any program that wishes to trace
another program must be running with root privileges. Some operating systems, such as Il-
lumos, provide a more nuanced privilege model, the details of which are discussed further in
Section 2.3.

Tracepoints are collected into one of many providers which dictate the capabilities of the
tracepoint and how it interacts with the overall tracing system. Providers exist for system calls
(syscall), function boundary tracing (fbt), timing services (profile), as well as specific
subsystems such as the network (ip, tcp), filesystem (vfs) and process scheduler (proc).
Arbitrary trace points can be added to the kernel via the statically defined trace point (sdt)
provider. User space programs are traced either with the pid provider or using the statically
defined trace point (usdt) provider.

1.2 The OpenDTrace Project

The OpenDTrace project exists to be a single, cross platform, upstream source of tracing code.
Based initially on the DTrace code that was written by Sun Microsystems, now Oracle, for the
OpenSolaris and then Illumos operating system the code has already been ported to FreeBSD,
by John Birrell, and macOS, by engineers working internally at Apple Computer. OpenDTrace
combines all of these divergent ports into a single source tree that can be deployed on any of
these three operating systems, with a unified set of features.

The OpenDTrace project maintains its own organization on github (https://github.com/opendtrace)
with a set of repositories, including one for documentation (https://github.com/opendtrace/documentation)
from whence this specification originates.

The OpenDTrace team welcome contributions of code, bug fixes, and other information via
pull requests to the relevant repositories within the github organization.
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1.3 Version History
0.1 This is the first version of the OpenDTrace Formats Specification, made available for early

review and collaborative development.

1.4 Document Structure
This report specifies a number of aspects of OpenDTrace’s operation:

The Architecture of OpenDTrace described in Chapter 2 gives a general overview of the in-
ternals of the OpenDTrace system, including the relationship of the major components,
privilege model, and other, overarching, concerns.

The D Language described in Chapter 3 provides a full description of the D language, which
is the domain specific scripting language used to create more complex data queries and
to perform data reduction after tracepoint data has been captured.

The Compact Trace Format (CTF) described in Chapter 4 explains the data extracted from
compiled object code that is used by OpenDTrace to create trace points and extract func-
tion arguments and types.

The OpenDTrace Object Format (DOF) described in Chapter 6 is a file-like format linking
together a set of sections describing OpenDTrace code, string constants, and other aspects
of a complete compiled OpenDTrace script.

The OpenDTrace Intermediate Format (DIF) is the bytecode that the executable elements
of OpenDTrace scripts are compiled to. This is a simple RISC-like instruction set with
constrained execution properties (e.g., only forward branches). Chapter 7 describes the
instruction format and common instruction semantics.

DTrace Instructions are the individual RISC instructions performing a variety of operations
including register access, memory access, arithmetic operations, and calling various
built-in subroutines available to scripts in execution. Chapter 8 enumerates the instruc-
tions, their arguments, and their semantics.

Built-in Global Variables are a set of implementation-defined variables always available to
scripts. This includes DTrace state (such as the current probe ID) and state from the
instrumented probe context (e.g., the current process ID). Chapter 9 specifies these vari-
ables.

Built-in Subroutines are available to scripts, providing access to higher-level behavior, such
as memory copying, string comparison, and so on. Chapter 10 describes the available
built-in subroutines.

Code Organization for the DTrace implementation varies by operating system. Appendix A
describes the high-level layout of the DTrace code in several operating systems incorpo-
rating DTrace support.
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Chapter 2

OpenDTrace Architecture

Object
Code

ctfconvert

Kernel
Module

CTF
Section

dtrace(1)

libdtrace

Figure 2.1: OpenDTrace Components

The components that make up OpenDTrace interact with each other to implement an op-
erational model for dynamic tracing. At the highest level there are several components to
OpenDTrace: tools, such as ctfconvert which take compiled object code and generate new
ELF/DWARF sections that capture type information, the kernel module, which is responsible
for adding and removing trace points at run time, and the libraries, which tie all of the compo-
nents together. Users interact with OpenDTrace via the dtrace command line tool.

The OpenDTrace kernel module is the heart of the DTrace framework. This module is re-
sponsible for the coordination of all other components used in instrumentation. It keeps track of
all registered providers and informs them when to enable or disable their probes. When a probe
fires, the OpenDTrace kernel module is responsible for executing the necessary instrumentation
code and providing the data to any consumers.

The kernel module is also the intermediary between the DTrace user interface and the
providers. When compiling user scripts, the kernel module provides the D compiler with probe
arguments and types. Once compiled, scripts are pushed into the kernel as Enabling Control
Blocks (ECBs) to be executed when probes fire. After each ECB is executed, the data is handed
back to user space where the dtrace command line tool, or other programs linked against the
OpenDTrace libraries can manipulate or display the data to end users.

Providers in OpenDTrace encapsulate the probe points that are used to instrument code
and provide data to the end user. A provider defines both a set of probe points as well as the
standard by which the system interacts with that set of probe points. For example, the Function
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Boundary Tracepoint (fbt) provider, not only gives D scripts access to function entry points
and their arguments, but also access to the return from a function. The fbt provider, following
the C ABI standard, defines a return trace point to have only two arguments: zero (0) and
one (1). The zero’th argument to any return probe always contains the return value and the
first argument contains return address. The return probe is specific to the fbt provider, and
no other provider has such a definition.

OpenDTrace has a base set of providers that are shipped as part of the system, but devel-
opers are free to create their own, to expose more or different information from their code.
Providers can be developed either for the kernel, in which case they are defined as kernel mod-
ules, or for user space, as part of the Userland Statically Defined Tracing (USDT) system.

A provider is simply a collection of probe points. Probe points are functions that are run
when certain points in the code are reached. The probe gathers data of interest and passes data
back into the OpenDTrace kernel module for further processing. Since the overhead of probes
should be avoided when data is not required, the provider is responsible for tracking when
probes are enabled and implementing a mechanism for the kernel module to update their state.

The user space interface to OpenDTrace is the drace(1) command line utility. The
dtrace command line utility handles all run time interaction with the OpenDTrace system,
such as submitting scripts for execution as well as configuring options as memory usage, and
how often the system should flush data from the kernel. The complete syntax and set of options
for the dtrace command is given in the dtrace(1) manual page.

The majority of the DTrace CLI functionality is provided through calls to the DTrace user-
space library, libdtrace, which is responsible for setting DTrace options, compiling D
scripts, and passing compiled D code to the kernel for execution. The libdtrace library
provides the mechanism for all interactions with DTrace in the kernel.

2.1 Probe Life Cycle

An example of instrumentation with OpenDTrace is shown in Figure 2.2. We assume that the
OpenDTrace kernel module has already been loaded during system boot. We ignore the execu-
tion of code within any of the providers and only discuss the interactions between components.
Internal functions of interest within the kernel module and CLI are shown.

When a provider is first loaded it registers itself with the OpenDTrace kernel module (1).
The registration process causes the provider to enumerate all of its available probes, which are
also disabled by default.

The provider and kernel module remain idle until instrumentation is requested. Instrumen-
tation is requested via the dtrace command in cooperation with the libdtrace library.
The the user provides a D script, specifying the code to be run when a probe fires (2). When
the dtrace command executes it initializes the libdtrace library, which in turn causes the
kernel module to initialize its tracing state and set up memory buffers to stored the trace data.

The libdtrace library then compiles the D script (3). As part of this process the compiler
queries the kernel module to determine the arguments for probes of interest via an ioctl (3a).
The kernel in turn queries the provider for a description of the probe arguments which are
returned to the compiler. If the arguments discovered by the kernel module do not match those
supplied in the D script the compiler will signal an error and abort compilation of the D script. If
the script did not supply any type information, the compilation will complete and any mismatch
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will result in a runtime error.
The result of the D script compilation is a set of Enabling Control Blocks (ECB)s. An ECB

is created for each enabling, or probe point, as well as for each action statement in a D language
clause. The ECBs are provided to the kernel module (3c) which stores them, with others, in
a tree like structure. Once an ECB is safely stored in the kernel, the kernel module tells the
provider to enable the probes that are to be instrumented. Enabling a probe means telling
the provider that at the right point, decided by the provider, the control will be transferred to
DTrace.

The function boundary tracepoint (fbt) and fasttrap providers which allow tracing of
kernel code and user space code, respectively, both operate under the same model. They both
find the instruction in the program at which the tracepoint is to be placed and swap the regular
instruction with a an architecture dependent break-point instruction when tracing is enabled.
The profile provider is completely different from the fbt or fasttrap providers as it fires
its probes on a periodic basis.

When code execution reaches a point that has an enabled probe, the probe fires and a call
is made into the kernel module (5). The kernel module then walks through the tree of ECBs,
executing any that match the probe that was fired (6). The captured data is written into the
buffer created when libdtrace was initialized. At a later point the data is copied out of the
kernel by the library (7), and then the final results are made available to the end user (8).

2.2 Trace Records
When tracing is enabled the OpenDTrace modules in the kernel produce a stream of records
which are consumed by user level processes, such as the dtrace(1) command, and turned
into various types of output.

Records are communicated in a buffer structure which is shared between the kernel and
user space. Buffers contain one of two types of data. Either the data is a plain record, or it is an
aggregation. All data is arranged as a stream of bytes where the current header gives the extent
of the data, indicating where the next record can be found. The details of the buffer structure
are described in Chapter 5.

Plain records contain the data requested by the D script along with optional formatting
information and arguments. Aggregations are treated specially because they are not simply
raw data buffers, but instead, contain information that describes deltas, normalized data, and
information on data binning.

2.3 Privilege Model
The OpenDTrace privilege model is relatively simple, any program that wishes to trace another
program, or the operating system kernel, must be a privileged user from the perspective of each
provider.
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Chapter 3

The D Language

The D language is a language inspired by the AWK programming language [1] and the C pro-
gramming language [2][4]. In this chapter, we give a formal definition of the D programming
language that is a part of OpenDTrace, as well as elaborate on its properties in multi-threaded
environments.

3.1 Example Script
Before describing the full grammar in detail we present a brief, example, D script, called a one
liner. D one liners are the most frequently used D scripts because they are an easy way to start
tracing a system without writing a file full of D code.

D scripts are a collection of one or more probe points with optional actions and filtering
predicates. Figure 3.1 shows a simple, but descriptive, D script. The script prints out the size
of the data that a program attempts to write using the write(2) system call as well as name
of the program that made the write call. Starting from the left hand side of Figure 3.1 we see
the probe point in red. The probe point includes the provider name, syscall as well as the
function, write, and the fact that we want to look at the entry into the system call. Moving
to the far right of Figure 3.1 we see the action that will be taken whenever the probe point fires.
Actions are written in the D language which is an interpreted subset of the C language and
so this script should be familiar to most C or C++ programmers. D has a large set of built-in
subroutines, described in Chapter 10, which includes familiar functions such as printf().
Each probe point can have up to six (6) arguments, numbered from arg0 to arg5, and in this
example we are interested in arg2, which is the nbytes argument to the write system call. We
want to know which program made the call to write and so we also print the execname
which a D built in variable that contains the name of the program that caused the probe to fire.

Coming back to the middle of Figure 3.1 we see text marked in green, which is a predicate.

syscall::write:entry /arg2 != 0/ { printf(“%s write size % d\n", execname, arg2); }

Probe ActionPredicate

Provider Function Subroutine Built in variable

Figure 3.1: D One Liner
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Predicates are used to filter when probes fire allowing the script writer to reduce the amount
of data collected during tracing. A system call such as write is called frequently on a busy
system and without a predicate the script will collect quite a bit of data, much of which may
not be relevant to the issue that we are trying to investigate. The predicate in Figure 3.1 allows
the probe to fire if, and only if, the length of the buffer passed to the write system call is not
equal to zero (0). More complex Boolean expressions are possible within predicates but we
want to have a simple example.

With this example in mind we now turn to the formal grammar for the D language.

3.2 Language grammar
In this section, we will define the grammar of the D language and explain how each part fits
together when interacting with DTrace. Terminals are represented using lower case, while
non-terminals are written as CamelCase. We define the tab character, ‘\t’ and space, ‘ ’ as
separators. We first define a number of auxiliary constructs to define the rest of the grammar.

〈letter〉 ::= ‘A’ ... ‘Z’
| ‘a’ ... ‘z’
| ‘ ’ ;

〈Word〉 ::= 〈letter〉 { 〈letter〉 } ;

In D, ‘ ’ is considered a letter, which can be used at the start of a name. As in C, separators
can either be tabs or white space characters. Additionally, we define number constants that are
supported in D:

〈dec digit〉 ::= ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ ;

〈DecDigitWithZero〉 ::= ‘0’ | 〈dec digit〉 ;

〈bin digit〉 ::= ‘0’ | ‘1’ ;

〈oct digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ ;

〈HexDigit〉 ::= 〈DecDigitWithZero〉
| ‘A’ ... ‘F’
| ‘a’ ... ‘f’ ;

〈Integer〉 ::= 〈dec digit〉 〈DecDigitWithZero〉
| ‘0b’ 〈bin digit〉
| ‘0’ 〈oct digit〉
| ‘0x’ 〈HexDigit〉

〈Identifier〉 ::= 〈Word〉 { ( 〈DecDigitWithZero〉 | 〈Word〉 ) } ;

〈IdentifierOrString〉 ::= [ ‘"’ ] 〈Identifier〉 [ ‘"’ ] ;

〈VarList〉 ::= 〈Identifier〉 { ‘,’ 〈Identifier〉 } ;
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In D, there are many ways to access types. There are a number of builtin types, as well as
mechanisms to define these types. Similar to the C language, D supports a number of primitive
integer and floating point types, as well as a string and userland type.

〈Type〉 ::= ‘char’
| ‘short’
| ‘int’
| ‘signed’
| ‘unsigned’
| ‘long’
| ‘long long’
| ‘userland’
| ‘string’
| ‘void’
| ‘float’
| ‘double’
| 〈TypedefName〉
| 〈StructOrUnionSpec〉
| 〈EnumSpecifier〉 ;

In the above type specification, we introduce three new non-terminals that we further have to
specify: TypedefName, StructOrUnionSpec and EnumSpecifier. TypedefName
represents a type that is defined to be an alias to another type, much like in C:

〈TypedefName〉 ::= 〈Identifier〉 ;

The StructOrUnionSpec represents a way to specify a D struct or union type. These
language primitives are compatible with their C counterparts and ensure ABI compatibility.
This is important when tracing the kernel, but also allows trivial translation to other ABIs.
Moreover, enum definitions exist in D with the same syntax as they have in C. Finally, D has a
notion of translators – we specify all of these as a part of a type specifier as follows:

〈StructOrUnionSpec〉 ::= 〈Modifier〉 ( ‘struct’ | ‘union’ ) [ 〈Identifier〉 ]
‘{’ 〈StructDeclList〉 ‘}’ [ 〈VarList〉 ] ‘;’

| ( ‘struct’ | ‘union’ ) 〈Identifier〉 [ 〈VarList〉 ] ‘;’ ;

〈StructDeclList〉 ::= 〈Type〉 〈VarList〉 ‘;’ { 〈Type〉 〈VarList〉 ‘;’ } ;

〈EnumSpecifier〉 ::= 〈Modifier〉 ‘enum’ [ 〈Identifier〉 ]
‘{’ 〈EnumDeclList〉 ‘}’ [ 〈VarList〉 ] ‘;’

| ‘enum’ 〈Identifier〉 [ 〈VarList〉 ] ‘;’ ;

〈EnumDeclList〉 ::= 〈Identifier〉 [ ‘=’ 〈Identifier〉 ] [ ‘,’ ] ;

〈IdentPtrFollow〉 ::= 〈Identifier〉 { ‘->’ 〈Identifier〉 } ;

〈TranslatorIdent〉 ::= 〈IdentifierOrString〉
| 〈IdentifierPtrFollow〉
| 〈Subroutine〉 ‘(’ 〈SubroutineArgs〉 ‘)’
| 〈TranslatorIdent〉 [ ‘?’ 〈TranslatorIdent〉 ‘:’ 〈TranslatorIdent〉 ]

;
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〈TranslatorSpec〉 ::= ‘translator’ 〈Identifier〉 ‘<’ 〈Type〉 ‘>’ ‘{’
〈Identifier〉 ‘=’ 〈TranslatorIdent〉 ‘;’
{ 〈Identifier〉 ‘=’ 〈TranslatorIdent〉 ‘;’ } ‘}’ ‘;’ ;

〈TypeSpecifier〉 ::= 〈StructOrUnionSpec〉
| 〈EnumSpecifier〉
| 〈TranslatorSpec〉 ;

Here we introduce a new non-terminal, Modifier which encapsulates the modifiers that
may occur before a struct or enum definition. Moreover, we introduce Subroutine and
SubroutineArgs which will be defined later on. Modifier is defined as follows:

〈Modifier〉 ::= ‘const’
| ‘volatile’
| ‘typedef’
| ‘register’
| ‘restrict’
| ‘static’
| ‘extern’ ;

Even though Modifier is permissive in terms of what keywords are allowed, the definitions
of these keywords are equivalent to those in C and may only be used when appropriate. The
compiler may choose to emit a warning and ignore modifiers that are not applicable or it may
choose to be more strict and treat misuse of a modifier as an error. Using these modifiers when
not applicable is considered undefined behavior.

D is a domain-specific language used for tracing and provides probes in the operating system
kernel. The D language allows the programmer to specifying probes in the following way:

〈ProbeSymbol〉 ::= 〈letter〉
| 〈DecDigitWithZero〉
| ‘*’
| ‘+’
| ‘\’
| ‘?’
| ‘!’
| ‘[’
| ‘]’ ;

〈ProbeIdent〉 ::= 〈ProbeSymbol〉 { 〈ProbeSymbol〉 } ;

〈ProbeSpecifier〉 ::= 〈ProbeIdent〉
| [ 〈ProbeIdent〉 ] ‘:’ [ 〈ProbeIdent〉 ]
| [ 〈ProbeIdent〉 ] ‘:’ [ 〈ProbeIdent〉 ] ‘:’ [ 〈ProbeIdent〉 ]
| [ 〈ProbeIdent〉 ] ‘:’ [ 〈ProbeIdent〉 ] ‘:’

[ 〈ProbeIdent〉 ] ‘:’ [ 〈ProbeIdent〉 ] ;

This provides us with a way to specify the provider, module, function and name of a
DTrace probe in D. The reason symbols such as ‘*’ are allowed is because D allows the user to
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write glob expressions much like a Unix shell does.

D defines a complete set of operators for the language. For clarity We split the operators into
three different parts – binary operators, prefix unary operators and postfix unary operators. We
intentionally avoid the use of a ternary ‘?’ operator here, as it is specified as a part of allowed
expressions.

〈pre un operator〉 ::= ‘++’
| ‘--’
| ‘!’
| ‘˜’ ;

〈post un operator〉 ::= ‘++’
| ‘--’ ;

〈bin operator〉 ::= ‘+’
| ‘-’
| ‘*’
| ‘=’
| ‘/’
| ‘%’
| ‘==’
| ‘&&’
| ‘||’
| ‘|’
| ‘&’
| ‘ˆ’
| ‘=’
| ‘&=’
| ‘|=’
| ‘ˆ=’
| ‘˜=’
| ‘+=’
| ‘-=’
| ‘*=’
| ‘/=’
| ‘%=’ ;

A probe clause in a D script consists of an optional predicate. A predicate contains a logical
expression in propositional logic:

〈Predicate〉 ::= ‘/’ 〈LogicExpression〉 ‘/’ ;

〈LogicExpression〉 ::= 〈Expression〉 ;

We define Expression, which encapsulates scalar and array expressions and AggExpression
which works with aggregations as:
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〈ArrayIndices〉 ::= ( 〈Identifier〉 | 〈Integer〉 ) { ( 〈Identifier〉 | 〈Integer〉 ) }
| 〈IdentifierOrString〉
| 〈ArrayIndices〉 ‘,’ 〈ArrayIndices〉 ;

〈ThisOrSelf 〉 ::= ‘this->’
| ‘self->’ ;

〈Expression〉 ::= 〈Expression〉 〈bin operator〉 〈Expression〉
| 〈pre un operator〉 〈Expression〉
| 〈Expression〉 〈post un operator〉
| 〈Expression〉 ‘?’ 〈Expression〉 ‘:’ 〈Expression〉
| 〈Subroutine〉 ‘(’ 〈SubroutineArgs〉 ‘)’
| 〈ThisOrSelf 〉 〈Identifier〉 [ ‘[’ 〈ArrayIndices〉 ‘]’ ]
| 〈IdentifierOrString〉
| 〈XLate〉 ;

〈XLate〉 ::= ‘xlate <’ 〈Type〉 ‘>’ ‘(’ 〈XLateMethod〉 ‘)’ ;

〈XLateMethod〉 ::= 〈Subroutine〉 ‘(’ 〈SubroutineArgs〉 ‘)’
| 〈IdentifierOrString〉 ;

〈AggExpression〉 ::= ‘@’ [ 〈Identifier〉 ] [ ‘[’ 〈ArrayIndices〉 ‘]’ ] ‘=’ 〈AggFunc〉 ;
| 〈AggSubroutine〉 ‘(’ 〈AggSubroutineArgs〉 ‘)’ ;

In order to provide a full definition, we need to define Subroutine, AggFunc and AggSubroutine.
The definitions of these elements varies depending on what subroutines, aggregating func-
tions and aggregating subroutines are actually available as a part of the D runtime, which
in turn, depends on the currentl DTrace implementation. The same problem presents itself
with SubroutineArgs and AggSubroutineArgs which depend on Subroutine and
AggSubroutine, so we are unable to specify completely without significantly limiting what
aggregations and subroutines can be implemented.

D allows for explicit declarations of variables. We specify this as:

〈Declaration〉 ::= [ (‘this’ | ‘self’) ] 〈Type〉 〈Identifier〉 ;

We are able to define what a definition of a probe looks like:

〈ProbeDefinition〉 ::= 〈ProbeSpecifier〉 [ 〈Predicate〉 ] ‘{’ { 〈Statement〉 } ‘}’ ;

〈Statement〉 ::= 〈Expression〉 ‘;’
| 〈AggExpression〉 ‘;’
| 〈Declaration〉 ‘;’ ;

Note that this only defines a single probe clause, not the full syntax of the D script. D scripts can
have additional preprocessor statements in them and definitions of variables user-defined types
outside of probe clauses. In the specification, we will avoid talking about compiler-specific
preprocessor statements and the C preprocessor that can be run on the D script, as how this will
be implemented and what parts of it will be supported is entirely up to the compiler writer. We
define the D script as follows:
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〈VarDecl〉 ::= 〈Modifier〉 〈Type〉 〈Identifier〉 [ ‘[’ 〈Type〉 〈Identifier〉 ‘]’ ] ;

〈DScript〉 ::= 〈DScript〉 〈PreprocessorStatement〉 〈DScript〉
| 〈DScript〉 〈TypeSpecifier〉 〈DScript〉
| 〈DScript〉 〈ProbeDefinition〉 〈DScript〉
| 〈DScript〉 〈VarDecl〉 [ ‘=’ 〈Expression〉 ] 〈DScript〉
| ‘;’
| ‘’ ;

3.3 Safety
The D language will look familiar to anyone who has programmed in C or its close linguistic
relatives, but in order to provide certain safety guarantees there are features of C-like languages
that are missing from D. The most obviously missing feature is the lack of any sort of looping
mechanism. Once they are compiled into byte code D scripts are loaded into the kernel where
they run to completion. A script that was allowed to loop might, due to error or intent, loop
forever, causing the operating system kernel to lock up and require a system reset. D lacks any
form of loops to prevent such errors from occurring.

By default, OpenDTrace runs in a mode where memory can be read but not written by D
language scripts. A command line option to the dtrace (1) program, -w, puts OpenDTrace
into destructive mode, where both reads and writes are possible. Although destructive mode is
not a feature of the D language itself, it is an important part of the system’s overall commitment
to safety.

3.4 Variables
DTrace implements three different scopes of variables: global, thread-local and clause-local.
Global variables are visible to every probe and across all threads, allowing the user to write
scripts that carry state across multiple threads should it be necessary and are identified with the
variable name.

Similar to global variables are D built-in variables such as execname, curthread, etc.
We make a distinction between the two due to the difference between failures that they expose.
A list of built-in variables can be found in Section 9.1.

Thread-local variables are only visible within a single software thread, they are represented
in source code as prefixed with self->. A thread-local variable is identified with its name
and a thread ID.

Clause-local variables are prefixed with this-> and are visible only within a single probe
firing. This means that a clause-local variable will be visible across multiple clauses of the
same probe, allowing the programmer to carry state associated with a clause-local variable
across them.

3.4.1 Global variables
Any variable introduced in a D script that is not declared as part of a this-> or self-> is
considered to be global in scope, meaning that it can be accessed from any action associated
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with a probe when a set of probes are simultaneously activated. Global variables are allocated
and instantiated when they are first assigned to. Global variables, however, are subject to the
semantics of the underlying architecture’s cache coherence mechanism.

Global variables exhibit two failure modes:

• The variable could not be allocated.

• The use of a global variable has caused a fault.

The former eventually manifests through the latter failure mode at every program point where
the variable is dereferenced, but we have included it as a separate failure mode because DTrace
currently increments a counter to indicate that a variable could not be allocated and because
whenever a D variable that was not mapped is used, but not dereferenced as a pointer, it behaves
as if the value of that variable is zero (0).

3.4.2 Built-in variables
Similarly to global variables, built-in variables are accessible to the programmer at any point in
the script. The main difference between built-in variables and global variables are their seman-
tics. D built-in variables are not mutable and are thus not subject to the concurrency semantics
of the underlying architecture. Unlike global variables, built-in variables are guaranteed to
never cause a page fault and thus can be accessed safely. It is up to the DTrace implementation
to ensure that access to these variables is race-free and reliable.

3.4.3 Thread-local variables
As previously mentioned, thread-local variables are identified with their name and a thread
ID. The motivation behind them is to have a pragmatic way to carry state around probes in a
race-free way, as a thread can only be scheduled on a single CPU. The failure modes exposed
by thread-local variables are the those of global variables – however, thread-local variables do
not suffer the problem of relying on the underlying architecture’s cache coherence semantics
under the assumption that each software thread can only be scheduled on one CPU and runs
with interrupts off in the DTrace probe context.

3.4.4 Clause-local variables
Clause-local variables in DTrace are defined across a single probe. Note that this does not mean
that they are only usable within a single probe clause, but instead for all of the clauses of a given
probe. If a clause-local variable is used before it is defined in a given probe firing, its value
is undefined and depends on the implementation. A good compiler will warn the programmer
about such misuse of a clause-local variable.

3.5 Aggregations
The ability to aggregate data during data collection, and to then process the data via several
types of statistical analysis, is one of the key features of OpenDTrace. The data for an aggre-
gation is collected, like all other trace data, by the kernel, while the data processing is carried
out in user space by the libdtrace library functions.
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Function Pseudo-code Description
count x = x+ 1 Counts the number of occurrences of some argument
min x = x > arg ? arg : x Computes the minimum of all values seen
max x = x > arg ? x : arg Computes the maximum of all values seen
avg x = sum / len Averages out the values seen
sum x = x+ arg Sums up all of the values that are seen
stddev N/A The standard deviation over a set of values
quantize N/A Power-of-two frequency distribution over a set of values
lquantize N/A Linear frequency distribution over a specified range.
llquantize N/A Linear frequency distribution within a logarithmic distribution

Table 3.1: Aggregation Functions

Aggregating functions are a set of functions that can operate on partial data and achieve the
same result as if they had operated on all of the data at once.

There are nine (9) aggregating functions, which are listed in Table 3.1. The first five ag-
gregating functions (count(), min(), max(), avg(), and sum()) are simple enough that
pseudo-code can be supplied within Table 3.1 while the next three functions: stddev(),
quantize() and lquantize(), should be understood in their mathematical expression.

The llquantize() function is specific to OpenDTrace, and was written by Bryan Cantrill
while at Joyent. The purpose of llquantize() is to aggregate data logarithmically over a
specified range of magnitudes, but use a frequency distribution within each of the magnitude.

3.6 Subroutines

OpenDTrace subroutines are built into the D language and run inside the operating system
kernel. The programmer cannot create their own subroutines inside the D language itself,
but new ones can be added as a part of the D language runtime. All of the parameters are
type-checked during every call, however the safety of using these subroutines depends on the
safety of DTrace action and the DIF emulator. The subroutines currently supported are given
in Table 10.2.

3.7 Translators

OpenDTrace translators serve the purpose of providing a way to translate between different
data types for D scripts. The main motivation behind translators is to translate C types that
are a part of the operating system to a stable user-defined data type to avoid having to change
the script when the operating system implementation changes, however, they do work for any
D type. In a sense, translators define a two way map1 between two types. This enables the
compiler to translate between these two data types either as a part of the runtime or statically
at compile-time.

1A translator creates an isomorphism between types.
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 dtrace:::BEGIN
 {
 num_syscalls = 0;
 }

 syscall:::entry
 {
 num_syscalls++;
 }

 dtrace:::END
 {
 printf("Number of syscalls: %d\n", num_syscalls);
 }

Figure 3.2: Global Variable Usage

3.8 Multithreading

When tracing, OpenDTrace guarantees that it can not be preempted inside of a probe firing,
but it does not guarantee that everything in the executing DIF will be thread-safe. OpenDTrace
does not allow access to locking primitives, because a programming error might violate the
safety guarantees that OpenDTrace was designed to provide. The memory that OpenDTrace
works with is currently guaranteed to be sequentially consistent, however, this is not a good
assumption to make across implementations and one should instead rely on the underlying
multicore semantics of the CPU.

3.8.1 Global variables

Global variables are not stored in thread-local storage, while thread-local and clause-local vari-
ables are. In a multithreaded environment, global variables should be used sparingly. While it
is evident that a value stored in a global variable may be overwritten by another probe at any
time, there is more subtle behavior at hand. Consider the script in Figure 3.2.

Because DIF performs all of its operations on a virtual machine’s registers as opposed to vari-
ables in memory, the ++ operator is not atomic. Compiling the syscall:::entry clause
from Figure 3.2 generates the DIF shown in Figure 3.3. This DIF section is safe, as long as the
num syscalls variable is not visible from any other thread. If it is visible and accessible
from another thread, it suffers from a race condition which results in wrong information being
given to the user. The race condition is shown in Figure 3.4.

It is clear that the value in the r2 register will be lost because the register r4 is stored to
the same location afterwards. It is worth noting that this behavior is not observed because
the thread was preempted, but simply by the fact that DTrace does not guarantee any ordering
outside of each CPU core. This behavior applies to all of the operations performed on global
variables and as a result, they should only be used in probes that are guaranteed to fire on a
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 ldgs %r1, num_syscalls /* Load the current value into %r1 */
 setx %r2, inttab[0] /* Load 1 into %r2 */
 add %r2, %r1, %r2 /* Add %r1 and %r2 and store into %r2 */
 stgs %r2, num_syscalls /* Store the result back into num_syscalls */

Figure 3.3: DIF Assembly

 Thread 1 Thread 2
 ldgs %r1, num_syscalls
 ldgs %r3, num_syscalls
 setx %r4, inttab[0]
 add %r4, %r3, %r4
 setx %r2, inttab[0]
 add %r2, %r1, %r2
 stgs %r2, num_syscalls
 stgs %r4, num_syscalls

Figure 3.4: Race Condition

single thread.

Often the desired behavior with global variables can be achieved through aggregations. The
script shown in Figure 3.2 ought to be written using an equivalent aggregation function, as
shown in Figure 3.5.

 syscall:::entry
 {
 @num_syscalls = count();
 }

 dtrace:::END
 {
 printa(@num_syscalls);
 }

Figure 3.5: Avoiding the race condition
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Chapter 4

Compact C Type Format (CTF)

The Compact C Type Format (CTF) encapsulates all of the information needed by OpenDTrace
to understand C language types such as integers, strings, floats and structures, as they are
represented in the program that is being traced. The goal of having another section just for C
type information is to provide a compact representation of the information that usually appears
in the debugging sections of object files and executables. The CTF section gives D scripts
programmatic access to the names of types making it easier to implement features such as
pretty printing of data. CTF only contains data types it does not contain other debugging
information, which allows it to be far more compact. The debugging sections on a debug build
of the FreeBSD kernel in 2017 take up 78 megabytes of space, while the CTF section in the
same kernel take up only 800 kilobytes.

4.1 On-Disk Format
CTF data is stored in its own ELF section within an object file or executable. It is meant to be
stored in a format that is both compact and which is properly aligned so that it can be accessed
using the mmap (2) system call.

File Header Type Labels Data Objects Function
Information Data Types String Table

Figure 4.1: CTF Stable Storage Format

Figure 4.1 shows all of the components of the CTF section as they would be found on stable
storage. The file header stores a magic number and version information, encoding flags, and
the byte offset of each of the sections relative to the end of the header itself. As of this writing
the most current version of CTF is version two (2). The preamble, including the magic number,
version and flags, take up the first 32 bits of the header, the remaining fields take up 32 bits
each, independent of the word size of the architecture.

The CTF section makes heavy use of references between the sub-sections to fully describe
the data-types in a program as well as the functions, the function’s argument list, and the func-
tion’s return value. The data objects and functions sections depend upon the type
section, which encodes all of the data-types that have been during the CTF conversion process.
Each type has a unique number and name, as well as a size and encoding. Types may refer

31



081631

magic version flags

reference to parent label

reference to basename of parent

label section offset

function section offset

type section offset

string section offset

size of string section (bytes)

Figure 4.2: Overall CTF section encoding
01631

name

info size or type

Figure 4.3: A simple type

to other, more primitive types by use of a reference, e.g. a uint32_t will actually refer to a
unsigned int. Types are broken up by what they represent, referred to as their kind.

Table 4.1 lists the kinds of base data types that are encoded by CTF. Complex data types,
such as structures, are also contained in the types section, and are encoded as a structure with
a name that references the string table.

A simple type, one who’s size is less than 64 Kbytes, is stored in a ctf_stype, shown in
Figure 4.3. The name is a reference to a string in the string table. The info field is encoded
differently for each type, as will be explained fully in the rest of this chapter. The last field is
either the size, in bytes, of the structure or it is a reference to another type, encoded using the
referenced type’s ID. The majority of types in a C program will fit within a ctf_stype.

Types that are larger than 64Kbytes are encoded using a ctf_type structure, shown in
Figure 4.4. The name and info fields of this, larger, ctf_type are the same as the smaller
ctf_stype, but the size field is always set to CTF_LSIZE_SENT, the sentinel value that

01631

name

info size or type

high 32 bits of size (in bytes)

low 32 bits of size (in bytes)

Figure 4.4: A large type
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CTF_K_UNKNOWN unknown type (used for padding)
CTF_K_INTEGER variant data is CTF_INT_DATA() (see below)
CTF_K_FLOAT variant data is CTF_FP_DATA() (see below)
CTF_K_POINTER ctf_type is referenced type
CTF_K_ARRAY variant data is single ctf_array_t
CTF_K_FUNCTION ctt_type is return type

variant data is list of argument types
(ushort_t’s)

CTF_K_STRUCT variant data is list of ctf_member_t’s
CTF_K_UNION variant data is list of ctf_member_t’s
CTF_K_ENUM variant data is list of ctf_enum_t’s
CTF_K_FORWARD no additional data; ctt_name is tag
CTF_K_TYPEDEF ctf_type is referenced type
CTF_K_VOLATILE ctf_type is base type
CTF_K_CONST ctf_type is base type
CTF_K_RESTRICT ctf_type is base type

Table 4.1: Kinds of CTF Base Types
091015

kind r vlen

Figure 4.5: Info field encoding

tells the consumer that this is a larger structure. A ctf_type structure can encode an ex-
tremely large type, since it provides 64 bits for the size, and that size is expressed in bytes.

The info field, shown in Figure 4.5, is further broken down into a number of sub-fields
which encoded the kind, vlen (variable length) and whether or not this is a root type isroot.

Each of the integral types, such as integers, floats, pointers, arrays, etc. has its own encod-
ing. Integers are the simplest type and are unsigned by default. An integer type is encoded in a
single, 32 bit, field, as seen in Figure 4.6.

The flags field indicates whether the integer is signed, contains character data, is a
boolean or is to be displayed with a vargs style of formatting.

Floating point numbers have the exact same fields to describe them but a larger number of
possible flags, to match the larger number of ways in which floating point numbers may be
stored. The flags and descriptions of the currently supported floating point encodings are given
in Table 4.1.

The functions section encodes the function name, as well as its arguments and return value.
The types of the arguments and the return value reference the types section. The arguments
to the function are encoded as a list.

All strings are encoded in the string table and are referenced by a numeric id from
the other sections.

0162431

flags offset size in bits

Figure 4.6: Integral type encoding
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CTF_FP_SINGLE IEEE 32-bit float encoding
CTF_FP_DOUBLE IEEE 64-bit float encoding
CTF_FP_CPLX Complex encoding
CTF_FP_DCPLX Double complex encoding
CTF_FP_LDCPLX Long double complex encoding
CTF_FP_LDOUBLE Long double encoding
CTF_FP_INTRVL Interval (2x32-bit) encoding
CTF_FP_DINTRVL Double interval (2x64-bit) encoding
CTF_FP_LDINTRVL Long double interval (2x128-bit) encoding
CTF_FP_IMAGRY Imaginary (32-bit) encoding
CTF_FP_DIMAGRY Long imaginary (64-bit) encoding
CTF_FP_LDIMAGRY Long long imaginary (128-bit) encoding

Table 4.2: Floating Point Encodings for CTF
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Chapter 5

Trace buffer

OpenDTrace specifies an Application Binary Interface (ABI) between kernel and userspace in
the form of trace and aggregations buffers along with the associated metadata used to interpret
these buffers e.g. for further processing or formatting in order to generate results passed back
to the user. This chapter specifies the format of the OpenDTrace trace and aggregation buffers,
and metadata data structures used to interpret them.

5.1 Enabling

Each enabled probe is associated with a set of actions through its Enabling Control Block
(ECB). When a probe fires these actions are performed. The execution of these actions poten-
tially results in data being written into one or more trace buffers.

5.1.1 OpenDTrace trace buffer

Each OpenDTrace consumer is associated with a set of in-kernel, per-CPU buffers [2]. The
format of the OpenDTrace trace buffer is shown in Figure 5.1. The length of the data for each
trace record is not specified by the OpenDTrace trace buffer itself because trace records are
specified as Type-Value (TV) rather than Type-Length-Value (TLV). Instead, a separate stream
of metadata is used to interpret the trace buffer. The data structures describing the metadata
stream are described in Section 5.1.2.

EPID timestamp data ... EPID timestamp data

Record0 Recordn

Figure 5.1: OpenDTrace trace buffer format.

• EPID: identifies the enabling (that is, the enabled probe) that produced the trace record;
the identifier type is dtrace epid t which corresponds to a unsigned 32 bit integer.
These identifiers are unique for each OpenDTrace consumer.
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• timestamp: the timestamp, in nanoseconds, of the trace record; the timestamp type is
an unsigned 64 bit integer.

• data: the data for the trace record; a sequence of octets the format of which is specified
by the trace metadata see Section 5.1.2.

5.1.2 Trace metadata
The metadata required to interpret an enabled probe is constant over the lifetime of the enabling
[2], which allows trace metadata to be queried from the kernel once, on first processing a
given enabling, and is then cached locally. The separation of trace records and the metadata
required to interpret them is an important design decision. The separation simplifies the run-
time analysis of the trace data but comes at the expense of some flexibility, for example, the
ability change an enabling at runtime.

Figure 5.2 provides an overview of the data structures, and their relationships, used by
libdtrace when interpreting the contents of a OpenDTrace trace buffer.

struct dtrace probedata

The struct dtrace probedata, shown in Figure 5.3, is used solely by libdtrace
and collects the information required to process the OpenDTrace trace buffer, including the
metadata describing the enabling, a pointer to the copy of the trace buffer and formatting in-
formation, such as the flow prefix and indent—used when the OpenDTrace is invoked with the
flowindent option enabled.

• The dtpda handle field contains a pointer to the handle returned to OpenDTrace
consumer on invoking dtrace open().

• The dtpda edesc and dtpda pdesc fields are described in Sections 5.1.2 and 5.1.2
respectively.

• The dtpda cpu field identifies the CPU on which the probe fired.

• The dtpda data field contains a pointer to the OpenDTrace trace buffer (see Sec-
tion 5.1.1).

• The dtpda flow field specifies the flow type (either DTRACEFLOW ENTRY, DTRACE-
FLOW RETURN or DTRACEFLOW NONE). The flow field is set when the DTrace
option flowindent is true; the value of dtpda flow depends on whether a return
(::return) or entry (::entry) probe is being traced.

• The dtpda prefix field contains a pointer to a C String containing the flow prefix
(nominally “-〉” for entry probes and “〈-” for return probes).

• The dtpda indent field specifies the value of the flow indent (that is the number of
characters currently indented).

• The dtpda timestamp field contains the timestamp of the trace record extracted
from the OpenDTrace trace buffer (see Section 5.1.1).
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dtpda handle: dtrace hdl t *

pdtpda edesc

dtpda pdesc

dtpda cpu: processorid t

dtpda data: caddr t

dtpda flow: dtraace flowkind t

dtpda prefix: const char *

dtpda indent: int

dtpda timestamp: uint64 t

struct dtrace probedata
dtepd epid: dtrace epid t

dtepd probeid: dtrace id t

dtepd uarg: uint64 t

dtepd size: uint32 t

dtepd nrec: int

dtepd rec

struct dtrace eprobedesc

dtpd id: dtrace id t

dtpd provider: char []

dtpd mod: char []

dtpd func: char []

dtpd name: char []

struct dtrace probedesc

dtrd action: dtrace actkind t

dtrd size: uint32 t

dtrd offset: uint32 t

dtrd alignment: uint16 t

dtrd format: uint16 t

dtrd arg: uint64 t

struct dtrace recdesc t

pfv dtp: dtrace hdl t *

pfv format: char *

pfv argv

pfv argc: uint t

pfv flags: uint t

struct dt pfarvg

pfd prefix: const char *

pfd preflen: char *

pfd fmt: char[8]

pfd flags: uint t

pfd width: int

pfd dynwidth: int

pfd prec: int

pfd conv

pfd rec

pfd next: struct dt pfargd *

struct dt pfarvgd

pfc name : const char *

pfc ofmt: const char *

pfc tstr: const char *

pfc check: dt pfcheck f

pfc print: dt pfprint f

pfc cctfp: ctf file t *

pfc ctype: ctf id t

pfc dctfp: ctf file t *

pfc dtype: ctf id t

pfc next: struct dt conv *

struct dt pfconv

Figure 5.2: Overview of the data structures used to interpret the OpenDTrace trace buffer

37



dtpda handle: dtrace hdl t *

pdtpda edesc

dtpda pdesc

dtpda cpu: processorid t

dtpda data: caddr t

dtpda flow: dtraace flowkind t

dtpda prefix: const char *

dtpda indent: int

dtpda timestamp: uint64 t

struct dtrace probedata

Figure 5.3: Data structure used to aggregate the details of the trace buffer and the metadata
required to interpret it.

struct dtrace eprobedesc

The struct dtrace eprobedesc (Figure 5.4) specifies an enabled probe. Specifically,
struct eprobedesc contains metadata required to process the OpenDTrace trace buffer.
The struct dtrace eprobedesc is returned from the kernel to userspace by invoking
the EPROBE ioctl.

dtepd epid: dtrace epid t

dtepd probeid: dtrace id t

dtepd uarg: uint64 t

dtepd size: uint32 t

dtepd nrec: int

dtepd rec

struct dtrace eprobedesc

Figure 5.4: Data structure used to describe an enabled probe.

• The dtepd epid field contains the enabled probe’s identifier; the identifier type is
dtrace epid t which corresponds to a unsigned 32 bit integer.

• The dtpd id field contains the probe’s identifier; the identifier type is dtrace id t
which corresponds to a unsigned 32 bit integer.

• The dtepd uarg field is a library argument1.

• The dtepd size field specifies the size of the OpenDTrace trace buffer (a pointer to
the trace buffer is held in the struct dtrace probedata structure.

1I’m uncertain when this is used, and whether it is relevant when in printing trace records
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• The dtepd nrec field specifies the number of records in the dtepd rec field.

• The dtepd rec field is a variable sized array (of dtepd nrecs entries); this data
structure is described in Section 5.1.2.

struct dtrace probedesc

The struct dtrace probedesc (Figure 5.5) specifies a given probe. The dtrace probedesc
structure is constructed within the kernel from the corresponding struct dof probedesc.
The struct dtrace probedesc is returned from the kernel to userspace by invoking the
PROBES ioctl.

dtpd id: dtrace id t

dtpd provider: char[]

dtpd mod: char[]

dtpd func: char[]

dtpd name: char[]

struct dtrace probedesc

Figure 5.5: Data structure used to describe a probe.

• The dtpd id field contains the probe’s identifier; the identifier type is dtrace id t
which corresponds to a unsigned 32 bit integer.

• The dtpda provider field contains a C string specifying the probe’s provider name;
the provider type is an char array or size DTRACE PROVNAMELEN (nominally 64
characters).

• The dtpda mod field contains a C string specifying the probe’s module name; the
provider type is an char array or size DTRACE MODNAMELEN (nominally 64 charac-
ters).

• The dtpda func field contains a C string specifying the probe’s function name; the
provider type is an char array or size DTRACE FUNCNAMELEN (nominally 192 char-
acters).

• The dtpda name field contains a C string specifying the probe’s name; the provider
type is an char array or size DTRACE NAMELEN (nominally 64 characters).

struct dtrace recdesc

The struct dtrace recdesc (Figure 5.6) specifies an individual trace record within the
trace buffer. Each OpenDTrace action produces a separate trace record. And actions have a
one-to-one correspondence with a DIFO (DTrace Intermediate Format Object). For example,
printf("%s", probefunc) produce a single DIFO and therefore a single action and
record. Whereas, prinf("%s %s", probefunc, arg0); will produce two DIFOs and
therefore two actions and records.
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dtrd action: dtrace actkind t

dtrd size: uint32 t

dtrd offset: uint32 t

dtrd alignment: uint16 t

dtrd format: uint16 t

dtrd arg: uint64 t

dtrd uarg: uint64 t

struct dtrace recdesc t

Figure 5.6: Data structure used to describe a individual record in the trace buffer.

• The dtrd action field specifies the “action” of the trace record; for printf the ac-
tion is DTRACEACT PRINTF. The value of dtrd action is used by libdtrace
to determine how the trace record is processed.

• The dtrd size field contains the size (in bytes) of the trace record; this is computed
within the kernel based on the CTF (Compact Type Format) type of the value being
written to the trace buffer.

• The dtrd offset field contains the offset (in bytes) into the OpenDTrace trace buffer
at which the trace record is located; the offset is computed within the kernel and is based
on the size and alignment of the preceding records.

• The dtrd alignment field contains the specified alignment (in bytes) of the trace
record; the alignment is based on the trace record’s CTF type.

• The dtrd format field contains an identifier used to lookup format information by
invoking the function dt format lookup(). Format data is copied from the kernel
to the userspace consumer by invoking the FORMAT ioctl. In the case of a printf action
the format data is stored as a struct dt pfargv (see Section 5.1.2).

• The dtrd arg field is unused when printing.

• The dtrd uarg field is unused when printing.

struct dt pfargv

The struct dt pfargv (Figure 5.7) is used solely by libdtrace. This data structure
acts as a container for data structures that define a set of format codes (such as %s or %2d) used
by the printf action.

• The pfv handle field contains a pointer to the handle returned to OpenDTrace con-
sumer on invoking dtrace open().

• The pfv format field points to a C String containing the format string. For example,
if the action is printf("\"event\": %s", probefunc);, the format string
contains "\"event\": %s".
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pfv dtp: dtrace hdl t *

pfv format: char *

pfv argv

pfv argc: uint t

pfv flags: uint t

struct dt pfarvg

Figure 5.7: Data structure used to describe the formatting of a printf action.

• The pfv argv field is described in Section 5.1.2.

• The pfv argc field contains the number of entries in the list pointed to by the pfv argv
field.

• The pfv flags field contains flags used for validating the the format arguments.

struct dt pfargd

The struct dt pfargd (Figure 5.8) is used solely by libdtrace. This data structure
defines an individual printf format code (such as %s).

pfd prefix: const char *

pfd preflen: char *

pfd fmt: char[8]

pfd flags: uint t

pfd width: int

pfd dynwidth: int

pfd prec: int

pfd conv

pfd rec

pfd next: struct dt pfargd *

struct dt pfarvgd

Figure 5.8: Data structure used to describe a format code used by the printf action.

• The pfd prefix field points to C string that contains the format string passed to
printf.

• The pfd preflen field contains the length in bytes of the prefix (pfd prefix).
For example, for the prefix ”\”event\”: %s” the pfd preflen will be 9 (the number
of characters preceding the format code %s).
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• The pfd fmt field contains the format code (for %s this field will contain the value s).

• The pfd flags field contains a set of flags. As with printf in the C language,
formatting flags can be used to control whether, for example, the printed values are left
aligned or preceded by zeroes.

• The pfd width field contains the width, for example when printing printf("%3d",
value); the pfd width field contains three (3).

• The pfd dynwidth field contains the dynamic width; for example, when printing
printf("%*d", width, value); the dynwidth is the value of width.

• The pfrdv prec field contains the precision.

• The pfd conv field points to a data structure used to handle a specific format code
(such as %s). The printf format conversion dictionary ( dtrace conversions)
can be found in the file dt prinf.c.

• The pfd rec field contains a pointer to the record that the format code (modifiers and
flags) applies to.

• The pfd next field contains a pointer to the next struct pfargd in the list or
NULL if there are no further entries.

5.2 Aggregations

5.2.1 OpenDTrace aggregation trace buffer
Figure 5.9 presents an overview of an OpenDTrace aggregation trace buffer:

AGGID key value ... AGGID key value

...

Aggregation keys

Aggregation metadata

keys

records

Record0 Recordn

Figure 5.9: OpenDTrace aggregation trace buffer.
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• AGGID: identifies the aggregation corresponding to the trace record; the identifier type
is dtrace aggid t which corresponds to a unsigned 32 bit integer.

• key: the key of the aggregation entry. (Note that OpenDTrace supports compound keys
such as @a[probefunc, arg0] = count();.)

• value: the value corresponding to the key. In the case of an aggregation such as
count() or min() the value contains the current count or minimum value respec-
tively. In other cases, such as computing the average, the value may consist of a tuple.
For example, as computing an average does not distribute over addition, when comput-
ing avg(timestamp - self->ts) the aggregating function stores both the run-
ning sum of timestamp - self->ts and the number of times the avg() function
was called. These values are then used to compute the average at the point when the
aggregation is actual printed (by libdtrace).

Note that neither the length of the key (or keys) or the length of the aggregation value is
specified by the OpenDTrace trace aggregation buffer. Instead, a separate stream of metadata
is used to interpret the trace buffer. The data structures describing the metadata stream are
described in Section 5.2.2.

5.2.2 Data structures
struct dtrace aggdesc

The struct dtrace aggdesc, shown in Figure 5.10, contains the metadata required to
interpret trace records from a given aggregation. The struct dtrace aggdesc is re-
turned from the kernel to userspace by invoking the AGGDESC ioctl.

dtagd name: char *

dtagd varid: dtrace aggvarid t

dtagd flags: int

dtagd id: dtrace aggid t

dtagd epid: dtrace epid t

dtagd size: uint32 t

dtagd nrecs: int

dtagd pad: uint32 t

dtagd rec[1]: dtrace recdesc t

struct dtrace aggdesc

Figure 5.10: Data structure used to describe an aggregation.

• The dtagd name field is used to store the name of the aggregation (that is, the identifier
used in the OpenDTrace script, for example, @a). It should be noted that this name is
not known within the kernel and is therefore not returned by the AGGDESC ioctl call.
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Correlating the AGGID (stored in the dtagd id field) with the userspace identifier and
name is described in further detail below.

• The dtagd varid field contains id assigned to the aggregation during the compilation.
This value is not known within the kernel and is therefore not returned by the AGGDESC
ioctl.

• The dtagd flags field contains a set of flags that apply to the aggregation; in the
current implementation a single flag DTRACE AGD PRINTED is present. When set,
DTRACE AGD PRINTED indicates that the aggregation has been printed.

• The dtagd id field contains the identifier assigned to the aggregation. Currently
OpenDTrace identifies both aggregations and enablings with simple numerical identi-
fiers (32-bit unsigned integers). The value of these identifiers depends on the current
kernel state. For example aggregation identifiers are assigned by a kernel unit allocator
(vmem alloc() on Illumos and alloc unr() of FreeBSD). The value returned
by the allocator is clearly dependent on previous allocated/freed values, which in turn
depends on the current OpenDTrace enablings.

• The dtagd epid field contains the identifier of the enabling (that is, the enabled probe
identifier).

• The dtagd size field contains the size of the aggregation; that is, the total size of the
aggregation trace record (see Figure 5.9).

• The dtagd nrecs field contains the number of records in the dtagd rec field.

• The dtagd pad field points to a data structure used to handle a specific format code
(such as %s).2.

• The dtagd rec field is a variable sized array (of dtagd nrecs entries); this data
structure is described in Section 5.1.2. As with probes, the struct dtrace recdesc
data structures contain metadata necessary to parse trace records in the aggregation trace
buffer (see Figure 5.9). In the case of aggregations, these data structures define the loca-
tion of the key (or sets of keys) and the value; note that the value is always defined by the
last record description.

Both the kernel and userspace independently name aggregations. In the kernel, aggregations
are named with a kernel specific unit allocator, such as alloc unr in FreeBSD. In contrast,
userspace assigns an identifier to the aggregation at compilation time. The dtagd varid
field is used to contain the compile time identifier for the aggregation. This is determined
by inspecting the dtag rec[0].dtrd uarg field; that is, the first record description’s
dtrd uarg field. The value of dtrd uarg is cast as a dtrace stmdesc t allowing
the compiler assigned identifier and the user assigned name of the aggregation to be determined.

With anonymous enablings the connection between the aggregation identifiers created at
compilation and execution time is broken. Instead, all aggregations are assigned
DTRACE AGGVARIDNONE3

2The printf format conversion dictionary ( dtrace conversions) can be found in the file
dt printf.c

3Note as the aggregation name can’t be determined it cannot be included in the printed output.
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struct dtrace aggkey

The struct dtrace aggkey (Figure 5.10) is used to represent a key within a given ag-
gregation. This data structure is used solely within the kernel and thus should be considered as
part of the implementation and not part of a public ABI.

dtak hashval: uint32 t

dtak action: uint32 t

dtak size: uint32 t

dtak data: caddr t

dtak next: struct dtrace aggkey *

struct dtrace aggkey

Figure 5.11: Data structure representing a key within the aggregation hash table.

• The dtak hashval field contains the hash value of the key; the hash value is com-
puted using the Jenkins’s “one-at-a-time” hash function.

• The dtak action field identifies the aggregating function that applies to this aggre-
gation. The dtak action field is 4-bits in length allowing 16 aggregation functions,
of which 9 are currently defined:

1. count(),

2. min(),

3. max(),

4. avg(),

5. sum(),

6. stddev(),

7. quantize() power of 2 quantization,

8. lquantize() linear quantization and

9. llquantize() log-linear quantization.

• The dtak size field contains an offset from the start of the aggregation record to the
value, thus it is the combined size of the aggregation and the key (or set of keys).

• The dtak data field contains a pointer to the data corresponding to this key; that is,
the key’s corresponding record in trace buffer (see Figure 5.9).

• The dtak next field contains a pointer to the next aggregation key in this list (the hash
table is implemented with separate chaining using a linked list).
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struct dtrace aggbuffer

The struct dtrace aggbuffer (Figure 5.11) specifies the metadata for an aggregation.
The data structure is used solely within the kernel and thus should be considered as part of the
implementation. 4.

dtagb hashsize: uintptr t

dtagb free: uintptr t

dtagb hash: dtrace aggkey t **

struct dtrace aggbuffer

Figure 5.12: Data structure used to describe an aggregation.

• The dtagb hashsize field is used to store the number of buckets in the hashtable
used to stored aggregations; in the current implementation the hash table accounts for
approximately 1

8
of the total buffer size5.

• The dtagb free field contains a pointer to the location in the OpenDTrace aggrega-
tion buffer where new aggregation keys are allocated; as show in Figure 5.9 allocation of
keys occurs from the start of the hash table upwards towards the aggregation records.

• The dtagb hash field contains a pointer to the hash table used to store aggregations.

The relationship between the dtagb free and dtagb hash fields and the OpenD-
Trace aggregation buffer are shown in Figure 5.13.

4The comments within the code suggest that the userspace copy of the aggregation buffer doesn’t contain the
hash map and associated metadata. However, as the AGGSNAP ioctl is practical identical to the BUFSNAP ioctl, it
appears that the data is in the buffer but unused by libdtrace

5Despite the comment suggesting this value may be changed as a result of performance analysis, there is no
evidence that this heuristic has ever been evaluated.
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Aggregation records

...

Aggregation keys

struct dtrace aggkey *

...

struct dtrace aggkey *

struct dtrace aggbuffer

dtagb free

dtagb hash

dtagb hashsize

Figure 5.13: OpenDTrace aggregation trace buffer.
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Chapter 6

OpenDTrace Object Format (DOF)

6.1 Introduction

OpenDTrace programs are persistently encoded in the DOF format so that they may be em-
bedded in other programs (for example, in an ELF file) or in the DTrace driver configuration
file for use in anonymous tracing. The DOF format is versioned and extensible so that it can
be revised and so that internal data structures can be modified or extended compatibly. All
DOF structures use fixed-size types, so the 32-bit and 64-bit representations are identical and
consumers can use either data model transparently.

6.1.1 Stable Storage Format

File Header
(dof_hdr_t)

Section Headers
(dof_sec_t[…[)

Loadable Section 
Data

Non-Loadable 
Section Data

dof_hdr.df_loadsz
dof_hdr.dofh_filesz

Figure 6.1: Stable Storage Format

When a DOF file resides on stable storage it is stored in the format shown in Figure 6.1.
The file header stores meta-data including a magic number, data model for the instrumentation,
data encoding, and properties of the DIF code within. The header describes its own size and
the size of the section headers. By convention, an array of section headers follows the file
header, and then the data for all loadable sections and sections which cannot be loaded, also
called unloadable sections. This data layout permits consumer code to easily download the
headers and all loadable data into the DTrace driver in one contiguous chunk, omitting other
extraneous sections. DOF sections are used both for stable storage and to pass data between
user and kernel space, e.g. D programs are sent into the kernel as a dof_prog_rt section.

The section headers describe the size, offset, alignment, and section type for each section.
Sections are described using a set of #defines that tell the consumer what kind of data is
expected. Sections can contain links to other sections by storing a dof_secidx_t, an index
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into the section header array, inside of the section data structures. The section header includes
an entry size so that sections with data arrays can grow their structures.

The DOF data itself can contain many snippets of DIF (i.e. more than one DIF object or
DIFO), which are represented themselves as a collection of related DOF sections. This allows
us to change the set of sections associated with a DIFO over time, and also allows us to encode
DIFOs that contain different sets of sections. When a DOF section wants to refer to a DIFO,
it stores the dof_secidx_t of a section of type DOF_SECT_DIFOHDR. This section’s data
is then an array of dof_secidx_t’s which in turn denote the sections associated with this
DIFO.

This loose coupling of the file structure (header and sections) to the structure of the DTrace
program itself (enabling control block descriptions, action descriptions, and DIFOs) permits
activities such as relocation processing to occur in a single pass without having to understand
D program structure.

Finally, strings are always stored in ELF-style string tables along with a string table section
index and string table offset. Therefore strings in DOF are always arbitrary-length and not
bound to the current implementation.
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Name Loadable Comment
DOF_SECT_NONE N null section
DOF_SECT_COMMENTS N compiler comments
DOF_SECT_SOURCE N D program source code
DOF_SECT_ECBDESC Y dof_ecbdesc_t
DOF_SECT_PROBEDESC Y dof_probedesc_t
DOF_SECT_ACTDESC Y dof_actdesc_t array
DOF_SECT_DIFOHDR Y dof_difohdr_t (variable length)
DOF_SECT_DIF Y uint32_t array of byte code
DOF_SECT_STRTAB Y string table
DOF_SECT_VARTAB Y dtrace_difv_t array
DOF_SECT_RELTAB Y dof_relodesc_t array
DOF_SECT_TYPTAB Y dtrace_diftype_t array
DOF_SECT_URELHDR Y dof_relohdr_t (user relocations)
DOF_SECT_KRELHDR Y dof_relohdr_t (kernel relocations)
DOF_SECT_OPTDESC Y dof_optdesc_t array
DOF_SECT_PROVIDER Y dof_provider_t
DOF_SECT_PROBES Y dof_probe_t array
DOF_SECT_PRARGS Y uint8_t array (probe arg mappings)
DOF_SECT_PROFFS Y uint32_t array (probe arg offsets)
DOF_SECT_INTTAB Y uint64_t array
DOF_SECT_UTSNAME N struct utsname structure
DOF_SECT_XLTAB Y dof_xlref_t array
DOF_SECT_XLMEMBERS Y dof_xlmember_t array
DOF_SECT_XLIMPORT Y dof_xlator_t
DOF_SECT_XLEXPORT Y dof_xlator_t
DOF_SECT_PREXPORT Y dof_secidx_t array (exported objs)
DOF_SECT_PRENOFFS Y uint32_t array (enabled offsets)

Table 6.1: DOF Section Descriptions
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Chapter 7

OpenDTrace Intermediate Format (DIF)

7.1 The DIF Interpreter

The DTrace Intermediate Format (DIF) interpreter is a virtual machine that executes instruc-
tions on behalf of D scripts that are associated with predicates and actions. DIF is a simple,
RISC-like, instruction set where each instruction consists of a 32-bit, native-endian integer
whose most significant 8 bits contain an opcode allowing the remainder of the instruction to be
decoded. While DIF is an interpreter on its own, it is just one of many actions that DTrace can
execute. Its purpose is to gather arguments and set up state for all other actions.

Each DIF object is executed separately with its own register file, as DIF does not have a
notion of a stack. Each DIF object must end with a return instruction which will cause the value
in the returned register to be written into the trace buffer.

Before DIF is executed, DTrace will perform a sanity check for each of the DIF objects and
ensure that they contain valid DIF. The constraints for each DIF instruction will be enumerated
in the instruction description in Chapter 8.

The following chapter describes the overall implementation of the DIF interpreter as well
as how the various instructions are implemented, along with various implementation details. 1

A comprehensive description of OpenDTrace’s instructions are given in Chapter 8 and a
full list and description of the built-in subroutines are given in Chapter 10.

7.1.1 Registers

The OpenDTrace virtual machine is made up of eight (8) integer registers and eight (8) tuple
registers. The 0th integer register always contains the value zero (0). The tuple registers are
used for handling any data type beyond a simple integer, such as strings, and pointers to mem-
ory. Each of the tuple registers is made up of a size and value, where the value is a pointer to
memory and the size indicates how much memory OpenDTrace will attempt to address. It is
the tuple registers that allow D scripts to work with data by reference.

All operations are carried out using registers r1 and r2 as operands and rd as the destina-
tion for all results.

1This specification describes the DTrace Intermediate Format version 2, as shipped in Illumos 5, FreeBSD
8-12, and macOS 10.5-10.13
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Variable Meaning
cc r Value of r1− r2
cc n Comparison result is negative.
cc z Comparison result is 0.
cc v Overflow occurred.
cc c Is r1 < r2?

Table 7.1: Mathematical Operation Result Bits

7.1.2 Tables
Each DIF Object contains pointers to an integer, string and variable table which are optionally
filled in as they are needed. The integer table acts as integer constants that will be operated on
during the execution of a D program. The string table contains any string data allocated or used
in a D program. Any variables that are used in the program are contained in the variable table.

7.1.3 Math Instructions
Instructions for mathematical operations in DIF have no concept of over or underflow. The
division instructions set a flag to indicate a division by zero error.

7.1.4 Comparison and Test Instructions
DIF has three comparison instructions, cmp, scmp and tst which can set various result flags,
shown in Table 7.1.4. The result flags are are later used by the branch instructions to determine
whether or not the branch is taken. The result flags are never returned directly to the calling
DIF program but are only used internally by the interpretation routine.

7.1.5 Branching Instructions
DIF has eleven branch instructions split into two types: signed and unsigned. The signed
branching instructions take into account that the number may be negative, while the unsigned
instructions are meant to be used with exclusively positive numbers. One thing all of the
branching instructions have in common is that they load the new %pc register from the label
field in the Branch Format described in Subsection 7.2.2.

7.1.6 Subroutine Calls
Within DIF subroutines are triggered via the CALL instruction. The arguments to these sub-
routines are passed through the tuple stack. The tuple stack itself is populated using pushtr
and pushtv instructions and the return values of the subroutines are provided through the rd
register. The subroutine identifier is placed in the idx field of the wide-immediate format (W-
Format) described in Subsection 7.2.3. Any subroutine that is provided to DTrace must go via
these mechanisms. None of the arguments to subroutines need to be validated before calling
the subroutine, as they originate from the previously validated data using other DIF instructions
which themselves have validated this data beforehand.
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7.1.7 Variables
Variables in DIF are just numeric references to simple names within the D script. The space for
variables is statically allocated on each invocation of a script. Additionally, variables are iden-
tified using the modified register format as described in Subsection 7.2.1 when working with
arrays and the W-Format described in Subsection 7.2.3 when working with scalar variables.

7.1.8 Scalars
Scalar variables are loaded into registers using LDGS, LDTS and LDLS and stored to memory
from registers using STGS, STTS and STLS for global, thread-local and clause-local scalar
variables respectively.

7.1.9 Arrays
Similarly to scalar variables, array variables are loaded into registers using LDGAA and LDTAA
and stored to using STGAA and STTAA for global and thread-local array variables respectively.
Note that there are no instructions for clause-local array variables.

7.2 Instruction Format
Each instruction consists of a 32-bit, native-endian integer whose most significant 8 bits contain
an opcode allowing the remainder of the instruction to be decoded. To ease parsing, three major
formats (R, B, and W) are used for all OpenDTrace instructions, capturing different types of
operations: register-to-register instructions accepting zero or more register operands; branch
instructions accepting a target label as a single operand; and wide-immediate instructions that
accept a 16-bit immediate used to capture both small constant values and also indices into
various tables.

7.2.1 Register Format (R-Format)
This format accepts zero or more register operands, supporting instructions that include arith-
metic and boolean operations, comparison and test operations, load and store operations, tuple-
stack operations, and the no-op instruction.

0781516232431

op r1 r2 rd

op Mandatory 8-bit operation identifier

r1, r2 Optional source registers providing input values to the operation

rd Optional destination register acting as the destination of the operation

A modified version of the Register Format is used when loading and storing data in array
variables in OpenDTrace. The main difference between the regular Register Format and the
modified one used for arrays, is that the r1 register location is used as the variable identificator,
the r2 register itself contains the optional index in the array.
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0781516232431

op var r2 rd

op Mandatory 8-bit operation identifier

var The variable identifier

r2 Optional register that contains the index of the array

rd Optional destination register acting as the destination of the operation

7.2.2 Branch Format (B-Format)
This format accepts a single 24-bit integer operand identifying the label that is the branch target.
It is used solely for the BRANCH instruction.

0232431

op label

op Mandatory 8-bit operation identifier

label Mandatory 24-bit integer label

7.2.3 Wide-Immediate Format (W-Format)
This format accepts an 8-bit register and 16-bit integer argument (frequently an index). It is
used for a range of instructions including those to load values from integer and string constant
tables, as well as those that store scalar values in variables. In addition to that, it is used in the
CALL instruction in order to specify the rd register and the subroutine identifier.

078232431

op idx rs|rd

op Mandatory 8-bit operation identifier

idx Mandatory 16-bit integer index

rs|rd Optional 8-bit register acting as the source or destination of the operation
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Chapter 8

Instruction Reference

This chapter describes the DTrace instruction set. For a discussion of the DIF interpreter as
well as an overview of how these instructions are handled see Chapter 7.

8.1 Instruction List
The tables (8.1, 8.2, 8.3, 8.4) in this section summarize all of the instructions available to the D
virtual machine. The subroutines listed in in order by their index.
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Name Opcode Description

OR 1 Bitwise Or
XOR 2 Bitwise Exclusive Or
AND 3 Bitwise And
SLL 4 Shift Left Logical
SRL 5 Shift Right Logical
SUB 6 Subtract
ADD 7 Add
MUL 8 Multiply
SDIV 9 Divide (Signed)
UDIV 10 Divide (Unsigned)
SREM 11 Remainder (Unsigned)
UREM 12 Remainder (Signed)
NOT 13 Bitwise Not
MOV 14 Move
CMP 15 Compare
TST 16 Test Equal to Zero

See Table 8.3

LDSB 28 Load Byte (Signed)
LDSH 29 Load Halfword (Signed)
LDSW 30 Load Word (Signed)
LDUB 31 Load Byte (Unsigned)
LDUH 32 Load Halfword (Unsigned)
LDUW 33 Load Word (Unsigned)
LDX 34 Load Doubleword
RET 35 Return
NOP 36 No Operation

See Table 8.4

SCMP 39 String Compare
LDGA 40 Load from Global Array
LDGS 41 Load from Global Scalar
STGS 42 Store to Global Scalar
LDTA 43 Load from Thread-Local Array
LDTS 44 Load from Thread-Local Scalar
STTS 45 Store to Thread-Local Scalar
SRA 46 Shift Right Arithmatic

Table 8.1: R-Format Instruction List (Part 1)
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Name Opcode Description

PUSHTR 48 Push a reference onto the tuple stack
PUSHTV 49 Push a value onto the tuple stack
POPTS 50 Pop the tuple stack
FLUSHTS 51 Flush the tuple stack

See Table 8.4

ALLOCS 58 Allocate scratch space
COPYS 59 Copy memory of requested size
STB 60 Store byte
STH 61 Store halfword
STW 62 Store word
STX 63 Store doubleword
ULDSB 64 Load user byte (signed)
ULDSH 65 Load user halfword (signed)
ULDSW 66 Load user word (signed)
ULDUB 67 Load user byte (unsigned)
ULDUH 68 Load user halfword (signed)
ULDUW 69 Load user word (signed)
ULDX 70 Load user doubleword
RLDSB 71 If accessible, load byte (signed)
RLDSH 72 If accessible, load halfword (signed)
RLDSW 73 If accessible, load word (signed)
RLDUB 74 If accessible, load byte (unsigned)
RLDUH 75 If accessible, load halfword (unsigned)
RLDUW 75 If accessible, load word (unsigned)
RLDX 77 If accessible, load doubleword

Table 8.2: R-Format Instruction List (Part 2)
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Name Opcode Description

BA 17 Unconditional branch
BE 18 Branch if equal to zero
BNE 19 Branch if not equal to zero
BG 20 Branch if greater than (signed)
BGU 21 Branch if greater than (unsigned)
BGE 22 Branch if greater than or equal to (signed)
BGEU 23 Branch if greater than or equal to (unsigned)
BL 24 Branch if less than (signed)
BLU 25 Branch if less than (unsigned)
BLE 26 Branch if less than or equal to (signed)
BLEU 27 Branch if less than or equal to (unsigned)

Table 8.3: B-Format Instruction List

Name Opcode Description

SETX 37 Set register from integer table
SETS 38 Set register from string table

CALL 47 Call subroutine

LDGAA 52 Load from global aggregation
LDTAA 53 Load from thread-local aggregation
STGAA 54 Store to global aggregation
STTAA 55 Store to thread-local aggregation
LDLS 56 Load from local scalar
STLS 57 Store to local scalar

XLATE 78 Illumos Only
XLARG 79 Illumos Only

Table 8.4: W-Format Instruction List
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8.2 Individual Instructions
The remainder of this chapter describes each of the instructions available in the D virtual ma-
chine in detail. The instructions are arranged in alphabetical order.
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AND: Bitwise And
Format

AND %rd, %r1, %r2
0781516232431

0x03 r1 r2 rd

Description

This instruction calculates the bitwise and of the values found in registers r1 and r2, placing
the results in register rd.

Pseudocode

%rd = %r1 & %r2

Load-time constraints

The registers r1, r2 and rd must be valid registers and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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OR: Bitwise Or
Format

OR %rd, %r1, %r2
0781516232431

0x01 r1 r2 rd

Description

This instruction calculates the bitwise or of the values found in registers %r1 and %r2, placing
the results in register %rd.

Pseudocode

%rd = %r1 | %r2

Load-time constraints

The registers r1, r2 and rd must be valid registers and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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SLL: Shift Left Logical
Format

SLL %rd, %r1, %r2
0781516232431

0x04 r1 r2 rd

Description

This instruction shifts the value found in register %r1 left by the number of bits found in register
%r2, placing the results in register %rd.

Pseudocode

%rd = %r1 << %r2

Load-time constraints

The registers r1, r2 and rd must be valid registers and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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SRL: Shift Right Logical
Format

SRL %rd, %r1, %r2
0781516232431

0x05 r1 r2 rd

Description

This instruction shifts the value found in register %r1 right by the number of bits found in
register %r2, placing the results in register %rd. This instruction only operates on unsigned
integers.

Pseudocode

%rd = %r1 >> %r2

Constraints

Load-time constraints

The registers r1, r2 and rd must be valid registers and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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XOR: Bitwise Exclusive Or
Format

XOR %rd, %r1, %r2
0781516232431

0x02 r1 r2 rd

Description

This instruction calculates the bitwise exclusive or of the values found in registers %r1 and
%r2, placing the results in register %rd.

Pseudocode

%rd = %r1 ˆ %r2

Load-time constraints

The registers r1, r2 and rd must be valid registers and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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SUB: subtract the value in r2 from that in r1
Format

SUB %rd, %r1, %r2
0781516232431

0x06 r1 r2 rd

Description

The sub instruction takes the value in r2 and subtracts it from that in r1 placing the result in
rd.

Pseudocode

%rd = %r1 - %r2

Load-time constraints

The registers r1, r2 and rd must be valid registers and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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ADD: add two values
Format

add %r1, %r2, %rd
0781516232431

0x07 r1 r2 rd

Description

The add instruction adds the the values in r1 and r2 and pace the results in register rd.

Pseudocode

%rd = %r1 + %r2

Load-time constraints

The registers r1, r2 and rd must be valid registers and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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MUL: multiply two numbers
Format

MUL %rd, %r1, %r2
0781516232431

0x08 r1 r2 rd

Description

The mul instruction multiplies two numbers, contained in r1 and r2, together and places the
result in rd.

Pseudocode

%rd = %r1 * %r2

Load-time constraints

The registers r1, r2 and rd must be valid registers and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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SDIV: signed division
Format

SDIV %rd, %r1, %r2
0781516232431

0x09 r1 r2 rd

Description

The sdiv instruction divides the value contained in r2 into that contained in r1 placing the
results into rd. The values in both r1 and r2 are first promoted to signed, 64 bit values, before
the division operation is carried out.

Pseudocode

%rd = (int64_t)%r1 / (inst64_t)%r2

Load-time constraints

The registers r1, r2 and rd must be valid registers and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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UDIV: unsigned division
Format

UDIV %rd, %r1, %r2
0781516232431

0x0A r1 r2 rd

Description

The udiv instruction divides the value contained in r2 into that contained in r1 placing the
results into rd.

Pseudocode

%rd = %r1 / %r2

Load-time constraints

The registers r1, r2 and rd must be valid registers and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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SREM: divide two numbers and store the remainder
Format

SREM %rd, %r1, %r2
0781516232431

0x0B r1 r2 rd

Description

The srem instruction divides the value contained in r2 into that contained in r1 placing
the remainder into rd. The values in both r1 and r2 are first promoted to signed, 64 bit
values, before the division operation is carried out. The srem instruction follows the remainder
definition in C99 and will return a negative remainder if applicable.

Pseudocode

%rd = (int64_t)%r1 % (inst64_t)%r2

Load-time constraints

The registers r1, r2 and rd must be valid registers and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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UREM: divide two numbers and store the remainder
Format

UREM %rd, %r1, %r2
0781516232431

0x0C r1 r2 rd

Description

The urem instruction divides the value contained in r2 into that contained in r1 placing the
remainder into rd.

Pseudocode

%rd = %r1 % %r2

Load-time constraints

The registers r1, r2 and rd must be valid registers and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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NOT: negate a value
Format

NOT %rd, %r1
0781516232431

0x0C r1 r2 rd

Description

The not instruction negates the value found in r1 and places the result into rd.

Pseudocode

%rd = ˜%r1

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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MOV: move a value
Format

MOV %rd, %r1, %r2
0781516232431

0x0D r1 r2 rd

Description

The mov instruction places the value found in r1 into rd.

Pseudocode

%rd = %r1

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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CMP: compare two values
Format

CMP %rd, %r1, %r2
0781516232431

0x0E r1 r2 rd

Description

The cmp instruction compares the values in r1 and r2, via subtraction, and sets the various
comparison bits based on the results. The comparison bits, shown in Table7.1.4, are used by
the branch instructions to make decisions about where the program will execute next.

Pseudocode

cc_r = %r1 - %r2;
cc_n = cc_r < 0;
cc_z = cc_r == 0;
cc_v = 0;
cc_c = %r1 < %r2;

Load-time constraints

The registers r1 and r2 must be valid registers, rd must be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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TST: Test the value in r1
Format

TST %r1
0781516232431

0x0F r1 r2 rd

Description

The tst instruction checks the value in r1 to see if it is zero (0). Only the Z bit (cc z) is set
by this instruction, all other comparison result registers, listed in Table7.1.4 are cleared.

Pseudocode

cc_n = cc_v = cc_c = 0;
cc_z = %r1 == 0;

Load-time constraints

The register r1 be a valid register, rd and r2 must be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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BA: branch absolute
Format

BA label
0232431

0x11 label

Description

The ba instruction branches to the label indicated by setting the Program Counter (pc) to the
instruction indicated at the label.

Pseudocode

%pc = label

Load-time constraints

label must be greater than pc. Moreover, label must not go past the last address of the
current DIF object.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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BE: branch equal
Format

BE label
0232431

0x12 label

Description

The be instruction sets the PC to a new label if, and only if the result of the last cmp or tst
set the zero bit (cc z) to a value other than 0.

Pseudocode

if (cc_z)
%pc = label

Load-time constraints

label must be greater than pc. Moreover, label must not go past the last address of the
current DIF object.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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BNE: branch not equal
Format

BNE label
0232431

0x13 label

Description

The bne instruction sets the PC to a new label if, and only if the result of the last cmp resulted
in the zero bit (cc z) being cleared, or set to 0.

Pseudocode

if (cc_z == 0)
%pc = label

Load-time constraints

label must be greater than pc. Moreover, label must not go past the last address of the
current DIF object.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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BG: branch greater than
Format

BG label
0232431

0x14 label

Description

The bg instruction sets the PC to a new label if, and only if the result of the last cmp resulted
in the zero bit (cc z) being set to a value other than 0.

Pseudocode

if (cc_z)
%pc = label

Load-time constraints

label must be greater than pc. Moreover, label must not go past the last address of the
current DIF object.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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BGU: branch greater than, unsigned
Format

BGU label
0232431

0x15 label

Description

The bgu instruction sets the pc to the new label if, and only if, the result of the previous
comparison shows that r1 was greater than r2.

Pseudocode

if ((cc_c | cc_z) == 0)
pc = label;

Load-time constraints

label must be greater than pc. Moreover, label must not go past the last address of the
current DIF object.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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BGE: branch greater than or equal to
Format

BGE label
0232431

0x16 label

Description

The bge instruction jumps to the supplied label if and only if the result of the previous com-
parison indicates that the value in register r1 was greater than or equal to the value in r2.

Pseudocode

if ((cc_n ˆ cc_v) == 0)
pc = label;

Load-time constraints

label must be greater than pc. Moreover, label must not go past the last address of the
current DIF object.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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BGEU: branch greater than or equal to, unsigned
Format

BGEU label
0232431

0x17 label

Description

The bgeu instruction jumps to the supplied label if and only if the result of the previous
comparison indicates that the value in register r1 was greater than or equal to the value in r2.

Pseudocode

if (cc_c == 0)
pc = label;

Load-time constraints

label must be greater than pc. Moreover, label must not go past the last address of the
current DIF object.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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BL: branch less than
Format

BL label
0232431

0x18 label

Description

The bl instruction jumps to the specified label if and only if the result of the previous compar-
ison instruction indicated that the value in r1 was strictly less than the value in r2.

Pseudocode

if (cc_n ˆ cc_v)
pc = label

Load-time constraints

label must be greater than pc. Moreover, label must not go past the last address of the
current DIF object.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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BLU: branch less than, unsigned
Format

BL label
0232431

0x19 label

Description

The blu instruction jumps to the specified label if and only if the result of the previous com-
parison instruction indicated that the value in r1 was strictly less than the value in r2.

Pseudocode

if (cc_c)
pc = label

Load-time constraints

label must be greater than pc. Moreover, label must not go past the last address of the
current DIF object.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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BLE: branch less than or equal
Format

BL label
0232431

0x1A label

Description

The ble instruction jumps to the specified label if and only if the result of the previous com-
parison instruction indicated that the value in r1 was less than, or equal to, the value in r2.

Pseudocode

if (cc_z | (cc_n ˆ cc_v))
pc = label

Load-time constraints

label must be greater than pc. Moreover, label must not go past the last address of the
current DIF object.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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BLEU: branch less than or equal, unsigned
Format

BLEU label
0232431

0x1B label

Description

The bleu instruction jumps to the specified label if and only if the result of the previous
comparison instruction indicated that the value in r1 was less than, or equal to, the value in
r2.

Pseudocode

if (cc_c | cc_z)
pc = label

Load-time constraints

label must be greater than pc. Moreover, label must not go past the last address of the
current DIF object.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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LDSB: load an 8 bit value
Format

LDSB %rd, %r1
0781516232431

0x1C r1 r2 rd

Description

The ldsb instruction loads the value pointed to by r1 into rd, the results register. This
instruction is a signed instruction and will perform sign extension on the resulting register
when applicable.

Pseudocode

%rd = %r1

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.
This instruction is privileged and thus performs no access control checks. It is up to the

OpenDTrace implementation to implement that constraint.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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LDSH: load a 16 bit value
Format

LDSB %rd, %r1
0781516232431

0x1D r1 r2 rd

Description

The ldsh instruction loads a 16-bit value pointed to by r1 into rd, the results register. This
instruction is a signed instruction and will perform sign extenstion on the resulting register
when applicable.

Pseudocode

%rd = %r1

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.
This instruction is privileged and thus performs no access control checks. It is up to the

OpenDTrace implementation to implement that constraint.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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LDSW: load a 32 bit value
Format

LDSB %rd, %r1
0781516232431

0x1E r1 r2 rd

Description

The ldsw instruction loads a 32-bit value pointed to by r1 into rd, the results register. This
instruction is a signed instruction and will perform sign extension on the resulting register when
applicable.

Pseudocode

%rd = %r1

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.
This instruction is privileged and thus performs no access control checks. It is up to the

OpenDTrace implementation to implement that constraint.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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LDUB: load an unsigned 8 bit value
Format

LDUB %rd, %r1
0781516232431

0x1F r1 r2 rd

Description

The ldub instruction loads the value pointed to by r1 into rd, the results register. This is an
unsigned instruction and will not perform sign extension in any case.

Pseudocode

%rd = %r1

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.
This instruction is privileged and thus performs no access control checks. It is up to the

OpenDTrace implementation to implement that constraint.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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LDUH: load an unsigned 16 bit value
Format

LDSB %rd, %r1
0781516232431

0x20 r1 r2 rd

Description

The lduh instruction loads a 16-bit value pointed to by r1 into rd, the results register. This
is an unsigned instruction and will not perform sign extension in any case.

Pseudocode

%rd = %r1

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.
This instruction is privileged and thus performs no access control checks. It is up to the

OpenDTrace implementation to implement that constraint.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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LDUW: load an unsigned 32 bit value
Format

LDSB %rd, %r1
0781516232431

0x21 r1 r2 rd

Description

The lduw instruction loads a 32-bit value pointed to by r1 into rd, the results register. This
is an unsigned instruction and will not perform sign extension in any case.

Pseudocode

%rd = %r1

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.
This instruction is privileged and thus performs no access control checks. It is up to the

OpenDTrace implementation to implement that constraint.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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LDX: load 64 bit value
Format

LDX %rd, %r1
0781516232431

0x22 r1 r2 rd

Description

The ldx instruction loads a 64 bit value pointed to by r1 into rd. Much like conventional
RISC architectures, it does not perform sign extension, as this is considered to be the widest
type.

Pseudocode

%rd = %r1

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.
This instruction is privileged and thus performs no access control checks. It is up to the

OpenDTrace implementation to implement that constraint.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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RET: return
Format

RET %rd
07831

0x23 rd

Description

The ret instruction returns the value in rd. This instruction also sets the %pc register to the
length of the DIFO text section.

Pseudocode

%pc = textlen

Load-time constraints

The registers r1 and r2 must be r0 and rd must be a valid register.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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NOP: no operation
Format

NOP
031

0x24 0

Description

The nop does nothing and has no side effects on the DTrace virtual machine.

Pseudocode

nop

Load-time constraints

The nop instruction has no load-time constraints.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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SCMP: compare two strings
Format

SCMP %r1, %r2
0781516232431

0x27 r1 r2 rd

Description

The scmp intruction compares the strings pointed to by r1 and r2 and sets the comparison bits
for the DIF interpreter based on the result. The length of the the strings is derived by DTrace
itself and the comparison is bounded by the DTRACEOPT_STRSIZE option set for the system.

Pseudocode

cc_r = strncmp(r1, r2, size);

cc_n = cc_r < 0;
cc_z = cc_r == 0;
cc_v = cc_c = 0;

Load-time constraints

The registers r1 and r2 must be valid registers, rd must be r0.

Failure modes

The memory locations in r1 or r2 may be paged out, which causes a page fault.
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LDGA: load a DTrace built-in variable
Format

LDGA %rd, var, %r2
0781516232431

op var r2 rd

Description

The ldga instruction looks up the value of a DTrace built-in variable based on the value in
var with an optional array index in the register %r2.

Unlike the ldgs, the variable identifier is 8 bits long, and the other 8 bits are used to
identify the register which contains the index of the array.

Pseudocode

index = %r2
%rd = var[index]

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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LDGS: Load a user defined variable
Format

LDGS %rd, %r1, %r2
078232431

0x29 var rd

Description

The ldgs instruction has two modes of operation and is intended to be used only for scalar val-
ues. The first mode of operation is when the value provided in var is less than DIF VAR OTHER UBASE.
This will cause DTrace to look up a pre-defined scalar variable such as curthread, while the sec-
ond mode of operation will result in looking up a user defined variable in a DIF program. The
result of this instruction will be put into the register rd.

Unlike the ldga instruction, the var field is 16 bits long, as opposed to 8 bits due to the
fact that the variable that is being loaded is a scalar and does not require indexing operations.

Pseudocode

%rd = var

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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STGS: store a value into a variable
Format

STGS %rd, %r1, %r2
078232431

0x2A var rd

Description

Similar to ldgs, the instruction stgs operates exclusively on scalar variables and can not
contain indices. However, the instruction may allow loading of data by reference using the
DIF TF BYREF flag, which allows loading of data bounded by the limits found in the
dtrace vcanload() function. Unlike ldgs, stgs can not store to pre-defined variables in
DTrace, and instead allows access only to user defined variables. The variable is accessed by
the var field and is required to be large or equal to DIF VAR OTHER UBASE. The result
of this operation is stored in the rd register.

Pseudocode

assert(var >= DIF_VAR_OTHER_UBASE)
var -= DIF_VAR_OTHER_UBASE
if (flags & DIF_TF_BYREF)

var = copyin(%rd)
else

var = %rd

Failure modes

This instruction will fail if the supplied value in the var field is less than DIF VAR OTHER UBASE.
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LDTA: Load thread local array UNIMPLEMENTED
Format

LDTA %rd, var, %r2
0781516232431

0x2B var r2 rd

Description

The ldta instruction is unimplemented and reserved for future use.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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LDTS: load a value from a thread local variable
Format

LDTS %rd, %r1, %r2
078232431

0x2C variable rd

Description

The ldts instruction loads data from a thread local variable into the rd register by reference
or by value. The DIF_TF_BYREF flag is used to determine the appropriate lookup.

Pseudocode

%rd = var

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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STTS: Store a value into thread local storage
Format

STTS %rd, %r1, %r2
078232431

0x2D variable rd

Description

The stts instruction takes the value stored in rd and stores it directly, or by reference into a
thread local variable. The DIF_TF_BYREF flag is used to determine the appropriate lookup.

Pseudocode

var = %rd

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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SRA: Shift Right Arithmetic
Format

SRA %rd, %r1, %r2
0781516232431

0x2E r1 r2 rd

Description

The sra instruction shifts the value in r1 right by the number of bits indicated in r2, placing
the results in register rd. This instruction only operates on signed integers.

Pseudocode

%rd = %r1 >> %r2

Load-time constraints

The registers r1, r2 and rd must be valid registers and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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PUSHTR: push a reference onto the stack
Format

PUSHTR type, %r2, %rs
0781516232431

0x30 type r2 rs

Description

The pushtr instruction pushes a reference, contained in the rs register onto the stack. The
length is stored for a string along with the value. For a numeric value the size of that value is
stored.

Pseudocode

value = %rs
if type is string:

size = strlen(value)
else:

size = %r2

stack[++index].size = size
stack[index].value = value

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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PUSHTV: push a value onto the stack
Format

PUSHTV %rs
0781516232431

0x31 r0 r0 rs

Description

The pushtv instruction takes the value contained in rs register and pushes it onto the stack.
Unlike the PUSHTR instruction, the size of the value is not stored along with the value.

Pseudocode

stack[++index].value = %rs
stack[index].size = 0;

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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POPTS: pop a value from the stack
Format

POPTS
07831

0x32 0

Description

The popts pops the stack, moving the stack’s index to next position down from the top,
without returning any value.

Pseudocode

stack[index--]

Load-time constraints

The popts instruction has no load-time constraints.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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FLUSHTS: flush the stack
Format

FLUSHTS
07831

0x33 0

Description

The flushts instruction flushes the stack, by resetting the stack pointer to 0.

Pseudocode

%sp = 0;

Load-time constraints

The flushts instruction has no load-time constraints.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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ALLOCS: allocate a string
Format

ALLOCS %rd, %r1
0781516232431

0x3A r1 r2 rd

Description

The allocs instruction allocates a string in the DIF scratch space, based on the size in r1
and returns the pointer to that string in register rd. A failed allocation returns a 0.

Pseudocode

ptr = scratch_space;
scratch_space += size;
%rd = ptr

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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COPYS: copy a string
Format

COPYS %rd, %r1, %r2
0781516232431

0x3B r1 r2 rd

Description

The copys instruction copies bytes from the string pointed to by r1 and returns them in rd
bounded by a size placed into r2.

Pseudocode

%rd = copy(r1, r2)

Load-time constraints

The registers r1, r2 and rd must be valid registers and rd must not be r0.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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STB: store a byte into memory
Format

STB %rd, %r1
0781516232431

0x3C r1 r2 rd

Description

The stb instruction takes a byte from r1 and stores it into the memory location pointed to by
rd.

Pseudocode

mem[%rd] = %r1

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

XXXDS: This depends on dtrace canstore(). We have to enumerate these.
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STH: store a 16 bit value into memory
Format

STH %rd, %r1
0781516232431

0x3D r1 r2 rd

Description

The sth instruction takes a 16 bit value from r1 and stores it into the memory location pointed
to by rd.

Pseudocode

mem[%rd] = %r1

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

XXXDS: This depends on dtrace canstore(). We have to enumerate these.
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STW: store a 32 bit value into memory
Format

STW %rd, %r1
0781516232431

0x3E r1 r2 rd

Description

The stw instruction takes a 32 bit value from r1 and stores it into the memory location pointed
to by rd.

Pseudocode

mem[%rd] = %r1

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

XXXDS: This depends on dtrace canstore(). We have to enumerate these.
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STX: store a 64 bit value into memory
Format

STX %rd, %r1
0781516232431

0x3F r1 r2 rd

Description

The stx instruction takes a 64 bit value from r1 and stores it into the memory location pointed
to by rd.

Pseudocode

mem[%rd] = %r1

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

XXXDS: This depends on dtrace canstore(). We have to enumerate these.
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ULDSB: load signed 8 bit quantity from user space
Format

ULDSB %rd, %r1, %r2
0781516232431

0x40 r1 r2 rd

Description

The uldsb instruction loads a signed 8 bit quantity from memory in a user space process into
the rd register, indexed by r1. This instruction is a signed instruction and will perform sign
extension on the resulting register when applicable.

Pseudocode

%rd = umem[r1]

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

This instruction can cause a page fault if the memory it is trying to access is not paged in.
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ULDSH: load a signed 16 bit quantity from user space
Format

ULDSH %rd, %r1, %r2
0781516232431

0x41 r1 r2 rd

Description

The uldsh instruction loads a signed, 16 bit, quantity from memory in a user space process
into the rd register, indexed by r1. This instruction is a signed instruction and will perform
sign extension on the resulting register when applicable.

Pseudocode

%rd = umem[r1]

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

This instruction can cause a page fault if the memory it is trying to access is not paged in.
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ULDSW: load a signed 32 bit quantity from user space
Format

ULDSW %rd, %r1, %r2
0781516232431

0x42 r1 r2 rd

Description

The uldsw instruction loads a signed 32 bit quantity from memory in a user space process into
the rd register, indexed by r1. This instruction is a signed instruction and will perform sign
extension on the resulting register when applicable.

Pseudocode

%rd = umem[r1]

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

This instruction can cause a page fault if the memory it is trying to access is not paged in.
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ULDUB: load unsigned 8 bit quantity from user space
Format

ULDUB %rd, %r1, %r2
0781516232431

0x43 r1 r2 rd

Description

The uldub instruction loads a unsigned 8 bit quantity from memory in a user space process
into the rd register indexed by r1. This is an unsigned instruction and will not perform sign
extension in any case.

Pseudocode

%rd = umem[r1]

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

This instruction can cause a page fault if the memory it is trying to access is not paged in.
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ULDUH: load an unsigned 16 bit quantity from user space
Format

ULDUH %rd, %r1, %r2
0781516232431

0x44 r1 r2 rd

Description

The ulduh instruction loads an unsigned, 16 bit, quantity from memory in a user space process
into the rd register, indexed by r1. This is an unsigned instruction and will not perform sign
extension in any case.

Pseudocode

%rd = umem[r1]

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

This instruction can cause a page fault if the memory it is trying to access is not paged in.
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ULDUW: load an unsigned 32 bit quantity from user space
Format

ULDUW %rd, %r1, %r2
0781516232431

0x45 r1 r2 rd

Description

The ulduw instruction loads an unsigned 32 bit quantity from memory in a user space process
into the rd register, indexed by r1. This is an unsigned instruction and will not perform sign
extension in any case.

Pseudocode

%rd = umem[r1]

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

This instruction can cause a page fault if the memory it is trying to access is not paged in.
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ULDX: load a 64 bit value from user program memory
Format

ULDX %rd, %r1, %r2
0781516232431

0x46 r1 r2 rd

Description

The uldx instruction loads a 64 bit value from a user space program’s memory into the rd
register, indexed by r1. Much like conventional RISC architectures, it does not perform sign
extension, as this is considered the widest type.

Pseudocode

%rd = umem[r1]

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

This instruction can cause a page fault if the memory it is trying to access is not paged in.
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RLDSB: restricted load of a signed 8 bit quantity
Format

RLDSB %rd, %r1, %r2
0781516232431

0x47 r1 r2 rd

Description

The rldsb instruction performs a privilege check on the memory it is about to read from
before loading a signed, 8 bit, quantity into rd, indexed by r1.

Pseudocode

%rd = mem[%r1]

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

XXXDS: This depends on dtrace canload(). We have to enumerate these.
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RLDSH: restricted load of a signed 16 bit quantity
Format

RLDSH %rd, %r1, %r2
0781516232431

0x48 r1 r2 rd

Description

The rldsh instruction performs a privilege check on the memory it is about to read from
before loading a signed, 16 bit, quantity into rd, indexed by r1.

Pseudocode

%rd = mem[%r1]

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

XXXDS: This depends on dtrace canload(). We have to enumerate these.
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RLDSW: restricted load of a signed 32 bit quantity
Format

RLDSW %rd, %r1, %r2
0781516232431

0x49 r1 r2 rd

Description

The rldsw instruction performs a privilege check on the memory it is about to read from
before loading a signed, 32 bit, quantity into rd, indexed by r1.

Pseudocode

%rd = mem[%r1]

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

XXXDS: This depends on dtrace canload(). We have to enumerate these.
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RLDUB: restricted load of an unsigned 8 bit quantity
Format

RLDUB %rd, %r1, %r2
0781516232431

0x4A r1 r2 rd

Description

The rldub instruction performs a privilege check on the memory it is about to read from
before loading an unsigned, 8 bit, quantity into rd, indexed by r1.

Pseudocode

%rd = mem[%r1]

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

XXXDS: This depends on dtrace canload(). We have to enumerate these.
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RLDUH: restricted load of an unsigned 16 bit quantity
Format

RLDUH %rd, %r1, %r2
0781516232431

0x4B r1 r2 rd

Description

The rlduh instruction performs a privilege check on the memory it is about to read from
before loading an unsigned, 16 bit, quantity into rd, indexed by r1.

Pseudocode

%rd = mem[%r1]

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

XXXDS: This depends on dtrace canload(). We have to enumerate these.
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RLDUW: restricted load of an unsigned 32 bit quantity
Format

RLDUW %rd, %r1, %r2
0781516232431

0x4C r1 r2 rd

Description

The rlduw instruction performs a privilege check on the memory it is about to read from
before loading an unsigned, 32 bit, quantity into rd, indexed by r1.

Pseudocode

%rd = mem[%r1]

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

XXXDS: This depends on dtrace canload(). We have to enumerate these.
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RLDX: restricted load of a 64 bit quantity
Format

RLDX %rd, %r1, %r2
0781516232431

0x4D r1 r2 rd

Description

The rldx instruction performs a privilege check on the memory it is about to read from before
loading a 64 bit quantity into rd, indexed by r1.

Pseudocode

%rd = mem[%r1]

Load-time constraints

The registers r1 and rd must be valid registers, r2 must be r0 and rd must not be r0.

Failure modes

XXXDS: This depends on dtrace canload(). We have to enumerate these.
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SETX: retrieve an integer from the integer table
Format

SETX %rd, intindex
078151631

0x25 rd index

Description

The setx instruction looks up an integer value stored in the DIF integer table and places it
into rd. This instruction performs no bounds checking.

Pseudocode

%rd = inttab[index]

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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SETS: retrieve string from the string table
Format

SETS %rd, strindex
078151631

0x26 rd index

Description

The sets instruction looks up a string stored in the DIF string table and places a pointer to the
value into rd. This instruction performs no bounds checking.

Pseudocode

%rd = strtab + index

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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CALL: subroutine call
Format

CALL %rd, %r1, %r2
078232431

0x2F subroutine rd

Description

The call instruction executes a known DTrace subroutine, such as copyinstr(), copyout() etc.
and returns any value into rd. Valid subroutines are documented in 7.1.6.

Pseudocode

%rd = subr()

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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LDGAA: load a value from a hash map
Format

LDGAA key, %rd
078232431

0x34 key rd

Description

The ldgaa instruction loads a value into the rd register based on a key. The key is used to
lookup the value in a hash map data structure.

Pseudocode

%rd = map[key]

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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LDTAA: load a value from a thread private hash map
Format

LDTAA var, %rd
078232431

0x35 key rd

Description

The ldtaa instruction loads a value into the rd register based on a key. The key is used to
lookup the value in a thread private, hash map, data structure.

Pseudocode

%rd = map[key]

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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STGAA: store a value into a hash by key
Format

STGAA key, %rd
078232431

0x46 key rd

Description

The stgaa instruction stores a value, contained in the rd register into a hash map based on a
key.

Pseudocode

map[key] = %rd

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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STTAA: store a value into a thread private, hash by key
Format

STTAA key, %rd
078232431

0x47 key rd

Description

The sttaa instruction stores a value, contained in the rd register into a thread private, hash
map based on a key.

Pseudocode

map[key] = %rd

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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LDLS: load local variable
Format

LDLS variable, %rd
0781516232431

0x48 variable rd

Description

The ldls instruction loads a local variable into the rd register.

Pseudocode

%rd = var

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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STLS: store a value in a local variable
Format

STLS variable, %rd
078232431

0x49 variable rd

Description

The stls instruction takes a value from the rd register and stores it in a variable.

Pseudocode

var = %rd

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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XLATE:
Format

XLATE %rd, %r1, %r2
0781516232431

0x4E r1 r2 rd

Description

The xlate instruction extracts translated data indicated at the current translation index and
returns the data in rd.

NOTE: This instruction is not used by the kernel as all translations are handled in user
space.

Failure modes

This instruction has no run-time failure modes beyond its constraints.
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XLARG: translation argument
Format

XLARG %rd, %r1, %r2
0781516232431

0x4F r1 r2 rd

Description

The xlarg instruction translates a single argument from a structure and returns the tranlsated
value in rd.

NOTE: This instruction is not used by the kernel as all translations are handled in user
space.

Failure modes

This instruction has no run-time failure modes beyond its constraints.

140



Chapter 9

Built-in Global Variables

The D language provides a set of built-in global variables that are available to D scripts from
within probe context. The built-in global variables are meant to help script writers and expose
information that is commonly uses within C and C++ programs, such as errno for the error
number set by the most recent system call, and the pid for the Process Identifier of the currently
running process. All global variables in D are read only, including in destructive mode.

9.1 Built-in Variables reference
The following is a list of all of the global variables available to D programs.
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arg0-9: arguments to the current probe
Description

The variables arg0 through arg9 contain the arguments to the currently executing probe point.

Failure modes

Incorrectly dereferencing the probe arguments will result in a run time error in a D program.
The program will not exit, but an error will be output on the user’s terminal
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args[]: array of arguments to the current probe
Description

The args[] array contains typed versions of all the arguments to the currently executing
probe. When a probe has a pointer to a stucture as an argument it must be accessed via the
args[] array.

Failure modes

Incorrectly dereferencing the probe arguments will result in a run time error in a D program.
The program will not exit, but an error will be output on the user’s terminal
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caller: kernel address of the instruction that called this probe
Description

The caller variable contains the kernel address of the instruction that caused the currently
executing probe to fire.

Failure modes

No known failure modes, caller always contains a valid address, even when probes fire in
user space.
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cpu: The CPU core on which the probe is executing
Description

The cpu variable contains an integer value indicating the CPU core, on which the probe is
executing. CPU cores are numbered from 0 through the maximum present in the system.

Failure modes

The cpu variable always contains a valid value.
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cpucycles: number of cycles elapsed on current CPU core
Description

NOTE: The cpucycles variable is only available on Darwin kernels.
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cpuinstrs: number of instructions elapsed on current CPU core
Description

NOTE: The cpuinstrs variable is only available on Darwin kernels.
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curthread: pointer to the thread structure for the current probe
Description

The curthread variable points to the kernel’s structure that describes the thread which trig-
gered the currently running probe.

Failure modes

The curthread variable is always valid.
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dispatchaddr:
Description

The dispatchaddr variable is only available on Darwin kernels at the time of this writing.
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epid:
Description

The epid variable contains the integer value of the effective probe ID. Each probe enabled
during tracing is assigned an effecitve probe ID starting from 1 and increasing monotonically.
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errno: error number
Description

The errno variable contains the numeric value of the error number returned by the most
recent system call in the program that is executing when the probe fires. The program may be
the kernel or a user space program.

151



execname: name of the currently executing process
Description

The execname variable contains a string that is the name of the currently executing process.
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gid: group ID of the current process
Description

The gid variable contains the group ID of the process being traced by the currently executing
probe.
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id: id of the current probe
Description

The id variable contains the numeric id of the currently executing probe.

Failure modes

The id variable is always valid.
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ipl: interrupt level
Description

NOTE: Thh ipl variable is only available on Darwin kernels.
The ipl variable contains the current interrupt level.
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machtimestamp: current mach absolute time value
Description

NOTE:The machtimestamp variable is only available on Darwin kernels at the time of this
writing.
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pid: process ID
Description

The pid variable contains the process ID of the process which is being traced by the currently
executing probe. A process ID of zero (0) indicates that the currently running process is the
operating system kernel.
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ppid: parent process ID
Description

The ppid variable contains the process ID of the parent process to the one which is being
traced by the currently executing probe. A parent process ID of zero (0) indicates that the
parent of the currently running process is the operating system kernel.
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probe: the name of the probe currently firing
Description

The probe variable contains the string name of the probe currently firing.
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stackdepth: depth of the kernel stack
Description

The stackdepth variable contains the integer depth of the kernel stack for the thread which
is being traced by the currently executing probe.
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tid: thread ID
Description

The tid contains the ID of the kernel thread being traced by the currently executing probe.
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ucaller: user space address
Description

The ucaller variable contains the user space address of the function that caused the currently
executing probe point to fire. If the probe was called from the kernel then this value is 0.
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uid: user ID
Description

The uid variable contains the numeric ID of the user which is the owner of the process being
traced by the currently executing probe.
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uregs: user process registers
Description

The uregs[] array contains the current threads user space register data.
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ustackdepth: depth of the user stack
Description

The ustackdepth variable contains the integer depth of the user proces stack for the thread
which is being traced by the currently executing probe.
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vcycles:
Description

The vcycles variable is only available on Darwin kernels at the time of this writing.
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vinstr:
Description

The vinstr variable is only available on Darwin kernels at the time of this writing.
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vtimestamp: timestamp in nanosecconds
Description

The vtimestamp variable contains the number of nanoseconds that the current thread has
spent running on any core.
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walltimestamp: human readable timestamp
Description

The walltimestamp contains a string describing the current time as it would be seen by a
human operator.
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Chapter 10

Built-in Subroutines

The D language provides a set of built-in global sub-routines that are available to D scripts
from within probe context. The built-in global sub-routines provide commonly used functions
present in the C and C++ language, such as printf and inet_ntoa but which can be called
from probe context without risking system safety.

10.1 Subroutine calling mechanism
Every D subroutine is implemented as a part of the D run time environment and must be im-
plemented according to the safety constraints that DTrace expects.

When a subroutine appears in a D script it is the responsibility of the D code generator
to turn the subroutine and its arguments into DIF to be passed into the DTrace for execution.
Each subroutine has a string name, an identifier type, a set of flags, a numeric ID, a small set
of functions, and an argument list. The argument list defined is processed into a relevant set of
argument types at the time of opening of the DTrace device.

The DIF_OP_CALL instruction, described in Chapter 8, is used by the D code generator
to generate a subroutine call. Each call instruction just has an identifier, which is the name of
the subroutine. The arguments are placed into D’s tuple stack for use in the subroutine. Once
in the execution context of DTrace all subroutines are executed as a part of DIF execution.

10.2 Subroutine list
The tables (10.1, 10.2 in this section summarize all of the subroutines available in the D lan-
guage. The subroutines listed in in order by their index.
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Name Number Description

rand 0 Get random
mutex_owned 1 Query whether current thread is mutex owner
mutex_owner 2 Retrieve mutex owner
mutex_type_adaptive 3 Query if mutex is adaptive
mutex_type_spin 4 Query if mutex is a spinlock
rw_read_held 5 Query whether rwlock is held for read
rw_write_held 6 Query whether current thread holds rwlock for write
rw_iswriter 7 Query whether rwlock is held for write
copyin 8 Copy in data from userspace
copyinstr 9 Copy in string from userspace
copyoutmbuf 9 Copy data from an mbuf chain
speculation 10 Reserves space for a speculation buffer
progenyof 11 Query whether this process the child of a particular

PID
strlen 12 Return the length of a string
copyout 13 Copy data from user process
copyoutstr 14 Copy data from user process as a string
alloca 15 allocate temporary space
bcopy 16 copy bytes from source to destination bounded by a

size
copyinto 17 copy data from a source to a destination
msgdsize 18 return the size data in a STREAMS message block
msgsize 19 return the size data in a STREAMS message block
getmajor 20 return major device number
getminor 21 return minor device number
ddi_pathname 22 look up device driver by name
strjoin 23 join two strings and return the result
lltostr 24 convert a long long (64 bit) value to a string
basename 25 return the file name portion of a pathname

Table 10.1: DTrace Subroutines (Part 1)
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Name Number Description

dirname 26 return the directory component of a pathname
cleanpath 27 return the cleaned up pathname
strchr 28 locate a character in a string
strrchr 29 reverse search a string
strstr 30 locate a string within a string
strtok 31 string tokenizing subroutine
substr 32 return a sub string of a string
index 33 return the byte position of a character in a string
rindex 34 locate the last matching character in a a string
htons 35 convert a short (16 bit) value from host to network

byte order
htonl 36 convert a long (32 bit) value from host to network byte

order
htonll 37 convert a long long (64 bit) value from host to net-

work byte order
ntohs 38 convert a short (16 bit) value from network to host

byte order
ntohl 39 convert long (32 bit) value from network to host byte

order
ntohll 40 convert a long long (64 bit) value from network to

host byte order
inet_ntop 41 convert an arbitrary Internet address to a string
inet_ntoa 42 convert a 32 bit IPv4 address to a string
inet_ntoa6 43 convert a 128 bit IPv6 address to a string
toupper 44 convert a string to upper case
tolower 45 convert a string to lower case
memref 46 return scratch memory
sx_shared_held 48 Is this shared mutex currently held by a reader
sx_exclusive_held 49 Is this sx mutex held exclusively
sx_isexclusive 50 Is the current thread the only one to hold a shared mu-

tex
memstr 51 convert NULL separated strings to one string
getf 52 Return a file structure based on a file descriptor
json 53 extract a single value from a JSON string
strtoll 54 convert a string representing a number to a long long

(64 bit) value
random 55 return a better pseudo-random number than rand()
uuidstr 56 convert a UUID to a string

Table 10.2: DTrace Subroutines (Part 2)
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10.3 Subroutine reference
The remainder of this chapter describes each of the subroutines available in the D language in
detail. The subroutines are arranged in alphabetical order.
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alloca: allocate temporary space
Calling convention

rd void

arg0 Pointer to allocated data or NULL.

Description

The alloca subroutine allocates scratch space in the DTrace state machine structure. Al-
though this subroutine does not allocate space on the process stack, it does act similarly to the
alloca macro, in that the space disappears without an explicit call to a free routine, once the
DTrace machine state structure is deallocated.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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basename: return the file name portion of a pathname
Calling convention

rd A pointer to a scratch space string containing the filename.

arg0 Pathname from which to extract the basename

Description

The basename subroutine takes a single string argument, containing a path, and returns a
pointer to the file name portion of the supplied string. The space for the resulting string is
contained in the DTrace machine state structure, mstate which is automatically de-allocated.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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bcopy: copy bytes from source to destination bounded by a size
Subroutine prototype

void bcopy(const void *source, void *destination, size_t length);

Calling convention

rd void

arg0 Pointer to the source memory

arg1 Pointer to the destination scratch memory

arg2 Amount of bytes to copy

Description

The bcopy subroutine copies bytes from a source pointer to a destination pointer, within the
DTrace machine state scratch region, up to the size supplied in the third argument.

Pseudocode

source = stack[0].value
destination = stack[1].value
length = stack[2].value

if destination not in scratch:
return

if not can_load(source):
%rd = 0
return

for i = 0 ... length:
destination[i] = source[i]

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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cleanpath: return the cleaned up pathname
Calling convention

rd A pointer to the scratch space string containing the cleaned up pathname.

arg0 Path to clean

Description

The cleanpath subroutine takes a single string argument, containing a path, and returns a
pointer to a string containing the cleaned up pathname.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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copyin: Copy data from user space to kernel space
Calling convention

rd void

arg0 Address to copy from

arg1 Length of data to copy

Description

The copyin returns a pointer to a buffer which contains kernel data copied from the area
pointed to by its first argument, up to the limit denoted by its second argument.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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copyinto: copy data from a source to a destination
Calling convention

rd void

arg0 Address to copy from

arg1 Length of data

arg2 Destination address

Description

The copyinto subroutine copies data from a source pointer into a destination pointer bounded
by a size given in the second argument.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.

180



copyinstr: Copy kernel data as a string
Calling convention

rd Pointer to the returned string.

arg0 Address to copy from

arg1 Optional max length

Description

The copyinstr subroutine returns a pointer to string of kernel data which is located at the
first argument and bounded by the second argument.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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copyout: copy data from a buffer into process address space
Calling convention

rd void

arg0 Pointer to buffer

arg1 Pointer to memory

arg2 Length

Description

The copyout subroutine copies data from a buffer supplied by the caller into a process’s
address space.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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copyoutstr: copy data from kernel to user space, as a string
Calling convention

rd void

arg0 Pointer to buffer

arg1 Address in memory

arg2 Length

Description

The copyoutstr subroutine copies data from kernel space to user space as a string value,
bounded by the routine’s third argument.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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copyoutmbuf: copy data from an mbuf chain
Calling convention

rd pointer to copied data

arg0 pointer to mbuf

arg1 amount of data to copy

Description

The copyoutmbuf subroutine copies data from an mbuf chain out a destination pointer
bounded by a size given in the second argument. If the second argument exceeds the size
of the data in the mbuf chain then it is reduced to the correct length.

Constraints

The copyoutmbuf subroutine is only supported on FreeBSD.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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ddi pathname: look up device driver by name
Calling convention

arg0 Pointer to a device node.

arg1 Device minor number.

rd Path within the /devices tree.

Description

The ddi_pathname subroutine returns a string describing the device driver that implements
a device in the system.

Constraints

The ddi_pathname subroutine is only available on Illumos and systems derivice from Open-
Solaris.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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dirname: return the directory component of a pathname
Calling convention

rd A string pointing to the directory component of a pathname.

arg0 Path from which to extact the directory name

Description

The dirname subroutine returns a string containing the directory component of a pathname,
without the terminating filename.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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getmajor: return major device number
Calling convention

rd Major device number

Description

The getmajor subroutine returns the major device number from a device structure supplied
as the first argument.

Constraints

The getmajor subroutine is only available on Illumos and systems derivice from OpenSo-
laris.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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getminor: Get the minor device number from a device structure
Calling convention

rd Minor device number

Description

The getminor subroutine returns the minor number from a device structure.

Constraints

The getminor subroutine is only available on Illumos and systems derivice from OpenSo-
laris.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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getf: Return a file structure based on a file descriptor
Calling convention

rd Pointer to a valid file structure.

arg0 File descriptor.

Description

The getf subroutine takes a file descriptor as its argument and returns a file pointer based on
the supplied file descriptor.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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htonl: convert a long (32 bit) value from host to network byte order
Calling convention

rd Long value in network byte order

arg0 Long value in host byte order

Description

The htonl subroutine takes a long value as its only argument and returns the same long value
in network byte order, suitable for use in network protocols.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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hotnll: convert a long long (64 bit) value from host to network byte order
Calling convention

rd A 64 bit value in network byte order

arg0 A 64 bit value in host byte order

Description

The htonll routine takes a 64 bit value as its only argument and returns that value in network
byte order.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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htons: convert a short (16 bit) value from host to network byte order
Calling convention

rd A 16 bit value in network byte order

rd A 16 bit value in host byte order

Description

The htons subroutine takes a 16 bit value as its only argument and returns that value in
network byte order.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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index: return the byte position of a character in a string
Calling convention

rd Position of character or -1

arg0 String to search

Description

The index subroutine searches from the beginning of a string pointed to by its first argument,
for a character supplied as the second argument. The search proceeds until the character is
found, or an optional limit, supplied as the third argument is reached. If the character is not
found then -1 is returned to the caller.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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inet ntop: convert an arbitrary Internet address to a string
Calling convention

rd Internet address as a string

arg0 Address Family

arg1 Pointer to address structure

Description

The inet_ntop subroutine takes either a 128 bit, IPv6, address or a 32 bit, IPv4 address, and
converts it to a string suitable for humans. The type of address supplied is indeicated by the
second argument, which must either be AF_INET or AF_INET6.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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inet ntoa: convert a 32 bit IPv4 address to a string
Calling convention

rd IPv4 address as a string

arg0 IPv4 address as structure

Description

The inet_ntoa subroutine takes a 32 bit, IPv4, address and converts it to a string suitable
for humans.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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inet ntoa6: convert a 128 bit IPv6 address to a string
Calling convention

rd IPv6 address as a string

arg0 IPv6 address as a structure

Description

The inet_ntoa6 subroutine takes a 128 bit, IPv6, address and converts it to a string suitable
for humans.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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json: extract a single value from a JSON string
Calling convention

rd A string containing the value or NULL

arg0 JSON formatted string

rd Key to search for

Description

The json subroutine extracts a value from a JSON string based on one or more keys supplied
via a list in which NULL is used as a key separator, e.g. "name" NULL "age" NULL
where the keys are name and age and the number of elements in the list (nelems) is equal to
two (2).

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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lltostr: convert a long long (64 bit) value to a string
Calling convention

rd string representation of passed value

arg0 64 bit value to be converted

Description

The lltostr subroutine takes a 64 bit value as its only argument and returns that value as a
human readable string.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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memref: return scratch memory
Subroutine prototype

uintptr_t * memref(uintptr_t ptr, size_t length);

Calling convention

arg0 Pointer to memory

arg1 Length of scratch memory to use

rd Pointer to a fixed size of scratch memory

Description

The memref subroutine allocates memory from scratch space and returns that memory to the
caller.

Pseudocode

size = sizeof(uintptr_t) * 2
memref = scratch_space
memref[0] = stack[0].value
memref[1] = stack[1].value
scratch_space += size
%rd = memref

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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memstr: convert NULL separated strings to one string
Calling convention

arg0 pointer to memory

arg1 separation character

arg2 length of memory to convert

rd converted string

Description

The memstr subroutine converts a set of NULL separated strings into a single string. The
string is bounded by the caller.

Constraints

The maximum length of string to be converted is limited to 4096 bytes by default. The memstr
subroutine is only available on the FreeBSD operating system.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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msgdsize: return the size data in a STREAMS message block
Calling convention

rd The size of the data contained in the message block.

arg0 Pointer to the message block structure

Description

The msgdsize subroutine returns the size of the data contained in a message block stucture.
Message blocks are specific to the STREAMS system.

Constraints

The msdgsize subroutine is only available on the Illumos operating system.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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msgsize: return the size data in a STREAMS message block
Calling convention

rd The size of the data contained in the message block.

arg0 Pointer to the message block structure

Description

The msgsize subroutine returns the size of the data contained in a message block stucture.
Message blocks are specific to the STREAMS system.

Constraints

The msgsize subroutine is only available on the Illumos operating system.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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mutex owned: Is this mutex owned by a thread
Calling convention

rd Boolean value indicating mutex ownership.

arg0 Pointer to the mutex structure

Description

The mutex_owned subroutine takes a mutex as its argument and returns a boolean value
indicating whether the mutex is currently owned by a thread.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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mutex owner: Report which thread owns a mutex
Calling convention

retval The kernel thread which owns the mutex

arg0 Pointer to the mutex structure

Description

The mutex_owner subroutine returns the kernel thread structure which owns the mutex
passed at the only argument.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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mutex type adaptive: Is the mutex adaptive
Calling convention

retval Boolean indication of whether or not the mutex is adaptive.

arg0 Pointer to the mutex structure

Description

The mutex_type_adaptive subroutine takes a mutex as its only arugment and returns a
boolean value indicating whether or not the mutex is adaptive.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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mutex type spin: Spin mutex detection
Calling convention

rd Boolean value indicating whether or not the mutex passed as this subroutine’s only argu-
ment is a spin mutex.

arg0 Pointer to the mutex structure

Description

The mutex_type_spin subroutine takes a mutex as its only arugment and returns a boolean
value indicating wether or not the mutex is a spin mutex.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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ntohl: convert long (32 bit) value from network to host byte order
Calling convention

rd value in host byte order

arg0 value in network byte order

Description

The ntohl routine takes a 32 bit value as its only argument and returns that value in host byte
order.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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ntohll: convert a long long (64 bit) value from network to host byte order
Calling convention

rd long long (64 bit) value in host byte order

arg0 long long (64 bit) value in network byte order

Description

The ntohll subroutine takes a long long (64 bit) value as its only argument and returns that
value in host byte order.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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ntohs: convert a short (16 bit) value from network to host byte order
Calling convention

rd short (16 bit) value in host byte order

arg0 short (16 bit) value in network byte order

Description

The ntohs subroutine takes a short (16 bit) value as its only argument and returns the same
value in host byte order.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.

209



progenyof:is this process the child of a particular PID
Calling convention

rd Boolean value

arg0 PID

Description

The progenyof subroutine returns a boolean value that indicates if the current process is a
child of the PID passed in the only argument.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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rand(): Get Random
Calling convention

rd Target for 64 bits of random(ish) data

Description

This subroutine returns 64 bits of random(ish) data, placing the result in rd. On supporting
systems, stronger randomness can be obtained uing the random subroutine.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.

211



random: return a better pseudo-random number than rand()
Calling convention

rd A pseudo-random number

Description

The random subroutine returns a better pseudo-random number than the originala rand sub-
routine provided by DTrace.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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rindex: locate the last matching character in a a string
Calling convention

rd The position of the character or -1 if the character is not found.

arg0 The string to search.

Description

The rindex subroutine searches from the end of a string pointed to by its first argument,
for the first instance character supplied as its second argument. The search proceeds until
the character is found, or an optional limit, supplied as the third argument is reached. If the
character is not found then -1 is returned to the caller.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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rw read held: Is this read/write mutex currently held by a reader
Calling convention

rd Boolean value indicating if this read/write mutex is currently held.

arg0 Mutex structure

Description

The rw_read_held subroutine takes a read/write mutex as its only argument and returns a
boolean value indicating if the mutex is currently held by a reader.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.

214



rw write held: Is this read/write mutex held by a writer
Calling convention

rd Boolean value indicating whether or not a read/write mutex is held by a writer.

arg0 Mutex structure

Description

The rw_write_held subroutine takes a read/write mutex as its only argument and returns a
boolean value indicating whether or not the mutex is held by a writer.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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rw iswriter: Does the current thread hold a r/w mutex as a writer
Calling convention

rd Boolean value indicating if the current thread holds a read/write mutex as a writer.

arg0 Mutex structure

Description

The rw_iswriter function takes a read/write mutex as its only arugment and returns a
boolean value indicating if the current rhead holds the mutex as a writer.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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speculation: Activate an inactive speculation
Calling convention

rd Either an active speculation or 0.

Description

The speculation subroutine transitions an inactive speculation to the active state, and re-
turns it to the caller, or returns 0 if there are no inactive speculations available.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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strlen: DTrace version of the strlen function
Calling convention

rd Length of the string passed as the only argument

arg0 Pointer to the string

Description

The strlen subroutine is DTrace’s version of the well known C library function. It returns
the length, in bytes, of the string pointed to by the pointer passed in as its first argument. The
string must be NULL terminated.

Pseudocode

string = stack[0].value
%rd = strlen(string)

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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strjoin: join two strings and return the result
Calling convention

rd Pointer to the combined string

arg0 Pointer to the first string

arg1 Pointer to the second string

Description

The strjoin subroutine concatenates the two strings passed to it as arguments and returns
the combined string to the caller.

Pseudocode

first = stack[0].value
second = stack[1].value
combined = scratch_space

if (not can_load(first)) or (not can_load(second)):
%rd = 0
return

if no room in scratch:
%rd = 0
return

for i = 0 ... len(first):
combined[i] = first[i]

for j = 0 ... len(second):
combined[i + j] = second[j]

scratch_space += len(combined)
%rd = combined

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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strchr: locate a character in a string
Calling convention

rd pointer to the character or NULL if not found

arg0 string to search

Description

The strchr subroutine searches a string, supplied as the first argument, for the first instance
of the character passed as the second and returns a pointer to the location of the character in the
string. If the charaacter is not present in the string then NULL is returned.

Pseudocode

addr = stack[0].value
target = stack[1].value
%rd = strchr(addr, target)

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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strrchr: reverse search a string
Calling convention

rd pointer to the character or NULL if not found

arg0 string to search

Description

The strrchr subroutine searches a string, supplied as the first argument, for the last instance
of the character passed as the second and returns a pointer to the location of the character in the
string. If the charaacter is not present in the string then NULL is returned.

Pseudocode

addr = stack[0].value
target = stack[1].value
%rd = strrchr(addr, target)

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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strstr: locate a string within a string
Subroutine prototype

char * strstr(const char *big, const char *little);

Calling convention

arg0 Pointer to the string to be searched through

arg1 Pointer to the string to search for

rd Pointer to the string located or NULL if not found

Description

The strstr subroutine search a string, passed as its first argument, for a sub-string, passed as
the second argument. If the sub-string is found a pointer to it is returned to the caller, otherwise
NULL is returned.

Pseudocode

big = stack[0].value
little = stack[1].value
%rd = strstr(big, little)

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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strtoll: convert a string representing a number to a long long (64 bit) value
Calling convention

rd a long long (64 bit) value

arg0 string to convert

Description

The strtoll takes a number encoding in a string and converts it to a long long (64 bit) value.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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strtok: string tokenizing subroutine
Calling convention

rd pointer to the next token or NULL

arg0 string to tokenize

Description

The strtok subroutine returns a sequential set of tokens from a string passed as its first
argument, based on a separator passed as its second. Once the string has been exhausted NULL
is returned. In order to find subsequent tokens NULL is passed as the first argument. See this
operating system’s strtok manual page (strtok(3)) for an example.

Pseudocode

string = stack[0].value
separator = stack[1].value
%rd = strtok(string, separator)

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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substr: return a sub string of a string
Calling convention

rd a string representing the substring

arg0 string from which to derive a sub-string

arg2 index of substring

arg2 length of substring

Description

The substr routine returns a sub-string of a string, passed as the first argument, starting
from a byte index passed as the second argument. An optional third argument can be used to
bound the resulting string. If the optional bounding argument is not supplied then the sub-string
includes all bytes up to and including the terminating NUL character.

Pseudocode

string = stack[0].value
index = stack[1].value
length = stack[2].value
%rd = substr(string, index, length)

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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sx shared held: Is this shared mutex currently held by a reader
Calling convention

rd Boolean value indicating if this read/write mutex is currently held.

arg0 shared lock structure

Description

The sx_shared_held subroutine takes an sx shared mutex as its only argument and returns
a boolean value indicating if the mutex is currently held by a reader.

Constraints

The sx_shared_held subroutine is only available on Illumos and systems derivice from
OpenSolaris.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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sx exclusive held: Is this sx mutex held exclusively
Calling convention

rd Boolean value indicating whether or not a the mutex is held exclusively..

arg0 shared lock structure

Description

The sx_exclusive_held subroutine takes an sx shared mutex as its only argument and
returns a boolean value indicating whether or not the mutex is held exclusively.

Constraints

The sx_exclusive_held subroutine is only available on Illumos and systems derivice
from OpenSolaris.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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sx isexclusive: Is the current thread the only one to hold a shared mutex
Calling convention

rd Boolean value indicating if the current thread is the only one holding a shared mutex.

arg0 shared lock structure

Description

The sx_isexclusie subroutine takes a shared mutex as its only arugment and returns a
boolean value indicating if the current thread is the only one holding it.

Constraints

The sx_isexclusive subroutine is only available on Illumos and systems derivice from
OpenSolaris.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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tolower: convert a string to all lower case characters
Subroutine prototype

char * tolower(const char *string);

Calling convention

rd An all lower case string

arg0 Pointer to the string

Description

The tolower subroutine returns a string converts the characters of the string supplied as its
only argument into lower case and returns the resulting string.

Pseudocode

string = stack[0].value
destination = scratch_space

for i = 0 ... len(string):
c = string[i]
if c is uppercase:

c = lowercase(c)
destination[i] = c

scratch_space += len(string)
%rd = destination

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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toupper: convert a string to upper case
Subroutine prototype

char * toupper(const char *string);

Calling convention

rd A string with only upper case letters

arg0 Pointer to the string

Description

The toupper subroutine converts the characters of the string supplied as its only argument
into upper case and returns the resulting string.

Pseudocode

string = stack[0].value
destination = scratch_space

for i = 0 ... len(string):
c = string[i]
if c is lowercase:

c = uppercase(c)
destination[i] = c

scratch_space += len(string)
%rd = destination

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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uuidstr: convert a UUID to a string
Calling convention

rd string representation of a UUID

arg0 UUID to be converted

Description

The uuidstr subroutine converts a numeric UUID into a string.

Failure modes

This subroutine has no run-time failure modes beyond its constraints.
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Appendix A

Code Organization

A.1 Open Solaris
DTrace was originally developed on OpenSolaris. As this was the original place that the
code resided there was no reason to split things along OS or license boundaries, concerns which
cropped up in subsequent ports of the system. The main DTrace command resides in cmd, the
supporting libraries are in lib/libdtrace and the kernel code is in the uts/common,
uts/intel, uts/sparc, and related directories. One key thing to note is that there are two
different dtrace.h include files, one for the kernel and one for the user space code.

A.2 Illumos
The original source of DTrace came from OpenSolaris which has morphed into Illumos. The
Illumos tree continues to use the same directory and file layout as was used in OpenSolaris

A.3 FreeBSD
Within FreeBSD the DTrace code has been split between that which came from Sun’s Open-
Solaris (now Illumos) and is therefore under the CDDL and the code which has been written
natively on FreeBSD, and is therefore under a BSD license. There are two locations for the cddl
code, one in the root of the tree, /usr/src and one in the kernel directory /usr/src/sys.
Native FreeBSD scripts are located in the /usr/share/dtrace directory.

Because of the user space and kernel split for the cddl code the FreeBSD tree has three,
separate, dtrace.h files:

sys/cddl/contrib/opensolaris/uts/common/sys/dtrace.h The one you care about.

cddl/contrib/opensolaris/lib/libdtrace/common/dtrace.h Library APIs

cddl/compat/opensolaris/include/dtrace.h Compatibility include

Figure A.1: The various versions of dtrace.h
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A.4 macOS
Open source code from Apple is supplied in discrete packages. The DTrace code on macOS
is split between the xnu kernel and the rest of the code which is contained in a dtrace
code drop. The kernel includes a very small number of files that are absolutely necessary
to build the kernel itself, including the driver code. All of the kernel code is collected into
the xnu/bsd/dev/dtrace/ directory with the macOS translators, the D files that know
about the internals of kernel data structures, are contained in the scripts sub-directory.
In the OpenDTrace repositories there macOS kernel code resides in https://github.
com/opendtrace/xnu while the rest of the code resides in https://github.com/
opendtrace/macos-dtrace. These repositories are updated as soon as Apple drops their
tarballs onto https://opensource.apple.com/tarballs/.
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